WO2010023742A1 - 抗う蝕性組成物の製造方法 - Google Patents

抗う蝕性組成物の製造方法 Download PDF

Info

Publication number
WO2010023742A1
WO2010023742A1 PCT/JP2008/065387 JP2008065387W WO2010023742A1 WO 2010023742 A1 WO2010023742 A1 WO 2010023742A1 JP 2008065387 W JP2008065387 W JP 2008065387W WO 2010023742 A1 WO2010023742 A1 WO 2010023742A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclodextran
cariogenic
dextran
composition according
producing
Prior art date
Application number
PCT/JP2008/065387
Other languages
English (en)
French (fr)
Inventor
博三 田村
茂八 儀部
信一郎 伊是名
海士 戸田
貞夫 宮城
昌顧 中地
和美 舟根
Original Assignee
株式会社シー・アイ・バイオ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シー・アイ・バイオ filed Critical 株式会社シー・アイ・バイオ
Priority to PCT/JP2008/065387 priority Critical patent/WO2010023742A1/ja
Publication of WO2010023742A1 publication Critical patent/WO2010023742A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/06Fungi, e.g. yeasts
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/30Artificial sweetening agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • A61K31/721Dextrans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis

Definitions

  • the present invention relates to a method for producing an anti-cariogenic composition, and more particularly to a production method capable of producing a composition having cyclodextran and having excellent anti-cariogenic properties at a low cost and in a high yield.
  • Cariogenic bacteria such as Streptococcus mutans and Streptococcus sobrinus make water-insoluble adhesive glucan from sucrose by the action of glucan synthase. This water-insoluble glucan adheres to the tooth surface, and caries bacteria adhere and grow to form plaque. Furthermore, since caries bacteria produce lactic acid, the pH in the plaque tends to become acidic, and the enamel on the tooth surface is decalcified, and caries are formed. Therefore, in order to effectively prevent caries, it is necessary to suppress the formation of water-insoluble glucan and to suppress the generation of acid.
  • Patent Documents 1 to 4 Various materials have been studied to prevent caries, and it has been reported that polyphenols such as green tea extract, oolong tea extract, apple polyphenol, and hop koji polyphenol exhibit anti-cariogenic properties.
  • saccharides such as xylitol are known to exhibit anti-cariogenic properties, but in recent years, cyclodextran (hereinafter sometimes abbreviated as “CI”), which is a cyclic isomaltooligosaccharide, has excellent anti-cariogenic properties.
  • CI cyclodextran
  • Patent Document 5 a method of synthesizing a cyclodextran synthase produced using a gene recombination technique by acting on dextran has been reported (Patent Documents 6 to 7).
  • This cyclodextran is produced by a specific microorganism belonging to the genus Bacillus, and the product includes cyclodextran having various molecular weights and monosaccharides such as isomaltooligosaccharide and fructose.
  • cyclodextran was separated and purified by HPLC, but there was a problem that the yield was low and the production cost was very high.
  • the product is used as a mixture without separation by HPLC, the formation of water-insoluble glucan can be suppressed. I didn't have it.
  • the present inventors have made yeast act on a sugar composition containing cyclodextran, thereby maintaining the water-insoluble glucan synthesis inhibitory effect and containing monosaccharides.
  • the inventors have found that the acid productivity can be remarkably reduced by reducing the amount, and the present invention has been completed.
  • the present invention provides a method for producing an anti-cariogenic composition characterized in that cyclodextran synthase is allowed to act on a dextran-containing medium to obtain a cyclodextran-containing solution, and yeast is allowed to act on the obtained cyclodextran-containing solution. It is.
  • the present invention is an anti-cariogenic composition obtained by allowing a cyclodextran synthase to act on a dextran-containing medium to obtain a cyclodextran-containing solution and allowing the yeast to act on the cyclodextran-containing solution.
  • the production method of the present invention it is possible to produce an anti-cariogenic composition containing cyclodextran at a low cost and in a high yield.
  • the anti-cariogenic composition of the present invention exhibits an excellent water-insoluble glucan synthesis inhibitory effect, and has an excellent anti-cariogenic property because of its low acidogenicity.
  • the cyclodextran synthase used in the present invention is an enzyme that synthesizes a cyclic cyclodextran using dextran as a substrate.
  • this cyclodextran 7 to 33 glucoses are cyclically linked by ⁇ -1,6 glucoside bonds. It is a cyclic isomaltooligosaccharide (hereinafter, it may be abbreviated as “CI-7” or the like depending on the number of glucose units to be bound).
  • Cyclodextran synthase can be obtained from a culture of Bacillus microorganisms capable of producing cyclodextran.
  • Examples of such microorganisms belonging to the genus Bacillus include, for example, the Bacillus sp. T-3040 strain (FERM BP-4132) described in Japanese Patent No. 3075873, and the Bacillus sp. -19080), 350K strain (FERM P-19081), 360K strain (FERM P-19082), 860K strain (FERM P-19083), and the like.
  • mutant strain in which the production ability of cyclodextran synthase is enhanced by a known mutation method (for example, Kawabata et al., “Food and Clinical Nutrition”, 43-48, Vol. 1, 2006) is used. You can also.
  • the aforementioned Bacillus microorganism is cultured in a medium containing dextran or starch.
  • the concentration of dextran in the medium is usually about 0.1 to 5 w / v%.
  • starch when starch is used, the starch may be of any origin and is used after being gelatinized by a known method.
  • the starch concentration in the medium is usually about 0.5 to 8 w / v%.
  • a carbon source, a nitrogen source, inorganic salts and the like can be added to this medium.
  • Any carbon source may be used as long as the microorganism can assimilate, such as carbohydrates (sugars such as glucose, mannose, glycerol, mannitol, etc.), organic acids (acetic acid, propionic acid, maleic acid, fumaric acid, malic acid, etc.) Alcohols (ethanol, propanol, etc.) are used.
  • Nitrogen sources include ammonium salts of inorganic or organic acids such as ammonium chloride, ammonium sulfate, ammonium nitrate, and ammonium phosphate, or nitrogen-containing compounds such as peptone, polypeptone, tryptone, yeast extract, malt extract, meat extract, corn steep liquor, etc. Is used.
  • inorganic salts monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate and the like are used.
  • the amount of the above-mentioned medium components other than starch can be appropriately set according to an example of a general medium used for culturing microorganisms. In such a medium, culture is usually performed at 20 to 40 ° C., 16 to 144 hours, under culture conditions of pH 6 to 8.
  • cyclodextran synthase Since cyclodextran synthase usually exists as an extracellular enzyme in the obtained culture, cyclodextran synthase should be separated and obtained by removing and concentrating the cells by known means such as membrane concentration. Can do. For membrane concentration, for example, cells are removed by microfiltration (MF) membrane treatment with a pore size of about 0.1 to 0.45 ⁇ m, and then ultrafiltration (UF) membrane with a molecular fraction of about 5,000 to 10,000. By performing the treatment, cyclodextran synthase can be separated. Although it is possible to use cyclodextran synthase obtained by a known production method (Japanese Patent No. 3117328), it can be obtained by using Escherichia coli or the like into which a cyclodextran synthase gene has been incorporated using a known gene recombination technique. You may use what was made to express.
  • MF microfiltration
  • UF ultrafiltration
  • the cyclodextran synthase thus obtained is allowed to act on a dextran-containing medium.
  • concentration of dextran in the medium is usually about 0.1 to 5 w / v%, and in addition to dextran, a carbon source, a nitrogen source, inorganic salts and the like can be added.
  • a carbon source may be used as long as the microorganism can assimilate, such as carbohydrates (sugars such as glucose, mannose, glycerol, mannitol, etc.), organic acids (acetic acid, propionic acid, maleic acid, fumaric acid, malic acid, etc.) Alcohols (ethanol, propanol, etc.) are used.
  • Nitrogen sources include ammonium salts of inorganic or organic acids such as ammonium chloride, ammonium sulfate, ammonium nitrate, and ammonium phosphate, or nitrogen-containing compounds such as peptone, polypeptone, tryptone, yeast extract, malt extract, meat extract, corn steep liquor, etc. Is used.
  • inorganic salts include monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, manganese chloride, and the like.
  • the amount of the above-mentioned medium components other than dextran can be appropriately set according to an example of a general medium used for culturing microorganisms. Although purified dextran may be added, dextran-producing bacteria cultured in a sucrose-containing medium can be used as the dextran-containing medium.
  • dextran-producing bacterium known strains such as Leuconostoc mesenteroides NRRL B-512F strain (ATCC 10830a) and M898 strain (FERM BP-4904) can be used. Moreover, the strain by which the dextran production ability was confirmed by screening from the sugarcane juice which is the first process in a sugar factory can also be used. Cyclodextran synthase can synthesize cyclodextran only from ⁇ 1,6-dextran, and it is considered that the reaction stops when a branch is present. Therefore, dextran-producing bacteria have a large amount of dextran, and ⁇ 1,6- It is preferable to produce dextran with a high percentage of binding, and it is advantageous to screen and use such strains.
  • known strains such as Leuconostoc mesenteroides NRRL B-512F strain (ATCC 10830a) and M898 strain (FERM BP-4904) can be used. Moreover, the strain by which the
  • the concentration of sucrose in the medium for culturing dextran-producing bacteria is usually about 1 to 20 w / v%, and in addition to sucrose, a carbon source, a nitrogen source, inorganic salts and the like can be added.
  • a carbon source may be used as long as the microorganism can assimilate, such as carbohydrates (sugars such as glucose, mannose, glycerol, mannitol, etc.), organic acids (acetic acid, propionic acid, maleic acid, fumaric acid, malic acid, etc.) Alcohols (ethanol, propanol, etc.) are used.
  • Nitrogen sources include ammonium salts of inorganic or organic acids such as ammonium chloride, ammonium sulfate, ammonium nitrate, and ammonium phosphate, or nitrogen-containing compounds such as peptone, polypeptone, tryptone, yeast extract, malt extract, meat extract, corn steep liquor, etc. Is used.
  • inorganic salts include monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, manganese chloride, and the like.
  • the amount of the above medium components other than sucrose can be appropriately set according to an example of a general medium used for culturing microorganisms.
  • Purified sugar may be used as sucrose, but inexpensive raw materials containing sucrose such as sweet potato juice and molasses can also be used.
  • the culture is usually performed under 20 to 40 ° C. for 10 to 30 hours.
  • Cyclodextran synthase is added and allowed to act on the above dextran-containing medium.
  • the reaction conditions may be a normal temperature of 20 to 60 ° C., 1 to 6 hours, and a pH of about 4 to 8.
  • the reaction solution is subjected to UF filtration membrane treatment with a molecular fraction of about 5,000 to 10,000 to separate and recover cyclodextran synthase, and nanofiltration with a molecular weight of about 150 to 300 daltons ( NF) It is preferable to remove water, minerals, etc. by performing a membrane treatment.
  • the recovered cyclodextran synthase usually has a loss of about 10 to 15% per reaction, but can be used repeatedly in the above reaction. In this way, a solution containing cyclodextran is obtained.
  • This cyclodextran-containing solution contains low-molecular cyclodextran in which 7 to 12 glucoses are polymerized.
  • polymer dextran in which 13 or more glucoses are polymerized, several kinds of isomaltooligosaccharides, monosaccharides such as fructose, and the like are contained.
  • monosaccharides are generally contained in the solid content of the solution in an amount of about 18 to 25%. Therefore, the sugar composition obtained by drying the solution as it is has high acid productivity and a sufficient anti-cariogenic effect. Absent.
  • the monosaccharide content is decreased by allowing yeast to act on the cyclodextran-containing solution.
  • yeast which can be used
  • the yeast of the genus Saccharomyces (Saccharomyces) is used preferably from the point of handleability.
  • the amount of yeast added is about 0.005 to 0.1% by weight in terms of dry cell weight relative to the solid content in the cyclodextran-containing solution, and the working conditions are usually 20 to 96 ° C. for about 20 to 96 hours. And it is sufficient. Yeast is preferable because it can lower the acid productivity by acting under anaerobic or microaerobic conditions, and microaerobic conditions are particularly preferable.
  • the yeast cells are removed from the solution after the yeast treatment by MF membrane treatment or the like. If necessary, the acid may be removed with an ion exchange resin.
  • the solution after removal of the cells is dried by a usual means such as spray drying or freeze drying to obtain a sugar composition containing cyclodextran exhibiting anti-cariogenic properties of the present invention.
  • the anti-cariogenic composition of the present invention thus obtained has a monosaccharide content of preferably 3% or less, more preferably 1% or less. Since the monosaccharide content can be reduced in this manner, the pH can be preferably 5.7 or higher in the acid fermentation test.
  • the acid fermentability test means the test described in Test Example 2 described later.
  • the anti-cariogenic composition of the present invention can be made into an anti-cariogenic food / beverage product form using a normal food / beverage product material. Specifically, the oral residence time of gum, candy, dried plum, etc. is relatively high. Long foods are preferred.
  • the anti-cariogenic composition of the present invention can also be used as an oral preparation such as a dentifrice, a gargle, and a mouthwash.
  • Reference example 1 Screening and culture of dextran producing bacteria: Extract sugarcane juice (mixed juice) from the sugar factory in Okinawa Prefecture, 2% sucrose, 2.5% polypeptone, 5% yeast extract, 1.5% dipotassium hydrogen phosphate, 0.01% salt %, Calcium chloride 0.05%, magnesium sulfate 0.01%, manganese chloride 0.01%, and agar is applied for 24 hours at 30 ° C. One platinum loop is taken from the formed colony and statically cultured at 30 ° C. for 18 hours in the same liquid medium excluding agar.
  • Literature K. Funane, T. Matsuo, H. Ono, T. Ishii, S. Gibu, T. Tokashiki and M.
  • Reference example 2 Acquisition of highly cyclodextran-producing Bacillus microorganisms Regarding the Bacillus sp. T-3040 strain (FERM BP-4132), publicly known literature (Kawabata et al., "Breating of Cyclic Isomaltooligosaccharide Synthase (CITase) Producing Bacillus Circulans by Nitrosoguanidine Mutation and Streptomycin Resistance Mutation", Food and Clinical Nutrition was performed according to the method described in Nutrition 1, 43-48, 2006) to obtain a Bacillus microorganism having a cyclodextran synthase (CITase) production amount 110 times that of T-3040 strain.
  • CITase cyclodextran synthase
  • Example 1 Production of anti-cariogenic composition (1): 7 kg of purified sugar, 0.2% polypeptone, 0.2% yeast extract, 1.5% dipotassium hydrogen phosphate, 0.01% sodium chloride, 0.05% calcium chloride, 0.01% magnesium sulfate, 0% manganese chloride It was added to a medium containing 0.01% and adjusted to a concentration of 14%. To this medium, 4.5 ml of the Leuconostococcus microorganism culture solution obtained in Reference Example 1 was added, and the medium was allowed to stand for about 18 hours to obtain a dextran-containing medium.
  • 560 ml of the obtained culture solution was inoculated into 60 L of a medium prepared in the same manner using a 90 L culture apparatus, and cultured at 110 prm and 30 ° C. for 72 hours.
  • 0.01% ⁇ -amylase and 0.01% yeast were added and reacted overnight, treated with a 0.2 ⁇ m MF filter membrane to remove the cells, and then the molecular fraction 5000
  • a concentrated solution containing cyclodextran synthase was obtained by performing a UF filtration membrane treatment. This concentrated solution was added to a dextran-containing medium to a final concentration of 0.05 unit, and reacted at 40 ° C. for 2 hours.
  • the cyclodextran synthase 1 unit is described in the above-mentioned document (Kawabata et al., “Breeding Cyclic Isomaltooligosaccharide Synthase (CITase) Producing Bacillus Circulans by Nitrosoguanidine Mutation and Streptomycin Resistance Mutation”, Food / Clinical Nutrition, 1, 43- 48, 2006).
  • the culture medium after the reaction was treated with a UF filtration membrane having a molecular fraction of 5000 to separate and recover cyclodextran synthase, and the permeate was filtered through an NF membrane having a molecular weight of 300 Dalton to remove water and minerals.
  • yeast for bread manufactured by Nihon France Shoji Co., Ltd.
  • NF filtration membrane 0.012% of yeast for bread
  • the yeast cells are removed with a 0.2 ⁇ m MF filter membrane, then the acid is removed with an ion exchange resin of WA-30 (Mitsubishi Chemical Corporation), and water and the like are further removed with an NF filter membrane with a molecular weight of 300 Dalton.
  • spray drying was performed to obtain 2934 g of a powdery composition (moisture 5.1%). At this time, the yield of the anti-cariogenic composition from the purified sugar (7 Kg) was 41.91%.
  • the content of cyclodextran (CI7-12) was measured according to the method described in JP-A-2008-167744. Further, the content of isomaltoligosaccharide was determined by HPLC. On the other hand, the content of monosaccharide (fructose) was determined by determining the amount of reducing sugar by the Somogyi-Nelson method and subtracting the content of isomaltoligosaccharide from that value. The results are shown in Table 1.
  • Comparative Example 1 2.1 kg of purified sugar, 0.2% polypeptone, 0.2% yeast extract, 1.5% dipotassium hydrogen phosphate, 0.01% sodium chloride, 0.05% calcium chloride, 0.01% magnesium sulfate, chloride It added to the culture medium containing manganese 0.01%, and it adjusted so that it might become a concentration of 14% (total amount 15L). To this medium, 1.5 ml of the Leuconostoc microorganism culture solution of Reference Example 1 was added, and the culture was allowed to stand for about 18 hours. The same operation was repeated twice to obtain a dextran-containing medium.
  • the cells after the reaction were removed by 0.2 ⁇ m MF filtration membrane treatment, and the UF of molecular fraction 5000
  • the enzyme was separated and recovered by filtration membrane treatment.
  • Concentrate the permeate to Brix 20 with a Centriotherm Concentrator from Alfa Laval apply to the CR1310 Synthetic Resin Chromatography Separator, and elute with ion-exchanged water to obtain 22 L of the cyclodextran peak fraction 40-62 L. Lyophilized to obtain 345 g of a powdered composition (water content 5.0%).
  • the yield of the composition from the purified sugar (3.5 Kg) at this time was 12.86%.
  • About the obtained composition it carried out similarly to Example 1, and analyzed content of cyclodextran, isomaltooligosaccharide, and monosaccharide. The results are shown in Table 1.
  • Comparative Example 2 2.1Kg of purified sugar, 0.2% polypeptone, 0.2% yeast extract, 1.5% dipotassium hydrogen phosphate, 0.01% sodium chloride, 0.05% calcium chloride, 0.01% magnesium sulfate, chloride It was dissolved in a medium containing 0.01% manganese and adjusted to a concentration of 14% (total amount 15 L). To this medium, 1.5 ml of the Leuconostoc microorganism culture solution of Reference Example 1 was added, and left to stand for about 18 hours to obtain a dextran-containing medium.
  • 1,440 ml of the Bacillus microorganism obtained in Reference Example 2 was added to 60 L of a purified sugar solution in which 1.4 kg of purified sugar was dissolved, and cultured at 30 ° C. for about 72 hours in a 90 L capacity culture apparatus.
  • This culture solution was treated with a 0.2 ⁇ m MF filtration membrane to remove the cells, and a concentrated solution containing cyclodextran synthase was obtained by UF filtration membrane treatment with a molecular fraction of 5000.
  • 60 L of this concentrated solution and 15 L of dextran-containing medium were mixed and subjected to an enzyme reaction at 40 ° C. for 2 hours.
  • Test example 1 Water-insoluble glucan synthesis inhibition test: The water-insoluble glucan synthesis inhibitory activity of the composition (CImix) obtained in Example 1 was examined by the following method. Sugar alcohols (xylitol, maltitol, erythritol, palatinose) and cyclodextran purified products (cycloisomaltoheptaose (CI-7), cycloisomaltooctaose (CI-8), cycloisomaltononaose (CI) A similar test was conducted for -9)). (Test method) S. A culture solution obtained by allowing the sobrinus 6715 strain (ATCC 33478) to stand for 16 hours at 37 ° C.
  • BHI Bacillo Brain Heart Infusion
  • HI Bacillo Heart Infusion Broth
  • test substance at each concentration, and in a test tube with a 45 ° inclination.
  • Static culture was performed at 37 ° C. for 16 hours.
  • the amount of WIG at each concentration of CImix is S.I.
  • the culture solution is fractionated into a non-adherent fraction, a loose-adherent fraction, and a firm-adherent fraction according to the strength of adhesion to the test tube wall by the following method.
  • the amount of water-insoluble glucan) and the amount of WSG (water-soluble glucan) were quantified.
  • the amount of cells was measured by absorbance at 540 nm, and the amount of WSG and WIG were measured by the phenol sulfuric acid method.
  • the non-adherent fraction was centrifuged and separated into a supernatant and a precipitate.
  • WSG was prepared from the supernatant at this time, and bacterial cells and WIG were prepared from the precipitate.
  • the same amount of ethanol was added to the centrifugation supernatant of the non-adherent fraction, and the mixture was treated for 2 hours to overnight at 4 ° C. and then centrifuged, and the precipitate was used as WSG.
  • WSG was washed twice with 50% ethanol. 1 mL of 0.5N NaOH was added to WSG and dissolved to obtain WSG.
  • the precipitate of the non-adherent fraction was washed with 4 mL of PBS and then centrifuged.
  • the supernatant at this time was defined as loose-adherent WIG, and 1 mL of PBS was added to the precipitate and stirred to obtain a loose-adherent cell suspension.
  • 1 mL of 0.5N NaOH was added, stirred, centrifuged, and separated into a supernatant and a precipitate.
  • the supernatant at this time was confirmed-adherent WIG, and 1 mL of PBS was added to the precipitate and stirred to obtain a confirmed-adherent cell suspension.
  • FIG. 1 shows the amount of glucan synthesized by summing the amounts of WIG in the non-adherent fraction, loose-adherent fraction, and firm-adherent fraction at each concentration of each test substance.
  • FIG. 2 shows the amount of WIG of each fraction at each concentration of CImix.
  • Test example 2 Acid fermentability test (1): S. A culture solution obtained by standing culture of Sobrinus 6715 strain (ATCC 33478) in 4 mL of BHI liquid medium at 37 ° C. for 16 hours was used as a preculture solution. A 1% (40 ⁇ L) preculture solution is inoculated into 4 mL of an HI liquid medium containing 1% sucrose, and 1% of the composition of Example 1 and Comparative Examples 1 and 2 is added, and the mixture is added at The culture was allowed to stand for a period of time, and the change in pH at that time was measured every hour. The pH was measured continuously by inserting a microelectrode into a test tube and culturing.
  • the TOA DKK TYPE GS-5015C was used as the microelectrode for measurement, and the TOA DKK intelligent recorder Julius IHR-9061 was used for recording.
  • pH after 16 hours was 5.7 or higher, it was evaluated as “cariogenic” and when it was lower than 5.7, “cariogenic”.
  • Test example 3 Acid fermentability test (2): S. sobrinus (S.s) 6715 strain (ATCC 33478) or S. A culture solution obtained by allowing mutans (S.m) MT8148 strain (ATCC25175) to stand in a 4 mL BHI liquid medium at 37 ° C. for 16 hours was used as a preculture solution. 1% (40 ⁇ L) of the preculture solution is inoculated into 4 mL of HI liquid medium containing 1% sucrose, 1% of the composition obtained in Example 1 is added, and static culture is performed at 37 ° C. for 16 hours in a test tube. The change in pH at that time was measured every hour (1% mixing).
  • the pH was measured continuously by inserting a microelectrode into a test tube and culturing.
  • the TOA DKK TYPE GS-5015C was used as the microelectrode for measurement, and the TOA DKK intelligent recorder Julius IHR-9061 was used for recording.
  • the change in pH was measured when only 1% of sucrose (1% Suc.) And only 1% of the composition of Example 1 (1% CImix) were added. The results are shown in FIG.
  • Example 2 Preparation of anti-carious sweetener: 15 g of the carious composition obtained in Example 1 and 1 g of sucrose were mixed and dissolved in 100 mL of water, and then lyophilized to obtain 17 g of powder. This powder was mixed with 9899 g of palatinose and uniformly mixed and dried in an extruded fluidized bed to obtain 1042 g of a granular sweetener. When the acid fermentability test was conducted in the same manner as in Test Example 2 using the obtained sweetener as a sample, the pH did not decrease even after 16 hours, indicating that the acid productivity was low.
  • an anti-cariogenic composition containing cyclodextran can be produced at a low cost and in a high yield, which has a high water-insoluble glucan synthesis inhibitory activity and a low acid productivity. Therefore, it can be advantageously used as an anti-cariogenic sweetener.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Mycology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Epidemiology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 非水溶性グルカン形成抑制効果を有し、かつ低酸産生性であるサイクロデキストラン含有組成物を低コストで高効率に製造可能な製造方法を提供することを目的とする。当該製造方法は、サイクロデキストラン合成酵素をデキストラン含有培地に作用させてサイクロデキストラン含有溶液を得て、得られたサイクロデキストラン含有溶液に酵母を作用させることを特徴とする抗う蝕性組成物の製造方法である。

Description

抗う蝕性組成物の製造方法
 本発明は、抗う蝕性組成物の製造方法に関し、さらに詳細には、サイクロデキストランを含有し優れた抗う蝕性を有する組成物を低コストかつ高収率で製造可能な製造方法に関する。
 ストレプトコッカス・ミュータンスやストレプトコッカスソブリヌスなどのう蝕菌は、グルカン合成酵素の作用により、ショ糖から非水溶性粘着性のグルカンを作る。この非水溶性グルカンが歯の表面に固着して、う蝕菌が付着増殖し歯垢(プラーク)を形成する。さらにう蝕菌は乳酸を産生するため歯垢内のpHが酸性に傾き、歯の表面のエナメル質を脱灰し、虫歯が形成される。したがって、有効にう蝕を防ぐためには、非水溶性グルカンの形成を抑制し、かつ酸の生成を抑制することが必要である。
 う蝕を防ぐために様々な素材について研究がなされ、緑茶抽出物やウーロン茶抽出物、リンゴポリフェノール、ホップ苞ポリフェノールなどのポリフェノール類が抗う蝕性を示すことが報告されている(特許文献1~4)。また、キシリトールなどの糖類も抗う蝕性を示すことが知られているが、近年、環状イソマルトオリゴ糖であるサイクロデキストラン(以下、「CI」と略記することがある)が優れた抗う蝕性を有することが見出されている(特許文献5)。また、遺伝子組換え技術を用いて製造したサイクロデキストラン合成酵素をデキストランに作用させて合成する方法も報告されている(特許文献6~7)。
 このサイクロデキストランは、特定のバチルス属微生物によって産生されるが、その産生物には様々な分子量のサイクロデキストランの他、イソマルトオリゴ糖やフラクトースなどの単糖類が含まれる。従来の製造方法においては、サイクロデキストランをHPLCにより分離精製していたが、収率が低く製造コストが非常に高くなってしまうという問題があった。一方、産生物をHPLCにより分離処理せずに混合物のまま用いると、非水溶性グルカンの形成を抑制することができるものの、含有する単糖類により酸が産生されるため、十分な抗う蝕効果を有するとはいえなかった。
特開平01-9922号公報 特開平03-284625号公報 特開平07-285876号公報 特開平09-295944号公報 特許第340868号公報 特許第3429569号 特許第3487711号
 したがって、非水溶性グルカン合成阻害効果を有し、かつ低酸産生性であるサイクロデキストラン含有糖組成物を低コストで高効率に製造可能な技術の開発が望まれていた。
 本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、サイクロデキストランを含有する糖組成物に酵母を作用させることによって、非水溶性グルカン合成阻害効果を維持しながら、単糖類の含有量を低下させ酸産生性を著しく低下できることを見出し、本発明を完成するに至った。
 すなわち本発明は、サイクロデキストラン合成酵素をデキストラン含有培地に作用させてサイクロデキストラン含有溶液を得て、得られたサイクロデキストラン含有溶液に酵母を作用させることを特徴とする抗う蝕性組成物の製造方法である。
 また本発明はサイクロデキストラン合成酵素をデキストラン含有培地に作用させてサイクロデキストラン含有溶液を得て、該サイクロデキストラン含有溶液に酵母を作用させることによって得られる抗う蝕性組成物である。
 本発明の製造方法によれば、サイクロデキストランを含有する抗う蝕組成物を低コスト、高収率で製造することが可能である。また本発明の抗う蝕組成物は、優れた非水溶性グルカン合成阻害効果を示すとともに、酸生成性が低いため、優れた抗う蝕性を有するものである。
 本発明において用いられるサイクロデキストラン合成酵素は、デキストランを基質として環状のサイクロデキストランを合成する酵素であり、このサイクロデキストランは、7~33個のグルコースがα-1,6グルコシド結合で環状に連結した環状イソマルトオリゴ糖である(以下、結合するグルコース単位の数に応じて「CI-7」等と略記する場合がある)。
 サイクロデキストラン合成酵素は、サイクロデキストランの産生能を有するバチルス属微生物の培養物から得ることができる。このようなバチルス属微生物としては、例えば、第3075873号特許公報記載のバチルス・エスピーT-3040株(FERM BP-4132)や、特開2004-16624号公報に記載のバチルス・エスピー330K株(FERMP-19080)、350K株(FERM P-19081)、360K株(FERM P-19082)、860K株(FERM P-19083)などが例示できる。また、上記菌株を公知の変異方法(例えば、川端ら、「食品・臨床栄養」、43-48、Vol.1 2006)によって、サイクロデキストラン合成酵素の産生能を増強させた変異株を使用することもできる。
 上記バチルス属微生物は、デキストラン又はデンプンを含有する培地で培養される。デキストランを用いる場合の培地中のデキストラン濃度は通常0.1~5w/v%程度である。一方、デンプンを用いる場合、デンプンはどのような由来のものであってもよく、公知方法によりα化して用いる。培地中のデンプンの濃度は、通常0.5~8w/v%程度である。この培地には、デキストラン又はデンプンの他に炭素源、窒素源、無機塩類等を添加することができる。炭素源としては、該微生物が資化し得るものであればよく、炭水化物(グルコース、マンノース、グリセロール、マンニトール等の糖類等)、有機酸(酢酸、プロピオン酸、マレイン酸、フマル酸、リンゴ酸等)、アルコール類(エタノール、プロパノール等)が用いられる。窒素源としては、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、リン酸アンモニウム等の無機酸若しくは有機酸のアンモニウム塩、又はペプトン、ポリペプトン、トリプトン、酵母エキス、麦芽エキス、肉エキス、コーンスチープリカー等の含窒素化合物が用いられる。無機塩類としては、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウム等が用いられる。デンプン以外の上記培地成分の使用量は微生物の培養に用いられる一般的な培地の例に従い適宜設定できる。このような培地において、通常20~40℃、16~144時間、pH6~8程度の培養条件で培養すればよい。
 得られた培養物中に通常サイクロデキストラン合成酵素は菌体外酵素として存在しているため、膜濃縮等の公知手段によって菌体を除去し、濃縮することによってサイクロデキストラン合成酵素を分離取得することができる。膜濃縮は、例えば孔径0.1~0.45μm程度の精密ろ過(MF)膜処理により菌体を除去し、次いで分子分画量5,000~10,000程度の限外ろ過(UF)膜処理を行うことによってサイクロデキストラン合成酵素を分離することができる。なお、公知の製造方法(特許第3117328号公報)によって得られるサイクロデキストラン合成酵素を使用することも可能であるが、公知の遺伝子組換え技術を用いてサイクロデキストラン合成酵素遺伝子を組み込んだ大腸菌等により発現させたものを用いてもよい。
 かくして得られたサイクロデキストラン合成酵素をデキストラン含有培地に作用させる。培地中のデキストラン濃度は通常0.1~5w/v%程度であり、デキストランの他に炭素源、窒素源、無機塩類等を添加することができる。炭素源としては、該微生物が資化し得るものであればよく、炭水化物(グルコース、マンノース、グリセロール、マンニトール等の糖類等)、有機酸(酢酸、プロピオン酸、マレイン酸、フマル酸、リンゴ酸等)、アルコール類(エタノール、プロパノール等)が用いられる。窒素源としては、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、リン酸アンモニウム等の無機酸若しくは有機酸のアンモニウム塩、又はペプトン、ポリペプトン、トリプトン、酵母エキス、麦芽エキス、肉エキス、コーンスチープリカー等の含窒素化合物が用いられる。無機塩類としては、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウム、塩化マンガン等、が用いられる。デキストラン以外の上記培地成分の使用量は微生物の培養に用いられる一般的な培地の例に従い適宜設定することができる。デキストランは精製されたものを添加してもよいが、ショ糖を含有する培地にデキストラン産生菌を培養したものをデキストラン含有培地として用いることができる。
 上記デキストラン産生菌としては、ロイコノストック・メセンテロイデス(Leuconostoc mesenteroides)NRRL B-512F株(ATCC 10830a)やM898株(FERM BP-4904)など公知の菌株を使用することができる。また、製糖工場での最初の工程であるサトウキビ搾汁液からスクリーニングしてデキストラン産生能が確認された菌株を用いることもできる。サイクロデキストラン合成酵素は、α1,6-デキストランからのみサイクロデキストランを合成することができ、分岐が存在すると反応が停止すると考えられることから、デキストラン産生菌はデキストラン産生量が多いとともに、α1,6-結合の割合の多いデキストランを産生するものであることが好ましく、このような菌株をスクリーニングして使用することが有利である。
 デキストラン産生菌を培養する培地中のショ糖の濃度は通常1~20w/v%程度であり、ショ糖の他に炭素源、窒素源、無機塩類等を添加することができる。炭素源としては、該微生物が資化し得るものであればよく、炭水化物(グルコース、マンノース、グリセロール、マンニトール等の糖類等)、有機酸(酢酸、プロピオン酸、マレイン酸、フマル酸、リンゴ酸等)、アルコール類(エタノール、プロパノール等)が用いられる。窒素源としては、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、リン酸アンモニウム等の無機酸若しくは有機酸のアンモニウム塩、又はペプトン、ポリペプトン、トリプトン、酵母エキス、麦芽エキス、肉エキス、コーンスチープリカー等の含窒素化合物が用いられる。無機塩類としては、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウム、塩化マンガン等、が用いられる。ショ糖以外の上記培地成分の使用量は微生物の培養に用いられる一般的な培地の例に従い適宜設定することができる。ショ糖は精製糖を用いてもよいが、甘庶汁や廃糖蜜などのショ糖を含む安価な原料を用いることもできる。このような培地において、通常20~40℃、10~30時間程度の培養条件で培養すればよい。
 上記デキストラン含有培地にサイクロデキストラン合成酵素を添加・作用させる。反応条件としては、通常温度20~60℃、1~6時間、pH4~8程度であればよい。また、反応後の液は、分子分画量5,000~10,000程度のUFろ過膜処理を行うことによってサイクロデキストラン合成酵素を分離回収し、分子量150~300ダルトン程度のナノフィルトレーション(NF)膜処理を行うことによって水、ミネラル類等を除去することが好ましい。回収したサイクロデキストラン合成酵素は、通常反応1回あたり10~15%程度のロスはあるが、繰り返し上記の反応に使用することが可能である。このようにしてサイクロデキストランを含有する溶液が得られる。
 このサイクロデキストラン含有溶液中には、7個~12個のグルコースが重合した低分子サイクロデキストランが含まれる。またその他に、グルコース13個以上が重合した高分子デキストランや数種類のイソマルトオリゴ糖、フルクトース等の単糖類等が含有される。このうち、単糖類は溶液の固形分中に一般に18~25%程度含まれるため、この溶液をそのまま乾燥して得られる糖組成物は、酸産生性が高くなり十分な抗う蝕効果が得られない。
 本発明においては、このサイクロデキストラン含有溶液に酵母を作用させることによって単糖類の含有量を低下させる。使用できる酵母としては特に制限はないが、サッカロミセス(Saccharomyces)属の酵母が取り扱い性の点から好ましく用いられる。
 酵母の添加量は、サイクロデキストラン含有溶液中の固形分に対して乾燥菌体重量で0.005~0.1質量%程度であり、作用条件は通常温度20~45℃で20~96時間程度とすればよい。また酵母は嫌気性または微好気性条件下で作用させることにより、酸産生性をより低下できるため好ましく、特に微好気性条件が好ましい。
 酵母処理後の溶液は、MF膜処理等により酵母菌体が除去される。また必要に応じ、イオン交換樹脂により酸の除去等を行ってもよい。菌体除去後の溶液をスプレードライ、凍結乾燥等の通常の手段により乾燥して本発明の抗う蝕性を示すサイクロデキストランを含有する糖組成物が得られる。
 かくして得られた本発明の抗う蝕性組成物は、単糖類の含有量が好ましくは、3%以下、より好ましくは1%以下である。このように単糖類の含有量を少なくすることができるため、酸発酵性試験においてpHを好ましくは5.7以上にすることが可能となる。本明細書において、酸発酵性試験とは後述する試験例2に記載の試験を意味する。
 本発明の抗う蝕性組成物は、通常の飲食品素材を用いて抗う蝕性飲食品の形態とすることができ、具体的には、ガム、キャンディー、乾燥梅等の口腔滞留時間の比較的長い食品類とすることが好ましい。
 また、本発明の抗う蝕性組成物は、歯磨剤、うがい用剤、洗口液等の口腔用剤とすることもできる。
 次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれら実施例に何ら制約されるものではない。
 参考例1
  デキストラン産生菌のスクリーニングおよび培養:
 沖縄県内の製糖工場の工程中からサトウキビの搾汁液(混合汁)を採取し、蔗糖2%、ポリペプトン2.5%、酵母エキス5%、リン酸水素二カリウム1.5%、食塩0.01%、塩化カルシウム0.05%、硫酸マグネシウム0.01%、塩化マンガン0.01%の組成の寒天培地に塗布し、24時間30℃で培養する。形成したコロニーから1白金耳を取り、寒天を除いた同様の液体培地で、18時間30℃で静置培養する。文献(K.Funane, T.Matsuo, H.Ono, T.Ishii, S.Gibu, T.Tokashiki and M.Kobayashi: Characterization of Glucans and Glucansucrases from Novel Leuconostoc Strains (Inclucing sp.S-51). J.Appl.Glycosci., 50, 379-382 (2003).)に記載の方法に従って、培養液のグルカンスクラーゼ活性を測定し、活性の高い菌株をスクリーニングし、デキストラン生産するロイコノストック属微生物を得た。
 参考例2
  高サイクロデキストラン産生能バチルス属微生物の取得:
 バチルス・エスピーT-3040株(FERM BP-4132)について、公知文献(川端ら、「ニトロソグアニジン変異およびストレプトマイシン耐性変異による環状イソマルトオリゴ糖合成酵素(CITase)生産菌Bacillus circulansの育種」、食品・臨床栄養、1、43-48、2006)に記載の方法に従って変異処理を行い、T-3040株の110倍のサイクロデキストラン合成酵素(CITase)生産量を有するバチルス属微生物を得た。
 実施例1
  抗う蝕性組成物の製造(1):
 精製糖7kgをポリペプトン0.2%、酵母エキス0.2%、リン酸水素二カリウム1.5%、食塩0.01%、塩化カルシウム0.05%、硫酸マグネシウム0.01%、塩化マンガン0.01%を含有する培地に添加し濃度14%となるように調整した。この培地に参考例1で得たロイコノストック属微生物培養液を4.5ml添加し、約18時間静置培養しデキストラン含有培地を得た。
 一方、α化したデンプン2%、ポリペプトン0.5%、酵母エキス0.1%、食塩0.5%を含有する培地40mlをpH8.0に調整し、これに参考例2で得られたバチルス属微生物を植菌し、振とう培養機を用い125rpm、30分、30℃で均一混合した。次いで得られた混合液10mlを140mlづつ同様に調整した培地に植菌し、振とう培養機を用い、125rpm、30℃で30時間培養した。得られた培養液560mlを、90Lの培養装置を用い60Lの同様に調整した培地に植菌し、110prm、30℃で72時間培養した。得られた培養液に0.01%のα-アミラーゼ及び0.01%の酵母を加えて一晩反応させ、0.2μmのMFろ過膜処理して菌体を除去し、次いで分子分画5000のUFろ過膜処理を行なってサイクロデキストラン合成酵素を含有する濃縮液を得た。
 この濃縮液を終濃度0.05unitの力価になるようにデキストラン含有培地に添加し、40℃で2時間反応させた。なお、サイクロデキストラン合成酵素1unitは、前記文献(川端ら、「ニトロソグアニジン変異およびストレプトマイシン耐性変異による環状イソマルトオリゴ糖合成酵素(CITase)生産菌Bacillus circulansの育種」、食品・臨床栄養、1、43-48、2006)において規定される酵素量を意味する。反応後の培地を分子分画量5000のUFろ過膜で処理してサイクロデキストラン合成酵素を分離回収し、透過液を分子量300ダルトンのNF膜でろ過を行なって水及びミネラル類を除去した。次いで、NFろ過膜による濃縮液に、パン用酵母(日仏商事株式会社製)を0.012%添加して30℃で48時間微好気性条件下で反応させた。その後0.2μmのMFろ過膜により酵母菌体を除去してから、WA-30(三菱化学社製)のイオン交換樹脂により酸を除去し、更に分子量300ダルトンのNFろ過膜により、水等を除去濃縮してからスプレードライして粉末の組成物2934g(水分5.1%)を得た。この時の精製糖(7Kg)からの抗う蝕性組成物の収率は、41.91%であった。得られた抗う蝕性組成物について、特開2008-167744号公報記載の方法に従って、サイクロデキストラン(CI7~12)の含有量を測定した。また、イソマルトオリゴ糖の含有量をHPLCにより求めた。一方、単糖類(フルクトース)の含有量は、Somogyi-Nelson法により還元糖量を求め、その値よりイソマルトオリゴ糖含有量を差引いて求めた。その結果を表1に示す。
 比較例1
  精製糖2.1kgをポリペプトン0.2%、酵母エキス0.2%、リン酸水素二カリウム1.5%、食塩0.01%、塩化カルシウム0.05%、硫酸マグネシウム0.01%、塩化マンガン0.01%を含有する培地に添加して濃度14%となるように調整した(全量15L)。この培地に参考例1のロイコノストク属微生物培養液を1.5ml添加し、約18時間静置培養した。同様の操作を2回繰り返してデキストラン含有培地を得た。
 一方、1.4kgの精製糖を溶解させたポリペプトン0.5%、酵母エキス0.1%、食塩0.5%を含有する60Lの培地に参考例2で得たバチルス属微生物を1,440ml添加して、容量90Lの培養装置にて30℃で約72時間培養した。この培養液を、0.2μmのMFろ過膜処理で菌体を除去し、分子分画5000のUFろ過膜処理によりサイクロデキストラン合成酵素を含有する濃縮液を得た。
 この濃縮液60Lとデキストラン含有培地15Lとを混合して40℃、2時間酵素反応を行い、反応後の液を0.2μmのMFろ過膜処理で菌体を除去し、分子分画5000のUFろ過膜処理して酵素を分離回収した。透過液をアルファ・ラバル製セントリサーム濃縮機でBrix20まで濃縮し、オルガノ製CR1310合成樹脂のクロマト分離装置にアプライし、イオン交換水で溶出して、サイクロデキストランピークのフラクション40~62Lの部分の22Lを凍結乾燥して、345gの粉末の組成物を得た(水分5.0%)。
 この時の精製糖(3.5Kg)からの組成物の収率は12.86%であった。得られた組成物について、実施例1と同様にして、サイクロデキストラン、イソマルトオリゴ糖、単糖類の含有量を分析した。その結果を表1に示す。
 比較例2
 精製糖2.1Kgをポリペプトン0.2%、酵母エキス0.2%、リン酸水素二カリウム1.5%、食塩0.01%、塩化カルシウム0.05%、硫酸マグネシウム0.01%、塩化マンガン0.01%を含有する培地に溶解して濃度14%となるよう調整した(全量15L)。この培地に参考例1のロイコノストク属微生物培養液を1.5ml添加し、約18時間静置培養しデキストラン含有培地を得た。
 一方、1.4Kgの精製糖を溶解させた精製糖溶液60Lに参考例2で得たバチルス属微生物を1,440ml添加して、容量90Lの培養装置にて30℃で約72時間培養した。この培養液を、0.2μmのMFろ過膜で処理して菌体を除去し、分子分画量5000のUFろ過膜処理によりサイクロデキストラン合成酵素を含有する濃縮液を得た。
 この濃縮液60Lとデキストラン含有培地15Lとを混合して40℃、2時間酵素反応を行い、反応後の液を分子分画5000のUFろ過膜処理して酵素を分離回収した。透過液をアルファ・ラバル製セントリサーム濃縮機でBrix20まで濃縮し、オルガノ製CR1310合成樹脂のクロマト分離装置にアプライし、イオン交換水で溶出して、前半の40Lまでの流出物を廃棄し、フラクション40~80Lの部分の40Lを採取して80L以降はフラクトース部分として除去した。採取した部分を凍結乾燥して、1459gの粉末の組成物を得た(水分4.9%)。
 この時の精製糖(3.5Kg)からの組成物の収率は41.43%であった。得られた組成物について、実施例1と同様にして、サイクロデキストラン、イソマルトオリゴ糖、単糖類の含有量を分析した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 試験例1
 非水溶性グルカン合成阻害試験:
 下記方法により実施例1で得られた組成物(CImix)の非水溶性グルカン合成阻害活性を調べた。なお、糖アルコール類(キシリトール、マルチトール、エリスリトール、パラチノース)およびサイクロデキストラン精製品(サイクロイソマルトヘプタオース(CI-7)、サイクロイソマルトオクタオース(CI-8)、サイクロイソマルトノナオース(CI-9))についても同様に試験を行った。
 (試験方法)
 S.sobrinus6715株(ATCC33478)を4mLのBHI(Bacto Brain Heart Infusion)液体培地で37℃で16時間静置培養した培養菌液を前培養液とした。スクロースを1%を含むHI(Bacto Heart Infusion Broth)液体培地4mLに1%(40μL)の前培養液を植菌し、各濃度の被験物質を添加して45°の傾斜をつけた試験管内で37℃で16時間静置培養した。CImixの各濃度におけるWIG量は、S.sobrinus6715株(ATCC33478)を2LのBHI(Bacto Brain Heart Infusion)液体培地で37℃で6時間静置培養した培養液を遠心分離し、その上澄み液に390g/Lの硫酸アンモニウムを加えてできた沈殿をpH6.0 p-buffer 20mLに溶解する液を粗酵素液とした。スクロースを1%を含むHI(Bacto Heart Infusion Broth)液体培地2mLに50μLの粗酵素液を加え、各濃度のCImixを添加して45°の傾斜をつけた試験管内で37℃で6時間静置培養した。培養後、培養液を試験管壁への付着力の強さによりnon-adherent画分、loose-adherent画分、firm-adherent画分に下記方法で分画し、それぞれの菌体量とWIG(非水溶性グルカン)量、およびWSG(水溶性グルカン)量を定量した。菌体量は540nmにおける吸光度を測定し、またWSG量、WIG量はフェノール硫酸法により測定した。
 (分画方法)
 培養後、試験管をゆっくり3回転した後、非付着物を培養液と共に別の試験管に移した。これをnon-adherent画分とした。残った試験管にPBSを4mL加え、ゆっくり3回転し洗浄した。このときの洗浄液もnon-adherent画分に加えた。残った試験管にPBSを4mL加え、10秒間ミキサーで攪拌した。このとき剥離したものをPBSとともに別の試験管に移した。これをloose-adherent画分とし、試験管に強く付着した画分をfirm-adherent画分とした。
 non-adherent画分を遠心し、上清と沈殿物に分けた。このときの上清よりWSGを調製し、沈殿物より菌体とWIGを調製した。non-adherent画分の遠心上清に同量のエタノールを加え2時間から1晩4℃で処理した後遠心し、沈殿物をWSGとした。WSGは50%エタノールで2回洗浄した。WSGに0.5N NaOH 1mLを加えて溶解し、溶液をWSGとした。non-adherent画分の沈殿物をPBS 4mLで洗ったあと遠心し、沈殿物に0.5N NaOH 1mLを加え攪拌後、遠心し、上清と沈殿物に分けた。このときの上清をnon-adherent WIGとし、沈殿物にPBS1mLを加え攪拌したものをnon-adherent菌体懸濁液とした。
 loose-adherent画分は遠心後、沈殿物に0.5N NaOH 1mLを加え攪拌、遠心し、上清と沈殿物に分けた。このときの上清をloose-adherent WIGとし、沈殿物にPBS1mLを加え攪拌したものをloose-adherent菌体懸濁液とした。
 firm-adherent画分には、0.5N NaOH 1mLを加え攪拌後、遠心し、上清と沈殿物に分けた。このときの上清をfirm-adherent WIGとし、沈殿物にPBS 1mLを加え攪拌したものをfirm-adherent菌体懸濁液とした。
 各被験物質のそれぞれの濃度におけるnon-adherent画分、loose-adherent画分およびfirm-adherent画分のWIG量を合計したグルカン合成量を図1に示す。また、CImixの各濃度における各画分のWIG量を図2に示す。
 図1から明らかなように、糖アルコールと比較して、サイクロデキストランの非水溶性グルカン合成阻害効果は格段に高いことが示された。
 試験例2
  酸発酵性試験(1):
 S.sobrinus6715株(ATCC33478)を4mLのBHI液体培地で37℃で16時間静置培養した培養菌液を前培養液とした。
 スクロース1%を含むHI液体培地4mLに1%(40μL)の前培養液を植菌し、実施例1、比較例1~2の組成物を1%添加して、試験管内で37℃で16時間静置培養し、その時のpHの変化を1時間毎に測定した。pHの測定は、試験管に微小電極を挿入し、培養を行いながらpHを継続的に測定した。測定に使用する微小電極にはTOA DKK TYPE GS-5015Cを、記録にはTOA DKKインテリジェントレコーダーユリウス IHR-9061を使用した。16時間後のpHが5.7以上を「抗う蝕性」、5.7より低いと「う蝕性」と評価した。
Figure JPOXMLDOC01-appb-T000002
 試験例3
  酸発酵性試験(2):
 S.sobrinus(S.s)6715株(ATCC33478)またはS.mutans(S.m)MT8148株(ATCC25175)を4mLのBHI液体培地で37℃で16時間静置培養した培養菌液を前培養液とした。
 スクロース1%を含むHI液体培地4mLに1%(40μL)の前培養液を植菌し、実施例1で得られた組成物1%添加して、試験管内で37℃で16時間静置培養し、その時のpHの変化を1時間毎に測定した(1%混合)。pHの測定は、試験管に微小電極を挿入し、培養を行いながらpHを継続的に測定した。測定に使用する微小電極にはTOA DKK TYPE GS-5015Cを、記録にはTOA DKKインテリジェントレコーダーユリウス IHR-9061を使用した。
 同様にして、スクロース1%のみ(1%Suc.)、実施例1の組成物1%のみ(1%CImix)添加した場合のpHの変化を測定した。結果を図3に示す。
実施例2
  抗う蝕性甘味料の調製:
 実施例1で得られた抗う蝕性組成物15gとスクロース1gを100mLの水に混合溶解してから凍結乾燥して17gの粉末を得た。この粉末を9899gのパラチノースと混合して、押出し流動層で均一混合乾燥して1042gの顆粒状甘味料を得た。得られた甘味料をサンプルとして試験例2と同様にして酸発酵性試験を行ったところ、16時間後もpHは低下せず、酸産生性が低いことが示された。
試験例1において、各被験物質のグルカン合成量を示した図である。 試験例2において、実施例1の抗う蝕性組成物の各濃度における各画分のWIG量を示した図である。 試験例3においてpHの変化を示す図である。
 本発明によれば、低コスト、高収率でサイクロデキストランを含有する抗う蝕性組成物を製造することができ、このものは、非水溶性グルカン合成阻害活性が高く、かつ酸産生性が低いため、抗う蝕性の甘味料として有利に利用できるものである。

Claims (14)

  1.  サイクロデキストラン合成酵素をデキストラン含有培地に作用させてサイクロデキストラン含有溶液を得て、得られたサイクロデキストラン含有溶液に酵母を作用させることを特徴とする抗う蝕性組成物の製造方法。
  2.  サイクロデキストラン合成酵素が、サイクロデキストラン生産能を有するバチルス属微生物をデキストラン又はデンプン含有培地で培養した培養物から分離取得したものである請求項1記載の抗う蝕性組成物の製造方法。
  3.  培養物からのサイクロデキストラン合成酵素の分離取得を、限外ろ過膜処理により行うものである請求項2記載の抗う蝕性組成物の製造方法。
  4.  酵母を微好気性条件で作用させるものである請求項1ないし3のいずれかの項記載の抗う蝕性組成物の製造方法。
  5.  抗う蝕性組成物中の単糖類の含有量が3質量%以下である請求項1ないし4のいずれかの項記載の抗う蝕性組成物の製造方法。
  6.  抗う蝕性組成物の酸発酵性試験によるpHが5.7以上である請求項1ないし5のいずれかの項記載の抗う蝕性組成物の製造方法。
  7.  サイクロデキストラン合成酵素をデキストラン含有培地に作用させた後、限外ろ過膜処理によりサイクロデキストラン合成酵素を分離回収するものである請求項1ないし6のいずれかの項記載の抗う蝕性組成物の製造方法。
  8.  サイクロデキストラン合成酵素をデキストラン含有培地に作用させてサイクロデキストラン含有溶液を得て、該サイクロデキストラン含有溶液に酵母を作用させることによって得られる抗う蝕性組成物。
  9.  抗う蝕性組成物中の単糖類の含有量が3質量%以下である請求項8記載の抗う蝕性組成物。
  10.  発酵性試験によるpHが5.7以上である請求項7または8に記載の抗う蝕性組成物。
  11.  請求項8ないし10のいずれかの項記載の抗う蝕性組成物を含有することを特徴とする抗う蝕性甘味料。
  12.  請求項8ないし10のいずれかの項記載の抗う蝕性組成物を含有することを特徴とする口腔用組成物。
  13.  請求項8ないし10のいずれかの項記載の抗う蝕性組成物を含有することを特徴とする抗う蝕性飲食品。
  14.  サイクロデキストラン合成酵素をデキストラン含有培地に作用させてサイクロデキストラン含有溶液を得て、該サイクロデキストラン含有溶液に酵母を作用させることによって得られるプラーク生成抑制組成物。
PCT/JP2008/065387 2008-08-28 2008-08-28 抗う蝕性組成物の製造方法 WO2010023742A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/065387 WO2010023742A1 (ja) 2008-08-28 2008-08-28 抗う蝕性組成物の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/065387 WO2010023742A1 (ja) 2008-08-28 2008-08-28 抗う蝕性組成物の製造方法

Publications (1)

Publication Number Publication Date
WO2010023742A1 true WO2010023742A1 (ja) 2010-03-04

Family

ID=41720931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/065387 WO2010023742A1 (ja) 2008-08-28 2008-08-28 抗う蝕性組成物の製造方法

Country Status (1)

Country Link
WO (1) WO2010023742A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172635A1 (ja) * 2011-06-14 2012-12-20 株式会社シー・アイ・バイオ 抗う蝕性組成物の製造方法
EP2805923A1 (en) 2013-05-24 2014-11-26 Omya International AG Installation for the preparation of a solution of calcium hydrogen carbonate suitable for the remineralization of water
EP2805924A1 (en) 2013-05-24 2014-11-26 Omya International AG Multiple batch system for the preparation of a solution of calcium hydrogen carbonate suitable for the remineralization of desalinated water and of naturally soft water
EP3050852A1 (en) 2015-01-29 2016-08-03 Omya International AG Process for manufacturing a solution of an earth alkali hydrogen carbonate
EP3202720A1 (en) 2016-02-05 2017-08-09 Omya International AG Process for the preparation of an aqueous solution comprising at least one earth alkali hydrogen carbonate
EP3202719A1 (en) 2016-02-05 2017-08-09 Omya International AG Installation for the preparation of an aqueous solution comprising at least one earth alkali hydrogen carbonate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078276A (ja) * 1993-06-24 1995-01-13 Noda Sangyo Kagaku Kenkyusho 新規な環状イソマルトオリゴ糖合成酵素、その製造法及び環状イソマルトオリゴ糖の製造法
JPH0859484A (ja) * 1994-08-18 1996-03-05 Natl Food Res Inst 抗う蝕剤
JPH0866191A (ja) * 1994-08-30 1996-03-12 Noda Sangyo Kagaku Kenkyusho 環状イソマルトオリゴ糖合成酵素遺伝子を含有するdna、組み換え体dna、及び環状イソマルトオリゴ糖合成酵素の製造法
JPH08214895A (ja) * 1995-02-10 1996-08-27 Hayashibara Biochem Lab Inc う蝕抑制剤とその製造方法並びに用途
JP2007185195A (ja) * 1996-11-08 2007-07-26 Hayashibara Biochem Lab Inc コージビオースホスホリラーゼとその製造方法並びに用途
JP2007189905A (ja) * 2006-01-17 2007-08-02 National Agriculture & Food Research Organization 好アルカリ性サイクロデキストラン合成酵素遺伝子を含有するdna、組み換え体dna、および好アルカリ性サイクロデキストラン合成酵素の製造法
JP2008167744A (ja) * 2006-12-13 2008-07-24 National Agriculture & Food Research Organization サイクロデキストランの製造方法およびサイクロデキストラン合成酵素の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078276A (ja) * 1993-06-24 1995-01-13 Noda Sangyo Kagaku Kenkyusho 新規な環状イソマルトオリゴ糖合成酵素、その製造法及び環状イソマルトオリゴ糖の製造法
JPH0859484A (ja) * 1994-08-18 1996-03-05 Natl Food Res Inst 抗う蝕剤
JPH0866191A (ja) * 1994-08-30 1996-03-12 Noda Sangyo Kagaku Kenkyusho 環状イソマルトオリゴ糖合成酵素遺伝子を含有するdna、組み換え体dna、及び環状イソマルトオリゴ糖合成酵素の製造法
JPH08214895A (ja) * 1995-02-10 1996-08-27 Hayashibara Biochem Lab Inc う蝕抑制剤とその製造方法並びに用途
JP2007185195A (ja) * 1996-11-08 2007-07-26 Hayashibara Biochem Lab Inc コージビオースホスホリラーゼとその製造方法並びに用途
JP2007189905A (ja) * 2006-01-17 2007-08-02 National Agriculture & Food Research Organization 好アルカリ性サイクロデキストラン合成酵素遺伝子を含有するdna、組み換え体dna、および好アルカリ性サイクロデキストラン合成酵素の製造法
JP2008167744A (ja) * 2006-12-13 2008-07-24 National Agriculture & Food Research Organization サイクロデキストランの製造方法およびサイクロデキストラン合成酵素の製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012172635A1 (ja) * 2011-06-14 2015-02-23 貞夫 宮城 抗う蝕性組成物の製造方法
WO2012172635A1 (ja) * 2011-06-14 2012-12-20 株式会社シー・アイ・バイオ 抗う蝕性組成物の製造方法
US10226747B2 (en) 2013-05-24 2019-03-12 Omya International Ag Multiple batch system for the preparation of a solution of calcium hydrogen carbonate suitable for the remineralization of desalinated water and of naturally soft water
WO2014187613A1 (en) 2013-05-24 2014-11-27 Omya International Ag Installation for the preparation of a solution of calcium hydrogen carbonate suitable for the remineralization of water
EP2805924A1 (en) 2013-05-24 2014-11-26 Omya International AG Multiple batch system for the preparation of a solution of calcium hydrogen carbonate suitable for the remineralization of desalinated water and of naturally soft water
EP2805923A1 (en) 2013-05-24 2014-11-26 Omya International AG Installation for the preparation of a solution of calcium hydrogen carbonate suitable for the remineralization of water
EP3050852A1 (en) 2015-01-29 2016-08-03 Omya International AG Process for manufacturing a solution of an earth alkali hydrogen carbonate
WO2016120238A1 (en) 2015-01-29 2016-08-04 Omya International Ag Process for manufacturing a solution of an earth alkali hydrogen carbonate
US10850996B2 (en) 2015-01-29 2020-12-01 Omya International Ag Process for manufacturing a solution of an earth alkali hydrogen carbonate
EP3202720A1 (en) 2016-02-05 2017-08-09 Omya International AG Process for the preparation of an aqueous solution comprising at least one earth alkali hydrogen carbonate
EP3202719A1 (en) 2016-02-05 2017-08-09 Omya International AG Installation for the preparation of an aqueous solution comprising at least one earth alkali hydrogen carbonate
US11130689B2 (en) 2016-02-05 2021-09-28 Omya International Ag Process for the preparation of an aqueous solution comprising at least one earth alkali hydrogen carbonate
US11230481B2 (en) 2016-02-05 2022-01-25 Omya International Ag Installation for the preparation of an aqueous solution comprising at least one earth alkali hydrogen carbonate

Similar Documents

Publication Publication Date Title
US11447805B2 (en) Production and composition of fructose syrup
TWI243209B (en) Process for processing sucrose into glucose and fructose
WO2010023742A1 (ja) 抗う蝕性組成物の製造方法
AU2015305276B2 (en) Process for the production of isomaltooligosaccharides
US20220119854A1 (en) Process for the production of isomaltooligosaccharides
JP2012016309A (ja) マルトトリオース生成アミラーゼとその製造方法並びに用途
EP3443110B1 (en) Fermentative process for the manufacture of maltosyl-isomaltooligosaccharides (mimo)
KR101203024B1 (ko) 디프룩토오스-디안히드리드 ⅲ 의 정제 방법
WO2019130681A1 (ja) ウロリチン類の製造方法
JP2013111082A (ja) 高純度ゲンチオオリゴ糖類の調製方法、それにより得られる高純度ゲンチオオリゴ糖類、およびその使用
FR2943547A1 (fr) Extrait hydrosoluble de pois defructosyle et son utilisation comme agent prebiotique
JP6287479B2 (ja) 抗癌剤
US20050069627A1 (en) Process for preparation of fructooligosaccharides (FOS)
JP5770845B2 (ja) 抗う蝕性組成物の製造方法
KR102281192B1 (ko) 신규한 류코노스톡 시트리움 및 이를 이용한 포도당 전이 당류의 생산 방법
JP3871222B2 (ja) 新規オリゴ糖、新規オリゴ糖を添加した食品、その製造方法、非う蝕性食品組成物、及びビフィズス菌増殖組成物
JP4617077B2 (ja) ジフルクトース・ジアンヒドリドiiiの精製方法
KR20180032493A (ko) 신규한 락토바실러스 플랜타럼(Lactobacillus plantarum) SI-6 및 락토바실러스 람너서스 (Lactobacillus rhamnosus) SI-15 균주, 및 이의 이용
JP6418310B2 (ja) マンノポリオーシルフラクトースの製造方法、オリゴ糖組成物、及び微生物培養用培地
KR20170070825A (ko) 올리고당 고함유 당밀의 제조 방법, 이에 의하여 제조된 올리고당 고함유 당밀 및 이의 용도
KR20210047772A (ko) 올리고당 조성물 및 올리고당 조성물의 제조방법
JPH04103593A (ja) 新規オリゴ糖及びその製造方法
JPH0455655B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08809462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08809462

Country of ref document: EP

Kind code of ref document: A1