WO2010023413A1 - Sel d'anion pentacyclique et son utilisation comme électrolyte - Google Patents

Sel d'anion pentacyclique et son utilisation comme électrolyte Download PDF

Info

Publication number
WO2010023413A1
WO2010023413A1 PCT/FR2009/051642 FR2009051642W WO2010023413A1 WO 2010023413 A1 WO2010023413 A1 WO 2010023413A1 FR 2009051642 W FR2009051642 W FR 2009051642W WO 2010023413 A1 WO2010023413 A1 WO 2010023413A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
cation
salt
carbon atoms
och
Prior art date
Application number
PCT/FR2009/051642
Other languages
English (en)
Inventor
Maria Bukowska
Przemyslaw Szczecinski
Wladyslaw Wieczorek
Leszek Nidzicki
Bruno Scrosati
Stefania Panero
Priscilla Reale
Michel Armand
Stéphane LARUELLE
Sylvie Grugeon
Original Assignee
Centre National De La Recherche Scientifique
Universite De Picardie Jules Verne
Universite De Technologie De Varsovie
Universite De Rome "La Sapienza"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique, Universite De Picardie Jules Verne, Universite De Technologie De Varsovie, Universite De Rome "La Sapienza" filed Critical Centre National De La Recherche Scientifique
Priority to CN200980138191.5A priority Critical patent/CN102264926B/zh
Priority to EP09740503.9A priority patent/EP2334831B1/fr
Priority to ES09740503.9T priority patent/ES2547057T3/es
Priority to PL09740503T priority patent/PL2334831T3/pl
Priority to US13/060,776 priority patent/US8927160B2/en
Priority to JP2011524438A priority patent/JP5469668B2/ja
Publication of WO2010023413A1 publication Critical patent/WO2010023413A1/fr
Priority to US14/556,547 priority patent/US9452987B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/90Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/06Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with radicals, containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • C07D213/18Salts thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • C07D213/20Quaternary compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/58Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/02Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms containing only hydrogen and carbon atoms in addition to the ring hetero elements
    • C07D295/037Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms containing only hydrogen and carbon atoms in addition to the ring hetero elements with quaternary ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F2009/245Reduction reaction in an Ionic Liquid [IL]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to ionic compounds useful for the preparation of an electrolyte for batteries.
  • Electrolyte solutions in a non-aqueous medium are of great technological importance, because they allow to extend the range of potential in which a battery can operate without parasitic reaction such as the decomposition of the solvent, said potential not exceeding the value of 1.3 V in water.
  • the media capable of dissolving salts are mainly polar organic solvents or solvating polymers, in particular those containing ether groups distributed in a macromolecular chain whose architecture may be linear or branched, of the comb type, with or without nodes of crosslinking.
  • Polyethers having the repeating units - CH 2 CH 2 O - are particularly preferred for their high solvating power.
  • Ionic liquids which are melted at low temperature, consisting of at least one cation with a delocalised charge, such as ethylmethylimidazolium (EMI), methylpropylpyrrolidinium, diethylmethyl-2- methoxyethyl ammonium, and an anion, preferably also has a large volume of offshoring to reduce the interactions between cations and anions and thus to achieve low solidification temperatures.
  • EMI ethylmethylimidazolium
  • methylpropylpyrrolidinium diethylmethyl-2- methoxyethyl ammonium
  • anion preferably also has a large volume of offshoring to reduce the interactions between cations and anions and thus to achieve low solidification temperatures.
  • the solutes intended to bring the ionic type conductivity required for the electrolytes are chosen from the metal salts and from the so-called "ium” salts obtained by the engagement of a free electron pair of one or more elements such as N, O, S , P, As or I with a proton or an organic radical to form a cation.
  • Ammonium, phosphonium, sulfonium, iodonium, pyridinium, imidazolium, oxazolium and thiazolium ions may be mentioned.
  • the metals particular importance is given to alkali and alkaline earth salts, especially lithium salts.
  • Lithium ion actually has a very rich electrochemistry, making it possible to build high energy density batteries that are very important in current technology.
  • Other non-aqueous electrolyte applications include electrochromic systems and supercapacities.
  • Anions that serve as cation countercharges are selected from those with a delocalized negative charge, since aprotic electrolytes can not form hydrogen bonds with negative charges, and delocalization is the only way to achieve significant dissociation in These conditions.
  • anions are ClO 4 " , BF 4 " , PF 6 “ , AsF 6 “ , SbF 6 " ClO 4 " anion can form explosive mixtures
  • the anions derived from As and Sb are toxic and rare.
  • the BF 4 " anion is relatively undifferentiated.
  • a fluorine-free coordination anion is also known, in particular bis (oxalato) borate [B (C 2 O 4 ) 2 ] - , which implements inexpensive elements, but whose lithium salt has a limited conductivity.
  • the rigidity of the anion and its large size give it an unfavorable phase diagram in common electrolytes containing ethylene carbonate (poor conductivity at low temperature) .
  • this anion has a very limited stability in high temperature oxidation (65 0 C), which induces problems of self discharge and gassing.
  • the anion [(FSO 2 ) 2 N] ⁇ would have a more favorable behavior with respect to the corrosion of aluminum, but its preparation is very expensive and the stability of the lithium salt is limited (130 ° C.) . In general, it seems that corrosion of aluminum is inevitable above 3.6 volts when the electrolyte contains a salt of a covalent anion because it can form a soluble aluminum salt (such as that for example the TFSI salt [(CF 3 SO 2 ) 2 N] 3 A1 which is stable and very soluble) which does not passivate the surface of the metal.
  • This purely covalent anion can be considered as having a configuration with 6 electrons " ⁇ ” or a configuration with 10 electrons " ⁇ ” depending on whether the electrons of the C ⁇ N bonds of the nitrile groups are taken into account or not, each of these configurations being stable.
  • the salts of DCTA are thermally stable up to 300 ° C.
  • the DCTA anion contains no fluorine and is easily manufactured from an industrial precursor, diamino-malonitrile (DAMN):
  • R is an electron withdrawing group, for example a perfluoroalkylsulfonyl group or a perfluoroalkylcarbonyl group.
  • the systems are" antiaromatic "and they therefore have a lower oxidation stability and reduction.
  • the preparation of this type of compound is very difficult and can not be done in a single step from the DAMN.
  • the object of the present invention is to provide salts that can be used as electrolyte in lithium electrochemical devices, said salts being stable at high temperatures and at potentials greater than 4 V.
  • Li + Li °.
  • a compound (I) according to the present invention has an M cation of valence m (l ⁇ m ⁇ 3) and m anions corresponding to the formula
  • R f is a group -CFZ'Z "in which:
  • Z ' is F or a perfluoroalkyl group having 1 to 3 carbon atoms
  • Z " is H, F, Cl, an optionally fluorinated or perfluorinated alkoxy group having 1 to 5 carbon atoms, an optionally fluorinated or perfluorinated oxaalcoxy group having 1 to 5 carbon atoms, or a optionally fluorinated or perfluorinated alkyl group having from 1 to 5 carbon atoms; Z "being different from F when M is Li and Z 'is F.
  • R f CF 2 H, CF 2 Cl, C 2 F 5 , CF 2 CF 2 H, C 3 F 7 , C 4 F 9 CF 2 OCH 3 , CF 2 OC 2 H 5 , CF 2 OC 2 H 4 OCH 3 , CF 2 OC 2 H 4 OC 2 H 5, CF 2 OCH 2 OCF 3 , CF (CF 3 ) OCH 3 , CF (CF 3 ) OC 2 H 5 ,
  • the cations are selected from inorganic cations, organometallic cations and organic cations.
  • An inorganic cation may be selected from alkali metal cations, alkaline earth metal cations, and ammonium ion. Particularly preferred are Li + , Na + , K + , NH 4 + , Ca ++ and Ba ++ ions.
  • An organometallic cation may be selected from ferricinium, titanocenium and zirconocenium ions. Mention may in particular be made of the ferricinium [C 5 H 5 ) 2 Fe] + cation, the [C 5 H 5 ) 2 Ti] 2+ titanocenium cation and the [C 5 H 5 ) 2 Zr] 2+ zirconocenium cation.
  • An organic cation may be chosen from ammonium, phosphonium, sulphonium, iodonium, pyridinium, imidazolium, pyrazolium, acetamidium, oxazolium, thiazolium, pyrrolidinium and piperidinium ions.
  • ammonium, phosphonium, sulphonium, iodonium, pyridinium, imidazolium, pyrazolium, acetamidium, oxazolium, thiazolium, pyrrolidinium and piperidinium ions in particular, mention may be made of the cations which correspond to the following formulas, in which:
  • R 1 to R 37 each represent H, or an alkyl, aryl, or oxaalkyl group of 1 to 20 carbon atoms;
  • R 5 to R 13 are each an aryl, alkylaryl, or dialkylamino group R 37 R 38 N in which the groups R 37 and R 38 are alkyl groups having 1 to 20 carbon atoms; or two R groups carried by adjacent carbon atoms together form a biradical forming an aliphatic or aromatic ring.
  • Pyrrolidinium and piperidium ions are two important examples of quaternary ammonium in which two substituents of nitrogen together form a ring.
  • the ionic compound of the invention comprises an organic polycationic part associated with the number of anions required to ensure the electroneutrality of the compound.
  • the polycationic portion comprises at least two repeating units each of which has a cationic group.
  • the repeating unit of the polycationic part may be a unit carrying a cationic side group, for example one of the above cations in which one of the R groups is a biradical of binding with the repeating unit. forming the chain of the polycationic group.
  • the cationic groups are part of the chain of the polycationic group, two substituents R on a cationic group being biradicals which form a bond with adjacent cationic groups.
  • An ionic compound of the invention in which the cation is an organic or organometallic cation is useful for electrochromic systems in which it can serve as a counter-electrode, in particular the ferro-ferricinium / low-absorbency system.
  • Such a compound can also be used in electrochemical actuators which transform an electrical signal into mechanical movement, in particular actuators containing polythiophene or polyaniline conjugated polymers, whose doping / dedoping with Large cations generate mechanical movements controllable by the imposed current.
  • Such a compound is particularly interesting in this use because it is nonflammable.
  • An ionic compound of the invention in which the cation is an organic or organometallic cation may also be used to perform electrochemical deposition of metals such as aluminum, tantalum, niobium, tin, copper, chromium, platinum, palladium, and zinc. These metals are important as protection against corrosion, or as catalysts, particularly in the form of nanoparticles.
  • the nanoparticles of a metal are particularly easy to obtain by dissolving a salt of the metal in an ionic liquid, and sending an electron beam or applying a cold plasma to the surface of the solution to obtain the salt reduction of the metal. This process for preparing metal nanoparticles is specific to the ionic compounds of the invention whose cation is organic or organometallic because they have no vapor pressure.
  • An ionic compound of the invention in which the cation is an organic or organometallic cation may also be used for the preparation of semiconductors, such as Si, Ge or their solid solutions from their precursors (for example chlorides or bromides) dissolved in the liquid ionic compound.
  • Another subject of the invention is an electrolyte composition containing an ionic compound and a solvent, characterized in that the ionic compound has a cation M of valence m (l ⁇ m ⁇ 3) and m anions corresponding to the formula
  • R f is a group -CFZ'Z "in which:
  • Z ' is F or a perfluoroalkyl group having 1 to 3 carbon atoms
  • the cation being an inorganic cation, in particular an alkaline earth alkali metal cation or an ammonium cation, preferably a lithium ion or a sodium ion.
  • the solvent is chosen from liquid organic solvents which are optionally gelled with a polymer, solvating polymers which may be plasticized by a liquid solvent, mixtures of non-solvating polymer with a polar liquid or an ionic liquid, and ionic liquids.
  • liquid organic solvent is meant a polar liquid or a mixture of polar liquids capable of dissolving a salt of the present invention.
  • polar liquids include linear ethers and cyclic ethers, esters, nitriles, nitro derivatives, amides, sulfones, sulfolanes, alkylsulfamides and partially halogenated hydrocarbons.
  • Particularly preferred solvents are dimethoxyethane, glyme, tetrahydrofuran, dioxane, methyltetrahydrofuran, methyl or ethyl formate, propylene carbonate or ethylene carbonate, alkyl carbonates (especially dimethyl carbonate, diethyl carbonate and methylpropyl carbonate), butyrolactones, acetonitrile, benzonitrile, nitromethane, nitrobenzene, dimethylformamide, diethylformamide, N-methylpyrrolididone, dimethylsulfone, tetramethylene sulfone, dimethylsulfoxide and tetraalkylsulfonamides having 5 to 10 carbon atoms or mixtures thereof.
  • Ionic liquid is understood to mean a salt or a mixture of salts of an inorganic or organic cation having a melting point ⁇ 100 ° C.
  • ionic liquids mention may in particular be made of the salts of an organic cation and of an anion selected from the group consisting of BF 4 " , CF 3 SO 3 - , TFSI, FSI, C (CN) 3 - and N (CN) 2 .
  • organic or organometallic in particular the salts of an ammonium, phosphonium, sulphonium, iodonium, pyridinium, imidazolium, pyrazolium, acetamidium, oxazolium, thiazolium, pyrrolidinium or piperidinium cation, more particularly the salts of a cation chosen from ethyl cations.
  • solvating polymer means a polymer having in sufficient quantity functional groups capable of forming a complex with the metal salts described above. Such a polymer may be chosen from solvating polymers, crosslinked or otherwise, with or without grafted ionic groups.
  • solvating polymers examples include polyethers of linear structure, comb or block, forming or not a network, based on poly (ethylene oxide), or copolymers containing the ethylene oxide unit or propylene oxide or allylglycidyl ether, polyphosphazenes, crosslinked networks based on polyethylene glycol crosslinked with isocyanates or networks obtained by polycondensation and carrying groups that allow the incorporation of crosslinkable groups.
  • Block copolymers in which certain blocks carry functions which have redox properties can also be mentioned.
  • the concentration of ionic compound of a liquid electrolyte composition according to the invention, in which the solvent is of the polar organic solvent or ionic liquid type type, is preferably between 10 ⁇ 3 mol / l and 3.5 mol. / L.
  • the concentration of ionic compound is preferably such that the number of oxygen atoms (or repeating units) per mole of compound ionic is between 1 and 200.
  • the compounds of the invention have much higher properties in terms of conductivity and electrochemical stability than other conventional Hukel anions.
  • the anions of the salts of the invention have anodic stability greater than 4.5 V. Li + / Li °. This resistance to oxidation is quite exceptional considering that DCTA type of anions and anions of the salts of the invention are derivatives of the acids [ZO 2] "by condensation on the DAMN according to the following reaction scheme :
  • the acidities and oxidation potentials of the DCTA and the anions of the invention can thus be compared by comparing that of their acidic precursor, that is to say the nitrous acid NO 2 " whose pK a is 3,4 (for the DCTA compound) and the acid trifluoroacetic CF 3 CO 2 - , whose pK a is from 0.23 to 25 ° C. for the compound of the invention in which R f is CF 3.
  • the lithium salts of the compounds of the invention do not corrode aluminum at potentials lower than 4.6 V, making them excellent candidates for lithium batteries in which the Current collector is an aluminum foil, which has weight and cost advantages.
  • trifluoroacetic acid is an industrial product derived from the preparation of refrigerant fluids (such as CF 3 CH 2 F for example).
  • the electrolyte compositions of the present invention are particularly useful in electrochemical devices that operate by lithium ion exchange between an anode and a cathode. These include lithium batteries, lithium-ion batteries, supercapacitors and electrochromic devices.
  • the ionic compound used is then preferably a lithium salt.
  • a compound (I) of the invention may be obtained by a process comprising: a first step of preparing an acid
  • the compound (3) can be obtained by reaction between the DAMN and a reagent bringing the R f group.
  • the first step is implemented according to the following reaction scheme:
  • O CHR f
  • R f has the meaning given above.
  • the l st step of the method is implemented from an acetal (6) according to the following reaction scheme:
  • the 2 nd and 3 rd embodiments are of interest when the aldehyde R f CHO or its acetals R f CH (OH) (OR), R f CH (OH) 2 and R f CH (OR ') (OR " ) are available commercially, for example when R and R "are CH 3 , C 2 H 5 , n-C 3 H 7 , or 1-C 3 H 7.
  • bromine may be replaced by another oxidizing agent of similar strength for the cyclization of compound 5.
  • bromine may be replaced by low temperature chlorine or an imide such as N-chloro succinimide or N-bromo succinimide, hypochlorite, or sodium salt of N 5 N'- dichlorocyanuric.
  • the acid compound (3) obtained at the end of the 1 st step may be converted into salt of the desired cation M, by methods and techniques known to those skilled in the art.
  • the reaction of a compound (3) with a carbonate, a hydrogen carbonate, an acetate, a methylcarbonate or a hydroxide of the cation M can be mentioned in particular.
  • the cation M is an organic cation, the conversion can be done in two steps.
  • a compound of the organic cation for example chloride, bromide, alkylsulfate
  • a compound 2 in which the R 'group of R f is F, the R "group and the Y group each represents an alkoxy or oxaalxoxy OZ 1 group (designated as the 2' compound), may be obtained by reaction of a HOZ compound 1 (8) with tetrafluorooxirane (7), according to the reaction scheme
  • the compounds 2 'concerned are in particular those in which Z 1 is an alkyl or an alkyloxyalkyl, said groups optionally being fluorinated or perfluorinated.
  • Z 1 is an alkyl or an alkyloxyalkyl, said groups optionally being fluorinated or perfluorinated.
  • group Z 1 mention may be made of the groups OCH 3 , OC 2 H 5 , OC 2 H 4 OCH 3 , OC 2 H 4 OC 2 H 5 , OCH 2 CF 3 , and OCF 3.
  • a modification of the reaction in a basic medium makes it possible, starting from CF 3 O " , to obtain the CF 3 OCF 2 CO 2 H" derivatives.
  • This variant makes it possible to prepare a compound in which the R F group is CF 2 OCF 3.
  • a compound 2 in which the R group of R f is CF 3 , the R "group and the Y group each represent an OX alkoxy or oxaloxy group. 2 (referred to as Compound 2 ”) can be obtained by reacting a HOZ 2 compound (8) with oxirane (10), according to the reaction scheme
  • the compounds 2 in particular are those containing a Z 2 group such as OCH 3 , OC 2 H 5 , OC 2 H 4 OCH 3 , OC 2 H 4 OC 2 H 5 or OCH 2 CF 3 .
  • C 2 F 5 , HC 2 F 4 , C 3 F 7 , or C 4 F 9 are commercially available in the form of acids, anhydrides or esters from which the formation of the dicyanoimidazole ring is possible .
  • the reagent is a chlorinating agent (eg SOCl 2 ) if Y is Cl, a carbonyl imidazole if Y is an imidazole group, nitrophenyl carbonate if Y is a nitrophenyl group, or succinimidoyl carbonate if Y is a group succinimidyloxy.
  • the present invention is illustrated by the following examples, to which it is however not limited.
  • Each of the solutions is cast in a glass ring 50 cm in diameter placed on a glass plate covered with PTFE. After evaporation of the acetonitrile under a stream of dry air, an elastic and transparent film of complex is obtained.
  • LiTDCE Li [CF 3 SO 2 ) 2 N] (LiTFSI), which is the reference salt for the conductivity of polymer electrolytes.
  • LiTFSI Li [CF 3 SO 2 ) 2 N]
  • the aqueous salt solution was washed twice with 50 mL of ether. Thereafter, activated charcoal acting as a bleaching agent was added to the aqueous solution, and the sludge was heated for 1 hour. After removal of the activated carbon by filtration on a paper filter, the solution was dried under vacuum for 2 hours at 80 ° C. Then the residue was dissolved in anhydrous acetonitrile and the solid residue was filtered again. The acetonitrile solution was left under vacuum for 1 h at 90 0 C. A double crystallization from acetonitrile / benzene 1/1 gives crystals which are evacuated to a high vacuum line for 4 h at 120 0 C. There were obtained 5.12 g of colorless crystals of lithium 4,5-dicyano-2- (pentafluoroethyl) imidazole [LiPDCI] (yield: 47.2%).
  • 2-chlorodifluoromethyl-4,5-imidazole crude is purified by sublimation under primary vacuum at 90 0 C in an oven Bùchi.
  • the lithium salt is obtained by reacting 5 g of the acid form of imidazole with a slight stoichiometric excess of lithium carbonate (1.1 g) in acetonitrile.
  • the suspension is centrifuged and the lithium salt Li [CClF 2 C 3 N 2 (CN) 2 JeSt is obtained in the form of a hygroscopic white powder.
  • An ionic liquid is prepared by the action of 3.84 g of the lithium salt of Example 1 on 4.75 g of ethyl-methyl-imidazolium ethylsulphate N 2 O 4 SC 8 H 16 in 30 ml of water. .
  • the ionic liquid that separates is extracted with dichloromethane and washed three times with water. After evaporation of the solvent, a fluid oil is obtained which corresponds to the formula:
  • This fluid has no detectable vapor pressure and is stable up to
  • the butyl-pyridinium bromide is prepared by reaction of Menshutkin with 27.5 g of 1-bromobutane on 15.8 g of pyridine at 40 ° C. in 24 hours, without solvent.
  • the solid obtained is dried under a primary vacuum at 50 ° C.
  • An ionic liquid is prepared by the action 4.84 g of the lithium salt of Example 2 (CN) 2 C 3 N 2 C 2 F 5 Li on 4.35 g of butyl-pyridinium bromide in
  • This fluid has no detectable vapor pressure and is stable up to
  • the propyl-methyl-pyrrolidinium bromide is prepared by reacting 12.4 g of 1-bromopropane with 8.5 g of N-methylpyrrolidine at room temperature.
  • An ionic liquid is prepared by the action of 3.84 g of the salt (CN) 2 C 3 N 2 CF 3 Li obtained according to Example 1 on 4.18 g of propyl-methyl-pyrrolidinium bromide in 25 ml of water .
  • the ionic liquid that separates is extracted with dichloromethane and washed three times with water. After evaporation of the solvent, a fluid oil is obtained which corresponds to the formula
  • This fluid has no detectable vapor pressure and is stable up to
  • the conductivity of the LiTDCI lithium salt of Example 1 and the LiPDCI salt of Example 2 was compared to that of various prior art salts known for lithium batteries. The measurements were made from an IM solution of each salt in a mixture of ethylene carbonate-methyl carbonate (EC-
  • Li / electrolyte type Salt 1M Three batteries of "Swagelok” 5 Li / electrolyte type Salt 1M were assembled in EC-DMC / LiFePO 4 comprising a lithium anode, a liquid electrolyte consisting of a solution IM of a salt in a mixture EC / DMC 50 / 50, and a cathode constituted by a mixture of LiFePO 4 containing 15% by mass of SP carbon on a Pt collector.
  • the salt is respectively the LiTDCI salt of Example 1, the LiPDCI salt of Example 2 and, for comparison, LiPF 6 salt.
  • Batteries similar to those of Example 12 were assembled using an aluminum current collector for the cathode to test the corrosion resistance of the aluminum as a function of various electrolyte compositions.
  • LiTDCI salt of Example 1 LiPDCI salt of Example 2 and, by way of comparison, LiPF 6 salt and LiTFSI salt, respectively.
  • Each battery was subjected to cyclic voltammetry at a rate of 10 mV / min.
  • LiPF 6 does not give appreciable corrosion
  • LiTFSI on the contrary is very corrosive.
  • the salts of the invention LiTDCI and LiPDCI do not give any corrosion before their oxidation at 4.6 V vs. Li + : Li °. It is recalled that most oxide or Li 1-x Fe x PO 4 electrode materials finish their recharge at 4.3 V vs. Li + : Li °, which shows the interest of compounds of the invention that do not corrode aluminum to this potential.
  • Li / salt electrolyte + POE / LiFePO 4 type Three batteries of the "button cell" Li / salt electrolyte + POE / LiFePO 4 type were assembled comprising a lithium anode, a polymer electrolyte consisting of a solid solution of a salt in a poly (oxyethylene) POE, and a positive electrode. consisting of a mixture of 40% LiFePO 4 , 10% SP carbon and 50% PEO in mass fraction on a stainless steel collector.
  • the salt is respectively the LiTDCI salt of Example 1, the LiPDCI salt of Example 2 and, for comparison, the LiTFSI salt.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'invention concerne un sel d'anion pentacyclique et son utilisation dans des compositions d'électrolyte. Le composé comprend un cation M de valence m (1≤m≤3) inorganique, organique ou organométallique, et m anions répondant à la formule (I) dans laquelle Rf est un groupe -CFZ'Z" dans lequel Z' est F ou un groupe perfluoroalkyle ayant de 1 à 3 atomes de carbone, et Z" est un groupe H, F, Cl, un groupe alcoxy éventuellement fluoré ou perfluoré ayant de 1 à 5 atomes de carbone, un groupe oxaalcoxy éventuellement fluoré ou perfluoré ayant de 1 à 5 atomes de carbone, ou un groupe alkyle éventuellement fluoré ou perfluoré ayant de 1 à 5 atomes de carbone; Z" étant différent de F lorsque Z' est F. Une composition d'électrolyte comprend ledit sel en solution dans un solvant liquide ou un solvant polymère.

Description

SEL D1ANION PENT ACYCLIQUE ET SON UTILISATION COMME
ELECTROLYTE
La présente invention concerne des composés ioniques utiles pour l'élaboration d'un électrolyte pour des batteries.
Les solutions d'électrolyte dans un milieu non aqueux, en particuliers non- protogénique et plus communément appelé « aprotique » sont d'une grande importance technologique, car elles permettent d'étendre le domaine de potentiel dans lequel une batterie peut fonctionner sans réaction parasite telle que la décomposition du solvant, ledit potentiel ne dépassant pas la valeur de 1,3 V dans l'eau.
Les milieux capables de dissoudre des sels sont principalement des solvants organiques polaires ou des polymères solvatants, en particulier ceux contenant des groupements éthers répartis dans un chaîne macromoléculaire dont l'architecture peut être linéaire ou ramifiée, de type peigne, possédant ou non des nœuds de réticulation. Les polyéthers possédant les unités de répétition — CH2CH2O — sont particulièrement appréciées pour leur pouvoir solvatant élevé. On connaît aussi les liquides ioniques qui sont des sels fondus à basse température, constitués par au moins un cation à charge délocalisée, tel que l'éthyl- méthyl imidazolium (EMI), le méthyl-propyl pyrrolidinium, le diéthyl-méthyl-2- méthoxyéthyl ammonium, et par un anion, possédant de préférence lui aussi un charge délocalisée sur un volume important pour diminuer les interactions entre les cations et les anions et pour permettre ainsi d'atteindre des températures de solidification basses.
Les solutés destinés à amener la conductivité de type ionique requise pour les électrolytes sont choisis parmi les sels métalliques et parmi les sels dits « ium » obtenus par engagement d'un doublet électronique libre d'un ou plusieurs éléments tels que N, O, S, P, As ou I avec un proton ou un radical organique pour former un cation. On peut citer les ions ammonium, phosphonium, sulfonium, iodonium, pyridinium, imidazolium, oxazolium et thiazolium. Parmi les métaux, une importance particulière est donnée aux sels alcalins et alcalino-terreux, notamment aux sels de lithium. L'ion lithium possède effectivement une électrochimie très riche, permettant de constituer des batteries à haute densité d'énergie qui sont très importantes dans la technologie actuelle. Comme autres applications des électrolytes non aqueux, on peut citer les systèmes électrochromes et les supercapacités. Les anions qui servent de contre-charge aux cations sont choisis parmi ceux qui présentent un charge négative délocalisée, car les électrolytes aprotiques ne peuvent former des liaisons hydrogène avec les charges négatives, et la délocalisation est le seul moyen d'obtenir une dissociation appréciable dans ces conditions. Parmi les anions les plus connus, on peut citer ClO4 ", BF4 ", PF6 ", AsF6 ", SbF6 ". L'anion ClO4 " peut former des mélanges explosifs Les anions dérivés de As et Sb sont toxiques et rares. L'anion BF4 " est relativement peu dissocié. Les sels de l'anion LiPF6 sont les sels le plus utilisés dans les générateurs au lithium, malgré des inconvénients majeurs : i) ils sont très facilement hydrolysables, libérant HF qui est toxique et corrosif vis-à-vis des matériaux d'électrode. HF libère des cations (Mn, Fe...) de l'électrode positive, et leur permet de migrer vers l'électrode négative où ils sont réduits (Mn°, Fe0...), ce qui augmente notablement l'impédance interfaciale de cette électrode, en diminuant la puissance disponible et la durée de vie ; ii) l'équilibre acido-basique LiPF6 <=> LiF + PF5 libère un acide de Lewis très puissant capable d'induire une chimie carbo-cationique, destructrice en particulier pour les esters ou éthers qui peuvent constituer le solvant électrolytique ; iii) en cas de réaction non contrôlée, ("runaway reaction") avec fort échauffement, LiPF6 peut agir comme agent fluorant en donnant des dérivés du monofluoroéthanol ou de l'acide monofluoroacétique qui sont excessivement toxiques.
On connaît aussi un anion de coordination sans fluor, en particulier le bis(oxalato)borate [B(C2O4)2] ", qui met en œuvre des éléments peux onéreux, mais dont le sel de lithium a une conductivité limitée. La rigidité de l'anion et sa taille importante lui donnent in diagramme de phase défavorable dans les électrolytes courants contenant du carbonate d'éthylène (mauvaise conductivité à basse température). De plus, cet anion a une stabilité très limitée en oxydation à haute température (65 0C), ce qui induit des problèmes d' autodécharge et de dégagement gazeux.
On connaît d'autres anions qui présentent une grande stabilité électrochi- mique ainsi que des conductivités élevées aussi bien dans les liquides que les polymères. Parmi ceux-ci, les anions capables de former un liquide ionique sont les plus performants. La famille principale est celle des sulfonimides [(RFSO2)2N]", dont le représentant le plus important correspond à RF = CF3 (TFSI). Les inconvénients de ces sels sont dus d'une part à l'absence de passivation de l'aluminium au dessus de 3,6 V vs. Li+ : Li° lorsque les sels sont utilisés dans des batteries ou des supercapacités qui ont une électrode dont le collecteur de courant en en aluminium. Un autre inconvénient est le coût de préparation élevé relié au prix du synthon CF3SO2. L'anion [(FSO2)2N]~ aurait un comportement plus favorable vis-à-vis de la corrosion de l'aluminium, mais sa préparation est très onéreuse et la stabilité du sel de lithium est limitée (1300C). D'une manière générale, il semble que la corrosion de l'aluminium soit inévitable au-dessus de 3,6 volts lorsque l'électrolyte contient un sel d'un anion covalent car il peut se former un sel d'aluminium soluble (tel que par exemple le sel de TFSI [(CF3SO2)2N]3A1 qui est stable et très soluble) qui ne permet pas de passiver la surface du métal. En revanche, un anion de coordination tel que PF6 " ne forme pas (PF6)3A1, mais le sel AlF3 qui est insoluble et passivant. D'autres anions, dits « Hùckel anions », sont basés sur la transposition de la règle de Hùckel (4n + 2) qui prédit la stabilité des systèmes aromatique, appliquée aux cycles à cinq atomes dont la charge négative est fortement favorisée. Le plus connus de ces anions est le 4,5-dicyano-triazole (DCTA) :
Figure imgf000005_0001
Cet anion purement covalent peut-être considéré comme ayant une configuration à 6 électrons « π » ou une configuration à 10 électrons « π » selon que les électrons des liaisons C≡N des groupements nitrile sont pris en compte ou non, chacune de ces configurations étant stable. Les sels du DCTA sont stables thermiquement jusqu'à 3000C. De plus, l'anion DCTA ne contient pas de fluor et il est facilement fabriqué à partir d'un précurseur industriel, le diamino-maléonitrile (DAMN) :
Figure imgf000005_0002
Cet anion a cependant pour inconvénient une conductivité relativement modeste de son sel de lithium (2,9 mS.cm"1 dans EC-DMC 50/50) et surtout un potentiel d'oxydation de 3,7 V vs. Li+ : Li° qui limite son utilisation d'une manière rédhibitoire pour les matériaux d'électrode de type oxydes de métaux de transition LixTMO2 (0 < x < 1) avec TM = Mn, Ni, Co, le phosphate de manganèse LiMnPO4 ou ses solution solides avec le phosphate de fer LiMn1-yFeyPO4 (0 < y < 1). Même pour le phosphate de fer (y = 1) dont le potentiel est 3,5 V vs. Li+ : Li°, la marge de sécurité en fin de charge de l'électrode est trop faible. On connaît également, notamment par EP-O 850 933-A, des sels d'anions répondant à la formule
Figure imgf000006_0001
dans laquelle R est un groupe électroattracteur, par exemple un groupe perfluoroalkylsulfonyle ou un groupe perfluoroalkylcarbonyle. Cependant, malgré le pouvoir attracteur élevé du groupement R, la présence d'oxygène (C=O et
O=S=O) qui donne de très fortes interactions avec les cation, limite la dissociation.
En outre, les groupements C=O ou S=O sont en conjugaison avec le cycle, et le nombre d'électrons " π"» est un multiple de 4. Il en résulte que les systèmes sont "antiaromatiques" et ils qu'ils ont donc une stabilité en oxydation et en réduction plus faible. De plus, la préparation de ce type de composé est très difficile et ne peut se faire en une seule étape à partir du DAMN.
La synthèse du 2-trifluorométhyl-4,5-dicyanoimidazole est décrite par M. Bukowska, et al. [Polish J. Chem. 78, 417-422 (2004)]. Le sel de lithium correspondant peut être obtenu par réaction avec le carbonate de lithium.
Le but de la présente invention est de fournir des sels utilisables comme électrolyte dans les dispositifs électrochimiques au lithium, lesdits sels étant stables à des températures élevées et à des potentiels supérieurs à 4 V vs. Li+ : Li°.
Un composé (I) selon la présente invention a un cation M de valence m (l≤m<3) et m anions répondant à la formule
Figure imgf000006_0002
dans laquelle Rf est un groupe -CFZ'Z" dans lequel :
Z' est F ou un groupe perfluoroalkyle ayant de 1 à 3 atomes de carbone,
Z" est un groupe H, F, Cl, un groupe alcoxy éventuellement fluoré ou perfluoré ayant de 1 à 5 atomes de carbone, un groupe oxaalcoxy éventuellement fluoré ou perfluoré ayant de 1 à 5 atomes de carbone, ou un groupe alkyle éventuellement fluoré ou perfluoré ayant de 1 à 5 atomes de carbone ; Z" étant différent de F lorsque M est Li et Z' est F.
A titre d'exemples, on peut citer les groupes Rf suivants : CF2H, CF2Cl, C2F5, CF2CF2H, C3F7, C4F9CF2OCH3, CF2OC2H5, CF2OC2H4OCH3, CF2OC2H4OC2H5, CF2OCH2OCF3, CF(CF3)OCH3, CF(CF3)OC2H5,
CF(CF3)OC2H4OCH3, CF(CF3)OC2H4OC2H5 et CF(CF3)OCH2CF3.
Les cations sont choisis parmi les cations inorganiques, les cations organométalliques et les cations organiques.
Un cation inorganique peut être choisi parmi les cations de métal alcalin, les cations de métal alcalino-terreux, et l'ion ammonium. On préfère en particulier les ions Li+, Na+, K+, NH4 +, Ca++ et Ba++.
Un cation organométallique peut être choisi parmi les ions ferricinium, titanocenium et zirconocénium. On peut citer en particulier le cation ferricinium [C5H5)2Fe]+, le cation titanocenium [C5H5)2Ti]2+ et le cation zirconocénium [C5H5)2Zr]2+.
Un cation organique peut être choisi parmi les ions ammonium, phosphonium, sulfonium, iodonium, pyridinium, imidazolium, pyrazolium, acetamidium, oxazolium, thiazolium, pyrrolidinium et piperidinium. On peut en particulier citer les cations qui répondent aux formules suivantes, dans lesquelles :
R1 à R37 représentent chacun H, ou un groupe alkyle, aryle, ou oxaalkyle de 1 à 20 atomes de carbone ;
R5 à R13 représentent chacun un groupe aryle, alkylaryle, ou dialkylamino R37R38N dans lesquels les groupes R37 et R38 sont des groupes alkyle ayant de 1 à 20 atomes de carbone ; ou bien deux groupes R portés par des atomes de carbone adjacents forment ensemble un biradical formant un cycle aliphatique ou aromatique.
Figure imgf000007_0001
Figure imgf000008_0001
Les ions pyrrolidinium et piperidium sont deux exemples importants d'ammonium quaternaire dans lequel deux substituants de l'azote forment ensemble un cycle.
Dans un mode de réalisation particulier, le composé ionique de l'invention comprend une partie polycationique organique associée au nombre d'anions requis pour assurer l'électroneutralité du composé. La partie polycationique comprend au moins deux unités récurrentes qui portent chacune un groupe cationique. Selon une variante, l'unité récurrente de la partie polycationique peut être une unité portant un groupe latéral cationique, par exemple l'un des cations ci-dessus dans lequel l'un des groupes R est un biradical de liaison avec l'unité récurrente formant la chaîne du groupe polycationique. Selon une autre variante, les groupes cationiques font partie de la chaîne du groupe polycationique, deux substituants R sur un groupe cationique étant des biradicaux qui forment une liaison avec des groupes cationiques adjacents. Un composé ionique de l'invention dans lequel le cation est un cation organique ou organométallique est utile pour les systèmes électrochromes dans lesquels il peut servir de contre-électrode, en particulier le système férrocène/ferricinium peu absorbant. Un tel composé peut également être utilisé dans les actuateurs électrochimiques qui transforment un signal électrique en mouvement mécanique, en particulier les actuateurs contenant des polymères conjugés de type polythiophène ou polyaniline, dont le dopage/dédopage avec des cations volumineux engendre des mouvements mécaniques contrôlables par le courant imposé.
Un composé ionique de l'invention dans lequel le cation est un cation organique ou organométallique et qui est liquide à une température inférieure à 1000C, forme un liquide ionique qui peut être utilisé comme solvant pour des sels de métaux alcalins, en particulier dans les générateurs électrochimiques. Un tel composé est particulièrement intéressant dans cette utilisation du fait qu'il est ininflammable.
Un composé ionique de l'invention dans lequel le cation est un cation organique ou organométallique peut également être utilisé pour effectuer des dépôts électrochimiques de métaux tels que l'aluminium, le tantale, le niobium, l'étain, le cuivre, le chrome, le platine, le palladium, et le zinc. Ces métaux sont importants comme protection contre la corrosion, ou comme catalyseurs, en particulier sous forme de nanoparticules. Les nanoparticules d'un métal sont particulièrement faciles à obtenir par mise en solution d'un sel du métal dans un liquide ionique, et envoi d'un faisceau d'électrons ou application d'un plasma froid à la surface de la solution pour obtenir le réduction du sel du métal. Ce procédé de préparation de nanoparticules de métal est spécifique aux composés ioniques de l'invention dont le cation est organique ou organométallique car ils n'ont pas de pression de vapeur.
Un composé ionique de l'invention dans lequel le cation est un cation organique ou organométallique peut aussi être utilisé pour la préparation de semiconducteurs, tels que Si, Ge ou leurs solutions solides à partir de leurs précurseurs (par exemple des chlorures ou des bromures) dissous dans le composé ionique liquide.
Un autre objet de l'invention est une composition d'électrolyte contenant un composé ionique et un solvant, caractérisée en ce que le composé ionique a un cation M de valence m (l≤m<3) et m anions répondant à la formule
Figure imgf000009_0001
dans laquelle Rf est un groupe -CFZ'Z" dans lequel :
Z' est F ou un groupe perfluoroalkyle ayant de 1 à 3 atomes de carbone, Z" est un groupe H, F, Cl, un groupe alcoxy éventuellement fluoré ou perfluoré ayant de 1 à 5 atomes de carbone, un groupe oxaalcoxy éventuellement fluoré ou perfluoré ayant de 1 à 5 atomes de carbone, ou un groupe alkyle éventuellement fluoré ou perfluoré ayant de 1 à 5 atomes de carbone. le cation étant un cation inorganique, en particulier un cation de métal alcalin alcalino-terreux ou un cation ammonium, de préférence un ion lithium ou un ion sodium .
Le solvant est choisi parmi les solvants organiques liquides éventuellement gélifiés par un polymère, les polymères solvatants éventuellement plastifiés par un solvant liquide, les mélanges de polymère non solvatant et d'un liquide polaire ou d'un liquide ionique, et les liquides ioniques
Par solvant organique liquide, on entend un liquide polaire ou un mélange de liquides polaires susceptible de dissoudre un sel de la présente invention. Comme exemples de liquides polaires, on peut citer notamment les éthers linéaires et les éthers cycliques, les esters, les nitriles, les dérivés nitrés, les amides, les sulfones, les sulfolanes, les alkylsulfamides et les hydrocarbures partiellement halogènes. Les solvants particulièrement préférés sont le diméthoxyéthane, le glyme, le tétrahydrofurane, le dioxane, le méthyltétrahydrofurane, le formiate de méthyle ou d'éthyle, le carbonate de propylène ou d'éthylène, les carbonates d'alkyles (notamment le carbonate de diméthyle, le carbonate de diéthyle et le carbonate de méthylpropyle), les butyrolactones, l'acétonitrile, le benzonitrile, le nitrométhane, le nitrobenzène, le diméthylformamide, le diéthylformamide, la N-méthyl- pyrrolididone, la diméthylsulfone, la tétraméthylène sulfone, le diméthylsufoxyde et les tétraalkylsulfonamides ayant de 5 à 10 atomes de carbone ou leur mélanges.
Par liquide ionique, on entend un sel ou un mélange de sels d'un cation inorganique ou organique ayant une température de fusion < 100 0C. Comme exemples de liquides ioniques, on peut citer notamment les sels d'un cation organique et d'un anion choisi dans le groupe constitué par BF4 ", CF3SO3 ", TFSI, FSI, C(CN)3 " et N(CN)2. On peut en outre citer les composés de la présente invention qui ont un cation organique ou organométallique, en particulier les sels d'un cation ammonium, phosphonium, sulfonium, iodonium, pyridinium, imidazolium, pyrazolium, acetamidium, oxazolium, thiazolium, pyrrolidinium ou piperidinium, plus particulièrement les sels d'un cation choisi parmi les cations éthyl-méthyl-imidazolium, butyl-méthyl-imidazolium, méthyl-propyl-pyrrolidi- nium, méthyl-butyl-pyrrolidinium, méthyl-propyl-piperidinium, butyl pyridinium, (2-méthoxy-éthyl)-triéthyl-ammonium, et hexyl-trimethyl ammonium. Par polymère solvatant, on entend un polymère possédant en quantité suffisante des fonctions capables de former un complexe avec les sels de métaux décrits plus haut. Un tel polymère peut être choisi parmi les polymères solvatants, réticulés ou non, portant ou non des groupes ioniques greffés. A titre d'exemple de polymères solvatants, on peut citer les polyéthers de structure linéaire, peigne ou à blocs, formant ou non un réseau, à base de poly(oxyde d'éthylène), ou les copolymères contenant le motif oxyde d'éthylène ou oxyde de propylène ou allylglycidyléther, les polyphosphazènes, les réseaux réticulés à base de polyéthylène glycol réticulé par des isocyanates ou les réseaux obtenus par poly- condensation et portant des groupements qui permettent l'incorporation de groupements réticulables. On peut également citer les copolymères à blocs dans lesquels certains blocs portent des fonctions qui ont des propriétés rédox..
La concentration en composé ionique d'une composition d'électrolyte liquide selon l'invention, dans laquelle le solvant est du type solvant organique polaire ou du type liquide ionique, est comprise de préférence entre 10~3 mole/L et 3,5 moles/L.
Dans une composition d'électrolyte à solvant polymère dans laquelle le polymère est constitué d'unités récurrentes oxyalkylène, la concentration en composé ionique est de préférence telle que le nombre d'atomes d'oxygène (ou d'unités récurrentes) par mole de composé ionique soit entre 1 et 200.
D'une manière inattendue, les composés de l'invention ont des propriétés très supérieures en termes de conductivité et de stabilité électrochimique, aux autres anions de Hùckel conventionnels. En particulier, les anions des sels de l'invention ont une stabilité anodique supérieure à 4,5 V vs. Li+/Li°. Cette résistance à l'oxydation est tout à fait exceptionnelle si l'on considère que les anions de type DCTA et les anions des sels de l'invention sont dérivés des acides [ZO2]" par condensation sur le DAMN selon le schéma réactionnel suivant :
Figure imgf000011_0001
Q étant N pour les composés de type DCTA de l'art antérieur et CRf pour les composés de la présente invention, notamment CF3C.
On peut donc comparer les acidités et potentiels d'oxydation du DCTA et des anions de l'invention en comparant celle de leur précurseur acide, c'est-à-dire l'acide nitreux NO2 " dont le pKa est 3,4 (pour le composé de type DCTA) et l'acide trifluoroacétique CF3CO2 ", dont le pKa est de 0,23 à 250C pour le composé de l'invention dans lequel Rf est CF3. Au vu de ces valeurs, on pourrait supposer que le potentiel d'oxydation de Fanion de l'invention Rf = CF3 serait décalé de 56 x (3,4- 0,23) = 178 mV vers les potentiels anodiques soit à ≈ 4V vs Li+ : Li°. Ce potentiel ne serait pas suffisant pour assurer le fonctionnement électrochimique des oxydes de type LixTMO2 (0 < x < 1) ni du phosphate de manganèse LiMnPO4 ou de LiMn1 -yFeyPO4 (0 < y < 1). On considère qu'une stabilité anodique de 4,3 V de l'électrolyte est requise pour des générateurs électrochimiques utilisant ces matériaux de cathode. Or les cycles de voltamétrie effectués pour divers composés de l'invention dans lesquels Rf est respectivement -CF3, -CF2Cl, -CF2OCH3, -CF2OCF3, -C2F5, -C2F4H, -C3F7, ou -C4F9; montrent que le potentiel d'oxydation des composés de l'invention est supérieur à 4,3 V, bien au-dessus de ce que prévoyait la théorie.
D'une manière tout aussi surprenante, les sels de lithium des composés de l'invention ne corrodent pas l'aluminium à des potentiels inférieurs à 4,6 V, ce qui en fait d'excellents candidats pour des batteries au lithium dans lesquelles le collecteur de courant est une feuille d'aluminium, qui a des avantages de poids et de coût.
Un avantage intéressant de plusieurs composé de l'invention est le prix peu élevé des produits de départ. Pour Rf = CF3, l'acide trifluoroacétique est un produit industriel qui dérive de la préparation des fluides réfrigérants (tels que CF3CH2F par exemple).
Les compositions d'électrolyte de la présente invention sont particulièrement utiles dans les dispositifs électrochimiques qui fonctionnent par échange d'ions lithium entre une anode et une cathode. Il s'agit notamment de batteries au lithium, de batteries lithium-ion, de supercondensateurs et de dispositifs électrochromes. Le composé ionique utilisé est alors de préférence un sel de lithium.
Un composé (I) de l'invention peut être obtenu par un procédé comprenant : une première étape consistant à préparer un acide
Figure imgf000012_0001
une deuxième étape au cours de laquelle l'acide est transformé en sel du cation M. Le composé (3) peut être obtenu par réaction entre le DAMN et un réactif apportant le groupe Rf..
Dans un 1er mode de réalisation, la première étape est mise en œuvre selon le schéma réactionnel suivant :
Figure imgf000013_0001
1 2 3 dans lequel Rf a la signification donnée ci-dessus et Y représente RfC(=O)O, Cl, F, CF3SO3, OCH3, OC2H5, OCH2CF3, OC6H4NO2 (nitrophényle), un groupe imidazoyle ou un groupe succinimidyloxy. Dans un 2eme mode de réalisation, la première étape est effectuée à partir d'un aldéhyde (4) O=CHRf, selon le schéma réactionnel suivant :
Figure imgf000013_0002
1 4 5 3
Rf a la signification donnée ci-dessus. Dans un 3eme mode de réalisation, la lere étape du procédé est mise en œuvre à partir d'un acétal (6), selon le schéma réactionnel suivant:
Figure imgf000013_0003
Le 2eme et le 3eme modes de réalisation sont intéressants lorsque l'aldéhyde RfCHO ou ses acétals RfCH(OH)(OR), RfCH(OH)2 et RfCH(OR')(OR") sont disponibles dans le commerce, par exemple lorsque R et R" sont CH3, C2H5, n- C3H7, ou 1-C3H7.] Dans les procédés mettant en œuvre un aldéhyde ou un acétal, le brome peut être remplacé par un autre agent oxydant de force similaire pour la cyclisation du composé 5. Par exemple, le brome peut être remplacé par le chlore à basse température ou par une imide telle que la N-chloro succinimide ou la N-bromo succinimide, un hypochlorite, ou le sel de sodium de l'acide N5N'- dichlorocyanurique .
Le composé acide (3) obtenu à la fin de la 1 ere étape peut être transformé en sel du cation M souhaité, par les méthodes et techniques connues de l'homme de métier. On peut citer notamment la réaction d'un composé (3) avec un carbonate, un hydrogéno carbonate, un acétate, un méthylcarbonate, ou un hydroxyde du cation M. Lorsque le cation M est un cation organique, la transformation peut être faite en deux étapes : transformation du composé acide 3 en sel de sodium ou de potassium, puis réaction du sel de sodium ou de potassium avec une quantité stœchiométrique d'un composé du cation organique (par exemple le chlorure, le bromure, un alkylsulfate), dans un solvant aprotique dans lequel le sel de Na ou de K est insoluble, par exemple l'acétonitrile
Un composé 2 dans lequel le groupe R' de Rf est F, le groupe R" et le groupe Y représentent chacun un groupe alcoxy ou oxaalxoxy OZ1 (désigné par composé 2'), peut être obtenu par réaction d'un composé HOZ1 (8) avec le tétrafluorooxirane(7) , selon le schéma réactionnel
Figure imgf000014_0001
9 8 V
Les composés 2' concernés sont notamment ceux dans lesquels Z1 est un alkyle ou un alkyloxyalkyle, lesdits groupes étant éventuellement fluorés ou perfluorés. A titre d'exemple de groupe Z1, on peut citer les groupes OCH3, OC2H5, OC2H4OCH3, OC2H4OC2H5, OCH2CF3, et OCF3.
Une modification de la réaction en milieu basique permet, à partir de Fanion CF3O", d'obtenir les dérivés de CF3OCF2CO2H". Cette variante permet de préparer un composé dans lequel le groupe RF est CF2OCF3. Un composé 2 dans lequel le groupe R de Rf est CF3, le groupe R" et le groupe Y représentent chacun un groupe alcoxy ou oxaalxoxy OZ2 (désigné par composé 2") peut être obtenu par réaction d'un composé HOZ2 (8) avec le l'oxirane (10) , selon le schéma réactionnel
Figure imgf000015_0001
10 8 2"
Les composés 2" concernés sont notamment ceux qui contiennent un groupe Z2 tel que OCH3, OC2H5, OC2H4OCH3, OC2H4OC2H5 ou OCH2CF3,. Les composés O=C(Rf)Y dans lesquels le groupe Rf est CF3, CF2H, CF2Cl,
C2F5, HC2F4, C3F7, ou C4F9, sont disponibles dans le commerce sous forme d'acides, d'anhydrides ou d'esters à partir desquels la formation du cycle du dicyanoimidazole est possible.
Les composés 2 répondant à la formule O=C(Rf)Y peuvent être préparés à partir de l'acide O=C(Rf)OH correspondant, par réaction avec un réactif approprié, par des procédés connus de l'homme de métier. Par exemple le réactif est un agent chlorurant (par exemple SOCl2) si Y est Cl, un carbonyl imidazole si Y est un groupe imidazole, le carbonate de nitrophényle si Y est un groupe nitrophényle, ou le carbonate de succinimidoyle si Y est un groupe succinimidyloxy. La présente invention est illustrée par les exemples suivants, auxquels elle n'est cependant pas limitée.
Exemple 1
Figure imgf000015_0002
On a introduit 2,42 g d'anhydride trifluoroacétique dans un réacteur contenant une solution de 1,14 g de DAMN dans 11 mL de dioxane. Le mélange a été maintenu sous argon et agité sous reflux jusqu'à disparition complète des réactifs. Après élimination sous vide du solvant et de l'acide trifluoroacétique, on a dissous le résidu solide dans 50 mL d'éther. La solution d'éther a été extraite 4 fois avec une suspension à 1 g de carbonate de lithium dans 90 mL d'eau, puis la solution aqueuse du sel de lithium a été lavée à l'éther. Après élimination de l'eau dans un évaporateur rotatif, le résidu foncé a été séché sous vide à 10O0C. Le solide de couleur foncée a ensuite été extrait à l'acétonitrile (4x10 mL) et la solution résultante a été filtrée. L'acétonitrile a ensuite été éliminé et le sel brut a été purifié par chromatographie sur alumine en utilisant comme éluant un mélange acétonitrile/benzène 2/1. Après séchage, on a obtenu 1,45 g (rendement 71%) de 2- trifluoromethyl-4,5-dicyano-imidazole sous forme d'un solide incolore. Le sel de lithium (LiTDCI) est obtenu sous forme d'un di-solvate après recristallisation. Le produit pur est obtenu par traitement sous vide à 150 0C.
On a préparé plusieurs échantillons d'électrolyte polymère en dissolvant
680 mg de poly(oxyde d'éthylène) dont la masse molaire Mw est de 105, 200 mg de poly(oxyde d'éthylène) dont la masse molaire Mw est de 5 106, et LiTDCI dans 13 ml d'acétonitrile, sous agitation jusqu'à obtention d'une solution légèrement opalescente et visqueuse.
On a ainsi préparé trois échantillons en utilisant respectivement 180 mg, 320 mg et 240 mg de LiTDCI.
Chacune des solutions est coulée dans un anneau de verre de 50 cm de diamètre posé sur une plaque de verre recouverte de PTFE. Après évaporation de l'acétonitrile sous un flux d'air sec, on obtient un film élastique et transparent de complexe.
La conductivité de ces électrolytes a été mesurée en fonction de la température. La figure 1 représente la conductivité C (en ohm"1. cm"1) en fonction de la température exprimée en 1000/T(K). La concordance entre les courbes et les échantillons est données dans le tableau ci-dessous :
Teneur en LiTDCI Echantillon courbe.
480 mg P(EO)8LiTDCI, O/Li=8/1
320 mg P(EO)12LiTDCI OZLi= 12/1 240 mg P(EO)16LiTDCI O/Li= 16/1
La conductivité de LiTDCE est comparable à celle de Li[CF3 SO2)2N] (LiTFSI), qui est le sel de référence pour la conductivité des électrolytes polymères. Exemple 2
Figure imgf000017_0001
On a ajouté 10,5 mL (53,8 mmol) d'anhydride pentafluoropropionique dans une solution de 4,84 g (44,8 mmol) de diaminomaléonitrile dans 47 mL de dioxane. Le mélange a été chauffé au reflux sous argon jusqu'à disparition du précipité [vérifié par chromatographie en couche mince (TLC), environ 6 h]. Le mélange résultant a été mis sous vide pendant 1 h à 900C, puis séché sur une rampe à vide secondaire pendant 1 h à 120° C pour éliminer le solvant et l'acide. Le résidu solide a été dissous dans 40 mL d'éther et la solution résultante a été extraite trois fois avec une suspension de 3 g (40,5 mmol) de carbonate de lithium dans 100 mL d'eau. La solution aqueuse de sel a été lavée deux fois par 50 mL d'éther. Ensuite on a ajouté à la solution aqueuse du charbon actif agissant comme décolorant, et la boue a été chauffée pendant 1 h. Après élimination du charbon actif par filtration sur un filtre en papier, la solution a été séchée sous vide pendant 2 h à 800C. Ensuite, le résidu a été dissous dans l'acétonitrile anhydre et on a filtré à nouveau le résidu solide. La solution d'acétonitrile a été mise sous vide pendant 1 h à 900C. Une double cristallisation dans un mélange acétonitrile/ benzène 1/1 donne des cristaux qui sont mis sous vide sur une rampe à vide secondaire pendant 4 h à 1200C. On a obtenu 5,12 g de cristaux incolores de 4,5-dicyano-2- (pentafluoroethyl)imidazole de lithium [LiPDCI] (rendement : 47,2%).
Exemple 3
Figure imgf000017_0002
10,8 g de DAMN et 22 g d'anhydride chlorodifluoroacétique (ClF2CO)2O sont ajoutés dans 100 ml de diglyme et portés à reflux sous atmosphère protectrice d'azote et la réaction est poursuivie pendant 48 heures. Les produits de la réaction sont filtrés et traités avec 12 g de carbonate de sodium et la solution est évaporée. Le résidu solide est repris dans 80 ml d'eau et 25 g d'acide sulfamique. Le mélange de 2-chlorodifluoroethyl-4,5-imidazole et d'acide chlorodifluoroacétique sous- produit de la réaction sont extrait par trois portions de 50 ml d'éther. Les portions sont combinées et évaporée. Le 2-chlorodifluorométhyl-4,5-imidazole brut est purifié par sublimation sous vide primaire à 900C dans un four Bùchi. Le sel de lithium est obtenu en faisant réagir 5 g de la forme acide de l'imidazole sur un léger excès stœchiométrique de carbonate de lithium (1,1 g) dans l'acétonitrile. La suspension est centrifugée et le sel de lithium Li[CClF2C3N2(CN)2JeSt obtenu sous forme d'une poudre blanche hygroscopique.
Exemple 4
Figure imgf000018_0001
À 9,6 g d'acide difluoroacétique commercial dans 75 ml de diglyme sont ajoutés 16,2 g de carbonyl-di-imidazole commercial. Un dégagement de CO2 se produit après quelques minutes. À la solution claire obtenue sont ajoutés 10,8 g de DAMN. La réaction est maintenue au reflux sous atmosphère d'azote pendant 24 heures. Le diglyme est évaporé sous pression réduite et on ajoute 100 ml de HCl 2M. Le 2-difluorométhyl-4,5-dicyano imidazole est extrait par trois portions d'éther de 30 ml. Après évaporation des extraits combinés, le produit est purifié par sublimation sous vide à 115°C sous vide primaire. Le sel de lithium est comme dans les exemples précédents, obtenu à partir du carbonate de lithium en léger excès dans l'acétonitrile Exemple 5
On a préparé l'ester méthylique de l'acide 3,3,3-trifluorométhoxy-2-fluoro- 2-méthoxy propano que par condensation de 16 g d'époxy-hexafluoropropène C3F6O dans 75 ml de méthanol anhydre à -300C . On sépare l'ester par dilution par l'eau, extraction au dichlorométhane et distillation. On hydrolyse 8,5 g de CF3C(OCH3)FCCC=O)OCH3 par 2,4 g d'hydroxyde de sodium dans l'éthanol, on évapore le solvant et on reprend le solide par l'acétonitrile dans lequel seul CF3C(OCH3)FCCO2Na est soluble. Ledit sel est ensuite séparé par filtration et évaporation de l'éthanol.
On fait réagir 9,9 g dudit sel de sodium, et 4,95 g de triphosgène (CCl3O)2C=O en présence de 50 mg de diméthylformamide (DMF) comme catalyseur dans le dioxane à O0C. On ajoute 5,40 g de DAMN et le mélange est porté à reflux sous atmosphère d'azote pendant 24 heures. L'imidazole A5 est transformé en sel de lithium B 5 par action du carbonate de lithium.
Figure imgf000019_0001
A5 B5
Exemple 6
Un liquide ionique est préparé par action de 3,84 g du sel le lithium de l'exemple 1 sur 4,75 g d'éthylsulfate d'éthyl-méthyl-imidazolium N2O4SC8H16 dans 30 ml d'eau. Le liquide ionique qui se sépare est extrait au dichlorométhane et lavé à trois reprises par l'eau. Après évaporation du solvant, on obtient une huile fluide qui correspond à la formule :
Figure imgf000019_0002
Ce fluide n'a pas de pression de vapeur détectable et il est stable jusqu'à
375°C.
Exemple 7 L'ester 2-méthoxyéthylique de l'acide di-fluoro-(2-méthoxy-éthoxy)-propa- no que est obtenu par condensation de 16,6 g d'époxy-tétrafluoroéthylene C2F4O dans 250 ml de méthoxyéthanol anhydre à -300C. L'ester CH3O-C2H4O-F2C-CC=O)-OCH3 est séparé par distillation. On hydrolyse 11,4 g d'ester par 3 g d'hydroxyde de potassium dans l'éthanol, on évapore le solvant et le méthoxyéthanol résultant, puis le solide après séchage sous vide à 700C. Le solide est repris par l'acétonitrile dans lequel seul le sel de potassium (CH3O-C2H4O-CF2-CO2K est soluble. Ce sel est récupéré par filtration et évaporation.
On fait réagir dans 35 ml de diglyme à O0C, 6,6 g de sel de sodium, 4 g de chlorure de thionyle SOCl2 et 50 mg de diméthylformamide (DMF) comme catalyseur. Après 1 h, on ajoute 3,6 g de DAMN et le mélange est porté à reflux sous atmosphère d'azote pendant 24 heures. L'imidazole A7, extrait et purifié comme à l'exemple 5, est transformé en sel de lithium B7 par action du carbonate de lithium.
Figure imgf000020_0001
A7 B7
Exemple 8
Le bromure de butyl-pyridinium est préparé par réaction de Menshutkin de 27,5 g de 1-bromobutane sur 15,8 g de pyridine à 400C en 24 heures, sans solvant. Le solide obtenu est séché sous vide primaire à 500C.
Un liquide ionique est préparé par action 4,84 g du sel de lithium de l'exemple 2 (CN)2C3N2C2F5Li sur 4,35 g de bromure de butyl-pyridinium dans
25 ml d'eau. Le liquide ionique qui se sépare est extrait au dichlorométhane et lavé à trois reprises par l'eau. Après évaporation du solvant, on obtient une huile fluide qui correspond à la formule
Figure imgf000020_0002
Ce fluide n'a pas de pression de vapeur détectable et est stable jusqu'à
375°C.
Exemple 9
Le bromure de propyl-méthyl-pyrrolidinium est préparé par réaction de 12,4 g de 1-bromopropane sur 8,5 g de N-méthylpyrrolidine à température ordinaire.
Un liquide ionique est préparé par action de 3,84 g du sel (CN)2C3N2CF3Li obtenu selon l'exemple 1 sur 4,18 g de bromure de propyl-méthyl-pyrrolidinium dans 25 ml d'eau. Le liquide ionique qui se sépare est extrait au dichlorométhane et lavé à trois reprises par l'eau. Après évaporation du solvant, on obtient une huile fluide qui correspond à la formule
Figure imgf000021_0001
Ce fluide n'a pas de pression de vapeur détectable et est stable jusqu'à
375°C. Exemple 10
18 g d'hémiacétal de l'aldéhyde pentafluoropropionique C2F5CH(OH)OCH3 commercial sont ajoutés à 10,8 g de DAMN dans 50 ml d'acétonitrile. Le mélange est maintenu à 500C sous agitation pendant 24 heures. Ensuite, le mélange réactionnel est refroidi à -100C et on ajoute goutte à goutte 16 g de brome dans l'acétonitrile. Le solvant est évaporé. Le 2-pentafluoroéthyl-4,5-dicyanoimidazole brut est purifié par sublimation à 1000C sous vide dans un four Bùchi. Le sel de lithium est préparé comme précédemment par action du carbonate de lithium.
Exemple 11
On a comparé la conductivité du sel de lithium LiTDCI de l'exemple 1 et du sel LiPDCI de l'exemple 2 à celle de divers sels de l'art antérieur connus pour les batteries au lithium. Les mesures ont été effectuées à partir d'une solution IM de chaque sel dans un mélange carbonate d'éthylène-carbonate de méthyle (EC-
DMC) 50/50 v/v, à 200C.
Figure imgf000022_0001
Ce tableau montre que les performances de LiTDCI et de LiPDCI sont nettement meilleures que celles de LiDCTA, la conductivité étant plus que doublée.
Exemple 12
On a assemblé trois batteries du type "Swagelok" 5 Li/électrolyte Sel 1 M dans EC-DMC/LiFePO4 comprenant une anode de lithium, un électrolyte liquide constitué par une solution IM d'un sel dans un mélange EC/DMC 50/50, et une cathode constituée par un mélange de LiFePO4 contenant 15% en masse de carbone SP sur un collecteur de Pt. îo Le sel est respectivement le sel LiTDCI de l'exemple 1, le sel LiPDCI de l'exemple 2 et, à titre comparatif, le sel LiPF6.
L'aptitude à conserver sa capacité en fonction de la puissance demandée a été vérifiée pour chacune des batteries selon le processus suivant. On a fait fonctionner chaque batterie plusieurs fois, avec un courant imposé différent, à 15 22°C, et on a noté la durée nécessaire pour obtenir la décharge totale en fonction de la durée théorique nécessaire pour une décharge totale. Les résultats sont représentés par les courbes de Ragone de la figure 2, sur laquelle "%C" en ordonnée indique le pourcentage de capacité restant, en fonction de la vitesse de décharge t(xc) indiquée en abscisse. T(xc) représente l'inverse du temps, en heures.
20 Ces courbes montrent que les batteries dans lesquelles le sel de l'électrolyte est un composé selon l'invention ont une performance comparable à celle d'une batterie dans laquelle l'électrolyte est LiPF6 considéré comme l'un des sels les plus conducteurs couramment utilisé dans les batteries au lithium à électrolyte liquide. Exemple 13
On a assemblé des batteries analogues à celles de l'exemple 12, en utilisant un collecteur de courant en aluminium pour la cathode en vue de tester la résistance à la corrosion de l'aluminium en fonction de diverses compositions d'électrolyte.. Le sel est respectivement le sel LiTDCI de l'exemple 1, le sel LiPDCI de l'exemple 2 et, à titre comparatif, le sel LiPF6 et le sel LiTFSI.
On a fait soumis chaque batterie à une voltamétrie cyclique avec un régime de 10 mV/min.
Les résultats sont reportés sur la figure 3 sur laquelle le courant d'oxydation I0x en mA est donnée en ordonnée, en fonction de P (potentiel vs Li+/Li) en Volts.
Comme attendu, LiPF6 ne donne pas de corrosion appréciable, et LiTFSI au contraire s'avère très corrosif. Les sels de l'invention LiTDCI et LiPDCI ne donnent pas de corrosion avant leur oxydation à 4,6 V vs. Li+ : Li°. Il est rappelé que la plupart des matériaux d'électrode de type oxyde ou Li1-xFexPO4 finissent leur recharge à 4.3 V vs. Li+ : Li°, ce qui montre l'intérêt des composé de l'invention qui ne corrodent pas l'aluminium à ce potentiel.
Exemple 14
On a assemblé trois batteries du type "pile bouton" Li/électrolyte sel+POE /LiFePO4 comprenant une anode de lithium, un électrolyte polymère constitué par une solution solide d'un sel dans un poly(oxyéthylène) POE, et une électrode positive constituée par un mélange de 40 % LiFePO4, 10% de carbone SP et 50% de PEO en fraction massique sur un collecteur en acier inoxydable.
Chacun des électrolytes est préparé selon le mode opératoire de l'exemple 1 , pour former des films de ≈ 100 μm d'épaisseur, en utilisant des quantités de polymère et de sel de lithium pour obtenir un rapport O/Li = 20.
Le sel est respectivement le sel LiTDCI de l'exemple 1, le sel LiPDCI de l'exemple 2 et, à titre comparatif, le sel LiTFSI.
L'aptitude à conserver sa capacité en fonction de la puissance demandée a été vérifiée pour chacune des batteries selon le processus suivant. On a fait fonctionner chaque batterie plusieurs fois, avec un courant imposé différent, à
800C, et on a noté la durée nécessaire pour obtenir la décharge totale en fonction de la durée théorique nécessaire pour une décharge totale. Les résultats sont représentés par les courbes de Ragone de la figure 2, sur laquelle "%C" en ordonnée indique le pourcentage de capacité restant, en fonction de la vitesse de décharge t(xc) indiquée en abscisse. T(xc) représente l'inverse du temps, en heures.
Ces courbes montrent que les batteries dans lesquelles le sel de l'électrolyte est un composé selon l'invention ont une performance comparable à celle d'une batterie dans laquelle l'électrolyte est LiTFSI considéré comme l'un des sels les plus conducteurs couramment utilisé dans les batteries au lithium à électrolyte polymère.

Claims

REVENDICATIONS
1. Composé comprenant un cation M de valence m (l≤m<3) inorganique, organique ou organométallique, et m anions répondant à la formule
Figure imgf000025_0001
dans laquelle Rf est un groupe -CFZ'Z" dans lequel : - Z' est F ou un groupe perfluoroalkyle ayant de 1 à 3 atomes de carbone,
Z" est un groupe H, F, Cl, un groupe alcoxy éventuellement fluoré ou perfluoré ayant de 1 à 5 atomes de carbone, un groupe oxaalcoxy éventuellement fluoré ou perfluoré ayant de 1 à 5 atomes de carbone, ou un groupe alkyle éventuellement fluoré ou perfluoré ayant de 1 à 5 atomes de carbone ; Z" étant différent de F lorsque Z' est F et M est Li.
2. Composé selon la revendication 1, caractérisé en ce que Rf est choisi dans le groupe constitué par CF2H, CF2Cl, C2F5, CF2CF2H, C3F7, C4F9CF2OCH3, CF2OC2H5, CF2OC2H4OCH3, CF2OC2H4OC2H5, CF2OCH2OCF3, CF(CF3)OCH3, CF(CF3)OC2H5, CF(CF3)OC2H4OCH3, CF(CF3)OC2H4OC2H5 et CF(CF3)OCH2CF3.
3. Composé selon la revendication 1, caractérisé en ce que le cation est un cation inorganique, choisi parmi les cations de métal alcalin, les cations de métal alcalino-terreux, et l'ion ammonium.
4. Composé selon la revendication 1, caractérisé en ce que le cation est un ion ferricinium, un ion titanocenium ou un ion zirconocénium.
5. Composé selon la revendication 1 , caractérisé en ce que le cation est un cation organique, choisi parmi les ions ammonium, phosphonium, sulfonium, iodonium, pyridinium, imidazolium, pyrazolium, acetamidium, oxazolium, thiazolium, pyrrolidinium et piperidinium.
6. Composition d'électrolyte constituée par un sel en solution dans un solvant, caractérisé en ce que le sel est un composé comprenant un cation inorganique M, choisi parmi les cations de métal alcalin, les cations de métal alcalino-terreux, et l'ion ammonium, et m anions répondant à la formule
Figure imgf000026_0001
dans laquelle Rf est un groupe -CFZ'Z" dans lequel :
Z' est F ou un groupe perfluoroalkyle ayant de 1 à 3 atomes de carbone,
Z" est un groupe H, F, Cl, un groupe alcoxy éventuellement fluoré ou perfluoré ayant de 1 à 5 atomes de carbone, un groupe oxaalcoxy éventuellement fluoré ou perfluoré ayant de 1 à 5 atomes de carbone, ou un groupe alkyle éventuellement fluoré ou perfluoré ayant de 1 à 5 atomes de carbone.
7. Composition d'électrolyte selon la revendication 6, caractérisée en ce que Rf est choisi dans le groupe constitué par CF3, CF2H, CF2Cl, C2F5, CF2CF2H,
C3F7, C4F9CF2OCH3, CF2OC2H5, CF2OC2H4OCH3, CF2OC2H4OC2H5, CF2OCH2OCF3, CF(CF3)OCH3, CF(CF3)OC2H5, CF(CF3)OC2H4OCH3, et CF(CF3)OC2H4OC2H5.
8. Composition d'électrolyte selon la revendication 6, caractérisée en ce que le cation du sel de l'électrolyte est un ion lithium..
9. Composition d'électrolyte selon la revendication 6, caractérisée en ce que le solvant est choisi parmi les solvants organiques liquides éventuellement gélifiés par un polymère, les polymères solvatants éventuellement plastifiés par un solvant liquide, et les liquides ioniques.
10. Composition d'électrolyte selon la revendication 9, caractérisée en ce que le liquide ionique est un composé comprenant un cation M de valence m (l≤m<3) et m anions répondant à la formule
Figure imgf000026_0002
dans laquelle Rf est un groupe -CFZ'Z" dans lequel : - Z' est F ou un groupe perfluoroalkyle ayant de 1 à 3 atomes de carbone, Z" est un groupe H, F, Cl, un groupe alcoxy éventuellement fluoré ou perfluoré ayant de 1 à 5 atomes de carbone, un groupe oxaalcoxy éventuellement fluoré ou perfluoré ayant de 1 à 5 atomes de carbone, ou un groupe alkyle éventuellement fluoré ou perfluoré ayant de 1 à 5 atomes de carbone ; le cation étant un cation organique, choisi parmi les ions ammonium, phosphonium, sulfonium, iodonium, pyridinium, imidazolium, pyrazolium, acetamidium, oxazolium, thiazolium, pyrrolidinium et piperidinium.
11. Composition d'électrolyte selon la revendication 10, caractérisée en ce que le cation du composé formant le liquide ionique est choisi parmi les les cations éthyl-méthyl-imidazolium, butyl-méthyl-imidazolium, méthyl-propyl-pyrrolidi- nium, méthyl-butyl-pyrrolidinium, méthyl-propyl-piperidinium, butyl pyridinium, (2-méthoxy-éthyl)-triéthyl-ammonium, et hexyl-trimethyl ammonium.
12. Composition d'électrolyte selon la revendication 9, caractérisé en ce que le solvant est un liquide polaire ou un mélange de liquides polaires, et la concentration en sel est de 10~3 mole/L à 3,5 mole/L.
13. Composition d'électrolyte selon la revendication 9, caractérisé en ce que le solvant est un polymère solvatant comprenant des unités récurrentes oxyalkylène, et la concentration en sel est telle que le nombre d'atomes d'oxygène (ou d'unités récurrentes) par mole de sel est entre 1 et 200.
14. Composition d'électrolyte selon la revendication 9, caractérisé en ce que le solvant est un liquide ionique et la concentration en sel est 10"3 mole/L à 3,5 mole/L.
15. Utilisation d'un composé selon la revendication 4 ou 5 comme matériau de contre-électrode d'un système électrochrome ou dans un actuateur électrochimique.
16. Composition d'électrolyte comprenant un sel de métal alcalin en solution dans un composé selon la revendication 4 ou 5 qui est liquide à une température inférieure à 1000C.
17. Procédé pour la préparation de nanoparticules de métal, consistant à mettre en solution dans un solvant un sel dudit métal, puis à envoyer un faisceau d'électrons ou à appliquer un plasma froid à la surface de la solution pour obtenir le réduction du sel du métal, caractérisé en ce que le solvant est un composé selon la revendication 4 ou 5 qui est liquide à une température inférieure à 1000C.
PCT/FR2009/051642 2008-08-29 2009-08-28 Sel d'anion pentacyclique et son utilisation comme électrolyte WO2010023413A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN200980138191.5A CN102264926B (zh) 2008-08-29 2009-08-28 五元环阴离子盐及其作为电解质的用途
EP09740503.9A EP2334831B1 (fr) 2008-08-29 2009-08-28 Sel d'anion pentacyclique et son utilisation comme électrolyte
ES09740503.9T ES2547057T3 (es) 2008-08-29 2009-08-28 Sal de anión pentacíclico y su utilización como electrolito
PL09740503T PL2334831T3 (pl) 2008-08-29 2009-08-28 Sól anionu pentacyklicznego i jej zastosowanie jako elektrolit
US13/060,776 US8927160B2 (en) 2008-08-29 2009-08-28 Pentacyclic anion salt and use thereof as an electrolyte
JP2011524438A JP5469668B2 (ja) 2008-08-29 2009-08-28 五員環状アニオン塩及び電解質へのその利用
US14/556,547 US9452987B2 (en) 2008-08-29 2014-12-01 Five-membered cyclic anion use thereof as an electrolyte

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0804769 2008-08-29
FR0804769A FR2935382B1 (fr) 2008-08-29 2008-08-29 Sel d'anion pentacylique et son utilisation comme electrolyte

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/060,776 A-371-Of-International US8927160B2 (en) 2008-08-29 2009-08-28 Pentacyclic anion salt and use thereof as an electrolyte
US14/556,547 Division US9452987B2 (en) 2008-08-29 2014-12-01 Five-membered cyclic anion use thereof as an electrolyte

Publications (1)

Publication Number Publication Date
WO2010023413A1 true WO2010023413A1 (fr) 2010-03-04

Family

ID=40456168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/051642 WO2010023413A1 (fr) 2008-08-29 2009-08-28 Sel d'anion pentacyclique et son utilisation comme électrolyte

Country Status (8)

Country Link
US (2) US8927160B2 (fr)
EP (2) EP2928003B1 (fr)
JP (1) JP5469668B2 (fr)
CN (2) CN104262259A (fr)
ES (2) ES2622108T3 (fr)
FR (1) FR2935382B1 (fr)
PL (2) PL2334831T3 (fr)
WO (1) WO2010023413A1 (fr)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011056895A1 (fr) * 2009-11-03 2011-05-12 University Of Notre Dame Du Lac Liquides ioniques comportant des anions hétéroaromatiques
US20110229769A1 (en) * 2010-03-17 2011-09-22 Sony Corporation Lithium secondary battery, electrolytic solution for lithium secondary battery, electric power tool, electrical vehicle, and electric power storage system
FR2982610A1 (fr) * 2011-11-14 2013-05-17 Arkema France Procede de preparation de sel d'anion pentacylique
FR2983467A1 (fr) * 2011-12-06 2013-06-07 Arkema France Utilisation de melanges de sels de lithium comme electrolytes de batteries li-ion
FR2988900A1 (fr) * 2012-03-29 2013-10-04 Thales Sa Electrode pour supercondensateur
FR2991324A1 (fr) * 2012-06-04 2013-12-06 Arkema France Sel d'anions bicycliques aromatiques pour batteries li-ion
FR2991323A1 (fr) * 2012-06-04 2013-12-06 Arkema France Sel d'anions bicycliques aromatiques pour batteries li-ion
WO2015049435A1 (fr) * 2013-10-03 2015-04-09 Arkema France Composition comprenant un sel d'anion pentacyclique et son utilisation comme electrolyte de batterie
WO2015136201A1 (fr) 2014-03-14 2015-09-17 Arkema France Amélioration de la conductivité ionique d'électrolyte a base de sels de lithium d'imidazolate
WO2015136199A1 (fr) 2014-03-14 2015-09-17 Arkema France Batteries lithium-ion a longue duree de vie
WO2016146925A1 (fr) 2015-03-16 2016-09-22 Arkema France Formulation d'électrolyte pour batteries lithium-ion
EP3113275A1 (fr) * 2015-06-29 2017-01-04 VARTA Micro Innovation GmbH Batterie secondaire au magnesium et systeme d'electrolyte et electrode pour une batterie secondaire au magnesium
WO2018100297A1 (fr) 2016-12-02 2018-06-07 Arkema France Amelioration de la conductivite ionique d'electrolyte a base de sels de lithium d'imidazolate
US10086331B2 (en) 2013-11-05 2018-10-02 University Of Notre Dame Du Lac Carbon dioxide capture using phase change ionic liquids
WO2018176134A1 (fr) 2017-03-27 2018-10-04 HYDRO-QUéBEC Sels destinés à être utilisés dans des compositions d'électrolyte ou en tant qu'additifs d'électrode
WO2019030440A1 (fr) 2017-08-07 2019-02-14 Arkema France Melange de sels de lithium et ses utilisations comme electrolyte de batterie
US10385251B2 (en) 2013-09-30 2019-08-20 University Of Notre Dame Du Lac Compounds, complexes, compositions, methods and systems for heating and cooling
WO2021044016A1 (fr) 2019-09-06 2021-03-11 Arkema France Procédé de purification de 2-(fluoroalkyl ou fluoroalkoxy)-4,5-dicyanoimidazoles

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2992479B1 (fr) * 2012-06-22 2014-08-08 Commissariat Energie Atomique Composition comprenant un liquide ionique specifique
WO2014096284A1 (fr) * 2012-12-20 2014-06-26 Solvay Sa Sels d'anions hétérocycliques contenant de l'azote en tant que composants dans des électrolytes
FR3010236B1 (fr) * 2013-09-05 2017-01-13 Arkema France Additifs pour ameliorer la conductivite ionique des electrodes de batteries li-ion
JP6305202B2 (ja) * 2014-05-16 2018-04-04 キヤノン株式会社 電子写真用部材、プロセスカートリッジ及び電子写真装置
FR3033448B1 (fr) * 2015-03-03 2021-09-10 Arkema France Electrodes de batteries li-ion a conductivite amelioree
PL411822A1 (pl) * 2015-03-30 2016-10-10 Politechnika Warszawska Związek o wzorze ogólnym (Kat+)(An-)·xL
CN106571486A (zh) * 2015-10-11 2017-04-19 深圳市沃特玛电池有限公司 一种高温循环型动力电池电解液
US10020538B2 (en) 2015-11-13 2018-07-10 Uchicago Argonne, Llc Salts for multivalent ion batteries
CN106008262B (zh) * 2016-06-13 2018-05-08 武汉海斯普林科技发展有限公司 4,5-二氰基-2-三氟甲基咪唑、其制备中间体及其盐的制备方法
US11289700B2 (en) 2016-06-28 2022-03-29 The Research Foundation For The State University Of New York KVOPO4 cathode for sodium ion batteries
CA3054396A1 (fr) * 2017-03-10 2018-09-13 Hydro-Quebec Composition d'electrolyte et son utilisation dans des batteries lithium-ion
US10734677B2 (en) 2017-06-26 2020-08-04 Robert Bosch Gmbh Substituted imidazole and benzimidazole lithium salts
CN108172900B (zh) * 2017-12-18 2019-08-16 中节能万润股份有限公司 一种新型锂盐及其制备方法和应用
PL3503268T3 (pl) * 2017-12-22 2021-04-06 Belenos Clean Power Holding Ag Formulacja ciekłego elektrolitu dla litowo-metalowej baterii akumulatorowej i zawierająca ją litowo-metalowa bateria akumulatorowa
JP6400869B1 (ja) * 2018-02-23 2018-10-03 日本曹達株式会社 4,5−ジシアノ−2−(フルオロアルキル)イミダゾールの製造方法
JP7166115B2 (ja) * 2018-09-18 2022-11-07 株式会社東芝 二次電池、電池パック、車両及び定置用電源
KR102650658B1 (ko) 2018-11-15 2024-03-25 삼성전자주식회사 헤테로고리 방향족 구조의 음이온을 포함하는 금속염 및 그 제조방법, 그리고 상기 금속염을 포함하는 전해질 및 전기화학소자
CN111326733B (zh) 2018-12-14 2021-05-04 宁德时代新能源科技股份有限公司 锂离子电池
KR102447200B1 (ko) * 2019-02-28 2022-09-26 주식회사 엘지에너지솔루션 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
US11502333B2 (en) * 2019-05-29 2022-11-15 Toyota Motor Engineering & Manufacturing North America, Inc. Method for synthesizing novel soft materials based on boron compounds
CN111162308B (zh) * 2019-12-02 2022-10-28 常州乾艺智能制造科技有限公司 一种用于固态锂电池的新型低晶格能锂盐的制备方法
US11784350B2 (en) * 2019-12-20 2023-10-10 Uchicago Argonne, Llc Ionic liquid electrolyte for lithium-ion batteries
CN112271335A (zh) * 2020-11-13 2021-01-26 广州天赐高新材料股份有限公司 一种适用于高镍正极材料的锂离子电池的电解液和锂离子电池
EP4269490A1 (fr) * 2020-12-25 2023-11-01 Zeon Corporation Composition de liant pour électrode négative de batterie secondaire non aqueuse, composition de suspension pour électrode négative de batterie secondaire non aqueuse, électrode négative de batterie secondaire non aqueuse, procédé de production correspondant et batterie secondaire non aqueuse
CN113354587B (zh) * 2021-05-19 2022-07-05 江苏理文化工有限公司 一种咪唑基含氟锂盐的干燥方法
CN113277982B (zh) * 2021-05-19 2022-07-05 江苏理文化工有限公司 一种连续制备2-三氟甲基-4,5-二氰基咪唑锂盐的方法及反应装置
CN113582930A (zh) * 2021-08-26 2021-11-02 如鲲(山东)新材料科技有限公司 一种4,5-二氰基-2-三氟甲基-咪唑盐的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3793339A (en) * 1972-04-07 1974-02-19 Du Pont 1-hydrocarbon-substituted 2-halo-4,5-dicyanoimidazoles and their preparation
EP0850933A1 (fr) * 1996-12-30 1998-07-01 Centre National De La Recherche Scientifique (Cnrs) Sels d'anions pentacycliques ou dérivés de tétrazapentalène, et leurs utilisations comme matériaux à conduction ionique
DE102006013871A1 (de) * 2006-03-23 2007-09-27 Justus-Liebig-Universität Giessen Elektrochemisches Verfahren zur Abscheidung von nanoskaligen Metallen, Halbmetallen und Verbindungen dieser Metalle und/oder Halbmetalle an der Grenzfläche zwischen einer Niedertempereturentladung und einer ionischen Flüssigkeit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050345A (ja) * 2000-08-07 2002-02-15 Mitsubishi Chemicals Corp リチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
US20070219379A1 (en) * 2004-04-28 2007-09-20 Kaneka Corporation Ionic Liquid and Process for Producing the Same
CN1950970B (zh) * 2004-05-10 2010-05-05 株式会社日本触媒 用于电解液的材料、含离子材料的组合物及其用途
JP4499594B2 (ja) * 2005-03-29 2010-07-07 第一工業製薬株式会社 超高純度イオン性液体
JP5120596B2 (ja) * 2006-11-22 2013-01-16 ソニー株式会社 非水電解液、電気化学デバイスおよび非水二次電池
CN101232080B (zh) * 2007-12-29 2012-11-07 中国科学院长春应用化学研究所 共熔室温离子液体及其制法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3793339A (en) * 1972-04-07 1974-02-19 Du Pont 1-hydrocarbon-substituted 2-halo-4,5-dicyanoimidazoles and their preparation
EP0850933A1 (fr) * 1996-12-30 1998-07-01 Centre National De La Recherche Scientifique (Cnrs) Sels d'anions pentacycliques ou dérivés de tétrazapentalène, et leurs utilisations comme matériaux à conduction ionique
DE102006013871A1 (de) * 2006-03-23 2007-09-27 Justus-Liebig-Universität Giessen Elektrochemisches Verfahren zur Abscheidung von nanoskaligen Metallen, Halbmetallen und Verbindungen dieser Metalle und/oder Halbmetalle an der Grenzfläche zwischen einer Niedertempereturentladung und einer ionischen Flüssigkeit

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BEGLAND, R. W. ET AL: "Hydrogen cyanide chemistry. VIII. New chemistry of diaminomaleonitrile. Heterocyclic synthesis", JOURNAL OF ORGANIC CHEMISTRY , 39(16), 2341-50 CODEN: JOCEAH; ISSN: 0022-3263, 1974, XP002521054 *
KOO I G ET AL: "Platinum nanoparticles prepared by a plasma-chemical reduction method", JOURNAL OF MATERIALS CHEMISTRY, THE ROYAL SOCIETY OF CHEMISTRY, CAMBRIDGE, GB, vol. 15, 1 January 2005 (2005-01-01), pages 4125 - 4128, XP002448492, ISSN: 0959-9428 *
NIEDZICKI L ET AL: "Modern generation of polymer electrolytes based on lithium conductive imidazole salts", JOURNAL OF POWER SOURCES, ELSEVIER SA, CH, vol. 192, no. 2, 15 July 2009 (2009-07-15), pages 612 - 617, XP026140144, ISSN: 0378-7753, [retrieved on 20090402] *

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10889544B2 (en) 2009-11-03 2021-01-12 University Of Notre Dame Du Lac Ionic liquids comprising heteraromatic anions
US10259788B2 (en) 2009-11-03 2019-04-16 University Of Notre Dame Du Lac Ionic liquids comprising heteraromatic anions
US9951008B2 (en) 2009-11-03 2018-04-24 University Of Notre Dame Du Lac Ionic liquids comprising heteraromatic anions
WO2011056895A1 (fr) * 2009-11-03 2011-05-12 University Of Notre Dame Du Lac Liquides ioniques comportant des anions hétéroaromatiques
US20110229769A1 (en) * 2010-03-17 2011-09-22 Sony Corporation Lithium secondary battery, electrolytic solution for lithium secondary battery, electric power tool, electrical vehicle, and electric power storage system
KR20140081868A (ko) * 2011-11-14 2014-07-01 아르끄마 프랑스 펜타시클릭 음이온 염의 제조 방법
FR2982610A1 (fr) * 2011-11-14 2013-05-17 Arkema France Procede de preparation de sel d'anion pentacylique
WO2013072591A1 (fr) 2011-11-14 2013-05-23 Arkema France Procede de preparation de sel d'anion pentacylique
KR101695072B1 (ko) * 2011-11-14 2017-01-10 아르끄마 프랑스 펜타시클릭 음이온 염의 제조 방법
CN103930405B (zh) * 2011-11-14 2016-01-20 阿克马法国公司 制备五环阴离子盐的方法
JP2014533255A (ja) * 2011-11-14 2014-12-11 アルケマ フランス 五員環状アニオン塩を調製するための方法
CN103930405A (zh) * 2011-11-14 2014-07-16 阿克马法国公司 制备五环阴离子盐的方法
EP2947714A1 (fr) 2011-12-06 2015-11-25 Arkema France Utilisation de melanges de sels de lithium comme electrolytes de batteries li-ion
FR2983466A1 (fr) * 2011-12-06 2013-06-07 Arkema France Utilisation de melanges de sels de lithium comme electrolytes de batteries li-ion
CN103975476A (zh) * 2011-12-06 2014-08-06 阿克马法国公司 锂盐混合物作为锂离子电池电解质的用途
FR2983467A1 (fr) * 2011-12-06 2013-06-07 Arkema France Utilisation de melanges de sels de lithium comme electrolytes de batteries li-ion
JP2015500554A (ja) * 2011-12-06 2015-01-05 アルケマ フランス リチウム塩混合物のLi−イオン電池電解質としての使用
CN110010953A (zh) * 2011-12-06 2019-07-12 阿克马法国公司 锂盐混合物作为锂离子电池电解质的用途
JP2018073833A (ja) * 2011-12-06 2018-05-10 アルケマ フランス リチウム塩混合物のLi−イオン電池電解質としての使用
WO2013083894A1 (fr) 2011-12-06 2013-06-13 Arkema France Utilisation de melanges de sels de lithium comme electrolytes de batteries li-ion
EP3293807A1 (fr) * 2011-12-06 2018-03-14 Arkema France Utilisation de melanges de sels de lithium comme electrolytes de batteries li-ion
JP2017022116A (ja) * 2011-12-06 2017-01-26 アルケマ フランス リチウム塩混合物のLi−イオン電池電解質としての使用
FR2988900A1 (fr) * 2012-03-29 2013-10-04 Thales Sa Electrode pour supercondensateur
FR2991323A1 (fr) * 2012-06-04 2013-12-06 Arkema France Sel d'anions bicycliques aromatiques pour batteries li-ion
FR2991324A1 (fr) * 2012-06-04 2013-12-06 Arkema France Sel d'anions bicycliques aromatiques pour batteries li-ion
WO2013182767A1 (fr) 2012-06-04 2013-12-12 Arkema France Sel d'anions bicycliques aromatiques pour batteries li-ion
US10388988B2 (en) 2012-06-04 2019-08-20 Arkema France Salt of bicyclic aromatic anions for Li-ion batteries
US9550736B2 (en) 2012-06-04 2017-01-24 Arkema France Salt of bicyclic aromatic anions for Li-ion batteries
WO2013182768A1 (fr) 2012-06-04 2013-12-12 Arkema France Sel d'anions bicycliques aromatiques pour batteries li-ion
US10385251B2 (en) 2013-09-30 2019-08-20 University Of Notre Dame Du Lac Compounds, complexes, compositions, methods and systems for heating and cooling
US10033068B2 (en) 2013-10-03 2018-07-24 Arkema France Composition including a pentacyclic anion salt and use thereof as a battery electrolyte
WO2015049435A1 (fr) * 2013-10-03 2015-04-09 Arkema France Composition comprenant un sel d'anion pentacyclique et son utilisation comme electrolyte de batterie
FR3011683A1 (fr) * 2013-10-03 2015-04-10 Arkema France Sel d'anion pentacyclique : composition pour batteries
EP3392241A1 (fr) * 2013-10-03 2018-10-24 Arkema France Composition comprenant un sel d'anion pentacyclique et son utilisation comme électrolyte de batterie
US10086331B2 (en) 2013-11-05 2018-10-02 University Of Notre Dame Du Lac Carbon dioxide capture using phase change ionic liquids
FR3018635A1 (fr) * 2014-03-14 2015-09-18 Arkema France Amelioration de la conductivite ionique d'electrolyte a base de sels de lithium d'imidazolate
WO2015136201A1 (fr) 2014-03-14 2015-09-17 Arkema France Amélioration de la conductivité ionique d'électrolyte a base de sels de lithium d'imidazolate
WO2015136199A1 (fr) 2014-03-14 2015-09-17 Arkema France Batteries lithium-ion a longue duree de vie
FR3018519A1 (fr) * 2014-03-14 2015-09-18 Arkema France Amelioration de la conductivite ionique d'electrolyte a base de sels de lithium d'imidazolate
EP3557677A1 (fr) * 2014-03-14 2019-10-23 Arkema France Amelioration de la conductivite ionique d'electrolyte a base de sels de lithium d'imidazolate
WO2016146925A1 (fr) 2015-03-16 2016-09-22 Arkema France Formulation d'électrolyte pour batteries lithium-ion
EP3113275A1 (fr) * 2015-06-29 2017-01-04 VARTA Micro Innovation GmbH Batterie secondaire au magnesium et systeme d'electrolyte et electrode pour une batterie secondaire au magnesium
US10998582B2 (en) 2016-12-02 2021-05-04 Arkema France Improving the ionic conductivity of an electrolyte based on lithium imidazolate salts
WO2018100297A1 (fr) 2016-12-02 2018-06-07 Arkema France Amelioration de la conductivite ionique d'electrolyte a base de sels de lithium d'imidazolate
FR3059835A1 (fr) * 2016-12-02 2018-06-08 Arkema France Amelioration de la conductivite ionique d'electrolyte a base de sels de lithium d'imidazolate
WO2018176134A1 (fr) 2017-03-27 2018-10-04 HYDRO-QUéBEC Sels destinés à être utilisés dans des compositions d'électrolyte ou en tant qu'additifs d'électrode
EP3601233A4 (fr) * 2017-03-27 2021-01-06 Hydro-Québec Sels destinés à être utilisés dans des compositions d'électrolyte ou en tant qu'additifs d'électrode
WO2019030440A1 (fr) 2017-08-07 2019-02-14 Arkema France Melange de sels de lithium et ses utilisations comme electrolyte de batterie
US11757133B2 (en) 2017-08-07 2023-09-12 Arkema France Lithium salt mixture and uses thereof as a battery electrolyte
FR3100539A1 (fr) 2019-09-06 2021-03-12 Arkema France Procede de purification d’imidazole
WO2021044016A1 (fr) 2019-09-06 2021-03-11 Arkema France Procédé de purification de 2-(fluoroalkyl ou fluoroalkoxy)-4,5-dicyanoimidazoles

Also Published As

Publication number Publication date
PL2334831T3 (pl) 2016-07-29
CN102264926A (zh) 2011-11-30
EP2334831A1 (fr) 2011-06-22
US9452987B2 (en) 2016-09-27
FR2935382B1 (fr) 2010-10-08
JP2012500833A (ja) 2012-01-12
US8927160B2 (en) 2015-01-06
EP2334831B1 (fr) 2015-06-17
FR2935382A1 (fr) 2010-03-05
US20150315155A1 (en) 2015-11-05
EP2928003B1 (fr) 2016-12-28
PL2928003T3 (pl) 2017-10-31
JP5469668B2 (ja) 2014-04-16
CN104262259A (zh) 2015-01-07
CN102264926B (zh) 2014-06-25
ES2622108T3 (es) 2017-07-05
ES2547057T3 (es) 2015-10-01
US20110311884A1 (en) 2011-12-22
EP2928003A1 (fr) 2015-10-07

Similar Documents

Publication Publication Date Title
EP2928003B1 (fr) Sel d&#39;anion pentacyclique et son utilisation comme électrolyte
EP1626041B1 (fr) Nouveaux matériaux utiles en tant que solutés électrolytiques
EP0928287B1 (fr) Composes ioniques ayant une charge anionique delocalisee, leur utilisation comme composants de conducteurs ioniques ou de catalyseur
EP0902492B1 (fr) Solvants et nouvelles compositions électrolytiques possédant un large domaine de stabilité et une conductivité élevée
EP0850921B1 (fr) Matériaux à conduction ionique comprenant un composé ionique dérivé du malononitrile et leurs utilisations
JP5753073B2 (ja) ホウ素又はアルミニウム錯体
US20150288031A1 (en) Functionalized ionic liquid electrolytes for lithium ion batteries
EP2084166B1 (fr) Procédé de préparation de sulfonylimidures aromatiques
KR20180089525A (ko) 이차 전지용 비수전해액 및 그것을 구비한 이차 전지
EP0567637A1 (fr) Derives de bis(perfluorosulfonyl)methanes, leur procede de preparation, et leurs utilisations
EP2855444B1 (fr) Sel d&#39;anions bicycliques aromatiques pour batteries li-ion
WO2015051131A1 (fr) Procédés de préparation d&#39;éthers fluorés
US7482302B2 (en) Fluorosulfonic acid compound, process for producing the same, and use thereof
EP2855445B1 (fr) Sel d&#39;anions bicycliques aromatiques pour batteries li-ion
US9923236B2 (en) Fluorinated alkali ion electrolytes with cyclic carbonate groups
JP2000016983A (ja) 塩、電解液及びそれを用いた電気化学デバイス
FR2903691A1 (fr) Sulfonates aromatiques et leur preparation.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980138191.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09740503

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011524438

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009740503

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13060776

Country of ref document: US