WO2010021218A1 - 油圧制御装置 - Google Patents

油圧制御装置 Download PDF

Info

Publication number
WO2010021218A1
WO2010021218A1 PCT/JP2009/062957 JP2009062957W WO2010021218A1 WO 2010021218 A1 WO2010021218 A1 WO 2010021218A1 JP 2009062957 W JP2009062957 W JP 2009062957W WO 2010021218 A1 WO2010021218 A1 WO 2010021218A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
pressure
hydraulic pressure
valve
actuator
Prior art date
Application number
PCT/JP2009/062957
Other languages
English (en)
French (fr)
Inventor
真哉 藤村
勇仁 服部
隆弘 横川
祟穂 川上
貴文 稲垣
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Publication of WO2010021218A1 publication Critical patent/WO2010021218A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H2061/0037Generation or control of line pressure characterised by controlled fluid supply to lubrication circuits of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H2061/66286Control for optimising pump efficiency

Definitions

  • This invention relates to an apparatus for controlling the hydraulic pressure supplied to the low hydraulic pressure supply section and the high hydraulic pressure supply section.
  • Hydraulic pressure is effective as a means of transmitting power and is used in various mechanical devices.
  • the power transmitted by the hydraulic pressure is determined by the pressure and the amount of oil, and the pressure is required more than the amount of oil or the amount of oil larger than the pressure is required depending on the function of the supply target portion.
  • Japanese Patent No. 2893757 describes a continuously variable transmission, and the invention described in Japanese Patent No. 2893757 requires a relatively low hydraulic pressure in a hydraulic clutch or fluid transmission device. Since a continuously variable transmission requires high pressure, a low-pressure oil pump driven by an engine, a high-pressure oil pump driven by an electric motor, and an accumulator are installed. Otherwise, the electric motor and the high-pressure oil pump are stopped to reduce energy loss.
  • Japanese Patent No. 2900273 discloses a device for stably controlling the secondary pressure of a continuously variable transmission, and a device employing a pressure feedback type pilot proportional solenoid valve as a secondary control valve. Is described. Further, Japanese Patent Application Laid-Open No. 11-139279 is a device for controlling brake hydraulic pressure in a vehicle, and is configured to selectively supply hydraulic pressure stored in an accumulator to a rear wheel brake via a switching valve. A hydraulic control circuit is described, and an electrically driven throttle valve is disposed between the accumulator and the switching valve. The throttle valve forms a groove in the valve seat, and when the needle valve comes into contact with the valve seat, the flow path of the pressure oil becomes only the groove, so that the flow path is throttled. The inflow passage and the outflow passage are in direct communication with each other by separating from the seat.
  • Japanese Patent No. 2893757 since two types of oil pumps, a low pressure oil pump and a high pressure oil pump, are provided, each of the torque converter, the clutch, and the continuously variable transmission The required hydraulic pressure can be supplied, and power loss and insufficient hydraulic pressure due to excessive operation of the low pressure oil pump can be prevented or suppressed.
  • the hydraulic pressure of the high pressure oil pump or the accumulator communicated therewith is regulated by a regulator and a valve and supplied to the cylinder chamber of the driven pulley, and regulated by the regulator valve.
  • the hydraulic pressure is supplied to the drive pulley cylinder chamber via the shift control valve.
  • the regulator valve adjusts the pressure by causing the output-side hydraulic pressure to act on the spool as a feedback pressure.
  • the output port communicating with the driven pulley cylinder chamber is constantly switched between the input port and the drain port and communicated. Therefore, since the hydraulic pressure is always discharged, the driving frequency of the high-pressure oil pump becomes high after all. In other words, power loss as a drain hydraulic pressure occurs, and the advantage of dividing the hydraulic source into two types of low-pressure oil pump and high-pressure oil pump may be impaired.
  • the shift control valve described in Japanese Patent No. 2893757 allows the governor pressure and the throttle pressure to act against the spool, and shift control is performed according to the difference between the pressures.
  • both the regulator valve and the speed change control valve are spool valves.
  • a certain amount of clearance is set on the outer peripheral side of the spool in order to ensure the movement of the spool in the axial direction. Since the hydraulic pressure leaks, there is a disadvantage that this causes energy loss.
  • the valve for controlling the hydraulic pressure is of a spool type, the energy due to the leakage of hydraulic pressure is the same as the invention of the above-mentioned Japanese Patent No. 2893757. There could be a lot of loss.
  • the hydraulic control circuit described in Japanese Patent Application Laid-Open No. 11-139279 is a preferable hydraulic circuit in the case where the hydraulic source is limited to one of the high pressure sources, and therefore has at least two high and low hydraulic sources. The configuration is not disclosed in JP-A-11-139279.
  • the needle valve described in Japanese Patent Laid-Open No. 11-139279 is a throttle valve, and a specific configuration of another valve in the hydraulic control circuit of Japanese Patent Laid-Open No. 11-139279, or energy caused by leakage of hydraulic pressure. A technique for preventing loss is not disclosed.
  • the present invention has been made paying attention to the above technical problem, and an object of the present invention is to provide a hydraulic control device capable of preventing or suppressing energy loss due to hydraulic leakage.
  • a hydraulic control device includes a low hydraulic pressure supply unit to which a hydraulic pressure adjusted to a relatively low pressure is supplied using a hydraulic pressure generated by a hydraulic pump as a source pressure,
  • a hydraulic control device including a high hydraulic pressure supply unit to which a hydraulic pressure adjusted to a relatively higher pressure than the hydraulic pressure supplied to the low hydraulic pressure supply unit is supplied.
  • a high-pressure hydraulic source that maintains high hydraulic pressure, and the supply oil passage by driving a valve body that is interposed in a supply oil passage that supplies hydraulic pressure from the high-pressure hydraulic source to the high-hydraulic supply unit and that is pressed against a valve seat
  • a supply-side control valve that opens and closes the valve, and a discharge-side control valve that causes the high hydraulic pressure supply unit to communicate with the drain location by driving a valve body that is pressed against the valve seat.
  • the hydraulic pump includes an engine-driven hydraulic pump driven by an engine mounted on a vehicle, and the high-pressure hydraulic source is pressure oil directed to the engine-driven hydraulic pump. And a pressure accumulator communicated with the engine-driven hydraulic pump via a check valve that prevents the flow of the engine.
  • the hydraulic pump includes an engine-driven hydraulic pump driven by an engine mounted on a vehicle, and the high-pressure hydraulic source includes an electric hydraulic pump driven by an electric motor and the hydraulic pump A pressure accumulator for storing the hydraulic pressure generated by the electric hydraulic pump can be included.
  • each control valve can include an on-off valve that does not leak pressure oil when the valve element is closed against the valve seat.
  • the high hydraulic pressure supply unit may include an actuator that applies hydraulic pressure so as to narrow a groove width of a pulley around which a belt is wound in a belt type continuously variable transmission.
  • the electric hydraulic pump may include a pump that generates hydraulic pressure by being driven by the electric motor based on the sudden acceleration request when the sudden acceleration request is made to the vehicle. it can.
  • the pulley includes a driven pulley and a drive pulley that adjusts a groove width to control a gear ratio of the belt-type continuously variable transmission
  • the actuator includes the drive A drive actuator for controlling the groove width of the side pulley
  • the supply side control valve includes a valve in which an operation of the valve body is controlled by a supplied current to control a flow passage area
  • the discharge side control valve Includes a valve in which the operation of the valve body is controlled by the supplied current and the flow path area is controlled, and the hydraulic pressure of the high-pressure hydraulic source is used to bring the speed ratio of the belt-type continuously variable transmission close to the target speed ratio.
  • the actual hydraulic ratio of the driving actuator, the actual transmission ratio of the belt-type continuously variable transmission, and the target transmission ratio of the belt-type continuously variable transmission may comprise a target current calculating means for calculating a target current to be supplied to the discharge-side control valve.
  • the actuator further includes a driven actuator that controls a groove width of the driven pulley, and the target current calculation means calculates the hydraulic pressure of the driven actuator from a signal of a hydraulic sensor.
  • a thrust ratio which is a ratio of a thrust applied to the movable sheave of the driving pulley and a thrust applied to the movable sheave of the driven pulley, and is based on the hydraulic pressure of the driven actuator and the thrust ratio.
  • means for estimating the hydraulic pressure of the driving actuator is a ratio of a thrust applied to the movable sheave of the driving pulley and a thrust applied to the movable sheave of the driven pulley.
  • the pulley includes a driving pulley and a driven pulley that adjusts a groove width to control a transmission torque of the belt-type continuously variable transmission
  • the actuator includes the driven pulley.
  • Including a driven actuator for controlling the groove width of the side pulley wherein the supply side control valve includes a valve in which an operation of the valve body is controlled by a supplied current to control a flow passage area, and the discharge side control valve Includes a valve whose flow path area is controlled by controlling the operation of the valve body by a supplied current, and the high pressure hydraulic source is used to bring the clamping pressure applied to the belt from the driven pulley closer to the target clamping pressure.
  • the target clamping pressure may comprise a target current calculating means for calculating a target current to be supplied to the valve and the discharge-side control valve.
  • the actuator further includes a drive actuator for controlling a groove width of the drive pulley
  • the target current calculation means includes the supply side control valve and the discharge side control valve.
  • the hydraulic pressure is supplied from the high pressure hydraulic source to the high hydraulic pressure supply unit.
  • the supply-side control valve installed in the supply oil path is configured so that the valve body is pressed against the valve seat to close the supply oil path, and the valve body is separated from the valve seat to open the supply oil path.
  • the discharge-side control valve is a valve configured similarly to the supply-side control valve. Therefore, when the hydraulic pressure or the oil amount of the high hydraulic pressure supply unit is kept constant, each control valve is closed and the hydraulic pressure is contained in the high hydraulic pressure supply unit. In that case, no substantial leakage of the hydraulic pressure at each control valve occurs, so that no hydraulic pressure is output from the high-pressure hydraulic source.
  • FIG. 9 is a map used in the flowchart of FIG.
  • FIG. 9 is a map used in the flowchart of FIG. 8 and showing the relationship between the current supplied to the control valve and the opening area of the control valve.
  • FIG. 9 is a map that is used in the flowchart of FIG. 8 and shows the relationship between the differential pressure between the input port and the output port of the control valve and the current necessary to open the control valve.
  • It is a block diagram which shows the control system corresponding to the 1st control example thru
  • FIG. 16 is a map used in the flowchart of FIG. 15 and showing the relationship between the volume of the hydraulic chamber and the gear ratio of the continuously variable transmission.
  • FIG. 16 is a block diagram showing a control system corresponding to the control example of FIG. 15.
  • the hydraulic control device according to the present invention can be used for machines and devices in various fields such as vehicles, aircraft, ships, and industrial machines.
  • the present invention is applied to a hydraulic control apparatus that includes at least two types of hydraulic supply units, that is, a low hydraulic supply unit and a high hydraulic supply unit, and individually supplies and discharges hydraulic pressure to these hydraulic supply units. Can do.
  • the high-pressure hydraulic source includes a pressure accumulator communicated with an engine-driven hydraulic pump via a check valve
  • the hydraulic pump when the hydraulic pump is driven by the vehicle engine and therefore the engine output increases due to an acceleration request or the like
  • the discharge amount and discharge pressure from the hydraulic pump are increased, and the high hydraulic pressure is supplied to the accumulator through the check valve and stored therein.
  • the hydraulic pressure In a state where the hydraulic pressure is confined in the high hydraulic pressure supply section, the hydraulic pressure is not output from the pressure accumulator, so that the stored hydraulic pressure can be used effectively.
  • even if there are two types of hydraulic supply units, high and low only one hydraulic pump is required, so the number of necessary parts can be reduced and the overall configuration can be simplified.
  • the high hydraulic pressure supply unit is supplied with the hydraulic pressure generated by the electric hydraulic pump and stored in the accumulator. Since there is no substantial leakage of the hydraulic pressure supplied to the high hydraulic pressure supply unit, the hydraulic pressure stored in the accumulator is not wasted, so the driving frequency of the electric motor and the electric hydraulic pump is relatively The power consumption, that is, the energy consumption can be reduced by lowering.
  • each control valve includes an open / close valve that does not leak pressure oil when the valve body is pressed against the valve seat, pressure oil does not leak when the control valve is closed. Further, it is possible to prevent or suppress energy loss in a state where the hydraulic pressure is contained in the high hydraulic pressure supply unit.
  • the high hydraulic pressure supply unit includes an actuator that narrows the groove width of the pulley of the belt type continuously variable transmission, the fuel consumption of the vehicle equipped with the belt type continuously variable transmission can be improved.
  • the electric hydraulic pump is driven by the electric motor to generate hydraulic pressure based on the sudden acceleration request
  • if there is a sudden acceleration request for a vehicle equipped with a continuously variable transmission Therefore, it is required to supply a large amount of pressure oil to the continuously variable transmission in order to generate a shift for the purpose, and the electric hydraulic pump is driven by the electric motor accordingly. Therefore, it is possible to secure the pressure oil required for the shift according to the rapid acceleration, so that it is possible to improve the shift response of the belt type continuously variable transmission, and the transmission torque capacity of the continuously variable transmission is necessary and sufficient. The torque capacity can be maintained.
  • the speed ratio of the belt type continuously variable transmission In order to control the pressure oil amount of the drive actuator by controlling the supply side control valve and the discharge side control valve in order to approximate the target gear ratio, the difference between the hydraulic pressure of the high pressure hydraulic source and the actual hydraulic pressure of the drive actuator And a target current supplied to the supply-side control valve and the discharge-side control valve based on the actual transmission ratio of the belt-type continuously variable transmission and the target transmission ratio of the belt-type continuously variable transmission. Therefore, the control accuracy of the gear ratio of the belt type continuously variable transmission can be increased.
  • the target current calculation means obtains the hydraulic pressure of the driven actuator from the signal of the hydraulic pressure sensor, and calculates a thrust ratio that is a ratio between the thrust applied to the movable sheave of the driving pulley and the thrust applied to the movable sheave of the driven pulley.
  • the hydraulic pressure of the driven actuator is obtained from the signal of the hydraulic sensor, and the movable sheave of the driving pulley is obtained.
  • the thrust ratio which is the ratio between the thrust applied to the movable sheave of the driven pulley and the thrust applied to the driven sheave, is obtained by estimation, and the hydraulic pressure of the driving actuator is estimated based on the hydraulic pressure of the driven actuator and the thrust ratio. it can.
  • the supply side control valve and the discharge side control valve are controlled to control the hydraulic pressure of the driven actuator.
  • the target current calculation means obtains the target current supplied to the supply-side control valve and the discharge-side control valve
  • the target pressure in the hydraulic chamber of the drive actuator that is obtained based on the target gear ratio of the belt-type continuously variable transmission is obtained.
  • the drive actuator that is obtained based on the target speed ratio of the belt-type continuously variable transmission is used to determine the target current supplied to the supply-side control valve and the discharge-side control valve.
  • the target pressure oil amount in the hydraulic chamber can be further used. Therefore, the transmission torque of the belt-type continuously variable transmission can be controlled by predicting the change in the gear ratio of the belt-type continuously variable transmission, and the control accuracy of the transmission torque is further improved.
  • FIG. 1 schematically shows an example in which the present invention is applied to a hydraulic control device intended for a power transmission device including a continuously variable transmission 1 mounted on a vehicle.
  • the continuously variable transmission 1 is a conventionally known belt type, and a belt (not shown) is wound around a driving pulley 2 and a driven pulley 3 to transmit torque between these pulleys 2 and 3.
  • the gear ratio is changed by changing the wrapping radius of the belt around the pulleys 2 and 3.
  • each of the pulleys 2 and 3 includes a fixed sheave and a movable sheave arranged so as to approach and separate from the fixed sheave, and V between the fixed sheave and the movable sheave.
  • a groove-like belt winding groove is formed.
  • the pulleys 2 and 3 are provided with hydraulic actuators 4 and 5 for moving the movable sheave back and forth in the direction of its axis.
  • Either one of the hydraulic actuators 4, 5, for example, the hydraulic actuator 5 in the driven pulley 3 is supplied with a hydraulic pressure that generates a clamping pressure with which the pulleys 2, 3 clamp the belt.
  • 5, for example, the hydraulic actuator 4 in the driving pulley 2 is supplied with hydraulic pressure for changing the belt winding radius.
  • a C1 clutch 6 for transmitting / cutting drive torque is provided on the input side or output side of the continuously variable transmission 1.
  • the C1 clutch 6 is a clutch in which the transmission torque capacity is set according to the supplied hydraulic pressure, and is constituted by, for example, a wet multi-plate clutch.
  • the continuously variable transmission 1 and the C1 clutch 6 transmit torque for traveling the vehicle and are set to a transmission torque capacity corresponding to the hydraulic pressure.
  • 5 and the C1 clutch 6 are supplied with a high hydraulic pressure corresponding to the torque, and therefore the continuously variable transmission 1 or its hydraulic actuators 4 and 5 and the C1 clutch 6 or its hydraulic chamber (not shown). This corresponds to the high hydraulic pressure supply unit in the present invention.
  • the power transmission device including the continuously variable transmission 1 is provided with a torque converter (torque converter) 7 having a lock-up clutch (not shown).
  • the configuration of the torque converter 7 is the same as that conventionally known. In the converter region where the rotational speed difference between the pump impeller and the turbine runner is large (the speed ratio is smaller than a predetermined value), torque amplification occurs. Further, the coupling range in which the rotational speed difference is small (the speed ratio is greater than a predetermined value) is configured to function as a fluid coupling having no torque amplification action.
  • the lockup clutch is configured to directly connect a front cover integrated with a pump impeller as an input side member and a hub integrated with a turbine runner via a friction plate.
  • a control valve (L / U control valve) 8 is provided for controlling the lock-up hydraulic pressure for bringing the friction plate into contact with the front cover and separating the friction plate.
  • the control valve 8 is used to control the direction and pressure of the hydraulic pressure supplied to the lockup clutch, and therefore the control valve 8 operates at a relatively low hydraulic pressure.
  • the power transmission device including the continuously variable transmission 1 and the torque converter 7 described above, there are a lot of so-called sliding portions or heat generation portions such as bearings and bearings that are in frictional contact with each other.
  • the lubricating part 9 only needs to be supplied with a required amount of lubricating oil even at a low pressure, the lubricating part 9, the control valve 8 or the torque converter 7 corresponds to the low hydraulic pressure supply part in the present invention. Yes.
  • FIG. 1 is an example in which a hydraulic pump 11 driven by an engine 10 mounted on a vehicle is used as a hydraulic source.
  • the engine 10 is a heat engine that outputs power by burning fuel such as a gasoline engine.
  • an electric motor such as a motor / generator may be provided together with the engine 10.
  • another hydraulic pump for example, an electric hydraulic pump
  • a pressure regulating valve 12 for regulating the hydraulic pressure discharged from the hydraulic pump 11 to a predetermined pressure is provided.
  • the pressure regulating valve 12 is for regulating the original pressure for control or the like, and the control valve 8 and the lubricating portion 9 are communicated with the downstream side thereof. That is, the hydraulic pressure reduced by the pressure regulating valve 12 is configured to be supplied to a low hydraulic pressure supply unit such as the control valve 8 or the lubrication unit 9.
  • the discharge port of the hydraulic pump 11 communicates with an accumulator (pressure accumulator) 14 via a check valve 13.
  • the check valve 13 is a one-way valve that opens when pressure oil flows from the hydraulic pump 11 toward the accumulator 14 and closes so as to prevent the flow of pressure oil in the opposite direction.
  • the accumulator 14 is configured to store a piston, an elastic expansion body, or the like pressed by an elastic body in the pressure accumulating chamber in a container and store hydraulic pressure with a pressure higher than the elastic force.
  • the accumulator 14 is configured to supply pressure oil to the high hydraulic pressure supply unit. That is, the actuator 4 in the driving pulley 2, the actuator 5 in the driven pulley 3, and the C1 clutch 6 are communicated with the accumulator 14.
  • a supply oil passage 15 for supplying pressure oil from the accumulator 14 to the actuator 4 in the driving pulley 2 is provided with a supply-side electromagnetic on-off valve DSP1, and the supply-side electromagnetic on-off valve DSP1 is electrically controlled to supply oil passages. By opening and closing 15, the pressure oil is supplied to the actuator 4 and the supply of the pressure oil is shut off.
  • a supply oil passage 16 for supplying pressure oil from the accumulator 14 to the actuator 5 in the driven pulley 3 is provided with a supply-side electromagnetic on-off valve DSS1, and the supply-side electromagnetic on-off valve DSS1 is electrically controlled. By opening and closing the supply oil passage 16, the pressure oil is supplied to the actuator 5 and the supply of the pressure oil is shut off.
  • the supply oil passage 17 for supplying pressure oil from the accumulator 14 to the C1 clutch 6 is provided with a supply-side electromagnetic on-off valve DSC1, and the supply-side electromagnetic on-off valve DSC1 is electrically controlled to control the supply oil passage 17 By opening and closing, the pressure oil is supplied to the C1 clutch 6 and the supply of the pressure oil is shut off.
  • a discharge-side electromagnetic on-off valve DSP2 is provided in a discharge oil passage 18 that connects the actuator 4 in the drive-side pulley 2 to a drain location such as an oil pan.
  • the discharge-side electromagnetic on-off valve DSP2 is electrically controlled. By opening and closing the discharge oil passage 18, the pressure oil is discharged from the actuator 4, and the discharge of the pressure oil is blocked.
  • the discharge oil passage 19 for discharging the pressure oil from the actuator 5 in the driven pulley 3 is provided with a discharge side electromagnetic on-off valve DSS2, and this discharge side electromagnetic on-off valve DSS2 is electrically controlled and discharged. By opening and closing the oil passage 19, the pressure oil is discharged from the actuator 5, and the discharge of the pressure oil is blocked.
  • the discharge oil passage 20 for discharging the pressure oil from the C1 clutch 6 is provided with a discharge-side electromagnetic on-off valve DSC2, and the discharge-side electromagnetic on-off valve DSC2 is electrically controlled to open and close the discharge oil passage 20.
  • the pressure oil is discharged from the C1 clutch 6 and the discharge of the pressure oil is blocked.
  • FIG. 2 shows an example of a poppet valve.
  • a valve body 21 having a tapered or hemispherical tip, a valve seat portion 22 to which the valve body 21 is pressed, and the valve body 21 are attached.
  • the hydraulic pump 11 Since the hydraulic pump 11 is connected to the engine 10, when the engine 10 is rotating, the hydraulic pump 11 is similarly rotated to generate hydraulic pressure.
  • the rotation of the engine 10 occurs both when the fuel is supplied to the engine 10 and rotates autonomously, and when the fuel supply and ignition are stopped and the vehicle 10 is forcibly rotated by the traveling inertia force of the vehicle. . That is, the hydraulic pump 11 rotates to generate hydraulic pressure regardless of whether the engine 10 is driven or the engine brake is driven.
  • the pressure and the amount of oil are in accordance with the specifications, the number of rotations, and the torque of the hydraulic pump 11.
  • the hydraulic pressure generated in this way is regulated to a predetermined low hydraulic pressure by the pressure regulating valve 12 and then supplied to the torque converter 7 via the control valve 8 and also to the lubricating portion 9.
  • the hydraulic pump 11 since the hydraulic pump 11 generates a hydraulic pressure according to the operating state of the engine 10, the discharge pressure of the hydraulic pump 11 becomes high during sudden acceleration or when a large engine braking force is generated.
  • the high oil pressure generated in such a case pushes the check valve 13 open and is supplied to the accumulator 14.
  • the check valve 13 since the check valve 13 is closed when the discharge pressure of the hydraulic pump 11 is lower than the hydraulic pressure in the accumulator 14, the high hydraulic pressure supplied to the accumulator 14 is stored here. Note that the hydraulic pressure stored in the accumulator 14 is higher than the maximum pressure required for the continuously variable transmission 1.
  • the transmission torque capacity of the continuously variable transmission 1 is controlled to a capacity that can sufficiently transmit the input torque, and this is set by the clamping pressure corresponding to the hydraulic pressure supplied to the actuator 5 of the driven pulley 3. More specifically, the clamping pressure is controlled according to the required driving force required based on the accelerator opening, the throttle opening, and the like, and when the required driving force is large, it is supplied to the actuator 5 of the driven pulley 3.
  • the hydraulic pressure is controlled to be high.
  • the control is such that the supply-side electromagnetic on-off valve DSS1 communicating with the actuator 5 of the driven pulley 3 is opened and the hydraulic pressure is supplied from the accumulator 14 to the actuator 5. Is done.
  • the opening / closing control of the supply side electromagnetic opening / closing valve DSS1 can be performed based on the target pressure (or target clamping pressure) in the actuator 5 of the driven pulley 3 and the actual hydraulic pressure in the actuator 5, and therefore the actuator 5 It is preferable to provide a sensor (not shown) for detecting the actual hydraulic pressure at.
  • the discharge side electromagnetic on-off valve DSS2 communicated with the actuator 5 of the driven pulley 3 is opened. That is, the electromagnetic coil 25 is energized to separate the valve body 21 from the valve seat portion 22 and to connect the actuator 5 to the drain portion.
  • the energization control for the discharge side electromagnetic opening / closing valve DSS2 can also be performed based on the target pressure (or target clamping pressure) in the actuator 5 of the driven pulley 3 and the actual hydraulic pressure in the actuator 5.
  • the gear ratio by the continuously variable transmission 1 is obtained from the shift map on the basis of the drive request amount such as the accelerator opening and the vehicle speed or the turbine speed. Therefore, the groove width of the driving pulley 2 is controlled so as to be the target gear ratio.
  • the control is performed by supplying and discharging pressure oil to and from the actuator 4 in the driving pulley 2, and specifically, by opening and closing the supply side electromagnetic on-off valve DSP1 and the discharge side electromagnetic on-off valve DSP2. .
  • the supply-side electromagnetic on-off valve DSP1 is controlled to open and pressure oil is supplied to the actuator 4.
  • the discharge side electromagnetic on-off valve DSP2 is controlled to be opened and discharged from the actuator 4.
  • the opening / closing control of the supply side electromagnetic on-off valve DSP1 and the discharge side electromagnetic on-off valve DSP2 for controlling the transmission ratio is performed by the stroke amount of the movable sheave constituting the driving pulley 2, the engine speed or the input speed. This can be done based on the comparison result between the actual gear ratio and the target gear ratio, which is the ratio to the output speed, or the comparison result of the pressures of the actuators 4 and 5 in the pulleys 2 and 3.
  • the C1 clutch 6 when the vehicle travels, the C1 clutch 6 is engaged and torque is transmitted to drive wheels (not shown). Accordingly, since the C1 clutch 6 transmits a large torque required for traveling, the hydraulic pressure is supplied from the accumulator 14 to the C1 clutch 6 when the vehicle travels. That is, when the vehicle starts, the supply-side electromagnetic on-off valve DSC1 interposed in the supply oil passage 17 of the C1 clutch 6 is energized to open it, and the hydraulic pressure is supplied from the accumulator 14 to the C1 clutch 6. By doing so, the C1 clutch 6 is engaged.
  • the discharge-side electromagnetic on-off valve DSC2 is controlled to be discharged from the C1 clutch 6. Even in this case, in order to gradually release the C1 clutch 6, it is preferable to repeatedly open and close the discharge-side electromagnetic on-off valve DSC2 within a short period of time or to gradually release the pressure with an accumulator.
  • the on-off valves DSC1 and DSC2 for the C1 clutch 6 are also provided with a valve element 21 on the valve seat portion 22 in the same manner as the electromagnetic on-off valves DSP1, DSP2, DSS1 and DSS2 for the continuously variable transmission 1 described above. Since it is a type of valve that presses and closes, and opens and opens at a distance, the hydraulic pressure is not applied to the C1 clutch 6 without consuming the hydraulic pressure stored in the accumulator 14 because the hydraulic pressure does not substantially leak. It can be contained and maintained in an engaged state, and energy loss due to hydraulic pressure leakage can be prevented or suppressed.
  • FIG. 3 (a) uses a single hydraulic pump driven by the engine as a hydraulic source, supplies hydraulic pressure to both the low hydraulic supply unit and the high hydraulic supply unit, and controls the supply of the spool valve.
  • the required energy when it is performed is shown.
  • the required flow rate is a flow rate L1 obtained by adding a predetermined surplus to the amount obtained by adding the flow rate required by the low hydraulic pressure supply unit such as the torque converter and the lubrication unit and the flow rate required by the high hydraulic pressure supply unit.
  • the required hydraulic pressure is the hydraulic pressure P1 required by the high hydraulic pressure supply unit. Therefore, the product of these flow rate L1 and hydraulic pressure P1 is the required energy.
  • the low hydraulic pressure supply unit requires a certain amount of flow, but high hydraulic pressure is not required, and the high hydraulic pressure supply unit requires high hydraulic pressure but does not require a large flow rate.
  • the portion marked with “Loss” is wasteful work, and energy is lost accordingly.
  • FIG. 3 (b) shows the energy for the high hydraulic pressure supply section when an accumulator is used as the high pressure hydraulic power source and a spool type valve is provided as the control mechanism.
  • the accumulator needs to hold a higher hydraulic pressure than that required by the high hydraulic pressure supply unit, and the hydraulic pressure is indicated by P2 (> P1).
  • P2 the hydraulic pressure
  • a required amount is obtained by adding a flow rate required for shifting and a flow rate for covering the leakage of the hydraulic pressure and maintaining the hydraulic pressure, which is indicated by L2. That is, the loss energy Loss is obtained by multiplying the necessary pressure P2 and the flow rate for leakage.
  • the required flow rate in the low hydraulic pressure supply unit is a flow rate L3 obtained by adding a predetermined surplus to the flow rate required in the torque converter and the lubrication unit, and this is the hydraulic pump. Will occur constantly.
  • the hydraulic control device is configured so that hydraulic pressure does not leak. Therefore, the energy corresponding to leakage is excluded from the energy shown in FIG. 3B. Energy becomes necessary energy.
  • the required hydraulic pressure P2 is the hydraulic pressure required by the high hydraulic pressure supply unit such as the continuously variable transmission 1, but the required flow rate is a slight flow rate L4 because no leakage occurs in the hydraulic circuit such as the on-off valve. It becomes. Accordingly, the energy loss Loss is limited to the loss accompanying decompression, so that the energy loss becomes slight. Note that the hydraulic pressure required by the low hydraulic pressure supply unit or the energy for obtaining it is not different from that shown in FIG.
  • high-pressure hydraulic pressure is not discharged unnecessarily, so that energy efficiency can be improved, and thus fuel efficiency of the vehicle can be improved.
  • the effect is remarkable in a vehicle equipped with a continuously variable transmission 1 that requires high hydraulic pressure.
  • the hydraulic pressure for the continuously variable transmission 1 can be secured by the accumulator 14 with the above-described configuration, so that the idling stop is supported. Can do.
  • the high-pressure hydraulic source in the present invention is not limited to the configuration shown in FIG. 1, and may be configured to supply hydraulic pressure to the accumulator 14 from an electric hydraulic pump.
  • An example is shown in FIG.
  • the electric hydraulic pump 28 is a pump that is driven by a motor 29 and generates hydraulic pressure.
  • the electric hydraulic pump 28 is connected to the accumulator 14 via a check valve 30 that allows only the flow of pressure oil toward the accumulator 14.
  • a check valve 30 that allows only the flow of pressure oil toward the accumulator 14.
  • an alternator 31 that is driven by the engine 10 to generate electric power is provided, and the alternator 31 is connected to the motor 29 and the battery 32.
  • the electric hydraulic pump 28 can be driven without being restricted by the operating state of the engine 10. Therefore, when the amount of pressure oil required by the continuously variable transmission 1 increases, such a situation is detected, the motor 29 is driven, and the electric hydraulic pump 28 generates the required amount and the required pressure. Can do.
  • the increase in the required oil amount occurs, for example, during a sudden shift, and this can be detected based on the rate of change or the amount of change in the accelerator opening.
  • the accumulator 14 can be made small in volume, and even when the required hydraulic pressure in the continuously variable transmission 1 increases rapidly, a shortage of hydraulic pressure can be avoided. .
  • the electric hydraulic pump 28 since the electric hydraulic pump 28 only needs to generate a hydraulic pressure with a predetermined pressure and flow rate, the operating range of the motor 29 may be narrow, and by adopting the motor 29 according to that, the electric hydraulic pump 28 And the motor 29 can be made highly efficient.
  • a lock-up clutch in a torque converter a configuration in which a clutch mechanism is built in an oil chamber independent of a fluid coupling portion is known.
  • the lockup hydraulic pressure can be controlled independently of the converter hydraulic pressure, and can be supplied and discharged.
  • the converter hydraulic pressure can be set to a low pressure mainly for cooling
  • the lock-up hydraulic pressure can be set to a high pressure mainly for torque transmission.
  • the torque converter lockup clutch 33 is used as a high hydraulic pressure supply unit, and hydraulic pressure is supplied from the accumulator 14 to the lubrication unit 9. The same as the hydraulic pressure to be supplied.
  • a supply-side electromagnetic on-off valve DST1 is provided in a supply oil passage 34 for supplying pressure oil for engagement from the accumulator 14 to the torque converter lock-up clutch 33, and the supply-side electromagnetic on-off valve DST1 is electrically connected.
  • the supply oil passage 34 By opening and closing the supply oil passage 34 under the control, pressure oil is supplied to the torque converter lockup clutch 33 and the supply of pressure oil is shut off.
  • a discharge-side electromagnetic on-off valve DST2 is provided in a discharge oil passage 35 that connects the torque converter lock-up clutch 33 to a drain location such as an oil pan.
  • the discharge-side electromagnetic on-off valve DST2 is electrically controlled and discharged. By opening and closing the oil passage 35, the pressure oil is discharged from the torque converter lockup clutch 33, and the discharge of the pressure oil is shut off.
  • the supply-side electromagnetic on-off valve DST1 and the discharge-side electromagnetic on-off valve DST2 can be configured by valves that do not leak hydraulic pressure, such as the poppet valve and the check valve described above.
  • the hydraulic pressure regulated by the pressure regulating valve 12 is configured to be supplied to each location together with the lubrication unit 9 for cooling the torque converter. Other configurations are the same as those shown in FIG.
  • a valve without hydraulic leakage can be adopted as a valve for controlling the lock-up clutch, so that energy loss is further reduced and a highly efficient hydraulic control device is provided. Can do.
  • the supply-side control valve and the discharge-side control valve in the present invention are not limited to those having the configuration shown in FIG. 2 described above, and are configured to open and close by driving a valve body pressed against the valve seat. Any material that does not cause substantial leakage of hydraulic pressure may be used.
  • a pilot operated check valve may be used.
  • An example thereof is schematically shown in FIG. 6, and the example shown here is an example in which the control valve on the supply side and the discharge side of the driving pulley 2 is a pilot operated check valve. That is, the supply-side electromagnetic on-off valve DSP1 includes a valve seat portion 36, a valve body 37 that is separated from the valve seat portion 36 by hydraulic pressure supplied from the accumulator 14, and the valve body 37 is opened to the valve seat.
  • pilot pressure port 38 for introducing a pilot pressure Pp1 to be pressed against the portion 36.
  • the pilot pressure Pp1 can be configured to selectively supply the hydraulic pressure regulated by the pressure regulating valve 12 with an appropriate control valve (not shown). Therefore, by shutting off the pilot pressure Pp1, the valve element 37 opens away from the valve seat portion 36, and the hydraulic pressure is supplied from the accumulator 14 to the actuator 4 in the driving pulley 2 to cause an upshift.
  • the discharge-side electromagnetic on-off valve DSP2 includes a valve seat part 39, a valve body 40 that is pressed against the valve seat part 39 by the hydraulic pressure of the actuator 4, and closes the valve element 40 from the valve seat part 39.
  • a pilot pressure port 41 for introducing a pilot pressure Pp2 that opens at a distance.
  • the pilot pressure Pp2 can be configured to selectively supply the hydraulic pressure regulated by the pressure regulating valve 12 described above using an appropriate control valve (not shown). Therefore, by shutting off the pilot pressure Pp2, the valve body 40 is pressed against the valve seat portion 39 to close the valve, and the pressure oil is contained in the actuator 4 to maintain a predetermined gear ratio.
  • the pilot pressure Pp2 is introduced, the valve body 40 is opened away from the valve seat portion 39, and the pressure is discharged from the actuator 4 accordingly, so that a downshift occurs.
  • the present invention is not limited to a hydraulic control device for a continuously variable transmission, but can be applied to a hydraulic control device for a stepped automatic transmission.
  • the present invention can be applied to a device control device.
  • FIG. 7 schematically shows the hydraulic circuit of FIG. 1, and the basic configuration is the same as FIG.
  • the actuator 4 has a hydraulic chamber 4A that gives thrust to the movable sheave
  • the actuator 5 has a hydraulic chamber 5A that gives thrust to the movable sheave.
  • each electromagnetic on-off valve is a linear solenoid valve configured to be able to linearly control the current supplied to the electromagnetic coil 25.
  • the magnetic attractive force can be adjusted by controlling the current supplied to the electromagnetic coil 25 of each electromagnetic on-off valve.
  • the valve body 21 is separated from the valve seat portion 22 and the input port 26 and the output port 27 communicate with each other, the flow path formed between the valve body 21 and the valve seat portion 22 is reduced.
  • the opening area can be adjusted.
  • the valve body 21 reciprocates in a direction along the axis of the armature 23.
  • the area when the flow path is assumed to be developed in a plane parallel to the axis is the opening area of the flow path.
  • the current supplied to the electromagnetic coil 25 of each electromagnetic on-off valve is controlled by the electronic control unit 42.
  • specific control examples of the hydraulic control device will be sequentially described.
  • the flow rate of the pressure oil in the hydraulic chamber 4A of the actuator 4 is controlled when the speed ratio of the continuously variable transmission 1 is controlled.
  • An example of controlling the current supplied to the electromagnetic coil 25 of each electromagnetic on-off valve for the flow rate control will be described based on the flowchart of FIG.
  • the target gear ratio of the continuously variable transmission 1 is compared with the actual gear ratio, and it is determined whether or not an instruction to change the gear ratio of the continuously variable transmission 1 is generated (step S1).
  • the required driving force is determined based on the vehicle speed and the accelerator opening
  • the target engine output is determined based on the required driving force.
  • the target engine speed and the target engine torque are determined so that the output of the engine 10 is along the optimum fuel consumption line.
  • a map in which the optimum fuel consumption line is determined using the target engine speed and the target engine torque as parameters is stored in the electronic control unit 42.
  • the target speed ratio of the continuously variable transmission 1 is obtained.
  • the actual gear ratio of the continuously variable transmission 1 is a value obtained by dividing the rotational speed (input rotational speed) Nin of the driving pulley 2 by the rotational speed (output rotational speed) Nout of the driven pulley 3.
  • the rotational speed Nin of the driving pulley 2 is detected by the input rotational speed sensor 45
  • the rotational speed Nout of the driven pulley 3 is detected by the output rotational speed sensor 46
  • the detection signal is input to the electronic control unit 42.
  • the control routine is terminated.
  • step S1 determines whether the determination in step S1 is affirmative.
  • the target flow rate Qtgt of the pressurized oil in the hydraulic chamber 4A is calculated in order to change the transmission ratio of the continuously variable transmission 1 (step S2).
  • step S2 the following equations (1) and (2) are used.
  • Vtgt fv ( ⁇ tgt) ⁇ fv ( ⁇ ) (1)
  • Qtgt
  • / t (1 / K) ⁇ ( ⁇ Psol) 1/2 (2)
  • Vtgt represents the increase or decrease in the flow rate of the hydraulic oil in the hydraulic chamber 4A due to the change in the gear ratio of the continuously variable transmission 1, expressed by the volume of the hydraulic chamber 4A
  • fv ( ⁇ tgt) Is the volume of the hydraulic chamber 4A at the target gear ratio
  • fv ( ⁇ ) is the volume of the hydraulic chamber 4A at the current gear ratio (actual gear ratio).
  • ⁇ Psol ⁇ is a differential pressure between the input port 26 and the output port 27 of the electromagnetic on-off valve that opens the flow path.
  • the pressure oil in the hydraulic chamber 4A is discharged to the oil pan or the like via the discharge side electromagnetic on-off valve DSP2, and the volume Vtgt is reduced.
  • the differential pressure ⁇ Psol between the input port 26 and the output port 27 of the discharge-side electromagnetic on-off valve DSP2 is equal to the oil pressure Pin of the hydraulic chamber 4A. Will be equal.
  • t in equation (2) is the execution period of the control routine
  • K is a constant
  • is the opening area of the flow path.
  • the opening area of the flow path is the opening area of the valve that opens the flow path by controlling the current value supplied to the electromagnetic coil 25 among the electromagnetic on-off valves.
  • the constant K is a value obtained experimentally from conditions affecting the flow rate of pressure oil, for example, the oil temperature, separately from the opening area of the flow path. That is, as the temperature decreases, the viscosity of the pressure oil increases and the flow rate of the pressure oil decreases or the flow velocity decreases, so the viscosity of the pressure oil is taken into consideration.
  • step S2 the target current (target solenoid current) Iq of the current supplied to the electromagnetic coil 25 of the electromagnetic on / off valve that opens the flow path of the supply side electromagnetic on / off valve DSP1 or the discharge side electromagnetic on / off valve DSP2 is Calculated (step S3).
  • step S3 equations (3) and (4) are used.
  • ⁇ tgt is a target value of the opening area ⁇ of the flow path
  • the target current Iq is for controlling the flow rate of the pressure oil supplied to the hydraulic chamber 4A or the flow rate of the pressure oil discharged from the hydraulic chamber 4A.
  • This equation (4) indicates that the target current Iq is represented by a function FI of the target value ⁇ tgt.
  • the target current Iq obtained here is a current that controls the flow rate of the pressure oil passing through the flow path in a state where the flow path is open, and is a temporary target value.
  • the map shown in FIG. 10 may be stored in advance in the electronic control unit 42 in order to perform the process of step S3. In the map of FIG.
  • the current IqI is shown on the horizontal axis, and the opening area ⁇ of the flow path is shown on the vertical axis. As shown in the map of FIG. 10, the required current IqI increases as the opening area ⁇ of the flow path becomes relatively large.
  • step S4 a current is supplied to the electromagnetic coil 25 of the electromagnetic on-off valve whose flow path is closed, and a current Iff required to open the flow path is obtained by equation (5).
  • the electromagnetic on-off valve supplies a current to the electromagnetic coil 25, a magnetic attraction force is generated, and the armature 23 and the valve body 21 operate against the elastic force of the spring 24. Further, since the valve body 21 is provided between the input port 26 and the output port 27, the current required for operating the valve body 21 to open the flow path when the flow path is closed. Iff varies depending on the differential pressure ⁇ Psol, and there is a functional relationship between the two. Specifically, even if an operating force is applied to the armature 23 and the valve body 21 by the magnetic attractive force, a current is applied to the electromagnetic coil 25 until the operating force exceeds a resistance force such as the elastic force of the spring 24. Even if supplied, the flow path is not opened.
  • step S4 current is supplied to the electromagnetic coil 25 of the electromagnetic on-off valve whose flow path is closed, and the current Iff required to open (open) the flow path is expressed as a function of the differential pressure ⁇ Psol. It is calculated from Fff.
  • This function Fff is obtained by experiment or simulation, and the function Fff is stored in the electronic control unit 42.
  • the map of FIG. 11 is previously memorize
  • a target current Ipri to be supplied to the electromagnetic coil 25 of the electromagnetic on-off valve is determined, and a control signal corresponding to the target current Ipri is output from the electronic control unit 42 (step S5). ), This control routine is terminated. In this step S5, equation (6) is used.
  • Ipri Iq + If ff (6)
  • This equation (6) shows that the temporary target current Iq is corrected by the current Iff to obtain the final target current Ipri.
  • the target current IpriI supplied to the electromagnetic coil 25 of the discharge side electromagnetic on-off valve DSP2 is Ipridown.
  • the target current Ipri to be supplied to the electromagnetic coil 25 of the supply side electromagnetic on-off valve DSP1 is Ipriup.
  • the control according to the flowchart of FIG. 8 described above is represented as a block of a control system performed by the electronic control unit 42 as shown in FIG.
  • a current (valve opening current) Iff is obtained using the hydraulic pressure PACC and the hydraulic pressure Pin
  • a temporary target current (flow rate control current) Iq is obtained using the target gear ratio ⁇ and the hydraulic pressure Pin.
  • a final target current Ipri ⁇ is obtained.
  • a control signal corresponding to the target current Ipri (current I) is output to the controller of the electromagnetic on-off valve, the movable sheave of the driving pulley 2 is operated, and the speed ratio ⁇ of the continuously variable transmission 1 is changed. Further, feedback control is performed so that the deviation between the actual speed ratio and the target speed ratio is relatively small.
  • Steps S2 to S5 correspond to the target current calculation means of the present invention.
  • the actuator 4 corresponds to the driving actuator of the present invention, and the actuator 5 corresponds to the driven actuator of the present invention.
  • step S6 the current hydraulic pressure Pin of the hydraulic chamber 4A is estimated (step S6), and the process proceeds to step S2.
  • the hydraulic pressure Pin can be estimated using, for example, the equation (7).
  • Pin Pout ⁇ ⁇ ⁇ (Ssec / Spri) (7)
  • is a ratio between the thrust applied to the movable sheave of the driving pulley 2 and the thrust applied to the movable sheave of the driven pulley 3, that is, a thrust ratio.
  • the thrust ratio ⁇ is an estimated value and can be obtained, for example, as follows.
  • the transmission ratio of the continuously variable transmission 1 is obtained from the transmission map based on the vehicle speed, the accelerator opening, and the like, and the oil amount of the actuator 4 is controlled so that the actual transmission ratio approaches the target transmission ratio.
  • the operation of the movable sheave of the driven pulley 3 is controlled so as to satisfy the transmission torque at the actual gear ratio, based on the actual gear ratio and the torque input to the continuously variable transmission 1, The thrust ratio ⁇ can be obtained.
  • a map for obtaining the thrust ratio ⁇ from the actual transmission ratio of the continuously variable transmission 1 and the torque input to the continuously variable transmission 1 is created by experiment or simulation, and the map is stored in the electronic control unit 42. May be.
  • Ssec is a pressure receiving area of the piston that gives a thrust to the movable sheave of the driven pulley 3
  • Spri is a pressure receiving area of the piston that gives a thrust to the movable sheave of the driving pulley 2. This value is uniquely determined from the shape and the like.
  • the control example of FIG. 13 estimates the oil pressure Pin without using the signal of the oil pressure sensor 44 and determines the final target current Ipri to be supplied to the electromagnetic coil 25 of each electromagnetic on-off valve. it can. Therefore, it is not necessary to provide the hydraulic sensor 44 of FIG. 7, and it is possible to suppress an increase in the number of parts of the hydraulic control device and to reduce the manufacturing cost.
  • steps S6, S2, S3, S4, and S5 correspond to the target current calculation means of the present invention.
  • the hydraulic sensor 47 corresponds to the hydraulic sensor of the present invention.
  • the control example of FIG. 13 is shown using the block diagram of FIG. 12, when obtaining the valve opening current Iff and the temporary target current (flow rate control current) Iq, the point that the hydraulic pressure Pout is used instead of the hydraulic pressure Pin is This is different from the control in FIG. Others are the same as in the control of FIG.
  • step S7 it is determined whether or not there is an instruction to change the clamping pressure of the actuator 5 (step S7). If a negative determination is made in step S7, the control routine is terminated. On the other hand, if an instruction to increase or decrease the clamping pressure of the actuator 5 is generated at the time of determination in step S7, a positive determination is made in step S7, and the target clamping pressure Ptgt is calculated (step S7). S8).
  • the target clamping pressure Ptgt is calculated based on the target speed ratio of the continuously variable transmission 1 and the torque input to the continuously variable transmission 1.
  • a calculation formula or map for performing the processing of step S8 is stored in the electronic control device 42 in advance.
  • step S9 a temporary target current (target solenoid current) Iq is calculated (step S9).
  • equations (8) and (9) are used.
  • the change amount (differential pressure) ⁇ P of the clamping pressure is obtained from the difference between the actual hydraulic pressure Pout and the target clamping pressure Ptgt by the equation (8). If the clamping pressure change instruction determined in step S7 is reduced, the change amount ⁇ P is less than zero. That is, the pressure oil in the hydraulic chamber 5A is discharged to an oil pan or the like via the discharge side electromagnetic opening / closing valve DSS2. On the other hand, if the change instruction of the clamping pressure determined in step S7 is increased, the change amount ⁇ P exceeds zero. That is, the pressure oil is supplied to the hydraulic chamber 5A via the supply side electromagnetic opening / closing valve DSS1. Further, formula (9) will be explained.
  • the target current Iq for opening the supply-side electromagnetic on-off valve DSS1 is expressed by the formula Calculated in (9).
  • the target current Iq for opening the discharge side electromagnetic on-off valve DSS2 is obtained by the equation (9). It is done.
  • K is a feedback gain, and the feedback gain K is stored in the electronic control device 42 in advance.
  • step S4 the current Iff supplied to the electromagnetic coil 25 of the electromagnetic open / close valve that opens the flow path among the supply side electromagnetic open / close valve DSS1 or the discharge side electromagnetic open / close valve DSS2 is obtained.
  • the equation (5) and FIG. 11 are used as in step S4 of FIG.
  • the clamping pressure of the actuator 5 when the clamping pressure of the actuator 5 is decreased, the differential pressure ⁇ Psol between the input port 26 and the output port 26 of the discharge side electromagnetic on-off valve DSS2 becomes equal to the hydraulic pressure Pout.
  • step S9 and step S4 may be performed simultaneously (in parallel), the processing of one step may be performed first, and the processing of the other step may be performed later.
  • a final target current Ipri to be supplied to the electromagnetic coil 25 of the electromagnetic open / close valve DSS1 or the discharge side electromagnetic open / close valve DSS2 that opens the flow path is determined, and the target current Ipri is determined.
  • a control signal corresponding to is output from the electronic control unit 42 (step S5), and this control routine is terminated.
  • the expression (6) is used for the processing in step S5.
  • the target current Ipri to be supplied to the electromagnetic coil 25 of the discharge side electromagnetic opening / closing valve DSS2 is represented by Isecdown.
  • the target current Ipri to be supplied to the electromagnetic coil 25 of the supply-side electromagnetic on-off valve DSS1 is represented by Isetup.
  • the final target current IpriI to be supplied to the electromagnetic coil 25 of the supply-side electromagnetic on-off valve DSS1 or the discharge-side electromagnetic on-off valve DSS2 is the difference between the hydraulic pressure PACC and the hydraulic pressure Pout.
  • the hydraulic pressure Pout ⁇ ⁇ and the target clamping pressure Ptgt An example in the case of executing the control of FIG. 14 will be described with reference to the block diagram of FIG. 12.
  • the hydraulic pressure Pout is used instead of the hydraulic pressure Pin. 8 is different from the control in FIG. 8 in that the physical quantity changed by the control of the controller is not the speed ratio ⁇ but the hydraulic pressure PoutP. Others are the same as the control of FIG. Steps S8 and S9 and steps S4 and S5 correspond to the target current calculation means of the present invention.
  • step S10 flow rate calculation based on the shift flow rate is performed (step S10).
  • step S10 the same processing as in steps S2 and S3 in FIG. 8 is performed.
  • step S11 a target current (target solenoid current) Ik to be supplied to the electromagnetic coil 25 of the supply side electromagnetic opening / closing valve DSS1 or the discharge side electromagnetic opening / closing valve DSS2 is calculated in order to control the clamping pressure of the driven pulley 3.
  • step S11 in addition to the calculation of equation (8), calculation of equation (10) is performed.
  • the change amount (differential pressure) ⁇ P of the clamping pressure is obtained by the equation (8), and K is a gain for feedback control.
  • the target current obtained by this equation (10) is a temporary value.
  • the oil amount in the hydraulic chamber 5A is controlled to control the clamping pressure of the driven pulley 3.
  • the relationship between the speed ratio ⁇ of the continuously variable transmission 1 and the volume of the hydraulic chamber 5A is shown in the map of FIG. As shown in the map of FIG. 16, the volume V of the hydraulic chamber 5A is relatively increased as the speed ratio ⁇ is relatively increased.
  • step S4 a current (valve opening current) Iff required to open the flow path of the supply side electromagnetic on / off valve DSS1 or the discharge side electromagnetic on / off valve DSS2 is calculated.
  • the processing in step S4 is the same as the processing in step S4 in FIG.
  • the order of execution of the processes of steps S10, S11, and S4 is not limited. For example, the processes of steps S10, S11, and S4 may all be performed simultaneously (in parallel), or each step may be performed in order.
  • step S12 the final target current IpriI to be supplied to the electromagnetic coil 25 of the electromagnetic open / close valve DSS1 or the discharge side electromagnetic open / close valve DSS2 that opens the flow path is determined, and Then, a control signal corresponding to the target current Ipri is output from the electronic control unit 42, and this control routine is terminated.
  • the final target current Ipri is obtained by the equation (11).
  • the provisional target current Ik is obtained in step S11
  • the target current Iq is obtained in step S10
  • the valve opening current Iff is obtained in step S4.
  • the target current Ipri to be supplied to the electromagnetic coil 25 of the discharge side electromagnetic on-off valve DSS2 is represented by Isecdown.
  • the target current Ipri to be supplied to the electromagnetic coil 25 of the supply side electromagnetic opening / closing valve DSS1 is expressed as Isecup.
  • FIG. 17 shows an example of the control example of FIG. 15 in a block diagram.
  • a temporary target current (flow control current) IkI is obtained based on the target belt clamping pressure and the actual hydraulic pressure Pout.
  • the valve opening current Iff is obtained based on the hydraulic pressure Pout and the hydraulic pressure PACC.
  • a target current (shift flow rate correction current) Iq is obtained based on the target gear ratio.
  • a final target current Ipri (current I) is obtained based on the temporary target current (flow rate control current) Ik, valve opening current Iff, and target current (shift flow rate correction current) Iq, and this target current Ipri (current A control signal corresponding to I) is sent to the controller to control the hydraulic pressure Pout.
  • the target current Ipri to be supplied to the electromagnetic coil 25 is obtained. That is, when controlling the transmission torque of the continuously variable transmission mechanism 1, feedforward control and feedback control are performed. In the control example of FIG. 15, however, a rapidly changing shift flow rate term (pressure oil amount term of the actuator 4) is set in advance. Since it is entered as a term of feedforward control, the control speed of the transmission torque in the continuously variable transmission 1 is improved. Further, since the differential pressure ⁇ Psol is included as a term of the feedforward control, disturbances affecting the feedback control are reduced, and the hydraulic control accuracy is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

  無段変速機などの高油圧供給部を備えている場合であっても漏洩による損失が少なく、高効率の油圧制御装置を提供する。   油圧ポンプ11で発生させられた油圧を元圧とした低い油圧が供給される低油圧供給部8,9と、その低油圧供給部8,9に供給される油圧より高い油圧が供給される高油圧供給部4,5とを備え、更に、前記高油圧供給部4,5に供給すべき油圧より高い油圧を保持する高圧油圧源14と、その高圧油圧源14から前記高油圧供給部4,5に油圧を供給する供給油路15,~17に介装され、かつ弁座に押し付けられる弁体を駆動することにより前記供給油路を開閉する供給側制御弁DSP1,DSS1,DSC1と、弁座に押し付けられる弁体を駆動することにより前記高油圧供給部をドレン箇所に連通させる排出側制御弁DSP2,DSS2,DSC2とを備えている。

Description

油圧制御装置
 この発明は、低油圧供給部と高油圧供給部とに対して供給する油圧を制御する装置に関するものである。
 油圧は動力を伝達する手段として有効であり、各種の機械装置類で採用されている。油圧によって伝達される動力は、圧力と油量とによって決まり、その供給対象箇所の機能によって油量よりも圧力が要求されたり、あるいは反対に圧力よりも多量の油量が要求されたりする。例えば、特許第2893757号公報には無段変速機について記載されており、その特許第2893757号公報に記載された発明は、油圧クラッチや流体伝動装置では相対的に低い油圧でよいのに対して無段変速機では高圧を必要とするので、エンジンで駆動される低圧用オイルポンプと、電動機で駆動される高圧用オイルポンプならびにアキュムレータとを設け、無段変速機側で特には油量を必要としない場合には電動機および高圧用オイルポンプを停止することにより、エネルギ損失を低減するように構成されている。
 また、特許第2900273号公報には、無段変速機のセカンダリ圧を安定的に制御することを目的とした装置であって、セカンダリ制御弁として圧力帰還形のパイロット式比例電磁弁を採用した装置が記載されている。さらに、特開平11-139279号公報には、車両におけるブレーキ油圧を制御する装置であって、アキュムレータに蓄えた油圧を切換弁を介して後輪のブレーキに選択的に供給するように構成された油圧制御回路が記載されており、そのアキュムレータと切換弁との間に電気的に駆動されるしぼり弁が配置されている。そのしぼり弁は、弁座に溝を形成し、ニードルバルブがその弁座に接触することにより、圧油の流路が溝のみとなるので、流路が絞られ、反対に、ニードルバルブが弁座から離れることにより流入通路と流出通路とが直接連通するように構成されている。
 上述した特許第2893757号公報に記載された発明によれば、低圧用オイルポンプと高圧用オイルポンプとの二種類のオイルポンプを設けてあるので、トルクコンバータやクラッチ、および無段変速機のそれぞれで必要とする油圧を供給でき、低圧用オイルポンプを過剰に動作させることによる動力損失や油圧の不足などを防止もしくは抑制することができる。しかしながら、特許第2893757号公報に記載された構成では、高圧用オイルポンプあるいはこれに連通されたアキュムレータの油圧をレギュレータとバルブで調圧して従動プーリのシリンダ室に供給し、またレギュレータバルブで調圧した油圧を変速制御弁を介して駆動プーリシリンダ室に供給するように構成されている。そのレギュレータバルブは、特許第2893757号公報に図示された構成からすれば、出力側の油圧をフィードバック圧としてスプールに作用させることにより調圧を行うものである。
 したがって従動プーリシリンダ室の油圧を所定の油圧に保持する場合であっても従動プーリシリンダ室に連通している出力ポートを、入力ポートとドレンポートとに常時、繰り返し切り換えて連通させることになり、そのため油圧が常時、排出されるので、結局は、高圧用オイルポンプの駆動頻度が高くなる。言い換えれば、ドレン油圧としての動力損失が生じ、油圧源を低圧用オイルポンプと高圧用オイルポンプとの二種類に分けたことによる利点が損なわれる可能性がある。
 また、特許第2893757号公報に記載された変速制御弁は、その図の記載からすれば、ガバナ圧とスロットル圧とをスプールに対向させて作用させ、それらの圧力の差に応じて変速制御を行うようになっている。すなわち、レギュレータバルブおよび変速制御弁は共にスプール弁であり、この種のバルブでは、スプールの軸線方向の移動を確実にするために、スプールの外周側にある程度の隙間が設定されており、ここから油圧が漏洩するので、これがエネルギ損失の要因となる不都合がある。
 一方、特許第2900273号公報に記載された装置においても、油圧を制御するためのバルブがスプールタイプのものであるために、上述した特許第2893757号公報の発明と同様に、油圧の漏洩によるエネルギ損失が多くなる可能性があった。また、特開平11-139279号公報に記載された油圧制御回路は、油圧源が高圧源の一つに限られているから、高低の少なくとも二つの油圧源を備えている場合における好ましい油圧回路の構成は特開平11-139279号公報に開示されていない。また特開平11-139279号公報に記載されているニードルバルブはしぼり弁であり、特開平11-139279号公報の油圧制御回路における他のバルブの具体的な構成、あるいは油圧の漏洩に起因するエネルギ損失を防止する技術が開示されていない。
 この発明は上記の技術的課題に着目してなされたものであり、油圧の漏洩によるエネルギ損失を防止もしくは抑制することのできる油圧制御装置を提供することを目的とするものである。
 上記の目的を達成するために、この発明の油圧制御装置は、油圧ポンプで発生させられた油圧を元圧として相対的に低い圧力に調圧された油圧が供給される低油圧供給部と、その低油圧供給部に供給される油圧より相対的に高い圧力に調圧された油圧が供給される高油圧供給部とを備えた油圧制御装置において、前記高油圧供給部に供給すべき油圧より高い油圧を保持する高圧油圧源と、その高圧油圧源から前記高油圧供給部に油圧を供給する供給油路に介装され、かつ弁座に押し付けられる弁体を駆動することにより前記供給油路を開閉する供給側制御弁と、弁座に押し付けられる弁体を駆動することにより前記高油圧供給部をドレン箇所に連通させる排出側制御弁とを備えている。
 また、この発明の油圧制御装置においては、前記油圧ポンプは、車両に搭載されているエンジンで駆動されるエンジン駆動油圧ポンプを含み、前記高圧油圧源は、前記エンジン駆動油圧ポンプに向けた圧油の流動を阻止する逆止弁を介して前記エンジン駆動油圧ポンプに連通された蓄圧器を含むことができる。
 また、この発明の油圧制御装置においては、前記油圧ポンプは、車両に搭載されているエンジンで駆動されるエンジン駆動油圧ポンプを含み、前記高圧油圧源は、電動機で駆動される電動油圧ポンプおよび該電動油圧ポンプで発生させられた油圧を蓄える蓄圧器を含むことができる。
 また、この発明の油圧制御装置においては、前記各制御弁は、前記弁体が前記弁座に押し付けられている閉弁状態では圧油の漏れが生じない開閉弁を含むことができる。
 また、この発明の油圧制御装置においては、前記高油圧供給部は、ベルト式無段変速機におけるベルトが巻き掛けられるプーリの溝幅を狭めるように油圧を作用させるアクチュエータを含むことができる。
 また、この発明の油圧制御装置においては、前記電動油圧ポンプは、前記車両の急加速要求があった場合にその急加速要求に基づいて前記電動機によって駆動されて油圧を発生するポンプを含むことができる。
 また、この発明の油圧制御装置においては、前記プーリは、従動側プーリおよび溝幅が調整されて前記ベルト式無段変速機の変速比を制御する駆動側プーリを含み、前記アクチュエータは、前記駆動側プーリの溝幅を制御する駆動用アクチュエータを含み、前記供給側制御弁は供給される電流により前記弁体の動作が制御されて流路面積が制御されるバルブを含み、前記排出側制御弁は供給される電流により前記弁体の動作が制御されて流路面積が制御されるバルブを含み、前記ベルト式無段変速機の変速比を目標変速比に近づけるにあたり、前記高圧油圧源の油圧と前記駆動用アクチュエータの実際の油圧との差、および前記ベルト式無段変速機の実際の変速比、および前記ベルト式無段変速機の目標変速比に基づいて、前記供給側制御弁および前記排出側制御弁に供給する目標電流を求める目標電流算出手段を備えることができる。
 また、この発明の油圧制御装置においては、前記アクチュエータは、前記従動側プーリの溝幅を制御する従動用アクチュエータを更に含み、前記目標電流算出手段は、前記従動用アクチュエータの油圧を油圧センサの信号から求め、前記駆動側プーリの可動シーブに加えられる推力と前記従動側プーリの可動シーブに加えられる推力との比である推力比を推定し、前記従動用アクチュエータの油圧と前記推力比とに基づいて、前記駆動用アクチュエータの油圧を推定する手段を含むことができる。
 また、この発明の油圧制御装置においては、前記プーリは、駆動側プーリおよび溝幅が調整されて前記ベルト式無段変速機の伝達トルクを制御する従動側プーリを含み、前記アクチュエータは、前記従動側プーリの溝幅を制御する従動用アクチュエータを含み、前記供給側制御弁は供給される電流により前記弁体の動作が制御されて流路面積が制御されるバルブを含み、前記排出側制御弁は供給される電流により前記弁体の動作が制御されて流路面積が制御されるバルブを含み、前記従動側プーリから前記ベルトに加えられる挟圧力を目標挟圧力に近づけるにあたり、前記高圧油圧源の油圧と前記従動用アクチュエータの実際の油圧との差、および前記従動用アクチュエータの実際の油圧、および前記目標挟圧力に基づいて、前記供給側制御弁および前記排出側制御弁に供給する目標電流を求める目標電流算出手段を備えることができる。
 また、この発明の油圧制御装置においては、前記アクチュエータは、前記駆動側プーリの溝幅を制御する駆動用アクチュエータを更に含み、前記目標電流算出手段は、前記供給側制御弁および前記排出側制御弁に供給する目標電流を求めるにあたり、前記ベルト式無段変速機の目標変速比に基づいて求められる前記駆動用アクチュエータの油圧室における目標圧油量を更に用いて求める手段を含むことができる。
 この発明によれば、高油圧供給部には高圧油圧源から油圧が供給される。そのための供給油路に介装された供給側制御弁は、弁体が弁座に押し付けられて供給油路を閉じ、またその弁体が弁座から離れることにより供給油路を開くように構成されたバルブであり、また排出側制御弁も供給側制御弁と同様に構成されたバルブである。したがって、高油圧供給部の油圧あるいは油量を一定に維持する場合、各制御弁が閉じられ、高油圧供給部に油圧が封じ込められる。その場合、各制御弁での油圧の実質的な漏洩が生じないので、高圧油圧源からの油圧の出力も生じない。また、いずれかの制御弁を開閉して油圧あるいは油量を制御している場合であっても、その制御弁からの油圧の実質的な漏洩が生じない。このようにこの発明によれば、高油圧供給部に油圧を封じ込めることができるとともに、制御バルブから油圧の漏洩を生じさせないので、油圧を不必要に排出する事態およびそれに伴うエネルギの損失を防止もしくは抑制することができる。
この発明の一例を模式的に示す図である。 その開閉弁として採用することのできるポペット弁の一例を示す断面図である。 この発明で得られる効果を、従来の装置でのエネルギ損失の比較で示す図である。 この発明の他の例を示す模式図である。 この発明の更に他の例を示す模式図である。 その開閉弁としてパイロット操作逆止弁を採用した例を示す部分的な模式図である。 この発明の油圧制御装置を模式的に示す回路図である。 図7の油圧制御装置において実行可能な第1制御例を示すフローチャートである。 図8のフローチャートで用いられるものであり、油圧室の体積と無段変速機の変速比との関係を示すマップである。 図8のフローチャートで用いられるものであり、制御弁に供給される電流と制御弁の開口面積との関係を示すマップである。 図8のフローチャートで用いられるものであり、制御弁の入力ポートと出力ポートとの差圧と、制御弁を開弁させるために必要な電流との関係を示すマップである。 この発明の油圧制御装置の第1制御例ないし第3制御例に対応する制御系を示すブロック図である。 図7の油圧制御装置において実行可能な第2の制御例を示すフローチャートである。 図7の油圧制御装置において実行可能な第3制御例を示すフローチャートである。 図7の油圧制御装置において実行可能な第4制御例を示すフローチャートである。 図15のフローチャートで用いられるものであり、油圧室の体積と無段変速機の変速比との関係を示すマップである。 図15の制御例に対応する制御系を示すブロック図である。
 つぎに、この発明の具体例を説明する。この発明に係る油圧制御装置は、車両や航空機、船舶、産業用機械などの各種の分野の機械・装置類に用いることができる。この発明は、要は、低油圧供給部と高油圧供給部との少なくとも二種類の油圧供給部を備え、それらの油圧供給部に個別に油圧を給排する構成の油圧制御装置に適用することができる。
 また、高圧油圧源が、逆止弁を介してエンジン駆動油圧ポンプに連通された蓄圧器を含む場合は、油圧ポンプが車両のエンジンによって駆動され、したがって加速要求などによってエンジンの出力が増大した時に、油圧ポンプからの吐出量および吐出圧が高くなり、その高圧の油圧が逆止弁を介して蓄圧器に供給され、ここに蓄えられる。そして、高油圧供給部に油圧を封じ込めている状態では、蓄圧器から油圧を出力することがないので、蓄えた油圧を有効に利用することができる。また、油圧供給部が高低の二種類存在するとしても、油圧ポンプが一つでよいので、必要部品数を少なくして全体としての構成を簡素化することができる。
 また、高圧油圧源が、電動油圧ポンプおよび蓄圧器を含む場合は、高油圧供給部には、電動油圧ポンプで発生させられかつ蓄圧器に蓄えられた油圧が供給される。その高油圧供給部に供給された油圧の実質的な漏洩が生じないので、蓄圧器に蓄えられた油圧が無駄に消費されることがなく、そのため電動機および電動油圧ポンプの駆動頻度が相対的に低くなって電力消費量すなわちエネルギの消費を低減することができる。
 さらに各制御弁が、弁体が弁座に押し付けられている閉弁状態では圧油の漏れが生じない開閉弁を含む場合は、各制御弁の閉弁状態で圧油の漏れが生じないので、高油圧供給部に油圧を封じ込めている状態でのエネルギ損失を防止もしくは抑制することができる。
 さらに高油圧供給部が、ベルト式無段変速機のプーリの溝幅を狭めるアクチュエータを含む場合は、ベルト式無段変速機を搭載している車両の燃費を改善することができる。
 さらに、急加速要求に基づいて電動機によって電動油圧ポンプが駆動されて油圧を発生するように構成されている場合は、無段変速機を搭載した車両の急加速要求があった場合、急加速のための変速を生じさせるべく多量の圧油を無段変速機に供給することが要求され、それに応じて電動機によって電動油圧ポンプが駆動される。したがって、急加速に応じた変速に要する圧油を確保することができるので、ベルト式無段変速機の変速応答性を向上させることができ、また無段変速機の伝達トルク容量を必要十分なトルク容量に維持することができる。
 さらに、ベルト式無段変速機の変速比を目標変速比に近づけるにあたり、高圧油圧源の油圧と駆動用アクチュエータの実際の油圧との差、およびベルト式無段変速機の実際の変速比、およびベルト式無段変速機の目標変速比に基づいて、供給側制御弁および排出側制御弁に供給する目標電流を求める目標電流算出手段を備えている場合は、ベルト式無段変速機の変速比を目標変速比に近づけるために、供給側制御弁および排出側制御弁を制御して駆動用アクチュエータの圧油量を制御するにあたり、高圧油圧源の油圧と駆動用アクチュエータの実際の油圧との差、およびベルト式無段変速機の実際の変速比、およびベルト式無段変速機の目標変速比に基づいて、供給側制御弁および排出側制御弁に供給する目標電流を求める。したがって、ベルト式無段変速機の変速比の制御精度を高めることができる。
 さらに、目標電流算出手段が、従動用アクチュエータの油圧を油圧センサの信号から求め、駆動側プーリの可動シーブに加えられる推力と従動側プーリの可動シーブに加えられる推力との比である推力比を推定し、従動用アクチュエータの油圧と前記推力比とに基づいて、駆動用アクチュエータの油圧を推定する手段を含む場合は、従動用アクチュエータの油圧を油圧センサの信号から求め、駆動側プーリの可動シーブに加えられる推力と従動側プーリの可動シーブに加えられる推力との比である推力比を推定により求め、従動用アクチュエータの油圧と推力比とに基づいて、駆動用アクチュエータの油圧を推定することができる。
 さらに、従動側プーリから前記ベルトに加えられる挟圧力を目標挟圧力に近づけるにあたり、高圧油圧源の油圧と従動用アクチュエータの実際の油圧との差、および従動用アクチュエータの実際の油圧、および目標挟圧力に基づいて、供給側制御弁および排出側制御弁に供給する目標電流を求める目標電流算出手段を備えている場合は、供給側制御弁および排出側制御弁を制御して従動用アクチュエータの油圧を制御し、従動側プーリからベルトに加えられる挟圧力を目標挟圧力に近づけるにあたり、高圧油圧源の油圧と従動用アクチュエータの実際の油圧との差、および従動用アクチュエータの実際の油圧、および目標挟圧力に基づいて、供給側制御弁および排出側制御弁に供給する目標電流を求める。したがって、ベルト式無段変速機の伝達トルクの制御精度を向上することができる。
 さらに、目標電流算出手段が、供給側制御弁および排出側制御弁に供給する目標電流を求めるにあたり、ベルト式無段変速機の目標変速比に基づいて求められる駆動用アクチュエータの油圧室における目標圧油量を更に用いて求める手段を含む場合は、供給側制御弁および排出側制御弁に供給する目標電流を求めるにあたり、ベルト式無段変速機の目標変速比に基づいて求められる駆動用アクチュエータの油圧室における目標圧油量を更に用いることができる。したがって、ベルト式無段変速機の変速比の変化を予測して、ベルト式無段変速機の伝達トルクを制御することができ、その伝達トルクの制御精度が一層向上する。
 図1には車両に搭載されている無段変速機1を含む動力伝達装置を対象とした油圧制御装置にこの発明を適用した例を模式的に示してある。その無段変速機1は、従来知られているベルト式のものであり、駆動側プーリ2と従動側プーリ3とに図示しないベルトを巻き掛けてこれらのプーリ2,3の間でトルクを伝達し、かつ各プーリ2,3に対するベルトの巻き掛け半径を変化させることにより、変速比を変化させるように構成されている。より具体的に説明すると、各プーリ2,3は、固定シーブとその固定シーブに対して接近・離隔するように配置された可動シーブとを備え、それらの固定シーブと可動シーブとの間にV溝状のベルト巻き掛け溝が形成されるように構成されている。そして、各プーリ2,3にはそれぞれの可動シーブをその軸線の方向に前後動させるための油圧アクチュエータ4,5が設けられている。それらの油圧アクチュエータ4,5のうちのいずれか一方、例えば従動側プーリ3における油圧アクチュエータ5には、プーリ2,3がベルトを挟み付ける挟圧力を発生させる油圧が供給され、また前記油圧アクチュエータ4,5のうちの他方、例えば駆動側プーリ2における油圧アクチュエータ4には、ベルトの巻き掛け半径を変化させて変速を行うための油圧が供給されている。
 上記の無段変速機1の入力側もしくは出力側に、駆動トルクの伝達・遮断を行うためのC1クラッチ6が設けられている。このC1クラッチ6は、供給される油圧に応じて伝達トルク容量が設定されるクラッチであり、例えば湿式の多板クラッチによって構成されている。上記の無段変速機1およびこのC1クラッチ6は、車両の走行のためのトルクを伝達するものであり、しかも油圧に応じた伝達トルク容量に設定されるものであるから、前記各油圧アクチュエータ4,5およびC1クラッチ6には、トルクに応じた高い油圧を供給することになり、したがって上記の無段変速機1あるいはその油圧アクチュエータ4,5およびC1クラッチ6もしくはその油圧室(図示せず)が、この発明における高油圧供給部に相当している。
 他方、上記の無段変速機1を含む動力伝達装置には、ロックアップクラッチ(図示せず)を備えたトルクコンバータ(トルコン)7が設けられている。そのトルクコンバータ7の構成は、従来知られているものと同様であり、ポンプインペラとタービンランナとの回転数差が大きい(速度比が所定値より小さい)コンバータ領域ではトルクの増幅作用が生じ、またその回転数差が小さい(速度比が所定値より大きい)カップリングレンジでは、トルクの増幅作用のない流体継手として機能するように構成されている。そして、ロックアップクラッチはその入力側部材であるポンプインペラに一体のフロントカバーとタービンランナに一体のハブとを摩擦板を介して直接連結するように構成されている。
 その摩擦板をフロントカバーに接触させ、また離隔させるためのロックアップ油圧を制御するための制御弁(L/Uコントロールバルブ)8が設けられている。この制御弁8はロックアップクラッチに対する油圧の供給方向やその圧力を制御するためのものであり、したがって制御弁8は相対的に低い油圧で動作するようになっている。
 さらに、上記の無段変速機1やトルクコンバータ7などを含む動力伝達装置には、相互に摩擦接触する箇所や軸受などのいわゆる摺動部分あるいは発熱部分が多数存在し、それらの箇所に潤滑油を供給するようになっている。それらの潤滑部9は、低圧であっても必要量の潤滑油が供給されればよいので、その潤滑部9や前記制御弁8あるいはトルクコンバータ7がこの発明における低油圧供給部に相当している。
 つぎに、上記の高油圧供給部や低油圧供給部に対して油圧を給排するための構成について説明する。図1に示す例は、車両に搭載されているエンジン10によって駆動される油圧ポンプ11を油圧源とする例である。そのエンジン10は、ガソリンエンジンなどの燃料を燃焼させて動力を出力する熱機関であり、この発明ではそのエンジン10と併せてモータ・ジェネレータなどの電動機を設けてもよい。また、その油圧ポンプ11と並列に他の油圧ポンプ(例えば電動油圧ポンプ)を設けてもよい。
 油圧ポンプ11から吐出した油圧を所定の圧力に調圧する調圧弁12が設けられている。この調圧弁12は、制御などのための元圧を調圧するためのものであり、その下流側に前記制御弁8や潤滑部9などが連通されている。すなわち、調圧弁12で減圧した油圧が、制御弁8や潤滑部9などの低油圧供給部に供給されるように構成されている。
 一方、油圧ポンプ11の吐出口は、逆止弁13を介してアキュムレータ(蓄圧器)14に連通されている。その逆止弁13は、油圧ポンプ11からアキュムレータ14に向けて圧油が流れる場合に開き、これとは反対方向の圧油の流れを阻止するように閉弁する一方向弁である。また、アキュムレータ14は、蓄圧室に弾性体で押圧されたピストンや弾性膨張体などを容器内に収容し、その弾性力以上の圧力で油圧を蓄えるように構成されている。そして、このアキュムレータ14から高油圧供給部に圧油を供給するように構成されている。すなわち、前述した駆動側プーリ2におけるアクチュエータ4と、従動側プーリ3におけるアクチュエータ5と、C1クラッチ6とが、アキュムレータ14に連通されている。
 アキュムレータ14から駆動側プーリ2におけるアクチュエータ4に圧油を供給する供給油路15には、供給側電磁開閉弁DSP1が設けられ、この供給側電磁開閉弁DSP1を電気的に制御して供給油路15を開閉することにより、アクチュエータ4に対して圧油を供給し、また圧油の供給を遮断するように構成されている。これと同様に、アキュムレータ14から従動側プーリ3におけるアクチュエータ5に圧油を供給する供給油路16には、供給側電磁開閉弁DSS1が設けられ、この供給側電磁開閉弁DSS1を電気的に制御して供給油路16を開閉することにより、アクチュエータ5に対して圧油を供給し、また圧油の供給を遮断するように構成されている。さらに、アキュムレータ14からC1クラッチ6に圧油を供給する供給油路17には、供給側電磁開閉弁DSC1が設けられ、この供給側電磁開閉弁DSC1を電気的に制御して供給油路17を開閉することにより、C1クラッチ6に対して圧油を供給し、また圧油の供給を遮断するように構成されている。
 また、駆動側プーリ2におけるアクチュエータ4をオイルパンなどのドレン箇所に連通させる排出油路18には、排出側電磁開閉弁DSP2が設けられ、この排出側電磁開閉弁DSP2を電気的に制御して排出油路18を開閉することにより、アクチュエータ4から圧油を排出し、また圧油の排出を遮断するように構成されている。これと同様に、従動側プーリ3におけるアクチュエータ5から圧油を排出する排出油路19には、排出側電磁開閉弁DSS2が設けられ、この排出側電磁開閉弁DSS2を電気的に制御して排出油路19を開閉することにより、アクチュエータ5から圧油を排出し、また圧油の排出を遮断するように構成されている。さらに、C1クラッチ6から圧油を排出する排出油路20には、排出側電磁開閉弁DSC2が設けられ、この排出側電磁開閉弁DSC2を電気的に制御して排出油路20を開閉することにより、C1クラッチ6から圧油を排出し、また圧油の排出を遮断するように構成されている。
 これらの開閉弁DSP1,DSS1,DSC1,DSP2,DSS2,DSC2は、閉弁状態においても油圧の漏れが生じないように構成されたバルブであり、ポペット弁や逆止弁などによって構成されている。図2にはポペット弁の例を示してあり、先端部がテーパ状もしくは半球状に形成された弁体21と、その弁体21が押し付けられる弁座シート部22と、弁体21が取り付けられたアーマチュア23と、弁体21を弁座シート部22に向けて押圧するスプリング24と、アーマチュア23をスプリング24の弾性力に抗して弁座シート部22とは反対方向に引き戻す電磁コイル25とを備えている。したがって図2に示す構成において、電磁コイル25に通電しないいわゆるOFF状態では、弁体21がスプリング24によって弁座シート部22に押し付けられるので、入力ポート26と出力ポート27との連通が断たれる。また反対に、電磁コイル25に通電するいわゆるON状態では、弁体21がアーマチュア23と共に弁座シート部22から離れるように引き戻されるので、入力ポート26と出力ポート27とが連通する。こうして前述した供給油路15,16,17や排出油路18,19,20が開閉されるようになっている。
 上述した油圧制御装置の作用について次に説明する。油圧ポンプ11はエンジン10に連結されているので、エンジン10が回転している場合には油圧ポンプ11も同様に回転し、油圧を発生する。そのエンジン10の回転は、エンジン10に燃料が供給されて自律回転している場合と、燃料の供給および点火を止めて車両の走行慣性力で強制的に回転させられている場合のいずれでも生じる。すなわち、エンジン10の駆動時とエンジンブレーキ状態の被駆動時とのいずれであっても油圧ポンプ11が回転して油圧を発生する。その圧力および油量は、油圧ポンプ11の仕様、回転数ならびにトルクに応じたものとなる。こうして発生した油圧は、一方で、前記調圧弁12によって設計上、予め定めた低油圧に調圧された後、前記制御弁8を介してトルクコンバータ7に供給され、また潤滑部9に供給される。
 他方、油圧ポンプ11はエンジン10の動作状態に応じた油圧を発生するので、急加速時や大きいエンジンブレーキ力を生じさせている場合などにおいては、油圧ポンプ11の吐出圧が高くなる。このような場合に生じた高油圧は、逆止弁13を押し開いてアキュムレータ14に供給される。また、逆止弁13は、油圧ポンプ11の吐出圧がアキュムレータ14での油圧より低い場合に閉じるから、アキュムレータ14に供給された高油圧はここに蓄えられることになる。なお、アキュムレータ14に蓄えられる油圧は、無段変速機1で必要とする最高圧力より高い油圧である。
 無段変速機1の伝達トルク容量は、入力されたトルクを十分に伝達できる容量に制御され、これは従動側プーリ3のアクチュエータ5に供給される油圧に応じた挟圧力によって設定される。より具体的には、アクセル開度やスロットル開度などに基づいて求められる要求駆動力に応じて挟圧力が制御され、要求駆動力が大きい場合には、従動側プーリ3のアクチュエータ5に供給される油圧が高くなるように制御される。その制御は、この発明に係る図1に示す油圧制御装置では、従動側プーリ3のアクチュエータ5に連通する供給側電磁開閉弁DSS1を開弁し、アキュムレータ14からそのアクチュエータ5に油圧を供給することにより行われる。この供給側電磁開閉弁DSS1の開閉制御は、従動側プーリ3のアクチュエータ5における目標圧力(あるいは目標挟圧力)と、そのアクチュエータ5における実際の油圧とに基づいて行うことができ、したがってそのアクチュエータ5における実際の油圧を検出するセンサ(図示せず)を設けることが好ましい。
 また、無段変速機1に対する入力トルクの低下に基づいて挟圧力を低下させる場合、従動側プーリ3のアクチュエータ5に連通されている排出側電磁開閉弁DSS2を開弁動作させることにより行う。すなわち、その電磁コイル25に通電して弁体21を弁座シート部22から離隔させ、前記アクチュエータ5をドレン部に連通させる。その排出側電磁開閉弁DSS2に対する通電制御も、従動側プーリ3のアクチュエータ5における目標圧力(あるいは目標挟圧力)と、そのアクチュエータ5における実際の油圧とに基づいて行うことができる。
 さらに、無段変速機1による変速比は、アクセル開度などの駆動要求量と車速もしくはタービン回転数などとに基づいて変速マップから求められる。したがって、駆動側プーリ2の溝幅が、目標とする変速比となるように制御される。その制御は、駆動側プーリ2におけるアクチュエータ4に対して圧油を給排することにより行われ、具体的には、供給側電磁開閉弁DSP1および排出側電磁開閉弁DSP2を開閉することにより行われる。例えば、アップシフトするべく溝幅を狭くする(ベルトの巻き掛け半径を大きくする)場合には、供給側電磁開閉弁DSP1が開制御されてアクチュエータ4に対して圧油が供給される。また反対にダウンシフトするべく駆動側プーリ2の溝幅を広くする(ベルトの巻き掛け半径を小さくする)場合には、排出側電磁開閉弁DSP2が開制御されてアクチュエータ4から排圧される。
 このように変速比を制御する供給側電磁開閉弁DSP1および排出側電磁開閉弁DSP2の開閉制御は、駆動側プーリ2を構成している可動シーブのストローク量や、エンジン回転数もしくは入力回転数と出力回転数との比である実際の変速比と目標変速比との比較結果、あるいは各プーリ2,3におけるアクチュエータ4,5の圧力の比較結果に基づいて行うことができる。
 そして、アクセル開度および車速がほぼ一定に維持される定常走行状態では、変速比および挟圧力を一定に維持することになる。その場合、無段変速機1についての各電磁開閉弁DSP1,DSP2,DSS1,DSS2をOFF状態に制御して各供給油路15,16および排出油路18,19を閉じ、各アクチュエータ4,5に圧油を封じ込める。この状態で、各電磁開閉弁DSP1,DSP2,DSS1,DSS2からの油圧の漏洩は生じないから、アキュムレータ14に蓄えた油圧が低下したり、あるいは各アクチュエータ4,5の圧力を維持するべくアキュムレータ14から油圧を継続して供給したりする必要がなく、したがって油圧の漏洩によるエネルギ損失が生じない。なお、油圧の漏洩が生じないことは、各電磁開閉弁DSP1,DSP2,DSS1,DSS2が開状態に制御されている場合であっても同様である。
 さらに、車両が走行する場合、C1クラッチ6を係合させて駆動輪(図示せず)にトルクを伝達する。したがってC1クラッチ6は走行に要する大きいトルクを伝達することになるので、車両が走行する場合、アキュムレータ14からC1クラッチ6に対して油圧を供給する。すなわち、車両が発進する場合、C1クラッチ6の供給油路17に介装されている供給側電磁開閉弁DSC1に通電してこれを開制御し、アキュムレータ14からC1クラッチ6に対して油圧を供給することによりC1クラッチ6を係合させる。なお、C1クラッチ6が急激に係合することを回避するために、供給側電磁開閉弁DSC1を短時間の間に繰り返し開閉させてC1クラッチ6の係合圧を徐々に増大させることが好ましい。あるいはC1クラッチ6の供給側にアキュムレータを設けて、そのアキュムレータの特性に応じて係合圧を徐々に増大させることが好ましい。また、C1クラッチ6を解放する場合には、排出側電磁開閉弁DSC2をON制御してC1クラッチ6から排圧する。その場合も、C1クラッチ6を徐々に解放させるために、排出側電磁開閉弁DSC2を短時間の間に繰り返し開閉させたり、アキュムレータによって徐々に排圧したりすることが好ましい。
 そして、これらC1クラッチ6についての各開閉弁DSC1,DSC2も、前述した無段変速機1についての各電磁開閉弁DSP1,DSP2,DSS1,DSS2と同様に、弁座シート部22に弁体21を押し付けて閉弁し、また離隔させて開弁するタイプの弁であって油圧の実質的な漏洩の生じないものであるから、アキュムレータ14に蓄えた油圧を消費することなくC1クラッチ6に油圧を封じ込めて係合状態に維持することができるうえに、油圧の漏洩によるエネルギ損失を防止もしくは抑制することができる。
 ここで、この発明により得られる効果について説明する。図3の(a)は、エンジンで駆動される単一の油圧ポンプを油圧源とし、ここから低油圧供給部と高油圧供給部との両方に油圧を供給し、その供給の制御をスプール弁によって行うとした場合の必要エネルギを示している。必要流量は、トルクコンバータや潤滑部などの低油圧供給部で必要とする流量および高油圧供給部で必要とする流量を加算した量に所定の余剰分を加えた流量L1である。また必要油圧は、高油圧供給部で必要とする油圧P1である。したがって、これらの流量L1と油圧P1とを掛け合わせたものが必要エネルギとなる。しかしながら、低油圧供給部ではある程度の流量を必要とするが、高い油圧は必要ではなく、また高油圧供給部では高い油圧を必要とするが大きい流量は必要としないので、図3の(a)に「Loss」の符号を付してある部分が無駄仕事となり、その分、エネルギを損失している。
 これに対して、図3の(b)は高圧油圧源としてアキュムレータを用い、制御機構としてスプールタイプのバルブを設けた場合の高油圧供給部についてのエネルギを示している。その場合、アキュムレータには、高油圧供給部で必要とする油圧より高い油圧を保持する必要があり、その油圧をP2(>P1)で示してある。また、変速のために必要とする流量と、油圧の漏洩をカバーして油圧を維持するための流量とを加えた量が必要量となり、これをL2で示してある。すなわち、必要圧P2と漏洩分の流量とを掛けたものが損失エネルギLossとなっている。
 なお、低油圧供給部での必要流量は、図3の(c)に示すように、トルクコンバータや潤滑部で必要とする流量に所定の余剰分を加えた流量L3になり、これを油圧ポンプで定常的に発生することになる。
 この発明に係る油圧制御装置では、前述したように、油圧の漏洩が生じないように構成されているので、図3の(b)に記載してあるエネルギのうち漏洩に相当するエネルギ分を除いたエネルギが必要エネルギとなる。これを図3の(d)に示してある。すなわち、必要油圧P2は、無段変速機1などの高油圧供給部で必要とする油圧となるが、必要流量は、開閉弁などの油圧回路での漏洩が生じないことにより、僅かな流量L4となる。それに伴って、エネルギ損失Lossは、減圧に伴う損失に限られるので、エネルギ損失は僅かなものになる。なお、低油圧供給部で必要とする油圧あるいはこれを得るためのエネルギは、図3の(c)に示すものと変わるところはない。このように、この発明によれば、高い圧力の油圧を無駄に流出させることがないので、エネルギ効率を向上させ、ひいては車両の燃費を向上させることができる。その効果は、高い油圧を必要とする無段変速機1を搭載している車両において顕著である。さらに、車両が停止している際にエンジン10を停止させるいわゆるアイドリングストップを行う場合、上述した構成であれば、無段変速機1に対する油圧をアキュムレータ14で確保できるので、アイドリングストップに対応することができる。
 なお、この発明における高圧油圧源は、図1に示す構成に限られないのであって、前記アキュムレータ14に電動油圧ポンプから油圧を供給するように構成したものであってもよい。その例を図4に示してある。電動油圧ポンプ28は、モータ29によって駆動されて油圧を発生するポンプであり、この電動油圧ポンプ28はアキュムレータ14に向けた圧油の流動のみを許容する逆止弁30を介してアキュムレータ14に接続されている。また、図4に示す構成では、エンジン10によって駆動されて発電するオルタネータ31が設けられており、このオルタネータ31は前記モータ29およびバッテリー32に接続されている。したがって、オルタネータ31によって発電した電力でモータ29および電動油圧ポンプ28を駆動し、またその電力をバッテリー32に蓄電し、さらにバッテリー32の電力でモータ29および電動油圧ポンプ28を駆動するように構成されている。図4に示す他の構成は、図1に示す構成と同様である。
 図4に示すように構成した装置では、アキュムレータ14の油圧が目標とする圧力以下に低下した場合にモータ29を起動して電動油圧ポンプ28によって油圧を発生させ、これをアキュムレータ14に供給することになる。このような制御は、アキュムレータ14の圧力をセンサ(図示せず)によって検出し、その検出信号に基づいてモータ29を制御することにより行うことができる。したがって、アキュムレータ14に蓄圧する場合に電力を消費することになるが、エンジン10によって駆動される油圧ポンプ11はアキュムレータ14に蓄圧するための油圧を発生する必要がないので、その分、エンジン10側での消費エネルギ(あるいは損失エネルギ)を少なくすることができる。
 また、電動油圧ポンプ28は、エンジン10の動作状態に制約されずに駆動することができる。そこで、無段変速機1で必要とする圧油の量が多くなる場合、そのような状況を検出してモータ29を駆動し、電動油圧ポンプ28によって必要量および必要圧力の油圧を発生させることができる。その必要油量の増大は、一例として急変速時に生じ、これはアクセル開度の変化率あるいは変化量に基づいて検出することができる。このように構成することにより、アキュムレータ14を容積の小さいものとすることができ、また無段変速機1での必要油圧が急激に増大した場合であっても油圧の不足を回避することができる。また特に、電動油圧ポンプ28は、予め定めた圧力および流量の油圧を発生させればよいので、モータ29の動作領域が狭くてよく、それに合わせたモータ29を採用することにより、電動油圧ポンプ28およびモータ29を高効率のものとすることができる。
 ところで、トルクコンバータにおけるロックアップクラッチとして、流体継手部分から独立した油室にクラッチ機構を内蔵した構成のものが知られている。その種のロックアップクラッチにおいては、ロックアップ油圧をコンバータ油圧とは独立して制御し、また給排することができる。その場合、コンバータ油圧は冷却を主目的とした低圧に設定し、ロックアップ油圧はトルク伝達を主目的とした高圧に設定することができる。この種のいわゆるロックアップクラッチ独立油室式トルクコンバータを採用した場合には、トルクコンバータロックアップクラッチ33を高油圧供給部とし、これにアキュムレータ14から油圧を供給し、コンバータ油圧は潤滑部9に供給する油圧と同様とする。
 その例を図5に示してある。すなわち、アキュムレータ14からトルクコンバータロックアップクラッチ33にその係合のための圧油を供給する供給油路34には、供給側電磁開閉弁DST1が設けられ、この供給側電磁開閉弁DST1を電気的に制御して供給油路34を開閉することにより、トルクコンバータロックアップクラッチ33に対して圧油を供給し、また圧油の供給を遮断するように構成されている。
 また、トルクコンバータロックアップクラッチ33をオイルパンなどのドレン箇所に連通させる排出油路35には、排出側電磁開閉弁DST2が設けられ、この排出側電磁開閉弁DST2を電気的に制御して排出油路35を開閉することにより、トルクコンバータロックアップクラッチ33から圧油を排出し、また圧油の排出を遮断するように構成されている。なお、供給側電磁開閉弁DST1および排出側電磁開閉弁DST2は、前述したポペット弁や逆止弁などの油圧の漏洩のないバルブによって構成することができる。また、調圧弁12で調圧された油圧は、潤滑部9と併せてトルクコンバータの冷却のためにそれぞれの箇所に供給するように構成されている。他の構成は、図1に示す構成と同様である。
 図5に示すように構成すれば、ロックアップクラッチを制御するためのバルブとして油圧の漏洩のないバルブを採用することができるので、エネルギ損失を更に少なくし、高効率の油圧制御装置とすることができる。
 なお、この発明における供給側制御弁および排出側制御弁は、前述した図2に示す構成のものに限定されないのであり、弁座に押し付けられる弁体を駆動して開閉する構成のものであって、油圧の実質的な漏洩が生じないものであればよい。例えば、パイロット操作逆止弁であってもよい。その例を図6に模式的に示してあり、ここに示す例は、駆動側プーリ2についての供給側および排出側の制御弁をパイロット操作逆止弁とした例である。すなわち、供給側電磁開閉弁DSP1は、弁座シート部36と、アキュムレータ14から供給される油圧で弁座シート部36から離隔されて開弁する弁体37と、その弁体37を弁座シート部36に押し付けるパイロット圧Pp1を導入するパイロット圧ポート38とを備えている。なお、そのパイロット圧Pp1は前述した調圧弁12によって調圧した油圧を図示しない適宜の制御弁で選択的に供給するように構成することができる。したがって、パイロット圧Pp1を遮断することにより、弁体37が弁座シート部36から離隔して開弁し、アキュムレータ14から駆動側プーリ2におけるアクチュエータ4に油圧が供給されてアップシフトが生じる。
 また、排出側電磁開閉弁DSP2は、弁座シート部39と、アクチュエータ4の油圧で弁座シート部39に押し付けられて閉弁する弁体40と、その弁体40を弁座シート部39から離隔させて開弁するパイロット圧Pp2を導入するパイロット圧ポート41とを備えている。なお、そのパイロット圧Pp2は前述した調圧弁12によって調圧した油圧を図示しない適宜の制御弁で選択的に供給するように構成することができる。したがって、パイロット圧Pp2を遮断することにより、弁体40が弁座シート部39に押し付けられて閉弁し、アクチュエータ4に圧油が封じ込められて所定の変速比が維持される。これに対してパイロット圧Pp2を導入することにより弁体40が弁座シート部39から離隔して開弁し、それに伴ってアクチュエータ4から排圧されるので、ダウンシフトが生じる。
 このような構成であっても油圧の漏洩が生じないので、無段変速機1による変速比やその伝達トルク容量を一定に維持している場合を含めてエネルギ損失を防止もしくは抑制して燃費を向上させることができる。
 また、この発明は無段変速機の油圧制御装置に限らず、有段式の自動変速機のための油圧制御装置に適用することができ、さらには油圧によって駆動し、また制御する広く一般の装置類の制御装置に適用することができる。
 つぎに、前記ベルト式無段変速機1の変速比および伝達トルクを制御する油圧制御装置において、各電磁開閉弁を制御するための具体的な構成を、図7に基づいて説明する。なお、図7は図1の油圧回路を更に模式的に示したものであり、基本的な構成は図1と同じである。アクチュエータ4は可動シーブに推力を与える油圧室4Aを有し、アクチュエータ5は可動シーブに推力を与える油圧室5Aを有している。ここでは、各電磁開閉弁が、電磁コイル25に供給される電流をリニアに制御することが可能に構成されたリニアソレノイドバルブである場合を説明する。具体的には、各電磁開閉弁の電磁コイル25に電流を供給すると、アーマチュア23および弁体21を、スプリング24の弾性力に抗して弁座シート部22とは反対方向に引き戻す磁気吸引力が発生する。そこで、各電磁開閉弁の電磁コイル25に供給する電流を制御することにより、上記磁気吸引力を調整することができる。この電流制御により、弁体21が弁座シート部22から離れて入力ポート26と出力ポート27とが連通する際に、弁体21と弁座シート部22との間に形成される流路の開口面積を調整することができる。前記弁体21はアーマチュア23の軸線に沿った方向に往復動する。その軸線と平行な平面内に前記流路を展開したと仮定したときの面積が、流路の開口面積である。また、各電磁開閉弁の電磁コイル25に供給する電流は電子制御装置42により制御される。以下、油圧制御装置の具体的な制御例を順次説明する。
 (第1制御例)
 この第1制御例は、無段変速機1の変速比を制御するにあたり、アクチュエータ4の油圧室4Aにおける圧油の流量を制御するものである。その流量制御のために各電磁開閉弁の電磁コイル25に供給する電流を制御する例を、図8のフローチャートに基づいて説明する。まず、無段変速機1の目標変速比と実際の変速比とを比較して、無段変速機1の変速比を変更する指示が発生するか否かが判断される(ステップS1)。
 このステップS1の判断の前提となる無段変速機1の目標変速比の求め方を説明する。前記エンジン10および無段変速機1が搭載された車両においては、車速およびアクセル開度に基づいて要求駆動力が求められ、要求駆動力に基づいて目標エンジン出力が求められる。前記エンジン10の出力を目標エンジン出力に基づいて制御するにあたり、エンジン10の出力が最適燃費線に沿ったものとなるように、目標エンジン回転数および目標エンジントルクが求められる。なお、目標エンジン回転数および目標エンジントルクをパラメータとして最適燃費線を定めたマップが、電子制御装置42に記憶されている。そして、エンジン10の実エンジン回転数を目標エンジン回転数に近づけるために、無段変速機1の目標変速比が求められる。無段変速機1の実際の変速比は、駆動側プーリ2の回転数(入力回転数)Ninを、従動側プーリ3の回転数(出力回転数)Nout で除算した値である。なお、駆動側プーリ2の回転数Ninは入力回転数センサ45により検知され、従動側プーリ3の回転数Nout は出力回転数センサ46により検知され、その検知信号が電子制御装置42に入力される。このようにして、無段変速機1の目標変速比を求めた結果、前記ステップS1で否定的に判断された場合は、この制御ルーチンを終了する。
 これに対して、ステップS1で肯定的に判断された場合は、無段変速機1の変速比を変更するために、油圧室4Aにおける圧油の目標流量Qtgt が計算される(ステップS2)。このステップS2では、つぎの式(1)および式(2)を用いる。
 Vtgt =fv (γtgt )-fv (γ)           …(1)
 Qtgt=|Vtgt|/t=(1/K)φ(ΔPsol )1/2      …(2)
 上記の式において、Vtgt は、無段変速機1の変速比の変更に伴う油圧室4Aの圧油の流量の増加または減少分を、油圧室4Aの体積で表すものであり、fv (γtgt )は、目標変速比における油圧室4Aの体積、fv (γ)は、現在の変速比(実際の変速比)における油圧室4Aの体積である。また、式(2)および後述する式において、ΔPsol は、流路を開放する電磁開閉弁の入力ポート26と出力ポート27との差圧である。まず、無段変速機1でダウンシフトを行う場合は、油圧室4Aの圧油が排出側電磁開閉弁DSP2を経由してオイルパンなどに排出されて、体積Vtgt が減少する。また、油圧室4Aの圧油を排出側電磁開閉弁DSP2を経由して排出するとき、排出側電磁開閉弁DSP2の入力ポート26と出力ポート27との差圧ΔPsol は油圧室4Aの油圧Pinと等しくなる。
 これに対して、無段変速機1でアップシフトを行う場合は、圧油が供給側電磁開閉弁DSP1を経由して油圧室4Aに供給されて、体積Vtgt が増加する。また、圧油が供給側電磁開閉弁DSP1を経由して油圧室4Aに供給されるとき、供給側電磁開閉弁DSP1の入力ポート26と出力ポート27との差圧ΔPsol は、アキュムレータ14の油圧PACC と油圧室4Aの油圧Pinとの差と等しくなる。なお、前記油圧PACC は図7に示す油圧センサ43により検知し、油圧Pinは油圧センサ44により検知することができ、その検知信号が電子制御装置42に入力される。ここで、油圧室4Aの体積Vと、無段変速機1の変速比γとの関係の一例を、図9のマップに示す。この図9のように、変速比が相対的に大きくなるほど、油圧室4Aの体積が相対的に小さくなる。
 また、式(2)のtは制御ルーチンの実行周期であり、Kは定数であり、φは流路の開口面積である。流路の開口面積とは、各電磁開閉弁のうち電磁コイル25に供給される電流値が制御されて、流路が開放されるバルブの開口面積である。さらに、定数Kは、流路の開口面積とは別に圧油の流量に影響を及ぼす条件、例えば油温から実験的に求めた値である。すなわち、温度が低下することに伴い圧油の粘度が増大して圧油の流量が低下、または流速が低下するため、その圧油の粘度を考慮している。
 上記のステップS2に続いて、供給側電磁開閉弁DSP1または排出側電磁開閉弁DSP2のうち、流路を開放する電磁開閉弁の電磁コイル25に供給する電流の目標電流(目標ソレノイド電流)Iq が計算される(ステップS3)。このステップS3においては、式(3)および式(4)を用いる。
 φtgt =K×Qtgt/(ΔPsol )1/2        …(3)
 Iq =FI (φtgt )               …(4)
 ここで、φtgt は流路の開口面積φの目標値であり、目標電流Iq は、油圧室4Aに供給される圧油の流量、または油圧室4Aから排出される圧油の流量を制御するために電磁コイル25に供給する制御電流である。この式(4)は、目標電流Iq が、目標値φtgt の関数FI で表されることを示す。ここで求める目標電流Iq は、流路が開放された状態でその流路を通過する圧油の流量を制御する電流であり、仮の目標値である。なお、ステップS3の処理を行うために図10のマップを予め電子制御装置42に記憶しておくこともできる。この図10のマップには横軸に電流Iq が示され、縦軸に流路の開口面積φが示されている。図10のマップのように、流路の開口面積φが相対的に広くなることにともない、必要とする電流Iq が増加する。
 さらに、ステップS4では、流路が閉じられている電磁開閉弁の電磁コイル25に電流を供給して、その流路を開放するために必要な電流Iffを、式(5)により求める。
 Iff=Fff(ΔPsol )              …(5)
 前記の電磁開閉弁は電磁コイル25に電流を供給すると、磁気吸引力が発生してアーマチュア23および弁体21がスプリング24の弾性力に抗して動作する。また、弁体21は入力ポート26と出力ポート27との間に設けられているため、流路が閉じられているときに、弁体21を動作させて流路を開放させるために必要な電流Iffは、前記差圧ΔPsol により変化し、両者の間には関数関係がある。具体的には、磁気吸引力によりアーマチュア23および弁体21に動作力が加えられても、その動作力がスプリング24の弾性力などの抵抗力を超えるまでの間は、電磁コイル25に電流が供給されても流路は開放されない。
 そこで、ステップS4では、流路が閉じられている電磁開閉弁の電磁コイル25に電流を供給して、その流路を開放(開弁)するために必要な電流Iffを、差圧ΔPsol の関数Fffから求めている。この関数Fffは実験またはシミュレーションによって求められ、その関数Fffは電子制御装置42に記憶されている。なお、ステップS4の処理を行うために、電子制御装置42に予め図11のマップを記憶しておき、そのマップから電流Iffを求めることもできる。図11では横軸に差圧ΔPsol が示され、縦軸に電流Iffが示されている。この図11のマップから分かるように、差圧ΔPsol が相対的に大きくなることにともない、電流Iffが増加する傾向となる。なお、ステップS3およびステップS4の処理は同時(並行して)に行ってもよいし、いずれかのステップの処理を先に行い、他方のステップの処理を後で行ってもよい。
 上記のステップS3,S4の処理についで、電磁開閉弁の電磁コイル25に供給する目標電流Ipri を決定し、かつ、その目標電流Ipri に対応する制御信号を電子制御装置42から出力し(ステップS5)、この制御ルーチンを終了する。このステップS5では、式(6)を用いる。
 Ipri =Iq +Iff                 …(6)
 この式(6)は、仮の目標電流Iq を電流Iffにより補正して、最終的な目標電流Ipri を求めることを示している。そして、前記無段変速機1でダウンシフトを行う場合は、排出側電磁開閉弁DSP2の電磁コイル25に供給する目標電流Ipri はIpridownである。一方、前記無段変速機1でアップシフトを行う場合は、供給側電磁開閉弁DSP1の電磁コイル25に供給する目標電流Ipri はIpriup である。
 上記した図8のフローチャートによる制御を、電子制御装置42で行われる制御系のブロックで表すと、図12のようになる。まず、油圧PACC および油圧Pinを用いて電流(開弁電流)Iffが求められ、目標変速比γおよび油圧Pinを用いて、仮の目標電流(流量制御電流)Iq が求められる。そして、電流Iffおよび仮の目標電流Iq に基づいて、最終的な目標電流Ipri (電流I)が求められる。さらに、目標電流Ipri (電流I)に対応する制御信号が電磁開閉弁のコントローラへ出力されて、駆動側プーリ2の可動シーブが動作し、無段変速機1の変速比γが変更される。さらに、実際の変速比と目標変速比との偏差を相対的に小さくするように、フィードバック制御が行われる。
 ここで、図8に示された機能的手段と、この発明の構成との対応関係を説明すると、ステップS2ないしステップS5が、この発明の目標電流算出手段に相当する。また、アクチュエータ4が、この発明の駆動用アクチュエータに相当し、アクチュエータ5が、この発明の従動用アクチュエータに相当する。このように図8の制御を実行すると、無段変速機1の変速比を高精度に制御することができる。
 (第2制御例)
 さらに、前記の電磁開閉弁DSP1,DSP2としてリニアソレノイドバルブを用いている場合に、実行可能な他の制御例を図13に基づいて説明する。図13のフローチャートにおいて、図8のフローチャートと同じ処理については、図8と同じステップ番号を付してある。この図13においては、ステップS1で肯定的に判断された場合に、油圧室4Aの現在の油圧Pinが推定され(ステップS6)、ステップS2に進む。ここで、油圧Pinは例えば式(7)を用いて推定することができる。
 Pin=Pout ×τ×(Ssec /Spri )       …(7)
 ここで、Pout は、油圧室5Aの油圧であり、油圧Pout は図7に示す油圧センサ47の信号から求められる。また、τは、駆動側プーリ2の可動シーブに加えられる推力と、従動側プーリ3の可動シーブに加えられる推力との比、つまり推力比である。また、推力比τは推定値であり、例えば次のようにして求めることが可能である。前記のように、無段変速機1の変速比は、車速およびアクセル開度などに基づいて変速マップから求められており、実変速比を目標変速比に近づけるようにアクチュエータ4の油量を制御するとともに、その実変速比における伝達トルクを満足するように、従動側プーリ3の可動シーブの動作が制御されるのであるから、実変速比および無段変速機1に入力されるトルクに基づいて、推力比τを求めることができる。
 また、無段変速機1の実変速比および無段変速機1に入力されるトルクから推力比τを求めるマップを、実験またはシミュレーションによって作成し、そのマップを電子制御装置42に記憶しておいてもよい。さらに、Ssec は、従動側プーリ3の可動シーブに推力を与えるピストンの受圧面積であり、Spri は、駆動側プーリ2の可動シーブに推力を与えるピストンの受圧面積であり、いずれもピストンの半径および形状などから一義的に決定される値である。
 このように、図13の制御例は、油圧センサ44の信号を用いることなく油圧Pinを推定し、かつ、各電磁開閉弁の電磁コイル25に供給する最終的な目標電流Ipri を決定することができる。したがって、図7の油圧センサ44を設ける必要がなく、油圧制御装置の部品点数の増加を抑制でき、製造コストの低減を図ることができる。なお、図13のフローチャートでは、ステップS6,S2,S3,S4,S5が、この発明の目標電流算出手段に相当する。さらに、油圧センサ47が、この発明の油圧センサに相当する。なお、図13の制御例を図12のブロック図を用いて示すと、開弁電流Iffおよび仮の目標電流(流量制御電流)Iq を求める際に、油圧Pinではなく油圧Pout を用いる点が、図8の制御とは異なる。その他は、図8の制御の場合と同じである。
 (第3制御例)
 つぎに、前記の電磁開閉弁DSS1,DSS2としてリニアソレノイドバルブを用いている場合に実行可能な制御例を、図14に基づいて説明する。図14のフローチャートは、油圧室5Aの油圧Pout を制御するものである。まず、アクチュエータ5の挟圧力を変更する指示があるか否かが判断される(ステップS7)。このステップS7で否定的に判断された場合は制御ルーチンを終了する。これに対して、ステップS7の判断時点で、アクチュエータ5の挟圧力を増加または減少させる指示が発生していると、そのステップS7で肯定的に判断されて、目標挟圧力Ptgt を算出する(ステップS8)。目標挟圧力Ptgt は、無段変速機1の目標変速比および無段変速機1に入力されるトルクに基づいて算出される。このステップS8の処理を行うための算出式またはマップが、予め電子制御装置42に記憶されている。
 このステップS8についで、仮の目標電流(目標ソレノイド電流)Iq が計算される(ステップS9)。このステップS9の処理では、式(8)および式(9)を用いる。
 ΔP=(Pout -Ptgt )           …(8)
 Iq =K×ΔP               …(9)
 まず、式(8)により、実際の油圧Pout と目標挟圧力Ptgt との差から、挟圧力の変更量(差圧)ΔPを求める。前記ステップS7で判断された挟圧力の変更指示が低下であれば、変更量ΔPは零未満となる。つまり、油圧室5Aの圧油が排出側電磁開閉弁DSS2を経由してオイルパンなどに排出される。これに対して、ステップS7で判断された挟圧力の変更指示が増加であれば変更量ΔPは零を超える。つまり、圧油が供給側電磁開閉弁DSS1を経由させて油圧室5Aに供給される。さらに、式(9)について説明すると、ステップS7の時点でアクチュエータ5の挟圧力を増加する指示が発生しているのであれば、供給側電磁開閉弁DSS1を開放するための目標電流Iq が、式(9)で求められる。これに対して、ステップS7の時点でアクチュエータ5の挟圧力を低下する指示が発生しているのであれば、排出側電磁開閉弁DSS2を開放するための目標電流Iq が、式(9)で求められる。なお、式(9)のKはフィードバックゲインであり、そのフィードバックゲインKは予め電子制御装置42に記憶されている。
 さらに、ステップS4では、供給側電磁開閉弁DSS1または排出側電磁開閉弁DSS2のうち、流路を開放する方の電磁開閉弁の電磁コイル25に供給する電流Iffを求める。このステップS4の処理には、図8のステップS4と同様に前記式(5)および図11を用いる。図14の制御例においては、アクチュエータ5の挟圧力を低下するとき、排出側電磁開閉弁DSS2の入力ポート26と出力ポート26との差圧ΔPsol は、油圧Pout と等しくなる。これに対して、アクチュエータ5の挟圧力を増加するとき、供給側電磁開閉弁DSS1の入力ポート26と出力ポート27との差圧ΔPsol は、油圧PACC と油圧Pout との差と等しくなる。なお、ステップS9およびステップS4の処理は同時(並行して)に行ってもよいし、一方のステップの処理を先に行い、他方のステップの処理を後で行ってもよい。
 そして、供給側電磁開閉弁DSS1または排出側電磁開閉弁DSS2のうち、流路を開放する方の電磁開閉弁の電磁コイル25に供給する最終的な目標電流Ipri を決定し、かつ、目標電流Ipri に対応する制御信号を電子制御装置42から出力し(ステップS5)、この制御ルーチンを終了する。このステップS5の処理には前記式(6)を用いる。ここで、アクチュエータ5の挟圧力を低下する場合、排出側電磁開閉弁DSS2の電磁コイル25に供給する目標電流Ipri がIsecdown で表される。一方、アクチュエータ5の挟圧力を増加する場合、供給側電磁開閉弁DSS1の電磁コイル25に供給する目標電流Ipri がIsetup で表される。
 このように、図14の制御例では、供給側電磁開閉弁DSS1または排出側電磁開閉弁DSS2の電磁コイル25に供給する最終的な目標電流Ipri を、油圧PACC と油圧Pout との差、および実際の油圧Pout 、および目標挟圧力Ptgt に基づいて求める。この図14の制御を実行する場合の例を図12のブロック図で説明すると、開弁電流Iffおよび仮の目標電流(流量制御電流)Iq を求める際に、油圧Pinではなく油圧Pout を用い、コントローラの制御により変化する物理量が変速比γではなく油圧Pout である点が、図8の制御とは異なる。その他は、図8の制御の場合と同じである。なお、ステップS8,S9およびステップS4,S5が、この発明の目標電流算出手段に相当する。
 (第4制御例)
 さらに、前記の電磁開閉弁DSS1,DSS2としてリニアソレノイドバルブを用いている場合に実行可能な制御例を、図15に基づいて説明する。図15のフローチャートは油圧室5Aの油圧Pout を制御するものである。この図15において、ステップS7の判断、およびステップS4の処理は、図14の場合と同じである。この図15においては、ステップS8についで、変速流量による流量計算が行われる(ステップS10)。このステップS10では、図8のステップS2およびステップS3と同じ処理が行われる。
 また、ステップS11では、従動側プーリ3の挟圧力を制御するために、供給側電磁開閉弁DSS1または排出側電磁開閉弁DSS2の電磁コイル25に供給する目標電流(目標ソレノイド電流)Ik が計算される(ステップS11)。このステップS11では前記式(8)の計算に加えて、式(10)の計算が行われる。式(10)において、挟圧力の変更量(差圧)ΔPは式(8)で求めたものであり、Kはフィードバック制御用のゲインである。
 Ik =K×ΔP                  …(10)
 この式(10)で求める目標電流は仮の値である。また、この実施例では、従動側プーリ3の挟圧力を制御するために、油圧室5Aの油量が制御される。ここで、無段変速機1の変速比γと油圧室5Aの体積との関係を図16のマップに示す。図16のマップのように、変速比γが相対的に大きくなることにともない、油圧室5Aの体積Vが相対的に大きくなる。
 さらに、ステップS4においては、供給側電磁開閉弁DSS1または排出側電磁開閉弁DSS2の流路を開放するために必要な電流(開弁電流)Iffを計算する。このステップS4の処理は、図8のステップS4処理と同じである。上記のステップS10,S11,S4の処理は実行順序は問われない。例えば、ステップS10,S11,S4の処理を全て同時(並行して)に行ってもよいし、各ステップを順番に行ってもよい。そして、ステップS12において、供給側電磁開閉弁DSS1または排出側電磁開閉弁DSS2のうち、流路を開放する方の電磁開閉弁の電磁コイル25に供給する最終的な目標電流Ipri を決定し、かつ、目標電流Ipri に対応する制御信号を電子制御装置42から出力し、この制御ルーチンを終了する。このステップS12において、最終的な目標電流Ipri は、式(11)により求める。
 Ipri =Ik +Iq +Iff            …(11)
 ここで、仮の目標電流Ik はステップS11で求めたものであり、目標電流Iq はステップS10で求めたものであり、開弁電流IffはステップS4で求めたものである。前記アクチュエータ5の挟圧力を低下する場合、排出側電磁開閉弁DSS2の電磁コイル25に供給する目標電流Ipri がIsecdown で表される。一方、アクチュエータ5の挟圧力を増加する場合は、供給側電磁開閉弁DSS1の電磁コイル25に供給する目標電流Ipri がIsecup で表される。図15のステップS8,S10,S11,S4,S12の処理が、この発明の目標電流算出手段に相当する。
 この図15の制御例をブロック図で表した一例が図17である。前記のステップS11において、目標ベルト挟圧力および実際の油圧Pout に基づいて、仮の目標電流(流量制御電流)Ik が求められる。一方、ステップS4においては、油圧Pout および油圧PACC に基づいて開弁電流Iffが求められる。さらに、目標変速比に基づいて目標電流(変速流量補正電流)Iq が求められる。そして、仮の目標電流(流量制御電流)Ik 、開弁電流Iff、目標電流(変速流量補正電流)Iq に基づいて最終的な目標電流Ipri (電流I)が求められ、この目標電流Ipri (電流I)に対応する制御信号がコントローラに送られて、油圧Pout が制御される。
 上記のように、図15の制御例によれば、差圧ΔPsol および実際の油圧Pout および目標挟圧力Ptgt および目標流量Qtgtをパラメータとして用いて、供給側電磁開閉弁DSS1または排出側電磁開閉弁DSS2の電磁コイル25に供給する目標電流Ipri を求めている。すなわち、無段変速機構1の伝達トルクを制御する場合、フィードフォワード制御およびフィードバック制御を行うが図15の制御例では、急激に変化する変速流量項(アクチュエータ4の圧油量の項)を予めフィードフォワード制御の項として入れるため、無段変速機1における伝達トルクの制御速度が向上する。また、フィードフォワード制御の項として差圧ΔPsol を入れているため、フィードバック制御に影響を及ぼす外乱が減り、油圧制御精度が向上する。

Claims (10)

  1.  油圧ポンプで発生させられた油圧を元圧として相対的に低い圧力に調圧された油圧が供給される低油圧供給部と、その低油圧供給部に供給される油圧より相対的に高い圧力に調圧された油圧が供給される高油圧供給部とを備えた油圧制御装置において、
     前記高油圧供給部に供給すべき油圧より高い油圧を保持する高圧油圧源と、
     その高圧油圧源から前記高油圧供給部に油圧を供給する供給油路に介装され、かつ弁座に押し付けられる弁体を駆動することにより前記供給油路を開閉する供給側制御弁と、
     弁座に押し付けられる弁体を駆動することにより前記高油圧供給部をドレン箇所に連通させる排出側制御弁と
    を備えていることを特徴とする油圧制御装置。
  2.  前記油圧ポンプは、車両に搭載されているエンジンで駆動されるエンジン駆動油圧ポンプを含み、
     前記高圧油圧源は、前記エンジン駆動油圧ポンプに向けた圧油の流動を阻止する逆止弁を介して前記エンジン駆動油圧ポンプに連通された蓄圧器を含む
    ことを特徴とする請求項1に記載の油圧制御装置。
  3.  前記油圧ポンプは、車両に搭載されているエンジンで駆動されるエンジン駆動油圧ポンプを含み、
     前記高圧油圧源は、電動機で駆動される電動油圧ポンプおよび該電動油圧ポンプで発生させられた油圧を蓄える蓄圧器を含む
    ことを特徴とする請求項1に記載の油圧制御装置。
  4.  前記各制御弁は、前記弁体が前記弁座に押し付けられている閉弁状態では圧油の漏れが生じない開閉弁を含むことを特徴とする請求項1ないし3のいずれかに記載の油圧制御装置。
  5.  前記高油圧供給部は、ベルト式無段変速機におけるベルトが巻き掛けられるプーリの溝幅を狭めるように油圧を作用させるアクチュエータを含むことを特徴とする請求項1ないし4のいずれかに記載の油圧制御装置。
  6.  前記電動油圧ポンプは、前記車両の急加速要求があった場合にその急加速要求に基づいて前記電動機によって駆動されて油圧を発生するように構成されていることを特徴とする請求項5に記載の油圧制御装置。
  7.  前記プーリは、従動側プーリおよび溝幅が調整されて前記ベルト式無段変速機の変速比を制御する駆動側プーリを含み、前記アクチュエータは、前記駆動側プーリの溝幅を制御する駆動用アクチュエータを含み、前記供給側制御弁は供給される電流により前記弁体の動作が制御されて流路面積が制御されるバルブを含み、前記排出側制御弁は供給される電流により前記弁体の動作が制御されて流路面積が制御されるバルブを含み、
     前記ベルト式無段変速機の変速比を目標変速比に近づけるにあたり、前記高圧油圧源の油圧と前記駆動用アクチュエータの実際の油圧との差、および前記ベルト式無段変速機の実際の変速比、および前記ベルト式無段変速機の目標変速比に基づいて、前記供給側制御弁および前記排出側制御弁に供給する目標電流を求める目標電流算出手段を備えている
    ことを特徴とする請求項5に記載の油圧制御装置。
  8.  前記アクチュエータは、前記従動側プーリの溝幅を制御する従動用アクチュエータを更に含み、
     前記目標電流算出手段は、前記従動用アクチュエータの油圧を油圧センサの信号から求め、前記駆動側プーリの可動シーブに加えられる推力と前記従動側プーリの可動シーブに加えられる推力との比である推力比を推定し、前記従動用アクチュエータの油圧と前記推力比とに基づいて、前記駆動用アクチュエータの油圧を推定する手段を含む
    ことを特徴とする請求項7に記載の油圧制御装置。
  9.  前記プーリは、駆動側プーリおよび溝幅が調整されて前記ベルト式無段変速機の伝達トルクを制御する従動側プーリを含み、前記アクチュエータは、前記従動側プーリの溝幅を制御する従動用アクチュエータを含み、
     前記供給側制御弁は供給される電流により前記弁体の動作が制御されて流路面積が制御されるバルブを含み、
     前記排出側制御弁は供給される電流により前記弁体の動作が制御されて流路面積が制御されるバルブを含み、
     前記従動側プーリから前記ベルトに加えられる挟圧力を目標挟圧力に近づけるにあたり、前記高圧油圧源の油圧と前記従動用アクチュエータの実際の油圧との差、および前記従動用アクチュエータの実際の油圧、および前記目標挟圧力に基づいて、前記供給側制御弁および前記排出側制御弁に供給する目標電流を求める目標電流算出手段を備えている
    ことを特徴とする請求項5に記載の油圧制御装置。
  10.  前記アクチュエータは、前記駆動側プーリの溝幅を制御する駆動用アクチュエータを更に含み、
     前記目標電流算出手段は、前記供給側制御弁および前記排出側制御弁に供給する目標電流を求めるにあたり、前記ベルト式無段変速機の目標変速比に基づいて求められる前記駆動用アクチュエータの油圧室における目標圧油量を更に用いて求める手段を含む
    ことを特徴とする請求項9に記載の油圧制御装置。
PCT/JP2009/062957 2008-08-20 2009-07-17 油圧制御装置 WO2010021218A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-211416 2008-08-20
JP2008211416 2008-08-20

Publications (1)

Publication Number Publication Date
WO2010021218A1 true WO2010021218A1 (ja) 2010-02-25

Family

ID=41707096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062957 WO2010021218A1 (ja) 2008-08-20 2009-07-17 油圧制御装置

Country Status (1)

Country Link
WO (1) WO2010021218A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046335A1 (ja) 2010-10-08 2012-04-12 トヨタ自動車株式会社 巻掛け伝動装置の油圧制御装置
JP2012102765A (ja) * 2010-11-08 2012-05-31 Toyota Motor Corp 油圧制御装置
WO2012111074A1 (ja) * 2011-02-14 2012-08-23 トヨタ自動車株式会社 油圧回路およびその制御装置
DE112011100047T5 (de) 2011-04-20 2013-03-21 Toyota Jidosha Kabushiki Kaisha Dichtstruktur
WO2013046393A1 (ja) 2011-09-29 2013-04-04 トヨタ自動車株式会社 変速機の油圧制御装置
DE112011103673T5 (de) 2010-11-04 2013-09-26 Toyota Jidosha Kabushiki Kaisha Hydraulik-Steuerungssystem mit Speicher
WO2014097468A1 (ja) * 2012-12-21 2014-06-26 トヨタ自動車株式会社 油圧制御装置
US8986164B2 (en) 2012-01-11 2015-03-24 Toyota Jidosha Kabushiki Kaisha Hydraulic pressure control device and vehicle control device
JP5692358B2 (ja) * 2011-03-23 2015-04-01 トヨタ自動車株式会社 ベルト式無段変速機
JPWO2013076825A1 (ja) * 2011-11-22 2015-04-27 トヨタ自動車株式会社 油圧制御装置
CN105247252A (zh) * 2013-04-09 2016-01-13 丰田自动车株式会社 带式无级变速器的液压控制装置
JP2017053397A (ja) * 2015-09-08 2017-03-16 日本電産トーソク株式会社 油圧制御システム
WO2021213580A1 (de) * 2020-04-21 2021-10-28 Schaeffler Technologies AG & Co. KG Verfahren und fluidsystem zur aktuierung einer übersetzungsgetriebekomponente und einer trennvorrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212562U (ja) * 1988-07-08 1990-01-25
JPH03134368A (ja) * 1989-10-18 1991-06-07 Nissan Motor Co Ltd 変速機の油圧制御装置
JP2007071272A (ja) * 2005-09-06 2007-03-22 Fuji Heavy Ind Ltd 無段変速機の変速制御装置
JP2007162919A (ja) * 2005-12-16 2007-06-28 Toyota Motor Corp ベルト式無段変速機
JP2007270937A (ja) * 2006-03-31 2007-10-18 Fujitsu Ten Ltd 無段変速機の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212562U (ja) * 1988-07-08 1990-01-25
JPH03134368A (ja) * 1989-10-18 1991-06-07 Nissan Motor Co Ltd 変速機の油圧制御装置
JP2007071272A (ja) * 2005-09-06 2007-03-22 Fuji Heavy Ind Ltd 無段変速機の変速制御装置
JP2007162919A (ja) * 2005-12-16 2007-06-28 Toyota Motor Corp ベルト式無段変速機
JP2007270937A (ja) * 2006-03-31 2007-10-18 Fujitsu Ten Ltd 無段変速機の制御装置

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103154579A (zh) * 2010-10-08 2013-06-12 丰田自动车株式会社 卷挂传动装置的液压控制装置
CN103154579B (zh) * 2010-10-08 2014-11-26 丰田自动车株式会社 卷挂传动装置的液压控制装置
WO2012046335A1 (ja) 2010-10-08 2012-04-12 トヨタ自動車株式会社 巻掛け伝動装置の油圧制御装置
JP5376067B2 (ja) * 2010-10-08 2013-12-25 トヨタ自動車株式会社 巻掛け伝動装置の油圧制御装置
DE112011103673T5 (de) 2010-11-04 2013-09-26 Toyota Jidosha Kabushiki Kaisha Hydraulik-Steuerungssystem mit Speicher
JP2012102765A (ja) * 2010-11-08 2012-05-31 Toyota Motor Corp 油圧制御装置
US9422951B2 (en) 2011-02-14 2016-08-23 Toyota Jidosha Kabushiki Kaisha Hydraulic circuit and control system therefor
WO2012111074A1 (ja) * 2011-02-14 2012-08-23 トヨタ自動車株式会社 油圧回路およびその制御装置
JP5644871B2 (ja) * 2011-02-14 2014-12-24 トヨタ自動車株式会社 油圧回路およびその制御装置
JP5692358B2 (ja) * 2011-03-23 2015-04-01 トヨタ自動車株式会社 ベルト式無段変速機
US9033831B2 (en) 2011-03-23 2015-05-19 Toyota Jidosha Kabushiki Kaisha Belt-driven continuously variable transmission
DE112011100047T5 (de) 2011-04-20 2013-03-21 Toyota Jidosha Kabushiki Kaisha Dichtstruktur
DE112011100047B4 (de) * 2011-04-20 2014-01-23 Toyota Jidosha Kabushiki Kaisha Dichtstruktur
US8876116B2 (en) 2011-04-20 2014-11-04 Toyota Jidosha Kabushiki Kaisha Sealing structure
EP2762373A4 (en) * 2011-09-29 2016-04-13 Toyota Motor Co Ltd HYDRAULIC TRANSMISSION CONTROL APPARATUS
WO2013046393A1 (ja) 2011-09-29 2013-04-04 トヨタ自動車株式会社 変速機の油圧制御装置
US9365205B2 (en) 2011-09-29 2016-06-14 Toyota Jidosha Kabushiki Kaisha Hydraulic pressure control device for transmission
CN103826949A (zh) * 2011-09-29 2014-05-28 丰田自动车株式会社 变速器的液压控制装置
US9266519B2 (en) 2011-11-22 2016-02-23 Toyota Jidosha Kabushiki Kaisha Hydraulic control device
EP2784355A4 (en) * 2011-11-22 2016-04-27 Toyota Motor Co Ltd OIL PRESSURE CONTROL DEVICE
JPWO2013076825A1 (ja) * 2011-11-22 2015-04-27 トヨタ自動車株式会社 油圧制御装置
US8986164B2 (en) 2012-01-11 2015-03-24 Toyota Jidosha Kabushiki Kaisha Hydraulic pressure control device and vehicle control device
CN104870865A (zh) * 2012-12-21 2015-08-26 丰田自动车株式会社 液压控制装置
WO2014097468A1 (ja) * 2012-12-21 2014-06-26 トヨタ自動車株式会社 油圧制御装置
JPWO2014097468A1 (ja) * 2012-12-21 2017-01-12 トヨタ自動車株式会社 油圧制御装置
CN105247252A (zh) * 2013-04-09 2016-01-13 丰田自动车株式会社 带式无级变速器的液压控制装置
JP2017053397A (ja) * 2015-09-08 2017-03-16 日本電産トーソク株式会社 油圧制御システム
WO2021213580A1 (de) * 2020-04-21 2021-10-28 Schaeffler Technologies AG & Co. KG Verfahren und fluidsystem zur aktuierung einer übersetzungsgetriebekomponente und einer trennvorrichtung

Similar Documents

Publication Publication Date Title
WO2010021218A1 (ja) 油圧制御装置
JP4692622B2 (ja) 油圧制御装置
CN109386610B (zh) 液压控制装置
JP5440714B2 (ja) 蓄圧器を備えた油圧制御装置
JP5304226B2 (ja) 油圧制御装置
JP4192846B2 (ja) 油圧制御装置
WO2014147854A1 (ja) 車両の油圧制御装置
WO2013186899A1 (ja) 油圧制御装置
JP5742708B2 (ja) 油圧制御装置及び車両制御装置
JP2011132993A (ja) 油圧制御装置
JP2011163393A (ja) 油圧制御装置およびベルト式無段変速機の制御装置
JP5846306B2 (ja) 油圧制御装置
CN109386608B (zh) 液压控制装置
JP5218347B2 (ja) ベルト式無段変速機の油圧制御装置
JP5445309B2 (ja) 車両用油圧制御装置
WO2014097468A1 (ja) 油圧制御装置
JP2012031955A (ja) 自動変速機の油圧制御装置
JP5370119B2 (ja) 無段変速機の油圧制御装置
JP2011052797A (ja) ベルト式無段変速機の油圧制御装置
JP2007085485A (ja) 油圧制御装置
JP7169960B2 (ja) 油圧制御装置
JP5282770B2 (ja) 油圧制御装置
JP2012132493A (ja) 自動変速機の油圧制御装置
JP2011163367A (ja) 油圧制御装置
JP4016871B2 (ja) 変速機の油圧制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808154

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09808154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP