WO2010020362A1 - Verwendung eines targets für das funkenverdampfen und verfahren zum herstellen eines für diese verwendung geeigneten targets - Google Patents

Verwendung eines targets für das funkenverdampfen und verfahren zum herstellen eines für diese verwendung geeigneten targets Download PDF

Info

Publication number
WO2010020362A1
WO2010020362A1 PCT/EP2009/005803 EP2009005803W WO2010020362A1 WO 2010020362 A1 WO2010020362 A1 WO 2010020362A1 EP 2009005803 W EP2009005803 W EP 2009005803W WO 2010020362 A1 WO2010020362 A1 WO 2010020362A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
aluminum
metal
matrix
oxide
Prior art date
Application number
PCT/EP2009/005803
Other languages
English (en)
French (fr)
Inventor
Denis Kurapov
Markus Lechthaler
Original Assignee
Oerlikon Trading Ag, Trübbach
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Trading Ag, Trübbach filed Critical Oerlikon Trading Ag, Trübbach
Priority to US13/059,257 priority Critical patent/US8828499B2/en
Priority to CN2009801320288A priority patent/CN102124138A/zh
Priority to RU2011110043/02A priority patent/RU2501885C2/ru
Priority to KR1020117002931A priority patent/KR20110047191A/ko
Priority to EP09777791.6A priority patent/EP2326742B8/de
Priority to JP2011522423A priority patent/JP5562336B2/ja
Publication of WO2010020362A1 publication Critical patent/WO2010020362A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated

Definitions

  • the invention relates to the use of a target in a coating installation for coating metal oxide and / or metal nitride layers by spark evaporation and to a method for producing metal oxide layers by spark evaporation.
  • the invention relates to the operation of targets comprising at least one metallic component and one ceramic component.
  • targets that have aluminum as a low-melting component.
  • Cathodic arc evaporation is a process that has been established for many years and is used to coat tools and components. It is used to deposit wide-ranging metallic layers as well as metal nitrides, carbides and carbonitrides.
  • the targets are cathodes of a spark discharge operated at low voltages and high currents and with which the target (cathode) material is vaporized. As the simplest and cheapest power supply to operate the spark discharge DC power supplies are used.
  • this causes the electrically conductive area in which the spark runs to constrict and, finally, the spark discharge to stop.
  • No. 5,518,597 describes the production of oxidic layers, wherein a layer deposition is carried out at elevated temperatures and the method is based on the fact that the anode is also heated (800 ° C.-1200 ° C.) and the reactive gas is not direct is admitted at the target.
  • the high anode temperature keeps the anode conductive and enables stable operation of the sparks.
  • operating the cathode at elevated temperature should at least reduce the problem of target poisoning. It is therefore desirable to be able to operate a target in a coating plant at a high temperature, preferably at temperatures which are above the melting point of the metal used in the target.
  • a target which has a melting point increase of the target material, which leads to an increased enthalpy of enthalpy for the target material.
  • the target used contains both metallic Ti and electrically conductive TiN, which leads to an increase in the target melting point.
  • TiN which is removed during evaporation, can be incorporated directly into the layer. Because TiN is a conductive material, the spark can travel undisturbed on the target surface, and due to the increased enthalpy of vaporization of the target material, the difference in enthalpy of vaporization of the target material and the "poisoned" target surface is minimized.
  • the layer to be built up comprises only insulating layers, it is not possible to work with the melting point increase according to the prior art.
  • a target is used whose matrix consists of a metal whose nitride and / or oxide is not electrically conductive, the target having a higher melting point compared to the prior art.
  • a target is used in which a non-conductive oxide and / or nitride of the metal of the target is incorporated into the matrix of the metal of the target.
  • the target non-conductive material is admixed such that the surface of the target is still macroscopically electrically conductive. This is ensured by the fact that the non-conductive portion is incorporated in a matrix of the conductive base material.
  • the conductive matrix lies on the surface in a contiguous network which, in the use according to the invention, allows the spark to migrate across the target.
  • a target is used in which aluminum oxide particles which are non-conductive in the aluminum matrix of the target are incorporated.
  • the aluminum oxide particles have a diameter which is less than 100 ⁇ m, in particular less than 50 ⁇ m.
  • the non-conductive constituents are in particular introduced into the target as particles so fine that, viewed macroscopically, the target melting point and the necessary evaporation enthalpy are increased.
  • the melting range of the spark is limited with a lower melting temperature (eg aluminum). This reduces the droplet emission.
  • a target is used in which the proportion of aluminum oxide in the aluminum matrix is less than 70% by volume.
  • the target used is a powder metallurgy target
  • a target consisting of alumina powder incorporated in aluminum may be used,
  • a target which has been produced by means of a holographic structuring method, wherein an aluminum oxide layer is structured in this way, and the trenches formed between the aluminum oxide have been filled up with aluminum.
  • the target used has an aluminum matrix into which non-conductive aluminum nitride particles are incorporated.
  • the target used are preferably aluminum nitride grains substantially a first grain diameter and aluminum grains having a substantially second grain diameter, wherein the first grain diameter is greater than the second grain diameter, in particular three times larger than the second grain diameter.
  • the first grain diameter is about 120 ⁇ m and the second grain diameter is about 40 ⁇ m.
  • a target which can be used for producing metal oxide layers and / or metal nitride layers by spark evaporation, wherein the target has a matrix consisting of a metal in which electrically non-conductive oxides and / or nitrides of the metal are embedded.
  • the proportion of electrically non-conductive oxides and / or nitrides in the matrix is less than 70 vol.%.
  • the matrix consists of aluminum, in which aluminum oxide or aluminum nitride is embedded.
  • FIG. 1 schematically shows the surface of a target to be used according to the invention with approximately 120 ⁇ m sized, nitrided aluminum grains embedded in an aluminum surrounding of aluminum grains smaller by approximately 3 times, as the spark "sees" during spark evaporation;
  • FIG. 2 shows a detail of a target according to the invention produced by holographic technique with a regular arrangement of aluminum oxide islands (hatched), embedded in an aluminum cross lattice (shaded in gray)
  • Aluminum is a low-melting material. If aluminum oxide is to be produced by means of spark evaporation, target poisoning is a serious problem for an aluminum target in the case of the typically used evaporation conditions.
  • the method of melting point increase according to the prior art is - as stated above - not applicable, since alumina forms a very good insulator.
  • the aluminum oxide particles of the target have a size of approximately 50 .mu.m, but preferably not more than 50 .mu.m diameter, or should not substantially exceed this diameter in order to be adapted to the typical size of a spark diameter. Due to the higher melting point, the aluminum oxide does not dissolve and the aluminum particles are embedded in the contiguous aluminum matrix. For this reason, the melting point of the target, especially in the coating application, is the higher, the greater the proportion of aluminum oxide compared to aluminum. However, it has turned out that if the aluminum con- The conductivity of the target surface is too low to be able to operate a stable spark vaporization. In the embodiment, therefore, a target having an amount of alumina which is less than 70% by volume is used.
  • the preparation can be carried out by means of a known powder metallurgy process. In this process, aluminum is ground into fine powder and aluminum oxide is ground into fine powder.
  • a holographic patterning method is used wherein an aluminum oxide layer 1 is patterned in the form of a regular grid.
  • the resulting trenches 2 are then filled with aluminum.
  • the aluminum oxide is preferably structured in two directions x, y so that regular aluminum oxide islands 3 are formed and the aluminum itself, as a cross lattice, allows electrical conductivity in both directions x, y.
  • Such surface structures can be realized over a large area with a grating period of a few 10 nm to a few 10 ⁇ m.
  • a grating period of 500 nm to 20 microns is used, more preferably, a grating period of 2 microns is used.
  • the method described above in connection with an aluminum matrix and aluminum oxide embedded therein is applicable to any electrical insulator as long as it is embedded in a conductive matrix.
  • the term matrix is to be interpreted in a broad sense, since the matrix should only ensure that electrical charges can be dissipated, so that the spot of the spark can always travel unhindered on a conductive surface.
  • AlN can be embedded in a metallic matrix in the same way as described above.
  • a target may be used in which metallic Ti, metallic Al, the conductive compound TiN and the insulator AlN are integrated as components.
  • a target which comprises finely divided nitride and aluminum-containing particles embedded in an aluminum matrix. These particles provide the melting point increase of the target needed to reduce the uncontrolled local melting of metallic, low melting aluminum that results in the emission of macroparticles. If oxygen is then added as process gas during the spark evaporation process, it has surprisingly been found that substantially nitrogen-free aluminum oxide layers are then formed. Perhaps the AlN dissociates and Al makes a connection with the oxygen offered.
  • the necessary enthalpy of vaporization of the targets, above that of the pure metal, is just below that of the composite material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Verwendung eines Targets für ein Beschichtungsverfahren von Metalloxid- und/oder Metallnitridschichten durch Funkenverdampfung, wobei das Target bei einer Temperatur betreibbar ist, die höher als der Schmelzpunktes des im Target verwendeten Metalls ist, und wobei das Target aus einem Metall besteht, dessen Oxide und/oder Nitride nicht elektrisch leitend sind. Darüber hinaus betrifft die Erfindung die Verwendung eines Targets, zum Herstellen von Metalloxidschichten und/oder Metallnitridschichten durch Funkenverdampfung, wobei das Target eine aus einem Metall bestehende Matrix aufweist, in welche elektrisch nicht leitende Oxide und/oder Nitride des Metalls eingebettet sind.

Description

VERWENDUNG EINES TARGETS FÜR DAS FUNKENVERDAMPFEN
UND VERFAHREN ZUM HERSTELLEN EINES FÜR DIESE VERWENDUNG GEEIGNETEN TARGETS
Die Erfindung betrifft die Verwendung eines Targets in einer Beschichtungsanlage zur Be- Schichtung von Metalloxid- und/oder Metallnitridschichten durch Funkenverdampfung und ein Verfahren zum Herstellen von Metalloxidschichten durch Funkenverdampfung. Insbesondere betrifft die Erfindung den Betrieb von Targets, die mindestens eine metallischen Komponente und eine keramische Komponente umfassen. Von besonderer Bedeutung ist die Erfindung für Targets, die Aluminium als niederschmelzenden Bestandteil aufweisen.
Die kathodische Funkenverdampfung ist ein seit Jahren etabliertes Verfahren, das zur Be- schichtung von Werkzeugen und Bauteilen Anwendung findet und mit dem sowohl metallische Schichten in breiter Vielfalt als auch Metallnitride, -karbide und -karbonitride abgeschieden werden. Bei all diesen Anwendungen sind die Targets Kathode einer Funkenentla- düng, die bei niedrigen Spannungen und hohen Strömen betrieben wird und mit der das Tar- get-(Kathoden)-Material verdampft wird. Als einfachste und billigste Stromversorgung zum Betreiben der Funkenentladung werden Gleichspannungsversorgungen benutzt.
Problematischer ist die Herstellung von Metalloxiden mittels Funkenverdampfung. Es ist schwierig, eine Gleichstromfunkenentladung in Sauerstoff bzw. sauerstoffhaltiger Atmosphäre zu betreiben, um oxidische Schichten etwa auf Werkzeugen oder Bauteilen abzuscheiden. Es besteht dabei die Gefahr, dass der Prozess aufgrund des Belegens des Targets mit einer isolierenden Schicht kaum noch kontrollierbar wird.
Dies führt auf dem Target dazu, dass sich der elektrisch leitende Bereich, in dem der Funken läuft, einschnürt und es schliesslich zu einem Unterbruch der Funkenentladung kommt.
In US 5 518 597 wird die Herstellung oxidischer Schichten beschrieben, wobei eine Schicht- abscheidung bei erhöhten Temperaturen durchgeführt wird und wobei das Verfahren darauf beruht, dass auch die Anode geheizt (800°C - 1200°C) wird, und das Reaktivgas nicht direkt beim Target eingelassen wird. Die hohe Anodentemperatur hält die Anode leitend und ermöglicht einen stabilen Betrieb der Funken. Ähnlich wie bei der Anode, sollte das Betreiben der Kathode bei erhöhter Temperatur zumindest zu einer Verringerung des Problems der Targetvergiftung führen. Es ist daher wünschenswert, in einer Beschichtungsanlage ein Target bei einer hohen Temperatur betreiben zu können, und zwar vorzugsweise bei Temperaturen, die über dem Schmelzpunkt des im Target verwendeten Metalls liegen.
Erzielt werden kann dies durch die Verwendung eines Targets welches eine Schmelzpunkterhöhung des Targetmaterials aufweist, was zu einer erhöhten Verdampfungsenthalpie für das Targetmaterial führt. Im Stand der Technik ist für die Herstellung von Nitridschichten eine Technik bekannt, bei der das verwendete Target sowohl metallisches Ti als auch elektrisch leitendes TiN enthält, welches zu einer Erhöhung des Targetschmelzpunktes führt. TiN, welches beim Verdampfen abgelöst wird, kann direkt in die Schicht eingebaut werden. Da es sich bei TiN um ein leitendes Material handelt, kann der Funken ungestört auf der Targetoberfläche wandern, und aufgrund der erhöhten Verdampfungsenthalpie des Targetmaterials ist die Differenz der Verdampfungsenthalpie des Targetmaterials und der „vergifteten" Targetoberfläche minimiert.
Auch zur Herstellung von TiAlN-Schichten ist es bekannt, ein Legierungstarget aus Titan und Aluminium zu verwenden, dem elektrisch leitendes Material aus TiN beizgemischt ist, um den Schmelzpunkt zu erhöhen. Soll die Schicht auch noch Chrombestandteile umfassen, so kann ein Target verwendet werden dem auch leitendes CrN beigemischt ist. Gemäß dem Stand der Technik muss das dem metallischen Target beigemischte Material zwei Bedingungen erfüllen: Einerseits muss das Material den elektrischen Strom leiten und andererseits muss das Material Bestandteil der aufzubauenden Schicht sein. Die Nitride der Metalle der IVa-, Va-, VIa - Gruppen des Periodensystems sind leitend, diejenigen der anderen Metalle jedoch nicht. Dies schränkt die Wahl der für diese Technik verwendbaren Materialien natürlich erheblich ein. Eine noch weitergehende Schmelzpunkterhöhung, als sie mit den angesprochenen Materialien möglich ist, gestaltet sich daher schwierig. Noch gravierender ist, dass, falls die aufzubauende Schicht lediglich isolierende Schichten umfasst, gemäss dem Stand der Technik nicht mit der Schmelzpunkterhöhung gearbeitet werden kann.
Dies bedeutet aber letztendlich, dass die oben beschriebene Möglichkeit der Schmelzpunkterhöhung für AI-Targets bisher nicht zur Verfügung stand, da sowohl Aluminiumnitrid als auch Aluminiumoxid nicht elektrisch leitend sind. Die Herstellung von nicht leitenden Schichten (z.B. Oxid), die als metallische Komponente lediglich Aluminium umfassen, gestaltet sich daher nach wie vor schwierig.
Es ist daher die Aufgabe der vorliegenden Erfindung, ein Verfahren anzugeben gemäss dem mittels Funkenverdampfen eine nichtleitende Schicht mit metallischer Komponente auf ein Substrat aufgebracht werden kann.
Erfindungsgemäss wird ein Target verwendet, dessen Matrix aus einem Metall besteht, dessen Nitrid und/oder Oxid nicht elektrisch leitend ist, wobei das Target einen im Vergleich zum Stand der Technik erhöhten Schmelzpunkt aufweisen.
Erfindungsgemäss wird ein Target verwendet in welchem ein nicht leitendes Oxid und/oder Nitrid des Metalls des Targets in die Matrix des Metalls des Targets eingebaut wird.
Dabei ist dem Target nichtleitendes Material derart zugemischt, dass die Oberfläche des Targets nach wie vor makroskopisch gesehen elektrisch leitend ist. Dies ist dadurch gewährleistet, dass der nichtleitende Anteil in eine Matrix des leitenden Grundmaterials eingebaut ist. Die leitende Matrix liegt an der Oberfläche in einem zusammenhängenden Netzwerk, welches bei der erfindungsgemässen Verwendung es dem Funken erlaubt, über das Target hinweg zu wandern.
Gemäß einer bevorzugten Ausfiihrungsform wird ein Target verwendet bei dem in die Aluminiummatrix des Targets nicht leitende Aluminiumoxidpartikel eingebaut sind.
Gemäß noch einer bevorzugten Ausführungsform weisen die Aluminiumoxidpartikel einen Durchmesser auf, welcher kleiner als 100 μm, insbesondere kleiner als 50 μm, ist. Die nichtleitenden Bestandteile sind dabei insbesondere als so feine Partikel ins Target eingebracht, dass makroskopisch gesehen der Targetschmelzpunkt und die notwendige Verdampfung- senthalpie erhöht werden. Ausserdem sollte gewährleistet sein, dass der Schmelzbereich des Funkens mit tieferer Schmelztemperatur (z.B. Aluminium) eingegrenzt wird. Dadurch reduziert sich die Dropletemission. Vorzugsweise wird ein Target verwendet bei dem der Anteil des Aluminiumoxids in der Aluminiummatrix kleiner als 70 Vol.% ist.
Gemäß noch einer weiteren bevorzugten Ausfuhrungsform handelt es sich bei dem verwende- ten Target um ein pulvermetallurgisches Target
Alternativ kann ein aus in Aluminium eingebrachtem Aluminiumoxidpulver bestehendes Target verwendet werden,
Gemäß einer weiteren alternativen Ausfuhrungsform wird ein Target verwendet, welches mittels eines holographischen Strukturierungsverfahrens hergestellt wurde, wobei eine Aluminiumoxidschicht derart strukturiert wird, und die zwischen dem Aluminiumoxid entstehenden Gräben mit Aluminium aufgefüllt wurden.
Es ist darüber hinaus bevorzugt, wenn das verwendete Target eine Aluminiummatrix aufweist, in welche nicht leitende Aluminiumnitridpartikel eingebaut werden.
In dem verwendeten Target liegen vorzugsweise Aluminiumnitridkörner im Wesentlichen einem ersten Korndurchmesser und Aluminiumkörner mit im Wesentlichen einem zweiten Korndurchmesser vor, wobei der erste Korndurchmesser größer als der zweite Korndurchmesser, insbesondere dreimal größer als der zweite Korndurchmesser, ist.
Gemäß noch einer weiteren bevorzugten Ausführungsform beträgt der erste Korndurchmesser ungefähr 120 μm und der zweite Korndurchmesser beträgt ungefähr 40 μm.
Erfindungsgemäss wird auch ein Target vorgesehen, welches zum Herstellen von Metalloxidschichten und/oder Metallnitridschichten durch Funkenverdampfung verwendbar ist, wobei das Target eine aus einem Metall bestehende Matrix aufweist, in welche elektrisch nicht leitende Oxide und/oder Nitride des Metalls eingebettet sind.
Vorzugsweise beträgt der Anteil der elektrisch nicht leitenden Oxide und/oder Nitride in der Matrix weniger als 70 Vol. %. Gemäß noch einer bevorzugten Ausfuhrungsform besteht die Matrix aus Aluminium, in welche Aluminiumoxid oder Aluminiumnitrid eingebettet ist.
Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels unter Bezugnahme auf die Zeichnung detailliert erläutert.
Fig. 1 zeigt schematisch die Oberfläche eines erfindungsgemäss zu verwendenden Targets mit ca. 120μm grossen, nitrierten Aluminiumkörnern, eingebettet in eine Aluminiumumgebung aus um ca. Faktor 3 kleineren Aluminiumkörnern wie sie der Funken bei der Funkenverdampfung „sieht";
Fig. 2 zeigt einen Ausschnitt eines mittels holographischer Technik hergestellten erfindungsgemäßen Targets mit regelmässiger Anordnung von Aluminiumoxid- Inseln (schraffiert), eingebettet in einem Aluminium - Kreuzgitter (grau hinterlegt)
Fig.3 eine schematische Darstellung eines Ausschnitts einer Aluminiummatrix eines Targets mit darin eingebetteten nitrierten Aluminiumkörnern.
Eine Ausführungsform der Erfindung wird nun zunächst beispielhaft anhand eines Alumini- umtargets beschrieben. Aluminium ist ein niedrigschmelzendes Material. Soll mittels Funkenverdampfen Aluminiumoxid hergestellt werden, so ist für ein Aluminium Target bei den typischerweise zu verwendenden Verdampfungsbedingungen die Targetvergiftung ein gravierendes Problem. Die Methode der Schmelzpunkterhöhung gemäß dem Stand der Technik ist - wie oben bereits ausgeführt - nicht anwendbar, da Aluminiumoxid einen sehr guten Isolator bildet.
Im erfindungsgemässen Verfahren weisen die Aluminiumoxid-Partikel des Targets eine Grös- se von ungefähr 50μm, bevorzugt jedoch maximal 50 μm Durchmesser auf bzw. sollten diesen Durchmesser nicht wesentlich überschreiten um an die typische Grosse eines Funken- durchmessers angepasst zu sein. Aufgrund des höheren Schmelzpunktes löst sich das Aluminiumoxid nicht auf und die Aluminiumpartikel sind in die zusammenhängende Aluminiummatrix eingebettet. Deswegen liegt der Schmelzpunkt des Targets, insbesondere bei der Be- schichtungsanwendung umso höher, je grösser der Aluminiumoxid-Anteil im Vergleich zum Aluminium ist. Allerdings hat sich herausgestellt, dass bei einer zu geringen Aluminiumkon- zentration die Leitfähigkeit der Targetoberfläche zu gering ist, um ein stabiles Funken- Verdampfen betreiben zu können. In der Ausführungsform wird daher ein Target mit einem Anteil von Aluminiumoxid, welcher unterhalb von 70 Vol.% liegt, verwendet.
Zur Herstellung des Targets können verschiedene Verfahren verwendet werden. Gemäß einer ersten Ausführungsform kann die Herstellung mittels eines bekannten pulvermetallurigschen Verfahrens erfolgen. Dabei wird Aluminium in feines Pulver zermahlen und Aluminiumoxid in feines Pulver zermahlen.
Gemäß eines erfinderischen Verfahrens zur Herstellung eines Targets, welches nun im Zusammenhang mit der Figuren 2 beschrieben wird, wird eine holographische Strukturierungs- methode angewandt, wobei eine Aluminiumoxidschicht 1 in Form eines regelmässigen Gitters strukturiert wird. Die dadurch entstehenden Gräben 2 werden dann mit Aluminium ausgefüllt. Vorzugsweise wird das Aluminiumoxid in zwei Richtungen x, y strukturiert, so dass regelmässige Aluminiumoxidinseln 3 entstehen und das Aluminium selbst als Kreuzgitter elektrische Leitfähigkeit in beide Richtungen x, y zulässt.
Solche Oberflächenstrukturen lassen sich grossflächig mit einer Gitterperiode von einigen 10 nm bis einigen 10 μm realisieren. Vorzugsweise wird eine Gitterperiode von 500 nm bis 20 μm verwendet, besonders bevorzugt wird eine Gitterperiode von 2μm verwendet.
Das oben im Zusammenhang mit einer Aluminiummatrix und darin eingebettetem Aluminiumoxid beschriebene Verfahren ist auf jeden elektrischen Isolator anwendbar, sofern dieser in eine leitende Matrix eingebettet wird. Der Begriff Matrix ist dabei im weiten Sinne zu inter- pretieren, da die Matrix lediglich sicherstellen sollte elektrische Ladungen ableiten zu können, so dass der Fleck des Funkens immer ungehindert auf leitender Oberfläche wandern kann.
Soll eine Schicht mit AlN Bestandteilen aufgebaut werden, so kann auf dieselbe, wie oben beschriebene Art und Weise AlN in einer metallischen Matrix eingebettet werden. Ausserdem ist es möglich, die beschriebene erfinderische Massnahme zur Schmelzpunkterhöhung mit der aus dem Stand der Technik bekannten Massnahme zu kombinieren. Beispielsweise kann, um eine TiAlN - Schicht mittels Funkenverdampfung herzustellen, ein Target verwendet werden, in dem als Bestandteile metallisches Ti, metallisches Al, die leitende Verbindung TiN und der Isolator AlN integriert sind. Mit dieser Beschreibung soll aber noch ein weiterer Aspekt der vorliegenden Erfindung verdeutlicht werden. Dem Fachmann ist bekannt, dass die Anreicherung von metallischen Aluminiumkörnern mit Sauerstoff aufgrund der Oxidhaut, welche als Diffusionsbarriere wirkt, Schwierigkeiten bereitet.
Bekanntlich kann nämlich beim Aluminiumnitrid Stickstoff mehrere 100 nm in Aluminium diffundieren, d.h. es ist AlN nach der Entstehung an der Oberfläche genügend durchlässig, so dass weiterer Stickstoff in tiefere Regionen des Aluminiums diffundieren kann. Es ist bekannt dass dies bei Aluminiumoxid nicht möglich ist: Eine erste, oberste und meist lediglich wenige Nanometer dicke Schicht Aluminiumoxid bildet bereits eine starke Diffusionsbarriere für weiteren Sauerstoff, so dass eine weitere, tiefer gehende Oxidation nicht stattfindet. Diese Tatsache, die zwar dazu beiträgt, dass Aluminiumspiegel in der Optik stabil sind, hat in dem hier diskutierten Zusammenhang die negative Konsequenz, dass nicht genügend Aluminiumoxid entsteht.
Um das oben beschriebene Problem im B eschichtungs verfahren zu vermeiden, wird zur Herstellung Aluminium enthaltender Schichten die bevorzugt oxidischer Natur sind gemäß einer Ausfuhrungsform ein Target verwendet, welches in eine Aluminiummatrix eingebettete, fein verteilte Nitrid und Aluminium enthaltende-Partikel umfasst. Diese Partikel sorgen für die Schmelzpunkterhöhung des Targets, die dazu benötigt wird, um das unkontrollierte lokale Aufschmelzen von metallischem, niedrigschmelzendem Aluminium, welches zur Emission von Makropartikeln führt, zu reduzieren. Wird dann beim Funkenverdampfungsprozess Sauerstoff als Prozessgas hinzugegeben, so wurde überraschend festgestellt, dass sich dann im Wesentlichen stickstofffreie Aluminiumoxidschichten bilden. Möglicherweise dissoziiert das AlN und Al geht mit dem angebotenen Sauerstoff eine Verbindung ein.
Entsprechend dem erfindungsgemäßen Beschichtungsverfahren liegt die notwendige Verdampfungsenthalpie der Targets, oberhalb jener des reinen Metalls, jedoch knapp unterhalb jener des Kompositmaterials.
Im Rahmen der vorliegenden Beschreibung wurde dargelegt, dass zur Funkenverdampfung Targets aus Metallen verwendet werden können, deren Nitride und/oder Oxide nicht elektrisch leitend sind, wobei diese Nitride und/oder Oxide in Form feiner, nicht leitender Partikel in eine Matrix 4 des Metalls eingebaut werden können und mit einem dieses Kompositmaterial aufweisenden Target mit erhöhtem Schmelzpunkt Funkenverdampfung betrieben werden kann, wobei das Problem der Funkeneinschnürung oder der Instabilität deutlich abgeschwächt, wenn nicht sogar gänzlich vermieden werden kann.

Claims

Ansprüche
1. Verwendung eines Targets in einem Funkenverdampfungs-Beschichtungsverfahren zur Herstellung von Metalloxid- und/oder Metallnitridschichten, wobei ein Target verwendet wird, in welchem ein nicht leitendes Oxid und/oder Nitrid eines Metalls des
Targets in die Matrix des Metalls des Targets eingebaut ist und dadurch das Target bei einer Temperatur betreibbar ist, die höher als der Schmelzpunktes des im Target verwendeten Metalls ist
2. Verwendung eines Targets gemäß Anspruch 1, wobei das Target eine Aluminiummatrix aufweist, in welche nicht leitende Aluminiumoxidpartikel und/oder Aluminiumnitridpartikel eingebaut sind.
3. Verwendung eines Targets gemäß Anspruch 2, wobei die Aluminiumoxidpartikel im Wesentlichen einen Durchmesser aufweisen, der kleiner als der typische Funkendurchmesser ist, und damit kleiner als 100 μm, bevorzugt kleiner als 50 μm, ist.
4. Verwendung eines Targets gemäß Anspruch 2 oder 3, wobei der Anteil des Aluminiumoxids in der Aluminiummatrix kleiner als 70 Vol.% beträgt.
5. Verwendung eines Targets gemäß irgendeinem der Ansprüche 1 bis 4, wobei das Target ein pulvermetallurgischen Target ist.
6. Verfahren zum Herstellen eines Targets welches für die Verwendung gemäß irgendei- nem der Ansprüche 2 bis 5 geeignet ist, wobei das Target mittels eines holographischen Strukturierungsverfahrens hergestellt wird, wobei eine Aluminiumoxidschicht in Form eines Gitters strukturiert wird, und wobei die in dem Gitter entstehenden Gräben mit Aluminium aufgefüllt werden.
PCT/EP2009/005803 2008-08-17 2009-08-10 Verwendung eines targets für das funkenverdampfen und verfahren zum herstellen eines für diese verwendung geeigneten targets WO2010020362A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/059,257 US8828499B2 (en) 2008-08-17 2009-08-10 Use of a target for spark evaporation, and method for producing a target suitable for said use
CN2009801320288A CN102124138A (zh) 2008-08-17 2009-08-10 适用于火花蒸发的靶的应用以及适于此应用的靶的制备方法
RU2011110043/02A RU2501885C2 (ru) 2008-08-17 2009-08-10 Применение мишени для искрового напыления и способ получения подходящей для этого применения мишени
KR1020117002931A KR20110047191A (ko) 2008-08-17 2009-08-10 스파크 증발을 위한 타깃의 용도, 및 상기 용도에 적합한 타깃의 제조 방법
EP09777791.6A EP2326742B8 (de) 2008-08-17 2009-08-10 Verwendung eines targets für das funkenverdampfen und verfahren zum herstellen eines für diese verwendung geeigneten targets
JP2011522423A JP5562336B2 (ja) 2008-08-17 2009-08-10 アーク蒸発のためのターゲットの使用および前記使用に適したターゲットの製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP08014592.3 2008-08-17
EP08014592 2008-08-17
EP08017715 2008-10-09
EP08017715.7 2008-10-09

Publications (1)

Publication Number Publication Date
WO2010020362A1 true WO2010020362A1 (de) 2010-02-25

Family

ID=41328518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/005803 WO2010020362A1 (de) 2008-08-17 2009-08-10 Verwendung eines targets für das funkenverdampfen und verfahren zum herstellen eines für diese verwendung geeigneten targets

Country Status (7)

Country Link
US (1) US8828499B2 (de)
EP (1) EP2326742B8 (de)
JP (1) JP5562336B2 (de)
KR (1) KR20110047191A (de)
CN (1) CN102124138A (de)
RU (1) RU2501885C2 (de)
WO (1) WO2010020362A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012052437A1 (de) * 2010-10-22 2012-04-26 Walter Ag Target für lichtbogenverfahren
WO2012055485A1 (de) * 2010-10-28 2012-05-03 Oerlikon Trading Ag, Trübbach Molybdänmonoxidschichten und deren herstellung mittels pvd
DE102013006633A1 (de) * 2013-04-18 2014-10-23 Oerlikon Trading Ag, Trübbach Funkenverdampfen von metallischen, intermetallischen und keramischen Targetmaterialien um Al-Cr-N Beschichtungen herzustellen

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084804A (ja) * 2009-09-18 2011-04-28 Kobelco Kaken:Kk 金属酸化物−金属複合スパッタリングターゲット
EP3036353B1 (de) * 2013-08-20 2022-01-26 MDS Coating Technologies Corp. Beschichtung mit makropartikeln und kathodisches lichtbogenverfahren zur herstellung der beschichtung
CN105986228B (zh) * 2015-02-10 2018-11-06 汕头超声显示器技术有限公司 一种用于制作氧化铝薄膜的溅射靶材及其制作方法
RU178867U1 (ru) * 2016-05-04 2018-04-20 Общество с ограниченной ответственностью Научно-производственное предприятие "НОК" Вакуумная микроразмерная кристаллизационная ячейка
US11408065B2 (en) * 2016-12-28 2022-08-09 Sumitomo Electric Industries, Ltd. Coating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1722003A1 (de) * 2005-05-12 2006-11-15 Fette GmbH Legierter Körper als Target für das PVD-Verfahren, Verfahren zur Herstellung des legierten Körpers und PVD-Verfahren mit dem legierten Körper

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1595280A (en) * 1978-05-26 1981-08-12 Hepworth & Grandage Ltd Composite materials and methods for their production
WO1983000171A1 (en) * 1981-07-01 1983-01-20 De Nora, Vittorio Electrolytic production of aluminum
US4828008A (en) * 1987-05-13 1989-05-09 Lanxide Technology Company, Lp Metal matrix composites
US5518597A (en) * 1995-03-28 1996-05-21 Minnesota Mining And Manufacturing Company Cathodic arc coating apparatus and method
DE19547305A1 (de) * 1995-12-18 1997-06-19 Univ Sheffield Verfahren zum Beschichten von metallischen Substraten
RU2108212C1 (ru) * 1996-02-19 1998-04-10 Юрий Львович Чистяков Способ электроискрового нанесения покрытий
US20020139662A1 (en) * 2001-02-21 2002-10-03 Lee Brent W. Thin-film deposition of low conductivity targets using cathodic ARC plasma process
JP4846519B2 (ja) * 2006-10-23 2011-12-28 日立ツール株式会社 窒化物含有ターゲット材

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1722003A1 (de) * 2005-05-12 2006-11-15 Fette GmbH Legierter Körper als Target für das PVD-Verfahren, Verfahren zur Herstellung des legierten Körpers und PVD-Verfahren mit dem legierten Körper

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012052437A1 (de) * 2010-10-22 2012-04-26 Walter Ag Target für lichtbogenverfahren
JP2014501843A (ja) * 2010-10-22 2014-01-23 バルター アクチェンゲゼルシャフト アークプロセス用ターゲット
US9334558B2 (en) 2010-10-22 2016-05-10 Walter Ag Target for arc processes
WO2012055485A1 (de) * 2010-10-28 2012-05-03 Oerlikon Trading Ag, Trübbach Molybdänmonoxidschichten und deren herstellung mittels pvd
RU2622553C2 (ru) * 2010-10-28 2017-06-16 Эрликон Серфиз Солюшнз Аг, Пфеффикон Слои монооксида молибдена и их получение с помощью pvd
US9822322B2 (en) 2010-10-28 2017-11-21 Oerlikon Surface Solutions Ag, Pfaffikon Molybdenum monoxide layers, and production thereof using PVD
DE102013006633A1 (de) * 2013-04-18 2014-10-23 Oerlikon Trading Ag, Trübbach Funkenverdampfen von metallischen, intermetallischen und keramischen Targetmaterialien um Al-Cr-N Beschichtungen herzustellen

Also Published As

Publication number Publication date
RU2501885C2 (ru) 2013-12-20
CN102124138A (zh) 2011-07-13
KR20110047191A (ko) 2011-05-06
EP2326742B1 (de) 2018-11-07
EP2326742A1 (de) 2011-06-01
US8828499B2 (en) 2014-09-09
EP2326742B8 (de) 2018-12-26
RU2011110043A (ru) 2012-09-27
JP2012500331A (ja) 2012-01-05
US20110143054A1 (en) 2011-06-16
JP5562336B2 (ja) 2014-07-30

Similar Documents

Publication Publication Date Title
EP2326742B1 (de) Verwendung eines targets für das funkenverdampfen und verfahren zum herstellen eines für diese verwendung geeigneten targets
EP2265744B1 (de) Verfahren zum herstellen von metalloxidschichten vorbestimmter struktur durch funkenverdampfung
DE112012002699B4 (de) Zündkerze und Verfahren zum Herstellen einer Elektrode einer Zündkerze
DE3144192C2 (de) Verfahren zum Bedampfen einer Oberfläche mit Hartstoffen und Anwendung des Verfahrens
EP2802678A2 (de) Kolbenring
DE3811907C1 (de)
EP0430872B1 (de) Werkzeug oder Instrument mit einer verschleissresistenten Hartschicht zum Be- oder Verarbeiten von organischem Material
EP3445890B1 (de) Ticn mit reduzierten wachstumsdefekten mittels hipims
DE69710461T2 (de) Sinterverfahren
DE112018002438B4 (de) Hochtemperaturkomponente
EP3017079B2 (de) Verfahren zur herstellung von tixsi1-xn schichten
EP2989654B1 (de) Lichtbogenverdampfungs-beschichtungsquelle mit permanentmagnet
DE102015112135B4 (de) Verdampferkörper mit Titanhydridbeschichtung, Verfahren zu dessen Herstellung und Verwendung
EP2232617B1 (de) Bipolarplatte und verfahren zum herstellen einer schutzschicht an einer bipolarplatte
DE10110448A1 (de) Beschichtungspulver auf der Basis von chemisch modifizierten Titansuboxiden
DE3602104A1 (de) Gleit- oder reibelement mit funktionsteil aus keramischem werkstoff sowie verfahren zu seiner herstellung
EP3768871A1 (de) Magnetronsputtervorrichtung
WO1994003949A1 (de) Elektrodenanordnung für gasentladungsschalter und werkstoff zur verwendung bei dieser elektrodenanordnung
EP2350336A2 (de) VERSCHLEIßSCHUTZSCHICHT UND VERFAHREN ZU IHRER HERSTELLUNG
DE19707699C1 (de) Plasmabrenner für Plasmaspritzanlagen
WO2019025098A1 (de) Anordnung zur beschichtung von substratoberflächen mittels elektrischer lichtbogenentladung
DE102007041374A1 (de) Verfahren zur Beschichtung von Substraten
DE102020133062A1 (de) Vielzahl von Partikeln mit Beschichtung und Verfahren zu deren Herstellung
EP4188625A1 (de) Hochtemperaturkomponente
WO2022117220A1 (de) Al-Si KORROSIONSSCHUTZSCHICHTEN

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980132028.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09777791

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009777791

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117002931

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011522423

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13059257

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011110043

Country of ref document: RU