WO2010018744A1 - 超疎水性粉体、超疎水性表面を有する構造体及びそれらの製造方法 - Google Patents

超疎水性粉体、超疎水性表面を有する構造体及びそれらの製造方法 Download PDF

Info

Publication number
WO2010018744A1
WO2010018744A1 PCT/JP2009/063327 JP2009063327W WO2010018744A1 WO 2010018744 A1 WO2010018744 A1 WO 2010018744A1 JP 2009063327 W JP2009063327 W JP 2009063327W WO 2010018744 A1 WO2010018744 A1 WO 2010018744A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
superhydrophobic
silica
water
nanofiber
Prior art date
Application number
PCT/JP2009/063327
Other languages
English (en)
French (fr)
Inventor
仁華 金
建軍 袁
Original Assignee
財団法人川村理化学研究所
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008206890A external-priority patent/JP4503086B2/ja
Priority claimed from JP2008315543A external-priority patent/JP4503091B2/ja
Application filed by 財団法人川村理化学研究所, Dic株式会社 filed Critical 財団法人川村理化学研究所
Priority to CN2009801313903A priority Critical patent/CN102119245A/zh
Priority to US13/058,391 priority patent/US20110195181A1/en
Priority to EP09806639A priority patent/EP2317006A4/en
Publication of WO2010018744A1 publication Critical patent/WO2010018744A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/78Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon; with halides or oxyhalides of silicon; with fluorosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/38Coatings with pigments characterised by the pigments
    • D21H19/40Coatings with pigments characterised by the pigments siliceous, e.g. clays
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/38Coatings with pigments characterised by the pigments
    • D21H19/42Coatings with pigments characterised by the pigments at least partly organic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/16Sizing or water-repelling agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/12Hydrophobic properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/02Moisture-responsive characteristics
    • D10B2401/021Moisture-responsive characteristics hydrophobic

Definitions

  • the present invention relates to a superhydrophobic powder having a basic structure of an aggregate of silica-based nanofibers having a hydrophobic group, a structure having a superhydrophobic surface using the powder, and a method for producing them.
  • the contact angle of the water droplet is 150 ° or more when the water droplet contacts the solid surface, it is defined as superhydrophobic.
  • the range where the contact angle is 70 to 150 ° is defined as hydrophobic.
  • hydrophobicity is expressed by covering a surface with molecular residues having a low surface tension, but superhydrophobicity is difficult to express only with molecular residues having a low surface tension.
  • Non-Patent Document 3 After forming a zinc oxide nanocrystal seeds film on the surface of the glass substrate at a temperature of 400 ° C. or higher, an infinite number of rod-shaped zinc oxide nanofibers are grown on the glass substrate surface. It is expressed (see, for example, Non-Patent Document 3).
  • a certain poor solvent is added to a solution of polypropylene, and it is cast on the surface of a substrate, and the temperature is adjusted, thereby forming a network structure composed of polypropylene nanoparticles, and thereby a contact angle.
  • a glass composed of oxides of silicon, boron, and sodium has a phase separation structure, and it is further etched by chemical treatment to induce a concavo-convex structure on the surface, and finally a fluorine compound is applied to the surface.
  • Superhydrophobicity can be expressed by reacting (see, for example, Patent Document 1).
  • the surface is treated with a chemical method to induce a surface porous structure, and silica nanoparticles are fixed thereon, and finally a fluorinated alkyl. It is also known to construct a superhydrophobic boundary surface by hydrophobizing with a silane coupling agent having a group (see, for example, Patent Document 2).
  • Non-Patent Document 5 the technique proposed in Non-Patent Document 5 has a narrow application range and is not based on an industrially simple technique.
  • the feet of amembo correspond to an aggregate of superhydrophobic powder.
  • the structure of the leg of Amembo is super-hydrophobic, and by adding the buoyancy and surface tension of the water generated due to it, the body more than 25 times the weight of the leg can be floated on the water surface. By adding elasticity, the Amoebo can run so as to fly over the water surface (see, for example, Non-Patent Document 6).
  • the development of superhydrophobic powder has high industrial utility value, especially if it can be synthesized by a simple manufacturing method using a large amount of silicon compounds existing in nature as a raw material. This is a highly anticipated issue.
  • a problem to be solved by the present invention is to obtain a superhydrophobic powder having a silica-based powder with a water contact angle of 150 ° or more on the surface of the powder in a simple and reproducible manner. It is to provide a method of manufacturing and a structure having a superhydrophobic surface using the same.
  • the present inventor is present on the surface of an aggregate of organic-inorganic composite nanofibers in which an organic polymer and an inorganic silica are combined on the nanometer order.
  • the silica or the silica after the organic-inorganic composite nanofibers are baked to remove the polymer can be introduced with hydrophobic groups by a simple method, and from the aggregate obtained by introducing the hydrophobic groups thus obtained.
  • the resulting powder was found to exhibit superhydrophobicity, and the present invention was completed.
  • the present invention relates to a superhydrophobic powder containing an association of organic-inorganic composite nanofibers, in which the nanofiber is a polymer filament having a linear polyethyleneimine skeleton and a silica having a hydrophobic group. It is intended to provide a superhydrophobic powder characterized in that it is coated with a simple manufacturing method thereof.
  • the present invention provides a superhydrophobic powder characterized in that a hydrophobic group is introduced into the silica of the nanofiber aggregate containing silica as a main constituent, and a method for producing the same.
  • the present invention provides a structure having a superhydrophobic surface obtained by fixing the superhydrophobic powder obtained above on a solid substrate and a method for producing the structure.
  • the superhydrophobic powder of the present invention can convert any solid surface to superhydrophobic by applying it to the surface of a base material of any material and shape.
  • This can be applied to protective films for metals, metal oxides, fibers, wood, paper, leather, and plastics that can rust, rot, and get dirty with water. More specifically, structures such as buildings, car bodies, ship bodies, container structures, packages, glass products, pottery products (toilet bowls, entire bathrooms), pools, water pipes, electric wires, light bulbs, various carvers, etc. It can be applied to the protective film.
  • household electrical appliances such as refrigerators, microwave ovens and washing machines, and electrical appliances for communication such as personal computers, televisions and mobile phones. It can also be applied to energy conversion-related fuel cell devices.
  • 2 is a scanning electron micrograph of the powder obtained in Synthesis Example 1.
  • 4 is a scanning electron micrograph of the powder after firing obtained in Synthesis Example 2.
  • 2 is a scanning electron micrograph of superhydrophobic powder 2 obtained in Example 2.
  • FIG. It is a contact image of the superhydrophobic film
  • 7 is a contact image of water droplets formed on the surface of a film produced in Example 7.
  • 6 is a scanning electron micrograph of the film surface produced in Example 7.
  • FIG. The left figure is a photograph in a large area range, and the right figure is an enlarged photograph of a portion surrounded by a circle in the left figure.
  • 4 is a SEM photograph of powder (I-2) obtained in Synthesis Example 3. Above: Low magnification. Below: High magnification. 4 is a SEM photograph of powder (II-2) obtained in Synthesis Example 4. Above: Low magnification. Below: High magnification. It is a water contact angle photograph in Example 14. 4 is a TEM photograph of superhydrophobic powder 7 obtained in Example 14. Left figure: Before polyethyl methacrylate is adsorbed, Right figure: After adsorption 7 is a thermal analysis (TG-DTA) chart of superhydrophobic powder 7 obtained in Example 14. FIG. It is the wettability photograph in the film
  • TG-DTA thermal analysis
  • the present inventors have already used a crystalline aggregate in which a polymer having a linear polyethyleneimine skeleton grows in an aqueous medium in a self-organizing manner as a reaction field, and hydrolyzes alkoxysilane on the surface of the aggregate in a solution.
  • a silica-containing nanostructure (powder) having a complex shape with nanofibers as a basic unit and a method for producing the same were provided (Japanese Patent Application Laid-Open No. 2005-264421, Japanese Patent Application Laid-Open (See JP 2005-336440 A, JP 2006-063097 A, JP 2007-051056 A).
  • the basic principle of this technique is to spontaneously grow a crystalline aggregate of a linear polyethyleneimine skeleton-containing polymer in a solution. Once a crystalline aggregate is formed, the crystalline aggregate is then simply used. A silica source is mixed in the dispersion liquid, and the deposition of the silica only on the surface of the crystalline aggregate is allowed to leave naturally (so-called sol-gel reaction).
  • the silica-containing nanostructure obtained in this way basically has nanofabric as a unit for structure formation, and since the shape of the entire structure is induced by the spatial arrangement of these units, there are many nano-level gaps, It is a powder with a large surface area.
  • Such a powder is very similar to the basic structure necessary for developing superhydrophobicity in nature, that is, nanofibers aggregate to form a micrometer dimension. Therefore, it is considered that superhydrophobicity can be expressed by modifying the powder surface with a chemical residue having a low surface tension.
  • the present inventors have developed a silica-containing nanostructure on the order of micrometer (a silica-containing nanostructure) having a basic structure of a nanofiber derived from a polymer having a linear polyethyleneimine skeleton. It was found that the powder itself can be made superhydrophobic by introducing a hydrophobic group into the powder surface, which is a structure composed of basic units in the metric order.
  • a silica-containing nanostructure having a basic structure of a nanofiber derived from a polymer having a linear polyethyleneimine skeleton.
  • a filament is a polymer chain formed by crystallization of a plurality of linear polyethyleneimine skeleton portions in a polymer chain having a linear polyethyleneimine skeleton used in the present invention in the presence of water molecules. Are associated with each other and grow into a fibrous form.
  • a sol-gel reaction occurs on the surface of the filament, an organic-inorganic composite nanofiber in which the filament is coated with silica is formed.
  • a plurality of organic-inorganic nanofibers are bonded or aggregated by silica.
  • a silica-containing nanostructure (powder) that is an aggregate of organic-inorganic nanofibers is formed.
  • the polymer (A) having a linear polyethyleneimine skeleton (a) used in the present invention is a copolymer having other repeating units, even if it is a linear, star-like, or comb-like homopolymer. There may be.
  • the molar ratio of the linear polyethyleneimine skeleton (a) in the polymer (A) is preferably 20% or more from the viewpoint of forming a stable filament. It is more preferable that it is a block copolymer in which the number of repeating units in (a) is 10 or more.
  • the polymer (A) having the linear polyethyleneimine skeleton (a) the higher the ability to form a crystalline aggregate, the better. Accordingly, whether it is a homopolymer or a copolymer, the molecular weight corresponding to the linear polyethyleneimine skeleton (a) portion is preferably in the range of 500 to 1,000,000.
  • the polymer (A) having the linear polyethyleneimine skeleton (a) can be obtained from a commercially available product or a synthesis method already disclosed by the present inventors (see the above-mentioned patent document).
  • the superhydrophobic powder provided by the present invention is a group of organic-inorganic composite nanofibers (I) in which the filament of the polymer (A) having the linear polyethyleneimine skeleton (a) is coated with silica (B).
  • the silica (B) is obtained by a sol-gel reaction on the filament surface in the presence of the filament of the polymer (A).
  • a silica source necessary for the formation of the silica (B) for example, alkoxysilane , Water glass, hexafluorosilicon ammonium and the like can be used.
  • alkoxysilanes tetramethoxysilane, oligomers of methoxysilane condensates, tetraethoxysilane, oligomers of ethoxysilane condensates can be suitably used.
  • alkyl-substituted alkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, iso-propyltrimethoxysilane, iso-propyltriethoxysilane, etc., 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycid Xylpropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercap
  • silica metal compounds can be mixed with the silica source.
  • tetrabutoxytitanium, tetraisopropoxytitanium, or an aqueous solution of titanium bis (ammonium lactate) dihydroxide stable in an aqueous medium an aqueous solution of titanium bis (lactate), a propanol / water mixture of titanium bis (lactate), titanium (ethyl) Acetoacetate) diisopropoxide, titanium sulfate, hexafluorotitanium ammonium and the like can be used.
  • Metal ions can be stably taken into the organic-inorganic composite nanofiber (I), and therefore a superhydrophobic powder containing metal ions can be obtained.
  • the metal ions coordinate with the ethyleneimine units in the skeleton to form metal ion complexes.
  • the metal ion complex is obtained by coordination of a metal ion to an ethyleneimine unit. Unlike a process such as ionic bonding, the metal ion is coordinated to an ethyleneimine unit regardless of whether the metal ion is a cation or an anion. Can form a complex.
  • the metal species of the metal ion is not limited as long as it can coordinate with the ethyleneimine unit in the polymer (A), and is not limited to alkali metal, alkaline earth metal, transition metal, metalloid, lanthanum metal, poly Any of metal compounds such as oxometalates may be used, and they may be used alone or in combination.
  • alkali metal examples include Li, Na, K, Cs and the like
  • counter ions of the alkali metal ions include Cl, Br, I, NO 3 , SO 4 , PO 4 , ClO 4 , PF 6
  • examples thereof include BF 4 and F 3 CSO 3 .
  • alkaline earth metals examples include Mg, Ba, Ca and the like.
  • transition metal-based metal ion even if it is a transition metal cation (M n + ), an acid group anion (MO x n ⁇ ) composed of a bond with oxygen, or an anion composed of a halogen bond ( ML x n ⁇ ) can also be preferably used.
  • the transition metal refers to Sc, Y in Group 3 of the periodic table and a transition metal element in Groups 4 to 12 in the 4th to 6th periods.
  • transition metal cations include cations of various transition metals (M n + ), such as Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ru, Rh, Pd, and Ag. , Cd, W, Os, Ir, Pt, Au, Hg, monovalent, divalent, trivalent or tetravalent cations.
  • the counter anion of these metal cations may be any of Cl, NO 3 , SO 4 , polyoxometalates anions, or organic anions of carboxylic acids.
  • it is preferable to prepare an ionic complex by suppressing the reduction reaction for example, by adjusting the pH to acidic conditions.
  • transition metal anion examples include various transition metal anions (MO x n ⁇ ) such as MnO 4 , MoO 4 , ReO 4 , WO 3 , RuO 4 , CoO 4 , CrO 4 , VO 3 , NiO 4 , UO 2. Anions and the like.
  • Specific examples of the polyoxometalates include molybdate, tungstate and vanadate in combination with a transition metal cation.
  • anions containing various metals such as AuCl 4 , PtCl 6 , RhCl 4 , ReF 6 , NiF 6 , CuF 6 , RuCl 6 , In 2 Cl 6, etc.
  • the coordinated anion can also be suitably used for forming an ion complex.
  • examples of the metalloid ions include ions of Al, Ga, In, Tl, Ge, Sn, Pb, Sb, and Bi, and among them, ions of Al, Ga, In, Sn, Pb, and Tl are preferable.
  • Examples of the lanthanum metal ions include trivalent cations such as La, Eu, Gd, Yb, and Eu.
  • metal ions can be taken into the organic-inorganic composite nanofiber (I). Accordingly, among these metal ions, metal ions that are easily reduced by a reduction reaction can be converted into metal nanoparticles, whereby a superhydrophobic powder containing metal nanoparticles can be obtained.
  • the metal species of the metal nanoparticles include copper, silver, gold, platinum, palladium, manganese, nickel, rhodium, cobalt, ruthenium, rhenium, molybdenum, iron, and the like.
  • the particles may be one kind or two or more kinds.
  • silver, gold, platinum, and palladium are particularly preferable because the metal ions are spontaneously reduced at room temperature or in a heated state after being coordinated to the ethyleneimine unit.
  • the size of the metal nanoparticles in the superhydrophobic powder can be controlled in the range of 1 to 20 nm.
  • a metal nanoparticle can be fixed to the inside of an organic inorganic composite nanofiber (I) of a polymer (A) and silica (B), or an outer surface.
  • the linear polyethyleneimine skeleton (a) in the polymer (A) is physically bonded with a compound having an amino group, a hydroxy group, a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group, and hydrogen bonds and / or electrostatic attraction.
  • a bonded structure can be constructed. Therefore, it is possible to contain organic dye molecules having these functional groups in the superhydrophobic powder.
  • organic dye molecule a monofunctional acidic compound or a bifunctional or higher polyfunctional acidic compound can be suitably used.
  • aromatic acids such as tetraphenylporphyrin tetracarboxylic acid and pyrene dicarboxylic acid, naphthalene disulfonic acid, pyrene disulfonic acid, pyrene tetrasulfonic acid, anthraquinone disulfonic acid, tetraphenyl porphyrin tetrasulfonic acid, phthalocyanine tetra Aromatic or aliphatic sulfonic acids such as sulfonic acid and pipes (PIPES), acid yellow, acid blue, acid red, direct blue, direct yellow, direct red series azo dyes and the like can be mentioned.
  • a dye having a xanthene skeleton for example, rhodamine, erythrosine, and eosin dyes can be used.
  • the size of the organic-inorganic composite nanofiber (I) is the molecular weight and shape of the polymer (A) used, the content of the linear polyethyleneimine skeleton (a), and the type and use ratio of the silica source used.
  • the organic-inorganic composite nanofiber (I) having a thickness of 10 to 100 nm and an aspect ratio of 10 or more can be easily produced.
  • the content of the polymer (A) in the organic-inorganic composite nanofiber (I) can be adjusted to 5 to 30% by mass, and the polymer (A) is included as a filament shape as described above.
  • the organic-inorganic composite nanofibers (I) are randomly arranged in a three-dimensional space during the production process (during sol-gel reaction) to form an aggregate (silica-containing nanostructure) having a size of 2 to 100 ⁇ m.
  • the surface area of the powder composed of such aggregates is in the range of 50 to 200 m 2 / g.
  • the method for producing the organic-inorganic composite nanofiber (I) and the aggregate thereof may be any method described in the patent literature already provided by the present inventors.
  • Nanofibers (II) mainly composed of silica When the aggregate of the organic-inorganic composite nanofiber (I) described above is heated and fired, the polymer (B) contained therein is removed while maintaining the shape, and the nanofiber (II) containing silica as the main constituent (II) ) Can be obtained.
  • silica as a main constituent means that, for example, the polymer (A) or the carbon atom in the organic dye molecule used in combination is carbonized and contained, or the metal ion or metal is not baked.
  • metal atoms may be contained, but the shape of the nanofiber is formed by silica (B), and the content of silica (B) is Usually 90 mass% or more, preferably 98 mass% or more.
  • the firing temperature may be 500 ° C. or higher, and is preferably 800 ° C. or lower from the viewpoint of energy efficiency.
  • the firing time can be appropriately set depending on the temperature.
  • the temperature may be 1 hour at a temperature higher than 500 ° C., and it is desired to calcinate for 2 hours or more near 500 ° C.
  • the structure of the aggregate obtained by firing is the same as before firing, and the nanofiber (II) has a thickness of 10 to 100 nm and an aspect ratio of 10 or more.
  • the nanofiber of this thickness is random in a three-dimensional space.
  • the aggregate formed by the arrangement still maintains a size of 2 to 100 ⁇ m.
  • the specific surface area of the powder obtained after calcination is larger than that before calcination, and is approximately 100 to 400 m 2 / g.
  • Silica (B) exists on the surface of the above-mentioned organic-inorganic composite nanofiber (I) or nanofiber (II) containing silica as a main component, and a part of the silica is present as a silanol group. There is also a part. Any compound that can react with the silanol group and has a hydrophobic group can be chemically bonded to silica (B). Therefore, a compound in which a hydrophobic group is introduced by a chemical bond is a compound in which the organic-inorganic composite nanofiber (I) has a polymer (A) filament having a linear polyethyleneimine skeleton (a) and a hydrophobic group. This is a superhydrophobic powder coated with silica (B) to which (X1) is chemically bonded.
  • hydrophobic group examples include an alkyl group having 1 to 22 carbon atoms and an aromatic group which may have a substituent (the substituent includes an alkyl group having 1 to 22 carbon atoms, a fluorinated alkyl group, Hydrophobic groups such as partially fluorinated alkyl groups), fluorinated alkyl groups having 1 to 22 carbon atoms, and partially fluorinated alkyl groups having 1 to 22 carbon atoms.
  • the compound (X1) contains
  • the silane coupling agent (x) having a hydrophobic group is preferably used alone or in combination. At this time, by adjusting the contact amount with the silane coupling agent (x) having a hydrophobic group, the obtained powder can be adjusted to be hydrophobic to superhydrophobic.
  • silane coupling agent (x) examples include methyltrimethoxysilane, dimethyldimethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, and iso-propyltrimethoxy.
  • examples thereof include alkyltrimethoxysilanes or alkyltrichlorosilanes having an alkyl group having 1 to 22 carbon atoms, such as silane, iso-propyltriethoxysilane, pentyltrimethoxysilane, and hexyltrimethoxysilane.
  • a (partially) silane coupling agent having a fluorinated alkyl group such as 3,3,3-trifluoropropyltrimethoxysilane, tridecafluoro-1, 1,2,2-tetrahydrooctyl) trichlorosilane and the like can also be used.
  • phenyltrimethoxysilane, phenyltriethoxysilane, p-chloromethylphenyltrimethoxysilane, p-chloromethylphenyltriethoxysilane, etc. can be taken up as silane coupling agents having an aromatic group.
  • the superhydrophobic powder introduced with a superhydrophobic group by the chemical bond described above has a reactive functional group added to the superhydrophobic powder in order to make it easy to fix it on a solid substrate of any shape / material. It is preferable to introduce.
  • the introduction of this reactive functional group is preferably the same technique as the introduction of the hydrophobic group described above, that is, the technique by contact with the silane coupling agent (y) having a reactive functional group.
  • silane coupling agent (y) having a reactive functional group examples include ⁇ -methacryloylpropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, ⁇ - (2-hydroxylethyl) aminopropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropyltriethoxysilane, ⁇ - (2-hydroxylethyl) aminopropyltriethoxysilane, ⁇ - (2-aminoethyl) Aminopropylmethyldimethoxysilane, ⁇ - (2-aminoethyl) aminopropylmethyldiethoxysilane, ⁇ - (2-hydroxylethyl) aminopropylmethyldimethoxysilane, ⁇ - (2-hydroxylethyl) aminopropylmethyldiethoxysilane, or ⁇ -
  • the introduction ratio of the reactive functional group is not particularly limited, but it is bonded to silica (B) from the viewpoint of balancing the point of being easily fixed on a solid substrate and maintaining superhydrophobicity.
  • the molar ratio (X) / (X + Y) between the hydrophobic group (X) and the reactive functional group (Y) is preferably in the range of 0.2-1.
  • the organic-inorganic composite nanofiber (I) aggregate or nanofiber (II) aggregate is dispersed in a solvent and mixed with a compound having a hydrophobic group.
  • Well preferably contains a solution of a silane coupling agent (x) having a hydrophobic group, or a silane coupling agent (x) having a hydrophobic group and a silane coupling agent (y) having a reactive functional group It is a method of mixing with the solution to be.
  • the silane coupling agent (x) having a hydrophobic group and the silane coupling agent (y) having a reactive functional group should be dissolved in a solvent such as chloroform, methylene chloride, cyclohexanone, xylene, toluene, ethanol, methanol, etc. Can do. These solvents can be used alone or in combination.
  • the total concentration of the silane coupling agents (x) and (y) can be suitably used as long as it is 1 to 5% by mass, and particularly mixed with an ethanol solution of 1 to 5% by mass ammonia water. More preferably, it is used.
  • the volume ratio upon mixing is preferably 5 to 10 times the amount of the aqueous ammonia solution relative to the silane coupling agent solution.
  • the hydrophobic group introduced into the resulting superhydrophobic powder is reactive.
  • the molar ratio (x) / (x + y) is preferably in the range of 0.2 to 1 so that the molar ratio with the functional group is within the above-mentioned preferable range.
  • the time for mixing with the above solution is preferably 10 to 24 hours.
  • the powder which is an aggregate which consists of nanofiber (II) which does not contain polymer (A) if mixing time is 2 hours or more, a hydrophobic group can be introduce
  • Silica forming the surface of the aggregate of the nanofiber (I) or nanofiber (II) has the ability to physically adsorb the compound (X2) having a hydrophobic group. By applying this capability, the free energy on the surface of the nanofiber (I) or nanofiber (II) can be reduced to obtain a superhydrophobic powder.
  • Examples of the compound (X2) having a hydrophobic group include a hydrophobic polymer (X2-1), an amphiphilic polymer (X2-2), a long-chain alkyl group-containing compound (X2-3), or a fluorine-containing compound. (X2-4).
  • the compound (X2) having a hydrophobic group may be any compound that has a hydrophobic portion (group) in the compound or has a hydrophobic property as the compound. In the present application, there is no clear “hydrophobic group”, but it is a compound that exhibits hydrophobicity in that it does not mix with water at an arbitrary ratio. In the present application, as a compound (X2) having a hydrophobic group Include.
  • poly (meth) acrylates can be preferably used. Specifically, polymethyl (meth) acrylate, polyethyl (meth) acrylate, polybutyl (meth) acrylate, polybenzyl (meth) acrylate, polycyclohexyl (meth) acrylate, poly t-butyl (meth) acrylate, polyglycidyl (meth) Acrylates, polypentafluoropropyl (meth) acrylates, etc., and general-purpose polystyrenes, polyvinyl chlorides, polyvinyl acetates, epoxy resins, polyesters, polyimides, polycarbonates, and other polymers that do not dissolve easily in water. it can.
  • amphiphilic polymer (X2-2) examples include polyacrylamides such as poly N-isobutyl acrylamide, poly N and N-dimethyl acrylamide, and polyoxazolines such as polymethyl oxazoline, polyethyl oxazoline, and polyvinyl oxazoline.
  • polyacrylamides such as poly N-isobutyl acrylamide, poly N and N-dimethyl acrylamide
  • polyoxazolines such as polymethyl oxazoline, polyethyl oxazoline, and polyvinyl oxazoline.
  • Polyphenyloxazoline, polypropylene oxide and the like can be preferably used.
  • alkylamine alkylcarboxylic acid, alkylsulfonic acid, alkylphosphoric acid and the like, which are compounds having an alkyl group having 6 to 22 carbon atoms, can be preferably used.
  • fluorine-containing compound (X2-4) examples include 2,3,4-heptafluorobutyl methacrylate, FLUONATE K-700, K702, K703, K-704, K-705, K-707, manufactured by DIC Corporation. K-708 or the like can be preferably used.
  • the compound (X2) can be dissolved, and at the same time, it is desirable to maintain affinity with silica.
  • Specific examples include toluene, furan tetrahydride, methylene chloride, chloroform, methyl ethyl ketone, cyclohexanone, xylene and the like.
  • the compound (X2) having a concentration of 1 to 5% by mass can be suitably used.
  • the mass ratio (X2) / (I) or (II) of the compound (X2) to the nanofiber (I) or (II) is preferably 5/100 to 100/100.
  • nanofiber (I) or (II) is previously dispersed in a solvent miscible with the solvent in which compound (X2) is dispersed, and then added to the solvent of compound (X2) and stirred. May be.
  • the mixture After stirring and mixing for a certain period of time, the mixture is filtered or centrifuged, and the solid content is washed with a solvent such as toluene, chloroform, hexane, cyclohexane, etc., and dried at room temperature, whereby the superhydrophobic powder of the present invention Can be obtained.
  • a solvent such as toluene, chloroform, hexane, cyclohexane, etc.
  • the superhydrophobic powder of the present invention obtained by the above method has no water wettability and can only float on the water surface as a powder even when dispersed in water. This is completely different from completely sinking in water before the introduction of the hydrophobic group.
  • a structure having a superhydrophobic surface can be obtained by bonding and fixing the superhydrophobic powder of the present invention to the surface of a solid substrate. Adhesion fixation is easily achieved by mixing the powder with a polymer solution, silica sol solution, or commercially available paint, adhesive, etc., applying the mixture to the surface of the substrate, and drying it as necessary. it can.
  • the superhydrophobic surface is a state in which superhydrophobic powder is fixed to the surface of the coating film. That is, it is characterized in that a polymer or silica sol or the like forms a continuous film as a binder, and structures derived from the superhydrophobic powder of the present invention are distributed at regular intervals on the surface of the continuous film.
  • the polymer that can be used for the binder layer is not particularly limited as long as it is a hydrophobic polymer.
  • the hydrophobic polymer include polystyrene, polyvinyl chloride, polymethacrylate, polyacrylate, polycarbonate, polyester, and epoxy resin.
  • the reactive functional group is a glycidyl group or an amino group
  • an epoxy resin is used as a binder resin.
  • a reactive functional group is a (meth) acryloyl group
  • UV hardening by using together the monomer which has a (meth) acryloyl group.
  • silica sol or metal oxide sol dispersed in alcohol can be used as the binder layer.
  • methanol, ethanol, isopropanol, etc. can be taken up as alcohols.
  • a commercially available paint or a commercially available adhesive can be used as the binder layer of the coating film.
  • the contact angle of the superhydrophobic surface obtained above can be changed in the range of 150 to 179 °.
  • a contact angle of 70 to 150 ° which is a general hydrophobicity level the use ratio of the superhydrophobic powder of the present invention is decreased.
  • the density of the powder may be lowered.
  • the solid substrate can be selected according to the material used for the binder layer, and examples thereof include glass, metal, metal oxide, wood, paper, fiber, plastic, rubber, leather, etc. There is no particular limitation, and any shape that can be applied with a polymer solution or silica sol may be used.
  • the method for fixing and adhering the superhydrophobic powder to the surface of the solid substrate is not particularly limited, and the coating liquid containing the powder is appropriately applied by a usual coating method such as a spin coater, bar coater, brushing, spray or the like. What is necessary is just to apply.
  • the film obtained by coating can be cured by a process such as UV curing, heat curing, or natural drying.
  • the superhydrophobic powder of the present invention is easily wetted by organic solvents other than water and can be easily dispersed.
  • the medium that can dissolve or disperse the binder may be any solvent other than water, and a mixed medium of an organic solvent and water can also be used.
  • the superhydrophobic powder must be exposed to the surface of the coating film. Therefore, it is desirable that the thickness of the coating film is within a certain range, for example, 0.1 to 20 ⁇ m. The thinner the coating film, the more the powder will protrude on the surface of the coating film, and the contact angle of water can be increased.
  • the horizontal distance between the powders exposed on the coating film surface is an important structural element for the expression of superhydrophobicity of the entire film. If the horizontal distance between the powder structures is 1 to 20 ⁇ m, the superhydrophobicity can be sufficiently expressed, but the contact angle of water can be increased to about 150 ° even if the distance is longer than that, depending on the intended use. It is preferable to adjust.
  • the specific surface area was measured by Flow Sorb II 2300 (manufactured by Micrometrics).
  • Synthesis example 1 [Synthesis of organic-inorganic composite nanofiber (I) aggregate] Powders having different shapes were prepared by the methods disclosed in patent documents (Japanese Patent Application Laid-Open Nos. 2005-264421, 2005-336440, 2006-063097, and 2007-051056).
  • the powder was dissolved in 5 mL of distilled water, and 50 mL of 15% aqueous ammonia was added dropwise to the solution while stirring. The mixture was allowed to stand overnight, the precipitated powder was filtered, and the powder was washed 3 times with cold water. The washed powder was dried in a desiccator at room temperature (25 ° C.) to obtain linear polyethyleneimine (P5K-1). The yield was 4.5 g (containing crystallization water). In polyethyleneimine obtained by hydrolysis of polyoxazoline, only the side chain reacts and the main chain does not change. Therefore, the polymerization degree of P5K-1 is the same as that of 5,000 before hydrolysis.
  • FIG. 1 shows an SEM photograph of the obtained powder (I-1). It was confirmed to be an assembly of nanofibers.
  • thermogravimetric loss analysis of the powder (I-1) thus obtained (TG / DTA6300 manufactured by SII Nano Technology Inc.), it was confirmed that the polymer content was 7%.
  • specific surface area was measured (Flow Sorb II 2300 manufactured by Micrometrics), and as a result, it was 105 m 2 / g.
  • Synthesis example 2 [Synthesis of nanofiber (II) aggregate mainly composed of silica] 5 g of the powder (I-1) obtained in Synthesis Example 1 was heated in an electric furnace at 600 ° C. for 2 hours under air introduction conditions to remove the polyethyleneimine contained in the powder (I-1), and white A powder (II-1) was obtained. The specific surface area was 187 m 2 / g.
  • FIG. 2 shows an SEM photograph of powder (II-1). It was suggested that there was no change in the nanofiber structure after firing.
  • Example 1 [Synthesis of superhydrophobic powder 1] 50 mL of 2% ammonia in ethanol and 5 mL of 20% decyltrimethoxysilane (DTMS) in chloroform were mixed, 0.5 g of powder (I-1) was added to the mixture, and the mixture was stirred at room temperature for 24 hours. . After filtering the reaction solution, the obtained powder was washed with ethanol three times. The dried powder did not sink at all in the water and floated on the water surface. This was completely different from the tendency of the powder (I-1) before hydrophobization treatment to completely sink in water.
  • DTMS decyltrimethoxysilane
  • the obtained powder was adhered to a double-sided tape to form a surface made of powder, and when the contact angle was measured, the contact angle of water was 177.5 °. It was strongly suggested that the membrane state of the powder was superhydrophobic. This is designated as superhydrophobic powder 1.
  • Example 2 [Synthesis of superhydrophobic powder 2] 50 mL of an ethanol solution of 2% ammonia and 5 mL of a chloroform solution of 20 wt% decyltrimethoxysilane (DTMS) were mixed, 0.5 g of powder (II-1) was added to the mixture, and the mixture was stirred at room temperature for 24 hours. After filtering the reaction solution, the obtained powder was washed with ethanol three times. The thermogravimetric loss of the powder after drying (between 150 and 800 ° C.) was 8.4%. This corresponds to the amount of organic residues due to introduction of the silane coupling agent. This powder did not sink at all in the water and floated on the water surface. This was completely different from the fact that the powder (II-1) before the hydrophobization treatment tended to completely sink in water.
  • FIG. 3 shows an SEM photograph of the powder.
  • Example 3 [Synthesis of superhydrophobic powder 3] Mix 50 mL of 2% ammonia ethanol solution and 5 mL of chloroform solution containing 6% silane coupling agent [5% decyltrimethoxysilane (DTMS) and 1% aminopropyltrimethoxysilane (ATMS)]. was added with 0.5 g of powder (II-1) and stirred at room temperature for 24 hours. After filtering the reaction solution, the obtained powder was washed with ethanol three times. The thermogravimetric loss of the powder after drying (between 150 and 800 ° C.) was 7.5%. The powder floated on the surface of the water without sinking at all.
  • DTMS decyltrimethoxysilane
  • ATMS aminopropyltrimethoxysilane
  • the obtained powder was adhered to a double-sided tape to form a surface made of powder, and then the contact angle of water was measured. As a result, the contact angle of water was 168 °. It was strongly suggested that the membrane state of the powder was superhydrophobic. This is designated as superhydrophobic powder 3.
  • Example 4 Synthesis of superhydrophobic powder 4
  • Mix 50 mL of 2% ammonia ethanol solution and 5 mL of chloroform solution containing 6% silane coupling agent [5% decyltrimethoxysilane (DTMS) and 1% methacryloylpropyltrimethoxysilane (ATMS)] was added with 0.5 g of powder (II-1) and stirred at room temperature for 24 hours. After filtering the reaction solution, the obtained powder was washed with ethanol three times. The thermogravimetric loss of the powder after drying (between 150 and 800 ° C.) was 8.3%. The dried powder did not sink at all in the water and floated on the water surface.
  • DTMS decyltrimethoxysilane
  • ATMS methacryloylpropyltrimethoxysilane
  • the obtained powder was adhered to a double-sided tape to form a surface made of powder, and then the contact angle of water was measured. As a result, the contact angle of water was 176 °. It was strongly suggested that the membrane state of the powder was superhydrophobic. This is designated as superhydrophobic powder 4.
  • Example 6 [Superhydrophobic membrane on filter paper using superhydrophobic powder 2 (brush method)] The same dispersion used in Example 5 was brushed on the filter paper. When the surface contact angle was measured after drying it at room temperature, the contact angle was 178 °. The filter paper did not get wet.
  • Example 7 [Superhydrophobic film on glass using superhydrophobic powder 2 (casting method)] A dispersion similar to that in Example 5 was cast on a glass slide using a bar coater. The cast film thus obtained was dried at room temperature and then the surface contact angle was measured. The contact angle was 179.6 ° (15 ⁇ L water droplets) (FIG. 5).
  • the glass surface was observed with an SEM (FIG. 6). From the SEM photograph image, it can be seen that the particles derived from the powder spread on the film surface in a fixed state. From the enlarged image, it can be seen that the powder is dispersed at intervals of 5 ⁇ m or more.
  • Example 8 [Superhydrophobic membrane on wood using superhydrophobic powder 2 (brush method)] The same dispersion used in Example 5 was brushed onto a wooden board that had not been surface-treated. After drying it at room temperature and dropping water drops, the water was completely repelled and the wood surface did not get wet.
  • Mw 120,000, manufacturer, product number
  • Example 10 [Superhydrophobic film (brush method) on stainless steel plate using superhydrophobic powder 2] The same dispersion used in Example 9 was applied to a stainless steel petri dish (Takizawa Rika, 50 ⁇ 50 ⁇ 0.6 mm) with a brush. After drying it at room temperature and dropping water drops, the water was completely repelled and the metal surface did not get wet.
  • Example 11 [Superhydrophobic membrane on the inner wall of glass tube using superhydrophobic powder 2 (dipping method)] The same dispersion used in Example 9 was sucked into a glass pipette (inner diameter 6 mm, length 8 cm), held for 2 hours, and then the liquid was extruded. After the glass pipette was dried at room temperature, water was sucked into the glass pipette and the test was performed to push out the water again. No water droplets adhered to the glass wall, and the absorbed water could be completely transferred to another container without reducing its weight.
  • Synthesis example 3 100 g of commercially available polyethyloxazoline (number average molecular weight 500,000, average polymerization degree 5,000, manufactured by Aldrich) was dissolved in 300 mL of 5M aqueous hydrochloric acid. The solution was heated to 90 ° C. in an oil bath and stirred at that temperature for 10 hours. Acetone 50 mL was added to the reaction solution to completely precipitate the polymer, which was filtered and washed three times with methanol to obtain a white polyethyleneimine powder.
  • the powder was dissolved in 100 mL of distilled water, and 500 mL of 15% ammonia water was added dropwise to the solution while stirring. The mixture was allowed to stand overnight, the precipitated powder was filtered, and the powder was washed 3 times with cold water. The washed powder was dried in a desiccator at room temperature (25 ° C.) to obtain linear polyethyleneimine (P5K-2). The yield was 94 g (containing crystallization water). In polyethyleneimine obtained by hydrolysis of polyoxazoline, only the side chain reacts and the main chain does not change. Therefore, the polymerization degree of P5K-2 is the same as that of 5,000 before hydrolysis.
  • FIG. 7 shows an SEM photograph of the obtained powder (I-2). It was confirmed to be an assembly of nanofibers.
  • Synthesis example 4 5 g of the powder (I-2) obtained in Synthesis Example 3 was heated in an electric furnace at 600 ° C. for 2 hours under air introduction conditions to remove the polyethyleneimine contained in the powder (I-2), and white A powder (II-2) was obtained. The specific surface area was 208 m 2 / g.
  • FIG. 8 shows an SEM photograph of the powder (II-2). It was suggested that there was no change in the nanofiber structure after firing.
  • Example 12 [Synthesis of superhydrophobic powder 5 adsorbed with polybutyl acrylate] 200 mg of polybutyl acrylate was dissolved in 20 mL of toluene, 200 mg of powder (I-2) was added to the solution, and the mixture was stirred at room temperature for 3 hours. After filtering the mixed solution, the obtained powder was washed with toluene three times. The powder after drying did not sink in water, but floated on the water surface. This was completely different from the tendency of the powder (I-2) before hydrophobization to completely sink in water.
  • the obtained powder was adhered to a double-sided tape to form a surface made of powder, and then the contact angle of water was measured.
  • the contact angle of water was 178.4 °. It was strongly suggested that the membrane state of the powder was superhydrophobic. This is designated as superhydrophobic powder 5.
  • Example 13 Synthesis of superhydrophobic powder 2 adsorbed with polymethyl methacrylate
  • a powder was obtained in the same manner as in Example 12 except that polymethyl methacrylate was used instead of polybutyl acrylate.
  • the powder after drying did not sink in water, but floated on the water surface.
  • Example 14 Synthesis of superhydrophobic powder 3 adsorbed with polyethyl methacrylate
  • a powder was obtained in the same manner as in Example 12 except that polyethyl methacrylate was used instead of polybutyl acrylate and powder (II-2) was used instead of powder (I-2). It was. The powder after drying did not sink in water, but floated on the water surface. This was completely different from the tendency of the powder (II-2) before hydrophobization to completely sink in water. As a result of analysis of thermogravimetric loss, the polymer adsorption rate was 12.9%.
  • FIG. 10 shows a TEM photograph of the powder 7. Although the silica surface of the powder (II-2) before polymer adsorption was smooth, it was observed that particles having a size of several nanometers spread over the silica surface after polymer adsorption. That is, it was confirmed that the polymer was in a state of forming a nanometer order thin film on the surface of the nanofiber.
  • FIG. 11 shows a thermal analysis chart of this powder.
  • the thermal decomposition temperature of the polymer alone was around 327 ° C., but the heat resistance of the polymer adsorbed on the powder 7 was improved and the thermal decomposition temperature was shifted to 409 ° C.
  • the polymer adsorbed on the nanofiber surface in the form of a nano thin film is considered to have formed a hybrid structure with silica on the nanometer order.
  • FIG. 12 shows a wet state of water droplets.
  • the powder obtained after soaking in water hexane and toluene was bonded to a double-sided tape, the water droplets were spherical and there was no wettability.
  • the powder obtained after being immersed in methanol, ethanol, chloroform, acetone, and THF was adhered to the double-sided tape, all were wet.
  • FIG. 13 shows the wet state.
  • the water droplets were in a round shape.
  • the surface was not easily wetted by water droplets, the water droplets did not spread as seen in FIG. 12, and the water droplets maintained an oval or spherical shape.
  • Example 15 Synthesis of superhydrophobic powder 8 adsorbed with fluorine-containing compound
  • a powder was obtained in the same manner as in Example 14 except that 200 mg of poly (2,3,4-heptafluorobutyl methacrylate) was used instead of polyethyl methacrylate.
  • the powder after drying did not sink in water, but floated on the water surface.
  • thermogravimetric loss the polymer adsorption rate was 9.8%. This is designated as superhydrophobic powder 8.
  • Example 16 Synthesis of superhydrophobic powder 9 adsorbed with tetradecylamine
  • powder was obtained in the same manner as in Example 14 except that tetradecylamine was used instead of polyethyl methacrylate and the stirring time at room temperature was 6 hours.
  • the powder after drying did not sink in water, but floated on the water surface.
  • the adsorption rate of tetradecylamine was 10.5%. This is designated as superhydrophobic powder 9.
  • Example 17 Synthesis of superhydrophobic powder 10 adsorbed with poly (ethyloxazoline)
  • a powder was obtained in the same manner as in Example 14 except that poly (ethyloxazoline) was used instead of polyethyl methacrylate.
  • the powder after drying did not sink in water, but floated on the water surface.
  • the adsorption rate of poly (ethyloxazoline) was 11.3%. This is designated as superhydrophobic powder 10.
  • Example 18 [Superhydrophobic membrane on filter paper using superhydrophobic powder 7 (dipping method)] After adding the superhydrophobic powder 7 (10 mg) obtained in Example 14 to 500 mg of an aqueous polyurethane resin (manufactured by DIC Corporation, nonionic, prepared by adding water to a nonvolatile content of 10%) and uniformly dispersing The filter paper was immersed in the dispersion for 15 minutes. After removing the filter paper and drying at room temperature, water drops were dropped on the filter paper, but the water drops blew completely.
  • an aqueous polyurethane resin manufactured by DIC Corporation, nonionic, prepared by adding water to a nonvolatile content of 10%
  • Example 19 [Superhydrophobic membrane on filter paper using superhydrophobic powder 7 (brush method)] The same dispersion used in Example 18 was brushed on the filter paper. When the surface contact angle was measured after drying at room temperature, the contact angle was 154 °. The filter paper did not get wet.
  • Example 20 [Superhydrophobic film on glass using superhydrophobic powder 7 (casting method)] A dispersion similar to that in Example 18 was cast on a glass slide using a bar coater. The cast film thus obtained was dried at room temperature and then the surface contact angle was measured. The contact angle was 166 °.
  • Example 21 [Superhydrophobic film on wood using superhydrophobic powder 7 (brush method)] The same dispersion used in Example 18 was brushed onto a wooden board that had not been surface-treated. After drying it at room temperature and dropping water drops, the water was completely repelled and the wood surface did not get wet.
  • Example 22 [Superhydrophobic film on cowhide using superhydrophobic powder 10 (dipping method)] A dispersion was prepared in the same manner as in Example 18 except that the superhydrophobic powder 10 obtained in Example 17 was used instead of the superhydrophobic powder 7 in Example 18. A cut-off piece of cowhide that was not surface-treated was immersed in the dispersion for 1 hour. After removing the cowhide and drying at room temperature, water droplets were dropped on it, but the water droplets completely repelled and the wettability was lost.
  • Example 23 [Superhydrophobic film on the inner wall of glass tube using superhydrophobic powder 6 (dipping method)]
  • a dispersion was obtained in the same manner as in Example 18 except that the superhydrophobic powder 6 obtained in Example 13 was used instead of the superhydrophobic powder 7.
  • the dispersion was sucked into a glass pipette (inner diameter 6 mm, length 8 cm) and held for 2 hours, and then the liquid was extruded. After the glass pipette was dried at 60 ° C., the test was performed by sucking water into the glass pipette and pushing out the water again. No water droplets adhered to the glass wall, and the absorbed water could be completely transferred to another container without reducing its weight.
  • the contact angle in the film state was measured in the same manner as in the example, and it was confirmed that all the powders were the same as the contact angle before being stirred in water and the superhydrophobicity was maintained.
  • the superhydrophobic powder of the present invention can be used for building bodies, car bodies, ship bodies, container structures, packages, glass products, pottery products (toilet bowls, entire bathrooms), pools, water pipes, electric wires, light bulbs, various carvers, etc. Applicable to protective film of structure. Furthermore, it can also be used for surface coating of household electrical appliances such as refrigerators, microwave ovens and washing machines, and electrical appliances for communication such as personal computers, televisions and mobile phones. It can also be used for energy conversion-related fuel cell devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

本発明は、シリカを主成分とする粉体であって、該粉体の表面における水の接触角が150°以上である超疎水性粉体を製造する方法と、それを用いる超疎水性表面を有する構造体に関する。詳しくは、有機物であるポリマーと無機物であるシリカとがナノメートルオーダーで複合化されてなる有機無機複合ナノファイバーの会合体表面にあるシリカ、又は該有機無機複合ナノファイバーを焼成してポリマーを除去した後のシリカに疎水性基を導入することで、該会合体からなる粉体を超疎水性にする製法、該製法で得られる超疎水性粉体、ならびにこれを固体基材表面に固定してなる、超疎水性表面を有する構造体を提供する。

Description

超疎水性粉体、超疎水性表面を有する構造体及びそれらの製造方法
 本発明は、疎水性基を有するシリカ系ナノファイバーの会合体を基本構造とする超疎水性粉体、これを用いる超疎水性表面を有する構造体、およびそれらの製造方法に関する。
 固体表面に水滴が接触した際、水滴の接触角が150°以上である場合には超疎水性と定義されている。接触角が70~150°の範囲は、疎水性と定義される。一般に疎水性は表面張力が低い分子残基で表面が被われることで発現するものであるが、超疎水性は表面張力が低い分子残基だけで発現させることは困難である。
 一方、自然界の生物には超疎水性を示すものが多い。例えば、蓮、稲、キャベツなどの葉は水滴を完全に弾く超疎水性(超撥水性)を有する。例えば、蓮の葉の超疎水性は葉の表面構造と深く関係していることが知られている。即ち、ナノファイバーが表面全体に広がりながら表層を形成し、その上にナノファイバーの会合体のようなミクロンサイズの凸起物が一定距離で最表面層を作りあげており、且つこれらのナノファイバーの表面に疎水性ワックスが存在することが知られている。このことは、超疎水性を発現するには表面荒さ、即ち、ナノ次元での表面構造・形状の制御が最重要であることを示唆する。
 蓮の効果とも言われる超疎水性発現の構造原理は、多くの人工蓮類似構造設計法の開発の指針となり、ナノ材料の進歩に伴い、この数年、多様な超疎水性材料が数多く開発されてきた。例えば、カーボンナノチューブを基材表面に規則的に配列させることで、接触角を170°以上に持ち上げることが報告されている(例えば、非特許文献1参照)。また、白金コートされたシリコン表面に、電気化学プロセスでポリピロールのナノファイバーを成長させ、表面接触角を170°以上にすることが報告されている(例えば、非特許文献2参照)。また、ガラス基材表面に400℃以上の温度で、酸化亜鉛のナノ結晶シーズ膜を形成させた後、その上でロッド状の酸化亜鉛のナノファイバーを無数に成長させることで、超疎水性を発現している(例えば、非特許文献3参照)。
 単純な方法としては、例えば、ポリプロピレンの溶液に一定の貧溶剤を加え、それを基材表面にキャストし、温度調整することにより、ポリプロピレンのナノ粒子からなるネットワーク構造を形成させ、それにより接触角を160°まで上げたことが報告されている(例えば、非特許文献4参照)。また、ケイ素、ホウ素、ナトリウムの酸化物からなるガラスに相分離構造を持たせ、それをさらに化学処理でエッチングすることにより、その表面に凹凸構造を誘導した後、最後に、表面にフッ素化合物を反応させることで超疎水性を発現できる(例えば、特許文献1参照。)。さらに、ポリアリールアミンとポリアクリル酸との積層膜を作製したのち、その表面を化学法で処理することで表面ポーラス構造を誘導し、その上にシリカナノ粒子を固定した後、最後にフッ素化アルキル基を有するシランカップリング剤で疎水化させることで、超疎水性界表面を構築することも知られている(例えば、特許文献2参照。)。
 多くの公知文献では、超疎水性膜及びそれらの作製法が頻繁に取り上げられているが、それらは基材表面での荒さ(即ち、ラフネス)を加工する手法に相当することが多く、その表面処理加工過程が煩雑になりやすく、コストも高い。また、有機ポリマーをベースにする超疎水性表面の場合、コストは低いが、得られた超疎水性表面の耐溶剤性、耐腐食性が低く、実用上の問題がある。
 粉体そのものを超疎水性(超撥水性)にしたり、また、その超疎水性粉体を用いて超疎水性膜を構成したりすることについての研究は極めて稀であるが、最近の1例を挙げると、2-3μmの大きさの酸化鉄(α-Fe)の粉体が、表面に花びら構造を有することで超疎水性を発現するようになることが見出されている(例えば、非特許文献5参照)。しかしながら、前記非特許文献5で提案された技術はその応用範囲が狭く、工業的に簡便な手法によるものではない。
 一方で、自然界における超疎水性の粉体としては、例えば、アメンボの足が超疎水性粉体の集合体に相当すると理解されている。アメンボの足の構造は超疎水性であり、それに起因して発生する水の浮力と表面張力が加わることで、その足の25倍以上の重さの体を水面に浮かばせることが出来、それに弾力が加わることでアメンボは水面を飛ぶように走ることができる(例えば、非特許文献6参照。)。超疎水性粉体の開発は産業上の利用価値が高く、特に自然界に大量の存在するケイ素化合物を原料とし簡便な製造方法で合成できるということになれば、その応用を更に広げることになり、期待の大きい課題である。
特表2008-508181号公報 米国特許出願公開第2006/029808号明細書
Sun et al.,Acc.Chem.Res.,2005,38,644-652 Li et al.,J.Mater.Chem.,2008,18,2276-2280 Feng et al.,J.Am.Chem.Soc.,2004,126,62-63 Erbil et al.,Science,2003,299,1377-1380 Cao et al., Appl. Phys. Lett., 2007, 91. 034102 Gao et al., Nature 2004, 432, 36
 本発明が解決しようとする課題は、シリカを主成分とする粉体であって、該粉体の表面における水の接触角が150°以上である超疎水性粉体を、簡便且つ再現性良く製造する方法と、それを用いる超疎水性表面を有する構造体を提供することにある。
 本発明者は、上記の課題を解決すべく鋭意研究を重ねた結果、有機物であるポリマーと無機物であるシリカとがナノメートルオーダーで複合化されてなる有機無機複合ナノファイバーの会合体表面にあるシリカ、又は該有機無機複合ナノファイバーを焼成してポリマーを除去した後のシリカには、疎水性基を簡単な手法で導入できること、この様にして得られた疎水性基を導入した会合体からなる粉体は超疎水性を発現することを見出し、本発明を完成するに至った。
 即ち、本発明は、有機無機複合ナノファイバーの会合体を含有する超疎水性粉体であって、該ナノファイバーが、直鎖状ポリエチレンイミン骨格を有するポリマーのフィラメントが、疎水性基を有するシリカで被覆されてなるものであることを特徴とする超疎水性粉体とその簡便な製造方法を提供するものである。
 更に本発明は、シリカを主構成成分とするナノファイバーの会合体の該シリカに疎水性基が導入されてなることを特徴とする超疎水性粉体とその製造方法を提供するものである。
 更に又本発明は、上記で得られた超疎水性粉体を固体基材上に固定してなる、超疎水性表面を有する構造体とその製造方法を提供するものである。
 本発明の超疎水性粉体は、任意材質、任意形状の基材表面に塗布することで、あらゆる固体表面を超疎水性に変換させることができる。これは水により錆びる、腐る、汚れる可能性がある金属、金属酸化物、繊維、木材、紙、皮革、プラスチックの保護膜に応用出来る。また、もっと具体的には、建築体、車体、船舶体、容器構造体、パッケージ、ガラス製品、陶器製品(便器、風呂場全体)、プール、水道管、電線、電球、各種カーバーなどの構造体の保護膜に応用出来る。さらに、冷蔵庫、電子レンジ、洗濯機などの家電製品およびパソコン、テレビ、携帯電話などの通信用電気製品の表面コーティングにも応用出来る。また、エネルギー変換関連の燃料電池デバイスにも応用可能である。
合成例1で得た粉体の走査型電子顕微鏡写真である。 合成例2で得た焼成後の粉体の走査型電子顕微鏡写真である。 実施例2で得られた超疎水性粉体2の走査型電子顕微鏡写真である。 実施例5でのろ紙上での超疎水性膜(上図)とその膜表面で形成した水滴の接触イメージである。 実施例7で作製した膜表面で形成した水滴の接触イメージである。 実施例7で作製した膜表面の走査型電子顕微鏡写真である。左図は大面積範囲での写真であり、右図は左図の円に囲まれた部分の拡大写真である。 合成例3で得た粉体(I-2)のSEM写真である。上図:低倍率。下図:高倍率。 合成例4で得た粉体(II-2)のSEM写真である。上図:低倍率。下図:高倍率。 実施例14における水接触角写真である 実施例14で得た超疎水性粉体7のTEM写真である。左図:ポリエチルメタクリレートが吸着される前、右図:吸着後 実施例14で得た超疎水性粉体7の熱分析(TG-DTA)チャートである。 実施例14で得た粉体を各種溶剤中処理後作製した膜表面での濡れ性写真である。 図12の粉体膜を80℃で2時間乾燥後、再び水の濡れ性を観察した写真である。
 本発明者らは既に、直鎖状ポリエチレンイミン骨格を有するポリマーが水性媒体中で自己組織化的に成長する結晶性会合体を反応場にし、溶液中でその会合体表面にてアルコキシシランを加水分解的に縮合させ、シリカを析出させることで、ナノファイバーを基本ユニットにした複雑形状のシリカ含有ナノ構造体(粉体)及びそれらの製法を提供した(特開2005-264421号公報、特開2005-336440号公報、特開2006-063097号公報、特開2007-051056号公報参照。)。
 この技術の基本原理は、溶液中で直鎖状ポリエチレンイミン骨格含有ポリマーの結晶性会合体を自発的に生長させることであり、一旦結晶性会合体ができたら、後は単に該結晶性会合体の分散液中にシリカソースを混合して、結晶性会合体表面上だけでのシリカの析出を自然に任せることになる(いわゆる、ゾルゲル反応)。これで得られるシリカ含有ナノ構造体は基本的にナノファバーを構造形成のユニットとするものであり、それらユニットの空間的配列によって全体の構造体の形状を誘導するため、ナノレベルの隙間が多く、表面積が大きい粉体である。
 このような粉体は、自然界での超疎水性を発現するに必要とする基本構造、即ち、ナノファイバーが集合して、マイクロメーター次元の大きさを形成することと非常に良く似ている。従って、この粉体表面を表面張力が低い化学残基で修飾さえすれば、超疎水性を発現することは可能であると考えられる。
 このような考え方をもとに、本発明者らは、直鎖状ポリエチレンイミン骨格を有するポリマーにより誘導されたナノファイバーを基本構造とするマイクロメーターオーダーのシリカ含有ナノ構造体(シリカを含有するナノメートルオーダーの基本単位からなる構造体のことを示す。)である粉体表面に疎水性基を導入することで、粉体そのものを超疎水性にすることができる事を見出した。以下、本発明について、詳細に記載する。
 なお、本願において、フィラメントとは、本発明で用いる直鎖状ポリエチレンイミン骨格を有するポリマー鎖中にある直鎖状ポリエチレンイミン骨格部分の複数が水分子の存在下で結晶化することにより、ポリマー鎖が相互に会合して繊維状に成長したものである。このフィラメントの表面でゾルゲル反応が起こることによって、該フィラメントがシリカで被覆された有機無機複合ナノファイバーが形成されるが、この反応時に複数の有機無機ナノファイバー間がシリカによって結合されたり、凝集したりすることによって、有機無機ナノファイバーの会合体であるシリカ含有ナノ構造体(粉体)が形成されることになる。
[直鎖状ポリエチレンイミン骨格(a)を有するポリマー(A)]
 本発明で用いる直鎖状ポリエチレンイミン骨格(a)を有するポリマー(A)としては、線状、星状、櫛状構造の単独重合体であっても、他の繰り返し単位を有する共重合体であっても良い。共重合体の場合には、該ポリマー(A)中の直鎖状ポリエチレンイミン骨格(a)のモル比が20%以上であることが、安定なフィラメントを形成できる点から好ましく、該ポリエチレンイミン骨格(a)の繰り返し単位数が10以上である、ブロック共重合体であることがより好ましい。
 前記直鎖状ポリエチレンイミン骨格(a)を有するポリマー(A)としては、結晶性会合体形成能が高いほど好ましい。従って、単独重合体であっても共重合体であっても、直鎖状ポリエチレンイミン骨格(a)部分に相当する分子量が500~1,000,000の範囲であることが好ましい。これら直鎖状ポリエチレンイミン骨格(a)を有するポリマー(A)は市販品または本発明者らがすでに開示した合成法(前記特許文献を参照。)により得ることができる。
[シリカ(B)]
 本発明で提供する超疎水性粉体は、前記直鎖状ポリエチレンイミン骨格(a)を有するポリマー(A)のフィラメントがシリカ(B)で被覆されてなる有機無機複合ナノファイバー(I)の会合体、又は当該有機無機複合ナノファイバー(I)の会合体から前記ポリマー(A)を焼成により除去して得られるシリカ(B)を主構成成分とするナノファイバー(II)の会合体を基本構造とする。
 前記シリカ(B)は、前記ポリマー(A)のフィラメントの存在下、該フィラメント表面でゾルゲル反応によって得られるものであり、該シリカ(B)の形成に必要なシリカソースとしては、例えば、アルコキシシラン類、水ガラス、ヘキサフルオロシリコンアンモニウム等を用いることができる。
 アルコキシシラン類としては、テトラメトキシシラン、メトキシシラン縮合体のオリゴマー、テトラエトキシシラン、エトキシシラン縮合体のオリゴマーを好適に用いることができる。さらに、アルキル置換アルコキシシラン類の、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、iso-プロピルトリメトキシシラン、iso-プロピルトリエトキシシラン等、更に、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトトリエトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、3,3,3-トリフルオロプロピルトリエトキシシラン、3-メタクリルオキシプロピルトリメトキシシラン、3-メタクリルオキシプロピルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、p-クロロメチルフェニルトリメトキシシラン、p-クロロメチルフェニルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン等を、単一で、又は混合して用いることができる。
 また、上記シリカソースに、他のアルコキシ金属化合物を混合して用いることもできる。例えば、テトラブトキシチタン、テトライソプロポキシチタン、または水性媒体中安定なチタニウムビス(アンモニウムラクテート)ジヒドロキシド水溶液、チタニウムビス(ラクテート)の水溶液、チタニウムビス(ラクテート)のプロパノール/水混合液、チタニウム(エチルアセトアセテート)ジイソプロポオキシド、硫酸チタン、ヘキサフルオロチタンアンモニウム等を用いることができる。
[金属イオン]
 前記有機無機複合ナノファイバー(I)中には金属イオンを安定に取り込むことができ、従って、金属イオンを含有する超疎水性粉体を得ることもできる。
 前記ポリマー(A)中の直鎖状ポリエチレンイミン骨格(a)は金属イオンに対して強い配位能力を有するため、金属イオンは該骨格中のエチレンイミン単位と配位結合して金属イオン錯体を形成する。該金属イオン錯体は金属イオンがエチレンイミン単位に配位されることにより得られるものであり、イオン結合等の過程と異なり、該金属イオンがカチオンでも、またはアニオンでも、エチレンイミン単位への配位により錯体を形成することができる。従って、金属イオンの金属種は、ポリマー(A)中のエチレンイミン単位と配位結合できるものであれば制限されず、アルカリ金属、アルカリ土類金属、遷移金属、半金属、ランタン系金属、ポリオキソメタレート類の金属化合物等のいずれでも良く、単独種であっても複数種が混合されていても良い。
 上記アルカリ金属としては、Li,Na,K,Cs等が挙げられ、該アルカリ金属のイオンの対アニオンとしては、Cl,Br,I,NO,SO,PO,ClO,PF,BF,FCSOなどが挙げられる。
 アルカリ土類金属としては、Mg,Ba,Ca等が挙げられる。
 遷移金属系の金属イオンとしては、それが遷移金属カチオン(Mn+)であっても、または遷移金属が酸素との結合からなる酸根アニオン(MO n-)、またはハロゲン類結合からなるアニオン(ML n-)であっても、好適に用いることができる。なお、本明細書において遷移金属とは、周期表第3族のSc,Y、及び、第4~12族で第4~6周期にある遷移金属元素を指す。
 遷移金属カチオンとしては、各種の遷移金属のカチオン(Mn+)、例えば、Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Y,Zr,Mo,Ru,Rh,Pd,Ag,Cd,W,Os,Ir,Pt,Au,Hgの一価、二価、三価または四価のカチオンなどが挙げられる。これら金属カチオンの対アニオンは、Cl,NO,SO、またはポリオキソメタレート類アニオン、あるいはカルボン酸類の有機アニオンのいずれであってもよい。ただし、Ag,Au,Ptなど、エチレンイミン骨格により還元されやすいものは、pHを酸性条件にする等、還元反応を抑制してイオン錯体を調製することが好ましい。
 また遷移金属アニオンとしては、各種の遷移金属アニオン(MO n-)、例えば、MnO,MoO,ReO,WO,RuO,CoO,CrO,VO,NiO,UOのアニオン等が挙げられる。
 本発明における金属イオンとしては、前記遷移金属アニオンが、ポリマー(A)中のエチレンイミン単位に配位した金属カチオンを介してシリカ(B)中に固定された、ポリオキソメタレート類の金属化合物の形態であってもよい。該ポリオキソメタレート類の具体例としては、遷移金属カチオンと組み合わせられたモリブデン酸塩、タングステン酸塩、バナジン酸塩類等を挙げることができる。
 さらに、各種の金属が含まれたアニオン(ML n-)、例えば、AuCl,PtCl,RhCl,ReF,NiF,CuF,RuCl,InCl等、金属がハロゲンに配位されたアニオンもイオン錯体形成に好適に用いることができる。
 また、半金属系イオンとしては、Al,Ga,In,Tl,Ge,Sn,Pb,Sb,Biのイオンが挙げられ、なかでもAl,Ga,In,Sn,Pb,Tlのイオンが好ましい。
 ランタン系金属イオンとしては、例えば、La,Eu,Gd,Yb,Euなどの3価のカチオンが挙げられる。
[金属ナノ粒子]
 上記した通り、本発明では金属イオンを有機無機複合ナノファイバー(I)に取り込むことができる。従って、これらの金属イオンのなかでも、還元反応により還元されやすい金属イオンは、金属ナノ粒子に変換させることで、金属ナノ粒子を含有した超疎水性粉体を得ることもできる。
 金属ナノ粒子の金属種としては、例えば、銅、銀、金、白金、パラジウム、マンガン、ニッケル、ロジウム、コバルト、ルテニウム、レニウム、モリブデン、鉄等が挙げられ、超疎水性粉体中の金属ナノ粒子は一種であっても、二種以上であってもよい。これら金属種の中でも、特に、銀、金、白金、パラジウムは、その金属イオンがエチレンイミン単位に配位された後、室温または加熱状態で自発的に還元されるため特に好ましい。
 超疎水性粉体中の金属ナノ粒子の大きさは、1~20nmの範囲に制御できる。また、金属ナノ粒子は、ポリマー(A)とシリカ(B)との有機無機複合ナノファイバー(I)の内部、または外表面に固定することができる。
[有機色素分子]
 ポリマー(A)中の直鎖状ポリエチレンイミン骨格(a)はアミノ基、ヒドロキシ基、カルボン酸基、スルホン酸基、リン酸基を有する化合物と、水素結合及び/又は静電気引力により、物理的な結合構造を構成することができる。従って、これらの官能基を有する有機色素分子等を超疎水性粉体中に含有させることが可能である。
 前記有機色素分子としては、単官能酸性化合物、または二官能以上の多官能酸性化合物を好適に用いることができる。
 具体的には、例えば、テトラフェニルポルフィリンテトラカルボン酸、ピレンジカルボン酸などの芳香族酸類、ナフタレンジスルホン酸、ピレンジスルホン酸、ピレンテトラスルホン酸、アンスラキノンジスルホン酸、テトラフェニルポルフィリンテトラスルホン酸、フタロシアニンテトラスルホン酸、ピペス(PIPES)などの芳香族または脂肪族のスルホン酸類、acid yellow,acid blue,acid red,direct blue,direct yellow,direct red系列のアゾ系染料等を挙げることができる。また、キサンテン骨格を有する色素、例えば、ローダミン、エリスロシン、エオシン系列の色素を用いることができる。
[有機無機複合ナノファイバー(I)]
 本発明において、有機無機複合ナノファイバー(I)の大きさは、用いるポリマー(A)の分子量、形状、直鎖状ポリエチレンイミン骨格(a)の含有率等、用いるシリカソースの種類や使用割合等によって調整することが可能であり、特に該有機無機複合ナノファイバー(I)の太さが10~100nm、アスペクト比が10以上であるものを容易に製造することができる。
 前記有機無機複合ナノファイバー(I)中の前記ポリマー(A)の含有率は5~30質量%に調整可能であり、該ポリマー(A)は前述の通り、フィラメントの形状として含まれている。
 前記有機無機複合ナノファイバー(I)はその生成過程(ゾルゲル反応時)において3次元空間でランダム配列し、2~100μmの大きさの会合体(シリカ含有ナノ構造体)を形成する。このような会合体からなる粉体の表面積は50~200m/gの範囲になる。
 有機無機複合ナノファイバー(I)及びその会合体の製造方法については、前記した本発明者がすでに提供した特許文献に記載されたいずれの手法であっても良い。
[シリカを主構成成分とするナノファイバー(II)]
 上述した有機無機複合ナノファイバー(I)の会合体を加熱焼成すると、形状を維持したまま、その内部に含まれていたポリマー(B)が除去され、シリカを主構成成分とするナノファイバー(II)の会合体を得ることができる。ここで、シリカを主構成成分とするということは、例えば、焼成が不十分でポリマー(A)、または併用した有機色素分子中の炭素原子等が炭化して含まれていたり、金属イオンや金属ナノ粒子を併用した場合においては、金属原子が含まれていたりすることがあるものの、ナノファイバーの形状はシリカ(B)によって形成されているこというものであり、シリカ(B)の含有率は通常90質量%以上、好ましくは98質量%以上である。
 焼成温度は500℃以上であればよく、エネルギー効率の点からは800℃以下であることが好ましい。焼成時間は温度により適宜に設定することができる。500℃よりもっと高い温度では1時間であればよく、500℃付近では2時間以上焼成することが望まれる。
 焼成して得られる会合体の構造は焼成前と変わりがなく、ナノファイバー(II)の太さが10~100nm、アスペクト比が10以上であり、この太さのナノファイバーが3次元空間でランダム配列してなる会合体は2~100μmの大きさを保ったままである。焼成後に得られる粉体の比表面積は焼成前より大きく、概ね100~400m/gである。
[疎水化処理]
 本発明では、超疎水性粉体とするために疎水性基をシリカ(B)に導入する必要がある。当該導入は、疎水性基を有する化合物との接触で容易に行なうことができ、化学結合による導入と、物理吸着による導入が挙げられる。
[化学結合による疎水性基の導入]
 前述の有機無機複合ナノファイバー(I)、又はシリカを主構成成分とするナノファイバー(II)の表面にはシリカ(B)が存在しており、その一部はシラノール基のまま存在している部分もある。このシラノール基と反応できる化合物であって、且つ疎水性基を有するものあれば、シリカ(B)に化学結合させることができる。従って、化学結合にて疎水性基を導入したものは、有機無機複合ナノファイバー(I)が、直鎖状ポリエチレンイミン骨格(a)を有するポリマー(A)のフィラメントが、疎水性基を有する化合物(X1)が化学結合しているシリカ(B)で被覆されてなる超疎水性粉体である。
 前記疎水性基としては、例えば、炭素数1~22のアルキル基、置換基を有していても良い芳香族基(置換基としては、炭素数1~22のアルキル基、フッ素化アルキル基、部分フッ素化アルキル基等の疎水性基)、炭素数1~22のフッ素化アルキル基、炭素数1~22の部分フッ素化アルキル基等が挙げられる。
 これらの疎水性基を有する化合物(X1)を効率的に前記ナノファイバー(I)又はナノファイバー(II)の会合体の表面のシリカ(B)に導入するためには、当該化合物(X1)が、疎水性基を有するシランカップリング剤(x)を単独、又は混合したものであることが好ましい。このとき、疎水性基を有するシランカップリング剤(x)との接触量を調整することによって、得られる粉体を疎水性~超疎水性と調整することも可能である。
 前記シランカップリング剤(x)として、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、iso-プロピルトリメトキシシラン、iso-プロピルトリエトキシシラン、ペンチルトリメトキシシラン、ヘキシルトリメトキシシラン等のアルキル基の炭素数が1~22までのアルキルトリメトキシシランまたはアルキルトリクロロシラン類が挙げられる。
 また、表面張力低下に有効なフッ素原子を有するものとして、(部分)フッ素化アルキル基を有するシランカップリング剤、例えば、3,3,3-トリフルオロプロピルトリメトキシシラン、トリデカフルオロ-1,1,2,2-テトラヒドロオクチル)トリクロロシラン等を用いることもできる。
 また、芳香族基を有するシランカップリング剤として、フェニルトリメトキシシラン、フェニルトリエトキシシラン、p-クロロメチルフェニルトリメトキシシラン、p-クロロメチルフェニルトリエトキシシラン等を、取り上げることができる。
[反応性官能基の導入]
 前述の化学結合によって超疎水性基を導入した超疎水性粉体は、これを任意形状・任意材質の固体基材上に固定しやすくするため、当該超疎水性粉体に反応性官能基を導入することが好ましい。この反応性官能基の導入は、前記した疎水性基の導入と同様の手法、即ち、反応性官能基を有するシランカップリング剤(y)との接触による手法が好ましい。
 反応性官能基を有するシランカップリング剤(y)としては、例えば、γ-メタクリロイルプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-ヒドロキシルエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリエトキシシラン、γ-(2-ヒドロキシルエチル)アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジエトキシシラン、γ-(2-ヒドロキシルエチル)アミノプロピルメチルジメトキシシラン、γ-(2-ヒドロキシルエチル)アミノプロピルメチルジエトキシシランまたはγ-(N,N-ジ-2-ヒドロキシルエチル)アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシランまたはγ-(N-フェニル)アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトフェニルトリメトキシシランなどの、(メタ)アクリロイル基、グリシジル基、アミノ基、ヒドロキシ基、メルカプト基を有すシランカップリング剤が挙げられ、単独でも、2種以上を併用しても良い。
 反応性官能基の導入割合としては特に限定されるものではないが、固体基材上に固定しやすい点と、超疎水性を保つこととのバランスを取る観点から、シリカ(B)に結合している疎水性基(X)と反応性官能基(Y)とのモル比(X)/(X+Y)が0.2~1の範囲であることが好ましい。
[化学結合で超疎水性基を導入した超疎水性粉体の製造方法]
 前述の超疎水性粉体の製造方法は、前記有機無機複合ナノファイバー(I)の会合体又はナノファイバー(II)の会合体を溶剤中に分散し、疎水性基を有する化合物と混合すればよく、好ましくは、疎水性基を有するシランカップリング剤(x)の溶液、又は疎水性基を有するシランカップリング剤(x)と反応性官能基を有するシランカップリング剤(y)とを含有する溶液と混合する方法である。
 疎水性基を有するシランカップリング剤(x)、反応性官能基を有するシランカップリング剤(y)はクロロホルム、塩化メチレン、シクロヘキサノン、キシレン、トルエン、エタノール、メタノールなどの溶剤に溶解させて用いることができる。これらの溶剤は単独または混合して用いることもできる。
 上記溶液中、シランカップリング剤(x)及び(y)の合計の濃度は1~5質量%であれば好適に用いることができ、特に1~5質量%アンモニア水のエタノール溶液と混合して用いることがより好ましい。混合する際の体積比としては、シランカップリング剤の溶液に対し、アンモニア水エタノール溶液は5~10倍量であれば好適である。
 疎水性基を有するシランカップリング剤(x)と反応性官能基を有するシランカップリング剤(y)とを用いる場合には、得られる超疎水性粉体に導入される疎水性基と反応性官能基とのモル比を前述の好ましい範囲にするため、モル比(x)/(x+y)が0.2~1の範囲であることが好ましい。
 ナノファイバー(I)又は(II)の会合体からなる粉体の分散液を上記混合溶液と混合することで、シランカップリング剤のシランが会合体表面にあるシリカ(B)にSi-O-Si結合で導入され、超疎水性粉体とすることができる。
 粉体中にポリマー(A)が含まれている、有機無機複合ナノファイバー(I)からなる会合体を用いる場合、上記溶液と混合する時間は、10~24時間であることが好ましい。又、ポリマー(A)を含まないナノファイバー(II)からなる会合体である粉末を用いる場合には、混合時間は2時間以上であれば、容易に疎水性基を導入することができる。一定時間攪拌混合を行なった後、得られた粉対を濾過または遠心分離して、固形分をトルエン、クロロホルム、ヘキサン、シクロヘキサンなどの溶剤で洗浄し、それを常温乾燥させることで本発明の超疎水性粉体を得ることができる。
[物理吸着による疎水性基の導入]
 前述のナノファイバー(I)又はナノファイバー(II)の会合体表面を形成するシリカには、疎水性基を有する化合物(X2)を物理吸着する能力がある。この能力を応用することで、ナノファイバー(I)又はナノファイバー(II)の表面の自由エネルギーを低下させ、超疎水性粉体とすることができる。
 前記疎水性基を有する化合物(X2)としては、例えば、疎水性ポリマー(X2-1)、両親媒性ポリマー(X2-2)、長鎖アルキル基含有化合物(X2-3)、またはフッ素含有化合物(X2-4)が挙げられる。尚、前記疎水性基を有する化合物(X2)としては、その化合物中に疎水性を示す部分(基)があるか、又は化合物として疎水性を示すものであればよく、例えば、後述するポリプロピレンオキシド等においては明確な「疎水性基」が存在していないが、水と任意の割合で混和することがない点において疎水性を示す化合物であり、本願では疎水性基を有する化合物(X2)として包含する。
 前記疎水性ポリマー(X2-1)としては、例えば、ポリ(メタ)アクリレート類を好適に用いることができる。具体的には、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート、ポリブチル(メタ)アクリレート、ポリベンジル(メタ)アクリレート、ポリシクロヘキシル(メタ)アクリレート、ポリt-ブチル(メタ)アクリレート、ポリグリシジル(メタ)アクリレート、ポリペンタフルオロプロピル(メタ)アクリレート等であり、また、汎用のポリスチレン、ポリ塩化ビニル、ポリビニル酢酸エステル、エポキシ樹脂、ポリエステル、ポリイミド、ポリカーボネート等の、水に容易に溶解しないポリマーを挙げることができる。
 前記両親媒性ポリマー(X2-2)としては、例えば、ポリアクリルアミドであるポリN-イソブチルアクリルアミド、ポリN、N-ジメチルアクリルアミド等、また、ポリオキサゾリンであるポリメチルオキサゾリン、ポリエチルオキサゾリン、ポリビニルオキサゾリン、ポリフェニルオキサゾリン、ポリプロピレンオキシド等を好適に用いることができる。
 前記長鎖アルキル基含有化合物(X2-3)としては、炭素数6~22のアルキル基を有する化合物であるアルキルアミン、アルキルカルボン酸、アルキルスルホン酸、アルキルリン酸などを好適に用いることができる。
 前記フッ素含有化合物(X2-4)として、例えば、2,3,4-ヘプタフルオロブチルメタクリレート、DIC株式会社製のFLUONATE K-700,K702,K703,K-704,K-705,K-707,K-708などを好適に用いることができる。
[物理吸着で超疎水性基を導入した超疎水性粉体の製造方法]
 前述の表面エネルギーを低下させうる疎水性基を有する化合物(X2)を効率的に前記ナノファイバー(I)又はナノファイバー(II)の会合体の表面のシリカ(B)に物理吸着させるためには、これらの化合物を単独、又は数種類を溶剤中に溶解させ、その溶液中にナノファイバー(I)又はナノファイバー(II)を分散し、室温、例えば20~30℃で1~24時間攪拌することで十分可能である。
 前記溶剤としては、前記化合物(X2)を溶解させることができると同時に、シリカとも親和性を保つことが望ましい。具体的には、トルエン、四水素化フラン、塩化メチレン、クロロホルム、メチルエチルケトン、シクロヘキサノン、キシレンなどを挙げることができる。
 上記溶液中、前記化合物(X2)の濃度は1~5質量%であれば好適に用いることができる。その際、化合物(X2)とナノファイバー(I)または(II)の質量比(X2)/(I)又は(II)を5/100~100/100にすることが好ましい。このとき、ナノファイバー(I)又は(II)の濃度が1~10質量%になるように、前述の溶剤を適宜追加することが好ましい。或いは、予めナノファイバー(I)又は(II)を、化合物(X2)を分散させた溶剤と混和する溶剤に分散させておいてから、前記化合物(X2)の溶剤に添加し攪拌する方法であっても良い。
 一定時間攪拌混合を行なった後、混合物を濾過または遠心分離して、固形分をトルエン、クロロホルム、ヘキサン、シクロヘキサンなどの溶剤で洗浄し、それを常温乾燥させることで本発明の超疎水性粉体を得ることができる。
 上記の手法で得られる本発明の超疎水性粉体は、水の濡れ性が全くなく、水に分散しても粉体として水面に浮かぶことしかできない。これは疎水性基の導入前では、水中に完全に沈むことと全く異なるものである。
[超疎水性粉体を用いる超疎水性表面]
 本発明の超疎水性粉体を固体基材表面に接着固定することで超疎水性表面を有する構造体を得ることができる。接着固定は、該粉体をポリマー溶液、シリカゾル液、または市販の塗料、接着剤などと混合し、その混合液を基材表面に塗布し、必要に応じて乾燥等を行なうことで容易に実現できる。
 上記超疎水性表面は、超疎水性粉体が塗膜表面に固定された状態である。即ち、ポリマーまたはシリカゾル等がバインダーとして連続膜を形成し、その連続膜表面に本発明の超疎水性粉体に由来する構造が一定間隔で分布していることを特徴とする。
 また、上記バインダー層に用いることができるポリマーは、疎水性のポリマーであれば特に限定せず用いることができる。疎水性ポリマーとしては、例えば、ポリスチレン、ポリビニルクロライド、ポリメタクリレート、ポリアクリレート、ポリカーボネート、ポリエステル、エポキシ樹脂などを取り上げることができる。
 本発明の超疎水性粉体の中でも、前述の反応性官能基を化学結合にて導入した粉体においては、該反応性官能基がグリシジル基やアミノ基の場合、エポキシ樹脂をバインダー樹脂とすることによって、得られる塗膜表面に強固に固定することが可能となる。また、反応性官能基が(メタ)アクリロイル基である場合には、(メタ)アクリロイル基を有するモノマーを併用することによって、UV硬化によって強固に固定することができる。そのほか、超疎水性粉体表面に導入した反応性官能基の種類に応じて、バインダー樹脂を選択することで、安定性の高い超疎水性表面を有する構造体を得ることが可能となる。
 さらに、上記バインダー層としては、アルコールに分散された状態のシリカゾル、金属酸化物ゾルなどを用いることができる。この際、アルコール類としては、メタノール、エタノール、イソプロパノールなどを取り上げることが出来る。
 また、上記塗膜のバインダー層としては、通常市販の塗料、または市販の接着剤を用いることもできる。
 上記で得られる超疎水性表面の接触角は150~179°の範囲で変えることができる。表面における超疎水性粉体の密度が高ければ高いほど、接触角は向上する。目的とする疎水性のレベルがこれよりも低い、例えば、一般的な疎水性レベルである接触角70~150°の表面を得るためには、本発明の超疎水性粉体の使用割合を下げ、該粉体の密度を下げれば良いことは勿論である。
 上記固体基材としては、バインダー層に用いる材料に応じて選択可能であり、例えば、ガラス、金属、金属酸化物、木材、紙、繊維、プラスチック、ゴム、皮革等が挙げられ、その形状としても特に限定されるものではなく、ポリマー溶液やシリカゾルが塗布できる形状のものであれば良い。
 超疎水性粉体を固体基材表面に固定接着する方法としても、特に限定することがなく、該粉体を含む塗液をスピンコーター、バーコーター、ブラシング、スプレーなどの通常の塗布方法で適宜塗布すればよい。
 また、塗膜を形成するバインダー層の性質に合わせ、塗布して得られる膜をUV硬化、熱硬化、自然乾燥などの工程で硬化することもできる。
 本発明の超疎水性粉体は水以外の有機溶剤には濡れやすく、容易に分散できる。従って、バインダーを溶解または分散できる媒体としては、水以外の溶剤類であればよく、有機溶剤と水との混合媒体でも用いることができる。
 表面作製用の塗液中、バインダー構成部分と超疎水性粉体部分との割合としては、バインダー/粉体=60/50~99/1(質量比)の範囲であればよく、その組成比の範囲で塗液の固形分濃度を適宜に決めることができる。
 特に、疎水性表面を作製する際、超疎水性粉体は塗膜の表面に一定に露出状態にしなければならない。そのため、塗膜の厚さを一定範囲、例えば、0.1~20μmにすることが望ましい。塗膜が薄いほど、粉体が塗膜表面で突起することになり、水の接触角を大きくすることができる。
 また、塗膜表面に露出する粉体同士の水平距離は膜全体の超疎水性発現にとっては重要な構造要素である。粉体構造同士の水平距離は1~20μmであれば超疎水性を充分発現できるが、それ以上の距離でも水の接触角を150°程度まで高くすることもでき、目的とする用途によって、適宜調整することが好ましい。
 以下、実施例により本発明をさらに詳しく説明する。なお、特に断わりがない限り、「%」は「質量%」を表わす。
[走査電子顕微鏡によるナノファイバーの会合体や粉体の形状分析]
 単離乾燥した会合体や粉体を両面テープにてサンプル支持台に固定し、それをキーエンス製表面観察装置VE-9800にて観察した。
[透過電子顕微鏡によるナノ構造体の観察]
 粉末状態のサンプルをメタノール中に分散し、それを銅グリッドに乗せ、日本電子株式会社製透過型電子顕微鏡「JEM-2200FS」にて観察した。
[接触角測定]
 接触角は自動接触角計Contact Angle System OCA (Dataphysics社製)により測定した。
[示差熱重量分析]
 シリカナノファイバーに吸着された疎水性基を有する化合物(X)の含有率をTG-DTA 6300 (SII Nano Technology Inc社製)により測定した。
[比表面積測定]
 比表面積はFlow Sorb II 2300(Micrometrics社製)により測定した。
 合成例1
[有機無機複合ナノファイバー(I)の会合体の合成]
 特許文献(特開2005-264421号公報、特開2005-336440号公報、特開2006-063097号公報、特開2007-051056号公報)に開示した方法により、形状が異なる粉体を作製した。
 市販のポリエチルオキサゾリン(数平均分子量500,000、平均重合度5,000、Aldrich社製)5gを、5Mの塩酸水溶液20mLに溶解させた。その溶液をオイルバスにて90℃に加熱し、その温度で10時間攪拌した。反応液にアセトン50mLを加え、ポリマーを完全に沈殿させ、それを濾過し、メタノールで3回洗浄し、白色のポリエチレンイミンの粉末を得た。得られた粉末をH-NMR(重水)にて同定したところ、ポリエチルオキサゾリンの側鎖エチル基に由来したピーク1.2ppm(CH)と2.3ppm(CH)が完全に消失していることが確認された。即ち、ポリエチルオキサゾリンが完全に加水分解され、ポリエチレンイミンに変換されたことが示された。
 その粉末を5mLの蒸留水に溶解し、攪拌しながら、その溶液に15%のアンモニア水50mLを滴下した。その混合液を一晩放置した後、沈殿した粉末を濾過し、その粉末を冷水で3回洗浄した。洗浄後の粉末をデシケータ中で室温(25℃)乾燥し、線状のポリエチレンイミン(P5K-1)を得た。収量は4.5g(結晶水含有)であった。ポリオキサゾリンの加水分解により得られるポリエチレンイミンは、側鎖だけが反応し、主鎖には変化がない。従って、P5K-1の重合度は加水分解前の5,000と同様である。
 一定量のP5K-1を蒸留水中に混合し、それを90℃に加熱し透明溶液を得た後、全体3%の水溶液に調製した。該水溶液を室温で自然冷却し、真っ白のP5K-1の会合体液を得た。攪拌しながら、その会合体液100mL中に、70mLのTMOS(テトラメトキシシラン)のエタノール溶液(体積濃度50%)を加え、室温で1時間攪拌続けた。析出した沈殿物をろ過し、それをエタノールで3回洗浄した後、40℃で加熱下乾燥することにより、粉体(I-1)15gを得た。図1に得られた粉体(I-1)のSEM写真を示す。ナノファイバーの会合体であることを確認した。
 これで得た粉体(I-1)の熱重量損失分析(SII Nano Technology Inc社製のTG/DTA6300)から、ポリマー含有量が7%であることを確認した。また、比表面積測定(Micrometrics社製 Flow Sorb II 2300)を行なった結果、105m/gであった。
 合成例2
[シリカを主構成成分とするナノファイバー(II)の会合体の合成]
 合成例1で得た粉体(I-1)5gを空気導入条件下、電気炉にて600℃、2時間加熱し、粉体(I-1)に含まれたポリエチレンイミンを除去し、白い粉体(II-1)を得た。比表面積は187m/gであった。図2に粉体(II-1)のSEM写真を示した。焼成後のナノファイバー構造には変化がないことが示唆された。
 実施例1
[超疎水性粉体1の合成]
 2%アンモニアのエタノール溶液50mLと20%デシルトリメトキシシラン(DTMS)のクロロホルム溶液5mLとを混合し、その混合液に0.5gの粉体(I-1)を加え、室温で24時間攪拌した。反応液をろ過後、得られた粉末をエタノールで3回洗浄した。乾燥後の粉末は水中では全く沈むことなく、水面で浮かぶ状態であった。これは疎水化処理前の粉体(I-1)が水中に完全に沈む傾向と全く異なった。
 得られた粉末を両面テープに接着させ、粉体からなる表面を形成させた後、それの接触角を測定したところ、水の接触角は177.5°であった。粉末の膜状態で、超疎水性であることが強く示唆された。これを超疎水性粉体1とする。
 実施例2
[超疎水性粉体2の合成]
 2%アンモニアのエタノール溶液50mLと20wt%デシルトリメトキシシラン(DTMS)のクロロホルム溶液5mL混合し、その混合液に0.5gの粉体(II-1)を加え、室温で24時間攪拌した。反応液をろ過後、得られた粉末をエタノールで3回洗浄した。乾燥後の粉末の(150~800℃間)熱重量損失は8.4%であった。これは、シランカップリング剤導入による有機残基の量に相当する。この粉末は水中では全く沈むことなく、水面で浮かぶ状態であった。このことは疎水化処理前の粉体(II-1)が水中で完全に沈む傾向であったことと全く異なった。図3に粉体のSEM写真を示した。
 得られた粉末を両面テープに接着させ、粉体からなる表面を形成させた後、それの接触角を測定したところ、水の接触角は179°を超えた。粉体の膜状態で、超疎水性であることが強く示唆された。これを超疎水性粉体2とする。
 実施例3
[超疎水性粉体3の合成]
 2%アンモニアのエタノール溶液50mLと6%シランカップリング剤[5%デシルトリメトキシシラン(DTMS)と1%のアミノプロピルトリメトキシシラン(ATMS)]が含まれたクロロホルム溶液5mL混合し、その混合液に0.5gの粉体(II-1)を加え、室温で24時間攪拌した。反応液をろ過後、得られた粉末をエタノールで3回洗浄した。乾燥後の粉末の(150~800℃間)熱重量損失は7.5%であった。該粉末は水中では全く沈むことなく、水面で浮かぶ状態であった。
 得られた粉末を両面テープに接着させ、粉体からなる表面を形成させた後、それの接触角を測定したところ、水の接触角は168°であった。粉体の膜状態で、超疎水性であることが強く示唆された。これを超疎水性粉体3とする。
 実施例4
[超疎水性粉体4の合成]
 2%アンモニアのエタノール溶液50mLと6%シランカップリング剤[5%デシルトリメトキシシラン(DTMS)と1%のメタクリロイルプロピルトリメトキシシラン(ATMS)]が含まれたクロロホルム溶液5mL混合し、その混合液に0.5gの粉体(II-1)を加え、室温で24時間攪拌した。反応液をろ過後、得られた粉末をエタノールで3回洗浄した。乾燥後の粉末の(150~800℃間)熱重量損失は8.3%であった。乾燥後の粉末は水中では全く沈むことなく、水面で浮かぶ状態であった。
 得られた粉体を両面テープに接着させ、粉体からなる表面を形成させた後、それの接触角を測定したところ、水の接触角は176°であった。粉体の膜状態で、超疎水性であることが強く示唆された。これを超疎水性粉体4とする。
 実施例5
[超疎水性粉体2を用いたろ紙上での超疎水性膜(浸漬法)]
 市販のポリスチレン(Aldrich社製、Mw = 45,000)を用い、1%のトルエン溶液を調製した。0.5mLの該溶液中に、10mgの超疎水性粉体2を加え、均一に分散した後、その分散液にろ紙を15分間浸漬した。ろ紙を取り出し、室温乾燥後、ろ紙の上に水滴を落としたが、水滴は完全に弾けた。接触角は165.5°であった。図4に塗膜と接触イメージを示した。
 実施例6
[超疎水性粉体2を用いたろ紙上での超疎水性膜(ブラシ法)]
 実施例5で用いた同様な分散液をろ紙上にブラシで塗った。それを室温乾燥した後、表面接触角を測定したところ、接触角は178°であった。ろ紙は水にぬれることがなかった。
 実施例7
[超疎水性粉体2を用いたガラス上での超疎水性膜(キャスト法)]
 実施例5と同様な分散液を、バーコーターを用い、ガラススライド上にキャストした。これで得たキャスト膜を室温乾燥した後、表面接触角を測定したところ、接触角は179.6°(15μL水滴)であった(図5)。
 このガラス表面をSEMにて観察した(図6)。SEM写真イメージから、膜表面には粉体由来の粒粒が固定された状態で広がっていることがわかる。拡大イメージからは、粉体は5μm以上の間隔で分散していることがわかる。
 実施例8
[超疎水性粉体2を用いた木材上での超疎水性膜(ブラシ法)]
 実施例5で用いた同様な分散液を表面処理されていない木の板にブラシで塗った。それを室温乾燥した後、水滴を落としたところ、水は完全に弾かれ、木材表面は濡れなかった。
 実施例9
[超疎水性粉体2を用いた牛革上での超疎水性膜(浸漬法)]
 市販のポリメチルメタクリレート(Aldrich社製、Mw=120,000 メーカー・品番)を用い、1%のクロロホルム溶液を調製した。0.5mLの該溶液中に、10mgの超疎水性粉体2を加え、均一に分散した後、その分散液に表面処理されていない牛革の切り落としを1時間浸漬した。牛革を取り出し、室温乾燥後、その上に水滴を落としたが、水滴は完全に弾け、濡れ性はなくなった。
 実施例10
[超疎水性粉体2を用いたステンレス板上での超疎水性膜(ブラシ法)]
 実施例9で用いた同様な分散液をステンレスシャーレ(タキザワ理化製、50×50×0.6mm)にブラシで塗った。それを室温乾燥した後、水滴を落としたところ、水は完全に弾かれ、金属表面は濡れなかった。
 実施例11
[超疎水性粉体2を用いたガラス管内壁での超疎水性膜(浸漬法)]
 実施例9で用いた同様な分散液をガラスピペット(内径6mm、長さ8cm)に吸い取り、それを2時間保持した後、液を押し出した。ガラスピペットを室温で乾燥後、それに水を吸い取って、再び水を押し出すテストを行なった。ガラス壁には水滴が全く付着せず、吸い取った水は重さ低下なしに他の容器に完全移動できた。
 比較として、処理していないガラスピペットを用いたときでは、水を吸い取った後、水を押し出すと必ず壁に水滴が付着していることを確認した。
 合成例3
 市販のポリエチルオキサゾリン(数平均分子量500,000、平均重合度5,000、Aldrich社製)100gを、5Mの塩酸水溶液300mLに溶解させた。その溶液をオイルバスにて90℃に加熱し、その温度で10時間攪拌した。反応液にアセトン50mLを加え、ポリマーを完全に沈殿させ、それを濾過し、メタノールで3回洗浄し、白色のポリエチレンイミンの粉末を得た。得られた粉末をH-NMR(重水)にて同定したところ、ポリエチルオキサゾリンの側鎖エチル基に由来したピーク1.2ppm(CH)と2.3ppm(CH)が完全に消失していることが確認された。即ち、ポリエチルオキサゾリンが完全に加水分解され、ポリエチレンイミンに変換されたことが示された。
 その粉末を100mLの蒸留水に溶解し、攪拌しながら、その溶液に15%のアンモニア水500mLを滴下した。その混合液を一晩放置した後、沈殿した粉末を濾過し、その粉末を冷水で3回洗浄した。洗浄後の粉末をデシケータ中で室温(25℃)乾燥し、線状のポリエチレンイミン(P5K-2)を得た。収量は94g(結晶水含有)であった。ポリオキサゾリンの加水分解により得られるポリエチレンイミンは、側鎖だけが反応し、主鎖には変化がない。従って、P5K-2の重合度は加水分解前の5,000と同様である。
 一定量のP5K-2を蒸留水中に混合し、それを90℃に加熱し透明溶液を得た後、全体を3%の水溶液に調製した。該水溶液を室温で自然冷却し、真っ白のP5K-2の会合体液を得た。攪拌しながら、その会合体液100mL中に、70mLのMS51(メトキシシランの5量体、)のエタノール溶液(体積濃度50%)を加え、室温で1時間攪拌を続けた。析出した沈殿物をろ過し、それをエタノールで3回洗浄した後、40℃で加熱下乾燥することにより、16gの粉体(I-2)を得た。図7に得られた粉体(I-2)のSEM写真を示す。ナノファイバーの会合体であることを確認した。
 前記で得た粉体の熱重量損失分析から、ポリエチレンイミンの含有率が7%であることを確認した。また、比表面積測定を行なった結果、132m/gであった。
 合成例4
 合成例3で得た粉体(I-2)5gを空気導入条件下、電気炉にて600℃、2時間加熱し、粉体(I-2)に含まれたポリエチレンイミンを除去し、白い粉体(II-2)を得た。比表面積は208m/gであった。図8に粉体(II-2)のSEM写真を示した。焼成後のナノファイバー構造には変化がないことが示唆された。
 実施例12
[ポリブチルアクリレートが吸着した超疎水性粉体5の合成]
 ポリブチルアクリレート200mgを20mLのトルエンに溶解し、その溶液に200mgの粉体(I-2)を加え、その混合物を室温にて3時間攪拌した。混合液をろ過後、得られた粉体をトルエンで3回洗浄した。乾燥後の粉体は水中では沈むことなく、水面で浮かぶ状態であった。これは疎水化処理前の粉体(I-2)が水中に完全に沈む傾向と全く異なった。
 得られた粉体を両面テープに接着させ、粉体からなる表面を形成させた後、それの接触角を測定したところ、水の接触角は178.4°であった。粉体の膜状態で、超疎水性であることが強く示唆された。これを超疎水性粉体5とする。
 実施例13
[ポリメチルメタクリレートが吸着した超疎水性粉体2の合成]
 実施例12において、ポリブチルアクリレートの代わりにポリメチルメタクリレートを用いる以外は、実施例12と同様にして粉体を得た。乾燥後の粉末は水中では沈むことなく、水面で浮かぶ状態であった。
 得られた粉体を用いて実施例12と同様にして水の接触角を測定したところ、174°を超えた。粉体の膜状態で、超疎水性であることが強く示唆された。これを超疎水性粉体6とする。
 実施例14
[ポリエチルメタクリレートが吸着した超疎水性粉体3の合成]
 実施例12において、ポリブチルアクリレートの代わりにポリエチルメタクリレートを用い、粉体(I-2)の代わりに粉体(II-2)を用いる以外は、実施例12と同様にして粉体を得た。乾燥後の粉体は水中では沈むことなく、水面で浮かぶ状態であった。これは疎水化処理前の粉体(II-2)が水中に完全に沈む傾向と全く異なった。熱重量損失の分析結果、ポリマーの吸着率が12.9%であった。
 得られた粉末を用いて実施例12と同様にして水の接触角を測定したところ水の接触角は179.7°であった(図9を参照)粉体の膜状態で、超疎水性であることが強く示唆された。これを超疎水性粉体7とする。
 図10にこの粉体7のTEM写真を示した。ポリマー吸着前の粉体(II-2)のシリカ表面は平滑であったが、ポリマー吸着後ではシリカ表面に数ナノメートルの大きさの粒が全体に広がっていることが観察された。即ち、ポリマーはナノファイバーの表面にナノメートルオーダーの薄膜を形成している状態であることを確認できた。
 図11には、この粉体の熱分析チャートを示した。ポリマー単独の熱分解温度は327℃あたりであるが、粉体7に吸着されたポリマーの耐熱性が向上し、熱分解温度は409℃にシフトした。ナノファイバー表面にナノ薄膜状態で吸着したポリマーは、シリカとナノメートルオーダーでハイブリッド構造を形成したと考えられる。
 この粉体7を種々の溶剤に1週間浸漬した後、粉体を濾過、室温乾燥した。処理後の粉体を両面テープに接着させてから、その上に水滴を落とし、濡れ性を調べた。図12に水滴の濡れ状態を示した。水、ヘキサン、トルエンに浸漬後得られた粉体を両面テープに接着した表面では、水滴が球状状態で、濡れ性が全くなかった。しかしながら、メタノール、エタノール、クロロホルム、アセトン、THFに浸漬後得られた粉体を両面テープに接着した表面では、いずれも水に濡れる状態であった。
 上記濡れ性をチェックした後のテープを乾燥機中放置し、80℃で2時間加熱した。それを取り出し、室温状態で再び濡れ性を調べた。図13に濡れ状態を示した。水、ヘキサン、トルエンに浸漬後の系では、依然濡れる傾向はまったくなく、水滴はまん丸の状態であった。メタノール、エタノール、クロロホルム、アセトン、THFに浸漬後の系でも、表面は水滴に濡れにくく、図12で見えたような水滴の広がりはなく、水滴は楕円状または球状を維持した。
 上記図12と図13の結果から、粉体7を非極性または極性溶剤中浸漬しても、表面吸着のポリエチルメタクリレートは脱離しないことを強く示唆する。極性溶剤中浸漬後室温で乾燥した場合、極性溶剤によりシリカナノファイバー表面に吸着したポリマーの微小構造ドメインの表面エネルギーにやや変化が生じ、それが濡れ性を増すことになるが、それを加熱処理することで、表面エネルギーは元の低下状態に回復し、濡れ性を防ぐことになることを強く示唆する。
 実施例15
[フッ素含有化合物が吸着した超疎水性粉体8の合成]
 実施例14において、ポリエチルメタクリレートの代わりにポリ(2,3,4-ヘプタフルオロブチルメタクリレート)200mgを用いる以外は、実施例14と同様にして粉体を得た。乾燥後の粉体は水中では沈むことなく、水面で浮かぶ状態であった。熱重量損失の分析結果、ポリマーの吸着率が9.8%であった。これを超疎水性粉体8とする。
 得られた粉体8を用いて実施例12と同様にして水の接触角を測定したところ179.6°であった。また、30%エチルアルコール含有のアルコール水溶液でも接触角が168°であった。さらに、50%アルコール水溶液でも表面が濡れなかった。尚、実施例14で得られた粉体7では30%アルコール水溶液の接触角は48°である。フッ素原子による表面自由エネルギー低下能はアルコールに対しても発現され、弾き効果を示した結果と考えられる。
 実施例16
[テトラデシルアミンが吸着した超疎水性粉体9の合成]
 実施例14において、ポリエチルメタクリレートの代わりにテトラデシルアミンを用い、室温での攪拌時間を6時間とする以外は、実施例14と同様にして粉体を得た。乾燥後の粉末は水中では沈むことなく、水面で浮かぶ状態であった。熱重量損失の分析結果、テトラデシルアミンの吸着率は10.5%であった。これを超疎水性粉体9とする。
 得られた粉体9を用いて実施例12と同様にして水の接触角を測定したところ175°であった。粉体の膜状態で、超疎水性であることが強く示唆された。
 実施例17
[ポリ(エチルオキサゾリン)が吸着した超疎水性粉体10の合成]
 実施例14において、ポリエチルメタクリレートの代わりにポリ(エチルオキサゾリン)を用いる以外は実施例14と同様にして粉体を得た。乾燥後の粉末は水中では沈むことなく、水面で浮かぶ状態であった。熱重量損失の分析結果、ポリ(エチルオキサゾリン)の吸着率は11.3%であった。これを超疎水性粉体10とする。
 得られた粉体10を用いて実施例12と同様にして水の接触角を測定したところ167°であった。粉体の膜状態で、超疎水性であることが強く示唆された。ポリ(エチルオキサゾリン)は水にも有機溶剤にも溶解する両親媒性ポリマーであるが、粉末(II-2)に吸着されるとポリマーの極性部分がシリカと強く結合し、側鎖のエチル基が表面に向くことで、超疎水性を発現することになると考えられる。
 実施例18
[超疎水性粉体7を用いたろ紙上での超疎水性膜(浸漬法)]
 水性ポリウレタン樹脂(DIC株式会社製、ノニオン系、不揮発分10%に水を添加して調製)500mgに実施例14で得られた超疎水性粉体7(10mg)を加え、均一に分散した後、その分散液にろ紙を15分間浸漬した。ろ紙を取り出し、室温乾燥後、ろ紙の上に水滴を落としたが、水滴は完全に弾けた。
 実施例19
[超疎水性粉体7を用いたろ紙上での超疎水性膜(ブラシ法)]
 実施例18で用いた同様な分散液をろ紙上にブラシで塗った。それを室温乾燥した後、表面接触角を測定したところ、接触角は154°であった。ろ紙は水にぬれることがなかった。
 実施例20
[超疎水性粉体7を用いたガラス上での超疎水性膜(キャスト法)]
 実施例18と同様な分散液を、バーコーターを用い、ガラススライド上にキャストした。これで得たキャスト膜を室温乾燥した後、表面接触角を測定したところ、接触角は166°であった。
 実施例21
[超疎水性粉体7を用いた木材上での超疎水性膜(ブラシ法)]
 実施例18で用いた同様な分散液を表面処理されていない木の板にブラシで塗った。それを室温乾燥した後、水滴を落としたところ、水は完全に弾かれ、木材表面は濡れなかった。
 実施例22
[超疎水性粉体10を用いた牛革上での超疎水性膜(浸漬法)]
 実施例18において、超疎水性粉体7の代わりに実施例17で得られた超疎水性粉体10を用いる以外は実施例18と同様にして分散液を調製した。その分散液に表面処理されていない牛革の切り落としを1時間浸漬した。牛革を取り出し、室温乾燥後、その上に水滴を落としたが、水滴は完全に弾け、濡れ性はなくなった。
 実施例23
[超疎水性粉体6を用いたガラス管内壁での超疎水性膜(浸漬法)]
 実施例18において、超疎水性粉体7の代わりに実施例13で得られた超疎水性粉体6を用いる以外は実施例18と同様にして分散液を得た。この分散液をガラスピペット(内径6mm、長さ8cm)に吸い取り、それを2時間保持した後、液を押し出した。ガラスピペットを60℃で乾燥後、それに水を吸い取って、再び水を押し出すテストを行なった。ガラス壁には水滴が全く付着せず、吸い取った水は重さ低下なしに他の容器に完全移動できた。
 比較として、処理していないガラスピペットを用いたときでは、水を吸い取った後、水を押し出すと必ず壁に水滴が付着していることを確認した。
[安定性評価1]
 実施例12、14、15、17で得られた超疎水性粉体5、7、8、10を用いて下記に方法で安定性評価を行なった。ガラス瓶に蒸留水30mLをいれ、ここにそれぞれの粉体20mg添加する。ここにスターラーチップを入れ室温(25℃)で7日間攪拌を続けた後、粉体の様子を観測したところ、攪拌を中止するといずれの粉体も水面上に浮き上がり、再び水に沈むことがないことを確認した。
 又、実施例と同様にして膜状態での接触角を測定したが、いずれの粉体においても、水中攪拌前の接触角と同じであり、超疎水性が維持されていることを確認した。
 更に水中攪拌後の超疎水性粉体8を、実施例と同様にして、30%エチルアルコール含有のアルコール水溶液での接触角を測定したところ、167°であり、性能が維持されていることを確認した。
[安定性評価2]
 実施例18で得られた分散液を30℃の恒温槽で7日間保持した後、実施例21と同様にしてろ紙に塗布し乾燥した。乾燥後、水の接触角を測定したところ、156°であり、水性塗料中においても超疎水性が維持されていることを確認した。
 本発明の超疎水性粉体は、建築体、車体、船舶体、容器構造体、パッケージ、ガラス製品、陶器製品(便器、風呂場全体)、プール、水道管、電線、電球、各種カーバーなどの構造体の保護膜に適用出来る。さらに、冷蔵庫、電子レンジ、洗濯機などの家電製品およびパソコン、テレビ、携帯電話などの通信用電気製品の表面コーティングにも使用可能である。また、エネルギー変換関連の燃料電池デバイスにも使用可能である。

Claims (14)

  1. 有機無機複合ナノファイバー(I)の会合体を含有する超疎水性粉体であって、該ナノファイバー(I)が、直鎖状ポリエチレンイミン骨格(a)を有するポリマー(A)のフィラメントが、疎水性基を有するシリカ(B)で被覆されてなるものであることを特徴とする超疎水性粉体。
  2. 前記疎水性基を有するシリカ(B)が、疎水性基を有する化合物(X1)とシリカとが化学結合してなるものである請求項1記載の超疎水性粉体。
  3. 前記疎水性基を有するシリカ(B)に、更に反応性官能基を有する化合物(Y)が化学結合している請求項2記載の超疎水性粉体。
  4. 前記疎水性基を有するシリカ(B)が、疎水性基を有する化合物(X2)がシリカに物理吸着してなるものである請求項1記載の超疎水性粉体。
  5. 前記有機無機ナノファイバー(I)の太さが10~100nm、アスペクト比が10以上であり、且つ該有機無機ナノファイバー(I)の会合体の大きさが2~100μmの範囲である請求項1~4の何れか1項記載の超疎水性粉体。
  6. シリカ(B)を主構成成分とするナノファイバー(II)の会合体を含有する超疎水性粉体であって、該シリカ(B)が疎水性基を有するものであることを特徴とする超疎水性粉体。
  7. 前記シリカ(B)が、疎水性基を有する化合物(X1)と化学結合してなるものである請求項6記載の超疎水性粉体。
  8. シリカ(B)に更に反応性官能基を有する化合物(Y)が化学結合している請求項7記載の超疎水性粉体。
  9. 前記シリカ(B)が、疎水性基を有する化合物(X2)を物理吸着してなるものである請求項6記載の超疎水性粉体。
  10. 前記ナノファイバー(II)の太さが10~100nm、アスペクト比が10以上であり、且つナノファイバー(II)の会合体の大きさが2~100μmの範囲である請求項6~9の何れか1項記載の超疎水性粉体。
  11. 直鎖状ポリエチレンイミン骨格(a)を有するポリマー(A)のフィラメントがシリカ(B)で被覆されてなる有機無機複合ナノファイバー(I)の会合体からなる粉末を溶剤中に分散し、該分散液に疎水性基を有する化合物を混合する工程を有することを特徴とする超疎水性粉体の製造方法。
  12. (1)直鎖状ポリエチレンイミン骨格(a)を有するポリマー(A)のフィラメントがシリカ(B)で被覆されてなる有機無機複合ナノファイバー(I)の会合体を焼成する工程と、
    (2)(1)で得られたシリカ(B)を主構成成分とするナノファイバー(II)の会合体からなる粉末を溶剤中に分散し、該分散液に疎水性基を有する化合物を混合する工程と、
    を有することを特徴とする超疎水性粉体の製造方法。
  13. 請求項1~10の何れか1項記載の超疎水性粉体が固体基材表面に固定されてなることを特徴とする超疎水性表面を有する構造体。
  14. 請求項1~10の何れか1項記載の超疎水性粉体を溶液中に分散し、該分散液を塗布し乾燥する工程を有することを特徴とする超疎水性表面を有する構造体の製造方法。
PCT/JP2009/063327 2008-08-11 2009-07-27 超疎水性粉体、超疎水性表面を有する構造体及びそれらの製造方法 WO2010018744A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801313903A CN102119245A (zh) 2008-08-11 2009-07-27 超疏水性粉体、具有超疏水性表面的结构体及这些的制造方法
US13/058,391 US20110195181A1 (en) 2008-08-11 2009-07-27 Superhydrophobic powders, structure with superhydrophobic surface, and processes for producing these
EP09806639A EP2317006A4 (en) 2008-08-11 2009-07-27 ULTRAHYDROPHOBIC POWDER, STRUCTURE WITH ULTRAHYDROPHOBIC SURFACE AND METHOD FOR THE PRODUCTION THEREOF

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008206890A JP4503086B2 (ja) 2008-08-11 2008-08-11 超疎水性粉体、これを用いる超疎水性表面を有する構造体及びそれらの製造方法
JP2008-206890 2008-08-11
JP2008-315543 2008-12-11
JP2008315543A JP4503091B2 (ja) 2008-12-11 2008-12-11 超疎水性粉体、これを用いる超疎水性表面を有する構造体及びそれらの製造方法

Publications (1)

Publication Number Publication Date
WO2010018744A1 true WO2010018744A1 (ja) 2010-02-18

Family

ID=41668890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063327 WO2010018744A1 (ja) 2008-08-11 2009-07-27 超疎水性粉体、超疎水性表面を有する構造体及びそれらの製造方法

Country Status (5)

Country Link
US (1) US20110195181A1 (ja)
EP (1) EP2317006A4 (ja)
KR (1) KR20110003535A (ja)
CN (1) CN102119245A (ja)
WO (1) WO2010018744A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102453465A (zh) * 2010-10-27 2012-05-16 中国科学院大连化学物理研究所 一种粘附型超疏水材料及其制备方法
JP2012201799A (ja) * 2011-03-25 2012-10-22 Dic Corp 塗料組成物、これを用いて得られる超疎水性塗膜及びその製造方法
CN104762817A (zh) * 2015-03-31 2015-07-08 江南大学 一种基于paa-teos-oa联合处理的涤或锦疏水织物的整理方法
JP2015536839A (ja) * 2012-09-28 2015-12-24 ユーティーバテル エルエルシー 耐久性超疎水性コーティング
DE102016012001A1 (de) 2016-10-06 2018-04-12 Karlsruher Institut für Technologie Hochfluorierte nanostrukturierte Polymerschäume zur Herstellung superabweisender Oberflächen

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8741158B2 (en) 2010-10-08 2014-06-03 Ut-Battelle, Llc Superhydrophobic transparent glass (STG) thin film articles
US10150875B2 (en) 2012-09-28 2018-12-11 Ut-Battelle, Llc Superhydrophobic powder coatings
BRPI0822294A2 (pt) * 2008-02-08 2021-04-06 Siemens Vai Metals Technologies Sas Processo de galvanização à têmpera de uma cinta de aço
US11292919B2 (en) 2010-10-08 2022-04-05 Ut-Battelle, Llc Anti-fingerprint coatings
KR101866501B1 (ko) 2011-09-28 2018-06-12 삼성전자주식회사 초소수성 전자기장 차폐재 및 그 제조방법
US11041080B2 (en) 2011-11-11 2021-06-22 Velox Flow, Llc Multifunctional superhydrophobic diatomaceous earth for chemical adhesion and color change
EP2785640A4 (en) * 2011-11-11 2015-12-23 Velox Flow Llc MULTI-FUNCTIONAL SUPERHYDROPHOBIC DIATOMY LAND FOR CHEMICAL ADHESION AND COLOR CHANGE
CN102527304B (zh) * 2011-12-21 2013-10-30 吉林大学 多元异质不对称微粒的制备方法
US9771656B2 (en) 2012-08-28 2017-09-26 Ut-Battelle, Llc Superhydrophobic films and methods for making superhydrophobic films
WO2014035742A2 (en) * 2012-08-30 2014-03-06 The Trustees Of The University Of Pennsylvania Sprayable superhydrophobic coatings
US9546280B2 (en) * 2012-12-07 2017-01-17 Hrl Laboratories, Llc Structural coatings with dewetting and anti-icing properties, and coating precursors for fabricating same
CN103232835B (zh) * 2013-05-14 2014-07-23 黑龙江大学 一种二氧化硅纤维与二氧化硅微球复合超疏水材料的制备方法
EP2803711B1 (en) 2013-05-17 2018-06-27 3M Innovative Properties Company Pressure sensitive adhesive assembly comprising filler material
US20150239773A1 (en) 2014-02-21 2015-08-27 Ut-Battelle, Llc Transparent omniphobic thin film articles
US10273377B2 (en) 2014-07-25 2019-04-30 University Of Florida Research Foundation, Inc. Superhydrophobic and oleophobic ceramic polymer composite coating
CN109267330A (zh) * 2018-10-26 2019-01-25 南京科技职业学院 一种聚丁二烯膜的疏油改性方法
CN109731479B (zh) * 2018-12-19 2021-11-16 南京林业大学 一种超疏水纳米纤维膜的制备方法及超疏水纳米纤维膜
CN112517065B (zh) * 2019-09-18 2023-05-02 中国石油化工股份有限公司 乙烯气相法醋酸乙烯工艺催化剂制备方法
CN110756129B (zh) * 2019-11-01 2022-01-28 南京林业大学 一种制备纳米纤维气凝胶复合材料的方法
CN110879047A (zh) * 2019-12-05 2020-03-13 国网山东省电力公司电力科学研究院 一种粉体材料接触角的测试方法
CN113549349A (zh) * 2020-04-25 2021-10-26 泰兴瑞深新材科技有限公司 一种移液枪枪头表面处理剂的制备方法
CN111393706B (zh) * 2020-05-13 2022-07-19 广东海洋大学 一种超疏水海绵及其制备方法和应用
CN112281476B (zh) * 2020-11-11 2023-04-18 苏州鑫极纺织有限公司 一种夹芯型吸波纤维及其制备方法
CN115093790A (zh) * 2021-03-24 2022-09-23 中国科学院青海盐湖研究所 一种镁合金表面超疏水防腐涂层的制备方法
KR102604894B1 (ko) * 2021-05-06 2023-11-21 동아대학교 산학협력단 소수성 코팅층 및 그의 제조방법
CN114262485B (zh) * 2022-03-03 2022-05-24 上海科进生物技术有限公司 一种改性高分子材料及其制备方法和应用
CN114854243B (zh) * 2022-05-20 2023-05-30 义乌市中力工贸有限公司 一种环保型拒水拒油涂层用改性二氧化硅的制备方法及应用
KR102670323B1 (ko) * 2023-11-08 2024-05-29 (주)세운티.엔.에스 발수성 유리섬유 단열파이프 및 그 제조방법

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264421A (ja) 2004-02-18 2005-09-29 Kawamura Inst Of Chem Res 有機無機複合ナノファイバ、有機無機複合構造体及びこれらの製造方法
JP2005336440A (ja) 2004-05-31 2005-12-08 Kawamura Inst Of Chem Res シリカ/ポリマー/金属複合材料及びその製造方法
JP2005350502A (ja) * 2004-06-08 2005-12-22 Nippon Sheet Glass Co Ltd 超撥水性被膜被覆物品、その製造方法及び超撥水性被膜形成用塗工材料
US20060029808A1 (en) 2004-08-06 2006-02-09 Lei Zhai Superhydrophobic coatings
JP2006063097A (ja) 2004-08-24 2006-03-09 Kawamura Inst Of Chem Res シリカ/金属錯体複合材料及びその製造方法
JP2006199523A (ja) * 2005-01-19 2006-08-03 Kawamura Inst Of Chem Res シリカナノチューブ会合体及びその製造方法
JP2007051056A (ja) 2005-07-22 2007-03-01 Kawamura Inst Of Chem Res 針状表面微粒子及びその製造方法
JP2007084657A (ja) * 2005-09-21 2007-04-05 Dainippon Ink & Chem Inc 有機無機複合ナノファイバを含有する有機無機複合体
JP2007091848A (ja) * 2005-09-28 2007-04-12 Dainippon Ink & Chem Inc シリカナノチューブ会合体を含有する有機無機複合体
JP2008508181A (ja) 2004-07-27 2008-03-21 ユーティ―バテル エルエルシー ナノ構造を備えた超疎水性の複合材料

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612130A (en) * 1992-10-14 1997-03-18 Herbert F. Boeckmann, II Fire resistant multipurpose protective coating
DE19828364A1 (de) * 1998-06-25 1999-12-30 Degussa Hydrophobe Fällungskieselsäure
DE10022246A1 (de) * 2000-05-08 2001-11-15 Basf Ag Beschichtungsmittel für die Herstellung schwer benetzbarer Oberflächen
EP1511802B1 (en) * 2002-06-05 2010-09-08 Showa Denko K.K. Powder comprising silica-coated zinc oxide, organic polymer composition containing the powder and shaped article thereof
WO2005116140A1 (ja) * 2004-05-31 2005-12-08 Kawamura Institute Of Chemical Research 複合ナノファイバ、複合ナノファイバ会合体、複合構造体及びこれらの製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264421A (ja) 2004-02-18 2005-09-29 Kawamura Inst Of Chem Res 有機無機複合ナノファイバ、有機無機複合構造体及びこれらの製造方法
JP2005336440A (ja) 2004-05-31 2005-12-08 Kawamura Inst Of Chem Res シリカ/ポリマー/金属複合材料及びその製造方法
JP2005350502A (ja) * 2004-06-08 2005-12-22 Nippon Sheet Glass Co Ltd 超撥水性被膜被覆物品、その製造方法及び超撥水性被膜形成用塗工材料
JP2008508181A (ja) 2004-07-27 2008-03-21 ユーティ―バテル エルエルシー ナノ構造を備えた超疎水性の複合材料
US20060029808A1 (en) 2004-08-06 2006-02-09 Lei Zhai Superhydrophobic coatings
JP2006063097A (ja) 2004-08-24 2006-03-09 Kawamura Inst Of Chem Res シリカ/金属錯体複合材料及びその製造方法
JP2006199523A (ja) * 2005-01-19 2006-08-03 Kawamura Inst Of Chem Res シリカナノチューブ会合体及びその製造方法
JP2007051056A (ja) 2005-07-22 2007-03-01 Kawamura Inst Of Chem Res 針状表面微粒子及びその製造方法
JP2007084657A (ja) * 2005-09-21 2007-04-05 Dainippon Ink & Chem Inc 有機無機複合ナノファイバを含有する有機無機複合体
JP2007091848A (ja) * 2005-09-28 2007-04-12 Dainippon Ink & Chem Inc シリカナノチューブ会合体を含有する有機無機複合体

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CAO ET AL., APPL. PHYS. LETT., vol. 91, 2007, pages 034102
ERBIL ET AL., SCIENCE, vol. 299, 2003, pages 1377 - 1380
FENG ET AL., J. AM. CHEM. SOC., vol. 126, 2004, pages 62 - 63
GAO ET AL., NATURE, vol. 432, 2004, pages 36
LI ET AL., J. MATER. CHEM., vol. 18, 2008, pages 2276 - 2280
See also references of EP2317006A4
SUN ET AL., ACC. CHEM. RES., vol. 38, 2005, pages 644 - 652

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102453465A (zh) * 2010-10-27 2012-05-16 中国科学院大连化学物理研究所 一种粘附型超疏水材料及其制备方法
CN102453465B (zh) * 2010-10-27 2014-09-03 中国科学院大连化学物理研究所 一种粘附型超疏水材料及其制备方法
JP2012201799A (ja) * 2011-03-25 2012-10-22 Dic Corp 塗料組成物、これを用いて得られる超疎水性塗膜及びその製造方法
JP2015536839A (ja) * 2012-09-28 2015-12-24 ユーティーバテル エルエルシー 耐久性超疎水性コーティング
CN104762817A (zh) * 2015-03-31 2015-07-08 江南大学 一种基于paa-teos-oa联合处理的涤或锦疏水织物的整理方法
DE102016012001A1 (de) 2016-10-06 2018-04-12 Karlsruher Institut für Technologie Hochfluorierte nanostrukturierte Polymerschäume zur Herstellung superabweisender Oberflächen
WO2018065094A1 (de) 2016-10-06 2018-04-12 Karlsruher Institut für Technologie Hochfluorierte nanostrukturierte polymerschäume zur herstellung superabweisender oberflächen
US11773272B2 (en) 2016-10-06 2023-10-03 Glassomer Gmbh Highly fluorinated nanostructured polymer foams for producing super-repellent surfaces

Also Published As

Publication number Publication date
EP2317006A4 (en) 2012-08-01
CN102119245A (zh) 2011-07-06
EP2317006A1 (en) 2011-05-04
US20110195181A1 (en) 2011-08-11
KR20110003535A (ko) 2011-01-12

Similar Documents

Publication Publication Date Title
WO2010018744A1 (ja) 超疎水性粉体、超疎水性表面を有する構造体及びそれらの製造方法
JP4503086B2 (ja) 超疎水性粉体、これを用いる超疎水性表面を有する構造体及びそれらの製造方法
KR101210462B1 (ko) 초소수성 나노 구조 복합체로 피복된 구조물 및 그 제법
Li et al. Roles of silanes and silicones in forming superhydrophobic and superoleophobic materials
CN108587447B (zh) 一种适应多种基底的耐久性透明超疏水涂层的制备方法
Ramezani et al. Preparation of silane-functionalized silica films via two-step dip coating sol–gel and evaluation of their superhydrophobic properties
KR101411769B1 (ko) 초친수성 코팅 조성물 및 그의 제조방법
JP5881602B2 (ja) 親水性コーティング、物品、コーティング組成物及び方法
US20160002438A1 (en) Core-shell nanoparticles and method for manufacturing the same
KR101401754B1 (ko) 초발수성 코팅용액 조성물 및 코팅 조성물의 제조방법
CN115074007B (zh) 一种无机有机复合超亲水涂料及其制备方法与应用
CN112143332B (zh) 一种超疏水涂层及制备方法
JP5682396B2 (ja) 塗料組成物、これを用いて得られる超疎水性塗膜及びその製造方法
Phan et al. Durable tetra-scale superhydrophobic coatings with virus-like nanoparticles for oil–water separations
JP4413252B2 (ja) ナノ構造複合体被覆型構造物及びその製造方法
JP4469002B2 (ja) 超疎水性ナノ構造複合体で被覆された構造物及びその製法
JP5028549B2 (ja) ポリシロキサン含有ナノ構造複合体被覆型構造物及びその製造方法
JP4503091B2 (ja) 超疎水性粉体、これを用いる超疎水性表面を有する構造体及びそれらの製造方法
JP4510105B2 (ja) チタニアナノ構造複合体被覆型構造物及びその製造方法
JP4491037B1 (ja) 水性溶液移動用管状構造物及びその製造方法
JP2011225694A (ja) 超疎水性粉体を分散剤とする油中水型エマルジョン及びその製造方法
JP2011020327A (ja) 水性インクはじき表面を有する構造物及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980131390.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107025786

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009806639

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13058391

Country of ref document: US