WO2005116140A1 - 複合ナノファイバ、複合ナノファイバ会合体、複合構造体及びこれらの製造方法 - Google Patents

複合ナノファイバ、複合ナノファイバ会合体、複合構造体及びこれらの製造方法 Download PDF

Info

Publication number
WO2005116140A1
WO2005116140A1 PCT/JP2005/009769 JP2005009769W WO2005116140A1 WO 2005116140 A1 WO2005116140 A1 WO 2005116140A1 JP 2005009769 W JP2005009769 W JP 2005009769W WO 2005116140 A1 WO2005116140 A1 WO 2005116140A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
nanofiber
metal
composite
silica
Prior art date
Application number
PCT/JP2005/009769
Other languages
English (en)
French (fr)
Inventor
Ren-Hua Jin
Jian-Jun Yuan
Original Assignee
Kawamura Institute Of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004161234A external-priority patent/JP3978440B2/ja
Priority claimed from JP2004243580A external-priority patent/JP3978443B2/ja
Application filed by Kawamura Institute Of Chemical Research filed Critical Kawamura Institute Of Chemical Research
Priority to KR1020067025019A priority Critical patent/KR101136494B1/ko
Priority to US11/569,300 priority patent/US7670509B2/en
Publication of WO2005116140A1 publication Critical patent/WO2005116140A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/96Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from other synthetic polymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/50Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms
    • D06M13/503Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms without bond between a carbon atom and a metal or a boron, silicon, selenium or tellurium atom
    • D06M13/507Organic silicon compounds without carbon-silicon bond
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12035Fiber, asbestos, or cellulose in or next to particulate component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/1216Continuous interengaged phases of plural metals, or oriented fiber containing
    • Y10T428/12174Mo or W containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12431Foil or filament smaller than 6 mils
    • Y10T428/12438Composite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24595Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness and varying density
    • Y10T428/24603Fiber containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2861Coated or impregnated synthetic organic fiber fabric
    • Y10T442/2885Coated or impregnated acrylic fiber fabric

Definitions

  • the present invention relates to a nanofiber containing a metal or a metal ion in silica nanofiber, an aggregate or a structure in which the nanofibers are assembled, and a method for producing the nanofiber or nanofiber assembly.
  • Nanofibers are attracting attention as one of the advanced materials because of their high aspect ratio, which produces a size effect peculiar to the fiber shape.
  • Silica nanofibers have a high aspect ratio and large surface area unique to nanofibers, and have various physical properties such as semiconductor properties, conductivity, surface properties, and mechanical strength inherent to inorganic materials. Its application is expected to be promising in various advanced materials fields, including the field of life science.
  • a single nanofiber (one-dimensional) is remarkably aggregated into a cloth (two-dimensional) or lump (three-dimensional) structure while maintaining the properties of the nanofiber.
  • the applications of silica nanofibers are expected to expand.
  • a combination of a silica nanofiber with a functional material such as another inorganic material or an organic material has a wide range of applicability, and for example, is combined with an inorganic material such as a metal. Therefore, applications in many fields such as electronic materials, optical materials, catalysts, colorants, and sensors are expected.
  • a composite material in which a metal complex is immobilized on mesoporous silica includes a chemical reaction catalyst, an electrochemical sensor, and a solid polymer. Used for electrolytes.
  • a complex in which a metal complex is introduced into mesoporous silica is used for application, a high surface area on the silica surface, uniform distribution of complex active sites in the nanocavities, rapid diffusion of substrate compounds, heat resistance of the catalyst carrier, and acid resistance Since many advantages such as properties are expected, metal complex immobilization technology using mesoporous silica as a support has attracted much attention (see Non-Patent Document 1).
  • the silica used in these conventional composite materials of a metal complex and silica has been limited to a barita powder or a particle state having a silicic power. Therefore, since the composite fine particles have a particle shape with an asbestos ratio of about 1: 1, the composite fine particles cannot be aggregated or collected only by the composite fine particles. It was difficult to form a structure that retained the.
  • Non-Patent Document 2 As a fine composite material of silica and a metal, for example, a mesoporous silica Z metal nanowire composite by reducing a metal ion solution into channels of mesoporous silica of the MCM-41 series (Non-Patent Document 2, Numerous studies have been carried out, such as Non-Patent Document 3) and silica fine particle Z metal nanoparticle composites by binding metal ions to silica fine particles (see Non-Patent Document 4).
  • Non-patent document 1 B. Lee et al., Langmuir, (2003), 19, p4246-4252
  • Non-Patent Document 2 G. Hornyak et al., Chem. Eur. J. 1997, 3, No. 12, pl951-1956
  • Non-Patent Document 3 Yong—Jin Han, Chem. Mater., 2000, 12, p2068—2069
  • Non-patent document 4 VG Pol et al., Chem. Mater., 2003, 15, pl lll—Disclosure of the invention 1118
  • the problem to be solved by the present invention is that a metal-containing silica nanofiber in which metal ions and atoms are immobilized in a structure and which can be highly assembled, and the metal-containing silica nanofiber further functions.
  • An object of the present invention is to provide a composite nanofin in which a conductive polymer is composited, an aggregate or a structure in which these are highly assembled, and a simple production method thereof.
  • a silica nanofiber is induced by a crystalline polymer filament of a polymer having a linear polyethyleneimine skeleton capable of forming a water-insoluble crystal due to the presence of a water molecule at room temperature.
  • a composite nanofiber containing a metal or metal ion in silica can be realized.
  • the composite nanofibers can be assembled and integrated, and the aggregated and integrated associations and structures can exhibit various shapes.
  • the composite nanofiber of the present invention can be easily produced by fixing a polymer structure serving as a scaffold for metal ions in silica and concentrating the metal ions on the scaffold, or reducing the metal ions. it can.
  • metal-containing silica nanofibers can be easily obtained by removing the polymer component from the composite nanofiber or the aggregate or structure of the composite nanofiber.
  • the present invention provides a composite nanofin containing a polymer having a linear polyethyleneimine skeleton coordinated with at least one metal or metal ion in a silica nanofiber, and a composite nanofiber in which the composite nanofiber is mutually associated. And a composite structure in which the aggregates are further associated with each other.
  • the present invention also provides the above-mentioned composite nanofin composite nanocomposite, the composite nanostructured metal-containing silica nanofiber having a polymer component removed, the metal-containing silica nanofiber association, and the metal-containing silica nanofiber structure. Is what you do.
  • the present invention provides (1) dissolving a polymer having a linear polyethyleneimine skeleton in a solvent, and then precipitating it in the presence of water to form a polymer having a linear polyethyleneimine skeleton. And (2) contacting the crystalline polymer filament with alkoxysilane in the presence of water to coat the crystalline polymer filament with silica, thereby forming a polymer-containing silica nanofiber. (3) contacting the polymer-containing silica nanofiber with a solution in which metal ions are dissolved, and coordinating the metal ions to the linear polyethyleneimine skeleton in the polymer,
  • the present invention provides a method for producing a metal-containing silica nanofiber, which comprises a step (5) of removing a polymer component in the composite nanofiber after obtaining the composite nanofiber by the above-mentioned steps. is there.
  • the composite nanofiber and the metal-containing silica nanofiber of the present invention are associated with each other and are highly aggregated and integrated to form a two-dimensional or three-dimensional spatial shape on the order of micro to millimeter. Can be formed.
  • the shape of the aggregate can be adjusted to various shapes such as a lettuce shape, a fiber shape, a sponge shape, an aster shape, a cactus shape, and a dandelion shape. Further, by associating the composite nanofiber aggregates with each other or by associating the aggregates with each other via another composite nanofiber, it is possible to form a structure having a macro external shape with a size of millimeter order or more.
  • the outer shape of the structure can be formed into an arbitrary shape, and according to the requirements of specific applications, a disk type, a column type, a plate type, a filter type, a membrane type, a spherical type, a rod type It can be processed into various forms such as powder, particles, polyhedron, cylinder, etc.
  • a disk type a column type, a plate type, a filter type, a membrane type, a spherical type, a rod type
  • It can be processed into various forms such as powder, particles, polyhedron, cylinder, etc.
  • Inside the structure there is an aggregate shape of the above-mentioned aggregate, and the aggregate is based on the composite nanofiber or the metal-containing silica nanofiber of the present invention. Therefore, the structure has a three-dimensional network structure in which these nanofibers are formed in a complicated manner.
  • the composite nanofiber and the metal-containing silica nanofiber of the present invention contain a metal ion or a metal therein.
  • metal ions contain ions of alkali metals, alkaline earth metals, transition metals, etc.
  • these nanofibers are used as solid electrolytes, solid It can be expected to be applied to catalysts, nano additives, and nano thin film materials.
  • the metal ions are converted into metal in a particle shape or a wire shape through a metal cluster.
  • a film-like structure made of nanofino containing metal nanowires a sponge-like structure made of nanofibers containing metal nanowires, and a network structure made of nanofino containing metal nanowires.
  • metal nanoparticles can be distributed in composite structures having these shapes.
  • silica nanofibers containing crystals of transition metals, particularly noble metals are highly useful in all areas of nanotechnology, such as nanometal catalysts, nanometal conductive materials, nanometal coloring materials, nanometal sensors, It can be expected to be widely applied to optical imaging materials, optoelectronic materials, and medical materials.
  • the composite nanofiber is converted into a silica having a constant thickness by a sol-gel reaction of a silica source that proceeds only on the surface of the crystalline polymer filament having a thickness of nanometer. After coating the crystalline polymer filament, it can be easily produced in a short time by fixing the metal ions and, if necessary, reducing the metal ions.
  • the polymer component in the composite nanofiber of the present invention can be easily removed by sintering or the like, it is easy to produce a metal-containing silica nanofiber containing metal nanoparticles and metal nanowires therein.
  • FIG. 1 is a transmission electron micrograph of a composite nanofiber structure in Example 1 of the present invention.
  • FIG. 2 is a high-resolution transmission electron micrograph of a gold nanowire in a composite nanofiber structure in Example 1 of the present invention.
  • FIG. 3 is a transmission electron micrograph of a composite nanofiber structure in Example 2 of the present invention.
  • FIG. 4 is a high-resolution transmission electron micrograph of a platinum nanowire in a composite nanofiber structure in Example 2 of the present invention.
  • FIG. 5 is a scanning electron micrograph of a composite nanofiber structure in Example 4 of the present invention.
  • the composite nanofiber of the present invention is a composite material in which a metal or a metal ion and a polymer having a linear polyethyleneimine skeleton are contained in a silica nanofiber.
  • the linear polyethyleneimine skeleton referred to in the present invention refers to a linear polymer skeleton having an ethyleneimine unit of a secondary amine as a main structural unit.
  • structural units other than the ethyleneimine unit may be present.
  • a constant chain length of the polymer chain may become a continuous ethyleneimine unit force.
  • the length of the linear polyethyleneimine skeleton is not particularly limited as long as the polymer having the skeleton can form a crystalline polymer filament, but it is preferable to form a crystalline polymer filament.
  • the number of repeating ethyleneimine units in the skeleton is preferably 10 or more, and particularly preferably in the range of 20 to: LOOOO.
  • the polymer used in the present invention may be any polymer having the above-mentioned linear polyethyleneimine skeleton in its structure, even if its shape is linear, star-like, or comb-like, in the presence of water. Any material that can provide a crystalline polymer filament below can be used.
  • these linear, star-shaped or comb-shaped polymers may be those having a linear polyethyleneimine skeleton alone or a block having a linear polyethyleneimine skeleton (hereinafter referred to as polyethylene). And a block copolymer of another polymer block.
  • Other polymer blocks include, for example, water-soluble polymer blocks such as polyethylene glycol, polypropioleethyleneimine, and polyacrylamide, or polyphenyloxazoline such as polystyrene and polyoxazoline, polyoctyloxazoline, and polydodecyloxazoline.
  • hydrophobic polymer blocks such as polymethyl methacrylate and polybutyl methacrylate of polyatalylates.
  • polymer having a linear polyethyleneimine skeleton The ratio of the linear polyethyleneimine skeleton in the polymer having another polymer block or the like is within a range capable of forming a filament of a crystalline polymer.
  • the proportion of the linear polyethyleneimine skeleton in the polymer is preferably 25 mol% or more, and is preferably 40 mol%. More preferably, it is more preferably 50 mol% or more.
  • the above-mentioned polymer having a linear polyethyleneimine skeleton is obtained by converting a polymer having a linear skeleton as a precursor of polyoxazoline (hereinafter abbreviated as a precursor polymer) into an acidic condition. Alternatively, it can be easily obtained by hydrolysis under alkaline conditions. Therefore, the shape of the polymer having a linear polyethyleneimine skeleton, such as a linear shape, a star shape, or a comb shape, can be easily designed by controlling the shape of the precursor polymer. Further, the degree of polymerization and the terminal structure can be easily adjusted by controlling the degree of polymerization and the terminal functional groups of the precursor polymer.
  • the precursor polymer is used as a block copolymer, and the linear skeleton of polyoxazoline in the precursor is selectively hydrolyzed. You can get it by doing things.
  • the precursor polymer can be synthesized by a cationic polymerization method or a synthesis method such as a macromonomer method using an oxazoline monomer, and a synthesis method and an initiator are appropriately selected.
  • precursor polymers having various shapes such as a linear shape, a star shape, and a comb shape can be synthesized.
  • oxazoline monomers such as methyloxazoline, ethyloxoxolin, methylvinyloxazoline, and phenyloxazoline can be used.
  • Examples of the polymerization initiator include compounds having a functional group such as a salidoalkyl group, an alkyl bromide group, an alkyl iodide group, a toluenesulfo-loxy group, or a trifluoromethylsulfo-loxy group in a molecule. Can be used. These polymerization initiators can be obtained by converting hydroxyl groups of many alcohol compounds into other functional groups. Among them, the functional group conversion includes bromination, iodination, toluene sulfonation, and trifluoromethylsulfonic acid. Among them, alkyl bromide and anolequinole toluenesulfonate are preferred because of high polymerization initiation efficiency! / II.
  • poly (ethylene glycol) obtained by converting a terminal hydroxyl group to bromine or iodine, or a product obtained by converting a terminal hydroxyl group to a toluenesulfonyl group can be used as a polymerization initiator.
  • the degree of polymerization of poly (ethylene glycol) is preferably in the range of 5 to: LOO, more preferably in the range of 10 to 50.
  • Dyes having a skeleton can impart special functions to the resulting polymer.
  • the linear precursor polymer is obtained by polymerizing the above oxazoline monomer with a polymerization initiator having a monovalent or divalent functional group.
  • a polymerization initiator include, for example, methyl benzene, methyl benzene, bromide, methyl iodide, methyl benzene toluenesulfonate, methylbenzene trifluoromethylsulfonate, methane bromide, methane iodide, toluene Sulfonic acid methane or toluenesulfonic anhydride, trifluoromethylsulfonic anhydride, 5- (4 bromomethylphenyl) -10, 15, 20, monovalent such as tri (phenyl) porphyrin or bromomethylpyrene And divalent compounds such as dibromomethylbenzene, diiodomethylbenzene, dibumomethylbiphenyl and dibromomethylazobenzene
  • the star-shaped precursor polymer is obtained by polymerizing the oxazoline monomer as described above with a polymerization initiator having a trivalent or higher functional group.
  • a polymerization initiator having a trivalent or higher functional group examples include, for example, trivalent ones such as tribromomethylbenzene, tetrabromomethylbenzene, tetra (4-chloromethylphenyl) porphyrin, tetrabromoethoxyphthalocyanine, and the like. Tetravalent ones, and pentavalent or more ones such as hexabromomethylbenzene and tetra (3,5-ditosilylethyloxyphenyl) porphyrin.
  • a linear polymer having a polyvalent polymerization initiating group is required.
  • the polymerization initiator group is also capable of polymerizing an oxazoline monomer by using a compound such as, for example, a hydroxyl group of a polymer having a hydroxyl group in a side chain such as a normal epoxy resin or polyvinyl alcohol, and bromine or iodine. It can also be obtained by converting into a toluenesulfur group or a halogenating force by using the converted portion as a polymerization initiating group.
  • a polyamine-type polymerization terminator may be used as a method for obtaining a comb-shaped precursor polymer.
  • a monovalent polymerization initiator oxazoline is polymerized, and the end of the polyoxazoline is bonded to an amino group of a polyamine such as polyethyleneimine, polybulamine, or polypropylamine, thereby forming comb-like polyoxazoline.
  • a polyamine such as polyethyleneimine, polybulamine, or polypropylamine
  • Hydrolysis of the linear skeleton of the precursor polymer obtained above by the polyoxazoline analog may be carried out under acidic conditions or alkaline conditions.
  • polyoxazoline can be stirred under heating in an aqueous hydrochloric acid solution to obtain a hydrochloride of polyethyleneimine.
  • the crystalline powder of basic polyethyleneimine can be obtained by treating the obtained hydrochloric acid salt with an excess of aqueous ammonia.
  • the hydrochloric acid aqueous solution to be used may be concentrated hydrochloric acid or an aqueous solution of about ImolZL, but for efficient hydrolysis, it is desirable to use a 5 molZL aqueous hydrochloric acid solution.
  • the reaction temperature is preferably around 80 ° C.
  • polyoxazoline in the hydrolysis under alkaline conditions, for example, polyoxazoline can be converted to polyethyleneimine by using an aqueous sodium hydroxide solution. After the reaction under alkaline conditions, the reaction solution is washed with a dialysis membrane to remove excess sodium hydroxide and obtain a crystalline powder of polyethyleneimine.
  • concentration of sodium hydroxide used is 1
  • the range of 3 to 5 mol ZL is preferable for performing a more efficient reaction as long as it is within the range of 10 to 10 mol ZL.
  • the reaction temperature is preferably around 80 ° C.
  • the amount of the acid or alkali used in the hydrolysis under acidic or alkaline conditions is 1 to 10 equivalents to the oxazoline unit in the polymer to improve the reaction efficiency and simplify the post-treatment. For this reason, it is preferable to use about 3 equivalents.
  • the polyoxazoline analog in the precursor polymer becomes a linear skeleton.
  • a linear polyethyleneimine skeleton is obtained, and a polymer having the polyethyleneimine skeleton is obtained.
  • a block copolymer of a linear polyethyleneimine block and another polymer block is formed, a precursor polymer is formed by combining a linear polymer block having a polyoxazoline-like ability with another polymer.
  • the precursor copolymer can be obtained by selectively hydrolyzing a linear block having a polyoxazoline-like power in the precursor polymer.
  • the other polymer block is a single block of a water-soluble polymer such as poly (N-propio-lethylenimine)
  • a block copolymer can be formed by utilizing its higher solubility in an organic solvent than poly (N-acetylethylimine). That is, after 2-oxoazoline or 2-methyl-2-oxazoline is subjected to cationic ring-opening living polymerization in the presence of the above-mentioned polymerization initiator compound, 2-ethyl-2-oxazoline is further polymerized to the obtained living polymer.
  • a precursor polymer comprising a poly (N-formylethyleneimine) block or poly (N-acetylethylimine) block and a poly (N-propionylethyleneimine) block is obtained.
  • the precursor polymer is dissolved in water, and an organic solvent insoluble in water for dissolving the poly (N-propionylethyleneimine) block in the aqueous solution is mixed and stirred to form an emulsion.
  • Block copolymers having linear polyethyleneimine blocks and poly (N-propioylethyleneimine) blocks can be formed.
  • valence of the polymerization initiator conjugate used here is 1 or 2
  • a linear block copolymer is obtained.
  • valence is higher than this, a star-shaped block copolymer is obtained.
  • the obtained polymer can also have a multi-stage block structure.
  • the metal ion in the present invention forms a metal complex by coordinating with the polyethyleneimine unit in the skeleton due to the strong coordination ability of the polyethyleneimine skeleton in the polymer having the linear polyethyleneimine skeleton described above. Is what you do.
  • the metal complex is a metal Is obtained by the coordination of a metal to a polyethyleneimine unit. Unlike processes such as ionic bonding, a complex is formed by coordination of a polyethyleneimine even if the metal is a cation or an aion. Can be.
  • the metal species of the metal ion is not limited as long as it can coordinate with the polyethyleneimine unit in the polymer having a linear polyethyleneimine skeleton, and is not limited to an alkali metal, an alkaline earth metal, a transition metal, or a metalloid.
  • metal compounds such as lanthanum-based metals and polyoxometalates, and metal ions having these metal species can be preferably used.
  • alkali metal ion examples include ions such as Li, Na, K, and Cs.
  • the counter ions of metal ions are CI, Br, I, NO, SO, PO, CIO, PF, BF,
  • FCSO or the like can be suitably used.
  • alkaline earth metal ion examples include ions such as Mg, Ba, and Ca.
  • transition metal ion even if it is a transition metal cation (Mn +), the transition metal ion is an acid radical (MOxrT) that also has a binding force with oxygen, or an aroma that is formed of a halogen bond. Even if it is ON (MLxrT), it can be suitably used for complex formation.
  • transition metals refer to Sc, Y of Group 3 of the periodic table and transition metal elements of Groups 4 to 12 in the fourth to sixth periods.
  • the transition metal cations include the following transition metal cations ( ⁇ ⁇ ⁇ ⁇ ⁇ +), for example, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ru, Rh, Examples include monovalent, divalent, trivalent or tetravalent cations of Pd, Ag, Cd, W, Os, Ir, Pt, Au and Hg.
  • the counter ions of these metal cations are CI, NO, SO, or polyoxometallates, such as
  • an organic ion of a carboxylic acid is preferably prepared by suppressing the reduction reaction by, for example, adjusting the pH to an acidic condition.
  • transition metal ions include the following transition metal ions (MOxrT), for example, ⁇ ⁇ , MoO, ReO, WO, RuO, CoO, CrO, VO, NiO, and UO anions.
  • MOxrT transition metal ions
  • the above transition metal ion is formed through a metal cation coordinated to an ethyleneimine unit in a polymer having a linear polyethyleneimine skeleton. It may be in the form of a metal compound of the polyoxometalates, fixed in force. Specific examples of the polyoxometalates include molybdates, tungstates, and vanadates in combination with transition metal cations.
  • an aaron (MLxn—) containing the following metals for example, AuCl 3, PtCl 2, RhC
  • metal-coordinated halogen such as ReF, NiF, CuF, RuCl, In CI
  • Examples of the metalloid-based ion include Al, Ga, In, Tl, Ge, Sn, Pb, Sb, and Bi ions. Among them, Al, Ga, In, Sn, Pb, and Tl are preferable. .
  • Examples of the lanthanum-based metal ion include trivalent cations such as La, Eu, Gd, Yb, and Eu.
  • the metal in the present invention may be any metal obtained by reducing a metal ion.
  • the metal ion species include the above-mentioned metal ions.
  • transition metals such as Au, Ag, Cu, Pt, Pd, Mn, Ni, Rh, Co, Ru, Re, and Mo can be preferably used.
  • Au, Ag, Pt, Pd can be preferably used because its metal ion is spontaneously reduced at room temperature or in a heated state after being coordinated with polyethyleneimine.
  • the metal or metal ion in the composite nanofiber may be one kind or two or more kinds.
  • the silica nanofiber constituting the composite nanofiber of the present invention has a fiber shape having a thickness of about several to several hundred nm, preferably 15 to: LOOnm.
  • the length of the fiber shape of the silica nanofiber is not particularly limited, but is preferably in the range of 0.1 m to 3 mm.
  • the silica nanofiber has a hollow shape because it is formed by coating a crystalline polymer filament formed by a polymer having a linear polyethyleneimine skeleton with silica.
  • silica of the silica nanofiber silica obtained by a sol-gel reaction of a known and commonly used silica source can be used.
  • the composite nanofiber of the present invention is a polymer nanofiber having a linear polyethyleneimine skeleton to which at least one metal or metal ion is coordinated, which is contained in a silica nanofiber.
  • a big feature is what you can do.
  • the shape of the composite nanofiber of the present invention is the same as the shape of the silica nanofiber constituting the composite nanofiber, and has a thickness of several to several hundred nm, preferably 15 to:
  • the composite nanofiber of the present invention can exhibit various shapes by associating the primary structures, including the shape of the primary structure.
  • the length of the fiber shape as the primary structure is not particularly limited, but is preferably in the range of 0.1 m to 3 mm.
  • the metal or metal ion is present by coordinating with a polymer having a linear polyethyleneimine skeleton. Since the metal ion coordinates with the polymer having the linear polyethyleneimine skeleton to form a complex, it is considered that the metal complex is present in the hollow silica nanofiber.
  • the metal exists in the silica nanofiber in a state of a crystal in which the metal ion forming the metal complex is reduced.
  • the metal can form a wire shape or a particle shape via a cluster by reduction.
  • a plurality of particles may be in contact with each other, or a combination of wire and particles may be present in the silica nanofiber.
  • the thickness of the wire shape or the particle size of the particle shape is on the order of nanometers smaller than the thickness of the primary structure, and if it is a wire shape, the thickness is about 2 to 20 nm and the particle shape is It is preferable that the particles have a particle size of about 2 to 20 nm.
  • the composite nanofiber of the present invention is an aggregate having a two-dimensional or three-dimensional spatial shape on the order of micro to millimeter due to the association of the nanofiber shapes. Is referred to as a composite nanofiber association.).
  • the shape of the aggregate can be adjusted to various shapes such as a lettuce shape, a fiber shape, a sponge shape, an aster shape, a cactus shape, and a tambopo shape.
  • the shape of these aggregates depends on the geometrical shape of the structure of the polymer having a linear polyethyleneimine skeleton, the molecular weight, the non-ethyleneimine portion that can be introduced into the polymer, and the conditions for forming the crystal formed by the polymer. Etc. It is controllable and is particularly influenced by the molecular structure, degree of polymerization, composition, and method of preparing the polymer crystals used.
  • the composite nanofiber associations or the composite nanofiber associations are bonded via other composite nanofibers to form a structure having a macroscopic outer shape with a size of millimeter order or more
  • the structure may be referred to as a composite structure.
  • the outer shape of the structure can be formed into an arbitrary shape, and it can be formed into a disk type, a column type, a plate type, a filter type, a membrane type, a spherical type, a rod type, etc. according to the specific application requirements. It can be molded and processed into various states such as powders, particles, polyhedrons and cylinders.
  • the aggregate shape of the composite nanofiber aggregate is present, and the aggregate is based on the composite nanofiber of the present invention. Therefore, the structure has a three-dimensional network structure in which the composite nanofibers are formed in a complex manner.
  • the content of silica in the composite nanofiber of the present invention is not particularly limited as long as the above-described various structures can be constructed. Is preferable because it can be formed stably. Further, the content of metal or metal ion can be appropriately adjusted according to various uses.
  • the polymer in the composite nanofiber of the present invention having a reduced metal therein can be easily removed by baking or the like, whereby the silica nanofiber contains the metal in the form of nanoparticle / nanowire.
  • the nanofiber is referred to as a metal-containing silica nanofiber.
  • the metal-containing silica nanofiber can maintain the shape of the aggregate or the structure at the time of removing the polymer, the aggregate or the structure of the metal-containing silica nanofiber can also be formed.
  • the composite nanofiber and the metal-containing silica nanofiber of the present invention have a metal or metal ion inside and can be constructed in various shapes. Wide application can be expected in various fields, for example, nano metal catalysts, nano metal conductive materials, nano metal coloring materials, nano metal sensors, and medical materials.
  • composite nanofibers include polymers having a linear polyethyleneimine skeleton, It has application potential in fields such as the field and environmentally friendly products.
  • the composite nanofiber of the present invention it is considered essential to control the shape of silica and to have coordinating molecules capable of concentrating metal ions inside the silica.
  • a polymer having a linear polyethyleneimine skeleton is used as the coordinating molecule, and (i) a polymer having a linear polyethyleneimine skeleton is associated with the coordinating molecule.
  • a polymer having a linear polyethyleneimine skeleton is associated with the coordinating molecule.
  • a polymer having a linear polyethyleneimine skeleton is associated with the coordinating molecule.
  • the linear polyethyleneimine skeleton in the polymer having a linear polyethyleneimine skeleton is soluble in water, but exists as an insoluble aggregate at room temperature.
  • the mutual linear polyethyleneimine skeleton forms a crystal, whereby a nanometer-thick crystalline polymer filament having crystalline properties can be formed.
  • This crystalline polymer filament acts as a template.
  • on the surface of the crystalline polymer filament there are a large number of free polyethyleneimine chains which are inevitably unrelated to the crystals, and these free chains hang down on the surface of the crystalline polymer filament. These chains are scaffolds that anchor the polymerized silica in the vicinity, and at the same time act as catalysts for polymerizing the silica source.
  • a polymer-containing silica nanofiber in which the surface of the crystalline polymer filament is coated with silica is obtained by advancing the sol-gel reaction on the surface of the crystalline polymer filament having a linear polyethyleneimine skeleton.
  • the shape formed by the crystalline polymer filament is copied to the silica, so that the polymer-containing silica nanofiber can form various shapes that can be induced by the crystalline polymer filament.
  • a crystalline polymer filament having a linear polyethyleneimine skeleton gives a hydrogel whose shape can be easily controlled in the presence of water. Therefore, after forming the hydrogel into an arbitrary shape, Crystalline polymer filaments are connected by two or more functional groups After cross-linking by a chemical bond with a compound having a sol-gel reaction, a structure consisting of polymer-containing silica nanofibers in which the shape of individual polymer aggregates is incorporated into a large silicic acid gel mass can get. Since the outer shape of the hydrogel can be formed into various shapes, the structure can be macroscopically controlled.
  • the polymer Z metal ion complex is reduced spontaneously in situ or by reducing another reducing agent, and is converted into a metal crystal via a metal cluster.
  • the silica nanofiber and the structure of the structure constructed by the silica nanofiber do not change, and the polymer inside the silica nanofiber cannot flow out of the silica nanofino.
  • Specific methods for producing the composite nanofiber of the present invention include the following steps (1) to (3):
  • a polymer having a linear polyethyleneimine skeleton is dissolved in a solvent and then precipitated in the presence of water to obtain a polymer having a linear polyethyleneimine skeleton.
  • a crystalline polymer filament having a linear polyethyleneimine skeleton serving as a template for the shape of the composite nanofiber of the present invention is formed.
  • the polymer having a linear polyethyleneimine skeleton that can be used is the same as described above.
  • the polymer having the linear polyethyleneimine skeleton is obtained by crystallizing the linear polyethyleneimine skeleton by expressing crystallinity in an aqueous medium and associating the crystals with each other.
  • a reactive polymer filament The crystalline polymer filaments can be formed into a hydrogel having a three-dimensional network structure by physical bonding between the crystalline polymer filaments in the presence of water, and further, the crystalline polymer filaments are crosslinked with a crosslinking agent. By doing so, a crosslinked hydrogel having a chemical crosslink bond can be obtained. This By using hydrogels, it is possible to easily adjust the shape of the composite nanofiber aggregate obtained by adjusting the conditions for producing the hydrogel, and to form the composite nanofiber structure with its external shape. This is preferable because control becomes easy.
  • a plurality of linear polyethyleneimine skeletons in the primary structure of the polymer having a linear polyethyleneimine skeleton crystallize in the presence of water molecules, so that the polymers are mutually exchanged. It grows into a fibrous form by associating with crystals, and has crystalline properties during the structure.
  • the crystalline polymer filament has a thickness in the range of 1: to about LOOnm, preferably 2 to 30 nm, more preferably 2 to: LOnm, and the length is 10 times or more the thickness, preferably Is a fiber shape of 100 times or more (hereinafter, the fiber shape of the crystalline polymer filament may be referred to as a primary shape!).
  • Polyethyleneimine which has hitherto been widely used, is a branched polymer obtained by ring-opening polymerization of cyclic ethyleneimine, and its primary structure includes primary amine, secondary amine, and tertiary amine. Therefore, since branched polyethyleneimine has no water crystallinity and does not have crystallinity, in order to form a hydrogel using branched polyethyleneimine, a network structure must be provided by covalent bonding with a crosslinking agent.
  • the linear polyethyleneimine having a polymer as a skeleton used in the present invention is composed of only a secondary amine, and the secondary amine-type linear polyethyleneimine is crystallizable while being water-soluble. Is possible.
  • linear polyethyleneimine crystals have a polymer crystal structure that differs greatly depending on the number of waters of crystallization contained in the ethyleneimine units of the polymer (Y. Chatani et al., Macromolecules, 1981, Vol. 14, p. 315-321).
  • Anhydrous polyethyleneimine prefers a crystal structure characterized by a double helix structure, but when two molecules of water are contained in a monomer unit, the polymer is known to grow into a crystal characterized by a zigzag structure. ing.
  • crystals of linear polyethyleneimine which can also be hydrodynamically, are crystals containing two molecules of water in one monomer unit, and the crystals are insoluble in water at room temperature.
  • the crystalline polymer of the polymer having a linear polyethyleneimine skeleton in the present invention The filament is formed by crystal expression of the linear polyethyleneimine skeleton as in the case described above. Even if the polymer shape is linear, star-like, or comb-like, the filament has a primary structure. If the polymer has a linear polyethyleneimine skeleton, a crystalline polymer filament can be obtained.
  • the presence of the crystalline polymer filament can be confirmed by X-ray scattering, and the linear shape in the crystalline hydrogel at around 20 °, 27 °, 28 ° at a 20-angle value with a wide-angle X-ray diffractometer (WA XS) It is confirmed by the peak value derived from the polyethyleneimine skeleton.
  • WA XS wide-angle X-ray diffractometer
  • the melting point of the crystalline polymer filament in the differential scanning calorimeter depends on the primary structure of the polymer having a polyethyleneimine skeleton. The melting point appears generally at 45 to 90 ° C.
  • the crystalline polymer filaments can form a hydrogel having a three-dimensional network structure by physical bonding between the crystalline polymer filaments in the presence of water, and furthermore, the crystalline polymer filaments are crosslinked with a crosslinking agent. By doing so, a crosslinked hydrogel having a chemical crosslink can also be formed.
  • the crystalline polymer filaments associated with each other in the presence of water form a three-dimensional shape having a size of micro to millimeter (hereinafter, the fine three-dimensional shape is referred to as a secondary shape). In some cases). Between the aggregates having these secondary shapes, the crystalline polymer filaments in the aggregates further physically associate with each other to form a crosslinked structure, thereby forming a three-dimensional network structure composed entirely of the crystalline polymer filaments. . Since these occur in the presence of water, a hydrogel containing water is formed in the three-dimensional network structure. When a cross-linking agent is used, the crystalline polymer filaments are chemically cross-linked to form a bridge hydrogeno-gel in which the three-dimensional network structure is fixed by chemical cross-linking.
  • the three-dimensional network structure here is different from a normal polymer hydrogel in that a network formed by physical cross-linking due to hydrogen bonding of free ethyleneimine chains existing on the surface of crystalline polymer filaments. Structure. Therefore, at a temperature higher than the melting point of the crystal, the crystal is dissolved in water, and the three-dimensional network structure is also broken. However, when it returns to room temperature, crystalline polymer filaments grow, and hydrogen bonds are formed between the crystals. Due to the formation of physical crosslinks, a three-dimensional network structure appears again.
  • the secondary shape formed by the crystalline polymer filament is determined by the geometrical shape of the polymer structure, the molecular weight, the non-ethylenimine portion that can be introduced into the primary structure, and the formation of the crystalline polymer filament.
  • various shapes such as a fiber shape, a brush shape, and a star shape can be controlled.
  • the hydrogel can retain the general outer shape (hereinafter, the outer shape of the hydrogel may be referred to as a tertiary shape), but can be arbitrarily deformed by an external force, so that the shape can be easily controlled. It is.
  • the crystalline polymer filament is obtained by dissolving a polymer having a linear polyethyleneimine skeleton in a solvent, utilizing the property that a polymer having a linear polyethyleneimine skeleton is insoluble in water at room temperature. Thereafter, it is obtained by precipitation in the presence of water.
  • a polymer having a linear polyethyleneimine skeleton is dissolved in water or a mixed solvent of water and a hydrophilic organic solvent (in the present specification, these are referred to as an aqueous medium).
  • aqueous medium examples thereof include a method of heating and cooling the solution, and a method of dissolving a polymer having a linear polyethyleneimine skeleton in a hydrophilic organic solvent and adding water to the solution.
  • an aqueous medium or a hydrophilic organic solvent can be preferably used as a solvent for dissolving the polymer having a linear polyethyleneimine skeleton.
  • the hydrophilic organic solvent include hydrophilic organic solvents such as methanol, ethanol, tetrahydrofuran, acetone, dimethylacetamide, dimethylsulfonoxide, dioxysilane, and pyrrolidone.
  • a hydrogel composed of crystalline polymer filaments can be obtained by adjusting the amount of the polymer having a linear polyethyleneimine skeleton.
  • the hydrogel is prepared by first dispersing a predetermined amount of a polymer having a linear polyethyleneimine skeleton in water, and heating the dispersion to obtain a transparent aqueous solution of a polymer having a polyethyleneimine skeleton. . Subsequently, the aqueous solution of the polymer in a heated state is obtained by cooling to room temperature.
  • the hydrogel is deformed by an external force such as a shearing force. It has a state like ice cream that can maintain its shape, and can be deformed into various shapes.
  • the heating temperature is more preferably 100 ° C or lower, and more preferably in the range of 90 to 95 ° C.
  • the polymer content in the polymer dispersion is not particularly limited as long as the hydrogel can be obtained, but is preferably in the range of 0.01 to 20% by mass. Is preferably in the range of 0.1 to: LO mass%.
  • the secondary shape of the crystalline polymer filament in the obtained hydrogel can be adjusted by the process of lowering the temperature of the polymer aqueous solution to room temperature.
  • the polymer aqueous solution is kept at 80 ° C for 1 hour, then brought to 60 ° C over 1 hour, and kept at that temperature for another hour.
  • the temperature is then lowered to 40 ° C over 1 hour and then naturally cooled to room temperature.
  • the above polymer aqueous solution is frozen at a freezing point, or methanol Z dry ice below the freezing point.
  • the state is kept in a water bath at room temperature, or the above polymer solution is cooled down to room temperature in a water bath at room temperature or in an air environment at room temperature. And the like.
  • the secondary shape formed by the crystalline polymer filaments in the hydrogel can be a fiber-like shape.
  • the shape of the secondary shape formed by the crystalline polymer filament in the hydrogel of the present invention can be set to various shapes.
  • the hydrogel obtained as described above is an opaque gel in which crystalline polymer filaments having a polymer force having a polyethyleneimine skeleton are formed, and the crystalline polymer filaments are physically bonded by hydrogen bonding. It is cross-linked to form a three-dimensional physical network.
  • the crystalline polymer filaments in the formed hydrogel remain insoluble at room temperature, but when heated, the crystalline polymer filaments are dissociated, and the pore gel changes to a sol state. Therefore, the physical hydrogel of the present invention can be reversibly changed from a solka gel or a gel to a sol by heat treatment.
  • the hydrogel referred to in the present invention contains at least water in a three-dimensional network structure.
  • a hydrogel containing an organic solvent can be obtained.
  • the hydrophilic organic solvent include hydrophilic organic solvents such as methanol, ethanol, tetrahydrofuran, acetone, dimethylacetamide, dimethyl sulfoxide, dioxysilane, and pyrrolidone.
  • the content of the organic solvent is preferably in the range of 0.1 to 5 times the volume of water, and more preferably in the range of 1 to 3 times the volume of water!
  • the form of the crystalline polymer filament can be changed, and a crystal having a form different from that of a simple aqueous system can be provided.
  • a crystal having a form different from that of a simple aqueous system can be provided.
  • a ball-shaped secondary shape such as a fiber shrinkage can be obtained. Can be.
  • a hydrogel containing a water-soluble polymer can be obtained by adding another water-soluble polymer during the preparation of the hydrogel.
  • the water-soluble polymer include polyethylene glycol, polyvinyl alcohol, polypyrrolidone, polyacrylamide, poly (
  • N-isopropylacrylamide N-isopropylacrylamide
  • polyhydroxyethyl acrylate polymethyloxazoline
  • polyethyloxazoline polyethyloxazoline
  • the content of the water-soluble polymer is preferably 0.1 to 5 times the mass of the polymer having a linear polyethyleneimine skeleton, and 0.5 to 2 times. If so, it is better.
  • the form of the crystalline polymer filament can be changed, and a secondary form different from that of a simple aqueous system can be provided. Also, It is effective in increasing the viscosity of drogel and improving the stability of the hydrogel.
  • the surfaces of the crystalline polymer filaments in the hydrogel can be treated with each other.
  • Crosslinked hydrogels linked by bonds can be obtained.
  • an aldehyde crosslinking agent As the compound containing two or more functional groups capable of reacting with the amino group at room temperature, an aldehyde crosslinking agent, an epoxy crosslinking agent, an acid chloride, an acid anhydride, and an ester crosslinking agent may be used. it can.
  • the aldehyde crosslinking agent include malolaldehyde, succinyl aldehyde, glutaryl aldehyde, azifoyl aldehyde, phthaloyl aldehyde, isophthaloyl aldehyde, terephthaloyl aldehyde and the like.
  • Examples of the epoxy crosslinking agent include polyethylene glycol diglycidyl ether, bisphenol A diglycidyl ether, glycidyl chloride, glycidyl bromide and the like.
  • Examples of the acid chlorides include malonyl chloride, succinic chloride, glutaryl chloride, azifoyl chloride, phthaloyl chloride, isophthaloyl chloride, and terephthaloyl chloride.
  • Examples of the acid anhydride include phthalic anhydride, succinic anhydride, glutaric anhydride and the like.
  • Examples of the ester crosslinking agent include methyl malate, methyl succinate, methyl glutarate, methyl phthaloyl, and methyl polyethylene glycolcarboxylate.
  • the cross-linking reaction can be performed by a method of immersing the obtained hydrogel in a solution of a cross-linking agent or a method of adding a cross-linking agent solution to a hydrogel. At this time, the cross-linking agent penetrates into the inside of the hydrogel together with the change in osmotic pressure in the system, where the crystalline polymer filaments are connected to each other by hydrogen bonds and cause a chemical reaction with the nitrogen atom of ethyleneimine.
  • the cross-linking reaction is a force that proceeds by the reaction with free ethyleneimine on the surface of the crystalline polymer filament.
  • the crystalline polymer that forms a hydrogel must be used. It is desirable to carry out the reaction at a temperature below the melting point of the filament, and most desirably to carry out the crosslinking reaction at room temperature.
  • crosslinking reaction When the crosslinking reaction is allowed to proceed at room temperature, a crosslinked hydrogel can be obtained by leaving the hydrogel mixed with a crosslinking agent solution.
  • the time for the crosslinking reaction is several minutes
  • Cross-linking proceeds favorably by leaving it overnight after a few days of power.
  • the amount of the crosslinking agent may be 0.05 to 20% with respect to the number of moles of the ethylenimine unit in the polymer having a polyethyleneimine skeleton used for hydrogel formation, and 1 to 10%. More suitable.
  • the gelling agent is a crystalline polymer filament
  • it can exhibit various morphological gel structures.
  • even a small amount of crystalline polymer filament has a high water retention property because it suitably forms a three-dimensional network structure in water.
  • the polymer having a linear polyethyleneimine skeleton to be used is easy in structural design and synthesis, and the preparation of the hydrogel is simple.
  • the shape of the hydrogel can be fixed.
  • the crystalline polymer filament is coated with silica by contacting the crystalline polymer filament with alkoxysilane in the presence of water in the presence of water after the step (1).
  • a step of obtaining a nanofiber (in the present specification, the nanofiber is referred to as a polymer-containing silica nanofiber).
  • the silica source with the crystalline polymer filament in a state of being cross-linked by a cross-linking agent, in a state in which the crystalline polymer filament has formed a hydrogel, or in a state of cross-linking the hydrogel with a cross-linking agent, the polymer-containing silica nano A structure made of fibers can be obtained.
  • a solvent that can be used in a dispersion of the crystalline polymer filament in water or a hydrogel or a crosslinked hydrogel of the crystalline polymer filament which can be used for ordinary sol-gel reaction And a sol-gel reaction at room temperature.
  • a polymer-containing silica nanofiber and a structure of the polymer-containing silica nanofiber can be easily obtained.
  • alkoxysilane used as the silica source examples include trivalent or higher valent alkoxysilanes (alkoxysilanes having three or more substituents) such as tetraalkoxysilanes and alkyltrialkoxysilanes.
  • alkoxysilanes examples include trivalent or higher valent alkoxysilanes (alkoxysilanes having three or more substituents) such as tetraalkoxysilanes and alkyltrialkoxysilanes.
  • tetraalkoxysilanes examples include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetra-t-butoxysilane and the like.
  • alkyltrialkoxysilanes include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, iso- Propyltrimethoxysilane, iso-propynole triethoxysilane, 3-chloropropyl propyltrimethoxysilane, 3-chloropropyl propyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycitoxypropyltrimethoxysilane, 3-glycitoxypropinoletriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltomethoxysilane
  • the sol-gel reaction for providing polymer-containing silica nanofibers proceeds in an aqueous medium in the presence of a crystalline polymer filament, but the reaction does not occur in the aqueous medium phase but proceeds on the surface of the crystalline polymer filament. Therefore, the reaction conditions are arbitrary as long as the crystalline polymer filaments are not dissolved under the complexing reaction conditions.
  • the presence of water is 20% or more in an aqueous liquid containing a hydrophilic organic solvent during the sol-gel reaction, and it is preferably 40% or more. If so, even better! /.
  • a polymer-containing silica nanofiber can be suitably formed by increasing the amount of alkoxysilane as a silica source relative to ethyleneimine as a monomer unit of polyethyleneimine.
  • the degree of excess is preferably in the range of 2 to 1000 times equivalent to ethyleneimine.
  • the polymer concentration in the aqueous medium when forming the crystalline polymer filament is Preferably, it is 0.1 to 30% based on the amount of polyethyleneimine contained in the polymer.
  • the amount of polyethyleneimine in the aqueous medium can be adjusted to a concentration exceeding 30% by concentrating while maintaining the crystalline form of the crystalline polymer filament.
  • concentration method at this time a method of filtering the underwater dispersion of the crystalline polymer filament or the hydrogel of the crystalline polymer filament at ordinary temperature or under reduced pressure can be used.
  • the time of the sol-gel reaction varies from one minute to several days, but in the case of methoxysilanes having a high alkoxysilane reaction activity, the reaction time is 1 minute to 24 hours to increase the reaction efficiency. Therefore, it is more preferable to set the reaction time to 30 minutes to 5 hours.
  • the sol-gel reaction time is preferably 24 hours or more, and the time is preferably about one week.
  • the polymer-containing silica nanofiber obtained in this step is composed of the above-mentioned crystalline polymer filament and silica covering the crystalline polymer filament, and has a thickness of 10 to 1000 nm, preferably 15 to 1000 nm. It has a length of at least 10 times, preferably at least 100 times the thickness.
  • the content of silica in the polymer-containing silica nanofiber can and force the polymer-containing silica nanofiber total 30-90 wt 0/0 ranges and child that changes at a constant width using reaction conditions are.
  • the silica content increases with increasing amounts of polymer used during the sol-gel reaction. Further, it is increased by lengthening the sol-gel reaction time.
  • the polymer-containing silica nanofiber is a composite having, as a core, a crystalline polymer filament of a polymer having a linear polyethyleneimine skeleton, and the crystalline polymer filament is coated with silica. Therefore, the polymer-containing silica nanofiber can highly concentrate and adsorb metal ions by the ethyleneimine unit present in the crystalline polymer filament.
  • the polymer-containing silica nanofibers can form structures having various shapes by associating with each other.
  • the structure may be in a state where the crystalline polymer filament is cross-linked with a cross-linking agent or in a state where the crystalline polymer filament forms a hydrogel, or in a state where the silica gel is contacted with the hydrogel cross-linked with the cross-linking agent.
  • polymer A structure made of silica-containing nanofino can be obtained. Therefore, the structure has a shape derived from the shape formed by the above-mentioned crystalline polymer filament hydrogel or crosslinked hydrogel.
  • the structure of the polymer-containing silica nanofiber is obtained by arbitrarily shaping the tertiary shape of the hydrogel or crosslinked hydrogel formed by the crystalline polymer filament, and then coating the crystalline polymer filament in the hydrogel with silica. It is a structure molded into any external shape.
  • the secondary shape of the aggregate formed in the hydrogel is also copied, so that the polymer-containing silica nanofiber is derived from the secondary shape formed by the crystalline polymer filament. There are aggregate shapes formed by aggregates of silica nanofibers.
  • the external shape of the structure of the polymer-containing silica nanofiber can be arbitrarily shaped because the tertiary shape formed from the crystalline polymer filament can be fixed.
  • the structural strength of the polymer-containing silica nanofibers depends on the geometrical shape of the polymer structure of the polymer used, the molecular weight, the non-ethylenimine moiety that can be introduced into the primary structure, and the use of a silica source. Depending on the amount and the like, it can have various shapes such as a fiber shape, a brush shape, a star shape, a lettuce shape, a sponge shape, an aster shape, a cactus shape, and a dandelion shape.
  • the size of these aggregates is 3 ⁇ ! The size can be about lmm.
  • the shape of this size is a three-dimensional shape formed by the association of the polymer-containing silica nanofibers, which are the basic units, and the spatial arrangement force.
  • the polymer-containing silica nanofiber, which is the basic unit contains a crystalline polymer filament core. That is, in the structure of the polymer-containing silica nanofiber, the crystalline polymer filaments are connected to each other by a physical bond by hydrogen bonding in water and are arranged in space to form a three-dimensional template of various shapes. It is considered that the silica-containing fibers are fixed along and form a form in which the polymer-containing silica nanofibers associate with each other and are arranged in a space.
  • the structure of the polymer-containing silica nanofiber is a structure in which an associative body in which crystalline polymer filaments are associated with each other is further fixed and physically crosslinked hydrogel is fixed with silica. Adjust the concentration or amount of silica source, etc. By fixing, by fixing silica, the physical cross-links between the aggregates are cut off, and the aggregates of the crystalline polymer filaments or a plurality of aggregates of the aggregates are fixed with silica. It is also possible to extract aggregates of polymer-containing silica nanofibers
  • the shape of the aggregate of the polymer-containing silica nanofiber is determined by the geometrical shape of the polymer structure, the molecular weight, the non-ethylenimine portion that can be introduced into the primary structure, and the polymer-containing silica nanofiber.
  • the shape of the aggregate in the polymer-containing silica nanofiber structure can be adjusted.
  • the shape of the aggregate depends on the molecular structure of the polymer used, the degree of polymerization, the composition, and the method of lowering the temperature during the preparation of the structure of the polymer-containing silica nanofiber.
  • a linear polyethyleneimine skeleton As a polymer having a linear polyethyleneimine skeleton, a linear polyethyleneimine having a degree of polymerization of 300 or more is used.
  • a sol-gel reaction using the hydrogel By performing a sol-gel reaction using the hydrogel, a composite structure of polymer-containing silica nanofibers having a lettuce-like composite shape can be obtained.
  • the thickness of the leaf-forming portion increases as the polymer concentration in the polymer solution during crystallization of the polymer decreases.For a concentration of 2% or more, the thickness of the leaf portion is around 100 nm. When the concentration is 1% or less, the thickness of the leaf part is around 500 nm.
  • the resulting secondary shape can also be controlled by changing the structure of the core central residue.
  • the central residue has a large pi plane such as porphyrin
  • the aggregate shape in the resulting polymer-containing silica nanofiber structure is aster-like, and the crystal size of one aster shape is The length is about 2-6 / zm.
  • concentration is 1% or more, the number of arms of the aster is small. Each arm tends to be united. At the concentration lower than 1%, each arm with a large number of arms tends to separate.
  • the resulting polymer-containing silica nanofiber structure has a fiber-like shape in which many threads are bound, and the fibers are entangled with each other. Then, a sponge-like polymer-containing silica nanofiber structure is formed.
  • the thickness of one fiber shape Is around 150 nm.
  • a crosslinked hydrogel in which the crystalline polymer filaments are crosslinked by a chemical bond, structures of polymer-containing silica nanofibers having various external shapes can be obtained.
  • the shape and size can be the same as the size and shape of the container used during the preparation of the crosslinked hydrogel, and can be prepared into any shape such as a disk, a column, a plate, and a sphere.
  • the crosslinked hydrogel can be formed into a desired shape by cutting or shaving.
  • a polymer-containing silica nanofiber structure of any shape can be easily obtained.
  • the time for immersion in the silica source solution varies from 1 hour to 1 week depending on the type of silica source to be used. Often, in a solution of ethoxysilanes, about 1 to 7 days is suitable.
  • the polymer-containing silica nanofibers are obtained by dissolving a polymer having a linear polyethyleneimine skeleton and precipitating them in the presence of water to obtain crystalline polymer filaments. It can be easily produced by contacting the crystalline polymer filament with an alkoxysilane.
  • the step of obtaining polymer-containing silica nanofiber and the step of sol-gel reaction of silica can be performed in a short time.
  • a dispersion of crystalline polymer filaments and a hydrogel of crystalline polymer filaments can be easily prepared, and a polymer-containing silica nanofiber structure can be easily produced by contacting the dispersion or hydrogel with alkoxysilane.
  • the polymer-containing silica nanofiber is brought into contact with a solution in which metal ions are dissolved, and the metal ions are converted into the polymer.
  • a composite nanofiber containing a metal ion and a polymer having a linear polyethyleneimine skeleton in a silica nanofiber can be obtained.
  • the metal ion that can be used the above-described metal ions can be used.
  • the solution in which the metal ion is dissolved can be prepared by, for example, dissolving the salt containing the metal ion in water.
  • the method for bringing the polymer-containing silica nanofibers into contact with a solution in which metal ions are dissolved is not particularly limited.
  • the method may be obtained according to the step (2).
  • the obtained polymer-containing silica nanofiber is immersed in an aqueous solution of metal ions.
  • metal ions can be easily concentrated in silica nanofibers.
  • the metal enriched in the polymer-containing silica nanofibers forms a coordination bond with the crystalline polymer filament inside the silica nanofiber, so that the crystalline polymer filament is disassembled in silica and has a linear polyethyleneimine skeleton instead.
  • a metal complex in which the polymer and the metal ion are coordinated is formed.
  • a composite nanofiber containing the metal ion of the present invention and a polymer having a linear polyethyleneimine skeleton in a silica nanofiber can be easily obtained.
  • the metal ions are concentrated in the silica nanofiber, the more the polymer in the polymer-containing silica nanofiber and the higher the mixing ratio of the metal ion with respect to the polymer, the more the metal ion is concentrated in the silica.
  • the amount of metal ions increases.
  • 0.1 to 0.5 times the amount of metal ion of the nitrogen atom of the polyethyleneimine skeleton contained in the polymer-containing silica nanofiber is used. Can form a complex.
  • the amount of metal ions is 0.1 to LO: It is particularly preferable that the ratio is about twice.
  • the product is taken out, washed with room temperature or cold water, and a composite nanoparticle containing the metal ion of the present invention and a polymer having a linear polyethyleneimine skeleton in a silica nanofiber is used. Fiber can be obtained.
  • a step (4) of reducing a transition metal ion coordinated to the linear polyethyleneimine skeleton in the polymer is performed, whereby the metal and the linear polyethyleneimine are reduced.
  • a composite nanofiber containing a polymer having a polyethylenimine skeleton in a silica nanofiber can be obtained.
  • the polymer-containing silica nanofiber is mixed with a metal ion.
  • a metal complex in which a polymer having a linear polyethyleneimine skeleton and a metal ion are coordinate-bonded in the silica nanofiber is formed.
  • the composite nanofiber containing the metal of the present invention and a polymer having a linear polyethyleneimine skeleton in a silica nanofiber is obtained by the power to spontaneously reduce the metal ion or by reducing with a reducing agent. can get.
  • the metal atom is used in an amount of 1 to 20 times the number of moles of the nitrogen atom of the polyethyleneimine skeleton contained in the polymer-containing silicon nanofiber. Can be fixed.
  • the amount of the metal ion be as large as possible with respect to the ethyleneimine unit when the polymer-containing silica nanofiber is immersed in the metal ion solution. It is particularly preferred that it is about 30 times.
  • metal ions of Au, Ag, Pt, and Pd are spontaneously reduced at room temperature or in a heated state after being coordinated with polyethyleneimine, and are nonionic metal nano-particles. Since it is converted into particles or metal nanowires, it is preferable to obtain a composite nanofiber of the present invention containing a metal.
  • the heating temperature is particularly preferably from 60 to 80 ° C if it is 100 ° C or less. Therefore, reduction of these metal ions can be performed simply by mixing the polymer-containing silicic nanofibers with the metal ion solution.
  • the metal-containing composite nanofiber of the present invention can be obtained without a step of concentrating the metal ion in silica and mixing the silica with a reducing agent solution.
  • the complex may be prepared by suppressing the reduction reaction, for example, by adjusting the pH to an acidic condition.
  • Examples of the reducing agent that can be used in the step include hydrogen, sodium borohydride, ammonium borohydride, aldehyde, hydrazine, and the like.
  • the reaction can be carried out in an aqueous medium.At that time, after concentrating the metal ions on the polymer-containing silica nanofibers, the silica is washed with water. It is then desirable to mix it with the reducing agent solution. That is, the composite nanofiber of the present invention can be obtained by reducing only the metal ions contained in the silica.
  • the reduced metal is converted into metal particles or metal wires via metal clusters inside the silica nanofiber.
  • Metal wires are formed by metal reduction of metal ions concentrated along crystalline polymer filaments in polymer-containing silica nanofibers.
  • the reduction reaction time varies depending on the type of metal ion. In general, 24 hours is sufficient. It is sufficient that the reaction time is as long as possible under room temperature conditions and 1 hour is basically sufficient under heating conditions, but it is also preferable to set it to several hours depending on the type of metal ion.
  • the size of the metal in the composite nanofiber of the present invention can be adjusted.
  • the thickness of the metal is about 2 to 20 nm. With a range and particle shape, particles having a particle size in the range of about 2 to 20 nm can be easily formed.
  • the temperature of the reduction reaction is preferably set to a temperature of 100 ° C or less.
  • the production method of the present invention hardly requires complicated steps, precise setting of conditions, and the like! Therefore, composite nanofibers containing metal ions or metals in silica can be easily obtained. Furthermore, the association formed by the polymer-containing silica nanofibers described above In order to keep the body shape and the structure shape as they are, it is easy to obtain a composite nanofiber aggregate composed of composite nanofibers having the same shape as the aggregate or the structure, or a composite structure composed of composite nanofibers And its space shape can be controlled easily
  • the composite nanofiber can be a metal-containing silica nanofiber.
  • a method of removing the polymer component from the composite nanofiber can be realized by a baking treatment or a solvent washing method. However, since the polymer component can be completely removed, the baking in the baking furnace is performed. Processing method is preferred.
  • high-temperature calcination in the presence of air or oxygen and high-temperature calcination in the presence of an inert gas such as nitrogen or a helium can be used. Is preferred.
  • a polymer having a linear polyethyleneimine skeleton as a polymer component can be thermally decomposed at a temperature of around 300 ° C. A range of degrees is particularly preferred.
  • the calcination may be performed according to a known method for calcination of mesoporous silica (Diaz et al. J. Mater. Chem. 2004, vol. 14, p. 48). I can do it. In heating, leave the composite sample at 100 ° C for 10 to 30 minutes, then raise the temperature to 300 ° C at a heating rate of 10 ° Z, and leave it at that temperature for 1 hour. For example, a method in which the temperature is raised to 500 ° C. at a heating rate and firing is performed at that temperature for 1 to 6 hours can be exemplified.
  • the temperature may be raised to 700 to 800 degrees at the same temperature raising rate, and firing may be performed at that temperature for 1 to 6 hours. After firing, the temperature of the firing furnace may be naturally lowered to room temperature, or the temperature may be lowered to room temperature by flowing air through the firing furnace.
  • the composite nanofiber and the metal-containing silica nanofiber of the present invention have a large surface area of the silica nanofiber, excellent molecular selectivity derived from the silica to be coated, and excellent stability.
  • it has a metal or metal ion inside.
  • the aspect ratio is very high, it is possible to form a non-woven fabric or the like by assembling the fibers with each other, so that a solid electrolyte, a solid catalyst, a nano additive, a nano thin film material can be formed. It can be expected to be widely applied as a nano metal catalyst, nano metal conductive material, nano metal color material, nano metal sensor, optical imaging material, optoelectronic material, and medical material.
  • the ethyleneimine unit in the polymer can be easily cationized. It is also possible to adsorb and immobilize various ionic substances such as biomaterials.
  • the polymer having the linear polyethyleneimine skeleton is easy to block and graft with other polymers, and is easy to control the structure such as the side chain and terminal structure of the polymer. Since it is possible to add various functions to the composite nanofiber by blocking with a polymer and controlling the terminal structure, it is a useful material in the fields of biotechnology and environmentally friendly products.
  • the composite structure and the structure of the metal-containing silica nanofiber of the present invention are obtained by forming a crosslinked structure by further associating the secondary shape formed by the crystalline polymer filament in the presence of water.
  • the silica is fixed along the template linked by physical bonding, so that nano-sized composite nanofibers and metal-containing silica nanofibers are associated with each other. Therefore, these structures form a three-dimensional network structure in which these nanofibers are highly assembled while retaining the characteristics of the composite nanofibers and the metal-containing silica nanofibers described above. It can be arbitrarily molded with a size of millimeters or more.
  • these structures have a three-dimensional network structure inside, they can be usefully used for high-performance filters such as biofilters and air filters, or catalysts with a high specific surface area.
  • these structures are easy to control in their outer structure, and can realize various fine aggregate shapes in the structures. Therefore, these structures are promising as advanced functional materials in various fields in addition to the above applications.
  • Material. [0163] Therefore, the above-mentioned composite nanofibers and composite structures are novel composites that completely clear the difficulty of shape control in the conventional silica material preparation, and are easy to manufacture. There are great expectations for its application regardless of the type of business or area. Further, since the composite nanofibers and composite structures of the present invention contain a metal or metal ion inside, a nano-shaped metal or metal complex is of course applied to the general application area of silica materials. It is a useful material even in the area.
  • the measurement was performed under the conditions of 0 ° Z and a scanning range of 10 to 40 °.
  • the isolated and dried sample is weighed with a measurement patch, and set on a Perkin Elmer DSC-7 thermal analyzer, with a temperature rise rate of 10 ° CZ for a temperature range of 20 ° C to 90 ° C.
  • a Perkin Elmer DSC-7 thermal analyzer with a temperature rise rate of 10 ° CZ for a temperature range of 20 ° C to 90 ° C.
  • the isolated and dried sample is placed on a carbon-deposited copper grid, which is then placed on Topcon Corporation, Nolan Instruments EM-002B, VOYAGER M3055 high-resolution transmission electron microscope, or JEOL Ltd. transmission. Observed with a scanning electron microscope rjEM 200CXJ.
  • the silica powder containing the metal complex was placed on a quartz glass plate, and measured with a U-3500 UV-Vis manufactured by Hitachi, Ltd. equipped with an integrating sphere.
  • L-PEI dispersions having various concentrations shown in Table 1. These dispersions were heated to 90 ° C. in an oil bath to obtain a completely transparent aqueous solution having a concentration of 1%. The aqueous solution was left at room temperature and cooled to room temperature to obtain an opaque L-PEI aggregate hydrogel.
  • the obtained aggregate was subjected to X-ray diffraction measurement, and it was confirmed that scattering intensity peaks appeared at 20.7 °, 27.6 °, and 28.4 °.
  • the endothermic peak was confirmed at 64.7 ° C according to the measurement result of the endothermic state change by the calorimeter. From these measurement results, the presence of LPEI crystals in the hydrogel was confirmed.
  • the number average molecular weight by GPC of the obtained precursor polymer (TPMO-P) was 28,000, and the molecular weight distribution was 1.56. Further, the average degree of polymerization of each arm was 290 when the integral ratio between the ethylene proton in the polymer arm and the pyrrol ring proton of vorphyrin in the center of the polymer was calculated by 1H-NMR. Therefore, number average by 1H-NMR The molecular weight was estimated to be 99900. The fact that the number-average molecular weight value by 1H-NMR greatly exceeds the number-average molecular weight value by GPC is consistent with a general feature of star polymers.
  • polymethyloxazoline is hydrolyzed in the same manner as in Synthesis Example 1 above, and a star-shaped polyethyleneimine (P- PEI).
  • P- PEI star-shaped polyethyleneimine
  • polymethyloxazoline was hydrolyzed in the same manner as in Synthesis Example 1 above, and a star-like polyethyleneimine B-PEI in which six polyethyleneimines were bonded to a benzene ring core. Got.
  • 1H-NMR TMS external standard, heavy water
  • star-shaped polymethyloxazoline was hydrolyzed in the same manner as in Synthesis Example 1 above, and a star-shaped polyethyleneimine (B—PEI) in which six polyethyleneimines were bonded to a benzene ring core. ).
  • Synthesis Example 1 the L-PEI powder was used, and instead of the B-PEI synthesized above, a 1% concentration B-PEI aggregate hydrogel was prepared in the same manner as in Synthesis Example 1. Obtained. X-ray diffraction measurement was performed on the obtained hydrogel of the B-PEI aggregate, and it was confirmed that peaks of the scattering intensity appeared at 20.3 °, 27.3 °, and 28.2 °. Also, the endothermic peak was observed at 55.3 ° according to the measurement result of the endothermic state change by the calorimeter. This From the measurement results, the presence of B-PEI crystals in the hydrogel was confirmed.
  • L-PEI2 powder obtained above was weighed and dispersed in distilled water to prepare L-PEI2 dispersions of various concentrations shown in Table 1. These dispersions were heated to 90 ° C. in an oil bath to obtain a completely transparent aqueous solution having a concentration of 3%. The aqueous solution was left at room temperature and naturally cooled to room temperature to obtain an opaque LPEI2-associated hydrogel.
  • the plate of the obtained crosslinked hydrogel was immersed in 2 mL of a mixture of TMSOZEtOH (lZl) for 24 hours, then repeatedly immersed in acetone and washed to obtain a plate-like structure of silica nanofibers containing L-PEI2 (SLP 4). Obtained.
  • L-PEI-containing silica nanofiber structure (SLP-1) obtained in Synthesis Example 1 above was mixed with 0.1 Olg (containing about 3.4 mg of L-PEI) in 1 mL of an aqueous solution of gold ions (containing 0.02 g of NaAuC14). The mixture was allowed to stand at room temperature for 30 minutes and at 80 ° C for 30 minutes, and then washed with distilled water using a centrifugal separator to obtain L-PEI / gold / silica composite nanofibers .
  • the L-PEI-containing silica nanofiber structure (SLP-1) was white, but the obtained L-PEIZ gold-Z silica composite nanofiber structure was yellow.
  • X-ray diffraction measurement of the composite nanofiber structure confirmed sharp scattering peaks derived from Au at 38.1 °, 44.4 °, 64.5 °, and 77.6 °.
  • a transmission electron micrograph of the obtained composite nanofiber structure is shown in Fig. 1, and a high-resolution transmission electron micrograph is shown in Fig. 2. From FIG. 2, a core-shaped gold nanowire and a silica layer covering the same were confirmed.
  • the transmission electron micrograph of the obtained composite nanofiber structure is shown in FIG. 3, and the high-resolution transmission electron micrograph is shown in FIG. From FIG. 4, a core-shaped platinum nanowire and a silica layer covering the same were confirmed.
  • the solid was washed with distilled water using a centrifugal separator to obtain an L-PEI / palladium / silica composite nanofiber structure.
  • the L-PEI-containing silica nanofiber structure (SLP-1) was white, but the obtained L-PEI / ⁇ radium-Z silica composite nanofiber was dark gray.
  • FIG. 5 shows a transmission electron micrograph of the obtained composite nanofiber structure. From Fig. 5, the three-dimensional shape of the aggregate in the composite nanofiber structure was confirmed.
  • L-PEI-containing silica nanofiber structure (SLP-1) obtained in the above Synthesis Example 1 containing about 6.8 mg of PEI
  • 2 mL of a mixed aqueous solution of gold and platinum ions NaAuC14 was 0.0 2 g, containing 0.023 g of Na2PtC14
  • NaAuC14 was 0.0 2 g, containing 0.023 g of Na2PtC14
  • the color changed from white to light yellow, and an L PEIZ gold / platinum Z silica composite nanofiber structure was obtained.
  • the scattering peaks derived from Au and Pt were found to be 38.1, 40.1, 44.2, 46.4, 64.6, 67.7, and 77.6 °. Appeared.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 室温で水分子の存在により水不溶性の結晶体を形成できる直鎖状ポリエチレンイミン骨格を有するポリマーの結晶性ポリマーフィラメントによって、シリカナノファイバが誘導され、そのシリカ中の結晶性ポリマーフィラメントが金属イオンを濃縮することにより、シリカ中に金属又は金属イオンを内部に含有する複合ナノファイバを実現できる。また、本発明の複合ナノファイバは、シリカ中に金属イオンの足場となるポリマー構造体を固定し、その足場に金属イオンを濃縮させることにより、あるいは、該金属イオンを還元させることにより容易に製造できる。また該複合ナノファイバや複合ナノファイバの会合体、構造体からポリマー成分を除去することにより、金属含有シリカナノファイバを容易に得ることができる。これらナノファイバは集合化、集積化することができ、集合化や集積化した会合体や構造体は多様な形状を発現できる。

Description

明 細 書
複合ナノファイバ、複合ナノファイバ会合体、複合構造体及びこれらの製 造方法
技術分野
[0001] 本発明は、金属又は金属イオンをシリカナノファイバ中に含有するナノファイバ、該 ナノファイバが集合ィ匕した会合体や構造体、及びこれらナノファイバやナノファイバ会 合体の製造方法に関する。
本願は、日本国特許庁に 2004年 5月 31日に出願された特願 2004— 161234号 および 2004年 8月 24日に出願された特願 2004— 243580号に基づく優先権を主 張し、その内容をここに援用する。
背景技術
[0002] ナノサイズの構造を持った材料は、バルタ状態とは異なる特性が現れることが知ら れており、なかでも、ナノメートルの太さと、その太さの数十倍以上の長さとを有する ナノファイバは、その高いアスペクト比によりファイバ形状特有のサイズ効果を発現す るため、先端材料の一つとして注目されている。シリカナノファイバは、ナノファイバ特 有の高いアスペクト比や大きな表面積を有すると共に、無機材料固有の半導体特性 、導電性、表面物性、機械的強度などの諸物性を有することから、電子材料分野や ノ ィォ'ライフサイエンス分野をはじめとする各種の先端材料分野において、その応 用展開が有望視されている。また、一本のナノファイバ(一次元)を、そのナノファイバ の特性を保持したまま、布状 (二次元)や塊状 (三次元)に集合化して構造体とするこ とにより、飛躍的にシリカナノファイバの用途が拡大すると期待されて 、る。
[0003] 特に、シリカナノファイバを他の無機材料や有機材料などの機能性材料と組み合わ せたものは、広範な応用可能性を有しており、例えば、金属等の無機材料と組み合 わせること〖こより、電子材料、光学材料、触媒、色剤、センサーなど多くの領域での応 用が期待されている。
[0004] シリカと金属又は金属イオンを組み合わせた材料としては、金属錯体をメソポーラス シリカに固定させた複合材料が、化学反応触媒、電気化学センサー、固体ポリマー 電解質などに使用されている。メソポーラスシリカに金属錯体を導入した複合体を応 用に用いた場合、シリカ表面の高い表面積、ナノ空洞での錯体活性点の均一な分布 、基質化合物の速い拡散、触媒担持体の耐熱性、耐酸性など多くの利点が予測され ることから、メソポーラスシリカを担持体とする金属錯体固定ィ匕技術は多くの注目を集 めている (非特許文献 1参照)。
[0005] しかし、これら従来の金属錯体とシリカとの複合材料で使用されて 、るシリカは、シリ 力のバルタ粉末や粒子状態に限られるものであった。従って、該複合体微粒子はァ スぺタト比が、ほぼ 1: 1の粒子形状であるため、該複合体微粒子のみで集合化、集 積ィ匕することができず、ナノ構造材料特有の性質を保持した構造体を形成することは 困難であった。
[0006] また、製造方法にお!、ては、金属イオンを配位結合させるためのアミノ基、イミノ基 などをィ匕学結合でシリカ骨格に導入する工程が必要である等、その工程は煩雑であ つた o
[0007] シリカと金属との微細な複合材料としては、例えば、 MCM— 41系列のメソポーラス シリカのチャンネル中に金属イオン溶液を還元することによるメソポーラスシリカ Z金 属ナノワイヤ複合体 (非特許文献 2、非特許文献 3参照)や、シリカ微粒子中に金属ィ オンを結合させることによるシリカ微粒子 Z金属ナノ粒子複合体 (非特許文献 4参照) など多数の研究がなされて 、る。
[0008] しかし、これら従来の金属ナノ粒子 ·ナノワイヤと他の材料との複合体においては、 形状が固定された材料の固定された空間でなければ金属ナノ粒子やナノワイヤの形 成が難しいため、シリカの形状の自由度は低ぐワイヤを形成する穴を有するバルタ のシリカや、粒子形状のものに限られるものであり、複合体の形状を制御することが 困難であった。このため、複合体や内部の金属ナノワイヤを高度に集積化させること は困難であった。
[0009] 非特許文献 1 : B. Lee et al. , Langmuir, (2003) , 19, p4246— 4252
非特許文献 2 : G. Hornyak et al. , Chem. Eur. J. 1997, 3, No. 12, pl951 - 1956
非特許文献 3 :Yong— Jin Han, Chem. Mater. , 2000年, 12, p2068— 2069 非特許文献 4 :V. G. Pol et al. , Chem. Mater. , 2003, 15, pl l l l— 1118 発明の開示
発明が解決しょうとする課題
[0010] 本発明が解決しょうとする課題は、構造中に金属のイオンや原子が固定化され、且 つ高度に集合ィヒが可能な金属含有シリカナノファイバ、該金属含有シリカナノフアイ バにさらに機能性ポリマーが複合化された複合ナノフアイノ^これらが高度に集合ィ匕 した会合体や構造体、およびこれらの簡便な製造方法を提供することにある。
課題を解決するための手段
[0011] 本発明においては、室温で水分子の存在により水不溶性の結晶体を形成できる直 鎖状ポリエチレンィミン骨格を有するポリマーの結晶性ポリマーフィラメントによって、 シリカナノファイバが誘導され、そのシリカ中の結晶性ポリマーフィラメントが金属ィォ ンを濃縮することにより、シリカ中に金属又は金属イオンを内部に含有する複合ナノ ファイバを実現できる。この複合ナノファイバは集合化、集積ィ匕することができ、集合 化や集積化した会合体や構造体は多様な形状を発現できる。また、本発明の複合ナ ノファイバは、シリカ中に金属イオンの足場となるポリマー構造体を固定し、その足場 に金属イオンを濃縮させることにより、あるいは、該金属イオンを還元させることにより 容易に製造できる。また該複合ナノファイバや複合ナノファイバの会合体、構造体か らポリマー成分を除去することにより、金属含有シリカナノファイバを容易に得ることが できる。
[0012] すなわち本発明は、少なくとも一種の金属又は金属イオンが配位した直鎖状ポリェ チレンィミン骨格を有するポリマーを、シリカナノファイバ中に含有する複合ナノフアイ ノ 、該複合ナノファイバが相互に会合した会合体、該会合体同士がさらに会合してな る複合構造体を提供するものである。
[0013] また、本発明は、上記複合ナノフアイノ^複合ナノファイバ会合体、及び複合構造 体力 ポリマー成分を除去した金属含有シリカナノファイバ、金属含有シリカナノファ ィバ会合体、金属含有シリカナノファイバ構造体を提供するものである。
[0014] さらに本発明は、(1)直鎖状ポリエチレンィミン骨格を有するポリマーを溶媒に溶解 させた後、水の存在下で析出させ、直鎖状ポリエチレンィミン骨格を有するポリマー の結晶性ポリマーフィラメントを得る工程と、(2)水の存在下で、前記結晶性ポリマー フィラメントとアルコキシシランとを接触させることにより、前記結晶性ポリマーフィラメン トをシリカで被覆してポリマー含有シリカナノファイバを得る工程と、 (3)前記ポリマー 含有シリカナノファイバと、金属イオンが溶解した溶液とを接触させ、金属イオンを前 記ポリマー中の直鎖状ポリエチレンィミン骨格に配位結合させる工程、
と力 なる複合ナノファイバの製造方法、及び、該工程の後に (4)前記ポリマー中の 直鎖状ポリエチレンィミン骨格に配位結合した遷移金属イオンを還元させる工程を有 する複合ナノファイバの製造方法、を提供するものである。
[0015] さらに本発明は、上記工程により複合ナノファイバを得た後、(5)該複合ナノフアイ バ中のポリマー成分を除去する工程を有する金属含有シリカナノファイバの製造方 法、を提供するものである。
発明の効果
[0016] 本発明の複合ナノファイバ及び金属含有シリカナノファイバは、相互に会合して高 度に集合化、集積ィ匕することにより、マイクロ〜ミリメートルオーダーの二次元あるい は三次元的な空間形状を有する会合体を形成できる。該会合体形状は、例えば、レ タス状、ファイバ状、スポンジ状、アスター状、サボテン状、タンポポ状など様々な形 状に調整できる。さらに複合ナノファイバ会合体同士、あるいは該会合体が他の複合 ナノファイバを介して結合することにより、ミリメートルオーダー以上の大きさのマクロな 外形形状を有する構造体を形成することができる。該構造体の外形は任意の形状に 成形することが可能であり、具体的な応用の要求に合わせて、円盤型、円柱型、プレ ート型、フィルタ型、膜型、球型、ロッド型などに成形することができ、粉末、粒子、多 面体、シリンダーなど様々な状態への加工が可能である。該構造体内部には、上記 会合体の会合体形状が存在し、該会合体は本発明の複合ナノファイバや金属含有 シリカナノファイバを基礎とするものである。従って、該構造体は、これらナノファイバ が複雑に形成した三次元網目構造を有する。
[0017] さらに、本発明の複合ナノファイバ及び金属含有シリカナノファイバはその内部に金 属イオンや金属を含有する。金属イオンとしては、アルカリ金属、アルカリ土類金属、 遷移金属などのイオンを含有することから、これらナノファイバは、固体電解質、固体 触媒、ナノ添加剤、ナノ薄膜材料への応用が期待できる。
[0018] また、金属イオンを自発還元させる力 あるいは熱処理や還元剤により還元させるこ とで、金属イオンが金属クラスタを経由して粒子形状やワイヤ形状の金属となる。これ により、金属ナノワイヤを含有するナノファイノ からなるフィルム状の構造体、金属ナノ ワイヤを含有するナノファイバからなるスポンジ状の構造体、金属ナノワイヤを含有す るナノファイノ からなる網目構造体を与えることができる。また、金属ナノ粒子をこれら の形状の複合構造体中に分布させることもできる。
[0019] なかでも遷移金属、特に貴金属の結晶を含有するシリカナノファイバは有用性が高 ぐナノテクノロジーの全般領域、例えば、ナノ金属触媒、ナノ金属導電材料、ナノ金 属色材、ナノ金属センサー、光画像材料、光'電子材料、医用材料として、広い応用 が期待できる。
[0020] 本発明の製造方法によれば、複合ナノファイバは、ナノメートルの太さの結晶性ポリ マーフィラメントの表面上だけで進行するシリカソースのゾルゲル反応により、一定の 厚さのシリカが該結晶性ポリマーフィラメントを被覆した後、金属イオンを固定ィ匕する ことにより、また、必要に応じて金属イオンを還元することにより短時間で容易に製造 できる。
[0021] 更に、本発明の複合ナノファイバ中のポリマー成分は焼結等により簡単に除去でき るので、金属ナノ粒子や金属ナノワイヤを内部に包含する金属含有シリカナノフアイ バの製造も容易である。
図面の簡単な説明
[0022] [図 1]本発明の実施例 1における複合ナノファイバ構造体の透過型電子顕微鏡写真 である。
[図 2]本発明の実施例 1における複合ナノファイバ構造体中の金ナノワイヤの高分解 能透過型電子顕微鏡写真である。
[図 3]本発明の実施例 2における複合ナノファイバ構造体の透過型電子顕微鏡写真 である。
[図 4]本発明の実施例 2における複合ナノファイバ構造体中の白金ナノワイヤの高分 解能透過型電子顕微鏡写真である。 [図 5]本発明の実施例 4における複合ナノファイバ構造体の走査型電子顕微鏡写真 である。
発明を実施するための最良の形態
[0023] 本発明の複合ナノファイバは、金属又は金属イオンと、直鎖状ポリエチレンイミン骨 格を有するポリマーとが、シリカナノファイバ中に含有された複合材料である。
[0024] [直鎖状ポリエチレンィミン骨格を有するポリマー]
本発明でいう直鎖状ポリエチレンィミン骨格とは、二級ァミンのエチレンィミン単位を 主たる構造単位とする直鎖状のポリマー骨格をいう。該骨格中においては、エチレン ィミン単位以外の構造単位が存在して 、てもよ 、が結晶性ポリマーフィラメントを形成 させるためには、ポリマー鎖の一定鎖長が連続的なエチレンィミン単位力もなることが 好ましい。該直鎖状ポリエチレンィミン骨格の長さは、該骨格を有するポリマーが結 晶性ポリマーフィラメントを形成できる範囲であれば特に制限されな 、が、好適に結 晶性ポリマーフィラメントを形成するためには、該骨格部分のエチレンィミン単位の繰 り返し単位数が 10以上であることが好ましぐ 20〜: LOOOOの範囲であることが特に好 ましい。
[0025] 本発明において使用するポリマーは、その構造中に上記直鎖状ポリエチレンィミン 骨格を有するものであればよぐその形状が線状、星状または櫛状であっても、水の 存在下で結晶性ポリマーフィラメントを与えることができるものであればよい。
[0026] また、これら線状、星状または櫛状のポリマーは、直鎖状ポリエチレンィミン骨格の み力もなるものであっても、直鎖状ポリエチレンィミン骨格力もなるブロック(以下、ポリ エチレンィミンブロックと略記する。)と他のポリマーブロックとのブロックコポリマーから なるものであってもよい。他のポリマーブロックとしては、例えば、ポリエチレングリコー ル、ポリプロピオ-ルエチレンィミン、ポリアクリルアミドなどの水溶性のポリマーブロッ ク、あるいは、ポリスチレン、ポリオキサゾリン類のポリフエニルォキサゾリン、ポリオクチ ルォキサゾリン、ポリドデシルォキサゾリン、ポリアタリレート類のポリメチルメタクリレー ト、ポリブチルメタタリレートなどの疎水性のポリマーブロックを使用できる。これら他の ポリマーブロックとのブロックコポリマーとすることで、結晶性ポリマーフィラメントの形 状や特性を調整することができる。 [0027] 直鎖状ポリエチレンィミン骨格を有するポリマー力 他のポリマーブロック等を有す る場合の該ポリマー中における直鎖状ポリエチレンィミン骨格の割合は結晶性ポリマ 一フィラメントを形成できる範囲であれば特に制限されな 、が、好適に結晶性ポリマ 一フィラメントを形成するためには、ポリマー中の直鎖状ポリエチレンィミン骨格の割 合が 25モル%以上であることが好ましぐ 40モル%以上であることがより好ましぐ 50 モル%以上であることがさらに好ましい。
[0028] 上記直鎖状ポリエチレンィミン骨格を有するポリマーは、その前駆体となるポリオキ サゾリン類力 なる直鎖状の骨格を有するポリマー(以下、前駆体ポリマーと略記する 。)を、酸性条件下またはアルカリ条件下で加水分解することで容易に得ることができ る。従って、直鎖状ポリエチレンィミン骨格を有するポリマーの線状、星状、または櫛 状などの形状は、この前駆体ポリマーの形状を制御することで容易に設計することが できる。また、重合度や末端構造も、前駆体ポリマーの重合度や末端機能団を制御 することで容易に調整できる。さらに、直鎖状ポリエチレンィミン骨格を有するブロック コポリマーを形成する場合には、前駆体ポリマーをブロックコポリマーとし、該前駆体 中のポリオキサゾリン類力 なる直鎖状の骨格を選択的に加水分解することで得るこ とがでさる。
[0029] 前駆体ポリマーは、ォキサゾリン類のモノマーを使用して、カチオン型の重合法、あ るいは、マクロモノマー法などの合成方法により合成が可能であり、合成方法や開始 剤を適宜選択することにより、線状、星状、あるいは櫛状などの各種形状の前駆体ポ リマーを合成できる。
[0030] ポリオキサゾリン類力もなる直鎖状の骨格を形成するモノマーとしては、メチルォキ サゾリン、ェチルォキサゾリン、メチルビニルォキサゾリン、フエニルォキサゾリンなど のォキサゾリンモノマーを使用できる。
[0031] 重合開始剤としては、分子中に塩ィ匕アルキル基、臭化アルキル基、ヨウ化アルキル 基、トルエンスルホ-ルォキシ基、あるいはトリフルォロメチルスルホ-ルォキシ基な どの官能基を有する化合物を使用できる。これら重合開始剤は、多くのアルコール類 化合物の水酸基を他の官能基に変換させることで得られる。なかでも、官能基変換と して、臭素化、ヨウ素化、トルエンスルホン酸化、およびトリフルォロメチルスルホン酸 化されたものは重合開始効率が高いため好ましぐ特に臭化アルキル、トルエンスル ホン酸ァノレキノレが好まし!/ヽ。
[0032] また、ポリ(エチレングリコール)の末端水酸基を臭素あるいはヨウ素に変換したもの 、またはトルエンスルホニル基に変換したものを重合開始剤として使用することもでき る。その場合、ポリ(エチレングリコール)の重合度は 5〜: LOOの範囲であることが好ま しぐ 10〜50の範囲であれば特に好ましい。
[0033] また、カチオン開環リビング重合開始能を有する官能基を有し、かつ光による発光 機能、エネルギー移動機能、電子移動機能を有するポルフィリン骨格、フタロシア二 ン骨格、またはピレン骨格のいずれかの骨格を有する色素類は、得られるポリマーに 特殊な機能を付与することができる。
[0034] 線状の前駆体ポリマーは、上記ォキサゾリンモノマーを 1価または 2価の官能基を 有する重合開始剤により重合することで得られる。このような重合開始剤としては、例 えば、塩化メチルベンゼン、臭化メチルベンゼン、ヨウ化メチルベンゼン、トルエンス ルホン酸メチルベンゼン、トリフルォロメチルスルホン酸メチルベンゼン、臭化メタン、 ヨウ化メタン、トルエンスルホン酸メタンまたはトルエンスルホン酸無水物、トリフルォロ メチルスルホン酸無水物、 5—(4 ブロモメチルフエ-ル)ー 10, 15, 20 トリ(フエ -ル)ポルフィリン、またはブロモメチルピレンなどの 1価のもの、ジブロモメチルベン ゼン、ジヨウ化メチルベンゼン、ジブ口モメチルビフエ-レン、またはジブロモメチルァ ゾベンゼンなどの 2価のものが挙げられる。また、ポリ(メチルォキサゾリン)、ポリ(ェチ ルォキサゾリン)、または、ポリ(メチルビ-ルォキサゾリン)などの工業的に使用されて いる線状のポリオキサゾリンを、そのまま前駆体ポリマーとして使用することもできる。
[0035] 星状の前駆体ポリマーは、上記したようなォキサゾリンモノマーを 3価以上の官能基 を有する重合開始剤により重合することで得られる。 3価以上の重合開始剤としては 、例えば、トリブロモメチルベンゼン、などの 3価のもの、テトラブロモメチルベンゼン、 テトラ(4—クロロメチルフエ-ル)ポルフィリン、テトラブロモエトキシフタロシア-ンなど の 4価のもの、へキサブロモメチルベンゼン、テトラ(3, 5—ジトシリルェチルォキシフ ェ -ル)ポルフィリンなどの 5価以上のものが挙げられる。
[0036] 櫛状の前駆体ポリマーを得るためには、多価の重合開始基を有する線状のポリマ 一を用いて、該重合開始基カもォキサゾリンモノマーを重合させることができる力 例 えば、通常のエポキシ榭脂ゃポリビニルアルコールなどの側鎖に水酸基を有するポリ マーの水酸基を、臭素やヨウ素等でハロゲン化する力、あるいはトルエンスルホ-ル 基に変換させた後、該変換部分を重合開始基として用いることでも得ることができる。
[0037] また、櫛状の前駆体ポリマーを得る方法として、ポリアミン型重合停止剤を用いるこ ともできる。例えば、一価の重合開始剤を用い、ォキサゾリンを重合させ、そのポリオ キサゾリンの末端をポリエチレンィミン、ポリビュルァミン、ポリプロピルァミンなどのポ リアミンのァミノ基に結合させることで、櫛状のポリオキサゾリンを得ることができる。
[0038] 上記により得られる前駆体ポリマーのポリオキサゾリン類力 なる直鎖状の骨格の加 水分解は、酸性条件下またはアルカリ条件下の ヽずれの条件下でもよ 、。
[0039] 酸性条件下での加水分解は、例えば、塩酸水溶液中でポリオキサゾリンを加熱下 で攪拌することにより、ポリエチレンィミンの塩酸塩を得ることができる。得られた塩酸 塩を過剰のアンモ-ゥム水で処理することで、塩基性のポリエチレンィミンの結晶粉 末を得ることができる。用いる塩酸水溶液は、濃塩酸でも、 ImolZL程度の水溶液で もよいが、加水分解を効率的に行うには、 5molZLの塩酸水溶液を用いることが望ま しい。また、反応温度は 80°C前後が望ましい。
[0040] アルカリ条件下での加水分解は、例えば、水酸ィ匕ナトリウム水溶液を用いることで、 ポリオキサゾリンをポリエチレンィミンに変換させることができる。アルカリ条件下で反 応させた後、反応液を透析膜にて洗浄することで、過剰な水酸ィ匕ナトリウムを除去し、 ポリエチレンィミンの結晶粉末を得ることができる。用いる水酸ィ匕ナトリウムの濃度は 1
〜10molZLの範囲であればよぐより効率的な反応を行うには 3〜5molZLの範囲 であることが好ましい。また、反応温度は 80°C前後が好ましい。
[0041] 酸性条件下またはアルカリ条件下での加水分解における、酸またはアルカリの使用 量は、ポリマー中のォキサゾリン単位に対し、 1〜10当量でよぐ反応効率の向上と 後処理の簡便化のためには、 3当量程度とすることが好ま 、。
[0042] 上記加水分解により、前駆体ポリマー中のポリオキサゾリン類力 なる直鎖状の骨 格力 直鎖状ポリエチレンィミン骨格となり、該ポリエチレンィミン骨格を有するポリマ 一が得られる。 [0043] また、直鎖状ポリエチレンィミンブロックと他のポリマーブロックとのブロックコポリマ 一を形成する場合には、前駆体ポリマーをポリオキサゾリン類力もなる直鎖状のポリ マーブロックと、他のポリマーブロックとからなるブロックコポリマーとし、該前駆体ポリ マー中のポリオキサゾリン類力もなる直鎖状のブロックを選択的に加水分解すること で得ることができる。
[0044] 他のポリマーブロックが、ポリ(N—プロピオ-ルエチレンィミン)などの水溶性ポリマ 一ブロックである場合には、ポリ(N—プロピオ-ルェチレンィミン)力 ポリ(N—ホル ミルエチレンィミン)やポリ(N—ァセチルエチレンィミン)に比べて、有機溶剤への溶 解性が高いことを利用してブロックコポリマーを形成することができる。即ち、 2—ォキ サゾリンまたは 2—メチルー 2—ォキサゾリンを、前記した重合開始化合物の存在下 でカチオン開環リビング重合した後、得られたリビングポリマーに、さらに 2—ェチル —2—ォキサゾリンを重合させることによって、ポリ(N—ホルミルエチレンィミン)ブロッ クまたはポリ(N—ァセチルエチレンィミン)ブロックと、ポリ(N—プロピオニルエチレン ィミン)ブロックとからなる前駆体ポリマーを得る。該前駆体ポリマーを水に溶解させ、 該水溶液にポリ(N—プロピオニルエチレンィミン)ブロックを溶解する水とは非相溶 の有機溶剤を混合して攪拌することによりェマルジヨンを形成する。該ェマルジヨンの 水相に、酸またはアルカリを添加することによりポリ(N—ホルミルエチレンィミン)ブロ ックまたはポリ(N—ァセチルエチレンィミン)ブロックを優先的に加水分解させること により、直鎖状ポリエチレンィミンブロックと、ポリ(N—プロピオ-ルエチレンィミン)ブ ロックとを有するブロックコポリマーを形成できる。
[0045] ここで使用する重合開始ィ匕合物の価数が 1および 2の場合には、直鎖状のブロック コポリマーとなり、それ以上の価数であれば星型のブロックコポリマーが得られる。ま た、前駆体ポリマーを多段のブロックコポリマーとすることで、得られるポリマーも多段 のブロック構造とすることも可能である。
[0046] [金属、金属イオン]
本発明における金属イオンは、上記した直鎖状ポリエチレンィミン骨格を有するポリ マー中のポリエチレンィミン骨格の有する強い配位能力により該骨格中のポリエチレ ンィミン単位と配位結合して金属錯体を形成するものである。該金属錯体は金属ィォ ンがポリエチレンィミン単位に配位されることにより得られるものであり、イオン結合等 の過程と異なり、金属がカチオンでも、またはァ-オンでも、ポリエチレンィミンの配位 により錯体を形成することができる。従って、金属イオンの金属種は、直鎖状ポリェチ レンイミン骨格を有するポリマー中のポリエチレンィミン単位と配位結合できるもので あれば制限されず、アルカリ金属、アルカリ土類金属、遷移金属、半金属、ランタン系 金属、ポリオキソメタレート類の金属化合物等が挙げられ、これら金属種を有する金 属イオンを好ましく使用できる。
[0047] 上記アルカリ金属イオンとしては、 Li, Na, K, Cs等のイオンが挙げられる。アル力 リ金属イオンの対ァ-オンとしては、 CI, Br, I, NO , SO , PO , CIO , PF , BF ,
3 4 4 4 6 4
F CSOなどを好適に用いることができる。
3 3
[0048] アルカリ土類金属イオンとしては、 Mg, Ba, Ca等のイオンが挙げられる。
[0049] 遷移金属系イオンとしては、それが遷移金属カチオン (Mn+)であっても、または遷 移金属が酸素との結合力もなる酸根ァ-オン (MOxrT)、またはハロゲン類結合から なるァ-オン (MLxrT)であっても、錯体形成に好適に用いることができる。なお、本 明細書において遷移金属とは、周期表第 3族の Sc, Y、及び、第 4〜12族で第 4〜6 周期にある遷移金属元素を指す。
[0050] 遷移金属カチオンとしては、下記の遷移金属のカチオン (Μη+)、例えば、 Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ru, Rh, Pd, Ag, Cd, W, Os, Ir, P t, Au, Hgの一価、二価、三価または四価のカチオンなどが挙げられる。これら金属 カチオンの対ァ-オンは、 CI, NO , SO、またはポリオキソメタレート類ァ-オン、あ
3 4
るいはカルボン酸類の有機ァ-オンのいずれであってもよい。ただし、 Ag, Au, Ptな ど、ポリエチレンィミン骨格により還元されやすいものは、 pHを酸性条件にする等、 還元反応を抑制することで、錯体を調製することが好まし ヽ。
[0051] また遷移金属ァ-オンとしては、下記の遷移金属ァ-オン(MOxrT)、例えば、 Μ ηθ , MoO , ReO , WO , RuO , CoO , CrO , VO , NiO , UOのァニオンが
4 4 4 3 4 4 4 3 4 2 挙げられる。
[0052] 本発明の金属イオンとしては、上記遷移金属ァ-オンが、直鎖状ポリエチレンィミン 骨格を有するポリマー中のエチレンィミン単位に配位した金属カチオンを介してシリ 力中に固定された、ポリオキソメタレート類の金属化合物の形態であってもよい。該ポ リオキソメタレート類の具体例としては、遷移金属カチオンと組み合わせられたモリブ デン酸塩、タングステン酸塩、バナジン酸塩類を取りあげることができる。
[0053] さらに、下記の金属が含まれたァ-オン(MLxn—)、例えば、 AuCl , PtCl , RhC
4 6
1 , ReF , NiF , CuF , RuCl , In CIの如ぐ金属がハロゲンに配位されたァ-ォ
4 6 6 6 6 2 6
ンも錯体形成に好適に用 、ることができる。
[0054] また、半金属系イオンとしては、 Al, Ga, In, Tl, Ge, Sn, Pb, Sb, Biのイオンが 挙げられ、なかでも Al, Ga, In, Sn, Pb, Tlが好ましい。
[0055] ランタン系金属イオンとしては、例えば、 La, Eu, Gd, Yb, Euなどの 3価のカチォ ンが挙げられる。
[0056] 本発明における金属は、金属イオンを還元して得られるものであればよぐ該金属 イオン種としては上記した金属イオンが例として挙げられる。なかでも、 Au、 Ag、 Cu 、 Pt、 Pd、 Mn、 Ni、 Rh、 Co、 Ru、 Re、 Moなどの遷移金属を好ましく使用でき、これ ら遷移金属の中でも、特に、 Au、 Ag、 Pt、 Pdは、その金属イオンがポリエチレンイミ ンに配位された後、室温または加熱状態で自発的に還元されるため好ましく使用で きる。
[0057] また、複合ナノファイバ中の金属又は金属イオンは、一種であっても、二種以上で あってもよい。
[0058] [シリカナノファイバ]
本発明の複合ナノファイバを構成するシリカナノファイバは、数〜数百 nm程度の太 さ、好ましくは 15〜: LOOnmの太さを有する繊維形状を有するものである。該シリカナ ノファイバの繊維形状の長さは、特に制限されるものではないが、 0. 1 m〜3mm の範囲のものであることが好ましい。該シリカナノファイバは、直鎖状ポリエチレンイミ ン骨格を有するポリマーが形成する結晶性のポリマーフィラメントをシリカが被覆する ことで形成されるものであるため、中空状の形状を有する。
[0059] 該シリカナノファイバのシリカとしては、公知慣用のシリカソースのゾルゲル反応によ り得られるシリカを使用できる。
[0060] [複合ナノファイバ、金属含有シリカナノファイバ] 本発明の複合ナノファイバは、少なくとも一種の金属又は金属イオンが配位した直 鎖状ポリエチレンィミン骨格を有するポリマー力 シリカナノファイバに含有されたもの であり、該複合ナノファイバは多様な形状を構築できることが大きな特徴である。
[0061] 本発明の複合ナノファイバの形状は、これを構成するシリカナノファイバの形状と同 様であり、数〜数百 nm程度の太さ、好ましくは 15〜: LOOnmの太さを有する繊維形 状を基礎の構造とするものであり、本発明の複合ナノファイバは該一次構造の形状を はじめとして、該一次構造同士の会合により多様な形状を発現できる。該一次構造で ある繊維形状の長さは、特に制限されるものではないが、 0. 1 m〜3mmの範囲の ものであることが好ましい。
[0062] 複合ナノファイバ中における、金属又は金属イオンは直鎖状ポリエチレンィミン骨格 を有するポリマーと配位結合して存在する。金属イオンは直鎖状ポリエチレンイミン骨 格を有するポリマーと配位結合して錯体を形成して 、るため、中空状のシリカナノファ ィバ内に該金属錯体が存在する状態であると考えられる。
[0063] また、金属は、該金属錯体を形成した金属イオンが還元された結晶の状態でシリカ ナノファイバ中に存在すると考えられる。該金属は還元によりクラスタを経由してワイ ャ形状や粒子形状を形成することが可能である。粒子形状のものは複数が接触した 状態であってもよぐまたシリカナノファイバ中でワイヤ形状のものと粒子形状のもの が混在していてもよい。該ワイヤ形状の太さ、あるいは粒子形状の粒子径は、上記一 次構造の太さより小さいナノメートルオーダーのものであり、ワイヤ形状のものであれ ばその太さが 2〜20nm程度、粒子形状のものであればその粒子径が 2〜20nm程 度であることが好ましい。
[0064] 本発明の複合ナノファイバは、該ナノファイバ形状同士の会合により、マイクロ〜ミリ メートルオーダーの二次元あるいは三次元的な空間形状を有する会合体 (本明細書 中においては、該会合体を複合ナノファイバ会合体という。)を形成できる。該会合体 形状は、例えば、レタス状、ファイバ状、スポンジ状、アスター状、サボテン状、タンボ ポ状など様々な形状に調整できる。これら会合体形状は、直鎖状ポリエチレンィミン 骨格を有するポリマーの構造の幾何学的な形状や、分子量、該ポリマー中に導入で きる非エチレンィミン部分、さらには該ポリマーが形成する結晶の形成条件等により 制御可能であり、使用するポリマーの分子構造、重合度、組成、及びポリマー結晶の 調製方法に特に影響される。
[0065] さらに複合ナノファイバ会合体同士、あるいは該複合ナノファイバ会合体が他の複 合ナノファイバを介して結合することにより、ミリメートルオーダー以上の大きさのマク 口な外形形状を有する構造体 (本明細書中にお!、ては、該構造体を複合構造体と 、 う。)を形成することができる。該構造体の外形は任意の形状に成形することが可能 であり、具体的な応用の要求に合わせて、円盤型、円柱型、プレート型、フィルタ型、 膜型、球型、ロッド型などに成形することができ、粉末、粒子、多面体、シリンダーなど 様々な状態への加工が可能である。該構造体内部には、上記複合ナノファイバ会合 体の会合体形状が存在し、該会合体は本発明の複合ナノファイバを基礎とするもの である。従って、該構造体は、複合ナノファイバが複雑に形成した三次元網目構造を 有する。
[0066] 本発明の複合ナノファイバ中におけるシリカの含有量としては、上記の各種構造を 構築できるものであれば特に制限されな 、が、 30〜80質量%の範囲であると上記各 種構造を安定して形成できるため好ましい。また、金属又は金属イオンの含有量は、 各種用途に応じて適宜調整することができる。
[0067] また、内部に還元した金属を有する本発明の複合ナノファイバ中のポリマーは焼成 等により容易に除去することができ、これにより、シリカナノファイバ中にナノ粒子ゃナ ノワイヤ形状の金属を含有するナノファイバ (本明細書中にぉ 、ては、該ナノファイバ を金属含有シリカナノファイバという。)とすることもできる。該金属含有シリカナノファ ィバは、ポリマーを除去する際の会合体形状や構造体形状をそのまま保持すること ができるため、金属含有シリカナノファイバの会合体や構造体を形成することもできる
[0068] 上記したように、本発明の複合ナノファイバ及び金属含有シリカナノファイバは、内 部に金属又は金属イオンを有し、かつ各種形状を構築することが可能であることから 、ナノテクノロジーの全般領域、例えば、ナノ金属触媒、ナノ金属導電材料、ナノ金属 色材、ナノ金属センサー、医療用材料として、広い応用が期待できる。特に複合ナノ ファイバは直鎖状ポリエチレンィミン骨格を有するポリマーも包含することから、バイオ 分野や環境対応製品分野などの分野においても応用可能性を有する。
[0069] [複合ナノファイバの製造方法]
本発明の複合ナノファイバを製造するには、シリカの形状制御とそのシリカ内部に 金属イオンを濃縮できる配位性分子の存在が必須であると考えられる。本発明の製 造方法にぉ 、ては、該配位性分子として直鎖状ポリエチレンィミン骨格を有するポリ マーを使用して (i)直鎖状ポリエチレンィミン骨格を有するポリマーが会合することに より各種形状を形成し、該ポリマーの会合体表面でゾルゲル反応を進行させること〖こ よりシリカを固定し、 (ii)そのシリカ中に存在する直鎖状ポリエチレンィミン骨格を有す るポリマーにより金属イオンを高度に濃縮し、必要に応じて金属イオンをその場で還 元することで、金属又は金属イオンを内部に含有し、かつ各種形状構築が可能な複 合ナノファイバを実現できる。
[0070] 上記 (i)においては、直鎖状ポリエチレンィミン骨格を有するポリマー中の直鎖状ポ リエチレンィミン骨格は水中可溶であるが、室温では不溶性会合体として存在するた め、ポリマー相互の直鎖状ポリエチレンィミン骨格部分が結晶を形成することにより、 結晶の性質を有するナノメートルの太さの結晶性ポリマーフィラメントを形成できる。こ の結晶性ポリマーフィラメントがテンプレートの働きをする。また、該結晶性ポリマーフ イラメント表面には不可避的に結晶に関わりがないフリーなポリエチレンィミンの鎖が 多数存在し、これらフリーな鎖は結晶性ポリマーフィラメント表面に垂れて 、る状態で ある。これらの鎖は、その近傍で重合したシリカを固定する足場であり、同時にシリカ ソースを重合させる触媒の働きをする。
[0071] ここで、直鎖状ポリエチレンィミン骨格を有する結晶性ポリマーフィラメント表面でゾ ルゲル反応を進行させることにより、該結晶性ポリマーフィラメント表面がシリカで被覆 された、ポリマー含有シリカナノファイバとなる。この際に結晶性ポリマーフィラメントが 構築した形状がシリカに複写されることにより、該結晶性ポリマーフィラメントが誘導可 能な多様な形状を、ポリマー含有シリカナノファイバが構築することが可能となる。
[0072] また、直鎖状ポリエチレンィミン骨格を有する結晶性ポリマーフィラメントは、水の存 在下で形状を容易に制御できるヒドロゲルを与えるため、該ヒドロゲルを任意の形状 に成形した後、ヒドロゲル中の結晶性ポリマーフィラメント同士を、二つ以上の官能基 を有する化合物による化学結合で架橋した後、ゾルゲル反応を行うことで、大きなシリ 力ゲルの固まりの中に、個々のポリマー会合体の形状が取り込まれたポリマー含有シ リカナノファイバからなる構造体が得られる。該ヒドロゲルの外形は各種形状に成形が 可能であるため、該構造体はマクロな形状制御が可能となる。
[0073] この多様な形状を構築可能な、ポリマー含有シリカナノファイバを、金属イオン水溶 液と接触させることで、上記 (ii)の働きにより、該ポリマー含有シリカナノファイバ中に 多くの金属イオンを取り込み、該金属イオンが、シリカ中の直鎖状ポリエチレンィミン 骨格を有するポリマーと配位結合を形成するため、シリカナノファイバ中で該ポリマー の会合体は解体され、代わりにポリマー Z金属イオン錯体が形成され、直鎖状ポリェ チレンィミン骨格を有するポリマーと金属イオンとをシリカナノファイバ中に含有する 複合ナノファイバが得られる。
[0074] 該ポリマー Z金属イオン錯体はその場で自発的に還元される力、または他の還元 剤をカ卩えることで還元され、金属クラスタを経由し金属結晶に変わる。金属が還元さ れる際、シリカナノファイバやシリカナノファイバが構築した構造体形状は変化せず、 シリカナノファイバ内部のポリマーもシリカナノファイノ からの流出が不可能であるた め、直鎖状ポリエチレンィミン骨格を有するポリマーにより形状制御された、直鎖状ポ リエチレンィミン骨格を有するポリマーと金属とをシリカナノファイバ中に含有する複 合ナノファイバが得られる。
[0075] 本発明の複合ナノファイバを製造する具体的な方法としては、下記(1)〜(3)のェ 程、
(1)直鎖状ポリエチレンィミン骨格を有するポリマーを溶媒に溶解させた後、水の存 在下で析出させ、直鎖状ポリエチレンィミン骨格を有するポリマーの結晶性ポリマー フィラメントを得る工程と、
(2)水の存在下で、前記結晶性ポリマーフィラメントとアルコキシシランとを接触させる ことにより、前記結晶性ポリマーフィラメントをシリカで被覆してポリマー含有シリカナノ ファイバを得る工程と、
(3)前記ポリマー含有シリカナノファイバと、金属イオンが溶解した溶液とを接触させ 、金属イオンを前記ポリマー中の直鎖状ポリエチレンィミン骨格に配位結合させるェ 程、
力 なる複合ナノファイバの製造方法、
[0076] あるいは、下記(1)〜(4)の工程、
(1)直鎖状ポリエチレンィミン骨格を有するポリマーを溶媒に溶解させた後、水の存 在下で析出させ、直鎖状ポリエチレンィミン骨格を有するポリマーの結晶性ポリマー フィラメントを得る工程と、
(2)水の存在下で、前記結晶性ポリマーフィラメントとアルコキシシランとを接触させる ことにより、前記結晶性ポリマーフィラメントをシリカで被覆してポリマー含有シリカナノ ファイバを得る工程と、
(3)前記ポリマー含有シリカナノファイバと、金属イオンが溶解した溶液とを接触させ 、金属イオンを前記ポリマー中の直鎖状ポリエチレンィミン骨格に配位結合させるェ 程と、
(4)前記ポリマー中の直鎖状ポリエチレンィミン骨格に配位結合した遷移金属イオン を還元させる工程、
力 なる複合ナノファイバの製造方法が挙げられる。
[0077] [結晶性ポリマーフィラメントを得る工程]
本発明の製造方法においては、まず、(1)直鎖状ポリエチレンィミン骨格を有する ポリマーを溶媒に溶解させた後、水の存在下で析出させ、直鎖状ポリエチレンィミン 骨格を有するポリマーの結晶性ポリマーフィラメントを得る工程により、本発明の複合 ナノファイバの形状のテンプレートとなる直鎖状ポリエチレンィミン骨格を有する結晶 性ポリマーフィラメントを形成する。ここで、使用できる直鎖状ポリエチレンィミン骨格 を有するポリマーは、上記したものと同様である。
[0078] 該直鎖状ポリエチレンィミン骨格を有するポリマーは、直鎖状ポリエチレンイミン骨 格が、水性媒体中で結晶性を発現して結晶化し、該結晶同士が相互に会合すること で、結晶性ポリマーフィラメントを形成する。該結晶性ポリマーフィラメントは、水の存 在下での結晶性ポリマーフィラメント同士の物理的な結合により三次元網目構造を有 するヒドロゲル状とすることもでき、さらに結晶性ポリマーフィラメント同士を架橋剤で 架橋することにより化学的な架橋結合を有する架橋ヒドロゲルとすることもできる。これ らヒドロゲルを使用することにより、ヒドロゲルの作製条件を調製することにより得られ る複合ナノファイバ会合体の形状調整を容易にでき、また、複合ナノファイバ構造体 を形成する際に、その外形形状の制御が容易となるため好ましい。
[0079] 該結晶性ポリマーフィラメントは、直鎖状ポリエチレンィミン骨格を有するポリマーの 一次構造中の直鎖状ポリエチレンィミン骨格の複数が水分子の存在下で結晶化する ことにより、ポリマーが相互に会合して繊維状に成長したものであり、結晶の性質を構 造中に有するものである。
[0080] 該結晶性ポリマーフィラメントは、 1〜: LOOnm程度、好ましくは 2〜30nm、より好ま しくは 2〜: LOnmの範囲の太さを有し、長さが太さの 10倍以上、好ましくは 100倍以 上の繊維形状 (以下、該結晶性ポリマーフィラメントの繊維形状を一次形状と!/、う場 合がある。)のものである。
[0081] 従来広く使用されてきたポリエチレンイミンは、環状エチレンィミンの開環重合により 得られる分岐状ポリマーであり、その一次構造には一級ァミン、二級ァミン、三級アミ ンが存在する。従って、分岐状ポリエチレンイミンは水溶性である力 結晶性は持た ないため、分岐状ポリエチレンイミンを用いてヒドロゲルを作るためには、架橋剤によ る共有結合により網目構造を与えなくてはならない。し力しながら本発明に使用する ポリマーが骨格として有する直鎖状ポリエチレンイミンは、二級アミンだけで構成され ており、該二級アミン型の直鎖状ポリエチレンイミンは水溶性でありながら、結晶化が 可能である。
[0082] このような、直鎖状ポリエチレンィミンの結晶は、そのポリマーのエチレンィミン単位 に含まれる結晶水数により、ポリマー結晶構造が大きく異なることが知られている (Y. Chatani et al.、 Macromolecules、 1981年、第 14卷、 p. 315— 321)。無水の ポリエチレンイミンは二重螺旋構造を特徴とする結晶構造を優先するが、モノマー単 位に 2分子の水が含まれると、ポリマーは zigzag構造を特徴とする結晶体に成長する ことが知られている。実際、水中力も得られる直鎖状ポリエチレンィミンの結晶は一つ のモノマー単位に 2分子水を含む結晶であり、その結晶は室温状態では水中不溶で ある。
[0083] 本発明における直鎖状ポリエチレンィミン骨格を有するポリマーの結晶性ポリマー フィラメントは、上記の場合と同様に直鎖状ポリエチレンィミン骨格の結晶発現により 形成されるものであり、ポリマー形状が線状、星状、または櫛状などの形状であっても 、一次構造に直鎖状ポリエチレンィミン骨格を有するポリマーであれば、結晶性ポリ マーフィラメントが得られる。
[0084] 結晶性ポリマーフィラメントの存在は X線散乱により確認でき、広角 X線回折計 (WA XS)における 2 0角度値で 20° , 27° , 28° 近傍の結晶性ヒドロゲル中の直鎖状 ポリエチレンィミン骨格に由来するピーク値により確認される。
[0085] また、結晶性ポリマーフィラメントの示差走査熱量計 (DSC)における融点は、ポリエ チレンィミン骨格のポリマーの一次構造にも依存する力 概ねその融点が 45〜90°C で現れる。
[0086] 結晶性ポリマーフィラメントは、水の存在下で結晶性ポリマーフィラメント同士の物理 的な結合により三次元網目構造を有するヒドロゲルを形成することもでき、さらに結晶 性ポリマーフィラメント同士を架橋剤で架橋することにより化学的な架橋結合を有する 架橋ヒドロゲルを形成することもできる。
[0087] 結晶性ポリマーフィラメントのヒドロゲル中では、水の存在下で相互に会合した結晶 性ポリマーフィラメントが、マイクロ〜ミリメートルの大きさの三次元形状 (以下、該微細 な三次元形状を二次形状という場合がある。)を形成している。これら二次形状を有 する会合体間において、会合体中の結晶性ポリマーフィラメントがさらに物理的に会 合して架橋構造を形成し、全体として結晶性ポリマーフィラメントからなる三次元網目 構造を形成する。これらは水の存在下で生じるため、該三次元網目構造中に水を包 含したヒドロゲルが形成される。架橋剤を使用した場合には、結晶性ポリマーフィラメ ント間が化学的に架橋し、該三次元網目構造が化学的な架橋により固定化された架 橋ヒドロゲノレとなる。
[0088] ここでいう三次元網目構造とは、通常の高分子ヒドロゲルと異なり、結晶性ポリマー フィラメント同士力 その表面に存在するフリーなエチレンィミン鎖の水素結合により、 物理的な架橋により形成された網目構造である。従って、その結晶の融点以上の温 度では、結晶が水中溶解されてしまい、三次元網目構造も解体される。ところが、そ れが室温に戻ると結晶性ポリマーフィラメントが成長し、その結晶間では水素結合に よる物理的な架橋が形成するため、再び、三次元網目構造が現れる。
[0089] ヒドロゲル中で、結晶性ポリマーフィラメントが形成する二次形状は、ポリマー構造 の幾何学的な形状や、分子量、一次構造中に導入できる非エチレンィミン部分、さら には結晶性ポリマーフィラメントの形成条件などを調整することにより、例えばファイバ 状、ブラシ状、星状などの各種形状に制御可能である。また、ヒドロゲルは、概ねの外 形 (以下、該ヒドロゲルの外形形状を三次形状という場合がある。)を保持できるが、 外力により任意に変形させることができるため、その形状を容易に制御できるもので ある。
[0090] 上記結晶性ポリマーフィラメントは、直鎖状ポリエチレンィミン骨格を有するポリマー が室温の水に不溶である性質を利用し、直鎖状ポリエチレンィミン骨格を有するポリ マーを溶媒に溶解させた後、水の存在下で析出させることで得られる。
[0091] 具体的な方法としては、直鎖状ポリエチレンィミン骨格を有するポリマーを水又は水 と親水性有機溶剤の混合溶媒 (本明細書中において、これらを水性媒体という。 )に 溶解し、該溶液を加熱した後冷却する方法や、直鎖状ポリエチレンィミン骨格を有す るポリマーを親水性有機溶剤に溶解し、該溶液に水を加える方法などが例として挙 げられる。
[0092] 直鎖状ポリエチレンィミン骨格を有するポリマーを溶解する溶媒は、水性媒体又は 親水性有機溶剤を好ましく使用できる。該該親水性有機溶剤としては、例えば、メタ ノール、エタノール、テトラヒドロフラン、アセトン、ジメチルァセトアミド、ジメチルスルフ オンォキシド、ジォキシラン、ピロリドンなどの親水性有機溶剤が挙げられる。
[0093] 直鎖状ポリエチレンィミン骨格を有するポリマーの溶液力も結晶性ポリマーフィラメ ントを析出させるには、水の存在が不可欠であるため、析出は水性媒体中で生じる。
[0094] また、上記方法において、直鎖状ポリエチレンィミン骨格を有するポリマーの量を調 整することで、結晶性ポリマーフィラメントからなるヒドロゲルを得ることができる。例え ば、該ヒドロゲルは、まず直鎖状ポリエチレンィミン骨格を有するポリマーを一定量水 中に分散し、該分散液を加熱することにより、ポリエチレンィミン骨格を有するポリマ 一の透明な水溶液を得る。次いで、加熱状態のポリマーの水溶液を室温に冷やすこ とにより得られる。該ヒドロゲルは、剪断力等の外力により変形を生じるが、概ねの形 状を保持できるアイスクリームのような状態を有し、多様な形状に変形させることが可 能である。
[0095] 上記方法において、加熱温度は 100°C以下が好ましぐ 90〜95°Cの範囲であるこ とがより好ましい。また、ポリマー分散液中のポリマー含有量は、ヒドロゲルが得られる 範囲であれば特に限定されないが、 0. 01〜20質量%の範囲であることが好ましぐ 形状の安定したヒドロゲルを得るためには 0. 1〜: LO質量%の範囲がさらに好ましい。 このように、本発明においては、直鎖状ポリエチレンィミン骨格を有するポリマーを使 用すると、ごく少量のポリマー濃度でもヒドロゲルを形成することができる。
[0096] 上記ポリマー水溶液の温度を室温まで低下させる過程により、得られるヒドロゲル中 の結晶性ポリマーフィラメントの二次形状を調整することができる。温度を低下させる 方法を例示すると、ポリマー水溶液を 80°Cに 1時間保持した後、 1時間かけて 60°C にし、該温度でさらに 1時間保持する。その後 1時間かけて 40°Cまで低下させた後、 自然に室温まで下げる方法、上記ポリマー水溶液を一気に氷点の氷り水、または氷 点下のメタノール Zドライアイス、ある 、はアセトン Zドライアイスの冷媒液にて冷却さ せた後、その状態のものを室温のウォータバスにて保持する方法、あるいは、上記の ポリマー水溶液を室温のウォータバスまたは室温空気環境にて、室温まで温度を低 下させる方法などが挙げられる。
[0097] 上記ポリマー水溶液の温度を低下させる過程は、得られるヒドロゲル中にぉ 、て結 晶性ポリマーフィラメント同士の会合に強く影響を与えるため、上記異なる方法により 得られるヒドロゲル中の結晶性ポリマーフィラメントが形成する二次形状は同一ではな い。
[0098] 上記のポリマー水溶液の温度を、濃度を一定として多段階的に低下させた場合、ヒ ドロゲル中における結晶性ポリマーフィラメントが形成する二次形状を、ファイバ状の 形状とすることができる。これを急冷した後、室温に戻した場合には、花弁状の形態と することができる。また、これをドライアイス状のアセトンで再度急冷して、室温に戻し た場合、波状の形態とすることができる。このように、本発明のヒドロゲル中における 結晶性ポリマーフィラメントが形成する二次形状の形態を、各種形状に設定すること ができる。 [0099] 上記により得られるヒドロゲルは、不透明なゲルであり、ゲル中にはポリエチレンイミ ン骨格を有するポリマー力もなる結晶性ポリマーフィラメントが形成され、その結晶性 ポリマーフィラメント同士は水素結合により物理的に架橋化され、三次元の物理的な 網目構造を形成している。ー且形成したヒドロゲル中の結晶性ポリマーフィラメントは 室温中では不溶状態を保つが、加熱すると結晶性ポリマーフィラメントが解離し、ヒド 口ゲルはゾル状態に変化してしまう。従って、本発明の物理的なヒドロゲルは、熱処 理を行うことでゾルカ ゲル、またゲルからゾルへと可逆的な変化が可能である。
[0100] 本発明でいうヒドロゲルは三次元網目構造中に少なくとも水を含有するが、該ヒドロ ゲルの調製時に、親水性有機溶剤を加えることで、有機溶剤を含有したヒドロゲルが 得られる。該親水性有機溶剤としては、例えば、メタノール、エタノール、テトラヒドロフ ラン、アセトン、ジメチルァセトアミド、ジメチルスルフォンォキシド、ジォキシラン、ピロ リドンなどの親水性有機溶剤が挙げられる。
[0101] 有機溶剤の含有量は、水の体積に対し、 0. 1〜5倍の範囲であることが好ましぐ 1 〜3倍の範囲であればより好まし!/、。
[0102] 上記親水性有機溶剤を含有させることにより結晶性ポリマーフィラメントの形態を変 えることができ、単純な水系と異なる形態の結晶を与えることができる。例えば、水中 では繊維状の広がりを有する分岐状の二次形状であつても、その調製に一定量のェ タノールが含まれた場合、繊維が収縮したような鞠状の二次形状を得ることができる。
[0103] 本発明で 、ぅヒドロゲル調製時に、他の水溶性ポリマーを加えることで、水溶性ポリ マーを含有するヒドロゲルが得られる。該水溶性ポリマーとしては、例えば、ポリェチ レングリコール、ポリビュルアルコール、ポリビュルピロリドン、ポリアクリルアミド、ポリ(
N—イソプロピルアクリルアミド)、ポリヒドロキシェチルアタリレート、ポリメチルォキサ ゾリン、ポリェチルォキサゾリンなどを取りあげることができる。
[0104] 水溶性ポリマーの含有量は、直鎖状ポリエチレンィミン骨格を有するポリマーの質 量に対し、 0. 1〜5倍の範囲であることが好ましぐ 0. 5〜2倍の範囲であればより好 ましい。
[0105] 上記水溶性ポリマーを含有させることによつても結晶性ポリマーフィラメントの形態を 変えることができ、単純な水系と異なる形態の二次形状を与えることができる。また、ヒ ドロゲルの粘性を増大させ、ヒドロゲルの安定性を向上させることに有効である。
[0106] また、上記方法で得られたヒドロゲルを、ポリエチレンィミンのァミノ基と反応する 2官 能基以上を含む化合物で処理することで、ヒドロゲル中の結晶性ポリマーフィラメント 表面同士をィ匕学結合でリンクさせた架橋ヒドロゲルを得ることができる。
[0107] 前記アミノ基と室温状態で反応できる 2官能基以上を含む化合物としては、アルデ ヒド類架橋剤、エポキシ類架橋剤、酸クロリド類、酸無水物、エステル類架橋剤を用 いることができる。アルデヒド類架橋剤としては、例えば、マロ-ルアルデヒド、スクシ ニルアルデヒド、グルタリルアルデヒド、アジホイルアルデヒド、フタロイルアルデヒド、 イソフタロイルアルデヒド、テレフタロイルアルデヒドなどがあげられる。また、エポキシ 類架橋剤としては、例えば、ポリエチレングリコールジグリシジルエーテル、ビスフエノ ール Aジグリシジルエーテル、グリシジルクロライド、グリシジルブロマイドなどがあげら れる。酸クロリド類としては、例えば、マロニル酸クロリド、スクシ-ル酸クロリド、グルタ リル酸クロリド、アジホイル酸クロリド、フタロイル酸クロリド、イソフタロイル酸クロリド、テ レフタロイル酸クロリドなどがあげられる。また、酸無水物としては、例えば、フタル酸 無水物、スクシ-ル酸無水物、グルタリル酸無水物などがあげられる。また、エステル 類架橋剤としては、マロ-ル酸メチルエステル、スクシ-ル酸メチルエステル、グルタ リル酸メチルエステル、フタロイル酸メチルエステル、ポリエチレングリコールカルボン 酸メチルエステルなどがあげられる。
[0108] 架橋反応は、得られたヒドロゲルを架橋剤の溶液に浸す方法でも、架橋剤溶液をヒ ドロゲル中に加える方法でも可能である。この際、架橋剤は系内での浸透圧変化と共 に、ヒドロゲル内部へ浸透し、そこで結晶性ポリマーフィラメント同士を水素結合で繋 V、でエチレンィミンの窒素原子との化学反応を引き起こす。
[0109] 架橋反応は、結晶性ポリマーフィラメント表面のフリーなエチレンィミンとの反応によ り進行する力 その反応を結晶性ポリマーフィラメント内部では起こらないようにする ためには、ヒドロゲルを形成する結晶性ポリマーフィラメントの融点以下の温度で反応 を行うことが望ましぐさらには架橋反応を室温で行うことが最も望ましい。
[0110] 架橋反応を室温で進行させる場合には、ヒドロゲルを架橋剤溶液と混合した状態で 放置しておくことで、架橋ヒドロゲルを得ることができる。架橋反応させる時間は、数分 力 数日でよぐ概ね一晩放置することで好適に架橋が進行する。
[0111] 架橋剤量はヒドロゲル形成に用いるポリエチレンィミン骨格を有するポリマー中のェ チレンィミンユニットのモル数に対し、 0. 05〜20%であればよく、それが 1〜10%で あればもっと好適である。
[0112] 上記ヒドロゲルは、ゲル化剤が結晶性ポリマーフィラメントであるため多様なモルフ ォロジ一のゲル構造を発現できる。また少量の結晶性ポリマーフィラメントであっても 水中で好適に三次元網目構造を形成するため高い水保持性を有する。さらに、使用 する直鎖状ポリエチレンィミン骨格を有するポリマーは構造設計や合成が容易であり 、かつヒドロゲルの調整が簡便である。また、該ヒドロゲル中の結晶性ポリマーフィラメ ント間を架橋剤により架橋することにより、ヒドロゲルの形状を固定ィ匕できる。
[0113] [ポリマー含有シリカナノファイバを得る工程]
本発明の製造方法においては上記(1)の工程に次いで、(2)水の存在下で、前記 結晶性ポリマーフィラメントとアルコキシシランとを接触させることにより、前記結晶性 ポリマーフィラメントをシリカで被覆したナノファイバ (本明細書中においては、該ナノ ファイバをポリマー含有シリカナノファイバという。)を得る工程を有する。また、結晶性 ポリマーフィラメントが架橋剤で架橋された状態や結晶性ポリマーフィラメントがヒドロ ゲルを形成した状態、あるいは該ヒドロゲルを架橋剤で架橋させた状態でシリカソー スを接触させることで、ポリマー含有シリカナノファイバからなる構造体を得ることがで きる。
[0114] 結晶性ポリマーフィラメントとアルコキシシランとを接触させる方法としては、結晶性 ポリマーフィラメントの水中分散液または結晶性ポリマーフィラメントのヒドロゲル又は 架橋ヒドロゲル中に、通常のゾルゲル反応にぉ 、て使用できる溶媒にシリカソースを 溶解した溶液を加えて、室温下でゾルゲル反応させる方法が挙げられる。該方法に よりポリマー含有シリカナノファイバ、該ポリマー含有シリカナノファイバの構造体を容 易に得ることができる。
[0115] シリカソースとして用いるアルコキシシランとしては、テトラアルコキシシラン類、アル キルトリアルコキシシラン類などの 3価以上のアルコキシシラン (置換基を 3つ以上有 するアルコキシシラン)が挙げられる。 [0116] テトラアルコキシシラン類としては、例えば、テトラメトキシシラン、テトラエトキシシラ ン、テトラプロボキシシラン、テトラブトキシシラン、テトラー t—ブトキシシランなどを挙 げられる。
[0117] アルキルトリアルコキシシラン類としては、メチルトリメトキシシラン、メチルトリエトキシ シラン、ェチルトリメトキシシラン、ェチルトリエトキシシラン、 n—プロピルトリメトキシシ ラン、 n—プロピルトリエトキシシラン、 iso—プロピルトリメトキシシラン、 iso—プロピノレ トリエトキシシラン、 3—クロ口プロピルトリメトキシシラン、 3—クロ口プロピルトリエトキシ シラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、 3—グリシトキシプロビルト リメトキシシラン、 3—グリシトキシプロピノレトリエトキシシラン、 3—ァミノプロピルトリメト キシシラン、 3—ァミノプロピルトリエトキシシラン、 3—メルカプトプロピルトメトキシシラ ン、 3—メノレカプ卜卜!;ェ卜キシシラン、 3, 3, 3—卜!;フ プ Pピノレ卜リメ卜シシラン、 3, 3 , 3—トリフロロプロピルトリエトシシラン、 3—メタクリルォキシプロピルトリメトキシシラン 、 3—メタクリルォキシプロピルトリエトキシシラン、フエニルトリメトキシシラン、フエニル トリエトキシシラン、 p—クロロメチルフエニルトリメトキシシラン、 p—クロロメチルフエ二 ノレトリエトキシシラン、ジメチノレジメトキシシラン、ジメチノレジェトキシシラン、ジェチノレ ジメトキシシラン、ジェチルジェトキシシランなどを挙げられる。
[0118] ポリマー含有シリカナノファイバを与える上記ゾルゲル反応は、水性媒体中、結晶 性ポリマーフィラメントの存在下で進行するが、その反応は水性媒体相では起こらず 、結晶性ポリマーフィラメントの表面で進行する。従って、複合化反応条件では結晶 性ポリマーフィラメントが溶解することがなければ、反応条件は任意である。
[0119] 結晶性ポリマーフィラメントを不溶とするためには、ゾルゲル反応の際、親水性有機 溶剤を含む水性液体中、水の存在が 20%以上とすることが好ましぐそれが 40%以 上であればさらに好まし!/、。
[0120] ゾルゲル反応においては、ポリエチレンィミンのモノマー単位であるエチレンィミン に対し、シリカソースであるアルコキシシランの量を過剰とすれば好適にポリマー含有 シリカナノファイバを形成できる。過剰の度合いとしては、エチレンィミンに対し 2〜10 00倍等量の範囲であることが好まし 、。
[0121] また、結晶性ポリマーフィラメントを形成する際の水性媒体中のポリマー濃度はその ポリマー中に含まれるポリエチレンィミンの量を基準に、 0. 1〜30%にすることが好ま しい。また、水性媒体中のポリエチレンイミン量は、結晶性ポリマーフィラメントの結晶 形態が保持された状態で濃縮することにより 30%を越える濃度にすることも可能であ る。この際の濃縮方法としては、上記結晶性ポリマーフィラメントの水中分散液や結晶 性ポリマーフィラメントのヒドロゲルを常温で常圧濾過又は減圧濾過する方法等が使 用できる。
[0122] ゾルゲル反応の時間は 1分から数日まで様々であるが、アルコキシシランの反応活 性が高いメトキシシラン類の場合は、反応時間は 1分〜 24時間でよぐ反応効率を上 げることから、反応時間を 30分〜 5時間に設定すればさらに好適である。また、反応 活性が低い、エトキシシラン類、ブトキシシラン類の場合は、ゾルゲル反応時間が 24 時間以上が好ましぐその時間を一週間程度とすることも望ましい。
[0123] 本工程において得られるポリマー含有シリカナノファイバは、上記した結晶性ポリマ 一フィラメントと、結晶性ポリマーフィラメントを被覆するシリカとからなるものであり、そ の太さが 10〜1000nm、好ましくは 15〜100nmのものであり、長さが太さの 10倍以 上、好ましくは 100倍以上の長さを有するものである。
[0124] ポリマー含有シリカナノファイバのシリカの含有量は、反応条件などにより一定の幅 で変化する力 ポリマー含有シリカナノファイバ全体の 30〜90質量0 /0の範囲とするこ とができる。シリカの含有量はゾルゲル反応の際に用いたポリマーの量の増加に伴つ て増加する。また、ゾルゲル反応時間を長くすることにより増大する。
[0125] ポリマー含有シリカナノファイバには、直鎖ポリエチレンィミン骨格を有するポリマー の結晶性ポリマーフィラメントを芯として有し、該結晶性ポリマーフィラメントがシリカで 被覆された複合体である。従って、該ポリマー含有シリカナノファイバは、該結晶性ポ リマーフィラメント中に存在するエチレンィミン単位により、金属イオンを高度に濃縮し て吸着することができる。
[0126] また、ポリマー含有シリカナノファイバは、相互に会合させることにより多様な形状を 有する構造体を形成できる。該構造体は、結晶性ポリマーフィラメントが架橋剤で架 橋された状態や結晶性ポリマーフィラメントがヒドロゲルを形成した状態、ある 、は該 ヒドロゲルを架橋剤で架橋させた状態でシリカソースを接触させることで、ポリマー含 有シリカナノファイノ からなる構造体を得ることができる。従って、該構造体は、上記し た結晶性ポリマーフィラメントのヒドロゲルや架橋ヒドロゲルなどが形成する形状に由 来した形状を有する。
[0127] ポリマー含有シリカナノファイバの構造体は、結晶性ポリマーフィラメントが形成した ヒドロゲル又は架橋ヒドロゲルの三次形状を任意に成型した後、該ヒドロゲル中の結 晶性ポリマーフィラメントをシリカで被覆することにより、任意の外形形状に成型された 構造体である。また、該ポリマー含有シリカナノファイバの構造体中では、上記ヒドロ ゲル中に形成された会合体の二次形状も複写されるため、結晶性ポリマーフィラメン トが形成した二次形状に由来した、ポリマー含有シリカナノファイバの会合体が形成 する会合体形状が存在する。
[0128] このように、ポリマー含有シリカナノファイバの構造体の外形は、上記結晶性ポリマ 一フィラメントから形成される三次形状を固定できるため任意に成形することが可能 である。また、ポリマー含有シリカナノファイバの構造体力 その内部に有する会合体 形状は、使用するポリマーのポリマー構造の幾何学的な形状や、分子量、一次構造 中に導入できる非エチレンィミン部分、さらにはシリカソースの使用量などにより、ファ ィバ状、ブラシ状、星状、レタス状、スポンジ状、アスター状、サボテン状、タンポポ状 などの様々な形状を有することができる。これら会合体形状の大きさは 3 π!〜 lmm 程度の大きさとすることができる。この大きさの形状は、基本ユニットであるポリマー含 有シリカナノファイバの会合と空間配置力 形成された三次元形状である。この基本 ユニットとなるポリマー含有シリカナノファイバには結晶性ポリマーフィラメントの芯が 含まれる。即ち、ポリマー含有シリカナノファイバの構造体は、結晶性ポリマーフィラメ ント同士が、水中で水素結合による物理的な結合で繋がれて空間に配置されて各種 形状の三次元形状のテンプレートとなり、このテンプレートに沿ってシリカが固定ィ匕さ れることにより、ポリマー含有シリカナノファイバが相互に会合して空間に配置された 形態を形成したものであると考えられる。
[0129] ポリマー含有シリカナノファイバの構造体は、結晶性ポリマーフィラメントが会合した 会合体同士が、さらに会合して物理的に架橋したヒドロゲルをシリカで固定したもの であるが、使用するポリマー構造やポリマー濃度、あるいはシリカソースの量等を調 整することにより、シリカで固定する際に該会合体同士の物理的な架橋を切断して、 結晶性ポリマーフィラメントの会合体又は該会合体の複数の集合体をシリカで固定ィ匕 することにより、ポリマー含有シリカナノファイバの会合体を取り出すことも可能である
[0130] ポリマー含有シリカナノファイバの会合体形状は、ポリマー含有シリカナノファイバを 作成する際の、ポリマー構造の幾何学的な形状や、分子量、一次構造中に導入でき る非エチレンィミン部分、さらにはポリマー含有シリカナノファイバの構造体の形成条 件等を調整することにより、ポリマー含有シリカナノファイバの構造体中の会合体形状 を調整できる。該会合体形状は、使用するポリマーの分子構造、重合度、組成、及び ポリマー含有シリカナノファイバの構造体調製時の温度低下の方法によく依存する。
[0131] 例えば、直鎖ポリエチレンィミン骨格を有するポリマーとして、重合度が 300以上の 線状ポリエチレンイミンを使用し、 80°C以上のところから自然に常温まで低下させてヒ ドロゲルを得た後、該ヒドロゲルを用いてゾルゲル反応することにより、レタス状の会 合体形状を有するポリマー含有シリカナノファイバの複合構造体を得ることができる。 レタス状の会合体形状において葉を形成する部分の厚みはポリマーを結晶化させる 際のポリマー溶液中のポリマー濃度が低下するにつれて厚くなる力 濃度が 2%以上 では、葉の部分の厚みは lOOnm前後であり、濃度が 1%以下では葉の部分の厚み は 500nm前後となる。
[0132] また、星型ポリエチレンイミンを使用する場合には、その核となる中心残基の構造を 変えることでも、得られる二次的形状を制御することができる。例えば、中心残基がポ ルフィリンのような大きなパイ平面を持つものである場合、得られるポリマー含有シリカ ナノファイバの構造体中の会合体形状はアスター状であり、一つのアスター形状の結 晶大きさは 2〜6 /z m程度である。濃度が 1%以上ではアスターのアーム数は少なぐ 各々のアームは結束する傾向があり、それ以下の濃度では、アーム数が多ぐ各々 のアームは別れる傾向がある。また、中心残基がベンゼン環のような小さい構造の場 合、得られるポリマー含有シリカナノファイバの構造体中の会合体形状は多くの糸が 結束されたファイバ状であり、そのファイバが相互に絡み合い、全体としてスポンジ状 のポリマー含有シリカナノファイバの構造体を形成する。一つのファイバ形状の太さ は 150nm前後である。
[0133] さらに、結晶性ポリマーフィラメント間が化学結合で架橋された架橋ヒドロゲルを用 いることにより、各種外形形状のポリマー含有シリカナノファイバの構造体を得ることも できる。その形状や大きさは、架橋ヒドロゲル調製時に用いた容器の大きさ及び形状 と同一なものにすることができ、例えば、円盤状、円柱状、プレート状、球状などの任 意の形状に調製できる。さらに、架橋ヒドロゲルを切断したり、削ったりすることにより、 目的の形に成形することもできる。このように成形した架橋ヒドロゲルをシリカソースの 溶液に浸せきさせることにより、任意の形状のポリマー含有シリカナノファイバの構造 体が簡単に得られる。シリカソースの溶液に浸せきする時間としては、使用するシリカ ソースの種類により 1時間〜 1週間と様々であるため適宜調製する必要がある力 メト キシシラン類の溶液中では 1〜48時間程度であればよく、エトキシシラン類の溶液中 では、 1〜7日間程度が好適である。
[0134] このように、ポリマー含有シリカナノファイバは、直鎖状ポリエチレンィミン骨格を有 するポリマーを溶解し、水の存在下で析出させて結晶性ポリマーフィラメントを得た後 、水の存在下で該結晶性ポリマーフィラメントとアルコキシシランを接触させることによ り容易に製造することができる。該製造方法においては、ポリマー含有シリカナノファ ィバを得る工程、シリカのゾルゲル反応工程を短時間で行うことが可能である。また、 結晶性ポリマーフィラメントの分散液や結晶性ポリマーフィラメントのヒドロゲルを容易 に調製でき、該分散液又はヒドロゲルとアルコキシシランとを接触させることでポリマ 一含有シリカナノファイバの構造体を容易に製造できる。
[0135] [複合ナノファイバを得る工程]
本発明の製造方法にお!、ては上記(2)の工程に次 、で、(3)前記ポリマー含有シ リカナノファイバと、金属イオンが溶解した溶液とを接触させ、金属イオンを前記ポリマ 一中の直鎖状ポリエチレンィミン骨格に配位結合させる工程により、金属イオンと直 鎖状ポリエチレンィミン骨格を有するポリマーとをシリカナノファイバに含有する複合 ナノファイバを得ることができる。
[0136] ここで、使用できる金属イオンとしては、前記した金属イオンを使用できる。金属ィォ ンが溶解した溶液は、該金属イオンを含有する塩を水に溶解するなどして調製できる [0137] 上記(3)の工程にぉ 、て上記ポリマー含有シリカナノファイバと、金属イオンが溶解 した溶液とを接触させる方法としては、特に制限されないが、例えば、上記(2)のェ 程により得られたポリマー含有シリカナノファイバを、金属イオンの水溶液に浸漬させ る方法が挙げられる。該方法により、金属イオンを簡単にシリカナノファイバ中に濃縮 することができる。ポリマー含有シリカナノファイバ中に濃縮された金属はシリカナノフ アイバ内部の結晶性ポリマーフィラメントと配位結合を形成するため、シリカ中で結晶 性ポリマーフィラメントは解体され、代わりに直鎖状ポリエチレンィミン骨格を有するポ リマーと金属イオンとが配位結合した金属錯体が形成される。これにより、本発明の 金属イオンと直鎖状ポリエチレンィミン骨格を有するポリマーとをシリカナノファイバに 含有する複合ナノファイバを容易に得ることができる。
[0138] 金属イオンをシリカナノファイバ中に濃縮する際には、ポリマー含有シリカナノフアイ バ中におけるポリマーが多いほど、また、該ポリマーに対し、金属イオンの混合比を 高くするほど、シリカ中に濃縮される金属イオンの量は増大する。本発明の金属ィォ ンを含有する複合ナノファイバにおいては、ポリマー含有シリカナノファイバ中に含ま れるポリエチレンィミン骨格の窒素原子のモル数に対し 0. 1〜0. 5倍量の金属ィォ ンが錯体を形成することができる。
[0139] 金属イオンを含有する複合ナノファイバを得る場合には、ポリマー含有シリカナノフ アイバを金属イオンの水溶液に浸漬する際、その金属イオンの量はエチレンイミン単 位に対し、 0. 1〜: LO倍程度であることが特に好適である。
[0140] 金属イオンが取り込まれた後、生成物を取り出し、常温または冷水で洗浄し、本発 明の金属イオンと直鎖状ポリエチレンィミン骨格を有するポリマーとをシリカナノフアイ バに含有する複合ナノファイバを得ることができる。
[0141] また、上記(3)の工程に次いで、(4)前記ポリマー中の直鎖状ポリエチレンイミン骨 格に配位結合した遷移金属イオンを還元させる工程を経ることより、金属と直鎖状ポ リエチレンィミン骨格を有するポリマーとをシリカナノファイバに含有する複合ナノファ ィバを得ることができる。
[0142] 上記(3)の工程にぉ 、ては、上記ポリマー含有シリカナノファイバと、金属イオンが 溶解した溶液との接触により、シリカナノファイバ中に直鎖状ポリエチレンィミン骨格 を有するポリマーと金属イオンとが配位結合した金属錯体が形成される。該金属ィォ ンを自発的に還元させる力、あるいは、還元剤で還元させることにより、本発明の金 属と直鎖状ポリエチレンィミン骨格を有するポリマーとをシリカナノファイバに含有する 複合ナノファイバが得られる。
[0143] 本発明の還元した金属を含有する複合ナノファイバにおいては、ポリマー含有シリ 力ナノファイバ中に含まれるポリエチレンィミン骨格の窒素原子のモル数に対し、 1〜 20倍量の金属原子を固定させることができる。
[0144] 金属を含有する複合ナノファイバを得る場合には、ポリマー含有シリカナノファイバ を金属イオン溶液に浸漬する際、その金属イオンの量はエチレンィミン単位に対し、 できる限り過剰であることが望ましぐ 30倍程度であることが特に好適である。
[0145] 上記した金属イオンの中でも、特に、 Au、 Ag、 Pt、 Pdの金属イオンはポリエチレン ィミンに配位された後、室温または加熱状態で自発的に還元され、非イオン性の金 属ナノ粒子や金属ナノワイヤに変換されるため、金属を含有する本発明の複合ナノフ アイバを得る場合には好ましい。加熱温度は 100°C以下であればよぐ 60〜80°Cで あることが特に好ましい。従って、これら金属イオンを還元するには、ポリマー含有シリ 力ナノファイバを金属イオン溶液と混合するだけで行うことができる。即ち、金属ィォ ンをシリカ中で濃縮し、そのシリカを還元剤溶液と混合するような工程を経ずに、金属 を含有する本発明の複合ナノファイバを得ることができる。これらを金属イオンのまま 保持させる場合には、 pHを酸性条件にする等、還元反応を抑制することで、錯体を 調製すればよい。
[0146] また、上記金属を還元する際、ポリマー含有シリカナノファイバを一種以上の金属ィ オンと混合し、異なる金属イオンを同時にその複合体に濃縮させた後、それらの異な るイオンを還元することにより、異なる金属種が含まれた複合ナノファイバを得ることが できる。
[0147] これら金属イオンのように自発的に還元しない金属、あるいは自発的な還元が不十 分である金属を使用する場合には、還元剤により、直鎖状ポリエチレンィミン骨格に 配位結合した金属イオンを還元させる工程を得ることにより金属結晶を形成させるこ とができる。また、上記の自発的に還元する金属イオンを使用する場合においても、 必要に応じて上記 (4)の工程により、他の還元剤を併用して還元させることもできる。
[0148] 該工程において使用できる還元剤としては、水素、水素化硼素ナトリウム、水素化 硼素アンモ-ゥム、アルデヒド、ヒドラジンなどが例として挙げられる。還元剤を用いて 金属イオンを還元する際には、その反応は水性媒体中で行うことができるが、その時 、ポリマー含有シリカナノファイバに金属イオンを濃縮させた後、そのシリカを水で洗 浄してから、それを還元剤溶液と混合することが望ましい。即ち、シリカ中に含まれた 金属イオンだけを還元することにより、本発明の複合ナノファイバを得ることができる。
[0149] 直鎖状ポリエチレンィミン骨格に配位結合した金属イオンが還元される際には、ポリ マー含有シリカナノファイバの形状や、該ポリマー含有シリカナノファイノ からなる会 合体や構造体の形状は変化せず、内部のポリマーもシリカナノファイバから流出でき ないため、最終的には直鎖状ポリエチレンィミン骨格を有するポリマーと、少なくとも 一種の金属とをシリカナノファイバ中に含有する複合ナノファイバが得られる。
[0150] 還元された金属は、シリカナノファイバ内部で金属クラスタを経由して金属粒子また は金属ワイヤに変わる。金属ワイヤは、ポリマー含有シリカナノファイバ中の結晶性ポ リマーフィラメントに沿って濃縮された金属イオンが金属還元されることにより形成され る。
[0151] 還元反応の時間は金属イオン種類により異なる力 概ね、 24時間あれば十分であ る。室温条件ではできる限り、反応時間を長くし、加熱条件では基本的に 1時間であ れば十分であるが、金属イオンの種類により、数時間にすることも好適である。
[0152] また、還元反応の温度を適宜調節することにより、本発明の複合ナノファイバ中の 金属の大きさを調整でき、遷移金属がワイヤ状のものであれば太さが 2〜20nm程度 の範囲、粒子形状のものであれば、粒径が 2〜20nm程度の範囲のものを容易に形 成することができる。ワイヤ形状の太さ、あるいは粒子形状の粒径を lOnm以下に制 御する際には、還元反応の温度を 100°C以下の温度とすることが好ましい。
[0153] 上記したように本発明の製造方法は、複雑な工程や緻密な条件設定等をほとんど 必要としな!/ヽため、シリカ中に金属イオンや金属を含有する複合ナノファイバを容易 に得ることができる。さらに、上記したポリマー含有シリカナノファイバが構築する会合 体形状や構造体形状を、そのまま保持するため、該会合体や構造体と同様の形状を 有する複合ナノファイバからなる複合ナノファイバ会合体や、複合ナノファイバからな る複合構造体を容易に得ることができ、その空間形状は容易に制御することができる
[0154] [金属含有シリカナノファイバの製造方法]
また、上記金属と直鎖状ポリエチレンィミン骨格を有するポリマーとをシリカナノファ ィバに含有する複合ナノファイバを得た後に、(5)該複合ナノファイバ中のポリマー成 分を除去する工程を経ることにより、複合ナノファイバを、金属含有シリカナノファイバ とすることができる。
[0155] 前記複合ナノファイバ中からポリマー成分を除去する方法としては、焼成処理や溶 剤洗浄の方法で実現できるが、ポリマー成分を完全に除去することができるため、焼 成炉中での焼成処理法が好まし 、。
[0156] 焼成処理では、空気、酸素存在下での高温焼成と不活性ガス、例えば、窒素、ヘリ ゥムの存在下での高温焼成を用いることもできるるが、通常、空気中での焼成が好ま しい。
[0157] 焼成する温度としては、ポリマー成分である直鎖状ポリエチレンィミン骨格を有する ポリマーは 300度付近力も熱分解できるため、 300度以上の温度であれば好適に除 去でき、 300〜900度の範囲が特に好適である。
[0158] 具体的な焼成方法としては、例えば、メソ多孔体シリカの焼成際の公知の方法 (Dia z et al. J. Mater. Chem. 2004年、 14卷、 48頁)に準じて行うこと力できる。 昇温において、複合体サンプルを 100度あたりで 10〜30分放置してから、 10度 Z 分の昇温速度で 300度までに昇温させ、その温度で 1時間放置し、さらに同様な昇 温速度で 500度まで昇温させ、その温度で 1〜6時間焼成を行う方法などが例示でき る。さらに温度上げるには、同様な昇温速度で 700ないし 800度まで昇温させ、その 温度で 1〜6時間焼成を行ってもよ 、。焼成後は焼成炉の温度を自然に室温まで低 下させるか、または焼成炉中に空気を流すことで温度を室温まで下げてもょ 、。
[0159] これと同様に、上記複合ナノファイバ会合体や複合構造体力 ポリマー成分を除去 することにより、金属含有シリカナノファイバの会合体や金属含有シリカナノファイバ の構造体を得ることができる。
[0160] 以上記載したように、本発明の複合ナノファイバ及び金属含有シリカナノファイバは 、シリカナノファイバの有する大きな表面積や、被覆するシリカに由来する優れた分 子選択性やィ匕学的な安定性に加え、内部に金属又は金属イオンを有する。また、そ のアスペクト比が非常に高いため、ファイバ同士の集合ィ匕ゃ階層化により不織布状 等の形状にすることも可能であることから、固体電解質、固体触媒、ナノ添加剤、ナノ 薄膜材料、ナノ金属触媒、ナノ金属導電材料、ナノ金属色材、ナノ金属センサー、光 画像材料、光 ·電子材料、医用材料として、広い応用が期待できる。
[0161] さらに、金属や金属イオンに加えて、直鎖状ポリエチレンィミン骨格を有するポリマ 一を含有する複合ナノファイバは、該ポリマー中のエチレンィミン単位が容易にカチ オンィ匕できるため、ァ-オン性の生体材料などの各種イオン性物質の吸着や固定ィ匕 も可能である。また、該直鎖状ポリエチレンィミン骨格を有するポリマーは他のポリマ 一とのブロックやグラフトイ匕が容易であり、ポリマー側鎖や末端構造などの構造制御も 容易であることから、各種の機能性ポリマーとのブロック化や末端構造の制御により 複合ナノファイバに各種機能を付与することが可能であるため、バイオ分野や環境対 応製品分野などの分野においても有用な材料である。
[0162] 本発明の複合構造体や金属含有シリカナノファイバの構造体は、水の存在下で結 晶性ポリマーフィラメントが形成した二次形状がさらに会合することにより架橋構造を 形成して得られる、物理的な結合で繋がれたテンプレートに沿ってシリカが固定ィ匕さ れることにより、ナノサイズの太さの複合ナノファイバや金属含有シリカナノファイバが 相互に会合したものである。従って、これら構造体は上記した複合ナノファイバや金 属含有シリカナノファイバの特性を保持した状態で、これらナノファイバが高度に集合 ィ匕された三次元網目構造を形成したものであり、その外形はミリメートル以上の大きさ で任意に成形可能なものである。これら構造体は、内部に三次元網目構造を有する ことから、バイオフィルタ、エアフィルタなどの高機能フィルタ、あるいは高比表面積の 触媒などに有用に使用できる。また、これら構造体はその外形構造の制御が容易で あり、さらにその構造体中には各種の微細な会合体形状を実現できることから、上記 用途にとどまらず、各種分野の先端機能材料として有望な材料である。 [0163] 従って、上記複合ナノファイバや複合構造体等は、従来のシリカ材料作成時におけ る形状制御の困難さを完全にクリア一した斬新な複合体であり、製造も容易であるこ とから、その応用には業種、領域を問わず、大きな期待が寄せられる。また、本発明 の複合ナノファイバや複合構造体等は、内部に金属又は金属イオンが含まれるので 、シリカ材料の全般応用領域にはもちろんのこと、ナノ形状の金属や金属錯体が応 用される領域にぉ ヽても有用な材料である。
実施例
[0164] 以下、実施例および参考例によって本発明をさらに具体的に説明するが、本発明 はこれらに限定されるものではない。特に断らない限り、「%」は「質量%」を表す。
[0165] [X線回折法による分析]
単離乾燥した試料を測定試料用ホルダーにのせ、それをリガク社製広角 X線回折 装置「: Rint— Ultma」にセットし、 Cu/Κ α線、 40kVZ30mA、スキャンスピード 1.
0° Z分、走査範囲 10〜40° の条件で測定を行った。
[0166] [示差熱走査熱量法による分析]
単離乾燥した試料を測定パッチにより秤量し、それを Perkin Elmer社製熱分析 装置「DSC— 7」にセットし、昇温速度を 10°CZ分として、 20°Cから 90°Cの温度範囲 にて柳 j定を行った。
[0167] [走査電子顕微鏡による形状分析]
単離乾燥した試料をガラススライドに乗せ、それをキーエンス社製表面観察装置 V
E— 7800にて観察した。
[0168] [透過電子顕微鏡による観察]
単離乾燥した試料を炭素蒸着された銅グリッドに乗せ、それを (株)トプコン、ノーラン インスツルメント社製 EM— 002B、 VOYAGER M3055高分解能透過型電子顕微 鏡、または日本電子 (株)製透過型電子顕微鏡 rjEM 200CXJにて観察した。
[0169] [UV— Vis吸収スペクトル]
金属錯体が含まれたシリカ粉末を石英ガラス板に乗せ、それを積分球付きの日立( 株)製 U— 3500 UV— Visにて測定した。
[0170] (合成例 1) [線状ポリエチレンィミン含有シリカナノファイバ(SLP— 1)の合成]
<線状のポリエチレンィミン(L PEI)の合成 >
市販のポリェチルォキサゾリン(数平均分子量 50000,平均重合度 5000, Aldric h社製) 3gを、 5Mの塩酸水溶液 15mLに溶解させた。その溶液をオイルバスにて 90 °Cに加熱し、その温度で 10時間攪拌した。反応液にアセトン 50mLをカ卩え、ポリマー を完全に沈殿させ、それを濾過し、メタノールで 3回洗浄し、白色のポリエチレンィミン の粉末を得た。得られた粉末を 1H— NMR (重水)にて同定したところ、ポリェチルォ キサゾリンの側鎖ェチル基に由来したピーク 1. 2ppm(CH )と 2. 3ppm (CH )が完
3 2 全に消失していることが確認された。即ち、ポリェチルォキサゾリンが完全に加水分 解され、ポリエチレンィミンに変換されたことが示された。
[0171] その粉末を 5mLの蒸留水に溶解し、攪拌しながら、その溶液に 15%のアンモニア 水 50mLを滴下した。その混合液を一晩放置した後、沈殿したポリマー会合体粉末 を濾過し、そのポリマー会合体粉末を冷水で 3回洗浄した。洗浄後の結晶粉末をデ シケータ中で室温乾燥し、線状のポリエチレンィミン (L PEI)を得た。収量は 2. 2g (結晶水含有)であった。ポリオキサゾリンの加水分解により得られるポリエチレンイミ ンは、側鎖だけが反応し、主鎖には変化がない。従って、 L— PEIの重合度は加水分 解前の 5000と同様である。
[0172] く線状ポリエチレンィミン含有シリカナノファイバ >
上記で得られた L PEI粉末を一定量秤量し、それを蒸留水中に分散させて表 1に 示した各種濃度の L— PEI分散液を作成した。これら分散液をオイルバスにて、 90°C に加熱し、濃度が 1%の完全透明な水溶液を得た。その水溶液を室温に放置し、自 然に室温までに冷やし、不透明な L— PEI会合体のヒドロゲルを得た。
[0173] 得られた会合体につき、 X線回折測定を行った結果、 20. 7° 、 27. 6° 、 28. 4° に散乱強度のピークが表れることが確認された。また、熱量分析装置による吸熱状態 変化の測定結果により、 64. 7°Cで吸熱のピークが確認された。これら測定結果より、 ヒドロゲル中における L PEIの結晶の存在が確認された。
[0174] 上記で得られた L— PEI会合体のヒドロゲル 5mL中に、テトラメトキシシラン (TMS O)とエタノールの 1Z1 (体積比)の混合液 5mLを加え、軽く一分間かき混ぜた後、 そのまま 40分放置した。その後、過剰なアセトンで洗浄し、それを円心分離器にて 3 回洗浄を行った。固形物を回収し、室温で乾燥し、 L— PEIを含有するシリカナノファ ィバ構造体 (SLP— 1)を得た。該 L— PEI含有シリカナノファイバ構造体 (SLP— 1) の X線回折測定から、 20. 5° 、 27. 2° 、 28. 2° に散乱強度のピークが表れた。
[0175] 得られた L— PEI含有シリカナノファイバ構造体 (SLP—1)を走査型顕微鏡により 観察したところ、 L— PEI含有シリカナノファイバ構造体 (SLP— 1)は葉っぱの形状の 会合体形状であった。
[0176] (合成例 2)
[星状ポリエチレンィミン含有シリカナノファイバ(SLP— 2)の合成]
<ポルフィリン中心の星状ポリエチレンィミン(P— PEI)合成 >
Jin et al. , J. Porphyrin&Phthalocyanine, 3, 60— 64 (1999) ;Jin、 Macro mol. Chem. Phys. , 204, 403— 409 (2003)【こ示された方法【こより、前馬区体ポリ マーであるポルフィリン中心星型ポリメチルォキサゾリンの合成を次の通り行った。
[0177] 三方コック付の 50mlの二口フラスコをアルゴンガスで置換した後、 0. 0352gのテト ラ(p—ョードメチルフエ-ル)ポルフィリン(TIMPP)、 8. 0mlの N, N—ジメチルァセ トアミドをカ卩えて、室温で撹拌し、 TIMPPを完全に溶解させた。この溶液にボルフイリ ン【こ対し、 1280倍モノレ数【こネ目当する 2—メチノレー 2—才キサ /リン 3. 4ml (3. 27g) を加えてから、反応液の温度を 100°Cにし、 24時間撹拌した。反応液温度を室温に 下げてから、 10mlのメタノールを加えた後、混合液を減圧濃縮した。残留物を 15ml のメタノール中に溶解し、その溶液を 100mlのテトラヒドロフランに注ぎ、重合体を沈 殿させた。同一方法で、重合体を再沈殿させ、吸引ろ過後、得られた重合体を P20 5が置かれたデシケータに入れ、 1時間ァスピレータで吸引乾燥した。さらに、真空ポ ンプにて減圧し、真空下 24時間乾燥して前駆体ポリマー (TPMO— P)を得た。収量 は 3. 05g、収率は 92. 3%であった。
[0178] 得られた前駆体ポリマー(TPMO— P)の GPCによる数平均分子量は 28000で、 分子量分布は 1. 56であった。また、 1H— NMRにより、重合体アームにおけるェチ レンプロトンと重合体中心におけるボルフイリンのピロル環プロトンとの積分比を計算 した処、各アームの平均重合度は 290であった。従って、 1H— NMRによる数平均 分子量は 99900と推定された。 1H— NMRによる数平均分子量値が GPCでの数平 均分子量値を大きく上回ることは、星型高分子における一般特徴であることに一致す る。
[0179] この前駆体ポリマーを用い、上記合成例 1と同様の方法によりポリメチルォキサゾリ ンを加水分解し、 4本のポリエチレンィミンがボルフイリン中心に結合された星状ポリ エチレンィミン(P— PEI)を得た。 1H— NMR(TMS外部標準、重水中)測定の結果 、加水分解前の前駆体ポリマーの側鎖メチルに由来した 1. 98ppmのピークは完全 に消失した。
[0180] <星状ポリエチレンィミン含有シリカナノファイバ複合体 >
合成例 1にお 、て、 L— PEI粉末を用 、る代わりに上記で合成した P - PEIを使用 し、合成例 1と同様な方法により、 1%濃度のヒドロゲル状の P— PEI会合体を得た。
[0181] 得られた P— PEI会合体のヒドロゲルにつき、 X線回折測定を行った結果、 20. 4° 、 27. 3° 、 28. 1° に散乱強度のピークが表れることが確認された。また、熱量分析 装置による吸熱状態変化の測定結果により、 64. 1°Cで吸熱のピークが確認された。 これら測定結果より、ヒドロゲル中における P— PEIの結晶の存在が確認された。
[0182] これで得られた P— PEI会合体のヒドロゲル lmL中に、表 2に示したように、テトラメ トキシシラン (TMSO)とエタノールの 1Z1 (体積比)の混合液を lmLまたは 2mL加 え、軽く一分間かき混ぜた後、そのまま 40分放置した。その後、過剰なアセトンで洗 浄し、それを円心分離器にて 3回洗浄を行った。固形物を回収し、室温で乾燥し、 P — PEI含有シリカナノファイバ構造体 (SLP— 2)を得た。 P— PEI含有シリカナノファ ィバ構造体 (SLP— 2)の X線回折測定を行った結果、シリカ被覆前と同様な散乱ピ 一タカ 20. 5° 、 27. 4° 、 28. 1° に表れた。
[0183] 得られた P— PEI含有シリカナノファイバ構造体 (SLP— 2)を走査型顕微鏡により 観察したところ、 P— PEI含有シリカナノファイバ構造体 (SLP— 2)はアスター状の会 合体形状であった。
[0184] (合成例 3)
[星状ポリエチレンィミン含有シリカナノファイバ(SLP— 3)の合成]
<ベンゼン環中心の星状ポリエチレンィミン(B— PEI)合成 > Jin, J. Mater. Chem. , 13, 672— 675 (2003)に示された方法に従い、前,駆体 ポリマーであるベンゼン環中心に 6本のポリメチルォキサゾリンのアームが結合した星 状ポリメチルォキサゾリンを次の通り行った。
[0185] 磁気攪拌子がセットされたスリ口試験管中に、重合開始剤としてへキサキス (プロモ メチル)ベンゼン 0. 021g (0. O33mmol)を入れ、試験管の口に三方コックをつけた 後、真空状態にして力 窒素置換を行った。窒素気流下で三方コックの導入口から シリンジを用いて 2—メチル—2—ォキサゾリン 2. 0ml(24mmol)、 N, N—ジメチル ァセトアミド 4. Omlを順次カ卩えた。試験管をオイルバス上で 60°Cまで加熱し、 30分 間保ったところ、混合液は透明になった。透明混合液をさらに 100°Cまで加熱し、そ の温度で 20時間攪拌して、前駆体ポリマーを得た。この混合液の 1H— NMR測定 から、モノマーの転ィ匕率は 98%であった。この転ィ匕率によりポリマーの平均重合度を 見積もったところ、各アームの平均重合度は 115であった。また、 GPCによる分子量 測定では、ポリマーの質量平均分子量は 22700であり、分子量分布は 1. 6であった
[0186] この前駆体ポリマーを用い、上記合成例 1と同様な方法によりポリメチルォキサゾリ ンを加水分解し、 6本のポリエチレンィミンがベンゼン環コアに結合した星状ポリェチ レンイミン B— PEIを得た。 1H— NMR (TMS外部標準、重水中)測定の結果、加水 分解前の前駆体ポリマーの側鎖メチルに由来した 1. 98ppmのピークは完全に消失 した。
[0187] 得られた星状ポリメチルォキサゾリンを、上記合成例 1と同様な方法により加水分解 し、 6本のポリエチレンィミンがベンゼン環コアに結合した星状ポリエチレンィミン(B— PEI)を得た。
[0188] <星状ポリエチレンィミン含有シリカナノファイバ(SLP— 3) >
合成例 1にお 、て、 L— PEI粉末を用 、る代わりに上記で合成した B - PEIを使用 し、合成例 1と同様な方法により、 1%濃度の B— PEI会合体のヒドロゲルを得た。得ら れた B— PEI会合体のヒドロゲルにつき、 X線回折測定を行った結果、 20. 3° 、 27. 3° 、 28. 2° に散乱強度のピークが表れることが確認された。また、熱量分析装置 による吸熱状態変化の測定結果により、 55. 3° に吸熱のピークが確認された。これ ら測定結果より、ヒドロゲル中における B— PEIの結晶の存在が確認された。
[0189] これで得られた B— PEI会合体のヒドロゲル lmL中に、テトラメトキシシラン (TMSO )とエタノールの 1Z1 (体積比)の混合液 lmLを加え、アイスクリーム状態のものを軽 く一分間かき混ぜた後、そのまま 40分放置した。その後、過剰なアセトンで洗浄し、 それを円心分離器にて 3回洗浄を行った。固形物を回収し、室温で乾燥し、 B-PEI 含有シリカナノファイバ構造体 (SLP— 3)を得た。 B— PEI含有シリカナノファイバ構 造体(SLP— 3)の X線回折測定から、 20. 5° 、 27. 5° 、 28. 3° に散乱強度のピ ークが表れた。
[0190] 得られた B— PEI含有シリカナノファイバ構造体 (SLP— 3)を走査型顕微鏡により 観察したところ、 B— PEI含有シリカナノファイバ構造体 (SLP— 3)はファイバ状の会 合体形状が寄り集まったスポンジ構造であった。
[0191] (合成例 4)
[線状ポリエチレンィミン含有シリカナノファイバ(SLP— 4)の合成]
<線状のポリエチレンィミン(L PEI2)の合成 >
市販のポリェチルォキサゾリン(数平均分子量 500000,平均重合度 5000, Aldri ch社製) 5gを、 5Mの塩酸水溶液 20mLに溶解させた。その溶液をオイルバスにて 9 0°Cに加熱し、その温度で 10時間攪拌した。反応液にアセトン 50mLをカ卩え、ポリマ 一を完全に沈殿させ、それを濾過し、メタノールで 3回洗浄し、白色のポリエチレンィ ミンの粉末を得た。得られた粉末を 1H— NMR (重水)にて同定したところ、ポリェチ ルォキサゾリンの側鎖ェチル基に由来したピーク 1. 2ppm(CH3)と 2. 3ppm (CH2 )が完全に消失していることが確認された。即ち、ポリェチルォキサゾリンが完全にカロ 水分解され、ポリエチレンィミンに変換されたことが示された。
[0192] その粉末を 5mLの蒸留水に溶解し、攪拌しながら、その溶液に 15%のアンモニア 水 50mLを滴下した。その混合液を一晩放置した後、沈殿したポリマー結晶粉末を 濾過し、その結晶粉末を冷水で 3回洗浄した。洗浄後の結晶粉末をデシケータ中で 室温乾燥し、線状のポリエチレンィミン (L PEI2)を得た。収量は 4. 2g (結晶水含 有)であった。ポリオキサゾリンの加水分解により得られるポリエチレンイミンは、側鎖 だけが反応し、主鎖には変化がない。従って、 L—PEI2の重合度は加水分解前の 5 000と同様である。
[0193] <線上ポリエチレンィミン含有シリカナノファイバ >
上記で得られた L PEI2粉末を一定量秤量し、それを蒸留水中に分散させて表 1 に示した各種濃度の L— PEI2分散液を作成した。これら分散液をオイルバスにて、 9 0°Cに加熱し、濃度が 3%の完全透明な水溶液を得た。その水溶液を室温に放置し 、 自然に室温までに冷やし、不透明な L PEI2会合体のヒドロゲルを得た。
[0194] 得られた会合体につき、 X線回折測定を行った結果、 20. 7° 、 27. 6° 、 28. 4° に散乱強度のピークが表れることが確認された。また、熱量分析装置による吸熱状態 変化の測定結果により、 64. 7°Cで吸熱のピークが確認された。これら測定結果より、 ヒドロゲル中における L— PEI2の結晶の存在が確認された。
[0195] 上記で得られた L PEI2会合体のヒドロゲル lmLをプレート状に調製し、それを 1 OmLのグルタリルアルデヒドの水溶液(5%)中に加え、室温下 24時間放置して架橋 ヒドロゲルを得た。架橋化前のヒドロゲルはアイスクリーム状態であり、剪断力により任 意に形を変えたが、化学架橋化処理により得られた架橋ヒドロゲルは一つの固まりと なり、剪断力による形の変化は起こらな力つた。得られた架橋ヒドロゲルのプレートを TMSOZEtOH (lZl)の混合液 2mL中、 24時間浸せきした後、繰り返しアセトン 中に浸せきして洗浄し、 L— PEI2含有シリカナノファイバのプレート状構造体 (SLP 4)を得た。
[0196] (実施例 1)
< L PEIZ金 Zシリカ複合ナノファイバ >
上記合成例 1で得られた L— PEI含有シリカナノファイバ構造体 (SLP— 1) 0. Olg (約 3. 4mgの L— PEI含有)を lmLの金イオンの水溶液(NaAuC14を 0. 02g含有) 中に浸せきし、その混合物を室温で 30分、 80°Cにて 30分経過させた後、円心分離 器にて蒸留水で洗浄し、 L— PEI/金/シリカ複合ナノファイバを得た。 L— PEI含有 シリカナノファイバ構造体 (SLP— 1)は白色であつたが、得られた L— PEIZ金 Zシリ 力複合ナノファイバ構造体は黄色であった。
該複合ナノファイバ構造体の X線回折測定から、 Auに由来のシャープな散乱ピー タカ 38. 1° , 44. 4° , 64. 5° , 77. 6° に確認された。 [0197] 得られた複合ナノファイバ構造体の透過型電子顕微鏡写真を図 1に、高分解能透 過型電子顕微鏡写真を図 2に示した。図 2より、芯状の金のナノワイヤ、及びそれを 被覆するシリカ層が確認された。
[0198] (実施例 2)
< L PEI/白金 Zシリカ複合ナノファイバ >
上記合成例 1で得られた L— PEI含有シリカナノファイバ構造体 (SLP— 1)を 0. 01 5g (約 5. Imgの PEI含有)を 1. 5mLの白金イオンの水溶液(Na2PtC14を 0. 034g 含有)中に浸せきし、その混合物を室温で 30分、そして 80°Cにて 30分経過させた後 、円心分離器にて蒸留水で洗浄し、 L— PEIZ白金 Zシリカ複合ナノファイバを得た 。 L— PEI含有シリカナノファイバ構造体 (SLP— 1)は白色であった力 得られた複 合ナノファイバ構造体は灰色であった。
該複合体の X線回折測定から、 Ptに由来のシャープな散乱ピーク力 0. 0° , 46. 4。 , 67. 7° に確認された。
得られた複合ナノファイバ構造体の透過型電子顕微鏡写真を図 3に、高分解能透 過型電子顕微鏡写真を図 4に示した。図 4より、芯状の白金ナノワイヤ、及びそれを 被覆するシリカ層が確認された。
[0199] (実施例 3)
く L— PEI/パラジウム/シリカ複合ナノファイバ >
上記合成例 1で得られた L— PEI含有シリカナノファイバ構造体 (SLP— 1)を 0. 01 5g (約 5. Imgの PEI含有)を 1. 5mLのパラジウムイオンの水溶液(Pd (N03) 2を 0 . 025g含有)中に 1. 5時間浸せきした後、シリカ固形物を水で洗浄した。洗浄後の シリカ固形物を 2mLの水中に分散し、その分散液に lmLの NaBH4水溶液 (還元剤 0. 02g含有)を加えて、それを 30分間室温に放置した。固形物を円心分離器にて蒸 留水で洗浄し、 L— PEI/パラジウム/シリカ複合ナノファイバ構造体を得た。 L-P EI含有シリカナノファイバ構造体 (SLP—1)は白色であつたが、得られた L— PEI/ ノ《ラジウム Zシリカ複合ナノファイバは濃い灰色であった。
該複合体の X線回折測定から、 Pdに由来のシャープな散乱ピークが 38. 8° , 45 . 6° , 66. 3° に確認された。 [0200] (実施例 4)
< P— PEIZ金 Zシリカ複合ナノファイバ >
上記合成例 2で得られた P— PEI含有シリカナノファイバ構造体 (SLP— 2)を使用 して、実施例 1と同様の方法により、金イオン水溶液を還元させ、 P— PEIZ金 Zシリ 力複合ナノファイバ構造体を得た。
得られた複合ナノファイバ構造体の X線回折測定から、 Auに由来のシャープな散 舌 Lピーク力 38. 0° , 44. 6° , 64. 7° , 77. 7° に確認された。
得られた複合ナノファイバ構造体の透過型電子顕微鏡写真を図 5に示した。図 5よ り、複合ナノファイバ構造体中の会合体の 3次元的な形状が確認された。
[0201] (実施例 5)
< B— PEIZ金 Zシリカ複合ナノファイバ >
上記合成例 3で得られた B— PEI含有シリカナノファイバ構造体 (SLP— 3)を使用 して、実施例 1と同様の方法により、金イオン水溶液を還元させ、 B— PEIZ金 Zシリ 力複合ナノファイバ構造体を得た。
得られた複合ナノファイバ会合体の X線回折測定から、 Auに由来のシャープな散 舌 Lピーク力 38. 3° , 44. 6° , 64. 8° , 77. 7° に確認された。
[0202] (実施例 6)
< L PEI2Z銀 Zシリカ複合ナノファイバ >
合成例 4で得られた L— PEI2含有シリカナノファイバのプレート状構造体 (SLP— 4 ) 0. 03gを 4mLの硝酸銀水溶液(1M)中に、室温下で 1時間浸せきした。次いで、 該プレートを蒸留水で洗浄し、緑色の L— PEI2Z銀 Zシリカ複合ナノファイバ構造 体を得た。得られた複合ナノファイバ構造体プレートの吸収スペクトル測定から、 420 nmで銀のナノ結晶に由来のプラズモン吸収を観測した。また、 X線回折測定から, 銀に由来の散舌 Lピーク力 38. 2, 44. 4, 64. 6, 77. 5° に現れた。
[0203] (実施例 7)
<L— PEIZ金 ·白金 Zシリカ複合ナノファイバ〉
上記合成例 1で得られた L— PEI含有シリカナノファイバ構造体 (SLP— 1) 0. 02g (約 6. 8mgの PEI含有)を、 2mLの金と白金イオンの混合水溶液(NaAuC14を 0. 0 2g、 Na2PtC14を 0. 023g含有)中に浸せきし、その混合物を室温で 30分、そして 8 0°Cにて 30分経過させた後、円心分離器にて蒸留水で洗浄した。白色から薄黄色に 変化し、 L PEIZ金 ·白金 Zシリカ複合ナノファイバ構造体が得られた。該複合ナノ ファイバ構造体の X線回折測定から、 Auと Pt由来の散乱ピークが 38. 1, 40. 1, 44 . 2, 46. 4, 64. 6, 67. 7, 77. 6° に現れた。
[0204] (実施例 8)
く L— PEIZ銅イオン Zシリカ複合ナノファイバ >
上記合成例 1で得られた L— PEI含有シリカナノファイバ構造体 (SLP - 1) 50mg ( 窒素 0. 319mmol)を秤取り、それを 5mLの硝酸銅水溶液(2mM)に加えた。混合 物中の白色の構造体は、青色に変わった。この混合物を 3時間放置した後、濾過し、 蒸留水で 3回洗浄し、次いで乾燥して青色の L PEIZ銅イオン Zシリカ複合ナノフ アイバ構造体を得た。
[0205] 得られた複合ナノファイバ構造体を吸収スペクトルにて測定した結果、銅 ·窒素(Cu —N)配位により形成した錯体の強い吸収が 303nm、 630nmに現れた。
[0206] (実施例 9)
く L— PEIZナトリゥムイオン Zシリカ複合ナノファイバ >
上記合成例 1で得られた L— PEI含有シリカナノファイバ構造体 (SLP - 1) 50mg ( 窒素 0. 319mmol)を秤取り、それを 5mLのトリフラートナトリウム NaS03CF3水溶 液(2mM)に加えた。この混合物を 3時間放置した後、濾過し、蒸留水で 3回洗浄し、 次いで乾燥して L— PEIZナトリウムイオン Zシリカ複合ナノファイバ構造体を得た。
[0207] 乾燥後の L PEIZナトリウムイオン Zシリカ複合ナノファイバ構造体の WAXS測 定から、 L— PEI含有シリカナノファイバ構造体 (SLP— 1)中の L— PEI由来の回折 パターンは消え、その代わりに、 21° , 32° , 37° に回折パターンが現れた。また、 DSC観測から、融点が 169°Cで現れた。これより、シリカナノファイバ中で L— PEIと ナトリウムイオンとの錯体が形成していることが示された。

Claims

請求の範囲
[I] 少なくとも一種の金属又は金属イオンと、直鎖状ポリエチレンィミン骨格を有するポ リマーとを、シリカナノファイバ中に含有することを特徴とする複合ナノファイバ。
[2] 前記少なくとも一種の金属又は金属イオンと、直鎖状ポリエチレンィミン骨格を有す るポリマーとが配位結合してなる請求項 1に記載の複合ナノファイバ。
[3] 前記直鎖状ポリエチレンィミン骨格を有するポリマーが、鎖状、星状、又は櫛状ポリ マーである請求項 1に記載の複合ナノファイバ。
[4] 前記直鎖状ポリエチレンィミン骨格を有するポリマー力 直鎖状ポリエチレンィミン ブロックと他のポリマーブロックとのブロックコポリマーからなるものである請求項 1に記 載の複合ナノファイバ。
[5] 前記直鎖状ポリエチレンィミン骨格を有するポリマー中のポリエチレンィミン骨格の 割合が、 40モル%以上である請求項 1に記載の複合ナノファイバ。
[6] シリカの含有量が 30〜80質量%の範囲にある請求項 1に記載の複合ナノファイバ
[7] 太さが 15〜: LOOnmの範囲である請求項 1に記載の複合ナノファイバ。
[8] 前記少なくとも一種の金属又は金属イオン力 アルカリ金属イオン、アルカリ土類金 属イオン、遷移金属系イオン、半金属系イオン、ランタン系金属イオン、ポリオキソメタ レート類力 選ばれる少なくとも一種の金属イオンである請求項 1に記載の複合ナノ ファイバ。
[9] 前記少なくとも一種の金属又は金属イオン力 遷移金属である請求項 1に記載の複 合ナノファイバ。
[10] 前記遷移金属が、 Au、 Ag、 Cu、 Pt、 Pd、 Mn、 Ni、 Rh、 Co、 Ru、 Re、 Moから選 ばれる少なくとも一種の金属結晶である請求項 9に記載の複合ナノファイバ。
[II] 前記遷移金属が、ナノワイヤ形状又はナノ粒子形状を有する請求項 9に記載の複 合ナノファイバ。
[12] 請求項 1〜11のいずれかに記載の複合ナノファイバが相互に会合してなることを特 徴とする複合ナノファイバ会合体。
[13] 前記会合が網目状の会合である請求項 12に記載の複合ナノファイバ会合体。
[14] 請求項 12に記載の複合ナノファイバ会合体が、相互に会合してなることを特徴とす る複合構造体。
[15] 請求項 9〜: L 1のいずれかに記載の複合ナノファイバ中のポリマーを除去してなる金 属含有シリカナノファイバ。
[16] 請求項 15に記載の金属含有シリカナノファイバが相互に会合してなる金属含有シ リカナノファイバ会合体。
[17] 請求項 16に記載の金属含有シリカナノファイバ会合体が相互に会合してなる金属 含有シリカナノファイバ構造体。
[18] (1)直鎖状ポリエチレンィミン骨格を有するポリマーを溶媒に溶解させた後、水の存 在下で析出させ、直鎖状ポリエチレンィミン骨格を有するポリマーの結晶性ポリマー フィラメントを得る工程と、
(2)水の存在下で、前記結晶性ポリマーフィラメントとアルコキシシランとを接触させ ることにより、前記結晶性ポリマーフィラメントをシリカで被覆してポリマー含有シリカナ ノファイバを得る工程と、
(3)前記ポリマー含有シリカナノファイバと、金属イオンが溶解した溶液とを接触さ せ、金属イオンを前記ポリマー中の直鎖状ポリエチレンィミン骨格に配位結合させる 工程、
とからなる複合ナノファイバの製造方法。
[19] (1)直鎖状ポリエチレンィミン骨格を有するポリマーを溶媒に溶解させた後、水の存 在下で析出させ、直鎖状ポリエチレンィミン骨格を有するポリマーの結晶性ポリマー フィラメントを得る工程と、
(2)水の存在下で、前記結晶性ポリマーフィラメントとアルコキシシランとを接触させ ることにより、前記結晶性ポリマーフィラメントをシリカで被覆してポリマー含有シリカナ ノファイバを得る工程と、
(3)前記ポリマー含有シリカナノファイバと、金属イオンが溶解した溶液とを接触さ せ、金属イオンを前記ポリマー中の直鎖状ポリエチレンィミン骨格に配位結合させる 工程と、
(4)前記ポリマー中の直鎖状ポリエチレンィミン骨格に配位結合した遷移金属ィォ ンを還元させる工程、
とからなる複合ナノファイバの製造方法。
[20] 前記アルコキシシラン力 3価以上のアルコキシシランである請求項 18又は 19に記 載の複合ナノファイバの製造方法。
[21] 前記工程(2)において結晶性ポリマーフィラメントと接触させるアルコキシシランの 量力 結晶性ポリマーフィラメントを形成する直鎖状ポリエチレンィミン骨格を有する ポリマーのエチレンィミン単位に対して 2〜: LOOO倍等量の範囲にある請求項 18又は
19に記載の複合ナノファイバの製造方法。
[22] 前記アルコキシシラン力 テトラアルコキシシラン類、トリアルコキシアルキルシラン 類力 なる群力も選ばれる一種又は二種である請求項 18又は 19に記載の複合ナノ ファイバの製造方法。
[23] 前記直鎖状ポリエチレンィミン骨格を有するポリマーが、鎖状、星状、又は櫛状ポリ マーである請求項 18又は 19に記載の複合ナノファイバの製造方法。
[24] 前記直鎖状ポリエチレンィミン骨格を有するポリマー力 直鎖状ポリエチレンィミン ブロックと他のポリマーブロックとのブロックコポリマーからなるものである請求項 18又 は 19に記載の複合ナノファイバの製造方法。
[25] 前記直鎖状ポリエチレンィミン骨格を有するポリマー中のポリエチレンィミン骨格の 割合力 40モル%以上である請求項 18又は 19に記載の複合ナノファイバの製造方 法。
[26] 前記金属イオンが、遷移金属イオンである請求項 18又は 19に記載の複合ナノファ ィバの製造方法。
[27] 前記遷移金属イオンが、 Au、 Ag、 Cu、 Pt、 Pd、 Mn、 Ni、 Rh、 Co、 Ru、 Re、 Mo 力も選ばれる少なくとも一種の遷移金属イオンである請求項 26に記載の複合ナノフ アイバの製造方法。
[28] (1)直鎖状ポリエチレンィミン骨格を有するポリマーを溶媒に溶解させた後、水の存 在下で析出させ、直鎖状ポリエチレンィミン骨格を有するポリマーの結晶性ポリマー フィラメントを得る工程と、
(2)水の存在下で、前記結晶性ポリマーフィラメントとアルコキシシランとを接触させ ることにより、前記結晶性ポリマーフィラメントをシリカで被覆してポリマー含有シリカナ ノファイバを得る工程と、
(3)前記ポリマー含有シリカナノファイバと、金属イオンが溶解した溶液とを接触さ せ、金属イオンを前記ポリマー中の直鎖状ポリエチレンィミン骨格に配位結合させる 工程と、
(4)前記ポリマー中の直鎖状ポリエチレンィミン骨格に配位結合した遷移金属ィォ ンを還元させ、複合ナノファイバを得る工程、
(5)前記複合ナノファイバ中のポリマー成分を除去する工程、
とからなる金属含有シリカナノファイバの製造方法。
PCT/JP2005/009769 2004-05-31 2005-05-27 複合ナノファイバ、複合ナノファイバ会合体、複合構造体及びこれらの製造方法 WO2005116140A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020067025019A KR101136494B1 (ko) 2004-05-31 2005-05-27 복합 나노파이버, 복합 나노파이버 회합체, 복합 구조체 및이들의 제조 방법
US11/569,300 US7670509B2 (en) 2004-05-31 2005-05-27 Composite nanofiber, composite nanofiber association, complex structure, and production method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004161234A JP3978440B2 (ja) 2004-05-31 2004-05-31 シリカ/ポリマー/金属複合材料及びその製造方法
JP2004-161234 2004-05-31
JP2004243580A JP3978443B2 (ja) 2004-08-24 2004-08-24 シリカ/金属錯体複合材料及びその製造方法
JP2004-243580 2004-08-24

Publications (1)

Publication Number Publication Date
WO2005116140A1 true WO2005116140A1 (ja) 2005-12-08

Family

ID=35450864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009769 WO2005116140A1 (ja) 2004-05-31 2005-05-27 複合ナノファイバ、複合ナノファイバ会合体、複合構造体及びこれらの製造方法

Country Status (3)

Country Link
US (1) US7670509B2 (ja)
TW (1) TWI359789B (ja)
WO (1) WO2005116140A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG123727A1 (en) * 2004-12-15 2006-07-26 Univ Singapore Nanofiber construct and method of preparing thereof
WO2008118097A1 (en) * 2007-03-23 2008-10-02 Agency For Science, Technology And Research Palladium catalysts
EP2155935A1 (en) * 2007-04-11 2010-02-24 National University of Signapore Fibers for decontamination of chemical and biological agents
WO2011065521A1 (ja) * 2009-11-30 2011-06-03 財団法人川村理化学研究所 シリカナノファイバー/金属酸化物ナノ結晶複合体及びその製造方法
EP2317006A4 (en) * 2008-08-11 2012-08-01 Kawamura Inst Chem Res ULTRAHYDROPHOBIC POWDER, STRUCTURE WITH ULTRAHYDROPHOBIC SURFACE AND METHOD FOR THE PRODUCTION THEREOF
US8257662B2 (en) 2007-09-03 2012-09-04 Kawamura Institute Of Chemical Research Process for producing nanostructure composite-covered structure, nanostructure composite-covered structure, and reactor using nanostructure composite-covered structure
JP2013521212A (ja) * 2010-03-02 2013-06-10 キング アブドゥーラ ユニバーシティ オブ サイエンス アンド テクノロジー 高表面積の繊維状シリカナノ粒子
CN114524680A (zh) * 2022-01-19 2022-05-24 东华大学 一种内部搭接有纳米薄膜的陶瓷纳米纤维材料及其制备方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200700317A (en) * 2005-04-01 2007-01-01 Kawamura Inst Chem Res Monodispersible silica fine particle containing a polyamine and a production method thereof
US7935745B2 (en) * 2007-03-27 2011-05-03 Case Western Reserve University Self-assembled nanofiber templates; versatile approaches for polymer nanocomposites
WO2009150930A1 (ja) * 2008-06-12 2009-12-17 財団法人川村理化学研究所 超疎水性ナノ構造複合体で被覆された構造物及びその製法
DE102009022512A1 (de) * 2009-05-25 2010-12-02 Qiagen Gmbh Verfahren zur Reaktivierung von Silikaoberflächen zur Isolierung von Nukleinsäuren
WO2011122581A1 (ja) * 2010-03-29 2011-10-06 富士フイルム株式会社 ガス分離膜その製造方法、それらを用いたガス混合物の分離方法、ガス分離膜モジュール、気体分離装置
ES2369811B1 (es) * 2010-05-04 2012-10-15 Consejo Superior De Investigaciones Científicas (Csic) Procedimiento de obtención de materiales nanocompuestos.
US8945688B2 (en) 2011-01-03 2015-02-03 General Electric Company Process of forming a material having nano-particles and a material having nano-particles
TWI424007B (zh) 2011-12-22 2014-01-21 Ind Tech Res Inst 使膠體交聯的方法與藉由此方法形成之經交聯的膠體
US20150099186A1 (en) * 2012-03-02 2015-04-09 Cornell University Silicon nanocomposite nanofibers
US9829486B2 (en) * 2012-03-05 2017-11-28 Panasonic Intellectual Property Management Co., Ltd. Sensor device
WO2014028027A1 (en) * 2012-08-17 2014-02-20 Empire Technology Development Llc Plastic nanocomposites and methods of making the same
CN104109909B (zh) 2013-04-18 2018-09-04 财团法人工业技术研究院 纳米金属线材与其制作方法
KR20150006121A (ko) * 2013-07-08 2015-01-16 서울대학교산학협력단 폴리아세틸렌 나노파이버 온도센서
EP2881197A1 (en) * 2013-12-03 2015-06-10 Nanogap Sub NM Powder, S.A. Process for preparing anisotropic metal nanoparticles and agent for controlling growth thereof
US20160374209A1 (en) * 2015-06-18 2016-12-22 Postech Academy - Industry Foundation Method of fabricating metal nanowire pattern
TWI705074B (zh) * 2020-01-30 2020-09-21 鑫鼎奈米科技股份有限公司 具奈米金屬之纖維的製法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160890A (ja) * 1997-08-22 1999-03-05 Res Dev Corp Of Japan 金属含有量の高い金属・有機ポリマー複合構造体および多孔体ならびにその製造方法
JP2004034617A (ja) * 2002-07-05 2004-02-05 Toyo Ink Mfg Co Ltd 感熱記録材料、それを用いた感熱記録組成物および感熱記録方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69819385T2 (de) * 1997-03-10 2004-09-09 Japan Science And Technology Corp., Kawaguchi Herstellungverfahren einer Verbundstruktur bestehend aus metallischen Nanopartikeln umhüllt mit einem organischen Polymer
WO2001027368A1 (en) * 1999-10-08 2001-04-19 The University Of Akron Insoluble nanofibers of linear poly(ethylenimine) and uses therefor
US6692715B2 (en) * 2001-08-30 2004-02-17 Mine Jeffrey Inc. Silica nanofibers and method for preparing them
US20040224590A1 (en) * 2003-03-31 2004-11-11 George Rawa Thermoplastic/fiber material composites, composite/metallic articles and methods for making composite/metallic articles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160890A (ja) * 1997-08-22 1999-03-05 Res Dev Corp Of Japan 金属含有量の高い金属・有機ポリマー複合構造体および多孔体ならびにその製造方法
JP2004034617A (ja) * 2002-07-05 2004-02-05 Toyo Ink Mfg Co Ltd 感熱記録材料、それを用いた感熱記録組成物および感熱記録方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHUJO Y.: "Bunshi Hybrid-Ka Gijutsu", YUKI NONO DEVICE NI MUKETA MODULE-KA GIJUTSU WORKSHOP HOKOKUSHO, HEISEI 13 NEN, 2001, pages 4 - 14 *
PARK C. ET AL.: "IRON CLUSTER AND MICROSTRUCTURE FORMATION IN METAL-CENTERED STAR BLOCK COPOLYMERS: AMPHIPHILIC IRON TRIS (BIPYRIDINE)-CENTERED POLYOXAZOLINES", CHEM. MATER., vol. 14, no. 3, 2002, pages 1225 - 1230 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG123727A1 (en) * 2004-12-15 2006-07-26 Univ Singapore Nanofiber construct and method of preparing thereof
WO2008118097A1 (en) * 2007-03-23 2008-10-02 Agency For Science, Technology And Research Palladium catalysts
US8227640B2 (en) 2007-03-23 2012-07-24 Institute Of Bioengineering And Nanotechnology Palladium catalysts
EP2155935A1 (en) * 2007-04-11 2010-02-24 National University of Signapore Fibers for decontamination of chemical and biological agents
EP2155935A4 (en) * 2007-04-11 2010-06-02 Univ Singapore FIBERS FOR DECONTAMINATION OF CHEMICAL AND BIOLOGICAL AGENTS
US8257662B2 (en) 2007-09-03 2012-09-04 Kawamura Institute Of Chemical Research Process for producing nanostructure composite-covered structure, nanostructure composite-covered structure, and reactor using nanostructure composite-covered structure
EP2317006A4 (en) * 2008-08-11 2012-08-01 Kawamura Inst Chem Res ULTRAHYDROPHOBIC POWDER, STRUCTURE WITH ULTRAHYDROPHOBIC SURFACE AND METHOD FOR THE PRODUCTION THEREOF
WO2011065521A1 (ja) * 2009-11-30 2011-06-03 財団法人川村理化学研究所 シリカナノファイバー/金属酸化物ナノ結晶複合体及びその製造方法
JP4759661B2 (ja) * 2009-11-30 2011-08-31 一般財団法人川村理化学研究所 シリカナノファイバー/金属酸化物ナノ結晶複合体及びその製造方法
JP2013521212A (ja) * 2010-03-02 2013-06-10 キング アブドゥーラ ユニバーシティ オブ サイエンス アンド テクノロジー 高表面積の繊維状シリカナノ粒子
CN114524680A (zh) * 2022-01-19 2022-05-24 东华大学 一种内部搭接有纳米薄膜的陶瓷纳米纤维材料及其制备方法

Also Published As

Publication number Publication date
US20070197708A1 (en) 2007-08-23
US7670509B2 (en) 2010-03-02
TW200613220A (en) 2006-05-01
TWI359789B (en) 2012-03-11

Similar Documents

Publication Publication Date Title
WO2005116140A1 (ja) 複合ナノファイバ、複合ナノファイバ会合体、複合構造体及びこれらの製造方法
KR101057706B1 (ko) 유기무기 복합 나노파이버, 유기무기 복합 구조체 및이들의 제조 방법
JP3978440B2 (ja) シリカ/ポリマー/金属複合材料及びその製造方法
JP2005264421A (ja) 有機無機複合ナノファイバ、有機無機複合構造体及びこれらの製造方法
JP4700354B2 (ja) シリカナノチューブ会合体及びその製造方法
KR20100051612A (ko) 나노 구조 복합체 피복형 구조물의 제조 방법, 나노 구조 복합체 피복형 구조물 및 이것을 사용하는 리액터
JP2007091848A (ja) シリカナノチューブ会合体を含有する有機無機複合体
JP4101271B2 (ja) 針状表面微粒子及びその製造方法
JP4413095B2 (ja) 金属多孔体の製造方法
JP4226016B2 (ja) ポリアミンを含む単分散性シリカ微粒子及びその製造方法
JP4428568B2 (ja) 金ナノプレートの製造方法
Wang et al. Nanofabrication within unimolecular nanoreactors
JP3978443B2 (ja) シリカ/金属錯体複合材料及びその製造方法
Showkat et al. Characterization of poly (diphenylamine)-gold nanocomposites obtained by self-assembly
JP5095288B2 (ja) ポリマー/シリカ複合ナノ構造体、ポリマー/金属類/シリカ複合ナノ構造体及びシリカ系無機構造体の製造方法
JP4413252B2 (ja) ナノ構造複合体被覆型構造物及びその製造方法
JP4730730B2 (ja) 有機無機複合材料及びその製造方法
KR101136494B1 (ko) 복합 나노파이버, 복합 나노파이버 회합체, 복합 구조체 및이들의 제조 방법
JP5038636B2 (ja) 酸化チタン/ポリマー複合体及びその製造方法
JP4510105B2 (ja) チタニアナノ構造複合体被覆型構造物及びその製造方法
WO2007010937A1 (ja) 針状表面微粒子及びその製造方法
JP2006008732A (ja) 金属イオン捕捉剤、金属イオンの捕捉方法
Guo et al. Synthesis of polystyrene@(silver–polypyrrole) core/shell nanocomposite microspheres and study on their antibacterial activities
JP2006219327A (ja) 有機無機複合ナノファイバーの製造方法
DAMING Synthesis and characterization of nanostructured materials using dispersion polymerization

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11569300

Country of ref document: US

Ref document number: 2007197708

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580017411.0

Country of ref document: CN

Ref document number: 1020067025019

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067025019

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11569300

Country of ref document: US