WO2007010937A1 - 針状表面微粒子及びその製造方法 - Google Patents

針状表面微粒子及びその製造方法 Download PDF

Info

Publication number
WO2007010937A1
WO2007010937A1 PCT/JP2006/314266 JP2006314266W WO2007010937A1 WO 2007010937 A1 WO2007010937 A1 WO 2007010937A1 JP 2006314266 W JP2006314266 W JP 2006314266W WO 2007010937 A1 WO2007010937 A1 WO 2007010937A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
fine particles
metal
metal complex
metal ion
Prior art date
Application number
PCT/JP2006/314266
Other languages
English (en)
French (fr)
Inventor
Ren-Hua Jin
Pei-Xin Zhu
Original Assignee
Kawamura Institute Of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute Of Chemical Research filed Critical Kawamura Institute Of Chemical Research
Priority to US11/996,415 priority Critical patent/US20090155591A1/en
Priority to CN200680021943.6A priority patent/CN101203550B/zh
Publication of WO2007010937A1 publication Critical patent/WO2007010937A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/212Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase and solid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/02Polyamines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2995Silane, siloxane or silicone coating

Definitions

  • the present invention relates to a fine particle containing a metal complex composed of a polymer having a linear polyethyleneimine chain and a metal ion, and silica, the surface of which has a fine needle-like structure, and has an acicular shape.
  • the present invention relates to a surface fine particle and a method for producing the acicular surface fine particle.
  • a composite material in which a metal complex is fixed to silica can be effectively used for applications such as a chemical reaction catalyst, an electrochemical sensor, and a solid polymer electrolyte.
  • composites in which metal complexes are introduced into mesoporous silica have a wide surface area on the silica surface, a wide distribution of complex active sites in the nanocavities inside the silica, fast diffusion of the substrate compound, high heat resistance of the catalyst support, since many advantages, such as resistance to acid is predicted, a metal complex fixed I ⁇ surgery for a mesoporous silica as carrier are much attention disgusting Me (e.g., non-Patent documents 1 to 6 refer.) 0
  • an amino group, an imino group, or the like is introduced into the silica skeleton by a chemical bond, and a metal ion is coordinated to the composite to obtain a complex, and the process is complicated. there were.
  • Non-Patent Document 1 CT Kresge et al., Nature, 1992, 359 pp. 710-712
  • Non-patent Document 2 A. Monnier et al., Science, 1993, 261 pp. 1299-1330
  • Non-Patent Document 3 SA Davis et al., Nature, 1997, 385 ⁇ , pp. 420-423
  • Non-Patent Document 4 T. Kang et al., J. Mater. Chem., 2004, 14 ⁇ , 1043- Ten P. 49
  • Non-patent literature 5 B. Lee et al., Langmuir, 2003, 19 ⁇ , pp. 4246-4252
  • Non-patent literature 6 K. Zakir et al., Adv. Mater., 2002, 14 ⁇ , 1053-1056 Page
  • the problem to be solved by the present invention includes a metal complex-containing silica fine particle containing a metal complex of a polymer having a linear polyethyleneimine chain and having a fine needle-like surface fine particle shape having a large surface area, and
  • the object is to provide a simple method for producing fine particles.
  • the present inventors have found that when a metal ion (b) is added to a polymer (a) having a linear polyethyleneimine chain, the metal complex (X) can be easily formed. As a result, in the presence of water, the metal complex (X) forms an associated body, and a fine acicular surface shape is formed by a sol-gel reaction using alkoxysilane using the associated body as a reaction field.
  • the present invention was completed by finding that fine particles having a metal complex inside the silica can be obtained.
  • the present invention comprises a polymer (a) having a linear polyethyleneimine chain, a metal ion capable of forming a complex with the polymer, and silica (Y), and the particle surface has a fine needle shape.
  • the present invention provides needle-shaped surface fine particles having a particle shape of
  • the present invention provides a fine acicular surface particle comprising a metal complex (X) comprising a polymer (a) having a linear polyethyleneimine chain and a metal ion (b), and silica (Y).
  • X metal complex
  • Y silica
  • the present invention provides needle-shaped surface fine particles having a shape.
  • the present invention relates to (1) a polymer (a) having a linear polyethyleneimine chain and a metal ion (b) dissolved in an aqueous medium and having a linear polyethyleneimine chain (obtaining an aggregate of a metal complex (X) comprising a) and a metal ion (b);
  • the present invention also provides a method for producing needle-like surface fine particles having the above.
  • the invention's effect is to produce needle-like surface fine particles having the above.
  • the acicular surface fine particles of the present invention have a large number of nano-dimensional acicular structures on the surface of the fine particles, the surface area of the acicular surface fine particles is remarkably increased as compared with conventional mere fine particles.
  • the inside of the acicular surface fine particles contains a polyethyleneimine chain excellent in the concentration and reduction ability of metal ions, it also has characteristics derived from the polyethyleneimine chain.
  • the acicular surface fine particles of the present invention have an acicular structure by a sol-gel reaction using a polymer metal complex of a polymer having a linear polyethyleneimine chain and a metal ion as an aggregate, and using the aggregate as a scaffold.
  • a polymer metal complex of a polymer having a linear polyethyleneimine chain and a metal ion as an aggregate, and using the aggregate as a scaffold.
  • the fine particles in which the metal complex is uniformly distributed are formed, because the polymer metal complex is incorporated into the silica. I can do it.
  • the acicular structure of the obtained acicular surface fine particles and the spatial structure of the fine particles can be easily controlled by changing the configuration and shape of the polymer having a metal ion species or a linear polyethyleneimine chain, Its morphology is diverse and can be designed according to the application.
  • the ethyleneimine unit in the linear polyethyleneimine chain is a group capable of forming a complex with various metal ions such as alkali metal, alkali earth metal, and transition metal
  • the acicular surface fine particles can contain these various metal ions. That is, regardless of the metal ion species, it is possible to obtain silica fine particles incorporating a polymer metal complex by a single method, and fine particles having a plurality of metal species can be easily adjusted in the same manner.
  • the acicular surface fine particles of the present invention can be expected to be applied to solid electrolytes, solid catalysts, nano additives, and nano thin film materials.
  • the needle-like surface fine particles containing a metal complex of these metal ions can be converted into metal nanoparticles by treating with heat treatment or a reducing agent, and therefore, there are applications as nanometal particle-containing materials.
  • the method for producing acicular surface fine particles of the present invention comprises a step of dissolving a polymer having a linear polyethyleneimine chain and a metal ion in an aqueous medium to obtain an association of a metal complex,
  • This is a simple method comprising a step of performing a sol-gel reaction using an alkoxysilane in the presence of the associated complex of the metal complex as a reaction field, and does not require a special apparatus. It can also be suitably used for industrial production.
  • FIG. 1 is a scanning electron micrograph of acicular surface fine particles obtained in Example 1.
  • FIG. 2 is a scanning electron micrograph of the surface of acicular surface fine particles obtained in Example 1.
  • FIG. 3 is a scanning electron micrograph of acicular surface fine particles obtained in Example 2.
  • FIG. 4 is a scanning electron micrograph of the surface of acicular surface fine particles obtained in Example 2.
  • FIG. 5 is a scanning electron micrograph of acicular surface fine particles obtained in Example 3.
  • FIG. 6 is a scanning electron micrograph of the surface of acicular surface fine particles obtained in Example 3.
  • FIG. 7 is a scanning electron micrograph of acicular surface fine particles obtained in Example 4.
  • FIG. 8 is a scanning electron micrograph of the surface of acicular surface fine particles obtained in Example 4.
  • FIG. 9 is a scanning electron micrograph of acicular surface fine particles obtained in Example 5.
  • FIG. 10 is a scanning electron micrograph of the surface of acicular surface fine particles obtained in Example 5.
  • FIG. 11 is a scanning electron micrograph of the composite obtained in the comparative example.
  • the acicular surface fine particles of the present invention contain a polymer (a) having a linear polyethyleneimine chain (a), a metal complex (X) composed of at least one metal ion (b), and silica (Y). In addition, it has a fine needle-like surface particle shape.
  • the linear polyethyleneimine chain in the present invention refers to a polymer chain having a secondary amine ethyleneimine unit as a main structural unit. There may be structural units other than ethyleneimine units in the chain, but it is preferred that the polymer chain is a continuous ethyleneimine unit with a constant chain length.
  • the length of the linear polyethyleneimine chain is such that when the polymer having the chain is complexed with the metal ion (b) to form the metal complex (X), the polymer (a) and the metal ion (b)
  • the number of repeating units of the ethyleneimine unit of the chain portion is It is preferable that it is 10 or more. 20 ⁇ : It is particularly preferable that it is in the range of LOOOO.
  • Linear polyethyleneimine is soluble in hot water. It exists as a crystalline aggregate. Moreover, these crystals are soluble only in limited organic solvents.
  • the polymer (a) having a linear polyethyleneimine chain used in the present invention also has a special property of the linear polyethyleneimine chain, and a polymer obtained by utilizing this property is the one of the present invention. Fine particles.
  • Polymer having linear polyethyleneimine chain used in the present invention (a) [Hereinafter, this polymer is simply abbreviated as polymer (a). ],
  • the structure of the polymer (a) may be linear, star-shaped or comb-shaped as long as it has the above-mentioned linear polyethyleneimine chain in its structure. Since the polymer (a) has a linear polyethyleneimine chain, an ethyleneimine unit moiety in an aqueous medium (herein, the aqueous medium refers to water or a mixed solvent of water and a water-soluble organic solvent). Can complex with the metal ion (b) to give the metal complex (X).
  • the polymer (a) may be a linear polyethyleneimine chain only, but may have a linear polyethyleneimine chain block (hereinafter abbreviated as polyethyleneimine block) and other. It may consist of a block copolymer with a polymer block.
  • Other polymer blocks include, for example, water-soluble polymer blocks such as polyethylene glycol, polypropio-ethyleneimine, polyacrylamide, or polystyrene, polyoxazoline polyphenyloxazoline, polyoctyloxazoline, polydodecyloxazoline, polyatalyl. Hydrophobic polymer blocks such as polymethylmethacrylate and polybutylmethacrylate of the rate can be mentioned.
  • Linear polymer in the polymer (a) when the polymer (a) is a block copolymer The proportion of the ethyleneimine chain is not limited as long as the association of the metal complex (X) can be formed. From the viewpoint of obtaining a more stable association, the ratio of the linear polyethyleneimine chain in the polymer (a) It is preferably 0 mol% or more, more preferably 50 mol% or more.
  • the production method of the polymer (a) is not particularly limited, but from the viewpoint that the production method is easy, a polymer having a linear skeleton capable of producing a polyoxazoline as a precursor thereof.
  • precursor polymer is preferably hydrolyzed under acidic conditions or alkaline conditions. Therefore, the shape of the polymer (a) such as a linear shape, a star shape, or a comb shape can be easily designed by controlling the shape of the precursor polymer. Also, the degree of polymerization and the terminal structure can be easily adjusted by controlling the degree of polymerization of the precursor polymer and the terminal functional group.
  • the precursor polymer is a block copolymer comprising a linear polyoxazoline skeleton and other polymer blocks, and the linear polymer in the precursor polymer is used.
  • the polyoxazoline skeleton can be selectively hydrolyzed to obtain a linear polyethyleneimine chain.
  • the precursor polymer can be synthesized by a cationic polymerization method using a monomer of an oxazoline or a synthesis method such as a macromonomer method, and a synthesis method and an initiator are appropriately selected. By doing so, precursor polymers having various shapes such as a linear shape, a star shape, or a comb shape can be obtained.
  • Examples of the monomer that forms a linear skeleton that also has the power of polyoxazolines include oxazoline monomers such as methyloxazoline, ethyloxazoline, methylvinyloxazoline, and phenyloxazoline.
  • the polymerization initiator a compound having a functional group such as a salt-alkyl group, an alkyl bromide group, an alkyl iodide group, a toluene sulfo-loxy group, or a trifluoromethyl sulfo-loxy group in the molecule.
  • a functional group such as a salt-alkyl group, an alkyl bromide group, an alkyl iodide group, a toluene sulfo-loxy group, or a trifluoromethyl sulfo-loxy group in the molecule.
  • These polymerization initiators can be obtained by converting the hydroxyl groups of many alcohol compounds into other functional groups.
  • brominated, iodinated, toluene sulfonated, and trifluoromethyl sulfonated functional groups are preferred because of their high polymerization initiation efficiency, especially alkyl bromide groups and toluene sulfonic acid. Preference is given to alkyl groups!
  • a poly (ethylene glycol) having a terminal hydroxyl group converted to bromine or iodine, or a toluene (hydroxyl group) converted to a toluenesulfol group can be used as a polymerization initiator.
  • the degree of polymerization of poly (ethylene glycol) is in the range of 5 to LOO, preferably S, and particularly preferably in the range of 10 to 50.
  • the pigments having a skeleton can impart a special function to the obtained polymer, and thus can also impart the special function to the obtained acicular surface fine particles.
  • the linear precursor polymer is obtained by polymerizing the oxazoline monomer with a polymerization initiator having a monovalent or divalent functional group.
  • polymerization initiators include methyl benzene chloride, methyl benzene bromide, methyl iodide iodide, methyl benzene toluenesulfonate, methylbenzene trifluoromethylsulfonate, methane bromide, methane iodide, toluene.
  • Monovalent such as sulfonic acid methane or toluenesulfonic acid anhydride, trifluoromethylsulfonic acid anhydride, 5- (4 bromomethylphenol) -10, 15, 20 tri (phenol) porphyrin, or bromomethylpyrene
  • divalent compounds such as dibromomethylbenzene, diiodinated methylbenzene, dibutyl methylmethylbenzene, or dibromomethylazobenzene.
  • linear polyoxazolines used in the industry such as poly (methyloxazoline), poly (ethyloxazoline), or poly (methylbioxazoline) may be used as a precursor polymer as they are. it can.
  • the star-shaped precursor polymer can be obtained by polymerizing the oxazoline monomer as described above with a polymerization initiator having a trivalent or higher functional group.
  • trivalent or higher polymerization initiators include trivalent compounds such as tribromomethylbenzene, tetrabromomethylbenzene, tetra (4-chloromethylphenol) porphyrin, tetrabromoethoxyphthalocyanine, and the like.
  • examples thereof include tetravalent compounds, hexabromomethylbenzene, tetra (3,5-ditosilylethyloxyphenyl) porphyrins and more.
  • a linear polymer having a polyvalent polymerization initiating group is used and the polymerization initiating group is synthesized by polymerizing an oxazoline monomer. I can do it.
  • the hydroxyl group of a polymer having a hydroxyl group in the side chain such as a normal epoxy resin, polybutyl alcohol, to a halogenating force with bromine or iodine or a toluenesulfonyl group
  • the converted moiety can be obtained as a polymerization initiating group!
  • a polyamine type polymerization terminator can also be used.
  • oxazoline is polymerized, and the end of the polyoxazoline is bonded to the polyamino amine such as polyethyleneimine, polybulamine, polypropylamine, etc.
  • polyamino amine such as polyethyleneimine, polybulamine, polypropylamine, etc.
  • Hydrolysis of the linear skeletal portion of the precursor polymer polyoxazoline that is obtained as described above may be performed under acidic conditions or under alkaline conditions.
  • Hydrolysis under acidic conditions includes, for example, a method in which a precursor polymer is stirred under heating in an aqueous hydrochloric acid solution, and a polymer in which polyethyleneimine units are converted to hydrochlorides can be obtained.
  • a polymer powder having a basic polyethyleneimine unit can be obtained.
  • the hydrochloric acid solution to be used may be concentrated hydrochloric acid or an aqueous solution of about ImolZL, but it is desirable to use a 5 molZL aqueous hydrochloric acid solution for efficient hydrolysis.
  • the reaction temperature is preferably 70 to 90 ° C.
  • Hydrolysis under alkaline conditions includes, for example, a method of converting a polyoxazoline unit into a polyethyleneimine unit using a sodium hydroxide aqueous solution. After reacting under alkaline conditions, the reaction solution is washed with a dialysis membrane to remove excess sodium hydroxide and obtain a polymer powder having a polyethyleneimine unit.
  • concentration of sodium hydroxide used is within the range of 1 to LOLOZL, and is preferably within the range of 3 to 5 molZL for more efficient reaction.
  • the reaction temperature is preferably 70 to 90 ° C.
  • the amount of acid or alkali used in the hydrolysis under acidic conditions or alkaline conditions is 1 to: compared to the oxazoline unit in polymer (a). In order to simplify the treatment, it is preferably 2 to 4 equivalents.
  • the precursor polymer is a linear polymer block having the power of polyoxazoline and another polymer block. It can be obtained by selectively hydrolyzing a linear block having a polyoxazoline power in the precursor polymer as a block copolymer comprising blocks.
  • poly (N-propio-ethyleneimine) When the other polymer block is a water-soluble polymer block such as poly (N-propio-ethyleneimine), poly (N-propio-ethylene) force poly (N-formylethyleneimine)
  • a block copolymer can be formed by taking advantage of its high solubility in organic solvents compared to poly (N-acetylethylimine). That is, 2-oxazoline or 2-methyl-2-oxazoline is subjected to cationic ring-opening living polymerization in the presence of the above-described polymerization initiating compound, and then 2-ethyl-2-oxazoline is further polymerized to the resulting living polymer.
  • a precursor polymer composed of a poly (N-formylethyleneimine) block or a poly (N-acetylethylimine) block and a poly (N-propionylethyleneimine) block is obtained.
  • the precursor polymer is dissolved in water, and water and an incompatible organic solvent that dissolves the poly (N-propionylethyleneimine) block are mixed in the aqueous solution and stirred to form an emulsion.
  • a block copolymer having a linear polyethyleneimine block and a poly (N-propio-ethyleneimine) block can be formed.
  • the valence of the polymerization initiator compound used here is 1 or 2
  • a linear block copolymer is obtained, and when the valence is higher than that, a star-shaped block copolymer is obtained.
  • the precursor polymer is a multistage block copolymer
  • the resulting polymer can also have a multistage block structure.
  • the metal ion (b) used in the present invention is a polyethyleneimine chain in the polymer (a). Coordination bond with the ethyleneimine unit in the chain due to the strong coordinating ability of the metal complex (
  • the metal complex (X) is obtained by coordination of the metal ion (b) to the ethyleneimine unit, unlike the process such as ionic bonding, the metal ion is a cation or a metal oxide Even when ON, a complex is formed by coordination of ethyleneimine units.
  • the metal species of the metal ion (b) is not limited as long as it can coordinate with the ethyleneimine unit in the polymer (a), and alkali metal, alkaline earth metal, transition metal, periodic table Group 12 metals, Group 13-16 metalloids of the periodic table, lanthanum metals, metal compounds of polyoxometalates, etc., especially alkali metals, alkali earth metals, transition metals, rare earth metals Further, metals of Group 12 of the periodic table and metalloids of Groups 13-16 of the periodic table can be preferably used.
  • alkali metal ions examples include ions of Li, Na, K, Cs, and the like.
  • Al force As a counterion of metal ions, CI, Br, I, NO, SO, PO, CIO, PF, BF,
  • alkaline earth metal ions examples include ions of Mg, Ba, Ca and the like.
  • the transition metal ion includes a transition metal cation (M n + ), or an acid radical ion (MO n_ ) in which the transition metal has a binding force with oxygen, or a halogen bond. Even a lone (ML n_ ) can be suitably used for complex formation.
  • the transition metal refers to Sc, Y in the third group of the periodic table, and transition metal elements in the fourth to sixth periods in the fourth to twelfth groups.
  • transition metal cations include the following transition metal cations ( ⁇ ⁇ + ), such as Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ru, Examples thereof include monovalent, divalent, trivalent or tetravalent cations such as Rh, Pd, Ag, Cd, W, Os, Ir, Pt, Au, and Hg.
  • transition metal cations such as Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ru
  • Examples thereof include monovalent, divalent, trivalent or tetravalent cations such as Rh, Pd, Ag, Cd, W, Os, Ir, Pt, Au, and Hg.
  • These metal cation counterions can be CI, NO, SO, or polyoxometalates.
  • any of organic acids of carboxylic acids may be used.
  • organic acids of carboxylic acids may be used.
  • polyethyleneimine chains such as Ag, Au, and Pt
  • transition metal ⁇ - The ON, the following transition metal ⁇ - one (MO n "), for example, Mn O, MoO, ReO, WO, RuO, CoO, CrO, VO, NiO, of UO etc. Anion But Can be mentioned.
  • the transition metal ion is a polyoxometalate fixed in silica via a metal cation coordinated to an ethylene imine unit in the polymer (a). It may be in the form of a kind of metal compound! / Specific examples of the polyoxometalates include molybdate, tungstate and vanadate in combination with a transition metal cation.
  • ⁇ contained metal below - one for example, AuCl, PtCl, RhCl x 4 6 4
  • Group 12 metal Zn, Cd, and Hg can be used.
  • Examples of the metalloid ions include ions of Al, Ga, In, Tl, Ge, Sn, Pb, Sb, and Bi, and among these, Al, Ga, In, Sn, Pb, and Tl are preferable. .
  • Examples of the lanthanum metal ions include trivalent catons such as La, Eu, Gd, Yb, and Eu.
  • the metal complex (X) in the present invention is one in which the metal ion (b) is coordinated to the ethylenimine unit in the polymer (a) as described above.
  • the metal complex (X) is associated with each other in the presence of water to form an aggregate, and induces an acicular surface shape.
  • the molar ratio of the ethylene imine unit to the metal ion (b) in the polymer (a) is 5/1 to: It is desirable to use LOO / 1! / Repulsive force In order to efficiently induce the acicular surface structure, the ratio is more preferably in the range of 10Zl to 30Zl.
  • one type of metal ion for forming the metal complex (X) may be used, or two or more types may be used simultaneously.
  • the medium may be water alone or an aqueous medium containing an organic solvent that dissolves in water. Good.
  • organic solvents examples include methanol, ethanol, acetone, dioxane, THF, DMF, D
  • Examples include various organic solvents such as MSO.
  • the volume ratio of water to the organic solvent is 1/1 to 3/1 because the aggregate of the metal complex (X) can be efficiently adjusted. It is preferable to be in the range.
  • silica (Y) in the acicular surface fine particles of the present invention silica obtained by a hydrolysis condensation reaction of alkoxysilanes which are silica sources can be used.
  • the acicular surface fine particles of the present invention are a composite of the above metal complex (X) and silica (Y), and have a structure in which fine acicular shapes are densely packed on the surface. is there
  • the acicular surface fine particles of the present invention have a maximum diameter of about 0.1 to about LOO / zm, preferably about 1 to 20m, and the particles have almost monodispersity.
  • the shape of the particles can be disk-shaped or spherical. Individual particles are characterized by having many fine needle-like structures on the surface, apart from their particle shape.
  • the needle-like structure has an average thickness of several nanometers to several tens of nanometers, and preferably has a basic structure having a thickness of 10 to 80 nm.
  • the shape of the acicular surface fine particles and the thickness of the acicular structure of the present invention include the geometric shape of the structure of the polymer (a), the molecular weight, the non-ethyleneimine moiety that can be introduced into the polymer (a), Furthermore, it depends on the complex structure of polymer (a) and metal ion (b), metal ion type, metal ion concentration, etc., and the molecular structure, degree of polymerization, composition, and It is particularly affected by various factors such as metal type and metal concentration in the complex of polymer and metal ion.
  • the content of silica (Y) in the acicular surface fine particles of the present invention is not particularly limited, but each structure is 30 to 90% by mass, preferably 20 to 80% by mass. It is preferable because it can be formed stably. Further, the content of the metal ion (b) can be appropriately adjusted according to various uses, but when it is 0.05 to 5% by mass, it can be efficiently produced by the production method described later.
  • the acicular surface fine particles of the present invention have the metal complex (X) inside, they also have the characteristics of the metal complex (X).
  • the metal complex (X) For example, linear polyethyleneimine chain in polymer (a) The ability of the functional substance to be concentrated or reduced by incorporating the polymer (a) cocoon functional substance may be mentioned.
  • a fluorescent substance can be incorporated into the polymer (a).
  • the residue of vorphirin can be incorporated into the acicular surface fine particles.
  • a polymer (a) obtained by reacting a small amount of pyrenes, for example, pyrene aldehyde (preferably, 10 mol% or less with respect to imine) on the side chain of the linear polyethyleneimine chain The group can be incorporated into the acicular fine particles.
  • polymer (a) and a fluorescent dye such as porphyrins, phthalocyanines, pyrenes having an acidic group such as a carboxylic acid group or a sulfonic acid group (preferably 0.1 mole relative to the number of moles of imine).
  • the fluorescent substance can be incorporated into the acicular surface fine particles obtained by mixing a small amount and mixing the metal ions (b) and using these aggregates as templates.
  • the acicular surface fine particles of the present invention have a large number of nano-dimensional acicular structures on the surface of the fine particles, and thus have a large surface area and various nanosize effects that cannot be obtained with conventional simple fine particles. It can be expected to express.
  • the needle-like surface fine particles have a polyethyleneimine chain excellent in metal ion concentration and reduction ability and have a polymer capable of various structural controls, the characteristics derived from the polyethyleneimine chain are also included. Yes.
  • a polymer metal complex of a polymer having a linear polyethyleneimine chain and a metal ion induces silica particles having an acicular structure, and the polymer is contained inside the silica force. It is formed by incorporating a metal complex. Therefore, the needle-like structure of the resulting composite material and the spatial structure of the particles can be controlled by changing the metal ion species and the metal complex support medium. Furthermore, since the linear polyethyleneimine chain force forming a metal complex can form a complex with various metal ions such as alkali metal, alkaline earth metal, and transition metal, the needle-like surface fine particles of the present invention have these metal ions. Can be contained.
  • Such acicular surface fine particles of the present invention can be expected to be applied to solid electrolytes, solid catalysts, nano-additives, and nano thin film materials. Needles containing metal complexes of these metal ions Since the metal complex can be changed to metal nanoparticles by treating the surface fine particles with a heat treatment or a reducing agent, there is also an application as a nanometal particle-containing material.
  • the method for producing the acicular surface fine particles of the present invention comprises:
  • a polymer (a) having a linear polyethyleneimine chain and a metal ion (b) are dissolved in an aqueous medium. From the polymer (a) having a linear polyethyleneimine chain and the metal ion (b) A step of obtaining an associated complex of metal complex (X),
  • the polymer (a) and the metal ion (b) are complexed with a plurality of ethyleneimine units in the polymer (a) to form a metal complex (X).
  • one metal ion (b) may be complexed with an ethyleneimine unit in a plurality of polymer molecules, or may be complexed with a plurality of ethyleneimine units in a single polymer molecule. OK.
  • This metal complex (X) aggregates in the presence of water to form an aggregate.
  • the metal complex (X) remains as it is, and the aggregation progresses and becomes an aggregate, and the type and concentration of the polymer (a) and metal ion (b). A certain morphology depending on etc. is expressed, and this acts as a template in the next step (sol-gel reaction).
  • the association of the metal complex (X) inevitably has many chains of free polyethyleneimine like a brush. These brush chains act as a scaffold for attracting the silica source and at the same time act as a catalyst for polymerizing the silica source.
  • the surface of the metal complex aggregate is coated with silica, that is, the metal complex association containing the metal complex therein. It becomes composite fine particles of the coalescence and silica.
  • the metal complex aggregate By copying this shape onto silica, a fine needle-like surface shape is induced on the surface of the composite fine particles by the metal complex aggregate. Therefore, by controlling the shape of the aggregate of the metal complex, the shape of the obtained acicular surface fine particles can be controlled, and the content of metal ions and silica in the fine particles can be easily adjusted. In addition, a uniform distribution of metal ions and silica in the fine particles can be achieved.
  • a polymer (a) having a linear polyethyleneimine chain and a metal ion (b) are dissolved in an aqueous medium, and the polymer (a) having a linear polyethyleneimine chain and a metal are dissolved.
  • An association of metal complex (X) consisting of ion (b) is formed.
  • the polymer (a) having a linear polyethyleneimine chain that can be used is the same as the polymer (a) described above.
  • the polyethyleneimine chain has ethyleneimine as a repeating unit, and like the ethylenediamine, the unit is coordinated strongly with a metal ion, and thus forms a complex with the metal ion.
  • Metal ions that can form complexes with the polyethylenimine chain extend to all metals in the periodic table. Therefore, when the polymer (a) and the metal ion (b) are mixed in an aqueous medium, the metal complex (X) can be formed.
  • the polymer (a) exhibits crystallinity in the presence of water, and tends to form crystals when the polymer (a) alone is used. If the metal ion (b) is present there, the crystal growth of the polymer is disturbed, and the metal ion (b) and the ethyleneimine unit of the polymer (a) form a complex to form a metal complex (X). In this metal complex (X), the metal ion acts as a cross-linking agent between the polymers, and as a result, it induces an association of the metal complex (X) different from the polymer single crystal, which is constant. The resulting morphology is
  • Polyethyleneimine that has been widely used heretofore is a branched polymer obtained by ring-opening polymerization of cyclic ethyleneimine, and primary amine, secondary amine, and tertiary amine are present in the structural unit. Therefore, branched polyethyleneimine is water-soluble but has no crystallinity. Therefore, when branched polyethyleneimine is used, even if a complex with a metal ion is formed, it should be expressed in a certain morphology. I can't.
  • the metal complex (X) can be prepared by stirring the polymer (a) and the metal ion (b) in water.
  • the polymer (a) is dispersed in an aqueous medium, and the dispersion is heated to obtain a transparent aqueous solution in which the polymer (a) is dissolved.
  • the metal ion (b) is added to an aqueous solution of the polymer (a) in a heated state and stirred, and then cooled to room temperature. In this process, an association of metal complex (X) is obtained at the same time.
  • the heating temperature of the polymer dispersion is preferably in the range of 60 to 95 ° C, preferably 100 ° C or less.
  • the container containing the mixed liquid may be naturally cooled in an air atmosphere or cooled with cold water or ice water.
  • a step-by-step control method is also applicable, in which the process of lowering the temperature to room temperature (25 ° C) is made constant temperature for a certain time. Through such a temperature lowering process, it is possible to change the morphology of the association of the metal complex (X).
  • the content of the polymer (a) in the polymer dispersion is not particularly limited as long as the aggregate of the metal complex (X) can be obtained, but in the range of 0.01 to 20% by mass.
  • the range of 0.1 to 10% by mass is more preferred from the viewpoint of obtaining an aggregate of stable-shaped metal complex (X) that is preferably present.
  • the polymer (a) when used, the above-mentioned aggregate can be formed even with a very small concentration of polymer.
  • the ratio of the ethyleneimine unit to the metal ion (b) in the polymer (a) is 5Z1 to 5 in terms of a molar ratio represented by the ethyleneimine unit Z metal ion.
  • its specific force is in the range of SlOZl to 50Zl.
  • One kind of metal ion may be used, or two or more kinds may be used simultaneously.
  • the aqueous medium used is water or a mixed solvent of water and an organic solvent.
  • an organic solvent compatible with water can be used, and methanol, ethanol, acetone, dioxane, and the like can be used.
  • various organic solvents such as tetrahydrofuran (THF), N, N-dimethylformamide (DMF), and dimethyl sulfoxide (DMSO).
  • THF tetrahydrofuran
  • DMF N, N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • Organic solvent When used, the volume ratio of water to organic solvent (water Z organic solvent) is preferably in the range of 1Z1 to 3Z1.
  • the sol-gel reaction is performed using alkoxysilane with the association of the metal complex (X) as a reaction field.
  • the metal complex (X) aggregates to form an aggregate in the presence of water! /.
  • alkoxysilane examples include tetraalkoxysilanes and alkyltrialkoxysilanes that are preferably tri- or higher-valent alkoxysilanes.
  • tetraalkoxysilanes examples include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane.
  • alkyltrialkoxysilanes include methyltrimethoxysilane, methyltriethoxysilane, etyltrimethoxysilane, etyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, iso —Propyltrimethoxysilane, iso-propyltriethoxysilane, 3-chloropropylpropyltrimethoxysilane, 3-chloropropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropylpilltrimethoxysilane, 3-Glycidoxypropynoletriethoxysilane, 3-Aminopropyltrimethoxysilane, 3-Aminopropyltriethoxysilane, 3-Mercaptopropyltrimethoxysilane, 3-Mercaptopropyl
  • acicular surface fine particles can be suitably formed.
  • the degree of excess is preferably in the range of 2 to 1,000 times equivalent to the ethyleneimine unit.
  • the time of the hydrolysis condensation reaction may be adjusted as appropriate from 1 minute to several days, but the reaction activity of alkoxysilane is high, and in the case of methoxysilanes, the reaction time may be from 1 minute to 24 hours. Therefore, it is more preferable to set the reaction time between 30 minutes and 5 hours. In the case of ethoxysilanes and butoxysilanes with low reaction activity, the reaction time is preferably 24 hours or more, and the time can be about one week.
  • the acicular surface fine particles of the present invention are particles of various shapes and have a fine acicular structure on the surface thereof, but the shape and structure are derived from an association of metal complex (X). It is. Therefore, before the hydrolysis condensation reaction, the shape and structure of the acicular surface fine particles can be controlled by first controlling the association state of the complex of the metal complex (X) in water or an aqueous medium. The preparation of the metal complex (X) aggregate in water or in an aqueous medium is as described above.
  • the content of silica (Y) in the acicular surface fine particles varies within a certain range depending on the reaction conditions and the like.
  • the content of silica (Y) depends on the polymer (a) used in the sol-gel reaction.
  • the amount increases with increasing concentration of the polymer (a) forming the metal complex (X). It is also possible to increase the silica content by lengthening the hydrocondensation reaction time, and by controlling these, desired fine particles can be obtained.
  • acicular surface fine particles can be rapidly obtained by an extremely easy process. Furthermore, the fine particles obtained are also excellent in monodispersibility.
  • Example [0093] Hereinafter, the present invention will be described more specifically with reference to Examples and Reference Examples, but the present invention is not limited thereto. Unless otherwise specified, “%” represents “mass%”.
  • the isolated and dried sample was placed on a glass slide and observed with a surface observation device VE-7800 manufactured by Keyence Corporation.
  • the isolated and dried sample was precisely weighed and decomposed with a microwave sample decomposition apparatus. Ultra pure water was added to the decomposition solution, and the amount of metal in the solution was measured with an Optima 3300 DV manufactured by Perkin Elmer, and the metal content was calculated.
  • Example l Cu (II) nitrate, Example 2: ⁇ ( ⁇ ) nitrate, Example 3: Al (III) nitrate, Example 4: Eu (III) hydrochloride, Example 5: Zr (IV) nitrate] was added in an amount corresponding to 1Z20 moles of L-PEI ethyleneimine units. Was allowed to stand at room temperature for 24 hours to obtain an L-PEI metal complex solution.
  • the acicular surface fine particles of the present invention can be expected to be applied to solid electrolytes, solid catalysts, nano additives, and nano thin film materials.
  • the metal complex can be converted into metal nanoparticles, so that it can be applied as a nanometal-containing material.
  • the method for producing acicular surface fine particles of the present invention comprises a step of dissolving a polymer having a linear polyethyleneimine chain and a metal ion in an aqueous medium to obtain an association of a metal complex, It is a simple method consisting of a process of performing a sol-gel reaction using an alkoxysilane in the presence of an association of the metal complex in the presence, and does not require any special equipment. It can be suitably used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

 本発明は、多数の針状構造を表面に有する金属錯体含有する金属錯含有有機無機複合体微粒子、および該粒子の簡便な製造方法を提供する。直鎖状ポリエチレンイミン骨格を有するポリマーと金属イオンとからなる金属錯体により、該金属錯体をシリカ内部に含有する微細針状表面の複合微粒子が誘導され、微粒子の表面にナノ次元の針状構造を多数有する針状表面微粒子を実現できる。得られる針状表面微粒子の針状構造および粒子の空間構造は、金属イオン種や金属錯体支持媒体を変化させることで制御できる。

Description

明 細 書
針状表面微粒子及びその製造方法
技術分野
[0001] 本発明は、直鎖状ポリエチレンイミン鎖を有するポリマーと金属イオンとからなる金 属錯体と、シリカとを含有する微粒子であって、その表面が微細な針状構造を有する 、針状表面微粒子、及び該針状表面微粒子の製造方法に関する。
背景技術
[0002] 金属錯体をシリカに固定させた複合材料は、化学反応触媒、電気化学センサー、 固体ポリマー電解質などの用途に有効に利用できる。特に、メソポーラスシリカに金 属錯体を導入した複合体は、シリカ表面の広い表面積、シリカ内部のナノ空洞での 錯体活性点の幅広い分布、基質化合物の速い拡散、触媒担持体の高耐熱性、高耐 酸性などの多くの利点が予測されることから、メソポーラスシリカを担持体とする金属 錯体固定ィ匕技術は多くの注目嫌めている (例えば、非特許文献 1〜6参照。 )0
[0003] しかし、これら従来の金属錯体とシリカとの複合材料中の金属錯体は、低分子の配 位子を有するものに限られており、複合材料中の金属やシリカの含有率を用途に応 じて所望の値に調整したり、複合材料中で金属錯体を均一に分布させたりすることが 困難である。また、その形状においては、原料として用いるシリカの形状 (粉末又は球 状)に依存し、それらが微細針状表面の微粒子形状 (モルフォロジ一)を形成すること はない。
[0004] また、製造方法においては、シリカ骨格にアミノ基、イミノ基などをィ匕学結合で導入 し、それに金属イオンを配位結合させる工程により複合体を得るなど、その工程は煩 雑であった。
[0005] 非特許文献 1 : C. T. Kresge et al.、 Nature, 1992年、 359卷、 710〜712頁 非特許文献 2 : A. Monnier et al.、 Science, 1993年、 261卷、 1299~1303 頁
非特許文献 3 : S. A. Davis et al.、 Nature, 1997年、 385卷、 420〜423頁 非特許文献 4 : T. Kang et al.、J. Mater. Chem.、 2004年、 14卷、 1043〜10 49頁
非特許文献 5 : B. Lee et al.、 Langmuir、 2003年、 19卷、 4246〜4252頁 非特許文献 6 :K. Zakir et al.、 Adv. Mater.、 2002年、 14卷、 1053〜1056 頁
発明の開示
発明が解決しょうとする課題
[0006] 本発明が解決しょうとする課題は、直鎖状ポリエチレンイミン鎖を有するポリマーの 金属錯体を含有し、表面積が大きぐ微細針状表面の微粒子形状を有する金属錯体 含有シリカ微粒子、および該微粒子の簡便な製造方法を提供することにある。
課題を解決するための手段
[0007] 本発明者らは上記課題を解決すべく鋭意検討した結果、直鎖状ポリエチレンィミン 鎖を有するポリマー (a)に金属イオン (b)を添加すると、容易に金属錯体 (X)が得ら れ、水の存在下では該金属錯体 (X)が相互に会合した会合体を形成し、該会合体 を反応場とする、アルコキシシランを用いたゾルゲル反応によって、微細な針状表面 形状を有し、且つシリカ内部に該金属錯体を有する微粒子が得られることを見出し、 本発明を完成した。
[0008] すなわち本発明は、直鎖状ポリエチレンイミン鎖を有するポリマー(a)と、前記ポリマ 一と錯体を形成できる金属イオンと、シリカ (Y)とを含有し、粒子表面形状が微細針 状である粒子形状を有する針状表面微粒子を提供するものである。
さらに本発明は、直鎖状ポリエチレンイミン鎖を有するポリマー(a)と金属イオン (b) とからなる金属錯体 (X)と、シリカ (Y)とを含有し、且つ、微細針状表面の粒子形状を 有する針状表面微粒子を提供するものである。
[0009] さらに本発明は、(1)直鎖状ポリエチレンイミン鎖を有するポリマー(a)と、金属ィォ ン (b)とを水性媒体に溶解し、直鎖状ポリエチレンイミン鎖を有するポリマー (a)と金 属イオン (b)とからなる金属錯体 (X)の会合体を得る工程と、
(2)水の存在下で、前記金属錯体 (X)の会合体を反応場とし、アルコキシシランを用 V、てゾルゲル反応を行う工程、
を有する針状表面微粒子の製造方法をも提供するものである。 発明の効果
[0010] 本発明の針状表面微粒子は、微粒子の表面にナノ次元の針状構造を多数有する ことから、従来の単なる微粒子と比較し、格段にその表面積が拡大している。また、針 状表面微粒子内部には、金属イオンの濃縮や還元能力に優れるポリエチレンィミン 鎖を含有することから当該ポリエチレンィミン鎖に由来する特性も有する。
[0011] また、本発明の針状表面微粒子は、直鎖状ポリエチレンイミン鎖を有するポリマーと 金属イオンとのポリマー金属錯体が会合体となり、該会合体を足場とするゾルゲル反 応で針状構造を有するシリカ粒子を誘導し、該シリカ内部に前記ポリマー金属錯体 が取り込まれることで形成されるため、メソポーラスシリカに金属錯体を担持させる方 法とは異なり、該金属錯体が均一に分布した微粒子とすることが出来る。得られる針 状表面微粒子の針状構造および微粒子の空間構造は、金属イオン種や直鎖状ポリ エチレンイミン鎖を有するポリマーの構成や形状等を変化させることで容易に制御す ることができ、そのモルフォロジ一は多様にわたるものであり、用途に応じた設計をす ることがでさる。
[0012] さらに、直鎖状ポリエチレンイミン鎖中のエチレンイミン単位は、アルカリ金属、アル カリ土類金属、遷移金属などの各種金属イオンと錯体形成可能である基であることか ら、本発明の針状表面微粒子はこれらの多種多様な金属イオンを含有することがで きる。即ち金属イオン種によらず、単一な方法で、ポリマー金属錯体を取り込んだシリ 力微粒子を得ることができ、複数の金属種を有する微粒子も同様に容易に調整でき る。
[0013] このような、本発明の針状表面微粒子は、固体電解質、固体触媒、ナノ添加剤、ナ ノ薄膜材料への応用が期待できる。またこれら金属イオンの金属錯体を含有する針 状表面微粒子を、熱処理または還元剤で処理することで、金属錯体を金属ナノ粒子 に変えることができることから、ナノ金属粒子含有材料としての応用もある。
[0014] 又、本発明の針状表面微粒子の製造方法は、直鎖状ポリエチレンイミン鎖を有する ポリマーと、金属イオンとを水性媒体に溶解し、金属錯体の会合体を得る工程と、水 の存在下で、前記金属錯体の会合体を反応場とし、アルコキシシランを用いてゾルゲ ル反応を行う工程からなる、簡便な方法であり、特段の装置を必要としないため、ェ 業的生産にも好適に用いる事ができる。
図面の簡単な説明
[0015] [図 1]実施例 1で得られた針状表面微粒子の走査型電子顕微鏡写真である。
[図 2]実施例 1で得られた針状表面微粒子の表面の走査型電子顕微鏡写真である。
[図 3]実施例 2で得られた針状表面微粒子の走査型電子顕微鏡写真である。
[図 4]実施例 2で得られた針状表面微粒子の表面の走査型電子顕微鏡写真である。
[図 5]実施例 3で得られた針状表面微粒子の走査型電子顕微鏡写真である。
[図 6]実施例 3で得られた針状表面微粒子の表面の走査型電子顕微鏡写真である。
[図 7]実施例 4で得られた針状表面微粒子の走査型電子顕微鏡写真である。
[図 8]実施例 4で得られた針状表面微粒子の表面の走査型電子顕微鏡写真である。
[図 9]実施例 5で得られた針状表面微粒子の走査型電子顕微鏡写真である。
[図 10]実施例 5で得られた針状表面微粒子の表面の走査型電子顕微鏡写真である
[図 11]比較例で得られた複合体の走査型電子顕微鏡写真である。
発明を実施するための最良の形態
[0016] 本発明の針状表面微粒子は、直鎖状ポリエチレンイミン鎖を有するポリマー (a)と 少なくとも一種の金属イオン (b)とからなる金属錯体 (X)と、シリカ (Y)とを含有し、且 つ、微細針状表面の粒子形状を有するものである。
[0017] [直鎖状ポリエチレンイミン鎖を有するポリマー(a) ]
本発明でいう直鎖状ポリエチレンィミン鎖とは、二級ァミンのエチレンィミン単位を主 たる構造単位とするポリマー鎖をいう。該鎖中においては、エチレンィミン単位以外 の構造単位が存在して 、てもよ 、が、ポリマー鎖の一定鎖長が連続的なエチレンイミ ン単位であることが好ましい。該直鎖状ポリエチレンィミン鎖の長さは、該鎖を有する ポリマーが金属イオン (b)と錯化して金属錯体 (X)を形成した際に、ポリマー (a)と金 属イオン (b)とからなる金属錯体 (X)の会合体を形成できる範囲であればよぐ好適 に金属錯体 (X)の会合体を形成するためには、該鎖部分のエチレンィミン単位の繰 り返し単位数が 10以上であることが好ましぐ 20〜: LOOOOの範囲であることが特に好 ましい。線状ポリエチレンイミンは熱水中では可溶である力 室温では結晶化して結 晶性会合体として存在する。また、これらの結晶は限られた有機溶媒中にしか溶解し ない。この性質は 1級、 2級、 3級アミンカも構成される多分岐状ポリエチレンィミンに おける結晶性を持たない性質や水と通常の有機溶媒に完全に溶解する性質とは全 く異なる。線状のポリエチレンィミンの場合、分子鎖中の繰り返し単位—CH -CH
2 2
—NH—間に強い水素結合が生じ、二重らせん、又は、オールトランスジグザグ(aU-t rans zigzag)のコンホメーシヨンを形成することで結晶化する性質を有する力 多分岐 状ポリエチレンィミンの場合、水素結合由来の空間構造を形成しないため、結晶化も しない。本発明で用いる直鎖状ポリエチレンイミン鎖を有するポリマー(a)も上記直鎖 状ポリエチレンィミン鎖の特殊な性質を有するものであり、この性質を利用して得られ たものが、本発明の微粒子である。
[0018] 本発明において使用する直鎖状ポリエチレンイミン鎖を有するポリマー (a)〔以下、 該ポリマーを単にポリマー(a)と略記する。〕は、その構造中に上記直鎖状ポリェチレ ンィミン鎖を有するものであればよぐポリマー(a)の構造が線状、星状または櫛状で あってもよい。ポリマー(a)は、直鎖状ポリエチレンイミン鎖を有することから、水性媒 体 (ここで、水性媒体とは水または水と水溶性有機溶媒との混合溶媒をいう。 )中で、 エチレンィミン単位部分が金属イオン (b)と錯化し、金属錯体 (X)を与えることができ る。
[0019] また、ポリマー(a)は、直鎖状ポリエチレンイミン鎖のみ力 なるものであっても、直 鎖状ポリエチレンイミン鎖力 なるブロック(以下、ポリエチレンイミンブロックと略記す る。)と他のポリマーブロックとのブロックコポリマーからなるものであってもよい。他の ポリマーブロックとしては、例えば、ポリエチレングリコール、ポリプロピオ-ルエチレン ィミン、ポリアクリルアミドなどの水溶性のポリマーブロック、あるいは、ポリスチレン、ポ リオキサゾリン類のポリフ ニルォキサゾリン、ポリオクチルォキサゾリン、ポリドデシル ォキサゾリン、ポリアタリレート類のポリメチルメタタリレート、ポリブチルメタタリレートな どの疎水性のポリマーブロックを挙げることができる。これらのその他のポリマーブロッ クとのブロックコポリマーとすることで、金属錯体 (X)の会合体の形状を調整すること ができ、その結果、得られる針状表面微粒子の形状や特性の調整が可能となる。
[0020] ポリマー(a)がブロックコポリマーである場合の該ポリマー(a)中における直鎖状ポリ エチレンィミン鎖の割合は、金属錯体 (X)の会合体を形成できる範囲であれば良ぐ より安定な会合体が得られる点から、ポリマー (a)中の直鎖状ポリエチレンィミン鎖の 割合力 0モル%以上であることが好ましぐ 50モル%以上であることがさらに好まし い。
[0021] ポリマー(a)の製造方法としては、特に限定されるものではないが、製造方法が容 易である点から、その前駆体となるポリオキサゾリン類力 なる直鎖状の骨格を有する ポリマー(以下、前駆体ポリマーと略記する。)を、酸性条件下またはアルカリ条件下 で加水分解する方法が好ましい。従って、ポリマー(a)の線状、星状、または櫛状な どの形状は、この前駆体ポリマーの形状を制御することで容易に設計することができ る。また、重合度や末端構造も、前駆体ポリマーの重合度や末端機能団を制御する ことで容易に調整できる。さらに、ポリマー(a)が前述のブロックコポリマーである場合 には、前駆体ポリマーを直鎖状のポリオキサゾリン骨格と、その他のポリマーブロック とからなるブロックコポリマーとし、該前駆体ポリマー中の直鎖状ポリオキサゾリン骨格 を選択的に加水分解し、直鎖状ポリエチレンイミン鎖とすることで得ることができる。
[0022] 前駆体ポリマーは、ォキサゾリン類のモノマーを使用して、カチオン型の重合法、あ るいは、マクロモノマー法などの合成方法により合成することができ、合成方法や開 始剤を適宜選択することにより、線状、星状、あるいは櫛状などの各種形状の前駆体 ポリマーを得ることが出来る。
[0023] ポリオキサゾリン類力もなる直鎖状の骨格を形成するモノマーとしては、例えば、メ チルォキサゾリン、ェチルォキサゾリン、メチルビニルォキサゾリン、フエニルォキサゾ リンなどのォキサゾリンモノマー等が挙げられる。
[0024] 重合開始剤としては、分子中に塩ィ匕アルキル基、臭化アルキル基、ヨウ化アルキル 基、トルエンスルホ-ルォキシ基、あるいはトリフルォロメチルスルホ-ルォキシ基な どの官能基を有する化合物を使用できる。これら重合開始剤は、多くのアルコール類 化合物の水酸基を他の官能基に変換させることで得られる。なかでも、官能基変換と して、臭素化、ヨウ素化、トルエンスルホン酸化、およびトリフルォロメチルスルホン酸 化されたものは重合開始効率が高いため好ましぐ特に臭化アルキル基、トルエンス ルホン酸アルキル基としたものが好まし!/、。 [0025] また、ポリ(エチレングリコール)の末端ヒドロキシル基を臭素あるいはヨウ素に変換 したもの、またはトルエンスルホ-ル基に変換したものを重合開始剤として使用するこ ともできる。その場合、ポリ(エチレングリコール)の重合度は 5〜: LOOの範囲であるこ と力 S好ましく、 10〜50の範囲であれば特に好ましい。
[0026] また、カチオン開環リビング重合開始能を有する官能基を有し、かつ光による発光 機能、エネルギー移動機能、電子移動機能を有するポルフィリン骨格、フタロシア二 ン骨格、またはピレン骨格のいずれかの骨格を有する色素類は、得られるポリマーに 特殊な機能を付与することができ、ひいては、得られる針状表面微粒子にもそれらの 特殊な機能を付与することも可能である。
[0027] 線状の前駆体ポリマーは、上記ォキサゾリンモノマーを 1価または 2価の官能基を 有する重合開始剤により重合することで得られる。このような重合開始剤としては、例 えば、塩化メチルベンゼン、臭化メチルベンゼン、ヨウ化メチルベンゼン、トルエンス ルホン酸メチルベンゼン、トリフルォロメチルスルホン酸メチルベンゼン、臭化メタン、 ヨウ化メタン、トルエンスルホン酸メタンまたはトルエンスルホン酸無水物、トリフルォロ メチルスルホン酸無水物、 5—(4 ブロモメチルフエ-ル)ー 10, 15, 20 トリ(フエ -ル)ポルフィリン、またはブロモメチルピレンなどの 1価のもの、ジブロモメチルベン ゼン、ジヨウ化メチルベンゼン、ジブ口モメチルビフエ-レン、またはジブロモメチルァ ゾベンゼンなどの 2価のものが挙げられる。また、ポリ(メチルォキサゾリン)、ポリ(ェチ ルォキサゾリン)、または、ポリ(メチルビ-ルォキサゾリン)などの工業的に使用されて いる線状のポリオキサゾリンを、そのまま前駆体ポリマーとして使用することもできる。
[0028] 星状の前駆体ポリマーは、上記したようなォキサゾリンモノマーを 3価以上の官能基 を有する重合開始剤により重合することで得られる。 3価以上の重合開始剤としては 、例えば、トリブロモメチルベンゼン、などの 3価のもの、テトラブロモメチルベンゼン、 テトラ(4—クロロメチルフエ-ル)ポルフィリン、テトラブロモエトキシフタロシア-ンなど の 4価のもの、へキサブロモメチルベンゼン、テトラ(3, 5—ジトシリルェチルォキシフ ェ -ル)ポルフィリンなどの 5価以上のものが挙げられる。
[0029] 櫛状の前駆体ポリマーを得るためには、多価の重合開始基を有する線状のポリマ 一を用いて、該重合開始基カもォキサゾリンモノマーを重合させることで合成すること が出来る。例えば、通常のエポキシ榭脂ゃポリビュルアルコールなどの側鎖にヒドロ キシル基を有するポリマーの該ヒドロキシル基を、臭素やヨウ素等でハロゲン化する 力 あるいはトルエンスルホニル基に変換させた後、該変換部分を重合開始基として 用!/、ることでち得ることができる。
[0030] また、櫛状の前駆体ポリマーを得る方法として、ポリアミン型重合停止剤を用いるこ ともできる。例えば、一価の重合開始剤を用い、ォキサゾリンを重合させ、そのポリオ キサゾリンの末端をポリエチレンィミン、ポリビュルァミン、ポリプロピルァミンなどのポ リアミンのァミノ基に結合させることで、櫛状のポリオキサゾリンを得ることができる。
[0031] 上記により得られる前駆体ポリマーのポリオキサゾリン類力 なる直鎖状の骨格部 分の加水分解は、酸性条件下またはアルカリ条件下の 、ずれの条件下でもよ 、。
[0032] 酸性条件下での加水分解は、例えば、塩酸水溶液中で前駆体ポリマーを加熱下で 攪拌する方法が挙げられ、ポリエチレンィミンユニットが塩酸塩となったポリマーを得 ることができる。得られた塩酸塩を過剰のアンモニア水で処理することで、塩基性の ポリエチレンィミンユニットを有するポリマーの粉末を得ることができる。用いる塩酸水 溶液は、濃塩酸でも、 ImolZL程度の水溶液でもよいが、加水分解を効率的に行う には、 5molZLの塩酸水溶液を用いることが望ましい。また、反応温度は 70〜90°C であることが好ましい。
[0033] アルカリ条件下での加水分解は、例えば、水酸ィ匕ナトリウム水溶液を用い、ポリオキ サゾリンユニットをポリエチレンィミンユニットに変換させる方法が挙げられる。アルカリ 条件下で反応させた後、反応液を透析膜にて洗浄することで、過剰な水酸化ナトリウ ムを除去し、ポリエチレンィミンユニットを有するポリマーの粉末を得ることができる。 用いる水酸ィ匕ナトリウムの濃度は 1〜: LOmolZLの範囲であればよぐより効率的な反 応を行うには 3〜5molZLの範囲であることが好ましい。また、反応温度は 70〜90 °Cであることが好ましい。
[0034] 酸性条件下またはアルカリ条件下での加水分解における、酸またはアルカリの使用 量としては、ポリマー(a)中のォキサゾリン単位に対し、 1〜: LO当量でよぐ反応効率 の向上と後処理の簡便化のためには、 2〜4当量とすることが好ましい。
[0035] 上記加水分解により、前駆体ポリマー中のポリオキサゾリン類力 なる直鎖状の骨 格力 直鎖状ポリエチレンイミン鎖となり、該ポリエチレンイミン鎖を有するポリマーが 得られる。
[0036] また、直鎖状ポリエチレンィミンブロックと他のポリマーブロックとのブロックコポリマ 一を形成する場合には、前駆体ポリマーをポリオキサゾリン類力もなる直鎖状のポリ マーブロックと、他のポリマーブロックとからなるブロックコポリマーとし、該前駆体ポリ マー中のポリオキサゾリン類力もなる直鎖状のブロックを選択的に加水分解すること で得ることができる。
[0037] 他のポリマーブロックが、ポリ(N—プロピオ-ルエチレンィミン)などの水溶性ポリマ 一ブロックである場合には、ポリ(N—プロピオ-ルェチレンィミン)力 ポリ(N—ホル ミルエチレンィミン)やポリ(N—ァセチルエチレンィミン)に比べて、有機溶媒への溶 解性が高いことを利用してブロックコポリマーを形成することができる。即ち、 2—ォキ サゾリンまたは 2—メチルー 2—ォキサゾリンを、前記した重合開始化合物の存在下 でカチオン開環リビング重合した後、得られたリビングポリマーに、さらに 2—ェチル —2—ォキサゾリンを重合させることによって、ポリ(N—ホルミルエチレンィミン)ブロッ クまたはポリ(N—ァセチルエチレンィミン)ブロックと、ポリ(N—プロピオニルエチレン ィミン)ブロックとからなる前駆体ポリマーを得る。該前駆体ポリマーを水に溶解させ、 該水溶液にポリ(N—プロピオニルエチレンィミン)ブロックを溶解する水と非相溶の 有機溶媒を混合して攪拌することによりェマルジヨンを形成する。該ェマルジヨンの水 相に、酸またはアルカリを添加することによりポリ(N—ホルミルエチレンィミン)ブロッ クまたはポリ(N—ァセチルエチレンィミン)ブロックを優先的に加水分解することによ り、直鎖状ポリエチレンィミンブロックと、ポリ(N—プロピオ-ルエチレンィミン)ブロッ クとを有するブロックコポリマーを形成できる。
[0038] ここで使用する重合開始ィ匕合物の価数が 1および 2の場合には、直鎖状のブロック コポリマーとなり、それ以上の価数であれば星型のブロックコポリマーが得られる。ま た、前駆体ポリマーを多段のブロックコポリマーとすることで、得られるポリマーも多段 のブロック構造とすることも可能である。
[0039] [金属イオン (b) ]
本発明で用いる金属イオン (b)は、上記したポリマー(a)中のポリエチレンイミン鎖 の有する強 ヽ配位能力により該鎖中のエチレンィミン単位と配位結合して金属錯体 (
X)を形成するものである。該金属錯体 (X)は金属イオン (b)がエチレンィミン単位に 配位されることにより得られるものであるため、イオン結合等の過程と異なり、金属ィォ ンがカチオンでも、または酸化金属ァ-オンでも、エチレンイミン単位の配位により錯 体を形成する。従って、金属イオン (b)の金属種としては、ポリマー(a)中のエチレン ィミン単位と配位結合できるものであれば制限されず、アルカリ金属、アルカリ土類金 属、遷移金属、周期表の第 12族の金属、周期表第 13— 16族の半金属、ランタン系 金属、ポリオキソメタレート類の金属化合物等が挙げられ、特に、アルカリ金属、アル カリ土類金属、遷移金属、希土類金属、周期表第 12族の金属、周期表第 13— 16族 の半金属を好ましく使用できる。
[0040] 上記アルカリ金属イオンとしては、 Li, Na, K, Cs等のイオンが挙げられる。アル力 リ金属イオンの対ァ-オンとしては、 CI, Br, I, NO , SO , PO , CIO , PF , BF ,
3 4 4 4 6 4
F CSOなどを好適に用いることができる。
3 3
[0041] アルカリ土類金属イオンとしては、 Mg, Ba, Ca等のイオンが挙げられる。
[0042] 遷移金属系イオンとしては、それが遷移金属カチオン (Mn+)であっても、または遷 移金属が酸素との結合力 なる酸根ァ-オン (MO n_)、またはハロゲン類結合から なるァ-オン (ML n_)であっても、錯体形成に好適に用いることができる。なお、本 明細書において遷移金属とは、周期表第 3族の Sc, Y、及び、第 4〜12族で第 4〜6 周期にある遷移金属元素を指す。
[0043] 遷移金属カチオンとしては、下記の遷移金属のカチオン (Μη+)、例えば、 Ti, V, C r, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ru, Rh, Pd, Ag, Cd, W, Os, Ir, Pt , Au, Hgの一価、二価、三価または四価のカチオンなどが挙げられる。これら金属 カチオンの対ァ-オンは、 CI, NO , SO、またはポリオキソメタレート類ァ-オン、あ
3 4
るいはカルボン酸類の有機ァ-オンのいずれであってもよい。ただし、 Ag, Au, Ptな ど、ポリエチレンイミン鎖により還元されやすいものは、 pHを酸性条件にする等、還 元反応を抑制することで、錯体を調製することが好まし ヽ。
[0044] また遷移金属ァ-オンとしては、下記の遷移金属ァ-オン (MO n")、例えば、 Mn O , MoO , ReO , WO , RuO , CoO , CrO , VO , NiO , UO等のァニオンが 挙げられる。
[0045] 本発明の金属イオン (b)としては、上記遷移金属ァ-オンが、ポリマー(a)中のェチ レンイミン単位に配位した金属カチオンを介してシリカ中に固定された、ポリオキソメ タレート類の金属化合物の形態であってもよ!/、。該ポリオキソメタレート類の具体例と しては、遷移金属カチオンと組み合わせられたモリブデン酸塩、タングステン酸塩、 バナジン酸塩類をあげることができる。
[0046] さらに、下記の金属が含まれたァ-オン(ML n")、例えば、 AuCl , PtCl , RhCl x 4 6 4
, ReF , NiF , CuF , RuCl , In CI等の、金属がハロゲンに配位されたァ-オンも
6 6 6 6 2 6
錯体形成に好適に用いることができる。
[0047] また、第 12族金属としては、 Zn, Cd, Hgを使用できる。
[0048] また、半金属系イオンとしては、 Al, Ga, In, Tl, Ge, Sn, Pb, Sb, Biのイオンが 挙げられ、なかでも Al, Ga, In, Sn, Pb, Tlが好ましい。
[0049] ランタン系金属イオンとしては、例えば、 La, Eu, Gd, Yb, Euなどの 3価のカチォ ンが挙げられる。
[0050] [金属錯体 (X) ]
本発明における金属錯体 (X)は、上記のとおり金属イオン (b)がポリマー(a)中のェ チレンィミン単位に配位したものである。該金属錯体 (X)は、水の存在下で相互に会 合して会合体を形成し、針状表面形状を誘導する。
[0051] ポリマー(a)と金属イオン (b)とからなる金属錯体 (X)形成の際、ポリマー(a)中のェ チレンイミン単位と金属イオン (b)とのモル比を 5/1〜: LOO/1にすることが望まし!/ヽ 力 針状表面構造を効率的に誘導するには、その比が 10Zl〜30Zlの範囲である ことが更に望ましい。
[0052] また、金属錯体 (X)を形成するための金属イオンが一種類であっても、二種類以上 を同時に用いても良い。
[0053] ポリマー(a)と金属イオン (b)とを錯ィ匕させる際、その媒体は水だけであっても、また は水と溶解しあう有機溶剤が含まれた水性媒体であってもよい。
[0054] 有機溶剤としては、メタノール、エタノール、アセトン、ジォキサン、 THF、 DMF、 D
MSOなど種々の有機溶剤類を挙げることが出来る。 [0055] 上記有機溶剤を用いる場合には、金属錯体 (X)の会合体を効率的に調整すること が可能である点から、水と有機溶剤との体積比が 1/1〜3/1の範囲であることが好 ましい。
[0056] [シリカ (Y) ]
本発明の針状表面微粒子中のシリカ (Y)としては、シリカソースであるアルコキシシ ラン類の加水縮合反応により得られるシリカを使用できる。
[0057] [針状表面微粒子]
本発明の針状表面微粒子は、上記金属錯体 (X)とシリカ (Y)とが複合化されてなる ものであり、また、その表面には微細な針状形状が密集した構造を有するものである
[0058] 本発明の針状表面微粒子は、最大径が 0. 1〜: LOO /z m程度、好ましくは 1〜20 mの大きさを有するものであり、その粒子はほぼ単分散性を有する。粒子の形状は円 盤状や球状の形状を取ることができる。個々の粒子は、その粒子形状とは別に、表面 に微細な針状構造を多数有することを特徴とする。針状構造は、平均太さが数ナノ 〜数十ナノ程度の太さであり、好ましくは 10〜80nmの太さを基本構造とする。
[0059] 本発明の針状表面微粒子の形状や針状構造の太さなどは、ポリマー (a)の構造の 幾何学的な形状や、分子量、ポリマー (a)中に導入できる非エチレンィミン部分、さら にはポリマー (a)と金属イオン (b)との錯体構造、金属イオン種類、金属イオン濃度の 等に依存するものであり、使用するポリマー(a)の分子構造、重合度、組成、及びポリ マーと金属イオンの錯ィヒにおける金属種類、金属濃度など各種要素に特に影響され る。
[0060] 本発明の針状表面微粒子中におけるシリカ (Y)の含有量としては、特に制限され ないが、 30〜90質量%、好ましくは 20〜80質量%の範囲であると上記各構造を安 定して形成できるため好ましい。また、金属イオン (b)の含有量は、各種用途に応じ て適宜調整することができるが、 0. 05〜5質量%である場合には、後述の製造方法 によって、効率よく製造できる。
[0061] 本発明の針状表面微粒子は、内部に金属錯体 (X)を有することから、この金属錯 体 (X)の有する特性も有する。例えば、ポリマー(a)中の直鎖状ポリエチレンイミン鎖 に由来した金属イオンの濃縮や還元能力、あるいは、ポリマー(a)〖こ機能性物質を組 み込むことにより、当該機能性物質の有する機能などが挙げられる。
[0062] 具体的には、このポリマー(a)に蛍光性物質を組み込むことができる。この場合には 、例えば、ポルフィリンを中心にした星状ポリエチレンイミンを用いることで、ボルフイリ ンの残基を針状表面微粒子中に取り込むことが出来る。また、例えば、直鎖状ポリェ チレンィミン鎖の側鎖に少量のピレン類、例えば、ピレンアルデヒド (好ましくは、ィミン に対し 10モル%以下)を反応させたポリマー(a)を用いることで、ピレン残基を針状表 面微粒子に取り込むことができる。さらに、ポリマー(a)と、酸性基、例えば、カルボン 酸基、スルホン酸基を有するポルフィリン類、フタロシアニン類、ピレン類など蛍光性 染料とを (好ましくは、ィミンのモル数に対し 0. 1モル%以下)少量混合し、ここに金 属イオン (b)を混合して、それらの会合体をテンプレートとして得た針状表面微粒子 中には、前記蛍光性物質を取り込むことができる。
[0063] 上記のとおり本発明の針状表面微粒子は、微粒子の表面にナノ次元の針状構造を 多数有することから、表面積が大きぐ又従来の単なる微粒子では得られない各種の ナノサイズ効果を発現することが期待できる。また、針状表面微粒子内部には、金属 イオンの濃縮や還元能力に優れるポリエチレンイミン鎖を有し、且つ、各種構造制御 が可能なポリマーを有することから、当該ポリエチレンィミン鎖に由来する特性も有す る。
[0064] また、本発明の針状表面微粒子は、直鎖状ポリエチレンイミン鎖を有するポリマーと 金属イオンとのポリマー金属錯体が、針状構造を有するシリカ粒子を誘導し、該シリ 力内部にポリマー金属錯体が取り込まれることで形成される。従って、得られる複合 材料の針状構造および粒子の空間構造を、金属イオン種や金属錯体支持媒体を変 ィ匕させることで制御できる。さらに、金属錯体を形成する直鎖状ポリエチレンイミン鎖 力 アルカリ金属、アルカリ土類金属、遷移金属などの各種金属イオンと錯体形成可 能であることから、本発明の針状表面微粒子はこれら金属イオンを含有することがで きる。
[0065] このような、本発明の針状表面微粒子は、固体電解質、固体触媒、ナノ添加剤、ナ ノ薄膜材料への応用が期待できる。またこれら金属イオンの金属錯体を含有する針 状表面微粒子を、熱処理または還元剤で処理することで、金属錯体を金属ナノ粒子 に変えることができることから、ナノ金属粒子含有材料としての応用もある。
[0066] [針状表面微粒子の製造方法]
本発明の針状表面微粒子の製造方法は、
(1)直鎖状ポリエチレンイミン鎖を有するポリマー (a)と、金属イオン (b)とを水性媒体 に溶解し、直鎖状ポリエチレンイミン鎖を有するポリマー(a)と金属イオン (b)とからな る金属錯体 (X)の会合体を得る工程と、
(2)水の存在下で、前記金属錯体 (X)の会合体を反応場とし、アルコキシシランを用 V、てゾルゲル反応を行う工程、
を有するものである。
[0067] 前記したポリマー(a)と金属イオン (b)は、ポリマー(a)中の複数のエチレンイミン単 位と錯化し、金属錯体 (X)を形成する。このとき、 1つの金属イオン (b)に対して複数 のポリマー分子中のエチレンイミン単位と錯ィ匕しても良ぐまた、単一のポリマー分子 内にある複数のエチレンィミン単位と錯ィ匕しても良 、。
[0068] この金属錯体 (X)は水の存在下で集合化し会合体を形成する。これは、線状ポリエ チレンィミンが、熱水中では溶解し均一溶液になるものの、室温近傍では結晶化する 性質を利用したものである。即ち、直鎖状ポリエチレンイミン鎖を有するポリマー (a) は、水の存在下では、室温近傍で分子間力による集合体を形成する傾向を有するこ とから、該ポリマー(a)と金属イオン (b)を均一に溶解した熱水を冷却すると、金属錯 体 (X)となったまま、集合ィ匕が進み、会合体となって、ポリマー(a)、金属イオン (b)の 種類や濃度等に依存する一定のモルフォロジ一を発現することになり、これが次工程 (ゾルゲル反応)でのテンプレートの働きをする。
[0069] また、金属錯体 (X)の会合体には不可避的にブラシのようにフリーなポリエチレンィ ミンの鎖が多数存在する。これらのブラシの鎖はシリカソースを引き寄せる足場であり 、同時にシリカソースを重合させる触媒の働きをする。
[0070] ここで、この金属錯体会合体表面でアルコキシシランの加水縮合反応を進行させる ことにより、該金属錯体会合体表面がシリカで被覆され、即ち、金属錯体を内部に含 有する、金属錯体会合体とシリカとの複合体微粒子となる。この際に金属錯体会合体 の形状がシリカに複写されることにより、該金属錯体会合体により複合体微粒子表面 に、微細な針状表面形状が誘導されることになる。従って、金属錯体の会合体の形 状を制御することによって、得られる針状表面微粒子の形状を制御することが出来、 また、該微粒子中の金属イオンやシリカの含有量を容易に調整可能で、且つ、該微 粒子中の金属イオンやシリカの均一な分布を達成することが出来る。
[0071] 以下、本発明の製造方法を詳述する。
まず、 1番目の工程として、直鎖状ポリエチレンイミン鎖を有するポリマー(a)と、金 属イオン (b)とを水性媒体に溶解し、直鎖状ポリエチレンイミン鎖を有するポリマー (a )と金属イオン (b)とからなる金属錯体 (X)の会合体を形成させる。ここで、使用できる 直鎖状ポリエチレンイミン鎖を有するポリマー(a)は、前述のポリマー(a)と同様である
[0072] ポリエチレンイミン鎖はエチレンイミンを繰り返し単位として持ち、その単位はェチレ ンジァミンと同様、金属イオンと強く配位するため、金属イオンと錯体を形成する。ポリ エチレンィミン鎖と錯体を形成できる金属イオンは、元素周期表の全金属に広がる。 従って、ポリマー (a)と金属イオン (b)を水性媒体中で混合すると、金属錯体 (X)を形 成できる。
[0073] 上記ポリマー(a)は、水の存在下で結晶性を発現しやすぐポリマー(a)だけの場合 は結晶を形成する傾向がある。そこに、金属イオン (b)が存在すると、ポリマーの結晶 成長が乱れ、金属イオン (b)とポリマー(a)のエチレンィミン単位とが錯体を形成して 金属錯体 (X)となる。この金属錯体 (X)において、金属イオンはポリマー相互間の架 橋剤としての働きをし、結果的には、ポリマーの単独結晶とは異なる金属錯体 (X)の 会合体を誘発し、それに一定のモルフォロジ一が生じる。
[0074] 従来広く使用されてきたポリエチレンイミンは、環状エチレンィミンの開環重合により 得られる分岐状ポリマーであり、その構造単位中には一級ァミン、二級ァミン、三級ァ ミンが存在する。従って、分岐状ポリエチレンイミンは水溶性であるが、結晶性は持た ないため、分岐状ポリエチレンイミンを用いた場合は、金属イオンとの錯体が形成し ても、それがあるモルフォロジ一に発現することができない。
[0075] これに対し、本発明にお 、ては、直鎖状のポリエチレンイミン鎖を有することから、 上記のとおり金属錯体 (X)の会合体を形成する。ポリマー構造が線状、星状、または 櫛状などの構造であっても、直鎖状ポリエチレンイミン鎖を有するポリマーであれば、 金属錯体 (X)の会合体が得られる。
[0076] また、金属錯体 (X)は、ポリマー (a)と金属イオン (b)とを水中にて撹拌することで調 製できる。好ましくは、まずポリマー (a)を水性媒体中に分散させ、該分散液を加熱す ることにより、ポリマー(a)が溶解した透明な水溶液を得る。次いで、加熱状態のポリ マー(a)の水溶液に金属イオン (b)をカ卩えて攪拌し、それを室温まで冷却する。この 過程にお!、て金属錯体 (X)の会合体も同時に得られる。
[0077] 上記ポリマー分散液の加熱温度は 100°C以下が好ましぐ 60〜95°Cの範囲である ことがより好ましい。加熱状態の混合液を室温に冷やすには、混合液が入った容器を 空気雰囲気での自然冷却でもよぐそれを冷水や氷水にて冷却させてもよい。室温( 25°C)まで温度を低下させる過程を一定時間に一定温度までのような段階的な制御 法も適用できる。このような温度低下過程により、金属錯体 (X)の会合体のモルフォ 口ジーを変化させることが可能である。
[0078] また、ポリマー分散液中のポリマー(a)の含有量は、上記金属錯体 (X)の会合体が 得られる範囲であれば特に限定されないが、 0. 01〜20質量%の範囲であることが 好ましぐ安定形状の金属錯体 (X)の会合体が得られる点から 0. 1〜10質量%の範 囲がさらに好ましい。このように、本発明においては、ポリマー(a)を使用すると、ごく 少量のポリマー濃度でも上記の会合体を形成することができる。
[0079] 金属錯体 (X)の会合体を形成する際、ポリマー (a)中のエチレンィミン単位と金属ィ オン (b)との比を、エチレンィミン単位 Z金属イオンで表されるモル比で 5Z1〜: LOO Z1の範囲にすることが好ましぐ針状の表面構造を効率的に誘導するには、その比 力 SlOZl〜50Zlの範囲であることがより好ましい。使用する金属イオンは一種類で あっても、二種類以上を同時に用いてもよい。
[0080] また、使用する水性媒体は、水又は水と有機溶媒との混合溶媒であるが、有機溶 剤としては、水と相溶する有機溶剤を使用でき、メタノール、エタノール、アセトン、ジ ォキサン、テトラヒドロフラン(THF)、 N, N—ジメチルホルムアミド(DMF)、ジメチル スルホキシド (DMSO)などの種々の有機溶剤類を挙げることができる。有機溶剤を 用いる場合、水と有機溶剤との体積比 (水 Z有機溶剤)は 1Z1〜3Z1の範囲である ことが好ましい。
[0081] 本発明の製造方法では、上述の工程に引き続き、(2)水の存在下で、前記金属錯 体 (X)の会合体を反応場とし、アルコキシシランを用いてゾルゲル反応を行う。
[0082] 上記したように金属錯体 (X)は、水の存在下では集合して会合体を形成して!/、る。
ここに、通常のゾルゲル反応にぉ 、て使用できる溶媒にシリカソース(アルコキシシラ ン)を溶解した溶液を加えると、室温下で該アルコキシシランの加水縮合が進行する
[0083] 用いる事ができるアルコキシシランとしては、 3価以上のアルコキシシランであること が好ましぐテトラアルコキシシラン類、アルキルトリアルコキシシラン類などが挙げら れる。
[0084] 前記テトラアルコキシシラン類としては、例えば、テトラメトキシシラン、テトラエトキシ シラン、テトラプロボキシシラン、テトラブトキシシラン等が挙げられる。
[0085] アルキルトリアルコキシシラン類としては、例えば、メチルトリメトキシシラン、メチルト リエトキシシラン、ェチルトリメトキシシラン、ェチルトリエトキシシラン、 n—プロピルトリ メトキシシラン、 n—プロピルトリエトキシシラン、 iso—プロピルトリメトキシシラン、 iso— プロピルトリエトキシシラン、 3—クロ口プロピルトリメトキシシラン、 3—クロ口プロピルトリ エトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、 3—グリシドキシプ 口ピルトリメトキシシラン、 3—グリシドキシプロピノレトリエトキシシラン、 3—ァミノプロピ ルトリメトキシシラン、 3—ァミノプロピルトリエトキシラン、 3—メルカプトプロピルトリメト キシシラン、 3—メルカプトトリエトキシシラン、 3, 3, 3—トリフルォロプロピルトリメトシ シラン、 3, 3, 3—トリフルォロプロピルトリエトシシラン、 3—メタクリルォキシプロビルト リメトキシシラン、 3—メタクリルォキシプロピルトリエトキシシラン、フエニルトリメトキシシ ラン、フエニルトリエトキシシラン、 p—クロロメチルフエニルトリメトキシシラン、 p—クロ口 メチノレフエ二ノレトリエトキシシラン、ジメチノレジメトキシシラン、ジメチノレジェトキシシラン 、ジェチルジメトキシシラン、ジェチルジェトキシシアンなどが挙げられる。
[0086] 本発明の針状表面微粒子を与える上記加水縮合反応 (ゾルゲル反応)は、水及び 金属錯体 (X)の会合体の存在下で進行するが、その反応は連続相である水中では 起こらず、金属錯体 (X)の会合体の表面で進行する。従って、ゾルゲル反応は金属 錯体 (X)の会合体が溶解することがなければ、反応条件は任意である。
[0087] 金属錯体 (X)の会合体を不溶とするためには、加水縮合反応の際、親水性の有機 溶媒を含む水性媒体を使用する場合には、水性媒体中、水が 20%以上の体積量で あることが好ましぐそれ力 0%以上であればさらに好ましい。
[0088] 加水縮合反応においては、ポリエチレンィミンのモノマー単位であるエチレンィミン 単位の量に対し、シリカソースであるアルコキシシランの量を過剰とすれば好適に針 状表面微粒子を形成できる。過剰の度合いとしては、エチレンィミン単位に対し 2〜1 000倍当量の範囲であることが好ましい。
[0089] 加水縮合反応の時間は適宜調整すればよぐ 1分から数日まで様々であるが、アル コキシシランの反応活性が高 、メトキシシラン類の場合は、反応時間は 1分〜 24時間 でよぐ反応効率を上げることから、反応時間を 30分〜 5時間に設定すればさらに好 適である。また、反応活性が低い、エトキシシラン類、ブトキシシラン類の場合は、反 応時間として 24時間以上であることが好ましぐその時間を一週間程度とすることもで きる。
[0090] 本発明の針状表面微粒子は、多様な形状の粒子であり、かつその表面に微細な針 状構造を有するが、その形状および構造は金属錯体 (X)の会合体に由来するもので ある。従って、加水縮合反応前に、まず水中または水性媒体中で金属錯体 (X)の会 合体の会合状態を制御することにより針状表面微粒子の形状と構造を制御できる。 水中または水性媒体中での金属錯体 (X)の会合体の調製は上記した通りである。
[0091] 針状表面微粒子中のシリカ (Y)の含有量は、反応条件などにより一定の幅で変化 するが、特にシリカ (Y)の含有量はゾルゲル反応の際用いたポリマー(a)の量、すな わち金属錯体 (X)を形成するポリマー (a)の濃度の増加に伴って増加する。また、加 水縮合反応時間を長くする事によってもシリカ含有量を高めることが可能であり、これ らを制御することにより、所望の微粒子が得られる。
[0092] 上記のとおり、本発明の製造方法は、きわめて容易な工程で迅速に針状表面微粒 子を得ることができる。さらに、得られる微粒子は単分散性にも優れるものである。 実施例 [0093] 以下、実施例および参考例によって本発明をさらに具体的に説明するが、本発明 はこれらに限定されるものではない。特に断らない限り、「%」は「質量%」を表す。
[0094] [走査電子顕微鏡による形状分析]
単離乾燥した試料をガラススライドに乗せ、それをキーエンス社製表面観察装置 V E— 7800にて観察した。
[0095] [ICPによるシリカ中金属含有量測定]
単離乾燥した試料を精秤し、マイクロウエーブ試料分解装置にて分解処理した。そ の分解液に超純水をカ卩え、その液中の金属量を Perkin Elmer社製 Optima 330 0DVにて測定し、金属含有量を計算した。
[0096] 合成例 1
<線状のポリエチレンィミン(L PEI)の合成 >
市販の線状ポリエチルォキサゾリン (数平均分子量 50, 000,平均重合度 5, 000、 Aldrich社製) 3gを、 5Mの塩酸水溶液 15mLに溶解させた。その溶液をオイルバス にて 90°Cに加熱し、その温度で 10時間攪拌した。反応液にアセトン 50mLを加え、 ポリマーを完全に沈殿させ、それを濾過し、メタノールで 3回洗浄し、白色のポリェチ レンィミンの粉末を得た。得られた粉末を1 H— NMR (重水)にて同定したところ、ポリ ェチルォキサゾリンの側鎖ェチル基に由来したピーク 1. 2ppm (CH )と 2. 3ppm (C
3
H )が完全に消失していることが確認された。即ち、ポリェチルォキサゾリンが完全に
2
加水分解され、ポリエチレンィミンに変換されたことが示された。
[0097] その粉末を 5mLの蒸留水に溶解し、攪拌しながら、その溶液に 15%のアンモニア 水 50mLを滴下した。その混合液を一晩放置した後、沈殿したポリマー会合体粉末 を濾過し、そのポリマー会合体粉末を冷水で 3回洗浄した。洗浄後の結晶粉末をデ シケータ中で室温(25°C)乾燥し、線状のポリエチレンィミン (L PEI)を得た。収量 は 2. 2g (結晶水含有)であった。ポリオキサゾリンの加水分解により得られるポリェチ レンイミンは、側鎖だけが反応し、主鎖には変化がない。従って、 L— PEIの重合度 は加水分解前の 5, 000と同様である。
[0098] 実施例 1〜5
<針状表面微粒子の作成 > 上記で得られた L PEI粉末を一定量秤量し、それを蒸留水中に分散させ、濃度 力 Sl%となる L— PEI分散液を作成した。これら分散液をオイルバスにて、 90°Cに加 熱し、完全透明な L— PEI水溶液を得た。得られた L— PEI水溶液に、表 1に示した 金属イオン種〔実施例 l : Cu(II)硝酸塩、実施例 2 : Μη(Π)硝酸塩、実施例 3 : Al (III )硝酸塩、実施例 4 : Eu (III)塩酸塩、実施例 5 : Zr (IV)硝酸塩〕の金属塩化合物を、 各々 L— PEIのエチレンィミン単位のモル数の 1Z20モル数に相当する量カ卩えた後 、その溶液を室温に 24時間放置し、 L— PEI金属錯体溶液を得た。
[0099] 得られた L— PEI金属錯体溶液(lmL)に、テトラメトキシシラン (TMOS)とエタノー ルとの混合液 (体積比 lZl) lmLをカ卩え、室温で 1時間反応させた (ポリマー中のェ チレンィミン単位に対する TMOSの使用割合は、 40倍当量である)。生成した固形 物を遠心分離器にて取り出し、エタノール—遠心分離の工程を 3回繰り返し、 L-PE I金属錯体とシリカとの複合体粉末を得た。得られた粉末の外観および金属含有量- シリカ含有量は表 1のとおりであった。また、これらの粉末を走査型電子顕微鏡 (SE M)で観察したところ、図 1〜10に示したように、いずれも粒子状態で、それらの粒子 表面全体は微細針状構造を有する針状表面微粒子であることが観測された。
[0100] [表 1]
Figure imgf000021_0001
[0101] (比較例)
実施例と同様にして作成した、 L— PEI溶液 lmL中に、テトラメトキシシラン (TMS O)とエタノールの 1Z1 (体積比)の混合液 lmLを加え、軽く一分間かき混ぜた後、 そのまま 40分放置した。その後、過剰なアセトンで洗浄し、それを円心分離器にて 3 回洗浄を行った。固形物を回収し、室温で乾燥し、シリカと L— PEIとの複合体粉末 を得た。得られた粉末の SEM観察では、図 11に示したとおり、複合体は粒子ではな ぐ繊維状バンドルであり、針状構造は一切現れなかった。これより、針状構造の複合 体粒子を得るには、実施例のように、金属イオンとポリマーとからなる金属錯体が必 須であることが明らかであった。
産業上の利用可能性
[0102] 本発明の針状表面微粒子は、固体電解質、固体触媒、ナノ添加剤、ナノ薄膜材料 への応用が期待できる。またこれら金属イオンの金属錯体を含有する針状表面微粒 子を、熱処理または還元剤で処理することで、金属錯体を金属ナノ粒子に変えること ができることから、ナノ金属含有材料としての応用もできる。
[0103] 又、本発明の針状表面微粒子の製造方法は、直鎖状ポリエチレンイミン鎖を有する ポリマーと、金属イオンとを水性媒体に溶解し、金属錯体の会合体を得る工程と、水 の存在下で、前記金属錯体の会合体を反応場とし、アルコキシシランを用いてゾルゲ ル反応を行う工程からなる、簡便な方法であり、特段の装置を必要としないため、ェ 業的生産にも好適に用いる事ができる。

Claims

請求の範囲
[1] 直鎖状ポリエチレンイミン鎖を有するポリマー (a)と、前記ポリマーと錯体を形成でき る金属イオンと、シリカ (Y)とを含有し、粒子表面形状が微細針状である粒子形状を 有することを特徴とする針状表面微粒子。
[2] 前記直鎖状ポリエチレンイミン鎖を有するポリマー (a)と前記金属イオン (b)とからな る金属錯体 (X)をさらに含有する請求項 1記載の針状表面微粒子。
[3] 前記直鎖状ポリエチレンイミン鎖を有するポリマー(a)はブロックポリマーであり、そ の中のポリエチレンィミン鎖の割合力 モノマーのモル数割合として 40モル0 /0以上で ある請求項 1記載の針状表面微粒子。
[4] 最大径が 1〜20 μ mの範囲にある請求項 1記載の針状表面微粒子。
[5] 微粒子中のシリカ (Y)の含有率が 30〜90質量%の範囲にある請求項 1記載の針 状表面微粒子。
[6] 微粒子中の金属イオン (b)の含有率が 0. 05〜5質量%の範囲にある請求項 1〜4 の!、ずれか 1項記載の針状表面微粒子。
[7] (1)直鎖状ポリエチレンイミン鎖を有するポリマー (a)と、金属イオン (b)とを水性媒 体に溶解し、直鎖状ポリエチレンイミン鎖を有するポリマー(a)と金属イオン (b)とから なる金属錯体 (X)の会合体を得る工程と、
(2)水の存在下で、前記金属錯体 (X)の会合体を反応場とし、アルコキシシランを用
V、てゾルゲル反応を行う工程と、
を有することを特徴とする針状表面微粒子の製造方法。
[8] 前記アルコキシシラン力 3価以上のアルコキシシランである請求項 7記載の針状 表面微粒子の製造方法。
[9] 前記工程(1)において、前記直鎖状ポリエチレンイミン鎖を有するポリマー(a)と金 属イオン (b)との使用割合力 該ポリマー(a)中のエチレンィミン単位 Z金属イオンで 表されるモル比で 5Z 1〜 1 OOZ 1の範囲にある請求項 7記載の針状表面微粒子の 製造方法。
[10] 前記工程(1)が、まず、直鎖状ポリエチレンイミン鎖を有するポリマー (a)を水性媒 体中に 0. 01〜20質量%の範囲で分散させ、加熱溶解させた後、金属イオン (b)を 加えて攪拌し、冷却する工程力 なるものである請求項 7記載の針状表面微粒子の 製造方法。
前記工程(2)において前記アルコキシシランの使用割合が、直鎖状ポリエチレンィ ミン鎖を有するポリマー(a)中のエチレンイミン単位に対して 2〜1000倍当量の範囲 にある請求項 7〜10の何れ力 1項記載の針状表面微粒子の製造方法。
PCT/JP2006/314266 2005-07-22 2006-07-19 針状表面微粒子及びその製造方法 WO2007010937A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/996,415 US20090155591A1 (en) 2005-07-22 2006-07-19 Microparticle having needle-like structures on surface and method for production thereof
CN200680021943.6A CN101203550B (zh) 2005-07-22 2006-07-19 针状表面微粒及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005212740 2005-07-22
JP2005-212740 2005-07-22

Publications (1)

Publication Number Publication Date
WO2007010937A1 true WO2007010937A1 (ja) 2007-01-25

Family

ID=37668813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314266 WO2007010937A1 (ja) 2005-07-22 2006-07-19 針状表面微粒子及びその製造方法

Country Status (3)

Country Link
US (1) US20090155591A1 (ja)
CN (1) CN101203550B (ja)
WO (1) WO2007010937A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101815673B (zh) * 2007-09-03 2013-07-10 Dic株式会社 纳米结构复合体覆盖型结构物的制造方法、纳米结构复合体覆盖型结构物以及使用该结构物的反应器
JP5059156B2 (ja) * 2010-03-26 2012-10-24 株式会社東芝 メタノール改質用触媒、その製造方法およびそのメタノール改質用触媒を用いた水素製造方法
EP4137116A1 (en) 2016-03-01 2023-02-22 Georgia Tech Research Corporation Composition comprising microneedle particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181514A (ja) * 1999-12-24 2001-07-03 Kawamura Inst Of Chem Res コア−コロナ型機能性マイクロエマルジョン、機能性微粒子及びその製造方法
JP2001335709A (ja) * 2000-03-22 2001-12-04 Kawamura Inst Of Chem Res 機能性逆マイクロエマルジョン、及び微粒子
JP2005336440A (ja) * 2004-05-31 2005-12-08 Kawamura Inst Of Chem Res シリカ/ポリマー/金属複合材料及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100379250B1 (ko) * 2000-12-04 2003-04-08 한국과학기술연구원 나노 단위 크기의 금속 입자가 함유된 고분자 복합 소재및 그 제조 방법
US8337893B2 (en) * 2002-07-10 2012-12-25 Florida Research Foundation, Inc, University Of Sol-gel derived bioactive glass polymer composite
KR101057706B1 (ko) * 2004-02-18 2011-08-18 자이단호진 가와무라 리카가쿠 겐큐쇼 유기무기 복합 나노파이버, 유기무기 복합 구조체 및이들의 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181514A (ja) * 1999-12-24 2001-07-03 Kawamura Inst Of Chem Res コア−コロナ型機能性マイクロエマルジョン、機能性微粒子及びその製造方法
JP2001335709A (ja) * 2000-03-22 2001-12-04 Kawamura Inst Of Chem Res 機能性逆マイクロエマルジョン、及び微粒子
JP2005336440A (ja) * 2004-05-31 2005-12-08 Kawamura Inst Of Chem Res シリカ/ポリマー/金属複合材料及びその製造方法

Also Published As

Publication number Publication date
CN101203550A (zh) 2008-06-18
US20090155591A1 (en) 2009-06-18
CN101203550B (zh) 2011-12-07

Similar Documents

Publication Publication Date Title
US7670509B2 (en) Composite nanofiber, composite nanofiber association, complex structure, and production method thereof
KR101057706B1 (ko) 유기무기 복합 나노파이버, 유기무기 복합 구조체 및이들의 제조 방법
JP3978440B2 (ja) シリカ/ポリマー/金属複合材料及びその製造方法
JP3883556B2 (ja) 有機無機複合ナノファイバ、有機無機複合構造体及びこれらの製造方法
JP4573138B2 (ja) 銀含有粉体の製造方法、銀含有粉体及びその分散液
JP4101271B2 (ja) 針状表面微粒子及びその製造方法
US7645828B2 (en) Monodisperse silica spheres containing polyamine and process for producing the same
JP4226016B2 (ja) ポリアミンを含む単分散性シリカ微粒子及びその製造方法
WO2014057976A1 (ja) コア-シェル型シリカナノ粒子及びその製造方法、並びにこれを利用した中空シリカナノ粒子の製造方法及び該製法により得られる中空シリカナノ粒子
JP5621950B2 (ja) 有機無機複合シリカナノ粒子及びそれを有する分散液、並びにそれらの製造方法
JP2010118168A (ja) 導電性成形加工物の製造方法、導電性成形加工物、及びこれに用いる銀ペースト
JP4700354B2 (ja) シリカナノチューブ会合体及びその製造方法
WO2007010937A1 (ja) 針状表面微粒子及びその製造方法
JP5095288B2 (ja) ポリマー/シリカ複合ナノ構造体、ポリマー/金属類/シリカ複合ナノ構造体及びシリカ系無機構造体の製造方法
JP3978443B2 (ja) シリカ/金属錯体複合材料及びその製造方法
JP4413252B2 (ja) ナノ構造複合体被覆型構造物及びその製造方法
US7385003B1 (en) In-situ formation of nanoparticles within a silicon-based matrix
JP4730730B2 (ja) 有機無機複合材料及びその製造方法
JP2007224139A (ja) 酸化チタン/ポリマー複合体及びその製造方法
JP6119348B2 (ja) コア−シェル型シリカ複合粒子及びその製造方法
JP2006008732A (ja) 金属イオン捕捉剤、金属イオンの捕捉方法
KR101136494B1 (ko) 복합 나노파이버, 복합 나노파이버 회합체, 복합 구조체 및이들의 제조 방법
JP2009154074A (ja) 炭素−炭素結合形成反応用触媒固定型リアクター

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680021943.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11996415

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06768292

Country of ref document: EP

Kind code of ref document: A1