WO2010017022A2 - Régulateur de gaz amélioré pour usinage à énergie thermique - Google Patents

Régulateur de gaz amélioré pour usinage à énergie thermique Download PDF

Info

Publication number
WO2010017022A2
WO2010017022A2 PCT/US2009/051125 US2009051125W WO2010017022A2 WO 2010017022 A2 WO2010017022 A2 WO 2010017022A2 US 2009051125 W US2009051125 W US 2009051125W WO 2010017022 A2 WO2010017022 A2 WO 2010017022A2
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
gas
fluid
tem
valve
Prior art date
Application number
PCT/US2009/051125
Other languages
English (en)
Other versions
WO2010017022A3 (fr
Inventor
Kieran Mcmahon
Eamonn O'halloran
Original Assignee
Kennametal Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kennametal Inc. filed Critical Kennametal Inc.
Priority to DE112009001798T priority Critical patent/DE112009001798T5/de
Publication of WO2010017022A2 publication Critical patent/WO2010017022A2/fr
Publication of WO2010017022A3 publication Critical patent/WO2010017022A3/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2093Control of fluid pressure characterised by the use of electric means with combination of electric and non-electric auxiliary power
    • G05D16/2097Control of fluid pressure characterised by the use of electric means with combination of electric and non-electric auxiliary power using pistons within the main valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0396Involving pressure control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7761Electrically actuated valve

Definitions

  • the present invention relates to thermal energy machining ("TEM") machine gas handling systems having improved a fluid-controlled pressure regulation subsystem for controlling the dispensing of at least one of the TEM process gases.
  • TEM thermal energy machining
  • TEM was introduced in the late 1960's as an effective way to remove internal and external burrs and flashing from machined or molded metal and plastic parts.
  • TEM is also known "gas detonation deburring,” “thermal deburring,” “combustion chamber treatment,” and “rapid high energy removal of superfluous projections.”
  • the concept behind TEM is elegantly simple: instead of mechanically abrading off burrs and flashing, the burrs and flashing are simply burned away in a fraction of a second.
  • This simple concept is applied in an exciting way: one or more metal or plastic parts requiring deburring or deflashing are sealed inside a combustion chamber and surrounded with a highly pressurized explosive gas mixture which is then ignited by an electric spark.
  • the resulting explosion produces a thermal shock wave that literally bums away (oxidizes) the burrs and flashings from the parts while the relatively great thermal mass of the parts prevents the parts themselves from being damaged by the thermal shock wave.
  • the explosive flame temperature can reach over 6,000 0 F (3,316 0 C).
  • the explosion lasts only milliseconds and the entire load-to-load cycle time is on the order of half a minute. Descriptions of various aspects of TEM are found in U.S. Patent Nos.
  • the explosive gas mixture typically comprises two process gases: one is an oxygen-source gas, usually oxygen, and the other is a fuel gas, e.g., hydrogen, methane, natural gas or a mixture thereof.
  • oxygen oxygen
  • fuel gas e.g., hydrogen, methane, natural gas or a mixture thereof.
  • Both the composition and mass of the gas mixture in the explosion chamber are critical to the success of the TEM process.
  • the optimal gas mixture composition and the gas mixture amount for a given load of parts varies with the number, size, configuration, and material of the parts being treated. Precise metering of the process gases is used to achieve a desired mixture composition and to control the overall mass of the gas mixture in the combustion or explosion chamber. Too much of a gas mixture, even of the correct mixture composition, can result in an explosion that exceeds the safe operational conditions of the TEM machine.
  • the composition of the gas mixture may be determined by the mass ratio of the component process gases.
  • the mass of a gas is proportional to its pressure for a predetermined volume and temperature.
  • the mass ratio of the process gases can be controlled by controlling the pressures of the process gases either (1) directly entering the combustion chamber of the TEM machine, or (2) entering a fixed volume dosing device that is used to dose the gas into the combustion chamber. Accordingly, it is known in the art to adjust the respective pressures of the process gases to optimize the TEM process for the particular number, size, and material of the parts being treated.
  • the present invention provides an inherently safer system for controlling the pressures of the process gases in the TEM process than do the prior art systems which employ electric drives to control the diaphragm of a process gas pressure regulator.
  • the present invention provides a TEM gas handling system in which the improvement is a fluid-controlled pressure regulation subsystem for controlling the dispensing of at least one of the TEM process gases via the regulation of the pressure of the TEM process gas either (1) directly to the combustion chamber or a mixing block or (2) indirectly to the combustion chamber or a mixing block by way of a fixed volume dosing device.
  • Such fluid-controlled pressure regulation subsystems include a pressure regulator, a pressure transducer, and a digital controller working in combination to control the process gas outlet pressure of the pressure regulator.
  • the pressure regulator's diaphragm that controls the gas flow valve that regulates the process gas pressure at the pressure regulator outlet is mechanically acted upon by the piston of a pneumatic or hydraulic cylinder.
  • the present invention employs the pressure transducer and the digital controller in combination to adjust the feed pressure of the pneumatic or hydraulic cylinder, which in turn regulates the process gas at the outlet of the pressure regulator.
  • the pressure regulator of the present invention requires no electrical parts and therefore reduces the risk of an explosion occurring in that part of the TEM machine.
  • the present invention also includes TEM machines having the aforementioned improvements.
  • Such TEM machines may also include a processing parameter electronic database containing process gas target pressure data for various part load characteristics, e.g., size, number, material type, etc., that can be used to control the process gas outlet pressure of the subsystem pressure regulators.
  • a TEM machine operator may input the characteristics of the part load into an input device that electronically communicates with the database via a process controller to provide the subsystem digital controller with the target process gas output pressure at the pressure regulator and thereby automatically control the results of the TEM process.
  • FIG. 1 is a schematic representation of a TEM machine according to an embodiment of the present invention.
  • FIG. 2. is a schematic representation of a pneumatic- controlled pressure regulation subsystem for controlling the dispensing of at least one of the TEM process gases according to an embodiment of the present invention.
  • FIG. 3 is a schematic representation of a cross-section of a pressure regulator that is a component of the embodiment of the present invention shown in FIG. 2.
  • FIG. 4 is a schematic representation of a portion of a control system of a TEM machine in accordance with an embodiment of the present invention.
  • FIG. 1 there is shown a schematic representation of a
  • the TEM machine 100 comprises a fuel gas handling system 102, an oxygen gas handling system 104, a mixing block 106, an ignition source 108, a combustion chamber 110, and an exhaust gas system 112.
  • the fuel gas handling system 102 comprises a high pressure fuel gas source 114, a fuel gas pressure regulation subsystem 116, and a fuel gas dosing device 118.
  • the oxygen gas handling system 104 comprises a high pressure oxygen gas source 120., an oxygen gas pressure regulation subsystem 122, and an oxygen gas dosing device 124.
  • the direction of gas flow is shown by the arrows between the components, e.g., arrow 126.
  • the machined or injection molded parts that are to be deburred or deflashed are loaded into the combustion chamber 110 and the combustion chamber 110 is sealed.
  • the atmosphere within the combustion chamber 110 may be evacuated/backfilled or purged to establish standard starting atmospheric conditions. (The subsystem of the TEM machine used to establish standard starting conditions is not identified in FIG. 1).
  • the fuel gas handling system 102 is operated to provide the fuel gas that is needed to treat the parts within the combustion chamber 110.
  • the fuel gas flows from the fuel gas source 114 to the fuel gas pressure regulator subsystem 116.
  • the fuel gas pressure regulator subsystem 116 regulates the pressure of the fuel gas flowing to the fixed volume fuel gas dosing device 118 to fill the fuel gas dosing device 118 with the predetermined mass of fuel gas that is needed for processing the parts.
  • the oxygen gas flows from the oxygen gas source 120 to the oxygen gas pressure regulator subsystem 122.
  • the oxygen gas pressure regulator subsystem 122 regulates the pressure of the oxygen gas flowing to the fixed volume oxygen gas dosing device 124 to fill the oxygen gas dosing device 124 with the predetermined mass of oxygen gas that is needed for processing the parts.
  • the fuel gas and oxygen gas dosing devices, 118, 124 are simultaneously operated to inject their gases into the mixing block 106 to intimately mix the gases en route to the combustion chamber 110.
  • FIG. 2 a preferred embodiment of a pneumatically-controlled pressure regulation subsystem 130 for controlling the dispensing of either the fuel gas or the oxygen gas via regulation of the process gas pressure is shown schematically using standard LS. O. symbols.
  • the pressure regulation subsystem 130 comprises a pressure regulator 132, a pressure transducer 134, and a digital controller 136, which work in combination to control the process gas outlet pressure of the pressure regulator 132.
  • the pressure regulator 132 includes a regulator body 138 which is operationally connected to a linear cylinder 140.
  • the linear cylinder 140 is supplied with pneumatic power from a source (not shown in FIG. 2), e.g., of compressed air, via a supply line 142 by way of a directional valve 144 and a proportional valve 146.
  • the process gas from the gas source flows into the regulator body 138 via the input line 148 and out of it through the output line 150.
  • the pressure transducer 134 is located on the output line 150 and senses the process gas output pressure from the pressure regulator 132.
  • the pressure transducer 134 is in electronic communication with the digital controller 136, as is depicted by input communication line 152 (which can be a wire or a wireless communication line), to signal the output process gas pressure to the digital controller 136.
  • the digital controller 136 determines whether or not the output pressure corresponds to a predetermined target pressure value and sends appropriate output signals to the directional valve 144 and the proportional valve 146 (as depicted by output communication lines 154, 156, which can be wire or wireless communication lines) so as to cause the linear cylinder 140 to adjust a diaphragm/valve combination (not shown in FIG, 2) in the regulator body 138 to achieve a target output pressure.
  • the pressure adjustment loop continues until it is determined that the predetermined mass of gas has been provided to the relevant dosing device, e.g., fuel gas dosing device 118 or oxygen gas dosing device 124 of FIG. 1.
  • a single digital controller may be used as part of the pressure regulation subsystems of all of the process gases, or each subsystem may have its own digital controller. Also, the digital controller(s) may be part of an overall process control processor of the TEM machine or it (they) may be separate from such an overall process controller.
  • FIG. 3 there is shown a schematic representation of a gas pressure regulator 160 according to an embodiment of the present invention.
  • the pressure regulator 160 comprises a regulator top 162 and a linear cylinder 164,
  • the regulator top 162 has a poppet valve 166 functionally interposed between a gas inlet 168 and a gas outlet 170.
  • the regulator top 160 also has a diaphragm 172 in mechanical communication with the poppet valve 166 so that the flexure state of the diaphragm 172 controls the state of openness of the poppet valve 166.
  • the linear cylinder 164 comprises a cylinder 174, a piston 176 moveably disposed therein, and at least one port (not shown in FIG.
  • the piston 176 is in mechanical communication with the underside of the diaphragm 172 so that the position of the piston 176 within the cylinder 174 controls the flexure state of the diaphragm 172.
  • poppet valve 166 effectively controls the output pressure of the gas exiting through gas outlet 170. Because the openness state of poppet valve 166 is controlled by the flexure state of the diaphragm 172, which in turn is controlled by the position of the piston 176 within cylinder 174, the process gas output pressure of regulator 160 is controlled by controlling the operation of the linear cylinder 164. [0022J It is to be specifically understood that although the valve that is positioned between the process gas inlet 168 and outlet 170 of the pressure regulator 160 is depicted in FIG.
  • the present invention also includes TEM machines having an electronically-accessible processing parameter database containing process gas target pressure data for various part load characteristics, e.g., size, number, material type, etc., that can be used to control the process gas outlet pressure of the subsystem pressure regulators.
  • process gas target pressure data for various part load characteristics, e.g., size, number, material type, etc.
  • FIG. 4 shows a schematic representation of the database/pressure regulation system interaction.
  • the data processor 182 electronically communicates by wire or wirelessly with the database 180 to obtain data regarding the target gas output pressure value for the process gas pressure regulators of the respective fluid-controlled pressure regulation subsystems, e.g., fluid-controlled pressure regulation subsystem 186.
  • the data recovered may be the relevant target pressure values, data from which the relevant target pressure values may be calculated, one or more algorithms for calculating the target pressure values, or any combination thereof.
  • the data processor 182 subsequently communicates the target pressure value information by wire or wirelessly to the digital controller of the relevant fluid-controlled pressure regulation subsystem 186.
  • the digital controller then controls its related process gas regulator to output the relevant process gas at the target pressure.
  • an overall process control processor or computer is used to control and/or monitor the operation of the TEM machine, hi such embodiments, the database 180 and input device 184 maybe associated with or part of such an overall process control processor. Likewise, in some embodiments the data processor 182 may be the overall process control processor or a part thereof.

Abstract

La présente invention a pour objet un système de manutention à gaz d’une machine d’usinage à énergie thermique (« TEM ») dans lequel l’amélioration est constituée par un sous-système de régulation de pression commandé par un fluide pour commander la distribution d’un gaz de traitement TEM par l’intermédiaire de la régulation de la pression du gaz de traitement TEM. Ces sous-systèmes comprennent un régulateur de pression, un transducteur de pression, et un dispositif de commande numérique fonctionnant en combinaison pour commander la pression de sortie du gaz de traitement du régulateur de pression. Le diaphragme du régulateur de pression qui commande la soupape qui régule la pression de sortie du gaz de traitement est actionné mécaniquement par le piston d’un cylindre pneumatique ou hydraulique. La commande du cylindre pneumatique ou hydraulique régule la pression de sortie du gaz de traitement. Le transducteur de pression et le dispositif de commande numérique fonctionnent en combinaison pour ajuster la pression d’alimentation du cylindre pneumatique ou hydraulique, qui régule à son tour la pression du gaz de traitement à la sortie du régulateur de pression.
PCT/US2009/051125 2008-08-05 2009-07-20 Régulateur de gaz amélioré pour usinage à énergie thermique WO2010017022A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112009001798T DE112009001798T5 (de) 2008-08-05 2009-07-20 Verbesserter Gasregler für thermisches Entgraten

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/185,949 US7922833B2 (en) 2008-08-05 2008-08-05 Gas regulator for thermal energy machining
US12/185,949 2008-08-05

Publications (2)

Publication Number Publication Date
WO2010017022A2 true WO2010017022A2 (fr) 2010-02-11
WO2010017022A3 WO2010017022A3 (fr) 2010-04-22

Family

ID=41651797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/051125 WO2010017022A2 (fr) 2008-08-05 2009-07-20 Régulateur de gaz amélioré pour usinage à énergie thermique

Country Status (3)

Country Link
US (1) US7922833B2 (fr)
DE (1) DE112009001798T5 (fr)
WO (1) WO2010017022A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7922833B2 (en) 2008-08-05 2011-04-12 Kennametal Inc. Gas regulator for thermal energy machining
PL422873A1 (pl) * 2017-09-18 2019-03-25 Atl Polska Spółka Z Ograniczoną Odpowiedzialnością Maszyna do termicznego gratowania
PL422874A1 (pl) * 2017-09-18 2019-03-25 Atl Polska Spółka Z Ograniczoną Odpowiedzialnością Sposób termicznego gratowania

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9494089B1 (en) 2012-01-14 2016-11-15 Anthony Lorts Hydraulic servo gas regulator for multi-fuel engine
US8935078B1 (en) 2012-01-14 2015-01-13 Anthony Richard Lorts Hydraulic servo gas regulator for multi-fuel engine
CN102621924B (zh) * 2012-03-30 2013-11-20 南京贝奇尔机械有限公司 热能去毛刺机床充气控制方法及其装置
US20140051028A1 (en) * 2012-08-16 2014-02-20 Daniel Edward Matejczyk Propellant compatible component for combustion device
US9273638B2 (en) * 2013-04-15 2016-03-01 Ford Global Technologies, Llc Variable pressure gaseous fuel regulator
CN104084664A (zh) * 2014-08-04 2014-10-08 东莞台一盈拓科技股份有限公司 一种非晶合金的去毛刺方法
CN105033596A (zh) * 2015-07-24 2015-11-11 苏州市大力电器有限公司 一种液压阀体去毛刺方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58218367A (ja) * 1982-05-24 1983-12-19 ハネウェル・インコーポレーテッド 非耐熱性材料とタンタルとの接合方法及び同接合方法利用の圧力変換器
US4513194A (en) * 1978-10-30 1985-04-23 Michael Mastromatteo Methods of welding
US6423936B1 (en) * 1998-01-10 2002-07-23 Edward Reed Welding apparatus

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3475229A (en) 1968-04-22 1969-10-28 Chemotronics International Inc Process for treating articles of manufacture to eliminate superfluous projections
US3666252A (en) 1970-05-25 1972-05-30 Chemotronics International Inc Apparatus for rapid high energy removal of superfluous projections
US3901488A (en) 1974-05-08 1975-08-26 Caterpillar Tractor Co Workpiece support for thermal deburring apparatus
US4094339A (en) 1974-05-17 1978-06-13 Robert Bosch Gmbh High temperature combustion shock deburring system
DE2440041C2 (de) 1974-08-21 1982-09-23 Robert Bosch Gmbh, 7000 Stuttgart Ventilanordnung zum Einlassen von Brenngas in einen Brennraum und zum gasdichten Verschließen des Brennraumes während des Brennvorgangs
DE2439982A1 (de) 1974-08-21 1976-03-04 Bosch Gmbh Robert Mischblock zum einlassen eines aus mindestens zwei komponenten bestehenden brenngases in einen brennraum
DE2440040C3 (de) 1974-08-21 1980-09-11 Robert Bosch Gmbh, 7000 Stuttgart Maschine zum thermischen Entgraten von Werkstücken
US4025062A (en) 1976-03-08 1977-05-24 Surftran Company Thermal deburring unit
US4147333A (en) 1977-04-26 1979-04-03 Heath Engineering Company Programmed pressure regulator for controlling the supply of gas pressure to a load device
US4275752A (en) * 1978-09-22 1981-06-30 Collier Nigel A Fluid flow apparatus and method
DE7927450U1 (de) 1979-09-27 1981-03-26 Robert Bosch Gmbh, 70469 Stuttgart Entgratkammer fuer thermisches entgraten
DE3040154A1 (de) * 1980-10-24 1982-06-03 Robert Bosch Gmbh, 7000 Stuttgart Gaszufuhreinrichtung
DE3102220C2 (de) 1981-01-22 1986-11-06 Lignotock Verfahrenstechnik Gmbh, 1000 Berlin Verfahren und Vorrichtung zum Abtrennen der Abfallränder und zum Entgraten von durch Verpressung hergestellten Formteilen
DE3204995A1 (de) 1982-02-12 1983-08-25 Robert Bosch Gmbh, 7000 Stuttgart Vorrichtung zur behandlung von werkstuecken in einer brennkammer
DE3204994A1 (de) 1982-02-12 1983-08-25 Robert Bosch Gmbh, 7000 Stuttgart Vorrichtung zur behandlung von werkstuecken in einer brennkammer
DE3220434A1 (de) 1982-05-29 1983-12-01 Robert Bosch Gmbh, 7000 Stuttgart Verfahren zur ueberwachung einer messgroesse
JPS5940314A (ja) 1982-08-30 1984-03-06 Sony Corp 磁気ヘツド
DE3314397A1 (de) 1983-04-21 1984-10-25 Robert Bosch Gmbh, 7000 Stuttgart Vorrichtung zur behandlung von werkstuecken in einer brennkammer
DE3320806A1 (de) 1983-06-09 1984-12-13 Robert Bosch Gmbh, 7000 Stuttgart Zuendsystem fuer anlangen zum thermischen entgraten
DE3502026A1 (de) 1985-01-23 1986-07-24 Robert Bosch Gmbh, 7000 Stuttgart Mischblock zum mischen eines brennbaren gasgemisches
DE3507669A1 (de) 1985-03-05 1986-09-11 Robert Bosch Gmbh, 7000 Stuttgart Mischblock fuer ein brennbares gasgemisch
DE3511731A1 (de) 1985-03-30 1986-10-02 Robert Bosch Gmbh, 7000 Stuttgart Gaszufuehreinrichtung zum einlassen eines aus mindestens zwei komponenten bestehenden, brennbaren gasgemisches
DE3512015A1 (de) 1985-04-02 1986-10-02 Robert Bosch Gmbh, 7000 Stuttgart Vorrichtung zur behandlung von werkstuecken mittels temperatur- und druckstoessen durch zuenden eines brennbaren gasgemisches, insbesondere thermische entgratanlage
EP0264450B1 (fr) 1986-04-30 1991-07-03 Kharkovsky Aviatsionny Inst. Imeni N.E. Zhukovskogo Procede d'ebarbage thermique
WO1987006511A1 (fr) 1986-04-30 1987-11-05 Kharkovsky Aviatsionny Institut Imeni N.E.Zhukovsk Dispositif pour l'ebarbage thermique
DE3690748T1 (fr) 1986-06-20 1988-07-14
DE3726475C1 (de) 1987-08-08 1988-09-29 Bosch Gmbh Robert Verfahren und Vorrichtung zum Bestimmen der Menge eines in eine Bearbeitungskammer fuer Materialien einzubringenden explosiven Gasgemisches
US4883051A (en) 1988-02-18 1989-11-28 Summa Vest, Inc. Disposable breathing system and components
US4936340A (en) 1989-06-21 1990-06-26 Coretest Systems, Inc. Pressure regulator
US4961441A (en) 1989-11-13 1990-10-09 Salter Stuart C Method and system for controlling a pressure regulator
US5531959A (en) 1994-01-31 1996-07-02 Hamilton Company Automated liquid handling and computer controlled system and method for solid phase chromatographic extractions
US5728325A (en) 1994-04-05 1998-03-17 Blankenburg; Karl Gas assist injection molding apparatus and method with multiple temperature gas supply
JP3758717B2 (ja) 1995-10-03 2006-03-22 大陽日酸株式会社 ガス混合装置
US5636653A (en) 1995-12-01 1997-06-10 Perception Incorporated Fluid metering apparatus and method
GB2316773B (en) 1996-06-12 1999-09-29 Gas Technology Canada Electronic gas regulator
US5787925A (en) 1996-07-15 1998-08-04 Veriflo Corporation Pneumatically servoed gas pressure regulator
US5921765A (en) 1997-06-30 1999-07-13 Atoliv Asp, Inc. Periodic, on-demand pressurized gas power source and method of providing same
US6056008A (en) 1997-09-22 2000-05-02 Fisher Controls International, Inc. Intelligent pressure regulator
GB9724168D0 (en) 1997-11-14 1998-01-14 Air Prod & Chem Gas control device and method of supplying gas
US5937854A (en) 1998-01-06 1999-08-17 Sensormedics Corporation Ventilator pressure optimization method and apparatus
US6363958B1 (en) 1999-05-10 2002-04-02 Parker-Hannifin Corporation Flow control of process gas in semiconductor manufacturing
CA2298324A1 (fr) 2000-02-09 2001-08-09 Michael T. Sulatisky Regulateur de gaz electronique a volume eleve
DE10116726A1 (de) 2001-04-04 2002-10-10 Bosch Gmbh Robert Anlage zur thermischen Behandlung von Werkstücken mit einem explosiven Gasgemisch, insbesondere thermische Entgratanlage
US7264896B2 (en) 2002-08-15 2007-09-04 Motorola, Inc. Two-stage hybrid gas pressure regulator
US20040223885A1 (en) 2003-05-06 2004-11-11 Keen Randy E. Apparatus for the automated synthesis of polynucleotides
US7115833B2 (en) * 2004-11-03 2006-10-03 The Esab Group, Inc. Metering system and method for supplying gas to a torch
ITMI20050251A1 (it) 2005-02-18 2006-08-19 Sgm S R L Macchina perefezionata per sbavatura termica
US7669610B2 (en) 2006-02-09 2010-03-02 Tescom Corporation Dome-loaded pressure regulators
DE102006013667A1 (de) 2006-03-24 2007-09-27 Robert Bosch Gmbh Thermische Entgratanlage mit Schnellentlüftung
DE102006038309A1 (de) 2006-08-15 2008-02-21 Extrude Hone Gmbh Vorrichtung zum thermischen Entgraten von Werkstücken
JP2010502190A (ja) 2006-08-30 2010-01-28 セントカー・インコーポレーテツド 自動並行オリゴヌクレオチド合成
US20080099705A1 (en) 2006-10-25 2008-05-01 Enfield Technologies, Llc Retaining element for a mechanical component
US7922833B2 (en) 2008-08-05 2011-04-12 Kennametal Inc. Gas regulator for thermal energy machining

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4513194A (en) * 1978-10-30 1985-04-23 Michael Mastromatteo Methods of welding
JPS58218367A (ja) * 1982-05-24 1983-12-19 ハネウェル・インコーポレーテッド 非耐熱性材料とタンタルとの接合方法及び同接合方法利用の圧力変換器
US6423936B1 (en) * 1998-01-10 2002-07-23 Edward Reed Welding apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7922833B2 (en) 2008-08-05 2011-04-12 Kennametal Inc. Gas regulator for thermal energy machining
PL422873A1 (pl) * 2017-09-18 2019-03-25 Atl Polska Spółka Z Ograniczoną Odpowiedzialnością Maszyna do termicznego gratowania
PL422874A1 (pl) * 2017-09-18 2019-03-25 Atl Polska Spółka Z Ograniczoną Odpowiedzialnością Sposób termicznego gratowania

Also Published As

Publication number Publication date
US7922833B2 (en) 2011-04-12
WO2010017022A3 (fr) 2010-04-22
US20100032022A1 (en) 2010-02-11
DE112009001798T5 (de) 2011-06-09

Similar Documents

Publication Publication Date Title
US7922833B2 (en) Gas regulator for thermal energy machining
US11433471B2 (en) Method and apparatus for automatically controlling gas pressure
JP2007187159A (ja) ガスタービン燃料制御方法および装置
EP1845758A2 (fr) Torche à plasma
SE0100695D0 (sv) Hydraulisk lyftanordning för batteridrivna industritruckar
CN104074786A (zh) 一种压缩机控制方法
JP2693199B2 (ja) 材料の加工室内へ充てんすべき爆発性混合ガスの量を規定する方法
EP2763753B1 (fr) Ensemble conduit d'évacuation de gaz d'inertage, système d'inertage qui utilise l'ensemble conduit d'évacuation de gaz et procédé d'inertage d'un système d'extincteur automatique à eau de protection contre les incendies
CN111878374B (zh) 一种基于rh精炼工艺的机械真空泵系统的控制方法
KR101143868B1 (ko) 가스밸브어레인지먼트
WO2002066195A8 (fr) Appareil et installation de soudage
JP3640450B2 (ja) レーザ加工機のアシストガス発生装置及びその制御方法
KR102314966B1 (ko) 용접용 실드가스 제어장치
US4599887A (en) Apparatus for controlling dynamic characteristics of press load
US6577919B1 (en) Blow molding method for superplastic material and system
KR102523675B1 (ko) 오토 퀵 퍼징 시스템 및 이를 이용한 글로브 박스
JP2008110402A (ja) 連続鋼鋳造プラントに或いは下流において鋳造ストランドと鋼工作材を酸素切断する方法と手段
KR101453690B1 (ko) 가스절단기용 분배장치
JPS60184937A (ja) ガスエンジンのガス圧力制御装置
KR20010061662A (ko) 고로 열풍로의 온도 제어 방법
CN114815913A (zh) 基于压力流量复合控制的燃油调节阀控制系统及方法
JPH04169217A (ja) 射出成形機の型締力制御方法
JPS60116701A (ja) 高温・高圧焼結装置
RU2372871C1 (ru) Блок газоподачи для аргоноплазменной коагуляции
SU608546A1 (ru) Способ регулировани уровн выгрузки ионита в колонне с пневмоимпульсной разгрузкой

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09805341

Country of ref document: EP

Kind code of ref document: A2

RET De translation (de og part 6b)

Ref document number: 112009001798

Country of ref document: DE

Date of ref document: 20110609

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09805341

Country of ref document: EP

Kind code of ref document: A2