WO2010015621A1 - Registre a decalage a transistors a effet de champ - Google Patents

Registre a decalage a transistors a effet de champ Download PDF

Info

Publication number
WO2010015621A1
WO2010015621A1 PCT/EP2009/060083 EP2009060083W WO2010015621A1 WO 2010015621 A1 WO2010015621 A1 WO 2010015621A1 EP 2009060083 W EP2009060083 W EP 2009060083W WO 2010015621 A1 WO2010015621 A1 WO 2010015621A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
voltage
source
gate
output
Prior art date
Application number
PCT/EP2009/060083
Other languages
English (en)
Inventor
Hugues Lebrun
Thierry Kretz
Chantal Hordequin
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to EP09804560.2A priority Critical patent/EP2311042B1/fr
Priority to KR1020117003005A priority patent/KR101525062B1/ko
Priority to US13/057,538 priority patent/US8773345B2/en
Priority to JP2011521560A priority patent/JP5433906B2/ja
Publication of WO2010015621A1 publication Critical patent/WO2010015621A1/fr

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/18Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages
    • G11C19/182Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages in combination with semiconductor elements, e.g. bipolar transistors, diodes
    • G11C19/184Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages in combination with semiconductor elements, e.g. bipolar transistors, diodes with field-effect transistors, e.g. MOS-FET

Definitions

  • the present invention relates to an optimized field effect transistor shift register, particularly suitable for controlling the selection lines of an active matrix of a flat screen such as a liquid crystal display or OLED (Organic light-emitting diode ).
  • a flat screen such as a liquid crystal display or OLED (Organic light-emitting diode ).
  • OLED Organic light-emitting diode
  • each image point is addressed by means of a switching transistor.
  • Each selection line of the matrix is thus connected to the gates of the switching transistors of a row of image points.
  • These lines are therefore highly capacitive.
  • they are each selected in sequence, one by one following a scanning direction of the lines of the screen, during a line selection time corresponding to a fraction of the duration of the frame, allowing the application on image points of the row, video voltages.
  • the selection of a line thus corresponds to the application during the corresponding line selection time, of a determined voltage level which controls the on state of the switching transistors of the corresponding image point row. Outside the selection time of the line, it is maintained at a voltage level capable of keeping the switching transistors of the active matrix in the off state.
  • Vgon and Vgoff are usually noted the voltage levels to be applied on the line to make (Vgon) and block (Vgoff) these transistors. These levels are determined according to the characteristic video voltages.
  • the control of the selection lines is usually provided by circuits which comprise one or more shift registers in series, each comprising a plurality of stages in cascade, each stage being able to switch the Vgon and Vgoff levels out on a corresponding line. of the matrix, according to the sequencing of the selection of the lines.
  • TFTs thin film field effect transistors
  • a well-known problem encountered by the designers of such circuits is the management of the drift of the threshold voltage of the thin-film transistors. This drift depends in particular on the temperature conditions, but also on the applied voltage levels and the level of current conducted by these transistors. It conditions their life.
  • the drain of the output transistor receives a clock signal; its source forms the output node on a line of the active matrix; its gate is controlled by means of a precharge transistor, which brings the gate to a precharge potential for controlling the on state of the output transistor at the input to the line selection phase.
  • the gate of the output transistor then follows the potential of its source via the raising capacitance, which keeps the transistor in the on state during the entire line selection phase.
  • the gate pre-charge potential is determined so that the output transistor conducts an output current of sufficient level to transfer a pulse of the clock signal applied to its drain towards its source which forms the output node.
  • the gate of the output transistor is also controlled by a discharge transistor activated after the line selection phase, to bring the gate of the output transistor to a voltage level allowing its blocking.
  • Vgoff to apply output, however, it has a sensitivity to the drift of the threshold voltage of the output transistor, which limits its life.
  • the gate potential increases with the source potential, by the effect of elevation by the capacitance connected between gate and source. If the potential of precharging the gate at the input in the selection phase is noted V1, then the gate potential increases by a quantity Va proportional to the voltage at the output node Vgon.
  • the gate-source voltage Vgs seen by the output transistors during each line selection phase is thus greater than the threshold voltage of the transistor. It induces over time a drift of the threshold voltage, which can reach ten volts. Due to the drift, there comes a time when the voltage level V1 preloaded on the gate is no longer sufficient to make an output transistor passing, or at least sufficiently conductive to load the output node capacity or line . This moment marks the end of life of the shift register.
  • the precharge voltage level V1 applied by the precharge transistor is equal to the level Vgon supplied by the output node of the preceding stage, during the associated line selection time, minus the threshold voltage of the transistor of preload.
  • Vgon level that is overvalued, depending on the desired lifetime, to take into account the drift over time of the threshold voltage of the output transistors.
  • a transistor whose threshold voltage at the beginning of life is of the order of 1 to 2 volts, can see its threshold voltage drift of about 13 volts.
  • a voltage Vgon of the order of 20 volts while at the beginning of life, a voltage Vgon of the order of 7 volts would have been sufficient. In doing so, at the beginning of life, the output transistor is then extremely conductive. The excessive output current tends to accelerate the rate at which the threshold voltage of the output transistor will drift. Its life is diminished.
  • This minimum current level defines the end of life of the transistor: From the start, the first time, the product (ie the screen), the end of life is marked by the moment when the output transistor will no longer be able to provide this minimum current.
  • the drift rate of the threshold voltage of the output transistor which is a function of the voltage level applied to its gate, and its technology.
  • the object of the invention is to improve the life of the shift registers.
  • An idea underlying the invention is to improve the control of their output transistors, by adjusting the pre-charge voltage level of their gate, to their conduction level, that is to say to their voltage. threshold, so that it is lower at the beginning of life, than at the end of life. Consequently, in the line selection phase, the source gate voltage of the output transistor will be lower at the beginning of life than at the end of its life, and adapted to the good conduction level of the output transistor.
  • the invention therefore relates to a shift register made with field effect transistors of the same polarity, comprising a plurality of identical stages in cascade, the even-order stages receiving a clock signal and the row stages. an odd receiver receiving a complementary clock signal and the stages being sequenced to transmit one after the other, a clock pulse on an output node, during a corresponding line selection phase, each stage comprising:
  • an output transistor whose gate is connected to an internal node, the source of which forms the output node of the stage, and whose drain receives the clock signal of the stage, and which comprises a capacitor connected between its grid and its source,
  • a first control transistor connected to said internal node, able to bring said internal node to a precharging voltage during a pre-charge phase preceding said line selection phase, such that the output transistor is conducting during the selection phase of line,
  • a second control transistor connected to said internal node, able to bring said internal node to a blocking voltage of the output transistor, in a line deselection phase following said line selection phase, and
  • each stage comprises an additional transistor of the same technology and of the same polarity as said output transistor, whose drain is connected to said internal node, the source of which is biased to a clamping voltage of the output transistor at least during said precharging phase, and whose function is to adjust the voltage at said internal node as a function of the conduction performance of said output transistor during said precharging phase and / or selecting the stage.
  • the optimization of the precharge voltage at the conduction level of the output transistor obtained is valid for the duration of use from start to end of life: as and when the circuit is used, the additional transistor becomes less in less active at limiting the voltage of preload. It will be shown that this optimization also applies to the temperature of use.
  • the invention applies to a flat screen with active matrix. It allows in particular the integration on the same substrate, and with the same technology of transistors, of the matrix and the control circuit of the selection lines.
  • FIG. 1 is a general diagram of a row control shift register of an active matrix
  • FIG. 2a details a structure of a stage of a shift register according to the state of the art, to which the invention can be applied;
  • FIG 2b is a timing diagram of the signals illustrating the operation of such a register;
  • FIG. 3 illustrates a first embodiment of a stage of such a shift register according to the invention
  • FIG. 4 shows the different curves of the voltage at the gate node of the output transistor of a stage at the beginning of life and at the end of life, according to the state of the art and according to the invention
  • FIG. 5 illustrates a second embodiment of the invention
  • FIG. 6 illustrates a variant of this embodiment
  • FIG. 7 illustrates a third embodiment of the invention
  • - Figure 8 illustrates a control variant applicable to the various embodiments of the invention illustrated in Figures 3, 5 and 6;
  • FIG. 9 schematically illustrates an active matrix substrate with integrated control circuits.
  • a shift register comprises in a well-known manner, as illustrated in FIG. 1, N identical stages E 1 to E N in cascade. Even-numbered stages Ei, E n- -I, E n + -I, ... E N , receive a clock signal Ck1. The stages of odd rank E 2 , E n , receive a complementary clock signal Ck2. The high and low levels of these clock signals are the Vgon and Vgoff levels. They are illustrated in Figure 2b.
  • the first stage Ei receives a line scan signal IN (vertical scan), transmitting a clock pulse for each new video frame F to be displayed.
  • This pulse of the signal IN will "propagate" at the output Si of the first stage Ei, then of line in line, on the outputs of the stages Ei, E 2 , .... E n , ... E N , so that the lines R (1) to R (N) are selected one after the other, during a corresponding line selection phase, ⁇ t-i, ⁇ t 2 , ... ⁇ t n , ⁇ IN, once per frame F .
  • a basic structure of a stage E n of such a shift register comprises (FIG. 2a):
  • an output transistor T3 whose gate g3 is connected to an internal node P n ; whose source s3 forms the output node S n of the stage; and whose drain d3 receives the clock signal of the stage, Ck2 in the example. It has a capacity C2 connected between its gate and its source: it is the capacity of elevation or "bootstrap".
  • a first control transistor T1 connected to the internal node P n by its source able to bring this internal node to a precharge voltage V1, during a phase (or a line-time) of precharging preceding the line selection phase; the precharging voltage V1 is such that the output transistor is conducting during the line selection phase, -a second control transistor T2 connected to the internal node, able to bring said internal node to a blocking voltage VB of the output transistor T3 in a phase following the line selection phase.
  • This output transistor blocking voltage is set in practice to maintain a sufficiently low gate voltage level so that the leakage current in the output transistor can not load the line capacitance.
  • This blocking voltage must thus typically be chosen to be less than or equal to the source voltage of the output transistor (Vgoff) plus its threshold voltage.
  • Vgoff source voltage of the output transistor
  • the transistors T1 and T2 are advantageously controlled (by their gate) the first, T1, by the signal provided by the output node S n -i of the previous stage E n- i or by the line scan signal IN in the case of the transistor T1 of the first stage Ei (FIG. 1), the second, T2, by the signal supplied by the output node S n + i of the next stage E n + i or by an end of line scan signal RJast in the case of the transistor T1 of the last stage E N (FIG. 1).
  • the gate g1 and the drain d1 of the transistor T1 are connected in common to the output node Sn-1.
  • the transistor T2 has its gate connected to the output node S n + - I , its drain d2 to the internal node P n , and its source to a blocking voltage denoted VB.
  • another transistor T4 connected to the output node S n and whose source is connected to the blocking voltage of the switching transistors of the matrix, that is to say Vgoff, is furthermore generally provided. .
  • Its gate is connected to the output node S n + i of the next stage R (n + 1). Its function is to facilitate the discharge of the output node S n , at the end of the line selection phase, by pulling it to Vgoff.
  • the blocking voltages VB and Vgoff are not necessarily equal and can be brought by separate power buses, especially for insulation issues.
  • FIG. 2b is a timing diagram showing the various signals involved.
  • the clock signals Ck1 and Ck2 are complementary, ie in phase opposition.
  • the selection phase ⁇ t n- i of the line R (n-1) starts at time t n- i and ends at time t n
  • the selection phase ⁇ t n of line R (n) starts at time t n and ends at time t n + i, and so on.
  • the clock signals Ck1 and Ck2 are respectively in the high state Vgon and in the low state. Vgoff.
  • the output node S n + 1 of the next line rises, turning on the transistors T2 and T4 of the stage E n : the internal node P n and the output node S n are each pulled to a voltage of blocking respectively VB and Vgoff. C2 capacity is discharged.
  • the line R (n) is deselected.
  • the scan sequence of the matrix lines starts with the activation of the scan command signal IN, which precharges the inner node Pi of the first stage.
  • the signal RJast makes it possible to discharge the internal node P N and the output node S N of the last stage, marking the end of the selection phase of the associated line R (N) and the end of the video frame.
  • the line scan starts again in the first line, for the next video frame.
  • each stage E n of the shift register comprises an additional transistor, which will be noted T5, of the same technology, with the same polarity as the output transistor T3.
  • the drain d5 of this additional transistor is connected to the internal node P n , and its source s5 is connected to a blocking voltage of the output transistor T3 at least in the precharging phase.
  • this additional transistor is to adjust the voltage at the internal node P n , which is connected to the gate of the output transistor T3, as a function of the conduction performance of said output transistor T3, during the precharge phase and / or selection of the floor considered.
  • This function can be obtained according to different embodiments, in particular with different connection variants of the gate and the source of this additional transistor.
  • the connections of the transistor T5 provide polarization conditions such that its threshold voltage drifts at least as fast as that of the output transistor, which is used to adapt the precharge voltage to the conduction conditions of the transistor. output transistor.
  • Figure 3 illustrates a first embodiment.
  • the drain d5 of the additional transistor T5 is connected to the internal node P n
  • the source s5 is connected to the source s3 of the output transistor T3.
  • the gate g5 of the transistor T5 is connected to the gate g3 of the transistor T3 (at the node P n ).
  • the transistor T5 is biased with the same source gate voltage as the output transistor T3, over the entire duration of the frame: its threshold voltage drifts as that of the output transistor T3.
  • adapting the precharge voltage level as a function of the threshold voltage of the transistor T5 is equivalent to adapting the level of the precharging voltage as a function of the threshold voltage of the transistor T3: the transistor T5 is used as a measurement of the variation of the threshold voltage of the output transistor T3, to adapt the level of the precharging voltage.
  • the less transistor T3 is capable of conducting, the less transistor T5 conducts and the less it discharges the gate, so as to maintain the conduction of transistor T3.
  • the threshold voltage of the transistors T3 and T5 is at its nominal value, specific to the technology. It is for example 1 or 2 volts.
  • Vgon is applied to the drain d1 of the transistor T1 (node S n -i) and Vgoff is applied to the source of transistor T5 (node S n ).
  • the transistor T1 starts driving, and raises the voltage at the node P n .
  • the transistor T5 At the beginning of life, the transistor T5 will begin to drive rapidly, as soon as the voltage at the node P n exceeds its threshold voltage. It becomes more and more conductive with the rise of the node P n The current called by the transistor T5 tends to slow the rise of the node P n .
  • T1 and T5 which lead in series, thus form a divider bridge at the node P n between Vgon and Vgoff.
  • the two precharge curves VA (P n ) (t) of the node P n with or without transistor T5 at the beginning of life are illustrated in FIG. 4. Without T5, the node P n goes up to V1. With T5, the rise of the node P n is limited to V1 ' ⁇ V1. This potential VV is sufficient to make the transistor T3 passing and sufficiently conductive, but not too much, to transmit the level Vgon of the clock signal applied to its drain, towards its source, during the next phase of selection ⁇ t n of the line R (n), between t n and t n + i. In this selection phase, the voltage at the node P n rises with the source s3 of the transistor T3 (effect of the capacitance C2), of a quantity Va, which is substantially the same in both cases (with or without T5)
  • the diode-connected transistor T5 continues to conduct, thus continuing to discharge the node Pn and thus to limit the stress.
  • the threshold voltage of the transistor T5 which will have derived at least as much as that of the output transistor, is much higher. For example, it will have derived from 10 volts. For this reason, the transistor T5 has a high series impedance in front of that of T1. This high series impedance of the transistor T5 has the effect of reducing the difference between the voltage V1 'and the voltage V1 that one would have without the transistor T5 of the invention, in the precharging phase.
  • the dimensions of the transistor T5 are determined so as to no longer influence the load of the internal node P n at the end of its life.
  • the transistor T5 according to the invention makes it possible to obtain a circuit having a longer lifetime at a constant Vg, with respect to the same circuit, without the transistor T5.
  • the transistor T5 furthermore makes it possible to optimize the control of the output transistor T3 at the temperature conditions.
  • the mobility of the transistors is higher, and the threshold voltage lower than at low temperature.
  • the discharge of the internal node P n will thus be more efficient, the mobility of the transistor T5 being greater and the voltage at the node P n at the end of precharging will be lower, perfectly adapted to the threshold voltage of the transistor of exit.
  • the transistors T3 and T5 have their gates connected together and their sources connected together: they thus see the same source gate voltage, whatever the phase considered.
  • the drift of these threshold voltages are substantially identical (with technological dispersions).
  • the transistor T5 has its source s5 not connected to the source s3 of the output transistor, but to a constant voltage, for blocking the output transistor.
  • the source s5 is thus connected to the source s2 of the transistor T2.
  • the source s5 may be biased to a blocking voltage corresponding to the low voltage level Vgoff of the clock signals, typically by connecting the source s5 to the source s4 of the transistor T4.
  • the transistors T3 and T5 always have their gates g3 and g5 connected together, at the same potential; but the source of the transistor T5 is permanently biased to a blocking voltage VB, less than or equal to Vgoff, which is the low level of the clock signal, while the source of the transistor T3 is biased to Vgon during the selection time of the line ⁇ t n and Vgoff the rest of the time. Voltage gate-source seen by the transistor T5 is thus globally higher on the frame time. Its threshold voltage will therefore drift faster than that of transistor T3. This makes it possible to adapt the conduction of the transistor T5 as a function of the drift of the threshold voltage of T3.
  • This embodiment makes it possible to simplify the dimensioning of the transistor T5 with respect to the other transistors of the circuit, because it does not cause a change in the polarity of the line in the precharging phase (no preloading of the line by the conduction path T1 - T5) and also because its threshold voltage will drift faster.
  • the transistor T5 has its source s5 connected to the drain d3 of the output transistor, that is to say, to the clock signal Ck2 which controls this drain.
  • the source gate voltage of transistor T5 is substantially equal to that of transistor T3.
  • the source of this transistor T5 follows the clock signal.
  • the drift of their threshold voltage (ie of T3 and T5) will be substantially the same.
  • FIG. 7 Another embodiment is illustrated in FIG. 7. In this variant, the gate g5 of the transistor T5 is connected to the gate g1 of the transistor T1. In the embodiment illustrated (FIG.
  • the source s5 of the transistor T5 is connected to the source s2 of the transistor T2, to the blocking voltage VB of the output transistor T3.
  • the source S5 of the transistor T5 could also be biased to the blocking voltage Vgoff of the switching transistors (low level of the clock signals). In the illustrated example, this would typically be achieved by connecting its source s5 to the source S4 of the transistor T4.
  • the transistor T5 is turned on and off together with the transistor T1. It is therefore active only in the precharging phase (which is also the selection phase of the previous line), between the times t n- i and t n .
  • This embodiment makes it easier to determine the respective sizes of transistors T1 and T5 to determine the voltage V1 '. These respective sizes of the transistors T1 and T5 are chosen as a function of the voltage VV that one seeks to obtain at the node P n at the end of the phase of precharging, at the beginning of life of the circuit.
  • the transistor T5 is less and less active as the circuit progresses.
  • the transistor T5 is biased at a source gate voltage equal to Vgon (voltage on its gate) minus VB, during the time ⁇ t n- i, and at a voltage equal to Vgoff minus VB, the remainder of the frame.
  • Vgon voltage on its gate
  • Vgoff voltage on minus VB
  • T3 when it is active, during the time ⁇ t n , is biased with a source gate voltage equal to V1 '+ Va (its gate voltage) minus Vgon (its source voltage). This voltage is less than or equal to that of transistor T5 in the active state. For these reasons, the threshold voltage of transistor T5 will drift in the same way or faster than that of transistor T3.
  • FIG. 8 illustrates an improvement of the invention, applicable to the various embodiments already described. It is explained by repeating the embodiment illustrated in FIG.
  • the drain d1 of transistor T1 is no longer connected to the gate of g1. It is connected to the voltage Vgon.
  • This electrical diagram makes it possible to prevent a voltage drop on the output node S n -i of the preceding stage E n-- I, when the transistors T1 and T5 of the stage E n lead, in the precharging phase , that is to say when the node S n -i is Vgon.
  • a power bus is provided that brings the voltage Vgon to each of the stages of the control circuit.
  • the invention makes it possible to increase the lifetime of the screen by better managing the drift of the threshold voltage of the field effect transistor of the control circuit, whatever the technology considered (thin layers, MOS, etc.). .).

Abstract

Dans un registre à décalage, chaque étage En prévu pour piloter une ligne de sortie R(n) correspondante, comprend un transistor T5 de même technologie et de même polarité que le transistor de sortie T3 qui pilote la ligne de sortie. Ce transistor est connecté de manière à être soumis à des conditions de polarisation similaire que le transistor de sortie, en sorte que sa tension de seuil, identique en début de vie à celle du transistor de sortie, dérive aussi vite ou plus vite. Ce transistor T5 est utilisé pour ajuster la tension de précharge V1' de la grille g3 du transistor de sortie T3 à ses performances de conduction pendant la phase de précharge et ou de sélection. Application aux écrans plats à matrice active intégrée.

Description

REGISTRE A DECALAGE A TRANSISTORS A EFFET DE CHAMP
La présente invention concerne un registre à décalage à transistors à effet de champ optimisé, particulièrement adapté pour commander les lignes de sélection d'une matrice active d'un écran plat tel qu'un écran à cristal liquide ou OLED (Organic light-emitting diode). Dans un écran plat à matrice active, chaque point image est adressé au moyen d'un transistor de commutation. Chaque ligne de sélection de la matrice est ainsi connectée aux grilles des transistors de commutation d'une rangée de points image. Ces lignes sont donc fortement capacitives. A chaque trame vidéo, elles sont chacune sélectionnées en séquence, une à une suivant un sens de balayage des lignes de l'écran, pendant un temps de sélection de ligne correspondant à une fraction de la durée de la trame, permettant l'application sur les points image de la rangée, des tensions vidéo.
La sélection d'une ligne correspond ainsi à l'application pendant le temps de sélection de ligne correspondant, d'un niveau de tension déterminé qui commande l'état passant des transistors de commutation de la rangée de points image correspondante. En dehors du temps de sélection de la ligne, celle-ci est maintenue à un niveau de tension apte à maintenir à l'état bloqué les transistors de commutation de la matrice active. On note habituellement Vgon et Vgoff les niveaux de tension à appliquer sur la ligne pour rendre passant (Vgon) et bloquer (Vgoff) ces transistors. Ces niveaux sont déterminés en fonction des tensions vidéo caractéristiques.
La commande des lignes de sélection est habituellement assurée par des circuits qui comprennent un ou plusieurs registres à décalage en série, comportant chacun une pluralité d'étages en cascade, chaque étage étant apte à commuter les niveaux Vgon et Vgoff en sortie sur une ligne correspondante de la matrice, selon le séquencement de la sélection des lignes.
Il est bien connu dans le domaine des écrans plats d'utiliser des transistors à effet de champ, en couches minces (TFT), tant pour les transistors de commutation dans la matrice active, qui permettent l'application d'une tension sur un pixel, que pour les transistors des registres à décalage des circuits de commande des lignes de sélection de cette matrice.
Un problème bien connu rencontré par les concepteurs de tels circuits, est la gestion de la dérive de la tension de seuil des transistors en couches minces. Cette dérive dépend notamment des conditions de température, mais aussi des niveaux de tension appliqués et du niveau de courant conduit par ces transistors. Elle conditionne leur durée de vie.
Par ailleurs, l'intégration sur le même substrat, de la matrice active et des circuits de commande est intéressante. Mais elle suppose que les circuits de commande prennent peu de place, surtout lorsque le nombre de pixels de la matrice est élevé.
Des circuits de commande des lignes ont été conçus pour répondre à ces différents besoins. En particulier on connaît de la demande de brevet EP 0815 562, une structure de registre à décalage à transistors à effet de champ, de même polarité, en faible nombre, peu encombrant. Cette structure conduit à un faible rapport cyclique des transistors, et est aussi conçue pour limiter les niveaux de tension qui leur sont appliqués. En particulier, lorsqu'un étage n'est pas actif, ses transistors ont leur tension grille-source inférieure ou égale à zéro. Ces conditions de commande des transistors permettent d'améliorer leur durée de vie. Plus précisément, cette structure est basée sur l'utilisation dans chaque étage d'un transistor de sortie apte à conduire un courant suffisant pour charger la ligne capacitive en sortie, associé à une capacité d'élévation, appelée encore capacité de "bootstrap", connectée entre sa grille et sa source. Le drain du transistor de sortie reçoit un signal d'horloge ; sa source forme le nœud de sortie sur une ligne de la matrice active ; sa grille est commandée par le biais d'un transistor de précharge, qui amène la grille à un potentiel de précharge permettant de commander l'état passant du transistor de sortie à l'entrée dans la phase de sélection de ligne. Dans la phase de sélection, la grille du transistor de sortie suit alors le potentiel de sa source via la capacité d'élévation, ce qui maintient le transistor à l'état passant pendant toute la phase de sélection de ligne. Le potentiel de précharge de grille est déterminé pour que le transistor de sortie conduise un courant de sortie de niveau suffisant pour transférer une impulsion du signal d'horloge appliqué sur son drain, vers sa source qui forme le nœud de sortie. La grille du transistor de sortie est aussi commandée par un transistor de décharge activé après la phase de sélection de ligne, pour amener la grille du transistor de sortie à un niveau de tension permettant son blocage.
Si cette structure est intéressante en ce qu'elle ne nécessite qu'un faible nombre de transistors, commandés avec un faible rapport cyclique et des faibles niveaux de tension, optimisés compte tenu des niveaux Vgon et
Vgoff à appliquer en sortie, elle présente cependant une sensibilité à la dérive de la tension de seuil du transistor de sortie, qui limite sa durée de vie.
En effet, on a vu que dans la phase de sélection, le potentiel de grille augmente avec le potentiel de source, par l'effet d'élévation par la capacité connectée entre grille et source. Si on note V1 le potentiel de précharge de la grille à l'entrée dans la phase de sélection, le potentiel de grille augmente ensuite d'une quantité Va proportionnelle à la tension au nœud de sortie Vgon. La tension grille-source Vgs vue par les transistors de sortie pendant chaque phase de sélection de ligne est ainsi supérieure à la tension de seuil du transistor. Elle induit au cours du temps une dérive de la tension de seuil, qui peut atteindre une dizaine de volts. Du fait de la dérive, il arrive un moment où le niveau de tension V1 préchargé sur la grille n'est plus suffisant pour rendre un transistor de sortie passant, ou du moins suffisamment conducteur pour charger la capacité du nœud de sortie ou de la ligne. Ce moment marque la fin de vie du registre à décalage.
Aussi, selon la durée de vie du circuit de commande désirée, en cohérence avec la durée de vie de la matrice active avec lequel on doit l'intégrer, on est amené à définir un niveau de tension de précharge V1 supérieur au niveau de tension de précharge qui serait nécessaire, et suffisant, en début de vie du transistor de sortie pour simplement charger la capacité de la ligne.
En pratique, le niveau de tension de précharge V1 appliqué par le transistor de précharge est égal au niveau Vgon fourni par le nœud de sortie de l'étage précédent, pendant le temps de sélection de ligne associé, moins la tension de seuil du transistor de précharge. Ainsi, c'est le niveau Vgon que l'on est amené à surévaluer, en fonction de la durée de vie recherchée, pour tenir compte de la dérive dans le temps de la tension de seuil des transistors de sortie.
Par exemple, un transistor dont la tension de seuil en début de vie est de l'ordre de 1 à 2 volts, peut voir sa tension de seuil dériver d'environ 13 volts. On pourra choisir dans ce cas une tension Vgon de l'ordre de 20 volts, alors qu'en début de vie, une tension Vgon de l'ordre de 7 volts aurait été suffisante. Ce faisant, en début de vie, le transistor de sortie est alors extrêmement conducteur. Le courant excessif en sortie tend à accélérer la vitesse avec laquelle la tension de seuil du transistor de sortie va dériver. Sa durée de vie s'en trouve diminuée.
Pour chaque application ou produit visé, la conception d'un tel registre doit ainsi tenir compte de trois critères :
- le niveau de courant minimum que le transistor de commande doit être capable de fournir pour charger la ligne en sortie. Cela va dépendre notamment du type d'écran concerné, en particulier du nombre de points image par ligne et de la technologie utilisée. Ce niveau de courant minimum définit la fin de vie du transistor : Partant du démarrage, la première fois, du produit (i.e. l'écran), la fin de vie est marquée par le moment où le transistor de sortie ne sera plus capable de fournir ce courant minimum.
- la vitesse de dérive de la tension de seuil du transistor de sortie, qui est une fonction du niveau de tension appliqué sur sa grille, et de sa technologie.
- le niveau maximum Vgon que l'on peut appliquer au circuit de commande, ce qui est fonction du contrôleur d'écran concerné.
L'invention a pour objet d'améliorer la durée de vie des registres à décalage.
Une idée à la base de l'invention est d'améliorer la commande de leurs transistors de sortie, en adaptant le niveau de tension de précharge de leur grille, à leur niveau de conduction, c'est-à-dire à leur tension de seuil, en sorte qu'il soit moins élevé en début de vie, qu'en fin de vie. Par suite dans la phase de sélection de ligne, la tension grille source du transistor de sortie sera plus faible en début de vie qu'en fin de vie, et adaptée au bon niveau de conduction du transistor de sortie.
La solution technique apportée par l'invention réside dans l'utilisation pour chaque transistor de sortie, d'un transistor de même technologie, réalisé en même temps que lui, et dont la tension de seuil va dériver au cours du temps au moins aussi vite que la sienne, pour adapter le niveau de la tension de précharge à sa tension de seuil. Telle que revendiquée l'invention concerne donc un registre à décalage réalisé avec des transistors à effet de champ de même polarité, comportant une pluralité d'étages identiques en cascade, les étages de rang pair recevant un signal d'horloge et les étages de rang impair recevant un signal d'horloge complémentaire et les étages étant séquences pour transmettre l'un après l'autre, une impulsion d'horloge sur un nœud de sortie, pendant une phase de sélection de ligne correspondante, chaque étage comprenant :
- un transistor de sortie dont la grille est connectée à un nœud interne, dont la source forme le nœud de sortie de l'étage, et dont le drain reçoit le signal d'horloge de l'étage, et comportant une capacité connectée entre sa grille et sa source,
- un premier transistor de commande connecté au dit nœud interne, apte à amener ledit nœud interne à une tension de précharge pendant une phase de précharge précédent ladite phase de sélection de ligne, telle que le transistor de sortie est passant pendant la phase de sélection de ligne,
-un deuxième transistor de commande connecté au dit nœud interne, apte à amener ledit nœud interne à une tension de blocage du transistor de sortie, dans une phase de désélection de ligne suivant ladite phase de sélection de ligne, et
- une capacité C1 connectée au dit nœud interne (Pn) et commandée par le signal d'horloge complémentaire du signal d'horloge appliqué sur le drain d3 du transistor de sortie, caractérisé en ce que chaque étage comprend un transistor supplémentaire de même technologie et de même polarité que ledit transistor de sortie, dont le drain est connecté au dit nœud interne, dont la source est polarisée à une tension de blocage du transistor de sortie au moins pendant ladite phase de précharge, et dont la fonction est d'ajuster la tension au dit nœud interne en fonction des performances de conduction dudit transistor de sortie pendant ladite phase de précharge et/ou de sélection de l'étage.
L'optimisation de la tension de précharge au niveau de conduction du transistor de sortie obtenu vaut pour la durée d'utilisation du début à la fin de vie : au fur et à mesure de l'utilisation du circuit, le transistor supplémentaire devient de moins en moins actif à limiter la tension de précharge. On montrera que cette optimisation vaut aussi pour la température d'utilisation.
L'invention s'applique à un écran plat à matrice active. Elle permet en particulier l'intégration sur un même substrat, et avec la même technologie de transistors, de la matrice et du circuit de commande des lignes de sélection.
D'autres avantages et caractéristiques de l'invention sont détaillés dans la description suivante en référence aux dessins illustrés d'un mode de réalisation de l'invention, donné à titre d'exemple non limitatif. Dans ces dessins :
-la figure 1 , est un schéma général d'un registre à décalage de commande de lignes d'une matrice active;
-la figure 2a détaille une structure d'un étage d'un registre à décalage selon l'état de l'art, auquel peut s'appliquer l'invention ; -la figure 2b est un chronogramme des signaux illustrant le fonctionnement d'un tel registre ;
-la figure 3 illustre un premier mode de réalisation d'un étage d'un tel registre à décalage selon l'invention;
-la figure 4 montre les différentes courbes de la tension au nœud de grille du transistor de sortie d'un étage en début de vie et en fin de vie, selon l'état de l'art et selon l'invention;
-la figure 5 illustre un deuxième mode de réalisation de l'invention;
-la figure 6 illustre une variante de ce mode de réalisation;
-la figure 7 illustre un troisième mode de réalisation de l'invention; - la figure 8 illustre une variante de commande applicable aux différents modes de réalisation de l'invention illustrés aux figures 3, 5 et 6 ; et
-la figure 9 illustre schématiquement un substrat de matrice active à circuits de commande intégrés.
L'invention s'applique de manière générale aux registres à décalage réalisés avec des transistors à effet de champ de même polarité. Elle est plus particulièrement décrite, sans y être limitée, dans le cadre de registres utilisant des transistors en couches minces TFT, par exemple à silicium amorphe, pour lesquelles elle est particulièrement avantageuse pour la commande des lignes de sélection de matrice active d'un écran plat. Un registre à décalage comprend de manière bien connue, comme illustré à la figure 1 , N étages identiques Ei à EN en cascade. Les étages de rang pair E-i, En--I, En+-I, ... EN, reçoivent un signal d'horloge Ck1. Les étages de rang impair E2, En, reçoivent un signal d'horloge complémentaire Ck2. Les niveaux haut et bas de ces signaux d'horloge sont les niveaux Vgon et Vgoff. Ils sont illustrés sur la figure 2b.
Le premier étage Ei reçoit un signal de balayage ligne IN (balayage vertical), transmettant une impulsion d'horloge pour chaque nouvelle trame vidéo F à afficher. Cette impulsion du signal IN va se "propager" en sortie Si du premier étage E-i, puis de ligne en ligne, sur les sorties des étages E-i, E2, ....En, ... EN, en sorte que les lignes R(1 ) à R(N) sont sélectionnées l'une après l'autre, pendant une phase de sélection de ligne correspondante, Δt-i, Δt2, ...Δtn, ΔÎN, une fois par trame F.
Une structure de base d'un étage En d'un tel registre à décalage, comme divulguée dans la demande européenne précitée, comprend (figure 2a) :
- un transistor de sortie T3 dont la grille g3 est connectée à un nœud interne Pn ; dont la source s3 forme le nœud de sortie Sn de l'étage ; et dont le drain d3 reçoit le signal d'horloge de l'étage, Ck2 dans l'exemple. Il comporte une capacité C2 connectée entre sa grille et sa source : c'est la capacité d'élévation ou de "bootstrap".
- un premier transistor de commande T1 connecté au nœud interne Pn par sa source apte à amener ce nœud interne à une tension de précharge V1 , pendant une phase (ou un temps ligne) de précharge précédent la phase de sélection de ligne ; la tension de précharge V1 est telle que le transistor de sortie est passant pendant la phase de sélection de ligne, -un deuxième transistor de commande T2 connecté au nœud interne, apte à amener ledit nœud interne à une tension de blocage VB du transistor de sortie T3 dans une phase suivant la phase de sélection de ligne. Cette tension de blocage du transistor de sortie est définie en pratique pour maintenir un niveau de tension de grille suffisamment faible pour que le courant de fuite dans le transistor de sortie ne puisse pas la charge de la capacité de ligne. Cette tension de blocage doit ainsi typiquement être choisie inférieure ou égale à la tension de source du transistor de sortie (Vgoff) plus sa tension de seuil. On peut par exemple choisir VB égal à Vgoff. Son niveau optimum dépend typiquement du seuil de conduction des transistors.
Les transistors T1 et T2 sont avantageusement commandés (par leur grille) le premier, T1 , par le signal fourni par le nœud de sortie Sn-i de l'étage précédent En-i ou par le signal de balayage ligne IN dans le cas du transistor T1 du premier étage Ei (figure 1 ) , le deuxième, T2, par le signal fourni par le nœud de sortie Sn+i de l'étage suivant En+i ou par un signal de fin de balayage ligne RJast dans le cas du transistor T1 du dernier étage EN (figure 1 ). Dans l'exemple, la grille g1 et le drain d1 du transistor T1 sont connectés en commun au nœud de sortie Sn-1 . Le transistor T2 a sa grille connectée au nœud de sortie Sn+-I, son drain d2 au nœud interne Pn, et sa source à une tension de blocage notée VB.
Pour avoir un fonctionnement optimal, on prévoit en outre généralement un autre transistor T4, connecté au nœud de sortie Sn et dont la source est connectée à la tension de blocage des transistors de commutation de la matrice, c'est-à-dire Vgoff. Sa grille est connectée au nœud de sortie Sn+i de l'étage suivant R(n+1 ). Il a pour fonction de faciliter la décharge du nœud de sortie Sn, à la fin de la phase de sélection de la ligne, en le tirant à Vgoff. On notera que les tensions de blocage VB et Vgoff ne sont pas nécessairement égales et peuvent être amenées par des bus d'alimentation séparés, en particulier pour des questions d'isolation.
Dans cette structure, il est par ailleurs connu de prévoir des moyens de compensation des effets de la capacité parasite grille-drain du transistor de sortie T3 pendant les commutations du signal d'horloge appliqué sur le drain d3. Dans l'invention, on utilise pour cette fonction une capacité C1 connectée au nœud interne Pn et commandée par le signal d'horloge complémentaire du signal d'horloge appliqué sur le drain d3 du transistor de sortie, soit donc Ck1 dans l'exemple. On connaît de la demande US 2005/00081 14A1 publiée le 13 janvier 2005, un registre à décalage dans lequel cette fonction de compensation est assurée par un transistor (Q5, figure 3) dont la grille est commandée à haute fréquence, par la même horloge qui pilote le drain du transistor de sortie. Pour chaque trame d'affichage, ce transistor de compensation est ainsi activé 1 ligne sur deux, ce qui n'est pas sans influence sur sa durée de vie. En outre le dimensionnement de ce transistor doit être bien étudié pour ne pas avoir un effet d'écrantage de l'effet de
"boostrap" sur le nœud interne Pn.
D'un étage au suivant, les rôles des signaux d'horloge Ck1 et Ck2 sont échangés : par exemple, dans les étages En- 1 et En+-I, c'est le transistor
T3 qui reçoit le signal Ck1 et la capacité C1 qui reçoit le signal d'horloge Ck2
(non illustré).
Le fonctionnement d'un tel étage En du registre va maintenant être brièvement expliqué. La figure 2b est un chronogramme montrant les différents signaux en jeu. Les signaux d'horloge Ck1 et Ck2 sont complémentaires, ie en opposition de phase. Le niveau haut Vgon des impulsions d'horloge est défini pour que les transistors de commutation de la matrice active soient capables de charger sans perte les niveaux de tension vidéo à appliquer sur les électrodes pixel, et pour permettre la commutation à l'état passant, et suffisamment conducteur, des transistors de sortie T3 des étages du registre à décalage, en fin de vie. On a par exemple Vgon=20 volts. Le niveau bas
Vgoff des impulsions est défini pour pouvoir bloquer ces transistors de commutation. On a par exemple Vgoff=-7 volts. La phase de sélection Δtn-i de la ligne R(n-1 ) débute au temps tn-i et se termine au temps tn La phase de sélection Δtn de la ligne R(n) débute au temps tn et se termine au temps tn+i , et ainsi de suite.
Pendant la phase de sélection Δtn-i de la ligne R(n-1 ), entre tn-i et tn, les signaux d'horloge Ck1 et Ck2 sont respectivement à l'état haut Vgon et à l'état bas Vgoff. Le nœud de sortie Sn-i est au niveau haut Vgon : le transistor T1 de l'étage En est passant et charge le nœud Pn de commande de la grille g3, au niveau de tension de précharge V1 = Vgon-VtT1 , où VtT 1 est la tension de seuil du transistor T1 .
Au temps tn, l'état des signaux d'horloge Ck1 et Ck2 s'inverse : Ck1 passe à l'état bas Vgoff, et Ck2 passe au niveau Vgon. Le nœud de sortie Sn-i passe à Vgoff, ce qui entraîne le blocage du transistor T1 de l'étage En.
Comme le nœud interne Pn a été chargé au niveau de tension de précharge V1 =Vgon-VtT1 , le transistor T3 est passant. Ck2 étant à l'état haut Vgon, la source s3 suit, entraînant la grille g3 du transistor T3, qui est flottante, grâce à la capacité C2. Le transistor T3 est alors largement conducteur pendant toute la durée du temps ligne Δtn et le nœud de sortie Sn suit parfaitement le signal d'horloge Ck2, jusqu'à sa descente au temps tn+i . A ce moment, le nœud de sortie Sn+i de la ligne suivante monte, rendant passant les transistors T2 et T4 de l'étage En : le nœud interne Pn et le nœud de sortie Sn sont chacun tiré à une tension de blocage, respectivement VB et Vgoff. La capacité C2 est déchargée. La ligne R(n) est désélectionnée.
Lorsque Ck1 remonte à Vgon et Ck2 redescend à Vgoff, la séquence se répète pour l'étage suivant En+-I, en remplaçant n-1 par n, n par n+1 , Ck1 par Ck2 et vice versa.
La séquence de balayage des lignes de la matrice débute par l'activation du signal de commande de balayage IN, qui assure la précharge du nœud interne Pi du premier étage. Le signal RJast permet de décharger le nœud interne PN et le nœud de sortie SN du dernier étage, marquant la fin de la phase de sélection de la ligne associée R(N) et la fin de la trame vidéo. Le balayage ligne recommence à la première ligne, pour la trame vidéo suivante.
Selon l'invention, on utilise dans chaque étage un transistor T5 de même technologie et de même polarité, fabriqué lors des mêmes étapes de fabrication que le transistor de sortie T3, en sorte qu'il a sensiblement la même tension de seuil en début de vie (aux écarts technologiques près) que ce transistor de sortie, pour adapter la tension de grille de ce transistor de sortie à ses performances de conduction, pendant la phase de précharge et ou de sélection de l'étage considéré. Ainsi selon l'invention, chaque étage En du registre à décalage comprend un transistor supplémentaire, que l'on notera T5, de même technologie, de même polarité que le transistor de sortie T3. Le drain d5 de ce transistor supplémentaire est connecté au nœud interne Pn, et sa source s5 est connectée à une tension de blocage du transistor de sortie T3 au moins dans la phase de précharge. La fonction de ce transistor supplémentaire est d'ajuster la tension au nœud interne Pn, qui est connecté à la grille du transistor de sortie T3, en fonction des performances de conduction dudit transistor de sortie T3, pendant la phase de précharge et ou de sélection de l'étage considéré. Cette fonction peut être obtenue suivant différents modes de réalisation, en particulier avec différentes variantes de connexion de la grille et de la source de ce transistor supplémentaire. Dans tous ces modes de réalisation, les connexions du transistor T5 assurent des conditions de polarisation telles que sa tension de seuil dérive au moins aussi vite que celle du transistor de sortie, ce qui est utilisé pour adapter la tension de précharge aux conditions de conduction du transistor de sortie.
La figure 3 illustre un premier mode de réalisation. Dans ce mode de réalisation, et comme indiqué ci-dessus, le drain d5 du transistor supplémentaire T5 est connecté au nœud interne Pn, et la source s5 est reliée à la source s3 du transistor de sortie T3. La grille g5 du transistor T5 est reliée à la grille g3 du transistor T3 (au nœud Pn).
Dans ces conditions, le transistor T5 est polarisé avec la même tension grille source que le transistor de sortie T3, sur toute la durée de la trame : sa tension de seuil dérive comme celle du transistor de sortie T3.
Ainsi, adapter le niveau de tension de précharge en fonction de la tension de seuil du transistor T5 est équivalent à adapter le niveau de la tension de précharge en fonction de la tension de seuil du transistor T3 : le transistor T5 est utilisé comme une mesure de la variation de la tension de seuil du transistor de sortie T3, pour adapter le niveau de la tension de précharge. En d'autres termes, moins le transistor T3 est susceptible de conduire, moins le transistor T5 conduit et moins il décharge la grille, de manière à permettre le maintien de la conduction du transistor T3.
De manière plus détaillée, le fonctionnement va ainsi être le suivant, en se référant aux figures 2b et 3:
En début de vie, la tension de seuil des transistors T3 et T5 est à sa valeur nominale, propre à la technologie. Elle est par exemple de 1 ou 2 volts.
Pendant la phase de précharge Δtn-i de l'étage En, entre les temps tn-i et tn, Vgon est appliqué sur le drain d1 du transistor T1 (nœud Sn-i) et Vgoff est appliqué sur la source du transistor T5 (nœud Sn). Le transistor T1 se met à conduire, et fait monter la tension au nœud Pn.
En début de vie, le transistor T5 va se mettre à conduire rapidement, dès que la tension au nœud Pn dépasse sa tension de seuil. Il devient de plus en plus conducteur avec la montée du nœud Pn Le courant appelé par le transistor T5 tend donc à ralentir la montée du nœud Pn. T1 et T5 qui conduisent en série, forment ainsi un pont diviseur au nœud Pn entre Vgon et Vgoff. Ce pont diviseur limite la montée en tension du nœud Pn à une valeur V1 ' au temps tn, qui peut s'écrire : V(PnXtn) = V1 '= (R5/(R5+R1 ).(Vgon-VtT1 -Vgoff) où R1 et R5 sont les impédances respectives de T1 et T5.
Sans le transistor T5, la tension de précharge du nœud Pn, à l'instant tn serait : V(PnXtn) = V1 = Vgon-VtT1.
Les deux courbes de précharge VA(Pn) (t) du nœud Pn avec ou sans transistor T5 en début de vie sont illustrées sur la figure 4. Sans T5, le nœud Pn monte à V1. Avec T5, la montée du nœud Pn est limité à V1 '<V1. Ce potentiel VV est suffisant à rendre le transistor T3 passant et suffisamment conducteur, mais pas trop, pour transmettre le niveau Vgon du signal d'horloge appliqué sur son drain, vers sa source, pendant la phase suivante de sélection Δtn de la ligne R(n), entre tn et tn+i. Dans cette phase de sélection, la tension au nœud Pn monte avec la source s3 du transistor T3 (effet de la capacité C2), d'une quantité Va, qui est sensiblement la même dans les deux cas (avec ou sans T5)
Dans la phase de sélection entre tn et tn+i, le transistor T5 monté en diode continue de conduire, continuant ainsi de décharger le nœud Pn et donc de limiter le stress.
En fin de vie, la tension de seuil du transistor T5 qui aura dérivée au moins autant que celle du transistor de sortie, est beaucoup plus élevée. Par exemple, elle aura dérivé de 10 volts. Pour cette raison, le transistor T5 a une impédance série élevée devant celle de T1. Cette impédance série élevée du transistor T5 a pour effet de réduire l'écart entre la tension V1 ' et la tension V1 que l'on aurait sans le transistor T5 de l'invention, dans la phase de précharge. En d'autres termes, en fin de vie, la courbe de précharge V(PN)(t) est sensiblement la même avec ou sans transistor T5 : V1 '=V1 , comme illustré sur la figure 4. Le nœud Pn va pouvoir monter en tension, sans effet de limitation. Dans ces conditions, au temps tn, on a V(PnXtn) = V1 =Vgon-Vgoff.
En pratique, les dimensions du transistor T5 sont déterminées de manière à ne plus influencer la charge du nœud interne Pn en fin de vie. Le transistor T5 selon l'invention permet d'obtenir un circuit ayant une durée de vie plus grande à Vgon constant, par rapport à un même circuit, sans le transistor T5.
Le transistor T5 permet en outre d'optimiser la commande du transistor de sortie T3 aux conditions de température.
En effet, à haute température, la mobilité des transistors est plus élevée, et la tension de seuil plus faible qu'à basse température. A haute température, la décharge du nœud interne Pn sera ainsi plus efficace, la mobilité du transistor T5 étant plus grande et la tension au nœud Pn en fin de précharge sera ainsi plus faible, parfaitement adaptée à la tension de seuil du transistor de sortie.
A basse température, la mobilité est réduite et la tension de seuil augmente. Le transistor T5, à mobilité réduite sera peu efficace à décharger le nœud interne Pn (impédance série élevée) qui par suite atteindra un niveau de précharge au temps tn plus élevé, permettant une meilleure conduction du transistor de sortie T3.
Dans le mode de réalisation de la figure 3, les transistors T3 et T5 ont leurs grilles reliées ensemble et leurs sources reliées ensemble : ils voient ainsi la même tension grille source, quelle que soit la phase considérée. La dérive de ces tensions de seuil sont sensiblement identiques (aux dispersions technologiques près).
Dans un deuxième mode de réalisation de l'invention illustré à la figure 5, le transistor T5 a sa source s5 non pas connectée à la source s3 du transistor de sortie, mais à une tension constante, de blocage du transistor de sortie. Dans l'exemple illustré sur la figure 5, la source s5 est ainsi connectée à la source s2 du transistor T2. Dans une variante, la source s5 peut être polarisée à une tension de blocage correspondant au niveau bas Vgoff de tension des signaux d'horloge, typiquement en connectant la source s5 à la source s4 du transistor T4. Dans ce mode de réalisation, les transistors T3 et T5 ont toujours leurs grilles g3 et g5 connectées ensemble, au même potentiel ; mais la source du transistor T5 est polarisée en permanence à une tension de blocage VB, inférieure ou égale à Vgoff, qui est le niveau bas du signal d'horloge, alors que la source du transistor T3 est polarisée à Vgon pendant le temps de sélection de la ligne Δtn et Vgoff le reste du temps. La tension grille-source vue par le transistor T5 est ainsi globalement plus élevée sur le temps trame. Sa tension de seuil va donc dériver plus vite que celle du transistor T3. Ceci permet d'adapter la conduction du transistor T5 en fonction de la dérive de la tension de seuil de T3. Cette variante de réalisation permet de rendre plus simple le dimensionnement du transistor T5 par rapport aux autres transistors du circuit, parce qu'il ne provoque pas de modification de la polarité de la ligne dans la phase de précharge (pas de précharge de la ligne par le chemin de conduction T1 - T5) et également parce que sa tension de seuil dérivera plus vite. Dans un autre mode de réalisation illustré à la figure 6, le transistor T5 a sa source s5 connectée au drain d3 du transistor de sortie, c'est-à-dire, au signal d'horloge Ck2 qui pilote ce drain. Dans la phase de précharge, entre tn-i et tn, sa source s5 est ainsi maintenue au niveau bas Vgoff du signal d'horloge Ck2, alors que dans la phase de sélection, entre tn et tn+i , sa source s5 est ainsi maintenue au niveau haut Vgon du signal d'horloge Ck2. Dans ces deux phases, la tension grille source du transistor T5 est sensiblement égale à celle du transistor T3. Dans les autres phases de la trame F, la source de ce transistor T5 suit le signal d'horloge. La dérive de leur tension de seuil ( i.e. de T3 et T5) sera sensiblement la même. Un autre mode de réalisation est illustré sur la figure 7. Dans cette variante, la grille g5 du transistor T5 est reliée à la grille g1 du transistor T1 . Dans le mode de réalisation illustré (figure 6) la source s5 du transistor T5 est reliée à la source s2 du transistor T2, à la tension de blocage VB du transistor de sortie T3. La source s5 du transistor T5 pourrait aussi être polarisée à la tension de blocage Vgoff des transistors de commutation (niveau bas des signaux d'horloge). Dans l'exemple illustré, ceci serait typiquement obtenu en connectant sa source s5 à la source s4 du transistor T4.
Dans ce mode de réalisation, le transistor T5 est activé et bloqué en même temps que le transistor T1 . Il n'est donc actif que dans la phase de précharge (qui est aussi la phase de sélection de la ligne précédente), entre les temps tn-i et tn. Ce mode de réalisation rend plus simple la détermination des tailles respectives des transistors T1 et T5, pour déterminer la tension V1 '. Ces tailles respectives des transistors T1 et T5 sont choisies en fonction de la tension VV que l'on cherche à obtenir au nœud Pn à la fin de la phase de précharge, en début de vie du circuit. Le transistor T5 est de moins en moins actif au fur et à mesure du vieillissement du circuit.
Dans ce mode, le transistor T5 est polarisé à une tension grille source égale à Vgon (tension sur sa grille) moins VB, pendant le temps Δtn-i, et à une tension égale à Vgoff moins VB, le reste de la trame. Le transistor
T3, quand il est actif, pendant le temps Δtn, est polarisé avec une tension grille source égale à V1 '+Va (sa tension de grille) moins Vgon (sa tension de source). Cette tension est inférieure ou égale à celle du transistor T5 à l'état actif. Pour ces raisons, la tension de seuil du transistor T5 va dériver de la même façon ou plus vite que celle du transistor T3.
La figure 8 illustre un perfectionnement de l'invention, applicable aux différents modes de réalisation déjà décrits. Il est expliqué en reprenant le mode de réalisation illustré à la figure 3.
Dans ce perfectionnement, le drain d1 du transistor T1 n'est plus connecté à la grille de g1. Il est relié à la tension Vgon. Ce schéma électrique permet d'éviter une chute de tension sur le nœud de sortie Sn-i de l'étage précédent En--I, lorsque les transistors T1 et T5 de l'étage En conduisent, dans la phase de précharge, c'est-à-dire lorsque le nœud Sn-i est à Vgon.
On prévoit alors en pratique un bus d'alimentation amenant la tension Vgon sur chacun des étages du circuit de commande.
L'invention permet d'augmenter la durée de vie de l'écran, en gérant mieux la dérive de la tension de seuil des transistors à effet de champ du circuit de commande, quelle que soit la technologie considérée (couches minces, MOS...).
Elle s'applique avantageusement aux écrans plats, notamment les écrans plats à cristal liquide ou OLEDs, du type à matrice active. Elle est particulièrement intéressante lorsque les circuits de commande de lignes (et de colonnes) sont réalisés sur le même substrat que la matrice active, comme illustré schématiquement sur la figure 9 : sur un même substrat S de l'écran, sont réalisés la matrice active MA, c'est à dire les électrodes pixels et leurs dispositifs de commutation associés, et un circuit de commande des lignes DX, réalisé suivant l'invention.

Claims

REVENDICATIONS
1. Registre à décalage réalisé avec des transistors à effet de champ de même polarité, comportant une pluralité d'étages identiques en cascade, les étages de rang pair recevant un signal d'horloge (Ck2) et les étages de rang impair recevant un signal d'horloge complémentaire (Ck1 ), et les étages étant séquences pour transmettre l'un après l'autre, une impulsion d'horloge sur un nœud de sortie, pendant une phase de sélection de ligne correspondante, chaque étage (En) comprenant :
- un transistor de sortie (T3) dont la grille est connectée à un nœud interne (Pn), dont la source forme le nœud de sortie (Sn) de l'étage, et dont le drain reçoit le signal d'horloge (Ck2) de l'étage, et comportant une capacité (C2) connectée entre sa grille et sa source,
- un premier transistor de commande (T1 ) connecté au dit nœud interne (Pn), apte à amener ledit nœud interne, à une tension de précharge dans une phase de précharge (Δtn-i) précédent ladite phase de sélection de ligne(Δtn), telle que le transistor de sortie T3 est passant pendant ladite phase de sélection de ligne,
-un deuxième transistor de commande (T2) connecté au dit nœud interne (Pn), apte à amener ledit nœud interne à une tension de blocage du transistor de sortie, dans une phase de désélection suivant ladite phase de sélection de ligne, et
- une capacité C1 connectée au dit nœud interne (Pn) et commandée par le signal d'horloge complémentaire du signal d'horloge appliqué sur le drain d3 du transistor de sortie, caractérisé en ce que chaque étage comprend un transistor supplémentaire (T5) de même technologie et de même polarité que ledit transistor de sortie, dont le drain (d5) est connecté au dit nœud interne (Pn), et dont la source est polarisée à une tension de blocage du transistor de sortie au moins pendant ladite phase de précharge, et dont la fonction est d'ajuster la tension au dit nœud interne (Pn) en fonction des performances de conduction dudit transistor de sortie (T3) pendant ladite phase de précharge et ou de sélection dudit étage.
2. Registre selon la revendication 1 , caractérisé en ce que ledit transistor supplémentaire (T5) est monté en diode, grille et drain reliés.
3. Registre selon la revendication 2, caractérisé en ce que la source dudit transistor supplémentaire (T5) est connectée au drain (d3) ou à la source (s3) dudit transistor de sortie (T3).
4. Registre à décalage selon la revendication 1 , caractérisé en ce que ledit transistor supplémentaire (T5) a sa grille reliée à la grille dudit premier transistor (Tl ).
5. Registre selon la revendication 2 ou 4, caractérisé en ce que la source (s5) dudit transistor supplémentaire (T5) est connectée à la source du dit deuxième transistor (T2).
6. Registre selon la revendication 2 ou 4, caractérisé en ce que la source (s5) dudit transistor supplémentaire (T5) est polarisée à une tension (Vgoff) correspondant au niveau bas des signaux d'horloge.
7. Registre à décalage selon l'une quelconque des revendications 1 à 6, caractérisé en ce que ledit premier transistor (Tl ) est monté en diode avec sa grille reliée à son drain, sa source (si ) étant connectée au dit nœud interne (Pn), sa grille (g1 ) recevant un signal de commande, qui est au niveau haut (Vgon) des impulsions du signal d'horloge pendant la phase de précharge, et au niveau bas sinon.
8. Registre à décalage selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la grille (g1 ) dudit premier transistor reçoit un signal de commande, qui est au niveau haut (Vgon) des impulsions du signal d'horloge pendant la phase de précharge, et au niveau bas sinon, son drain (d1 ) recevant une tension constante, correspondant au dit niveau haut (Vgon), sa source étant connectée au nœud interne (Pn).
9. Ecran plat à matrice active, comprenant un registre à décalage selon l'une quelconque des revendications précédentes pour piloter les lignes de sélection de la matrice.
10. Ecran plat à matrice active selon la revendication 9, dans lequel les transistors dudit registre et les transistors de ladite matrice active sont réalisés dans la même technologie sur un même substrat.
PCT/EP2009/060083 2008-08-08 2009-08-04 Registre a decalage a transistors a effet de champ WO2010015621A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09804560.2A EP2311042B1 (fr) 2008-08-08 2009-08-04 Registre a decalage a transistors a effet de champ
KR1020117003005A KR101525062B1 (ko) 2008-08-08 2009-08-04 전계 효과 트랜지스터들에 기초한 시프트 레지스터
US13/057,538 US8773345B2 (en) 2008-08-08 2009-08-04 Field-effect transistor shift register
JP2011521560A JP5433906B2 (ja) 2008-08-08 2009-08-04 電界効果トランジスタシフトレジスタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0804537A FR2934919B1 (fr) 2008-08-08 2008-08-08 Registre a decalage a transistors a effet de champ.
FR0804537 2008-08-08

Publications (1)

Publication Number Publication Date
WO2010015621A1 true WO2010015621A1 (fr) 2010-02-11

Family

ID=40451351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/060083 WO2010015621A1 (fr) 2008-08-08 2009-08-04 Registre a decalage a transistors a effet de champ

Country Status (7)

Country Link
US (1) US8773345B2 (fr)
EP (1) EP2311042B1 (fr)
JP (1) JP5433906B2 (fr)
KR (1) KR101525062B1 (fr)
FR (1) FR2934919B1 (fr)
TW (1) TWI508446B (fr)
WO (1) WO2010015621A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101102614B1 (ko) 2011-04-12 2012-01-10 한양대학교 산학협력단 플립 플롭 및 그를 포함하는 시프트 레지스터
US9324269B2 (en) 2011-11-14 2016-04-26 Samsung Display Co., Ltd. Scan driving device and method of driving the same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI406503B (zh) * 2010-12-30 2013-08-21 Au Optronics Corp 移位暫存器電路
CN107195266B (zh) 2011-05-13 2021-02-02 株式会社半导体能源研究所 显示装置
CN102708799B (zh) * 2012-05-31 2014-11-19 京东方科技集团股份有限公司 移位寄存器单元、移位寄存器电路、阵列基板及显示器件
CN102708824B (zh) * 2012-05-31 2014-04-02 京东方科技集团股份有限公司 薄膜晶体管阈值电压偏移补偿电路及goa电路、显示器
TWI600022B (zh) * 2012-07-20 2017-09-21 半導體能源研究所股份有限公司 脈衝輸出電路、顯示裝置、及電子裝置
KR20140020484A (ko) * 2012-08-08 2014-02-19 삼성디스플레이 주식회사 주사 구동 장치 및 그 구동 방법
CN103165190A (zh) * 2013-02-01 2013-06-19 京东方科技集团股份有限公司 移位寄存器单元、移位寄存器、阵列基板和显示装置
KR102397388B1 (ko) * 2014-07-24 2022-05-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 표시 모듈 및 전자 기기
TWI539434B (zh) * 2014-08-15 2016-06-21 友達光電股份有限公司 移位暫存器
TWI544474B (zh) * 2014-11-19 2016-08-01 友達光電股份有限公司 移位暫存器
CN105047127B (zh) * 2015-09-21 2017-12-22 京东方科技集团股份有限公司 移位寄存器单元及驱动方法、行扫描驱动电路、显示装置
CN105185412A (zh) * 2015-10-19 2015-12-23 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法、栅极驱动电路和显示装置
CN107945765B (zh) * 2018-01-10 2021-03-26 京东方科技集团股份有限公司 移位寄存器电路及其控制方法、栅极驱动电路、显示装置
US11462149B2 (en) 2020-04-24 2022-10-04 Beijing Boe Technology Development Co., Ltd. Shift register unit and method for driving the same, gate driving circuit and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050008114A1 (en) * 2003-07-09 2005-01-13 Seung-Hwan Moon Shift register, scan driving circuit and display apparatus having the same
JP2006228312A (ja) * 2005-02-16 2006-08-31 Alps Electric Co Ltd シフトレジスタ及び液晶駆動回路
WO2007013010A2 (fr) * 2005-07-26 2007-02-01 Koninklijke Philips Electronics N.V. Circuit a entrees multiples
US20070274433A1 (en) * 2006-05-25 2007-11-29 Mitsubishi Electric Corporation Shift register circuit and image display apparatus equipped with the same
WO2009030776A1 (fr) * 2007-09-07 2009-03-12 Thales Registre a decalage pour un ecran plat a matrice active

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4403298A (en) 1981-06-15 1983-09-06 Bell Telephone Laboratories, Incorporated Adaptive techniques for automatic frequency determination and measurement
FR2693005B1 (fr) 1992-06-26 1995-03-31 Thomson Lcd Disposition d'encapsulation et de passivation de circuit pour écrans plats.
US5517542A (en) * 1995-03-06 1996-05-14 Thomson Consumer Electronics, S.A. Shift register with a transistor operating in a low duty cycle
US5701136A (en) * 1995-03-06 1997-12-23 Thomson Consumer Electronics S.A. Liquid crystal display driver with threshold voltage drift compensation
FR2743662B1 (fr) * 1996-01-11 1998-02-13 Thomson Lcd Perfectionnement aux registres a decalage utilisant des transistors mis de meme polarite
FR2743658B1 (fr) 1996-01-11 1998-02-13 Thomson Lcd Procede d'adressage d'un ecran plat utilisant une precharge des pixels circuit de commande permettant la mise en oeuvre du procede et son application aux ecrans de grandes dimensions
FR2754377B1 (fr) 1996-10-07 1998-11-06 Thomson Lcd Ecran de visualisation a matrice active
FR2776107A1 (fr) 1998-03-10 1999-09-17 Thomson Lcd Procede d'affichage de donnees sur un afficheur matriciel
FR2801750B1 (fr) 1999-11-30 2001-12-28 Thomson Lcd Procede de compensation des perturbations dues au demultiplexage d'un signal analogique dans un afficheur matriciel
FR2805650B1 (fr) 2000-02-25 2005-08-05 Thomson Lcd Procede de compensation d'un circuit capacitif perturbe et application aux ecrans de visualisation matriciels
FR2826766B1 (fr) 2001-06-29 2003-10-31 Thales Avionics Lcd Matrice active de transistors en couches minces ou tft pour capteur optique ou ecran de visualisation
FR2843462B1 (fr) 2002-08-06 2004-09-24 Thales Sa Procede de fabrication d'une matrice active, dispositifs de visualisation electro-optiques et masque correspondant
JP4133244B2 (ja) * 2002-11-13 2008-08-13 三菱電機株式会社 表示装置
FR2848011B1 (fr) 2002-12-03 2005-12-30 Thales Sa Structure de matrice active pour ecran de visualisation et ecran comportant une telle matrice
FR2849220B1 (fr) 2002-12-20 2005-03-11 Thales Sa Procede de fabrication de cellules a cristaux liquides sur substrat silicium, et cellules correspondantes
US7319452B2 (en) * 2003-03-25 2008-01-15 Samsung Electronics Co., Ltd. Shift register and display device having the same
JP3974124B2 (ja) * 2003-07-09 2007-09-12 シャープ株式会社 シフトレジスタおよびそれを用いる表示装置
KR100970269B1 (ko) * 2003-10-20 2010-07-16 삼성전자주식회사 쉬프트 레지스터와, 이를 갖는 스캔 구동 회로 및 표시장치
FR2873227B1 (fr) 2004-07-13 2006-09-15 Thales Sa Afficheur matriciel
FR2889615B1 (fr) 2005-08-02 2008-06-06 Thales Sa Matrice active pour un dispositif d'affichage a cristal liquide
FR2889763B1 (fr) 2005-08-12 2007-09-21 Thales Sa Afficheur matriciel a affichage sequentiel des couleurs et procede d'adressage
FR2890759B1 (fr) 2005-09-09 2007-11-02 Thales Sa Afficheur matriciel a cristaux liquides du type a matrice active
FR2894369B1 (fr) 2005-12-07 2008-07-18 Thales Sa Procede d'adressage ameliore pour un afficheur matriciel a cristaux liquides
FR2894370B1 (fr) 2005-12-07 2008-06-06 Thales Sa Afficheur matriciel sequentiel couleur a cristaux liquides
JP5079350B2 (ja) * 2006-04-25 2012-11-21 三菱電機株式会社 シフトレジスタ回路
FR2900492B1 (fr) 2006-04-28 2008-10-31 Thales Sa Ecran electroluminescent organique
JP5525685B2 (ja) * 2006-10-17 2014-06-18 株式会社半導体エネルギー研究所 半導体装置及び電子機器
FR2910684B1 (fr) 2006-12-22 2009-04-17 Thales Sa Procede d'adressage d'un afficheur a cristaux liquides en mode sequentiel couleur.
FR2913818B1 (fr) 2007-03-16 2009-04-17 Thales Sa Matrice active d'un ecran electroluminescent organique
FR2919949B1 (fr) 2007-08-07 2010-09-17 Thales Sa Procede integre de detection d'un defaut d'image dans un ecran a cristal liquide
FR2923030B1 (fr) 2007-10-31 2010-05-21 Thales Sa Ecran a cristal liquide.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050008114A1 (en) * 2003-07-09 2005-01-13 Seung-Hwan Moon Shift register, scan driving circuit and display apparatus having the same
JP2006228312A (ja) * 2005-02-16 2006-08-31 Alps Electric Co Ltd シフトレジスタ及び液晶駆動回路
WO2007013010A2 (fr) * 2005-07-26 2007-02-01 Koninklijke Philips Electronics N.V. Circuit a entrees multiples
US20070274433A1 (en) * 2006-05-25 2007-11-29 Mitsubishi Electric Corporation Shift register circuit and image display apparatus equipped with the same
WO2009030776A1 (fr) * 2007-09-07 2009-03-12 Thales Registre a decalage pour un ecran plat a matrice active

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101102614B1 (ko) 2011-04-12 2012-01-10 한양대학교 산학협력단 플립 플롭 및 그를 포함하는 시프트 레지스터
US9324269B2 (en) 2011-11-14 2016-04-26 Samsung Display Co., Ltd. Scan driving device and method of driving the same

Also Published As

Publication number Publication date
KR20110052608A (ko) 2011-05-18
EP2311042B1 (fr) 2018-11-21
TWI508446B (zh) 2015-11-11
KR101525062B1 (ko) 2015-06-03
TW201021416A (en) 2010-06-01
FR2934919B1 (fr) 2012-08-17
US8773345B2 (en) 2014-07-08
FR2934919A1 (fr) 2010-02-12
JP5433906B2 (ja) 2014-03-05
EP2311042A1 (fr) 2011-04-20
JP2011530774A (ja) 2011-12-22
US20110134107A1 (en) 2011-06-09

Similar Documents

Publication Publication Date Title
EP2311042B1 (fr) Registre a decalage a transistors a effet de champ
EP2013863B1 (fr) Ecran electroluminescent organique
EP1851747B1 (fr) Circuit d&#39;adressage de pixels et procede de controle d&#39;un tel circuit
EP2186081B1 (fr) Registre a decalage pour un ecran plat a matrice active
EP0815562A1 (fr) Perfectionnement aux registres a decalage utilisant des transistors &#34;mis&#34; de meme polarite
FR2868589A1 (fr) Registre a decalage et son procede de commande
EP0815552A1 (fr) Procede d&#39;adressage d&#39;un ecran plat utilisant une precharge des pixels, circuit de commande permettant la mise en oeuvre du procede et son application aux ecrans de grandes dimensions
JP2010534380A (ja) しきい値電圧補償を持つシフトレジスタ回路
FR2833396A1 (fr) Affichage a cristaux liquides, ainsi qu&#39;un registre a decalage, un circuit de commande de balayage et un generateur de donnees integres pour un tel affichage
FR2863758A1 (fr) Cellule de commande electronique pour diode electroluminescente organique d&#39;afficheur a matrice active, procedes de fonctionnement et afficheur
EP2708023A1 (fr) Dispositif d&#39;adressage de lignes d&#39;un circuit de commande pour matrice active de detection
EP1958182B1 (fr) Systeme video comprenant un afficheur matriciel a cristaux liquides a procede d&#39;adressage ameliore
EP1964094B1 (fr) Procede de pilotage d&#39;un panneau d&#39;affichage par couplage capacitif
EP3925208B1 (fr) Détecteur matriciel ayant un effet pair/impair réduit
EP1964095A1 (fr) Panneau d&#39;affichage et procede de pilotage avec couplage capacitif transitoire
WO2005073948A1 (fr) Ecran d&#39;affichage d&#39;images et procede d&#39;adressage de cet ecran.
EP1771838B1 (fr) Dispositif d&#39;affichage d&#39;images et procede de commande d&#39;un dispositif d&#39;affichage
EP1697920B1 (fr) Dispositif d&#39;affichage d&#39;images a matrice active oled
EP1835374B1 (fr) Dispositif et procédé d&#39;adaptation du potentiel du substrat d&#39;un transistor MOS
FR3088507A1 (fr) Cellule logique adiabatique
FR2631503A1 (fr) Circuit d&#39;interfacage pour la delivrance des signaux analogiques d&#39;horloge a un dispositif a transfert de charges
EP1811491A1 (fr) Procede et dispositif de commande d&#39;un ecran a plasma matriciel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804560

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009804560

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13057538

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011521560

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117003005

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE