WO2010013511A1 - Fsk受信機 - Google Patents

Fsk受信機 Download PDF

Info

Publication number
WO2010013511A1
WO2010013511A1 PCT/JP2009/056370 JP2009056370W WO2010013511A1 WO 2010013511 A1 WO2010013511 A1 WO 2010013511A1 JP 2009056370 W JP2009056370 W JP 2009056370W WO 2010013511 A1 WO2010013511 A1 WO 2010013511A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
frequency
signal
correction
circuit
Prior art date
Application number
PCT/JP2009/056370
Other languages
English (en)
French (fr)
Inventor
和則 柴田
Original Assignee
アイコム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイコム株式会社 filed Critical アイコム株式会社
Priority to US12/812,793 priority Critical patent/US8831144B2/en
Priority to EP09802756.8A priority patent/EP2309690B1/en
Priority to CN200980103438.XA priority patent/CN101933299B/zh
Publication of WO2010013511A1 publication Critical patent/WO2010013511A1/ja
Priority to HK11101600.7A priority patent/HK1147621A1/xx

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits
    • H04L27/142Compensating direct current components occurring during the demodulation and which are caused by mistuning

Definitions

  • the present invention relates to an FSK receiver, and more particularly to a technique for removing a DC offset superimposed on a demodulated signal due to a frequency deviation between transmission and reception.
  • a demodulated signal may be a binary or quaternary signal.
  • a voltage at a level corresponding to the frequency of the signal is output, and a DC offset is superimposed on the demodulated signal due to the frequency deviation between transmission and reception.
  • a method of removing the DC offset using a high-pass filter or a method of extracting the DC offset using a low-pass filter and subtracting it from the demodulated waveform is used.
  • the pass band of the low-pass filter must be a value much smaller than the symbol rate, which increases the sample amount (calculation amount) in signal processing.
  • Patent Documents 1 to 3 have been proposed. Schematically, these prior arts determine the correction amount from the average value of the maximum value and the minimum value of the received symbol values, and correct the center frequency.
  • the received synchronization signal is 1 / (baud by utilizing the fact that the binary bit synchronization signal is repeated at a cycle of 2 / (baud speed) sec. (Speed) sec, that is, sampled twice at 180 ° apart, the obtained two sample values are averaged by the hold capacitor, an offset value is calculated from the value, and the offset value is subtracted from the baseband signal.
  • a center level error is detected with a simple circuit configuration, and the center frequency is corrected.
  • the received baseband signal is sampled (A / D conversion), and the maximum value and the minimum value of the sample values are detected at predetermined time intervals to obtain the center of them. A value is obtained, and the median value is subtracted from the received baseband signal after A / D conversion. On the other hand, the variation of the median value per predetermined time is obtained. Is shortened. As a result, the DC component (DC offset) of the baseband signal, which has a large amount of power even in the low frequency range, is removed without damaging the waveform, and offset removal is performed at high speed, reducing the time until data reading. ing.
  • the received signal is amplified and converted to an intermediate frequency, then analog / digital converted, and after orthogonally demodulating it, each band of I and Q is extracted by a filter.
  • the frequency-voltage conversion is performed, and the intermediate value is determined as a discrimination threshold by obtaining the maximum and minimum values of the signal, and the offset is considered by discriminating the frequency-voltage conversion signal. Discrimination is performed.
  • Patent Document 3 also shows that a predetermined gain is applied to the offset value in order to prevent the circuit from oscillating even if a large offset value is erroneously calculated due to noise.
  • the amount of calculation can be reduced to about 1/20 to 1/8 as compared with the case where a filter is used for extracting the DC offset.
  • all of the above-described conventional techniques are based on binary values. For this reason, if there is a change in the signal level, the maximum value and the minimum value are obtained, respectively, and can be dealt with by the above-described correction.
  • considering effective use of limited radio resources considering the use of multiple values of 3 or more, even if there is a change in the signal level, it is the maximum and minimum values that are the reference values for correction. It is difficult to recognize which value it is.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide an FSK receiver that can quickly perform appropriate offset removal from a multi-level FSK signal.
  • the DC offset component is corrected based on the maximum value and the minimum value of the demodulated signal, and the difference between the maximum value and the minimum value is less than a predetermined threshold TH1.
  • the correction operation is suspended. Therefore, such an FSK receiver can quickly perform appropriate offset removal from the multi-level FSK signal.
  • FIG. 2 is a block diagram illustrating a configuration example of a demodulation circuit in the FSK receiver illustrated in FIG. 1. It is a wave form diagram for demonstrating DC offset which generate
  • FIG. 5 is a diagram illustrating a configuration example of a DC offset correction circuit and a correction control circuit that perform the operation illustrated in FIG. 4. It is a block diagram which shows the example of 1 structure of the demodulation circuit in the FSK receiver which concerns on other embodiment of this invention.
  • FIG. 8 is a waveform diagram for explaining the operation of the synchronous word pattern detection circuit shown in FIG. 7.
  • FIG. 8 is a waveform diagram for explaining the operation of the synchronous word pattern detection circuit shown in FIG. 7.
  • FIG. 8 is a waveform diagram for explaining the operation of the synchronous word pattern detection circuit shown in FIG. 7.
  • FIG. 8 is a waveform diagram for explaining the operation of the synchronous word pattern detection circuit shown in FIG. 7.
  • FIG. 8 is a waveform diagram for explaining the operation of the synchronous word pattern detection circuit shown in FIG. 7.
  • FIG. 14 is a waveform diagram for explaining the operation of the 4-level FSK symbol reproduction circuit shown in FIG. 13.
  • FIG. 14 is a waveform diagram for explaining a timer counting operation in the 4-level FSK symbol reproduction circuit shown in FIG. 13.
  • FIG. 1 is a block diagram showing an electrical configuration of an FSK receiver 1 according to an embodiment of the present invention.
  • the FSK receiver 1 is configured by a double superheterodyne system.
  • an antenna 3 a bandpass filter 4
  • an amplifier 5 a mixer 6, a local oscillation circuit 7,
  • a bandpass filter 8 an amplifier 9, a mixer 10, a local oscillation circuit 11, a bandpass filter 12, an amplifier (intermediate frequency amplifier) 13, an analog / digital converter 14, and a digital / analog converter.
  • an amplifier (intermediate frequency amplifier) 13 an analog / digital converter
  • an analog / digital converter 14 an analog / digital converter
  • the signal received by the antenna 3 is filtered through a band pass filter 4, for example, a 440 MHz FSK high frequency signal component, amplified by an amplifier 5, and then mixed in the first stage. 6 is input.
  • a band pass filter 4 for example, a 440 MHz FSK high frequency signal component
  • the intermediate frequency component is filtered, amplified by the amplifier 9, and then input to the second-stage mixer 10.
  • an intermediate frequency signal (second intermediate frequency signal) of, for example, 450 kHz obtained by mixing with an oscillation signal of, for example, 45.9 MHz from the local oscillation circuit 11 is output by the bandpass filter 12.
  • the intermediate frequency component is filtered, amplified by an amplifier (intermediate frequency amplifier) 13, and then input to an analog / digital converter 14.
  • the input signal is down-sampled at, for example, 30 kHz, converted into a digital value at a rate of 96 ksps (sample per second), and input to the demodulation circuit 21.
  • the demodulating circuit 21 includes a DSP (digital signal processor) and the like.
  • the demodulating circuit 21 demodulates an audio signal, analog-converts it with a digital / analog converter 15, and makes it sound from a speaker 16. .
  • the demodulating circuit 21 outputs data corresponding to the input signal level to the digital / analog converter 17 where the data is converted to analog, and gain control of the RF amplifier 5 and the intermediate frequency amplifiers 9 and 13 is performed.
  • FIG. 2 is a block diagram showing a configuration example of the demodulation circuit 21.
  • the signal output from the analog / digital converter 14 is input to the frequency converter 22, and high frequency components are first filtered by the high pass filter 221.
  • the mixer 222 the signal component of the 12 kHz, 96 ksps signal obtained by mixing with the oscillation signal of, for example, 18 kHz, 96 ksps from the local oscillation circuit 223 is filtered by the band pass filter 224.
  • 1/2 sampling is performed, that is, the signal is down-sampled to 1 ⁇ 2 frequency (48 kHz) and input to the orthogonal transformer 24.
  • the converter 23 is provided to reduce the processing in the orthogonal transformer 24, and may be omitted if the processing in the orthogonal transformer 24 is compatible.
  • the inputted signal is divided into two and inputted to the mixers 241 and 242, respectively.
  • the one of the two divided signals is mixed with an oscillation signal from the local oscillation circuit 243 having an oscillation frequency of 12 kHz and a rate of 48 ksps, for example.
  • the other divided signal is mixed with the oscillation signal from the local oscillation circuit 243 after the phase is shifted by 90 ° by the phase shifter 244, and is orthogonally converted into an I component at a rate of 48 ksps. , Q component signals.
  • the I component and Q component signals are output via low-pass filters 245 and 246, and are down-sampled by the converters 25 and 26 to a half sampling frequency (24 kHz) and pass through the low-pass filters 27 and 28. It is input to the phase detector 29.
  • the converters 25 and 26 are provided in order to reduce the burden of the band limiting process in the low-pass filters 27 and 28, and may be omitted if the process in the low-pass filters 27 and 28 is compatible. Good.
  • the obtained phase is subtracted by the adder 301 of the frequency detector 30 from the phase one sample before delayed by the delay unit 302.
  • the amount of the frequency deviation which is the differential amount of the phase is obtained.
  • the phase detector 29 and the frequency detector 30 constitute a detection circuit, and delay detection is performed by them, and the output thereof is overrun at a sampling rate (24 kHz) that is 10 times the symbol rate (2.4 kHz).
  • a sampled demodulated signal is obtained.
  • the demodulated signal is input from the inverse sinc filter 31 to the quaternary FSK symbol reproduction circuit 33 and the synchronization word pattern detection circuit 34 via the route raised cosine filter 32.
  • the inverse sinc filter 31 and the root raised cosine filter 32 function as a root cosine roll-off filter together with the sinc filter inserted on the transmission side, and realize a Nyquist filter together.
  • the sinc filter 31 suppresses the high frequency side, and the inverse sinc filter 31 restores it to the original (emphasizes the high frequency side), thereby realizing band limitation.
  • the quaternary FSK symbol reproduction circuit 33 demodulates the quaternary FSK symbol data from the amplitude value (frequency deviation) of the demodulated signal.
  • the quaternary FSK symbol recovery circuit 33 internally generates a symbol clock as described later, and takes in the amplitude value (frequency deviation) at the timing of the symbol clock of 2.4 kHz.
  • the map it is determined whether the amplitude value (frequency deviation) corresponds to the symbol value “00”, “01”, “10”, or “11” in the 4-level FSK, and the symbol data is reproduced. I do.
  • a reset signal is input to the quaternary FSK symbol reproduction circuit 33 from the synchronization word pattern detection circuit 34 at the detection timing of the synchronization word pattern, and the timing of the internal symbol clock is adjusted.
  • the symbol data demodulated by the quaternary FSK symbol reproduction circuit 33 is quaternary, so it is 2 bits and is output to the frame generation circuit 35 as a signal of the symbol rate 2.4 ksps.
  • the frame generation circuit 35 configures the symbol data in a predetermined frame when the synchronization word pattern detection circuit 34 detects a synchronization word pattern as described later, that is, when reception is performed normally.
  • the correction of the symbol clock by the synchronous word pattern detection circuit 34 and the reproduction of the symbol data by the quaternary FSK symbol reproduction circuit 33 will be described in detail later.
  • the obtained symbol data is decompressed from the quaternary data having the sampling frequency of 2.4 kHz by using the predetermined audio codec circuit in the audio demodulator 36, and the compressed signal is expanded to 8 kHz. , 16-bit PCM audio signal.
  • the PCM audio signal is oversampled by the converter 37 at a frequency six times (48 kHz), passes through a low-pass filter 38, is input to a digital / analog converter 39, is demodulated into an analog audio signal, and is amplified by an amplifier 40. Then, the sound is produced from the speaker 41.
  • the conversion data from the analog / digital converter 14 is down-sampled by the converter 45 to a 1/24 frequency (4 kHz) and input to the RSSI circuit 46.
  • the RSSI circuit 46 the DC component mixed in the analog / digital converter 14 is removed by the high-pass filter 461, and then the absolute value is obtained by the absolute value circuit 462 and further averaged by the low-pass filter 463 to be the RSSI level. Is required.
  • the RSSI level is given to an unillustrated indicator and the like, and is input to the AGC arithmetic circuit 42.
  • the AGC calculation circuit 42 calculates an IF gain based on the RSSI level, and the data is converted into an analog signal by the analog / digital converter 39 to control the gain of the RF amplifier 5 and the intermediate frequency amplifiers 9 and 13. Is called.
  • the DC offset correction circuit 50 which is a correction means, has a maximum value “11” and a minimum value “00” of the demodulated signal.
  • the frequency converter 22 is provided in order to reduce processing at a later stage, and may be omitted.
  • the local oscillation circuit 243 outputs an oscillation signal having an oscillation frequency of 30 kHz and a rate of 96 ksps, and the DC offset correction based on the frequency deviation is performed by controlling the oscillation frequency of the local oscillation circuit 243.
  • FIG. 3 is a waveform diagram showing the state of the correction.
  • the frequency deviation at the minimum value “00” is ⁇ 1050 Hz
  • the frequency deviation at “01” is ⁇ 350 Hz
  • the frequency deviation at “10” is +350 Hz with respect to the carrier frequency f0.
  • the frequency deviation at the maximum value “11” is set to +1050 Hz.
  • the symbol values obtained at the sample points are the above-described frequencies.
  • the sample point is a symbol determination point that is the point with the smallest deviation when the eye pattern is considered.
  • the carrier frequency F0 'on the receiving side does not match the carrier frequency f0 on the transmitting side, as shown in FIG. 3 (b)
  • a deviation occurs in the symbol value obtained at the sample point.
  • FIG. 4 is a diagram for explaining the control operation of the correction control circuit 51 as the first correction control means in addition to the correction operation of the DC offset correction circuit 50.
  • the waveform data as shown in FIG. 4A is oversampled at 24 kHz, which is 10 times the symbol rate (2.4 kHz) (24 ksps). ) Is output.
  • sample values (frequency deviations) P1 to P9 indicated by black circles in FIG. 4A are obtained.
  • the output of the root raised cosine filter 32 is actually data of the peak value of the DC waveform as shown in FIG. 4A.
  • the explanation is easy to understand.
  • the scale is represented by the frequency of the frequency deviation by replacing the DC value with the frequency.
  • the DC offset correction circuit 50 takes in the sample values P1 to P9 in order to perform DC offset correction, and a value larger than the existing value is input as shown in FIG. 4 (d). If it goes, update it as the maximum value. Similarly, as shown in FIG. 4E, the DC offset correction circuit 50 updates a minimum value when a value smaller than the existing value is input. On the other hand, as shown in FIG. 4F, the correction control circuit 51 obtains a difference between the maximum value and the minimum value, and when the difference is less than a predetermined threshold value TH1, the DC offset correction circuit 50 The correction operation is stopped, and when the threshold value TH1 is exceeded, the correction operation is performed and the maximum value and the minimum value are reset. That is, the maximum value and the minimum value are updated to the symbol value at the next sample point.
  • the threshold TH1 is smaller than (maximum frequency deviation ⁇ minimum frequency deviation) and is n-value modulation (n is 3 or more), (maximum frequency deviation ⁇ minimum frequency deviation) ⁇ (n ⁇ 2) It is larger than / (n-1) and is selected in consideration of a margin as appropriate.
  • the frequency deviation at the first sample value P1 is ⁇ 350 Hz, and it is registered in both the maximum value and the minimum value. Since the frequency deviation in the next sample value P2 is +1050 Hz, the maximum value is updated to this value, and the difference between the maximum value and the minimum value is 1400 Hz. Therefore, the correction operation of the DC offset is prohibited.
  • the frequency deviation at the sample value P3 is +1400 Hz, the maximum value is updated to this value, and the difference between the maximum value and the minimum value is 1750 Hz. Therefore, the correction of the DC offset is performed. Operation is performed. In the correcting operation, as shown in FIG. 4G, an average value of the maximum value and the minimum value corresponding to ⁇ f in FIG.
  • the local oscillation circuit 223 includes a digital VCO
  • the DC offset correction circuit 50 changes the timing of reading waveform (representing amplitude level) data from the sin table that is the basis of the oscillation waveform.
  • the oscillation frequency can be changed, and the read timing is changed to a timing at which the oscillation frequency is higher by 525 Hz than the current oscillation frequency.
  • the frequency deviation data output from the adder 301 is supplied to the squelch circuit 43.
  • the noise component is extracted by the high-pass filter 431
  • the absolute value of the noise is obtained by the absolute value circuit 432, and further averaged by the low-pass filter 433.
  • the correction control circuit 52 prohibits the DC offset correction circuit 50 from adjusting the oscillation frequency of the local oscillation circuit 223 (or 243) even when the squelch level (noise level) is larger than a predetermined threshold value TH2. This prevents erroneous correction due to noise.
  • FIG. 5 is a diagram illustrating a configuration example of the DC offset correction circuit 50 and the correction control circuits 51 and 52.
  • the 24 ksps demodulated signal output from the root raised cosine filter 32 is output to the 2.4 ksps signal output from the quaternary FSK symbol recovery circuit 33 in the sampler 501, similarly to the quaternary FSK symbol recovery circuit 33.
  • the signal is sampled at the symbol rate clock, and is subtracted by the subtractor 502 after subtracting frequency deviation information corresponding to the DC offset ⁇ f by synchronous word pattern detection, which will be described later, and input to the sample hold circuits 503 and 504.
  • the sample hold circuit 503 compares the sequentially input data with the store data from the reset timing, and when the data larger than the store data is input, the sample hold circuit 503 obtains the maximum value by updating the store data to the input value. ,keeping.
  • the sample-and-hold circuit 504 compares the sequentially input data with the store data from the reset timing, and when data smaller than the store data is input, updates the store data to the input value, thereby reducing the minimum value. The value is obtained and held.
  • These maximum value and minimum value data are added to each other by an adder 505, and divided by 1 ⁇ 2 by a divider 506. Thus, information on the frequency deviation is obtained.
  • the correction control circuit 51 resets the maximum value held in the sample hold circuit 503 and the minimum value held in the sample hold circuit 504. After this reset, the sample hold circuits 503 and 504 compare the sequentially input data with the store data, and update the store data according to the result of this comparison.
  • the information is input to the conversion circuit 508 via a low-pass filter 507 for noise removal, and is converted into the read timing of the waveform data of the digital VCO constituting the local oscillation circuit 223 (or 243). 223 (or 243).
  • the correction control circuit 51 subtracts the minimum value held in the sample and hold circuit 504 from the maximum value held in the sample and hold circuit 503 and obtains a difference between them.
  • the threshold determination unit 512 that compares the obtained difference with the threshold TH1 of 1500 Hz and the output from the divider 506 are allowed when the difference is equal to or greater than the threshold TH1 and less than the threshold TH1.
  • a gate 513 for blocking is provided.
  • the correction control circuit 52 includes a threshold determination unit 521 that compares the squelch level output from the squelch circuit 43 with a predetermined threshold TH2, and an output output from the divider 506.
  • a gate 522 is configured to permit when the threshold value is less than or equal to the threshold value TH2 and block when the threshold value is greater than the threshold value TH2.
  • the DC offset component generated due to the frequency deviation of transmission and reception is corrected by the DC offset correction circuit 50 from the median value of the maximum value and the minimum value of the demodulated signal. Therefore, a correction control circuit 51 is provided, and the correction control circuit 51 pauses the correction by the DC offset correction circuit 50 when the difference between the maximum value and the minimum value is less than a predetermined threshold value TH1.
  • the DC offset correction circuit 50 performs offset correction in the local oscillator 223 in the frequency converter 22 that obtains an intermediate frequency signal from the received high frequency signal, and in the orthogonal converter 24 that orthogonally transforms the obtained intermediate frequency signal. Since it is performed by controlling the oscillation frequency of one of the local oscillators 243, it is not necessary to change the characteristics of the bandpass filter 224 and the lowpass filters 245, 246; Channel signal removal capability can also be increased.
  • the correction control circuit 52 stops the correction operation by the DC offset correction circuit 50 even when the noise level is high in response to the output of the squelch circuit 43, so that it is possible to prevent malfunction due to noise. .
  • the DC offset correction circuit 50 performs the offset correction by orthogonally transforming the local oscillator 223 in the frequency converter 22 that obtains the intermediate frequency signal from the received high frequency signal, or the obtained intermediate frequency signal, as described above. Although this is done by controlling the oscillation frequency of the local oscillator 243 in the converter 24, as another embodiment, as shown by the demodulator circuit 61 in FIG. The average value (median value) of the maximum value and the minimum value is subtracted by the subtractor 62 from the output signal level of the 24 ksps demodulated signal output from the cosine filter 32 so that the demodulated signal level itself is directly corrected. It may be. In this case, the local oscillator 223 or 243 is not controlled.
  • the oscillation frequency of the local oscillator 223 or 243 is controlled as described above, the center frequency of the obtained intermediate frequency signal always coincides with the center frequency of the band pass filter 224 or the low pass filters 245 and 246. And the passbands 27 and 28 are small, signal deterioration is small, and high sensitivity can be obtained.
  • FIG. 7 is a block diagram showing a configuration example of the synchronous word pattern detection circuit 34.
  • the synchronization word pattern detection circuit 34 generally includes a memory 341 that stores oversampled values for a predetermined number of received word patterns (the demodulated signals), for example, 10 symbol periods, and a moving average value of the oversampled values.
  • An average value calculation unit 342 for calculating, a register 343 storing the average value for the predetermined number of predetermined synchronization word patterns as an ideal average value, and the ideal average value and the average value stored in the register 343
  • a subtractor 344 for obtaining a DC offset from the difference from the moving average value obtained by the calculation unit 342, a subtractor 345 for subtracting the DC offset from each oversampled value of the received word pattern, and the synchronous word pattern Stored memory 346 and received word pass after DC offset correction in the subtractor 345.
  • a correlation calculator 347 for performing a correlation calculation between the screen and the synchronization word pattern stored in the memory 346, a register 348 for storing a predetermined threshold TH3, and a correlation obtained by the correlation calculator 347.
  • the comparator 349 recognizes the synchronization word candidate, and the comparator 349 recognizes the synchronization word candidate.
  • FIG. 8 to 12 are waveform diagrams for explaining the operation of the synchronous word pattern detection circuit 34 as described above.
  • oversampling is performed at a frequency 10 times that of the symbol clock, but these figures show data every other sample in order to avoid complication of the drawing. (This is equivalent to the case where oversampling is performed at a frequency five times the symbol clock).
  • the 24 ksps received word pattern (the demodulated signal) output from the route raised cosine filter 32 is input to the memory 341 and shown in FIG. 8 at times..., T ⁇ 2, t ⁇ 1, and t0.
  • every time an oversample value is input it is sequentially updated and stored in the memory 341 for the latest 10 symbol periods.
  • oversampled values are indicated by continuous solid lines, and symbol values P11 to P20 are indicated by circles.
  • the average value calculation unit 342 calculates the average value and sequentially obtains the moving average value of the oversampled values as shown in FIG. Thereafter, the average value for the 10 symbol periods in the synchronous word pattern stored in the register 343 is subtracted from the moving average value output from the average value calculation unit 342 in the subtractor 344 serving as an offset calculation means. Thus, the DC offset (frequency correction amount) ⁇ f is obtained. Further, a subtractor 345 subtracts the DC offset ⁇ f from each oversampled value of the received word pattern stored in the memory 341, thereby obtaining a received word pattern after DC offset correction.
  • the FSK for example, 80 or 40 msec frame data is configured to include a synchronization word including a synchronization burst and a traffic channel that is main data.
  • the sync word pattern stored in the memory 346 is the sync word pattern.
  • the correlation value F thus obtained is compared with the threshold value TH3 stored in the register 348 in the comparator 349 as the candidate determination means, in the example shown in FIGS. 8 to 10, as shown in FIG.
  • the correlation value F is greater than the threshold value TH3 at time t-5 five samples before, and the comparator 349 determines that a synchronization word candidate has been received, and uses the time t-5 as a provisional symbol timing. Is determined. That is, in this correlation calculation (convolution), the received word pattern is shifted in the y-axis direction in the graphs shown in FIGS. 8 to 11 and is sequentially input by performing offset correction. This is equivalent to shifting in the x-axis direction, and matching is determined for a fixed synchronous word pattern.
  • the symbol comparator 340 which is the final determination means, corrects the DC offset ⁇ f for the symbol values P11 to P20 as shown in FIG. 12, and the corrected symbol value P11 ′ ⁇ P20 'are compared with the corresponding symbol values in the sync word pattern stored in the memory 346, and if all the symbol errors are within a certain range, the sync word pattern is finally It is determined that it has been detected.
  • the symbol comparator 340 makes a final synchronization determination.
  • the symbol comparator 340 gives a reset signal to the quaternary FSK symbol recovery circuit 33 at the detection timing of the synchronization word pattern, as will be described later, and adjusts the timing of the internal symbol clock. . Further, the symbol comparator 340 sets the provisional DC offset ⁇ f used for the determination as described above as a true value, and supplies the corresponding value to the quaternary FSK symbol reproduction circuit 33 and the DC offset correction circuit 50 as a frequency. Given as deviation information, DC offset correction is performed as described later until the end of communication.
  • the symbol comparator 340 detects the synchronization word pattern in the quaternary FSK symbol reproduction circuit 33 and the frame generation circuit 35, that is, is normally received. And the symbol reproduction in the quaternary FSK symbol reproduction circuit 33 and the frame configuration in the frame generation circuit 35, that is, the audio output is permitted.
  • the correlation value is equal to or lower than the threshold value TH3 by the comparator 349 and when the synchronization word pattern is not detected by the symbol comparator 340, the control output as described above is not performed.
  • the threshold for determining the synchronization word detection in the symbol comparator 340 is strict. can do.
  • the final detection condition is that the error is within a certain range for all the symbol points. Establishment can be performed promptly and with high accuracy.
  • the quaternary FSK symbol recovery circuit 33 obtains the symbol clocks for obtaining the sample values (frequency deviations) P1 to P9 and P3 ′ to P9 ′ in FIG. Is to be corrected.
  • FIG. 13 is a block diagram showing a configuration example of the quaternary FSK symbol reproduction circuit 33.
  • the demodulated signal oversampled to 10 times the symbol rate output from the root raised cosine filter 32 is input to the subtractor 330, and the synchronous word pattern detection circuit
  • the frequency deviation information corresponding to the DC offset ⁇ f obtained by detecting the synchronization word pattern by the 34 symbol comparators 340 is subtracted and then input to the shift register 331-1.
  • Two stages of shift registers 331-2 and 331-3 are cascade-connected to the shift register 331-1, and are sequentially shifted when new sample data is input. Therefore, the newest data is held in the shift register 331-1 and the old data is held in the shift register 331-3 for three samples in the oversample period.
  • the subtraction of the frequency deviation information by the subtractor 330 is limited to the case where the synchronization word pattern is detected by the synchronization word pattern detection circuit 34, that is, when the frame is received and is normally received. . Otherwise, compensation is performed by controlling the oscillation frequency of the local oscillators 223 and 243 by the DC offset correction circuit 50 or by subtracting the DC offset component in the subtractor 62.
  • the correction by the DC offset ⁇ f detected at that time is given priority, and the DC offset ⁇ f can be compensated quickly.
  • the subtractor 502 subtracts the frequency deviation information corresponding to the DC offset ⁇ f, so that the synchronization word pattern detection circuit 34 determines the synchronization word pattern.
  • the frequency deviation information is subtracted by the subtractor 330 of the quaternary FSK symbol reproduction circuit 33 as described above, and the DC offset correction circuit 50 is operated under the same conditions as when the DC offset is compensated. Correction operation can be performed. That is, as described above, the DC offset correction based on the detection of the synchronization word pattern in the synchronization word pattern detection circuit 34 is performed preferentially in the quaternary FSK symbol reproduction circuit 33, and the correction and the correction in the DC offset correction circuit 50 are performed.
  • the subtractor 502 subtracts the frequency deviation information so that there is no overlap. While the synchronous word pattern is not detected, the symbol comparator 340 sets the frequency deviation information to 0, so that the correction to the local oscillators 223, 243, etc. in the DC offset correction circuit 50 fully functions. It will be.
  • the communication (call) in which the synchronization word pattern is detected uses the frequency deviation information (DC offset) obtained in the first synchronization word, and the frequency deviation until the communication (call) is completed. Continue to use information (DC offset).
  • the synchronization word pattern detection circuit 34 detects the synchronization word pattern, the synchronization word pattern detection circuit 34 can detect the synchronization word by normal symbol reproduction in the quaternary FSK symbol reproduction circuit 33 thereafter. Does not perform the synchronization word pattern detection process until the communication (call) is completed. For this reason, since reception is performed with a frequency deviation, the compatibility of the band-pass filter 224 and the low-pass filters 245, 246; 27, 28 is worse than the correction operation by the DC offset correction circuit 50. However, since the synchronization word pattern is detected, a signal having a level that does not cause a problem in demodulation is input to the quaternary FSK symbol reproduction circuit 33, and the reproduced symbol data has no error and no problem. .
  • the stored contents of the shift registers 331-1 to 331-1 are taken into the shift registers 334-1 to 334-1 at the timing of the symbol clock generated by the timer 333 by the gate circuit 332, respectively. . Therefore, in each shift register 334-2, 334-1, and 334-3, the sampling values at the sample point T2 near the ideal symbol point P and the sample points T1 and T3 before and after that shown in FIG. 14 are stored. . Then, the sampling value at the sample point T2 is input to the symbol determination unit 335, and the symbol values of the actual symbol point P estimated from the sampling value at the sample point T2 are “00”, “01”, “10”. , “11” is most likely, and the determination result is output to the frame generation circuit 35 as the 2-bit, 2.4 ksps signal.
  • an ideal amplitude level corresponding to the symbol value of the determination result is output from the symbol determination unit 335, and is subtracted from the store contents of the shift registers 334-1 to 33-1 in the subtractors 336-1 to 336-1.
  • the Among the subtraction results that is, the magnitudes V1 to V3 of errors (difference values) from the ideal amplitude level, the shift registers 334-1 and 3, that is, the magnitudes of the sampling value errors V1 and V3 at the sampling points T1 and T3. Is input to the selector 337 to determine which error is greater. Then, the sample with the smaller error, that is, the sample point T3 in FIG. 14, is output to the timing correction circuit 338 as data (index) in the direction in which the sample point T2 should be moved.
  • the magnitude V2 of the error in the subtractor 336-2 is input to the timing correction circuit 338 as correction amount data.
  • the timing correction circuit 338 corresponds to the correction amount data.
  • the count value is combined with a sign as correction direction data, and is output to the timer 333 via the loop filter 339 as a timing control signal.
  • the loop filter 339 includes a low-pass filter such as an IIR filter, and the symbol clock becomes more stable as the time constant becomes larger, and the follow-up property becomes better as the time constant becomes smaller.
  • the timer 333 is provided with a self-running counter such as a digital VCO, and its oscillation frequency is set to a symbol frequency.
  • a self-running counter such as a digital VCO
  • the overflow is removed and reset.
  • the symbol timing is the timing when the phase of the digital VCO passes through 0 °.
  • the timer 333 adds 3000 for each oversample point T, A symbol clock capable of sampling a symbol value of a symbol rate of 2.4 ksps can be reproduced from oversampled data of 24 ksps.
  • the timer 333 corresponds to the error V2 at the sample point T2 as a correction amount, for example, 500, for the next symbol clock as the correction direction in the direction of the sample point T3, that is, the advance direction.
  • the count value when the phase of the digital VCO is 0 ° is initialized to 500 so that the count is advanced.
  • the symbol timing is advanced only while the timer 333 counts 500, and the next sample point T2 approaches the actual symbol point P.
  • the timer 333 overflows at 30500, and is reset at this time, and is corrected to 500 of the present correction value 500, excluding the overflow. Is added and the count operation is restarted.
  • overflow occurs at 31000.
  • the sampling timing is accelerated by one sample.
  • FIG. 15 shows a case where a negative value is set as the initial value and the symbol timing is delayed as an example of the counting operation of the timer 333.
  • Increasing the maximum value of the timer 333 increases the resolution, and increasing the oversample sampling rate improves the correction accuracy.
  • the error V2 at the sample point T2 is smaller than a predetermined value, stability can be improved by providing a dead zone in which the timing correction is not performed.
  • the timer 333 is forcibly reset to 0 at the detection timing of the synchronization word pattern by the reset signal output from the symbol comparator 340 of the synchronization word pattern detection circuit 34, and restarts the count operation.
  • the quaternary FSK symbol reproduction circuit 33 samples the demodulated signal in order to sample the demodulated signal at a predetermined symbol point and reproduce the demodulated data from the amplitude value of the obtained symbol data.
  • the symbol data obtained by oversampling the signal at a frequency higher than the symbol clock and the symbol data of three points including the sample point T2 close to the symbol point P and the sample points T1 and T3 before and after the shift.
  • Difference values from the ideal amplitude level to be obtained at the symbol point P by the registers 331-1 to 33, the gate circuit 332, the shift registers 334-1 to 33, the symbol determination unit 335, and the subtractors 336-1 to 333-1.
  • V1 to V3 are obtained, and the measurement with the smaller difference value V1 or V3 among the preceding and following sample points T1 and T3.
  • the selector 337 serving as a selection means, and the timing correction circuit 338 is self-running for the time corresponding to the difference value V2 at the sample point T2 on the sample T3 side selected by the selector 337. The sampling timing of the next symbol point is moved.
  • the median value is changed to “00” and “01” or “10” and “11”.
  • the deviation is corrected at every oversampling period at the maximum.
  • the direction in which the timing should be corrected can be detected. In this way, a stable symbol clock can be reproduced from the multilevel modulation wave.
  • Such a symbol clock recovery method is not limited to frequency modulation but can be applied to various modulation schemes in which an eye pattern such as phase modulation exists.
  • the self-running timer 333 and loop filter 339 are forcibly reset at the detection timing of the synchronization word pattern in the synchronization word pattern detection circuit 34, so that the accuracy from the head of the main body data (traffic channel) is increased. High symbol clock can be reproduced. Furthermore, since the subtractor 330 corrects the DC offset from the demodulated signal, the symbol data obtained at the sample point T2 can be brought close to the ideal amplitude level, and a more stable clock is reproduced. be able to.
  • An FSK receiver includes a correction unit that corrects a DC offset component from a median value of a maximum value and a minimum value of a demodulated signal, and a difference between the maximum value and the minimum value that is less than a predetermined threshold TH1
  • the first correction control unit for stopping the correction operation by the correction unit.
  • the signal received by the antenna is frequency-converted as necessary, the obtained intermediate frequency signal is digitally converted and input to the demodulation circuit, and the intermediate frequency signal is input to the demodulation circuit.
  • symbol data is obtained from an amplitude value (frequency deviation) detected by quadrature detection of the I component and Q component obtained by orthogonal transformation and further delay detection, this is caused by the frequency deviation of transmission and reception.
  • a first correction control unit is provided, and the first correction control unit When the difference from the minimum value is less than the predetermined threshold TH1, the correction by the correction unit is suspended.
  • the threshold TH1 is smaller than (maximum frequency deviation ⁇ minimum frequency deviation) and is n-value modulation (n is 3 or more), (maximum frequency deviation ⁇ minimum frequency deviation) ⁇ (n ⁇ 2) It is set to a value larger than / (n-1) and having a margin as appropriate.
  • offset correction is performed when a signal having a difference between the maximum value and the minimum value of the demodulated signal equal to or greater than the threshold value TH1 is obtained, it is not necessary to monitor the signal for a long time, and the offset correction is performed quickly. be able to.
  • the FSK receiver further includes a frequency converter that obtains an intermediate frequency signal from a received high-frequency signal by using the first local signal output from the first local oscillator, and the correction The unit corrects the DC offset component by controlling the frequency of the first local oscillator in the frequency converter.
  • an intermediate frequency signal obtained by frequency-converting the received high-frequency signal by using the second local oscillation signal output from the second local oscillator is orthogonally transformed.
  • An orthogonal transformer is further provided, and the correction unit corrects the DC offset component by controlling the frequency of the second local oscillator in the orthogonal transformer.
  • the correction unit corrects the DC offset component by shifting the level of the demodulated signal.
  • This configuration can prevent erroneous offset correction due to noise.
  • an FSK receiver can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Noise Elimination (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

 本発明にかかるFSK受信機では、復調信号の最大値および最小値に基づいてDCオフセット成分の補正動作が行われ、前記最大値と前記最小値との差が予め定める閾値TH1未満である場合には、前記補正動作が休止される。このため、このようなFSK受信機は、多値FSK信号から、適切なオフセット除去を迅速に行うことができる。

Description

FSK受信機
 本発明は、FSK受信機に関し、特に、送受信の周波数偏差の関係で復調信号に重畳したDCオフセットを除去する技術に関する。
 例えば400MHz帯のデジタル無線機のように、前記FSK(Frequency Shift Keying)変調方式を用いる受信機の場合、復調は、周波数-電圧変換で行われ、復調信号としては、2値や4値の複数の周波数に対応したレベルの電圧が出力され、送受信の周波数偏差の関係で、前記復調信号にDCオフセットが重畳する。このため、従来では、ハイパスフィルタを用いて前記DCオフセットを除去する方法や、ローパスフィルタを用いて前記DCオフセットを抽出し、それを復調波形から減算する方法が用いられている。
 前記ハイパスフィルタを用いる方法では、同じシンボルが連続した場合、或る一定のDC成分を持った復調信号が得られることになるが、前記ハイパスフィルタを通過するとそのDC成分が失われ、感度が低下してしまう。また、前記ローパスフィルタを用いる方法では、そのローパスフィルタの通過帯域は、シンボルレートより遙かに小さい値としなければならず、信号処理におけるサンプル量(演算量)が増えてしまう。
 そこで、このような問題に対応するために、例えば特許文献1ないし特許文献3に開示の技術が提案されている。概略的に、これらの先行技術は、受信シンボル値の最大値と最小値との平均値から補正量を決定し、中心周波数の補正を行うものである。
 先ず、特許文献1に開示の中心誤差検出補正回路では、2値のビット同期信号が2/(baud速度)sec周期の繰返しであることを利用することによって、受信した同期信号が1/(baud速度)sec、すなわち180°離して2回標本化され、この得られた2つの標本値がホールドキャパシタで平均化され、その値からオフセット値が算出され、このオフセット値がベースバンド信号から減算される。これによって、簡単な回路構成で中心レベルの誤差が検出され、中心周波数の補正が行われる。
 また、特許文献2に開示のオフセット電圧補正回路では、受信ベースバンド信号がサンプリング(A/D変換)され、所定時間毎にそのサンプル値の最大値と最小値とを検出することによってそれらの中央値が求められ、その中央値がA/D変換後の受信ベースバンド信号から減算される一方、前記中央値の前記所定時間当りの変動が求められ、その変動量が大きくなる程、前記所定時間が短くされる。これによって、低周波域にも大きな電力を持つベースバンド信号の直流成分(DCオフセット)が、波形を損なうことなく除去されるとともに、高速にオフセット除去が行われ、データ読取りまでの時間が短縮されている。
 また、特許文献3に開示の半導体回路装置では、受信信号が増幅および中間周波に変換された後に、アナログ/デジタル変換され、それを直交復調した後に、I,Qそれぞれの帯域をフィルタで抽出することによってそれが周波数-電圧変換され、その信号の最大値および最小値を求めることによってそれらの中間値が弁別閾値とされ、前記周波数-電圧変換された信号を弁別することによって、オフセットを考慮した弁別が行われる。またこの特許文献3には、ノイズにより誤って大きなオフセット値を算出しても、回路が発振状態となることを防ぐために、オフセット値に所定のゲインを掛けることも示されている。
 これら上述の従来技術では、前記DCオフセットの抽出にフィルタを用いる場合に比べて、演算量を1/20~1/8程度に削減することができる。しかしながら、これら上述の従来技術は、何れも2値を前提としている。このため、信号レベルに変化があれば、それぞれ前記最大値および最小値となり、上述の補正で対応することができる。しかしながら、限られた電波資源を有効に活用するために、3値以上の多値での使用を考えると、信号レベルに変化があっても、それが、補正の基準値である最大値および最小値のいずれであるのかが認識することが困難である。例えば「00」,「01」,「10」,「11」の4値の場合、「00」と「01」、或いは「10」と「11」のように、中央値を跨がない値や、「00」と「10」、「01」と「11」のように、中央値を跨いでも、その中央値からの偏差が不均等な値、に基づいてオフセット補正が行われる場合、周波数偏差が正確に検出されず、送信周波数に受信周波数を一致させることができなかったり、シンボルを復調することができなかったりしてしまう。一方、信号レベルを長時間監視すれば、前記最大値および最小値を正確に検出することができる可能性は、高くなるが、シンボルの復調、たとえば音声出力の開始までに時間が掛かってしまう。
特開平11-298542号公報 特許第3674745号公報 特開2006-94245号公報
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、多値FSK信号から、適切なオフセット除去を迅速に行うことができるFSK受信機を提供することである。
 本発明にかかるFSK受信機では、復調信号の最大値および最小値に基づいてDCオフセット成分の補正動作が行われ、前記最大値と前記最小値との差が予め定める閾値TH1未満である場合には、前記補正動作が休止される。このため、このようなFSK受信機は、多値FSK信号から、適切なオフセット除去を迅速に行うことができる。
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。
本発明の実施の一形態に係るFSK受信機の電気的構成を示すブロック図である。 図1に示すFSK受信機における復調回路の一構成例を示すブロック図である。 4値FSKにおいて、送受信周波数ずれによって受信信号に発生するDCオフセットを説明するための波形図である。 図1に示すFSK受信機におけるDCオフセット補正動作および補正制御動作を説明するための図である。 図4で示す動作を行うDCオフセット補正回路および補正制御回路の一構成例を示す図である。 本発明の実施の他の形態に係るFSK受信機における復調回路の一構成例を示すブロック図である。 同期ワードパターン検出回路の一構成例を示すブロック図である。 図7に示す同期ワードパターン検出回路の動作を説明するための波形図である。 図7に示す同期ワードパターン検出回路の動作を説明するための波形図である。 図7に示す同期ワードパターン検出回路の動作を説明するための波形図である。 図7に示す同期ワードパターン検出回路の動作を説明するための波形図である。 図7に示す同期ワードパターン検出回路の動作を説明するための波形図である。 4値FSKシンボル再生回路の一構成例を示すブロック図である。 図13に示す4値FSKシンボル再生回路の動作を説明するための波形図である。 図13に示す4値FSKシンボル再生回路におけるタイマのカウント動作を説明するための波形図である。
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。
 図1は、本発明の実施の一形態に係るFSK受信機1の電気的構成を示すブロック図である。このFSK受信機1は、ダブルスーパーヘテロダイン方式で構成されており、例えば、図1に示すように、アンテナ3と、バンドパスフィルタ4と、アンプ5と、混合器6と、局部発振回路7と、バンドパスフィルタ8と、アンプ9と、混合器10と、局部発振回路11と、バンドパスフィルタ12と、アンプ(中間周波アンプ)13と、アナログ/デジタル変換器14と、デジタル/アナログ変換器15と、スピーカ16と、デジタル/アナログ変換器17と、復調回路21とを備えている。
 このFSK受信機1において、アンテナ3で受信された信号は、バンドパスフィルタ4を介して、たとえば440MHzのFSK高周波信号の成分が濾波され、アンプ5で増幅された後に、1段目の混合器6に入力される。混合器6では、局部発振回路7からの、たとえば486.35MHzの発振信号と混合されることによって得られた、たとえば46.35MHzの中間周波信号(第1の中間周波信号)は、バンドパスフィルタ8によって、その中間周波成分が濾波され、アンプ9で増幅された後に、2段目の混合器10に入力される。混合器10では、局部発振回路11からの、たとえば45.9MHzの発振信号と混合されることによって得られた、たとえば450kHzの中間周波信号(第2の中間周波信号)は、バンドパスフィルタ12によって、その中間周波成分が濾波され、アンプ(中間周波アンプ)13で増幅された後に、アナログ/デジタル変換器14に入力される。アナログ/デジタル変換器14では、入力信号が、たとえば30kHzでダウンサンプリングされ、96ksps(sample per second)のレートのデジタル値に変換されて、復調回路21に入力される。
 前記復調回路21は、DSP(デジタルシグナルプロセッサ)などを備えて構成され、この復調回路21では、音声信号が復調されて、デジタル/アナログ変換器15でアナログ変換され、スピーカ16から音響化される。また、前記復調回路21は、その入力信号レベルに応じたデータをデジタル/アナログ変換器17に出力し、アナログ変換されて、RFアンプ5、中間周波アンプ9,13のゲイン制御が行われる。
 図2は、前記復調回路21の一構成例を示すブロック図である。前記アナログ/デジタル変換器14から出力された信号は、周波数変換器22に入力され、先ずハイパスフィルタ221によって高周波成分が濾波される。続いて、混合器222では、局部発振回路223からの、たとえば18kHz、96kspsのレートの発振信号と混合されることによって得られた12kHz、96kspsの信号は、バンドパスフィルタ224によってその信号成分が濾波された後に、コンバータ23において、1/2間引き、すなわち1/2の周波数(48kHz)にダウンサンプルされて、直交変換器24に入力される。前記コンバータ23は、直交変換器24での処理を軽減するために設けられているものであり、前記直交変換器24での処理が対応可能な場合は、省略されてもよい。
 直交変換器24では、入力された信号は、2分配され、それぞれ混合器241,242に入力される。この混合器241では、この2分配された一方の信号が局部発振回路243からの、たとえば発振周波数12kHz、レート48kspsの発振信号と混合される。混合器242では、この2分配された他方の信号は、局部発振回路243からの発振信号が移相器244で90°位相がシフトされた後に混合され、直交変換されたそれぞれレート48kspsのI成分、Q成分の信号となる。前記I成分、Q成分の信号は、ローパスフィルタ245,246を介して出力され、コンバータ25,26において、1/2のサンプリング周波数(24kHz)にダウンサンプルされてローパスフィルタ27,28を通過し、位相検出器29に入力される。前記コンバータ25,26は、ローパスフィルタ27,28での帯域制限処理の負担を軽減するために設けられているものであり、ローパスフィルタ27,28での処理が対応可能な場合、省略されてもよい。
 位相検出器29は、前記I,Q成分から、I=cosθ、Q=sinθとして、θ=tan-1(Q/I)を演算し、信号の位相を求める。求められた位相は、周波数検出器30の加算器301において、遅延器302で遅延された1サンプル前の位相が減算される。これによって位相の微分量である前記周波数偏差の量が求められる。こうして、位相検出器29および周波数検出器30は、検波回路を構成し、これらによって遅延検波が行われ、その出力には、シンボルレート(2.4kHz)の10倍のサンプリングレート(24kHz)でオーバーサンプルされた復調信号が得られる。
 その復調信号は、逆Sincフィルタ31からルート・レイズド・コサインフィルタ32を介して、4値FSKシンボル再生回路33および同期ワードパターン検出回路34に入力される。前記逆Sincフィルタ31とルート・レイズド・コサインフィルタ32とは、送信側に挿入されているSincフィルタと共に、ルート・コサイン・ロールオフフィルタとして機能し、両者を合わせてナイキスト・フィルタを実現する。そして、前記Sincフィルタ31が高周波側を抑圧し、この逆Sincフィルタ31がそれを元に戻す(高周波側を強調する)ことによって、帯域制限が実現されている。
 前記4値FSKシンボル再生回路33では、復調信号の振幅値(周波数偏差)から、前記4値FSKのシンボルデータが復調される。この復調において、この4値FSKシンボル再生回路33は、後述するようにして内部でシンボルクロックを発生し、前記2.4kHzのそのシンボルクロックのタイミングで、前記振幅値(周波数偏差)を取込んでマップ判定することによって、前記振幅値(周波数偏差)が4値FSKにおける「00」,「01」,「10」,「11」の何れのシンボル値に該当するかを判断し、シンボルデータの再生を行う。この4値FSKシンボル再生回路33には、後述するように同期ワードパターン検出回路34から、同期ワードパターンの検出タイミングでリセット信号が入力され、前記内部のシンボルクロックのタイミング調整が行われる。
 前記4値FSKシンボル再生回路33で復調されたシンボルデータは、前記4値であるため2ビットで、前記シンボルレート2.4kspsの信号としてフレーム生成回路35へ出力される。フレーム生成回路35では、前記同期ワードパターン検出回路34で、後述するように同期ワードパターンが検出されている、すなわち正常に受信が行われている場合に、前記シンボルデータを所定のフレームに構成して、音声復調部3へ出力する。なお、この同期ワードパターン検出回路34によるシンボルクロックの補正および4値FSKシンボル再生回路33におけるシンボルデータの再生については、後に詳述する。
 この得られたシンボルデータは、前記音声復調部36において、サンプル周波数が前記2.4kHzの4値のデータから、所定の音声コーデック回路を使用することによって、圧縮されていた信号が伸長され、8kHz,16ビットのPCM音声信号に復調される。そのPCM音声信号は、コンバータ37において6倍の周波数(48kHz)でオーバーサンプルされ、ローパスフィルタ38を通過した後に、デジタル/アナログ変換器39に入力され、アナログ音声信号に復調され、アンプ40で増幅された後、スピーカ41から音響化される。
 一方、前記アナログ/デジタル変換器14からの変換データは、コンバータ45において、1/24の周波数(4kHz)にダウンサンプルされてRSSI回路46に入力される。RSSI回路46では、ハイパスフィルタ461で、前記アナログ/デジタル変換器14で混入した直流成分が除去された後に、絶対値回路462で絶対値が求められ、さらにローパスフィルタ463で平均化されてRSSIレベルが求められる。そして、このRSSIレベルが図略のインジケータなどに与えられるとともに、AGC演算回路42に入力される。AGC演算回路42は、前記RSSIレベルに基づいてIFゲインを演算し、そのデータは、前記アナログ/デジタル変換器39でアナログ変換され、前記RFアンプ5、中間周波アンプ9,13のゲイン制御が行われる。
 上述のように構成されるFSK受信機1において、注目すべきは、本実施の形態では、補正手段であるDCオフセット補正回路50が、前記復調信号の最大値「11」および最小値「00」の中央値(F0’)に基づいて、局部発振回路223(または243)の発振周波数を調整して、DCオフセット成分(f0-F0’=Δf)の除去を行うために、補正制御回路51,52を備え、その補正が場合によって休止されることである。なお、前記周波数変換器22は、後段での処理を軽減するために設けられており、省略されてもよい。その場合、局部発振回路243は、発振周波数30kHz、レート96kspsの発振信号を出力し、前記周波数偏差によるDCオフセット補正は、この局部発振回路243の発振周波数を制御することによって行われる。
 図3は、前記補正の様子を示す波形図である。本実施の形態では、キャリア周波数f0に対して、たとえば最小値「00」での周波数偏差は-1050Hzに、「01」での周波数偏差は-350Hzに、「10」での周波数偏差は+350Hzに、最大値「11」での周波数偏差は+1050Hzに、それぞれ設定されているものとする。
 送信側のキャリア周波数f0に受信側のキャリア周波数F0が一致していると、図3(a)に示すように、サンプル点で得られたシンボル値は、前記の各周波数となる。なお、この図3では、説明の簡略化のために、サンプル点は、アイパターンを考慮すると最も偏差の少ない点であるシンボル判定点としている。これに対して、送信側のキャリア周波数f0に受信側のキャリア周波数F0’が一致していないと、図3(b)で示すように、サンプル点で得られるシンボル値に、ずれが生じる。この図3(b)の例では、受信側のキャリア周波数F0’が高い側にずれているので、前記最小値「00」のデータは、現れず、残りの「01」,「10」,「11」のデータのみが現れる。このため、感度が劣化する。このため、前述のように、復調信号の最大値「11」および最小値「00」の中央値(F0’)に基づいて、局部発振回路223(または243)の発振周波数を調整することによって、DCオフセット成分(f0-F0’=Δf)の除去が行われる。
 図4は、前記DCオフセット補正回路50の補正動作に、第1の補正制御手段である前記補正制御回路51の制御動作を説明するための図である。前記ルート・レイズド・コサインフィルタ32から、前記復調信号として、図4(a)で示すような波形のデータが、シンボルレート(2.4kHz)の10倍の前記24kHzでオーバーサンプリングされた状態(24ksps)で出力されている。それが前記4値FSKシンボル再生回路33において、前記シンボルレートの2.4kHzでサンプリングされると、図4(a)において黒丸で示すサンプル値(周波数偏差)P1~P9が得られる。なお、実際にルート・レイズド・コサインフィルタ32の出力は、この図4(a)で示すようなDC波形の波高値のデータであるが、この図4(a)では、説明を分り易くするために、そのDC値を周波数に読替えることによって、スケールは、周波数偏差の周波数で表されている。
 ここで、前記DCオフセット補正回路50は、DCオフセット補正を行うために、前記サンプル値P1~P9を取込んで行き、図4(d)で示すように、既存値より大きな値が入力された場合に、それを最大値として更新して行く。同様に、前記DCオフセット補正回路50は、図4(e)で示すように、既存値より小さな値が入力された場合に、それを最小値として更新してゆく。一方、補正制御回路51は、図4(f)で示すように、それらの最大値と最小値との差を求め、その差が予め定める閾値TH1未満である場合に、前記DCオフセット補正回路50による補正動作を休止させ、前記閾値TH1以上となると補正動作を行わせるとともに、前記最大値および最小値をリセットさせる。すなわち、前記最大値および最小値は、次のサンプル点におけるシンボル値に更新される。
 ここで、前記閾値TH1は、(最大周波数偏差-最小周波数偏差)より小さく、かつn値変調(nは3以上)である場合に、(最大周波数偏差-最小周波数偏差)×(n-2)/(n-1)よりも大きく、適宜マージンを考慮して選ばれる。本実施形態では、n=4であり、最大周波数偏差は、+1050Hzであり、最小周波数偏差は、-1050Hzであるので、前記閾値TH1は、2100Hzより小さく、1400Hzより大きく、前記マージンを考慮して、たとえば1500Hzに選ばれる。
 図4の例では、最初のサンプル値P1における周波数偏差は、-350Hzであり、それが最大値および最小値に共に登録される。次のサンプル値P2における周波数偏差は、+1050Hzであるので、最大値は、この値に更新され、また最大値と最小値との差は、1400Hzであり、このため、DCオフセットの補正動作は、禁止されている。これに対して、サンプル値P3での周波数偏差は、+1400Hzになり、最大値は、この値に更新され、また最大値と最小値との差は、1750Hzであり、このため、DCオフセットの補正動作が行われる。その補正動作は、図4(g)で示すように、前記図3のΔfに相当する前記最大値と最小値との平均値を求め、その平均値をサンプル値から減算するものである。このサンプル値P3の例では、(1400-350)/2=525Hzが前記1400Hzから減算され、875Hzが補正後のサンプル値P3’とされる。
 実際の補正動作は、前記局部発振回路223(または243)の発振周波数を変化させ、入力される周波数偏差のデータを、前記525Hzだけ低くシフトさせるものである。すなわち、前記局部発振回路223(または243)は、デジタルVCOを備え、DCオフセット補正回路50は、発振波形の基となるsinテーブルから、波形(振幅レベルを表す)データを読出すタイミングを変化することで、発振周波数を変化させることができ、その読出しタイミングを、現在の発振周波数より前記525Hzだけ高い発振周波数とするタイミングに変更する。
 この補正動作によって、以降のサンプル値P4~P9となっていた周波数偏差のデータが、参照符号P4’~P9’にシフトされ、前記4値FSKシンボル再生回路33における判定結果が、図4(c)となるところ、図4(b)で示すより正しい値で復調することができるようになる。前記サンプル値P3’への補正が適切である場合には、補正後1サイクル分のデータが入力された時点(P7’)で、最大値と最小値との絶対値が略等しく、補正量(Δf)が0となる。
 一方、前記加算器301から出力される周波数偏差量のデータは、スケルチ回路43に与えられる。このスケルチ回路43では、ハイパスフィルタ431でノイズ成分が抽出され、絶対値回路432でそのノイズの絶対値が求められ、さらにローパスフィルタ433で平均化される。これによってスケルチレベルが求められている。前記補正制御回路52は、前記スケルチレベル(ノイズレベル)が予め定める閾値TH2より大きい場合も、前記DCオフセット補正回路50による局部発振回路223(または243)の発振周波数の調整を禁止させる。これによって、ノイズによる誤った補正を防止している。
 図5は、DCオフセット補正回路50および補正制御回路51,52の一構成例を示す図である。前記ルート・レイズド・コサインフィルタ32から出力される24kspsの復調信号は、前記4値FSKシンボル再生回路33と同様に、サンプラ501において、前記4値FSKシンボル再生回路33から出力される2.4kspsのシンボルレートのクロックでサンプリングされ、引算器502において、後述する同期ワードパターン検出による前記DCオフセットΔfに対応した周波数偏差情報が減算された後に、サンプルホールド回路503,504に入力される。サンプルホールド回路503は、リセットタイミングから、逐次入力されるデータをストアデータと比較し、ストアデータより大きいデータが入力されると、ストアデータをその入力値に更新することによって、前記最大値を求め、保持している。同様に、サンプルホールド回路504は、リセットタイミングから、逐次入力されるデータをストアデータと比較し、ストアデータより小さいデータが入力されると、ストアデータをその入力値に更新することによって、前記最小値を求め、保持している。そして、これら最大値および最小値のデータは、加算器505で相互に加算され、割り算器506で1/2分割される。これによって前記周波数偏差の情報が求められる。言い換えれば、前記割り算器からの出力を許容した後に、補正制御回路51は、サンプルホールド回路503にホールドされている最大値およびサンプルホールド回路504にホールドされている最小値をリセットする。そして、このリセットが行われた後に、サンプルホールド回路503および504は、逐次入力されるデータをストアデータと比較し、この比較の結果に応じてストアデータを更新する。前記情報は、ノイズ除去のためのローパスフィルタ507を介して変換回路508に入力され、前記局部発振回路223(または243)を構成するデジタルVCOの波形データの読出しタイミングに変換されて前記局部発振回路223(または243)に与えられる。
 そして、前記補正制御回路51は、前記サンプルホールド回路503にホールドされている最大値から、前記サンプルホールド回路504にホールドされている最小値を減算して、それらの差を求める引算器511と、この求められた差を前記1500Hzの閾値TH1と比較する閾値判定部512と、前記割り算器506からの出力を、前記差が前記閾値TH1以上である場合には許容するとともに、前記閾値TH1未満である場合には阻止するゲート513とを備えて構成される。同様に、前記補正制御回路52は、前記スケルチ回路43から出力されるスケルチレベルを所定の閾値TH2と比較する閾値判定部521と、前記割り算器506から出力される出力を、前記スケルチレベルが前記閾値TH2以下である場合には許容し、閾値TH2より大きい場合には阻止するゲート522とを備えて構成される。
 このように構成することによって、FSK受信機1において、送受信の周波数偏差に起因して生じるDCオフセット成分の補正を、DCオフセット補正回路50が、復調信号の最大値および最小値の中央値から行うために、補正制御回路51が設けられ、該補正制御回路51は、前記最大値と最小値との差が予め定める閾値TH1未満である場合には、前記DCオフセット補正回路50による補正を休止させるので、たとえば前記4値FSK信号の場合、「00」と「01」、「10」と「11」のように中央値を跨がないような値や、「00」と「10」、「01」と「11」のように、中央値を跨いでも、その中央値からの偏差が不均等な値ではオフセット補正が行われず、「00」と「11」の前記最大値および最小値が得られた場合にだけオフセット補正が行われることになり、多値のFSK信号であっても、周波数偏差を正確に検出でき、適切なオフセット除去を行うことができる。また、前記予め定める閾値TH1以上の信号が得られた時点でオフセット補正を行うので、長時間信号を監視する必要はなく、迅速にオフセット補正を行うことができる。
 また、前記DCオフセット補正回路50は、オフセット補正を、受信高周波信号から中間周波信号を得る周波数変換器22における局部発振器223と、この得られた前記中間周波信号を直交変換する直交変換器24における局部発振器243との何れか一方の発振周波数を制御することで行うので、バンドパスフィルタ224やローパスフィルタ245,246;27,28の特性を変更する必要はなく(通過帯域は同じため)、隣接チャネル信号除去能力を高めることもできる。
 さらにまた、補正制御回路52は、スケルチ回路43の出力に応答して、ノイズレベルが大きい場合にも、前記DCオフセット補正回路50による補正動作を休止させるので、ノイズによる誤動作を防止することもできる。
 ここで、前記DCオフセット補正回路50は、オフセット補正を、前述のように受信高周波信号から中間周波信号を得る周波数変換器22における局部発振器223、または得られた前記中間周波信号を直交変換する直交変換器24における局部発振器243の発振周波数を制御することで行っているが、実施の他の形態として、図6の復調回路61で示すように、前記DCオフセット補正回路50は、ルート・レイズド・コサインフィルタ32から出力される24kspsの復調信号における出力信号レベルから、前記最大値と最小値との平均値(中央値)を引算器62で減算し、復調信号のレベル自体を直接補正するようにしてもよい。この場合、前記局部発振器223または243の制御は、行われない。
 このようにDCオフセットを復調信号から直接減算することで、周波数偏差の量に拘わらず、速やかにシンボル再生を行うことが可能になる。一方、前述のように局部発振器223または243の発振周波数を制御した場合は、得られた中間周波信号の中心周波数がバンドパスフィルタ224の中心周波数に常に一致しており、或いはローパスフィルタ245,246;27,28の通過帯域に一致しており、信号劣化が少なく、高い感度を得ることができる。
 また、注目すべきは、本実施の形態では、フレーム同期検出回路である前記同期ワードパターン検出回路34が同期ワードパターンを検出するために、先ず前記送受信の周波数差に起因するDCオフセットΔfの補正が行われることである。図7は、前記同期ワードパターン検出回路34の一構成例を示すブロック図である。この同期ワードパターン検出回路34は、大略的に、受信ワードパターン(前記復調信号)の所定数、たとえば10シンボル期間分のオーバーサンプル値を記憶するメモリ341と、そのオーバーサンプル値の移動平均値を算出する平均値算出部342と、既定の同期ワードパターンにおける前記所定数分の平均値を理想平均値としてストアしているレジスタ343と、前記レジスタ343に記憶されている理想平均値と前記平均値算出部342で求めた移動平均値との差分から、DCオフセットを求める引算器344と、受信ワードパターンの各オーバーサンプル値から前記DCオフセットを減算する引算器345と、前記同期ワードパターンをストアしているメモリ346と、前記引算器345でのDCオフセット補正後の受信ワードパターンと前記メモリ346に記憶されている同期ワードパターンとの相関演算を行う相関演算器347と、予め定められる閾値TH3をストアしているレジスタ348と、前記相関演算器347で求められた相関値と前記レジスタ348に記憶されている閾値TH3とを比較し、閾値TH3よりも大きい場合に、同期ワード候補と認識する比較器349と、前記比較器349で同期ワード候補が認織された場合、前記DCオフセット補正後の受信ワードパターンと前記同期ワードパターンとの各シンボル値を比較し、総てのシンボルの誤差が一定の範囲にある場合に、同期ワードパターンを検出したと判定するシンボル比較器340とを備えて構成される。
 図8~図12は、上述のような同期ワードパターン検出回路34の動作を説明するための波形図である。なお、前述の説明では、オーバーサンプルは、シンボルクロックの10倍の周波数で行われていると説明したが、これらの図は、図面の煩雑化を避けるために、1サンプルおきのデータを示している(オーバーサンプルがシンボルクロックの5倍の周波数で行われた場合と同等)。前記ルート・レイズド・コサインフィルタ32から出力された24kspsの受信ワードパターン(前記復調信号)は、メモリ341に入力され、図8において、時刻・・・,t-2,t-1,t0で示すように、オーバーサンプル値が入力される毎に逐次更新され、最新の10シンボル期間分だけ前記メモリ341に記憶される。この図8では、オーバーサンプル値が連続する実線で示され、シンボル値P11~P20が丸印で示されている。
 続いて、平均値算出部342では、メモリ341のストア内容が更新される毎に、その平均値が演算され、図9で示すようなオーバーサンプル値の移動平均値が逐次求められる。その後、レジスタ343に格納されている同期ワードパターンにおける前記10シンボル期間分の平均値が、オフセット演算手段である引算器344において前記平均値算出部342から出力される移動平均値から減算されることによって、DCオフセット(周波数補正量)Δfが求められる。さらに引算器345において、前記メモリ341に格納されている受信ワードパターンの各オーバーサンプル値から前記DCオフセットΔfを減算することによって、DCオフセット補正後の受信ワードパターンが得られる。
 そのDCオフセット補正後の受信ワードパターンは、相関演算器347において、メモリ346に記憶されている同期ワードパターンとの相関演算(畳み込み)が行われ、図10で示す相関値が求められる。すなわち、同期ワードパターンをai、受信ワードパターンをbiとする場合に、相関値Fは、F=Σ[ai*(bi-Δf)](ただし、iは、サンプル数で、i=1,2,・・・,91)である。前記FSKの場合、たとえば80または40msecのフレームデータは、同期バーストを含む同期ワードと、本体データであるトラヒックチャネルとを備えて構成される。前記メモリ346に記憶されている同期ワードパターンは、この同期ワードのパターンである。
 こうして求められた相関値Fが、候補判定手段である比較器349において、レジスタ348に記憶されている閾値TH3と比較されると、図8~図10で示す例では、図11に示すように、前記相関値Fが5サンプル前の時刻t-5において閾値TH3よりも大きくなっており、比較器349は、同期ワード候補が受信されたと判定するとともに、その時刻t-5を暫定のシンボルタイミングと判定する。すなわち、この相関演算(畳み込み)では、受信ワードパターンは、オフセット補正が行われることによって、これらの図8~図11で示すグラフにおけるy軸方向へのずらし(シフト)が行われ、逐次入力されてくることでx軸方向のずらしが行われることと等価となり、固定の同期ワードパターンに対して、マッチングが判定されることになる。
 そして、前記候補判定をトリガとして、最終判定手段であるシンボル比較器340は、シンボル値P11~P20について、図12に示すように、前記DCオフセットΔfの補正を行い、補正後のシンボル値P11’~P20’に対して、前記メモリ346に記憶されている同期ワードパターンにおける対応するシンボル値と比較を行い、総てのシンボルの誤差が一定の範囲にある場合に、最終的に同期ワードパターンを検出したと判定する。すなわち、同期ワードパターンのシンボル値をAkと、受信ワードパターンのシンボル値をBkとする場合に、誤差Eは、E=Σ|Ak-(Bk-Δf)|(ただし、kはサンプル数で、k=1,2,・・・,10)であり、その誤差Eが所定の閾値TH4以内である場合に、シンボル比較器340は、最終的な同期判定を行う。
 その同期ワードパターンの検出判定で、シンボル比較器340は、4値FSKシンボル再生回路33に、後述するように、同期ワードパターンの検出タイミングでリセット信号を与え、内部のシンボルクロックのタイミング調整を行う。また、シンボル比較器340は、上述のように判定に使用していた暫定のDCオフセットΔfを真値として、それに対応する値を、前記4値FSKシンボル再生回路33およびDCオフセット補正回路50に周波数偏差情報として与え、通信終了まで、後述するようにしてDCオフセット補正を行わせる。さらに、シンボル比較器340は、同期ワードパターンが検出されると、前記4値FSKシンボル再生回路33およびフレーム生成回路35に、同期ワードパターンが検出されている、すなわち正常に受信が行われていることを通知し、前記4値FSKシンボル再生回路33におけるシンボル再生およびフレーム生成回路35におけるフレーム構成、すなわち音声出力を許可する。一方、比較器349で相関値が閾値TH3以下である場合に、およびシンボル比較器340で同期ワードパターンの検出とならなかった場合は、前記のような制御出力が行われない。
 このように構成することで、相関演算器347における相関演算(畳み込み)前に、引算器344においてDCオフセットΔfが除去されているので、シンボル比較器340で同期ワード検出と判定する閾値を厳しくすることができる。しかも相関演算(畳み込み)結果で同期ワード検出を判定するのではなく、個々のシンボル点総てについて、誤差が一定の範囲にあることを最終の検出条件とするので、結果的に、フレーム同期の確立を速やかに、かつ高精度に行うことができる。
 さらにまた、注目すべきは、本実施の形態では、前記4値FSKシンボル再生回路33において、前記図4(a)におけるサンプル値(周波数偏差)P1~P9,P3’~P9’を得るシンボルクロックの補正が行われることである。図13は、その4値FSKシンボル再生回路33の一構成例を示すブロック図である。この4値FSKシンボル再生回路33では、前記ルート・レイズド・コサインフィルタ32から出力されたシンボルレートの10倍にオーバーサンプルされた復調信号は、引算器330に入力され、前記同期ワードパターン検出回路34のシンボル比較器340で同期ワードパターンを検出することによって得られたDCオフセットΔfに対応した周波数偏差情報が減算された後に、シフトレジスタ331-1に入力される。シフトレジスタ331-1には、2段のシフトレジスタ331-2,331-3が縦続接続されており、新たなサンプルデータが入力された場合に、順次シフトされて行く。したがって、前記オーバーサンプルの周期で、最も新しいデータがシフトレジスタ331-1に、古いデータがシフトレジスタ331-3に、3サンプル分保持される。
 なお、前記引算器330での周波数偏差情報の減算は、同期ワードパターン検出回路34で同期ワードパターンが検出されている、すなわちフレームを受信し、正常に受信が行われている場合に限られる。そうではない場合は、前記DCオフセット補正回路50による局部発振器223,243の発振周波数の制御または引算器62におけるDCオフセット成分の減算によって補償が行われる。そして、同期ワードパターンが検出された際は、前記シンボル比較器340は、このDCオフセットΔfを出力し、検出されない間は、Δf=0とする。これによって、同期ワードパターン検出回路34で同期ワードパターンが検出された場合に、その際に検出されたDCオフセットΔfによる補正が優先され、素早く、前記DCオフセットΔfの補償を行うことができる。
 ここで、同様に、前記DCオフセット補正回路50において、引算器502で、このDCオフセットΔfに対応した周波数偏差情報の減算が行われることによって、前記同期ワードパターン検出回路34による同期ワードパターンの検出で、前述のように速やかに4値FSKシンボル再生回路33の引算器330で周波数偏差情報が減算され、DCオフセットが補償された場合と同様の条件で、該DCオフセット補正回路50内における補正動作を行わせることができる。すなわち、前述のように同期ワードパターン検出回路34での同期ワードパターンの検出によるDCオフセット補正が4値FSKシンボル再生回路33で優先して行われ、その補正と該DCオフセット補正回路50における補正とが重複しないように、該DCオフセット補正回路50では、前記引算器502で周波数偏差情報の減算が行われる。同期ワードパターンが検出されていない間は、前記シンボル比較器340は、前記周波数偏差情報を0とするので、該DCオフセット補正回路50における局部発振器223,243等への補正が、フルに機能することになる。
 なお、前記同期ワードパターンが検出された通信(呼)は、最初の同期ワードで得られた前記周波数偏差情報(DCオフセット)を使用して、その通信(呼)が終了するまで、その周波数偏差情報(DCオフセット)を使用し続ける。また、前記同期ワードパターン検出回路34が同期ワードパターンを検出すると、以後は、4値FSKシンボル再生回路33における通常のシンボル再生で同期ワードを検出することができるので、前記同期ワードパターン検出回路34は、その通信(呼)が終了するまで、同期ワードパターンの検出処理を行わない。このため、周波数偏差を持ちながら受信を行っているので、前記DCオフセット補正回路50による補正動作に比べて、前記バンドパスフィルタ224やローパスフィルタ245,246;27,28での相性は、悪くなるものの、同期ワードパターンが検出できているので、前記4値FSKシンボル再生回路33には復調に問題のないレベルの信号が入力されており、再生されたシンボルデータには誤りが無く、問題はない。
 図13に戻って、前記各シフトレジスタ331-1~3のストア内容は、ゲート回路332によって、タイマ333で発生された前記シンボルクロックのタイミングで、シフトレジスタ334-1~3にそれぞれ取込まれる。したがって、各シフトレジスタ334-2,334-1,334-3には、図14で示す、理想のシンボル点P付近のサンプル点T2およびその前後のサンプル点T1,T3におけるサンプリング値がストアされる。そして、サンプル点T2におけるサンプリング値がシンボル判定部335に入力され、そのサンプル点T2におけるサンプリング値から推定される実際のシンボル点Pのシンボル値として、前記「00」,「01」,「10」,「11」の何れが最も確からしいかが判定され、その判定結果が前記2ビット、2.4kspsの信号としてフレーム生成回路35へ出力される。
 また、シンボル判定部335から、その判定結果のシンボル値に対応した理想の振幅レベルが出力され、引算器336-1~3において、前記各シフトレジスタ334-1~3のストア内容から減算される。その減算結果、すなわち前記理想の振幅レベルからの誤差(差分値)の大きさV1~V3の内、シフトレジスタ334-1,3、すなわちサンプル点T1,T3におけるサンプリング値の誤差V1,V3の大きさがセレクタ337に入力されて、どちらの誤差が大きいか判断される。そして、誤差の小さい方、すなわち図14ではサンプル点T3が、サンプル点T2を移動させるべき方向のデータ(指標)として、タイミング補正回路338へ出力される。
 一方、前記タイミング補正回路338には、前記引算器336-2における誤差の大きさV2が、補正量のデータとして入力されており、このタイミング補正回路338は、その補正量のデータに対応したカウント値に、補正方向のデータとして符号を組合わせて、タイミング制御信号として、ループフィルタ339を介して前記タイマ333へ出力する。前記ループフィルタ339は、IIRフィルタなどのローパスフィルタを備えて構成され、前記シンボルクロックが、時定数が大きくなる程安定となり、小さくなる程追従性が良くなる。
 前記タイマ333は、デジタルのVCOなどの自走式のカウンタを備え、その発振周波数がシンボル周波数に設定されており、シンボル周期(シンボルタイミング)となった時点で、桁溢れ分を除き、リセットしてカウント動作を再開する。そして、シンボルタイミングは、そのデジタルVCOの位相が0°を通過したタイミングとなる。たとえば、VCOの位相の0~360°(1シンボル周期)をカウンタの0~30000のカウント値に対応させると、タイマ333は、1つのオーバーサンプル点T毎に3000を加算して行くことによって、24kspsのオーバーサンプルのデータから、2.4kspsのシンボルレートのシンボル値をサンプリング可能なシンボルクロックを再生することができる。
 そして、タイマ333は、前記図14の場合、次回のシンボルクロックを、補正方向として、サンプル点T3方向、すなわち進ませる方向に、補正量として前記サンプル点T2における誤差V2に対応して、たとえば500カウントだけ進ませるように、前記デジタルVCOの位相が0°である場合におけるカウント値が500に初期設定される。これによって、そのタイマ333が500カウントする間だけ、シンボルタイミングが速められ、次回のサンプル点T2が、実際のシンボル点Pに近付くことになる。具体的には、カウント動作の繰返しの中で、前記500のカウント値を補正するとタイマ333は、30500でオーバーフローし、この時リセットされて、桁溢れ分を除いた500に、今回の補正値500が加算されてカウント動作を再開し、次は31000でオーバーフローする。こうして、補正値の合計が3000になると、1サンプル分、サンプリングタイミングが速められることになる。
 図15には、前記タイマ333のカウント動作の例として、初期値に負の値が設定され、シンボルタイミングを遅らせる場合を示す。このタイマ333の最大値を大きくすることによって分解能が高くなり、オーバーサンプルのサンプリングレートを上げることによって補正精度が向上する。なお、前記サンプル点T2における誤差V2が所定値より小さい場合は、上述のタイミング補正を行わない不感帯を設けることによって、安定性を向上することができる。また、このタイマ333は、前記同期ワードパターン検出回路34のシンボル比較器340から出力される前記リセット信号によって、同期ワードパターンの検出タイミングで、強制的に0リセットされ、カウント動作を再開する。
 以上のように、本実施の形態の4値FSKシンボル再生回路33は、復調信号を予め定めるシンボル点でサンプリングし、得られたシンボルデータの振幅値から復調データを再生するために、前記復調信号をシンボルクロックよりも高い周波数でオーバーサンプリングしたシンボルデータの内、前記シンボル点Pに近いサンプル点T2と、その前後のサンプル点T1,T3との3点のシンボルデータについて、演算手段を構成するシフトレジスタ331-1~3、ゲート回路332、シフトレジスタ334-1~3、シンボル判定部335および引算器336-1~3によって、シンボル点Pにて得られるべき理想の振幅レベルとの差分値V1~V3を求め、前記前後のサンプル点T1,T3の内、前記差分値V1,V3が小さい方の測定点を選択手段であるセレクタ337で選択し、タイミング補正回路338が、前記セレクタ337で選択されたサンプルT3側に、前記サンプル点T2における差分値V2に対応した時間だけ、自走する前記タイマ333の次回のシンボル点のサンプリングタイミングを移動させる。
 したがって、たとえば「00」,「01」,「10」,「11」の4値の変調波の場合、「00」と「01」、或いは「10」と「11」のように、中央値を跨がないような遷移や、「00」と「10」、「01」と「11」のように、中央値を跨いでも、その中央値からの偏差が不均等な遷移の場合にも、サンプリングタイミングは、最大でオーバーサンプリングの周期ずつでずれが修正されて行く。また、サンプリングタイミングに、180°近くの大きなずれが生じていても、タイミングを修正すべき方向は、検知することができる。こうして、多値変調波から、安定したシンボルクロックを再生することができる。また、アイパターンの開口率に依存しないため、ロールオフ率の変更に対して対応が容易である。さらにまた、タイミング演算は、シンボル点P付近のサンプル点T2と、その前後のサンプル点T1,T3との3点程度で行われるので、演算量を削減することもできる。このようなシンボルクロックの再生方法は、周波数変調に限らず、位相変調などのアイパターンが存在する種々の変調方式に適用することができる。
 また、自走する前記タイマ333およびループフィルタ339は、前記同期ワードパターン検出回路34での同期ワードパターンの検出タイミングで、強制的にリセットされるので、本体データ(トラヒックチャンネル)の先頭から、精度の高いシンボルクロックを再生することができる。さらにまた、引算器330において、復調信号から、DCオフセット分の補正を行うので、サンプル点T2で得られるシンボルデータを、前記理想の振幅レベルに近付けることができ、より安定したクロックを再生することができる。
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 一態様にかかるFSK受信機は、復調信号の最大値および最小値の中央値からDCオフセット成分の補正を行う補正部と、前記最大値と前記最小値との差が予め定められた閾値TH1未満である場合には、前記補正部による補正動作を休止させる第1補正制御部とを含む。
 この構成によれば、たとえば、アンテナで受信された信号を必要に応じて周波数変換し、この得られた中間周波信号をデジタル変換して復調回路へ入力し、その復調回路において前記中間周波信号を直交変換することによって得られたI成分、Q成分が直交検波され、さらに遅延検波されて検出された振幅値(周波数偏差)からシンボルデータが求められるFSK受信機において、送受信の周波数偏差に起因して生じるDCオフセット成分の補正を、補正部が、復調信号の最大値および最小値の中央値から行う場合に、第1補正制御部が設けられ、この第1補正制御部は、前記最大値と最小値との差が予め定める閾値TH1未満である場合には、前記補正部による補正を休止させる。
 たとえば、前記閾値TH1は、(最大周波数偏差-最小周波数偏差)よりも小さく、かつn値変調(nは3以上)である場合に、(最大周波数偏差-最小周波数偏差)×(n-2)/(n-1)よりも大きく、適宜マージンを持たせた値に設定される。
 したがって、多値のFSK信号であっても、たとえば「00」,「01」,「10」,「11」の4値FSK信号において、「00」と「01」、或いは「10」と「11」のように近い値ではオフセット補正が行われず、「00」と「11」の前記最大値および最小値が得られた場合にだけオフセット補正が行われる。このため、周波数偏差を正確に検出することができ、適切なオフセット除去を行うことができる。また、信号レベルが小さく、ノイズレベルが大きい場合にもオフセット除去を休止するので、誤動作を防止することもできる。さらにまた、前記復調信号の最大値と最小値との差が前記閾値TH1以上の信号が得られた時点でオフセット補正を行うので、長時間信号を監視する必要はなく、迅速にオフセット補正を行うことができる。
 また、他の一態様では、上述のFSK受信機において、第1局部発振器から出力される第1局発信号を用いることによって受信高周波信号から中間周波信号を得る周波数変換器をさらに備え、前記補正部は、前記周波数変換器における前記第1局部発振器の周波数を制御することによって、前記DCオフセット成分の補正を行うものである。
 また、他の一態様では、上述のFSK受信機において、第2局部発振器から出力される第2局発信号を用いることによって受信高周波信号を周波数変換して得られた中間周波信号を直交変換する直交変換器をさらに備え、前記補正部は、前記直交変換器における前記第2局部発振器の周波数を制御することによって、前記DCオフセット成分の補正を行うものである。
 また、他の一態様では、前記補正部は、前記復調信号のレベルをシフトすることによって、前記DCオフセット成分の補正を行うものである。
 また、他の一態様では、ノイズレベルを検出するスケルチ回路と、前記スケルチ回路で検出されたノイズレベルが予め定める閾値TH2より大きい場合にも、前記補正部による補正動作を休止させる第2補正制御部とをさらに備える。
 この構成によれば、ノイズによる誤ったオフセット補正を防止することができる。
 この出願は、2008年7月31日に出願された日本国特許出願特願2008-198883を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明によれば、FSK受信機を提供することができる。

Claims (7)

  1.  復調信号の最大値および最小値の中央値からDCオフセット成分の補正を行う補正部と、
     前記最大値と前記最小値との差が予め定められた閾値TH1未満である場合には、前記補正部による補正動作を休止させる第1補正制御部とを含むこと
    を特徴とするFSK受信機。
  2.  前記閾値TH1は、n値変調(nは3以上)である場合に、(最大周波数偏差-最小周波数偏差)×(n-2)/(n-1)よりも大きい値であること
    を特徴とする請求項1に記載のFSK受信機。
  3.  第1局部発振器から出力される第1局発信号を用いることによって受信高周波信号から中間周波信号を得る周波数変換器をさらに備え、
     前記補正部は、前記周波数変換器における前記第1局部発振器の周波数を制御することによって、前記DCオフセット成分の補正を行うこと
    を特徴とする請求項1または請求項2に記載のFSK受信機。
  4.  第2局部発振器から出力される第2局発信号を用いることによって受信高周波信号を周波数変換して得られた中間周波信号を直交変換する直交変換器をさらに備え、
     前記補正部は、前記直交変換器における前記第2局部発振器の周波数を制御することによって、前記DCオフセット成分の補正を行うこと
    を特徴とする請求項1または請求項2に記載のFSK受信機。
  5.  前記補正部は、前記復調信号のレベルをシフトすることによって、前記DCオフセット成分の補正を行うこと
    を特徴とする請求項1または請求項2に記載のFSK受信機。
  6.  ノイズレベルを検出するスケルチ回路と、
     前記スケルチ回路で検出されたノイズレベルが予め定められた閾値TH2より大きい場合にも、前記補正部による補正動作を休止させる第2補正制御部とをさらに備えること
    を特徴とする請求項1ないし請求項5のいずれか1項に記載のFSK受信機。
  7.  アンテナと、
     前記アンテナで受信された信号を直交変換する直交変換器と、
     前記直交変換器で得られたI成分、Q成分を直交検波し、前記復調信号を得る検波回路とをさらに備えること
    を特徴とする請求項1ないし請求項6のいずれか1項に記載のFSK受信機。
PCT/JP2009/056370 2008-07-31 2009-03-27 Fsk受信機 WO2010013511A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/812,793 US8831144B2 (en) 2008-07-31 2009-03-27 FSK receiver
EP09802756.8A EP2309690B1 (en) 2008-07-31 2009-03-27 Fsk receiver
CN200980103438.XA CN101933299B (zh) 2008-07-31 2009-03-27 Fsk接收机
HK11101600.7A HK1147621A1 (en) 2008-07-31 2011-02-18 Fsk receiver fsk

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-198883 2008-07-31
JP2008198883A JP5304089B2 (ja) 2008-07-31 2008-07-31 Fsk受信機

Publications (1)

Publication Number Publication Date
WO2010013511A1 true WO2010013511A1 (ja) 2010-02-04

Family

ID=41610221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056370 WO2010013511A1 (ja) 2008-07-31 2009-03-27 Fsk受信機

Country Status (6)

Country Link
US (1) US8831144B2 (ja)
EP (1) EP2309690B1 (ja)
JP (1) JP5304089B2 (ja)
CN (1) CN101933299B (ja)
HK (1) HK1147621A1 (ja)
WO (1) WO2010013511A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011188074A (ja) * 2010-03-05 2011-09-22 Hitachi Information & Communication Engineering Ltd 受信装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012080499A (ja) * 2010-10-06 2012-04-19 Tokai Rika Co Ltd Dcオフセット補正回路
JP5733107B2 (ja) * 2011-08-25 2015-06-10 アイコム株式会社 Fsk信号検出装置、受信機、およびfsk信号検出方法
JP6229224B2 (ja) * 2013-03-15 2017-11-15 日本無線株式会社 同期信号検出装置、及び同期信号検出方法
JP6221780B2 (ja) 2014-01-29 2017-11-01 アイコム株式会社 無線受信機およびその周波数補正方法
US9906386B1 (en) * 2017-01-13 2018-02-27 Cypress Semiconductor Corporation Frequency estimation, correction and noise suppression for modems
JP2020165882A (ja) * 2019-03-29 2020-10-08 日本電産株式会社 信号検出方法
JP7283741B2 (ja) * 2019-04-17 2023-05-30 Necネットワーク・センサ株式会社 受信機、受信方法、及び、受信処理プログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04135344A (ja) * 1990-09-27 1992-05-08 Nippon Denshin Kogyo Kk 自動ベースバンド信号補正方式
JPH11298542A (ja) 1998-04-06 1999-10-29 General Res Of Electron Inc 中心誤差検出補正回路
JP2000031844A (ja) * 1998-07-15 2000-01-28 Fujitsu Ltd オフセット電圧補正回路
JP2006094245A (ja) 2004-09-27 2006-04-06 Matsushita Electric Ind Co Ltd 半導体回路装置
JP2007201960A (ja) * 2006-01-27 2007-08-09 Kenwood Corp 無線通信機及びその自動周波数制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9419630D0 (en) * 1994-09-29 1994-11-16 Philips Electronics Uk Ltd Receiver having an adjustable symbol slice demodulator
JPH08237317A (ja) * 1995-02-28 1996-09-13 Fujitsu Ltd 復調回路及び受信装置
US6735260B1 (en) * 2000-04-17 2004-05-11 Texas Instruments Incorporated Adaptive data slicer
DE60024831T2 (de) * 2000-10-30 2006-08-03 Texas Instruments Inc., Dallas Vorrichtung zum Ausgleichen des DC-Offsets eines Quadratur-Demodulators , und Verfahren dazu
US6901121B1 (en) * 2001-02-20 2005-05-31 Comsys Communication & Signal Processing Ltd. Compensation of DC offset impairment in a communications receiver
JP2003069658A (ja) * 2001-08-28 2003-03-07 Hitachi Ltd 通信用半導体集積回路および無線通信システム
US7599662B2 (en) * 2002-04-29 2009-10-06 Broadcom Corporation Method and system for frequency feedback adjustment in digital receivers
WO2005043852A1 (en) * 2003-11-03 2005-05-12 Koninklijke Philips Electronics N.V. Apparatus for determining a frequency offset error and receiver based thereon
CN1770750B (zh) * 2004-11-01 2010-04-14 美国博通公司 信号处理方法和系统
US20080297206A1 (en) * 2005-11-18 2008-12-04 Koninklijke Philips Electronics, N.V. Dc Offset Estimation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04135344A (ja) * 1990-09-27 1992-05-08 Nippon Denshin Kogyo Kk 自動ベースバンド信号補正方式
JPH11298542A (ja) 1998-04-06 1999-10-29 General Res Of Electron Inc 中心誤差検出補正回路
JP2000031844A (ja) * 1998-07-15 2000-01-28 Fujitsu Ltd オフセット電圧補正回路
JP3674745B2 (ja) 1998-07-15 2005-07-20 富士通株式会社 オフセット電圧補正回路
JP2006094245A (ja) 2004-09-27 2006-04-06 Matsushita Electric Ind Co Ltd 半導体回路装置
JP2007201960A (ja) * 2006-01-27 2007-08-09 Kenwood Corp 無線通信機及びその自動周波数制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011188074A (ja) * 2010-03-05 2011-09-22 Hitachi Information & Communication Engineering Ltd 受信装置

Also Published As

Publication number Publication date
EP2309690A1 (en) 2011-04-13
CN101933299B (zh) 2013-07-17
EP2309690B1 (en) 2019-04-24
US8831144B2 (en) 2014-09-09
US20110110465A1 (en) 2011-05-12
JP2010041138A (ja) 2010-02-18
EP2309690A4 (en) 2016-04-20
CN101933299A (zh) 2010-12-29
JP5304089B2 (ja) 2013-10-02
HK1147621A1 (en) 2011-08-12

Similar Documents

Publication Publication Date Title
JP5343439B2 (ja) フレーム同期検出回路およびそれを用いるfsk受信機
WO2010013512A1 (ja) クロック再生回路およびそれを用いた受信機
WO2010013511A1 (ja) Fsk受信機
JP6221780B2 (ja) 無線受信機およびその周波数補正方法
US8125258B2 (en) Phase synchronization device and phase synchronization method
JP2008154285A (ja) シンボルタイミング検出装置及び無線端末装置
CN111492533A (zh) 相位同步装置
US10924311B1 (en) Multi-standard BCPM demodulator using Viterbi algorithm
US7512195B2 (en) Frequency control apparatus, wireless communication apparatus and frequency control method
JP4268180B2 (ja) シンボルタイミング検出装置及び無線端末装置
US6933775B2 (en) Circuit for detecting and correcting central level of FSK demodulation signal
JP2016140020A (ja) 受信装置及び受信装置の受信方法
JP4722673B2 (ja) Fsk復調回路
JPH08237313A (ja) 多値fsk復調回路
JP2017118410A (ja) オフセット値補正装置およびオフセット値補正方法
JP3665285B2 (ja) 周波数偏差検出方法および周波数偏差検出器
JP4246184B2 (ja) クロック位相推定装置
JP2012080499A (ja) Dcオフセット補正回路
JP2007053519A (ja) 位相誤差検出回路およびpsk復調回路
JP2003110641A (ja) 復調装置
JP2013223204A (ja) アナログ信号再生装置およびアナログ信号再生方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980103438.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802756

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12812793

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009802756

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE