WO2010008055A1 - 排水の処理方法および処理装置 - Google Patents

排水の処理方法および処理装置 Download PDF

Info

Publication number
WO2010008055A1
WO2010008055A1 PCT/JP2009/062913 JP2009062913W WO2010008055A1 WO 2010008055 A1 WO2010008055 A1 WO 2010008055A1 JP 2009062913 W JP2009062913 W JP 2009062913W WO 2010008055 A1 WO2010008055 A1 WO 2010008055A1
Authority
WO
WIPO (PCT)
Prior art keywords
wastewater
chelate resin
heavy metal
less
terephthalic acid
Prior art date
Application number
PCT/JP2009/062913
Other languages
English (en)
French (fr)
Inventor
良幸 角
福井 勝彦
哲志 宮本
紘毅 峯元
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to EP09797979.3A priority Critical patent/EP2301893B1/en
Priority to CN200980128662.4A priority patent/CN102099300B/zh
Priority to EP16151593.7A priority patent/EP3034472B1/en
Priority to BRPI0916222A priority patent/BRPI0916222A2/pt
Priority to PL16151593T priority patent/PL3034472T3/pl
Priority to PL09797979T priority patent/PL2301893T3/pl
Priority to RU2011105804/05A priority patent/RU2516746C2/ru
Publication of WO2010008055A1 publication Critical patent/WO2010008055A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4015Regeneration or reactivation of catalysts containing metals
    • B01J31/4023Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper
    • B01J31/403Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper containing iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J45/00Ion-exchange in which a complex or a chelate is formed; Use of material as complex or chelate forming ion-exchangers; Treatment of material for improving the complex or chelate forming ion-exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/05Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/50Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/70Complexes comprising metals of Group VII (VIIB) as the central metal
    • B01J2531/72Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/683Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of complex-forming compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present invention relates to a wastewater treatment method and treatment apparatus in an aromatic carboxylic acid production process.
  • Wastewater containing heavy metal compounds is used in various chemical plants, electronic component manufacturing equipment, food processing equipment, metal processing equipment, metal plating equipment, printing plate making equipment, photographic equipment, and other industrial plants, as well as thermal power generation and nuclear power generation. It is discharged from equipment.
  • chemical plants include ethylene oxide, ethylene glycol, methanol, ethanol, higher alcohols, acrylic acid, acrylic acid esters, aromatic carboxylic acids such as terephthalic acid, terephthalic acid ester, isophthalic acid, isophthalic acid ester or esters thereof. Production facilities and the like are listed.
  • terephthalic acid is produced by liquid phase oxidation under pressure with molecular oxygen in the presence of a catalyst consisting of a heavy metal compound such as cobalt and manganese and a bromine compound in acetic acid solvent. Is done.
  • the slurry containing terephthalic acid after the reaction is subjected to solid-liquid separation and washing, and the resulting terephthalic acid cake is dried to obtain crude terephthalic acid, which is then sent to the hydrogenation step for purification to become high-purity terephthalic acid. .
  • mother liquor separation mother liquor and washing liquid (hereinafter referred to as mother liquor) produced by solid-liquid separation contain acetic acid solvent, organic substances such as terephthalic acid and metal components of the catalyst (hereinafter valuable components). Recycled and reused in the oxidation reaction process.
  • organic substances in the mother liquor include impurities such as p-toluic acid, 4-carboxybenzaldehyde, benzoic acid, etc., in order to avoid deterioration of the quality of terephthalic acid due to accumulation of such impurities, A part is purged out of the manufacturing process and the rest is reused.
  • Patent Document 1 advocates a conventional method aimed at improving the recovery rate of metal components during the production of terephthalic acid.
  • water is added to the residual concentrate of the reaction mother liquor to dissolve the heavy metal component of the catalyst to form an aqueous solution.
  • a small amount of terephthalic acid or other reaction by-products are precipitated as a solid,
  • Alkaline carbonate was added to the resulting aqueous solution to produce carbonates of cobalt and manganese, which are heavy metal components, and slurried with a continuous precipitation concentrating device. The concentrated slurry was taken out from the bottom of the device and further reacted with acetic acid. Later, methods for re-use in oxidation reactions have been reported.
  • Patent Document 2 during the production of terephthalic acid, water is added to the concentrate of the reaction mother liquor to form a slurry, and the slurry is subjected to solid-liquid separation by adjusting the aromatic aldehyde concentration, acetic acid concentration and cooling temperature in the slurry.
  • a method for preventing a decrease in catalyst recovery rate due to poor solid-liquid separation caused by fine particles therein has been reported.
  • Patent Document 3 during the production of terephthalic acid, the residual concentrate of the reaction mother liquor is treated with hot water while stirring, and then the obtained hot water slurry is granulated with stirring to form a granulated slurry.
  • a method has been reported in which the hydrothermal treatment and the granulation treatment are performed in separate agitation tanks, and the resulting granulated slurry is subjected to solid-liquid separation to recover an aqueous catalyst solution.
  • Patent Document 4 discloses, as a method for purifying waste washing water derived from the production of aromatic acid, after separating insoluble aromatic acid with a filter, iron, nickel, chromium, etc. in the filtrate.
  • the metal component is adsorbed with a strongly acidic cation exchange resin, then the catalytic metals cobalt and manganese are adsorbed with a chelate resin, and dissolved organic substances are removed through a reverse osmosis membrane system and recycled into the manufacturing process.
  • the recovery rate of heavy metal compounds is improved to some extent compared to the conventional technique, but is not yet at a sufficient level for industrial use.
  • a large-scale production plant such as terephthalic acid production, further measures for environmental protection are desired.
  • Examples of the location where the heavy metal compound remains and is discharged out of the production process include a solid content that is solid-liquid separated from the residual concentrate in Patent Document 1 and a filtrate that is solid-liquid separated after producing carbonate. Further, the heavy metal compound remains in the filtrate obtained by solid-liquid separation of the high purity terephthalic acid slurry. Normally, solids are incinerated or landfilled, but the filtrate is usually discharged as wastewater after biological treatment. Although the heavy metal compound in the filtrate produced by such a terephthalic acid production process has a low concentration, a method for efficiently recovering the heavy metal compound contained at a low concentration has not been known. For this reason, wastewater containing a heavy metal compound at a low concentration is often discharged to rivers after biological treatment, and an efficient method for recovering heavy metal compounds has not yet been established.
  • the present invention was devised in view of the above problems, and a wastewater treatment method capable of efficiently recovering a heavy metal compound from wastewater containing a heavy metal compound derived from an aromatic carboxylic acid production process.
  • the issue is to provide.
  • the present inventors contacted the wastewater derived from the aromatic carboxylic acid production process with the chelate resin, and recovered the heavy metal compound contained in the wastewater into the chelate resin with a specific shape. It was found that the heavy metal compound can be efficiently recovered by using this chelate resin, and the following first invention was completed.
  • the present inventors made contact with the wastewater derived from the aromatic carboxylic acid production process in contact with the chelate resin, and identified the heavy metal compound contained in the wastewater to the chelate resin. It was found that a heavy metal compound can be efficiently recovered by using a chelate resin exhibiting a reduced Cu adsorption capacity rate, and the following second aspect of the present invention has been completed.
  • the present inventors contacted the wastewater derived from the aromatic carboxylic acid production process with the chelate resin, and recovered the heavy metal compound contained in the wastewater to the chelate resin.
  • the wastewater is brought into contact with the chelate resin under specific conditions, and the chelate resin after contact with the wastewater is regenerated under specific conditions.
  • the inventors have found that a heavy metal compound can be recovered and have completed the following third invention.
  • the first aspect of the present invention is a wastewater treatment method in which wastewater derived from an aromatic carboxylic acid production process is brought into contact with a chelate resin, and a heavy metal compound contained in the wastewater is recovered in the chelate resin.
  • the resin is a wastewater treatment method characterized by particles having a uniformity coefficient of 1.4 or less. The method for measuring the uniformity coefficient in the present invention will be described in detail later.
  • the second aspect of the present invention is a wastewater treatment method in which wastewater derived from an aromatic carboxylic acid production process is brought into contact with a chelate resin to recover a heavy metal compound contained in the wastewater to the chelate resin,
  • the waste water treatment method is characterized in that the Cu adsorption capacity decrease rate of the resin is 11% / month or less.
  • the pH of the wastewater that contacts the chelate resin is 5.1 or more and 5.9 or less.
  • a heavy metal compound may be deposited and deposited on the chelate resin surface, making it impossible to recover.
  • organic substances such as terephthalic acid and p-toluic acid contained in the wastewater may be deposited, or the heavy metal recovery rate may be reduced.
  • the flow rate of the wastewater that contacts the chelate resin is 5 m / hr or more and 14 m / hr or less. If the drainage flow rate exceeds the above range, the heavy metal compound contained in the drainage tends to be not efficiently adsorbed by the chelate resin due to the influence of drift and channeling, and if the drainage flow rate is less than the above range, the chelate resin It is economically disadvantageous because it is necessary to increase the size of the container.
  • the third aspect of the present invention includes a step of bringing wastewater derived from an aromatic carboxylic acid production process into contact with a chelate resin and recovering the heavy metal compound contained in the wastewater to the chelate resin, and regenerating the chelate resin to recover the heavy metal compound.
  • a wastewater treatment method including a step of obtaining a regenerated solution containing the pH of the wastewater contacting the chelate resin is 5.1 or more and 5.9 or less, and the flow rate of the wastewater contacting the chelate resin is The wastewater treatment method is characterized in that the chelate resin is regenerated using hydrogen bromide water in an amount of 5 to 14 m / hr and 7.1 to 19% by mass.
  • the chelate resin is preferably particles having a uniformity coefficient of 1.4 or less.
  • the uniformity coefficient exceeds the above range, when the drainage is adsorbed and regenerated by the fixed bed flow method, pressure loss in the resin layer is likely to occur, which is one cause of deterioration rate deterioration described in detail later. There is a case.
  • the temperature of the wastewater in contact with the chelate resin is 51 ° C. or more and 59 ° C. or less. If the temperature of the wastewater is less than the above range, if terephthalic acid is contained in the wastewater, this tends to precipitate, and the heavy metal recovery rate may decrease. On the other hand, when the temperature of the waste water exceeds the above range, the chelate resin tends to deteriorate.
  • the chelate resin preferably has a Cu adsorption capacity of 0.5 mmol / mL or more.
  • the upper limit of the Cu adsorption capacity of the chelate resin used in the present invention is not limited, and the chelate ability before wastewater treatment is preferably as large as possible. The method for measuring the Cu adsorption capacity will be described in detail later.
  • the wastewater treatment method of the third aspect of the present invention can recycle the regenerated solution to the oxidation reaction system in the aromatic carboxylic acid production process.
  • a wastewater treatment apparatus for bringing a wastewater derived from an aromatic carboxylic acid production process into contact with a chelate resin and recovering a heavy metal compound contained in the wastewater to the chelate resin.
  • a wastewater treatment apparatus characterized in that the resin is particles having a uniformity coefficient of 1.4 or less.
  • heavy metal compounds such as cobalt and manganese contained in the wastewater derived from the aromatic carboxylic acid production process can be recovered with high efficiency.
  • the uniformity coefficient exceeds a predetermined range, a pressure loss in the resin layer tends to occur when the drainage is adsorbed by a fixed bed flow method.
  • heavy metal compounds such as cobalt and manganese contained in the wastewater derived from the aromatic carboxylic acid production process can be recovered with high efficiency and reused.
  • the metal component released outside the manufacturing process can be minimized with respect to the total amount of the metal component used. It has become possible to provide an aromatic carboxylic acid production method that is environmentally friendly. Furthermore, the economic effect obtained by collecting and reusing the heavy metal compound is great. In general, many petrochemical plants are formed by collecting different kinds of chemical plants in one area or industrial area. For this reason, the types of industrial wastewater discharged vary, but in some cases, plant wastewater from different chemical plants that discharge heavy metal compounds as described above may be joined and discharged to the outside. As described above, the wastewater treatment method of the present invention includes wastewater from an aromatic carboxylic acid production process represented by terephthalic acid, even if wastewater from other dissimilar chemical plants exists. Since heavy metal compounds such as cobalt and manganese contained in the wastewater can be recovered and reused with high efficiency, the effect is great not only economically but also environmentally.
  • the process for producing aromatic carboxylic acid (method) will be described below.
  • the raw material for producing the aromatic carboxylic acid is not limited, but usually an aromatic compound having an alkyl group is used.
  • the aromatic ring constituting the aromatic compound may be monocyclic or polycyclic.
  • alkyl group examples include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • aromatic compound having an alkyl group examples include di- and tri-alkylbenzenes, di- and tri-alkylnaphthalenes, and di- and tri-alkylbiphenyls.
  • alkylbenzenes having 2 to 4 alkyl groups having 1 to 4 carbon atoms such as methyl group, ethyl group, n-propyl group, and isopropyl group, alkylnaphthalenes, and the like are preferable because of their high reactivity.
  • alkylbiphenyls examples include alkylbiphenyls.
  • the aromatic compound having an alkyl group may be partially oxidized. This is because the alkyl group in the aromatic compound having an alkyl is oxidized to an aldehyde group, an acyl group, a carboxyl group, or a hydroxyalkyl group, but the target aromatic carboxylic acid is obtained. It is an unoxidized compound. Specific examples include 3-methylbenzaldehyde, 4-methylbenzaldehyde, m-toluic acid, p-toluic acid, 3-formylbenzoic acid, 4-formylbenzoic acid, and 2-methyl6-formylnaphthalene. be able to.
  • These raw materials can be used alone or in combination of two or more.
  • xylenes (o-xylene, m-xylene, p-xylene) are preferable as raw materials, and p-xylene is particularly preferable.
  • examples of the aromatic compound having a partially oxidized alkyl group include 4-carboxybenzaldehyde (4CBA), p-tolualdehyde, p-toluic acid, and the like.
  • the acid terephthalic acid is obtained.
  • These raw materials are usually obtained by liquid phase oxidation in the presence of molecular oxygen in the presence of molecular oxygen in a reaction solvent containing a lower aliphatic carboxylic acid using a heavy metal compound and, if necessary, a bromine compound as an oxidation catalyst.
  • Aromatic carboxylic acids are obtained.
  • the obtained aromatic carboxylic acid becomes a product through purification and separation processes according to the quality target.
  • the type of aromatic carboxylic acid to which the present invention is applied is not particularly limited.
  • orthophthalic acid isophthalic acid, terephthalic acid, trimellitic acid (benzenetricarboxylic acid), 2,6- or 2,7-naphthalenedicarboxylic acid Acid, 4,4′-biphenyldicarboxylic acid and the like.
  • the present invention is preferably applied to the production of phthalic acids (orthophthalic acid, isophthalic acid, terephthalic acid), and particularly preferably applied to the production of terephthalic acid.
  • a typical aromatic carboxylic acid according to the present invention includes high-purity terephthalic acid.
  • a production method for obtaining high-purity terephthalic acid using p-xylene as a raw material will be described.
  • other aromatic carboxylic acids can also be suitably modified and produced in the same manner.
  • the method for producing high-purity terephthalic acid includes, for example, the following steps.
  • FIG. 1 is a flowchart schematically showing an example of a production process of high-purity terephthalic acid.
  • the method for producing high-purity terephthalic acid includes the following 11 steps.
  • (S3) Hydrogenation step A step of dissolving the crude terephthalic acid 12 ′ in water and adding hydrogen to obtain a hydrogenation treatment liquid 13 ′.
  • (S4) Crystallization step a step of crystallizing the hydrogenation treatment liquid 13 ′ to obtain a high purity terephthalic acid slurry 14 ′.
  • Secondary recovery step A step of recovering and reusing the catalyst secondary recovery liquid 29 'containing the residual heavy metal compound from the waste water 26', 28 'generated from the above steps S7 and S9.
  • FIG. 2 is a diagram showing an example of a production flow of a high purity terephthalic acid production process according to the present invention.
  • Step S1 is an oxidation reaction step in which p-xylene is oxidized in hydrous acetic acid to obtain a crude terephthalic acid slurry. That is, first, p-xylene 1 ′ and a solvent 3 ′ composed of acetic acid and the like are mixed and sent to the oxidation reaction apparatus 11, and in the presence of the catalyst 31 ′ composed of heavy metal and bromine compound in the solvent 3 ′. Oxygen 2 ′ is used to oxidize p-xylene 1 ′. Thereby, crude terephthalic acid slurry 11 ′ is generated and sent to step S2. Further, the oxidized exhaust gas cleaning water (drainage) 16 ′ generated in this step is processed in step S11 described in detail later.
  • the catalyst used for oxidizing p-xylene 1 ′ is not particularly limited as long as it has an ability to oxidize an aromatic compound having an alkyl group and convert it into an aromatic carboxylic acid. Is used.
  • the heavy metal in the heavy metal compound include cobalt, manganese, nickel, chromium, zirconium, copper, lead, hafnium, cerium and the like. These can be used alone or in combination, and cobalt and manganese are preferably used in combination.
  • heavy metal compounds include acetates, nitrates, acetyl acetate salts, naphthenates, stearates, bromides and the like, with acetates and bromides being preferred.
  • the catalyst may contain a catalyst assistant, and a bromine compound is usually used as the catalyst assistant.
  • bromine compounds include inorganic bromine compounds such as molecular bromine, hydrogen bromide, sodium bromide, potassium bromide, cobalt bromide, manganese bromide, methyl bromide, methylene bromide, bromoform, benzyl bromide, Examples thereof include organic bromine compounds such as bromomethyltoluene, dibromoethane, tribromoethane, and tetrabromoethane. These bromine compounds can also be used alone or in combination of two or more.
  • the catalyst used for oxidizing p-xylene 1 ′ in the present invention is particularly preferably a combination of a cobalt compound, a manganese compound and a bromine compound, and among them, a combination of cobalt acetate, manganese acetate and hydrogen bromide. More preferred.
  • the catalyst comprising a combination of the heavy metal compound and the bromine compound preferably has a bromine atom of 0.05 to 10 mol, more preferably 0.1 to 5 mol, per mol of heavy metal. is there.
  • Such a catalyst is preferably used in the range of 10 ppm to 10000 ppm by mass, more preferably 100 ppm to 5000 ppm, more preferably 200 ppm to 3000 ppm, based on the reaction solvent. .
  • the reaction rate tends to increase when the amount of the catalyst is not less than the above lower limit value, and the cost tends to be reduced by making the amount not more than the above upper limit value.
  • the oxidation reaction temperature of p-xylene 1 ′ in the oxidation reaction apparatus 11 is preferably 140 ° C. or higher and 230 ° C. or lower, more preferably 150 ° C. or higher and 210 ° C. or lower, and further preferably 170 ° C. or higher and 200 ° C. or lower. is there.
  • the reaction pressure needs to be equal to or higher than the pressure at which the mixture can maintain a liquid phase at least at the reaction temperature, and needs to be a pressure higher than normal pressure. Specifically, 0.2 MPa or more and 6 MPa or less (absolute pressure) is preferable, and 0.4 MPa or more and 3 MPa or less (absolute pressure) is more preferable.
  • a stirring tank, a bubble tower, etc. are usually used as the oxidation reaction apparatus 11.
  • the reaction temperature is slightly lower than when a stirring tank is used, preferably 140 ° C. or higher and 180 ° C. or lower, more preferably 150 ° C. or higher and 170 ° C. or lower.
  • step S2 the crude terephthalic acid slurry 11 'is solid-liquid separated in the solid-liquid separation / washing / drying apparatus 12, and the resulting terephthalic acid cake is washed and dried, so that the separated mother liquor / washing liquid 17' is coarsely separated.
  • step S2 terephthalic acid 12 ′ is obtained.
  • the crude terephthalic acid cake thus obtained is washed and dried to obtain crude terephthalic acid 12 ′.
  • Acetic acid is usually used as the cleaning liquid, but for example, acetic acid 22 'recovered in step S9 described later may be used, or fresh acetic acid may be used.
  • 4CBA 4-carboxybenzaldehyde
  • Step S3 is a hydrogenation step in which the crude terephthalic acid 12 ′ is dissolved in water in the hydrogenation reactor 13 and hydrogen 4 ′ is added for reduction treatment. That is, this step is a step of reducing 4CBA, which is an impurity, to p-toluic acid. Since p-toluic acid has higher water solubility than terephthalic acid, it can be separated from the hydrogenation treatment liquid 13 ′ in step S5 described in detail later. The p-toluic acid is returned to the above step S1 to be used as a terephthalic acid raw material. The hydrogenation treatment liquid 13 ′ is then sent to step S4.
  • 4CBA which is an impurity
  • Crystallization step (S4) is a step of obtaining a high-purity terephthalic acid slurry 14 'by crystallizing the hydrogenation treatment liquid 13' in the crystallizer 14.
  • the crystallization method include a method of evaporating and removing water as a solvent and cooling, a method of releasing pressure cooling, and the like.
  • the high-purity terephthalic acid slurry 14 ' is sent to the next step S5, and the crystallization generated condensed water (drainage) 18' generated in this step is treated in step S11 described in detail later.
  • step S5 the high-purity terephthalic acid slurry 14 ' is solid-liquid separated and washed in the solid-liquid separation / washing device 15a to obtain a high-purity terephthalic acid cake, a separation mother liquor and a washing liquid (high-purity terephthalic acid separation mother liquor 19'). It is the process of separating.
  • the separator known ones such as a filter and a centrifuge can be adopted.
  • Drying step (S6) is a step of drying the high-purity terephthalic acid cake in the drying device 15b to obtain the high-purity terephthalic acid 15 ′ and the dried condensate 15 ′′.
  • a dryer by pressure-release evaporation, a normal fluidized dryer, or the like is used as the drying device.
  • the dry condensate 15 '' condensed in the gas phase part by pressure-release evaporation or the like contains the same components as the high-purity terephthalic acid separation mother liquor 19 '.
  • Organic compound recovery step (S7) is a step of recovering the organic compound from all or part of the high-purity terephthalic acid separation mother liquor 19 ′ discharged in step S5 and the dry condensate 15 ′′ discharged from step S6. Since the high-purity terephthalic acid separation mother liquor 19 ′ and the dried condensate 15 ′′ discharged from step S6 contain impurities such as p-toluic acid, catalyst, terephthalic acid, etc., recovery of p-toluic acid, etc. In the apparatus 19, p-toluic acid, terephthalic acid and the like are deposited and recovered by cooling, and the organic matter 27 ′ such as p-toluic acid is returned to step S 1. Since the heavy metal compound and the like remain in the separated mother liquor 28 'such as p-toluic acid thus separated, it is sent to step S10 described in detail later, and the heavy metal compound and the like are recovered and reused.
  • impurities such as p-toluic acid,
  • Recycling process (S8) Step S8 is a step of recycling a part or all of the separated mother liquor / cleaning liquid 17 ′ obtained in step S2 to step S1.
  • the separated mother liquor is preferably branched into a recycled mother liquor and a purge mother liquor while maintaining a pressure exceeding the normal pressure. Furthermore, it is preferable that it is the pressure which maintained substantially the operation pressure of process S2.
  • the branching ratio between the recycled mother liquor and the purge mother liquor can be arbitrarily adjusted according to the manufacturing process.
  • the lower limit value of the separation mother liquor recycling rate ⁇ recycle mother liquor mass ⁇ 100 / (recycle mother liquor mass + purge mother liquor mass) ⁇ Preferably it is 50% or more, More preferably, it is 60% or more, More preferably, it is 70% or more.
  • the recycling rate is preferably 90% or less, more preferably 80% or less.
  • the recycling rate of the cleaning liquid ⁇ recycled cleaning liquid mass ⁇ 100 / (recycled cleaning liquid mass + purge cleaning liquid mass) ⁇ is usually 60% or more, more preferably 75% or more and 100% or less. Recycling the cleaning liquid is preferable because valuable components in the cleaning liquid can be reused, the load of the waste liquid treatment process is reduced, and the amount of waste can be reduced.
  • step S9 acetic acid 22 'is recovered from the separated mother liquor / cleaning solution 17' obtained in step S2 from the separated mother liquor (purge mother liquor) and the washing solution (purge washing solution) that are not recycled in step S8, and then valuable components such as catalytic metal components.
  • step S9 acetic acid 22 'is recovered from the separated mother liquor / cleaning solution 17' obtained in step S2 from the separated mother liquor (purge mother liquor) and the washing solution (purge washing solution) that are not recycled in step S8, and then valuable components such as catalytic metal components.
  • the evaporation solvent 20 ′ obtained by evaporating the separation mother liquor / washing liquid 17 ′ with the solvent evaporation apparatus 16 is dehydrated with the dehydration distillation apparatus 17, so that the separation mother liquor / washing liquid 17 ′ is the most.
  • the dehydrating tower bottom liquid (drainage) 23 'generated in the dehydrating distillation apparatus 17 is processed in step S11 described in detail later.
  • the concentrated residue 21 ′ generated in the solvent evaporation device 16 is re-slurried by adding water in the catalyst recovery / regeneration device 18, and is separated into solid content and separated mother liquor by a filter.
  • the filtration residue 24 ′ is incinerated in the incinerator 22 together with the activated sludge 32 ′ generated in step S11.
  • the filtrate generated here is treated in step S10, which will be described later, as catalyst regeneration process waste water 26 '.
  • the separation mother liquor and washing solution obtained by filtration after the reslurry is neutralized with an aqueous caustic soda solution and then reacted with an aqueous sodium carbonate solution 5 ′ to produce cobalt carbonate salt and manganese carbonate salt.
  • carbonate cake is separated, water is added to reslurry, and then reacted with acetic acid to produce cobalt acetate and manganese acetate. This is designated as catalyst recovery primary recovery liquid 25 '.
  • the catalyst regeneration primary recovery liquid 25 ′ is mixed with a catalyst secondary recovery liquid 29 ′, which will be described later, in the catalyst liquid mixing tank 21 to replenish the replenishment catalyst 6 ′ corresponding to the amount of catalyst lost in the manufacturing process, thereby providing the catalyst 31 ′. Return to step S1.
  • step S10 the catalyst recovery / purification apparatus 20 uses p-toluic acid separation mother liquor 28 'generated from step S7 and / or catalyst regeneration step wastewater 26' generated from step S9 (hereinafter collectively referred to as treated wastewater).
  • treated wastewater p-toluic acid separation mother liquor 28 'generated from step S7 and / or catalyst regeneration step wastewater 26' generated from step S9
  • the catalyst secondary recovery liquid 29 ′ containing the residual heavy metal compound is obtained. That is, step S10 is a step of recovering heavy metal components such as cobalt and manganese derived from the catalyst remaining in the treated waste water.
  • the waste water 28 'from step S7 and / or the waste water 26' from step S9 is passed through an adsorption step to adsorb a heavy metal compound using a chelate resin, and desorbed with an aqueous hydrogen bromide solution after adsorption. ⁇ Reproduce.
  • terephthalic acid and p-toluic acid 4-carboxybenzaldehyde, 3-carboxybenzaldehyde, benzoic acid, isophthalic acid, 2,6-dicarboxyfluorenone that are by-produced as impurities are contained.
  • 4-carboxybenzaldehyde 4-carboxybenzaldehyde
  • 3-carboxybenzaldehyde 4-carboxybenzaldehyde
  • benzoic acid isophthalic acid
  • 2,6-dicarboxyfluorenone 2,6-dicarboxyfluorenone that are by-produced as impurities
  • the chelate resin used in the present invention selectively adsorbs a specific metal by introducing a chelate-forming group (hereinafter referred to as a chelate group) that can easily chelate with a metal instead of the ion-exchange group of the ion-exchange resin. It is a resin that can.
  • the chelate group contains an element such as N, S, O, P or the like as an electron-donating element in combination of two or more of the same or different kinds as in general chelating agents, for example, N—O, S—N, N—N Type, OO type and the like.
  • a chelate resin having selectivity for a specific metal unique to the chelate group is obtained. Heavy metals can be removed with cation exchange resins, but there are a lot of metals in the wastewater that need not be removed, such as alkali metals and alkaline earth metals. Therefore, it is necessary to use a chelate resin.
  • the chelate group is not particularly limited as long as it has metal selectivity, and examples thereof include iminodiacetic acid group, polyamine group, thiourea group, aminophosphonic acid group, polyacrylic acid group, N-methylglucamine group and the like. Of these, the iminodiacetic acid group is more preferable.
  • alkali metal examples include lithium, potassium, sodium and the like, among which sodium is the most common and preferred.
  • the caustic soda used at this time is preferably 0.5% by mass or more and 20% by mass or less, more preferably 1% by mass or more and 10% by mass or less in the aqueous solution.
  • the linear velocity when ionizing by the fixed bed flow method is preferably 1 m / hr or more and 20 m / hr or less, more preferably 2 m / hr or more and 15 m / hr or less.
  • the ionization method in the fixed bed is preferably an up flow rather than a down flow, and conditions in which the chelate resin is immersed in an aqueous caustic soda solution for 2 hours or more are preferable.
  • the ionization temperature is preferably 10 ° C. or higher and 80 ° C. or lower, more preferably around normal temperature (15 ° C. or higher and 40 ° C. or lower).
  • the above operation is not necessarily required.
  • Examples of the resin base to which the chelate group used in the present invention is bonded include cross-linked polystyrene, a copolymer of styrene and divinylbenzene, and cross-linked polyacrylic acid, but a cross-linked polystyrene or a copolymer of styrene and divinylbenzene. Is particularly preferred.
  • the higher-order structure of the substrate constituting the chelate resin is generally classified into a gel type, a porous type, and a high porous type, and any of those used in the present invention may be used.
  • the porous type is most preferable.
  • the present invention is a wastewater treatment method in which treated wastewater is brought into contact with a chelate resin having a specific shape, and a heavy metal compound contained in the treated wastewater is recovered in the chelate resin. That is, in the first and fourth inventions, the uniformity coefficient indicating the uniformity of the particle size of the chelate resin is 1.4 or less, preferably 1.2 or less, more preferably 1.1 or less, and particularly preferably 1 .05 or less. When the uniformity coefficient exceeds the above range, when the treated wastewater is adsorbed and regenerated by the fixed bed flow method, pressure loss is likely to occur in the resin layer, which is one cause of deterioration rate deterioration described later.
  • the uniformity coefficient can be measured by the following method. First, about 3 g of a sample (a chelate resin swollen with water) is weighed, and about 0.06 g of silica fine particles are mixed with the sample to remove water adhering to the sample surface. This is placed on the top of a sonic vibration type automatic sieve size distribution analyzer (manufactured by Seishin Corporation, Robot Shifter RPS-85) in which JIS standard sieves (mesh sizes 1180 ⁇ m, 850 ⁇ m, 710 ⁇ m, 600 ⁇ m, 425 ⁇ m, 355 ⁇ m) are set. throw into.
  • a sonic vibration type automatic sieve size distribution analyzer manufactured by Seishin Corporation, Robot Shifter RPS-85
  • JIS standard sieves mesh sizes 1180 ⁇ m, 850 ⁇ m, 710 ⁇ m, 600 ⁇ m, 425 ⁇ m, 355 ⁇ m
  • a sieve having an aperture of 106 ⁇ m is used to remove only silica fine particles (white carbon).
  • the operating conditions of the particle size distribution analyzer are LEVEL (strength) 7 to 9, TIME (time) 5 minutes, and INTERVAL (interval) 1 second.
  • the mass of the sample on each screened sieve is automatically measured. From the obtained value, the volume ratio of each particle diameter is calculated by the following formula. Since white carbon passes through a sieve having an aperture of 106 ⁇ m, it is not included in this calculation.
  • V (g) a + b + c + d + e + f + g (a to g are sample masses on each sieve)
  • a ′ (%) a / V ⁇ 100 a ′: Volume ratio of particle diameter 1180 ⁇ m or more
  • b ′ (%) b / V ⁇ 100
  • the logarithmic probability coordinate is plotted with the horizontal axis representing the cumulative amount (%) of the residual amount of each sieve and the vertical axis representing the sieve opening diameter ( ⁇ m).
  • the horizontal axis representing the cumulative amount (%) of the residual amount of each sieve
  • the vertical axis representing the sieve opening diameter ( ⁇ m).
  • the average particle size of the chelate resin used in the present invention is preferably 0.2 mm or more, more preferably 0.4 mm or more, further preferably 0.5 mm or more, preferably 2 mm or less, more preferably 1 mm. Hereinafter, it is more preferably 0.7 mm or less, particularly preferably 0.65 mm or less. If the average particle size of the chelate resin is less than the above range, particles with a small particle size tend to accumulate at the bottom of the chelate resin tower, and the chelating resin tower is clogged or the adsorption efficiency is reduced due to overpacking There is.
  • the chelate resin may flow out from the upper portion of the chelate resin tower, or the filter may be clogged, which may make stable adsorption operation difficult.
  • the average particle diameter of the chelate resin exceeds the above range, the adsorption efficiency may decrease due to the unstable or non-uniform flow in the chelate resin tower.
  • the average particle diameter was measured by the same operation as the above-described measurement of the uniformity coefficient, and an opening diameter ( ⁇ m) corresponding to a cumulative total of 50% was used.
  • the chelating resin used in the present invention is preferably as the chelating ability before wastewater treatment is large, and the Cu adsorption capacity at the start of use is preferably 0.5 mmol / mL or more, more preferably 0.7 mmol / mL or more. is there.
  • the upper limit of the Cu adsorption capacity is not limited, but is usually 2 mmol / mL or less.
  • the Cu adsorption capacity is measured by the following method as the total exchange capacity using Cu as the metal to be adsorbed.
  • the replacement capacity is calculated using the following formula.
  • the rate of decrease in the Cu adsorption capacity of the chelate resin under the wastewater adsorption and regeneration conditions described below is 11% / month or less.
  • the Cu adsorption capacity decrease rate is preferably 10% / month or less, more preferably 7% / month or less, and further preferably 6% / month or less.
  • the lower limit of the Cu adsorption capacity reduction rate is not limited, but is usually 0.3% / month or more.
  • the measurement method of the Cu adsorption capacity decrease rate of the chelate resin used in the present invention is shown below.
  • the chelate resin tower used is a substantially cylindrical fixed bed flow reactor (Chemical Engineering Handbook / Revised 4th Edition, Maruzen Co., Ltd., issued on October 24, 1978, page 901, FIG. 11, 67).
  • the ratio of the inner diameter to the height of the portion filled with the chelate resin is 1.0: 0.7, and the chelate resin particles are filled up to 50% of the height in a stationary state. That is, 50% of the upper part is filled with a liquid, and the chelate resin particles can flow to the upper part by the flow of the liquid.
  • the volume of the portion filled with the chelate resin is 1 m 3 or more.
  • Adsorption operation aqueous solution with a Co concentration of 5.0 ⁇ 0.5 mass ppm set to pH 5.5 ⁇ 0.2 and temperature 55 ° C. ⁇ 2 ° C. (prepared by dissolving Co acetate / tetrahydrate) Is passed through a chelate resin tower packed with a sodium-type chelate resin at a linear velocity of 0.15 ⁇ 0.02 m / min, a residence time of 13 ⁇ 2.0 min, and an upflow. The point in time when the Co concentration at the chelate resin tower outlet becomes 1.0 mass ppm or more is regarded as a breakthrough region, and the adsorption operation is terminated.
  • JIS K 0102 60 (60.3: ICP issue spectral analysis method) shall be used for the measurement of Co concentration.
  • Regeneration operation 10 ⁇ 1% by mass of hydrogen bromide water as a regenerant is passed through the resin tower reaching the breakthrough region at room temperature at a linear velocity of 0.083 ⁇ 0.008 m / min for adsorption. The time point at which 55 ⁇ 2% or more of Co adsorbed by the operation is desorbed is regarded as desorption completion. Subsequently, the pure water is washed at the linear velocity of 0.15 ⁇ 0.02 m / min using at least the same volume as the chelate resin tower volume.
  • the chelate resin used by this invention has elasticity in the state immersed in water.
  • a specific example of a suitable chelate resin having the above-described properties is not limited to this.
  • Lewatit (R) MonoPlus TP commercially available from Sybron Chemicals Inc.
  • the method for reducing the Cu adsorption capacity reduction rate of the chelate resin within the above-mentioned range is to select and use the chelate resin as described above, and to optimize the method of filling the chelate resin tower with the chelate resin and the structure of the chelate resin tower This can also be achieved.
  • the treated wastewater is passed through the region filled with the chelate resin, it is preferably designed so that the treated wastewater flows uniformly through the gaps between the chelate resin particles. In other words, it is preferable to design so that the treated wastewater does not flow only in the staying place where the treated wastewater does not flow or in a specific region.
  • the chelate resin tower usually has a chelate resin layer in the lower part of the wastewater, and the upper part is a layer of only the wastewater.
  • the chelate resin particles can float and convect in the upper drainage layer, but the amount of liquid in the upper drainage layer and the quantitative balance between the upper layer and the chelate resin layer should be optimized. As a result, the Cu adsorption capacity reduction rate can be improved.
  • the chelate resin is regenerated to obtain a regenerated solution containing the heavy metal compound.
  • the wastewater is brought into contact with the chelate resin under specific conditions, and the chelate resin after contact with the wastewater is regenerated under specific conditions.
  • FIG. 3 is a diagram showing an example of a heavy metal compound recovery process flow according to the present invention.
  • the p-toluic acid separation mother liquor 28 'generated from the step S7 and the catalyst regeneration process waste water 26' generated from the step S9 were mixed in the pH adjustment tank 101 to adjust the pH, and firstly filled with the above-described chelate resin.
  • Liquid is passed through either the chelate resin tower 102 or 103.
  • the chelate resin towers 102 and 103 are usually fixed beds, and a flow system is adopted for liquid flow.
  • the permeate that has passed through either the chelate resin tower 102 or 103 is sent to the step S11 via the drainage tank 104.
  • the thick continuous line of FIG. 3 shows the flow of the waste water processed.
  • the pH of the treated wastewater to be passed through the chelate resin tower 102 or 103 is adjusted in the pH adjusting tank 101.
  • the pH of the treated wastewater is preferably 5.1 or more, more preferably 5.2 or more, and further preferably. Is 5.3 or more, preferably 5.9 or less, more preferably 5.8 or less, and even more preferably 5.7 or less. If the pH of the treated wastewater exceeds the above range, the heavy metal compound is deposited and deposited on the chelate resin surface, making it impossible to recover. When the pH of the treated wastewater is less than the above range, organic substances such as terephthalic acid and p-toluic acid contained in the treated wastewater are deposited, and the heavy metal recovery rate is lowered.
  • the temperature of the treated wastewater passed through the chelate resin tower 102 or 103 is preferably 51 ° C. or higher, more preferably 53 ° C. or higher, still more preferably 55 ° C. or higher, preferably 59 ° C. or lower, more preferably 57 ° C. It is as follows. If the temperature of the treated wastewater is less than the above range, when terephthalic acid is contained in the wastewater, this tends to precipitate, and the heavy metal recovery rate is lowered. When the temperature of the treated waste water exceeds the above range, the chelate resin tends to deteriorate.
  • the flow rate of the treated wastewater to be passed through the chelate resin tower 102 or 103 is a linear flow rate, preferably 5 m / hr or more, more preferably 7 m / hr or more, preferably 14 m / hr or less, more preferably 10 m / hr or less.
  • a linear flow rate preferably 5 m / hr or more, more preferably 7 m / hr or more, preferably 14 m / hr or less, more preferably 10 m / hr or less.
  • a method for adsorbing heavy metal compounds there are a batch method and a continuous method, but a continuous method is generally used, and it is desirable to use a continuous fixed bed flow method.
  • Two or more treatment tanks are installed in parallel, and are performed by a simultaneous liquid feeding method or a switching method.
  • the material of the treatment tank is usually FRP-lined carbon steel.
  • the adsorption rate of cobalt and manganese under the above adsorption conditions is 80% or more, more preferably 90% or more with respect to the metal content at the time of inflow.
  • the chelate resin tower 102 or 103 that has finished adsorption is then washed with water from above and below to remove the adsorbed or deposited metals and organic compounds. Wash out.
  • the temperature and pressure at this time are almost the same as the heavy metal adsorption conditions.
  • Hydrogen bromide aqueous solution is used as a regenerant for adsorbed heavy metal compounds.
  • sulfuric acid, hydrochloric acid or the like is used for regeneration of the chelate resin, but in the present invention, hydrogen bromide is most preferable because cobalt, manganese and bromine compounds are used as the oxidation reaction catalyst.
  • the concentration of hydrogen bromide water used in the present invention is 7.1% by mass or more, preferably 7.5% by mass or more, more preferably 8% by mass or more, and 19% by mass or less, preferably 15% by mass or less. More preferably, it is 12 mass% or less.
  • the amount of heavy metal compound recovered depends on the hydrogen bromide water concentration and that there is an optimum concentration. When the concentration of the hydrogen bromide water is less than the above range or exceeds the above range, a good heavy metal compound cannot be recovered.
  • the flow rate of the hydrogen bromide water 7 ′ through the chelate resin tower 102 or 103 is preferably in the range of 1 m / hr to 10 m / hr in terms of linear flow velocity. If it is within this range, there is no effect on the recovery amount.
  • the temperature of the hydrogen bromide water at the time of liquid passing is desirably in the vicinity of normal temperature (15 ° C. or more and 40 ° C. or less).
  • the desorption rate of the heavy metal compound with hydrogen bromide water is preferably 90% or more, more preferably 95% or more, and more preferably closer to 100%.
  • the hydrogen bromide water 7 ′ is stored in the regenerant tank 106, and is passed through the chelate resin tower 102 or 103 (102 in FIG. 3) after the adsorption operation along the broken line to desorb the heavy metal compound.
  • the aqueous solution of caustic soda 8 ′ stored in the caustic soda tank 108 or the caustic soda preparatory tank 109 is regenerated and the chelate resin tower 102 or 103 is completed.
  • the chelate resin ionized with sodium or partially chelated with sodium ion is regenerated.
  • the caustic soda concentration of the aqueous caustic soda solution 8 ' is preferably 1% by mass or more and 10% by mass or less, more preferably 3% by mass or more and 7% by mass or less.
  • the linear flow rate of passing the caustic soda aqueous solution 8 'through the chelate resin tower 102 or 103 is preferably 1 m / hr or more and 20 m / hr or less, more preferably 2 m / hr or more and 15 m / hr or less.
  • the ionization method is preferably an up flow rather than a down flow, and the conditions under which the chelate resin is immersed in an aqueous caustic soda solution for 2 hours or more are preferable.
  • the ionization temperature is preferably 10 ° C. or higher and 80 ° C. or lower, more preferably around room temperature (15 ° C. or higher and 40 ° C. or lower).
  • the heavy metal compound recovered in step S10 is stored in the catalyst secondary recovery liquid tank 105 together with hydrogen bromide, and is used as a catalyst secondary recovery liquid 29 'in the catalyst regeneration primary recovery liquid 25' in the catalyst liquid mixing tank 21 of FIG. It is mixed and replenished with the amount of lost catalyst, recycled to step S1, and reused.
  • the catalyst secondary recovery process wastewater 30 ′ used for washing is sent to the biological treatment device 23 via the drainage tank 104 and processed.
  • the permeate flow path is switched and stored in the desorption operation end solution tank 107.
  • the liquid stored in the desorption operation end liquid tank 107 is used after passing through the chelate resin tower 102 or 103 at the next desorption.
  • the chelate resin tower is not limited to the case where the two towers are operated alternately.
  • the two towers may be operated simultaneously in series, and further, the alternating operation or series operation may be appropriately performed using three or more towers. You may combine.
  • Step S11 is a step in which all or part of the final waste water discharged from steps S1 to S10 is biologically treated with a microorganism group in the presence of oxygen. These final impurities in the waste water are decomposed by the biological treatment device 23.
  • the biological treatment apparatus 23 is usually composed of a combination of a general sedimentation tank and an aeration tank.
  • the waste waters 16 ′, 17 ′, 18 ′, 19 ′, 23 ′, and 30 ′ discharged from the steps S1 to S10 are not necessarily subjected to any treatment and are not directly sent to the biological treatment step and processed. In some cases, a treatment corresponding to the wastewater composition peculiar to the water is applied and recycled without being sent to the biological treatment process.
  • the treated wastewater 33 'after biological treatment is usually discharged into public water areas such as rivers.
  • the generated surplus biological sludge 32 ' is incinerated by the incinerator 22, and the ash 34' is discarded as industrial waste.
  • the amount of heavy metal compound discharged out of the system could be suppressed to a small amount of about 1% with respect to the total amount used in step S1. Therefore, a significant reduction can be achieved with respect to the conventional emission of 5 to 10%.
  • the method for producing high-purity terephthalic acid has been described as a representative example of the aromatic carboxylic acid, but the present invention can also be applied to, for example, medium-purity terephthalic acid.
  • the crude terephthalic acid slurry obtained by the oxidation reaction is further subjected to additional oxidation at high temperature and high pressure without hydrogenation, followed by solid-liquid separation, washing and drying. Part of the separated mother liquor, washing solution, etc. after the additional oxidation is recycled and reused in the reaction process, while the remaining separated mother liquor and washing solution are treated for recovery and reuse of valuable components in the same manner as high-purity terephthalic acid.
  • the contained heavy metal compound can be recovered and reused through the same steps.
  • the present invention can be applied to the production process of other aromatic carboxylic acids such as isophthalic acid having a similar production process using a heavy metal catalyst for the oxidation reaction, and the effects in terms of environment and economy are remarkable.
  • the wastewater treatment method of the present invention may include wastewater derived from an aromatic carboxylic acid production process as well as wastewater derived from other chemical plants. Even in such a case, the heavy metal compound can be efficiently recovered, and the chelate resin can be regenerated and the regenerated solution can be recycled without any problem.
  • the present invention can provide not only economic effects related to wastewater treatment but also environmentally friendly technology for practical use, and is extremely important and highly effective in terms of environmental measures.
  • Example 1 In a production facility for high-purity terephthalic acid (production amount 75 Ton / hr), paraxylene and acetic acid approximately 3 times mass of paraxylene continuously in a liquid phase oxidation reactor, cobalt acetate, manganese acetate, hydrogen bromide as catalyst The oxidation reaction was performed at a temperature of 185 ° C. or more and 195 ° C. or less, a pressure of 1.0 MPa or more and 1.7 MPa or less, and a reaction time (average residence time) of 90 minutes. The amount of catalyst used was 300 mass ppm for the cobalt component and manganese component in terms of metal, and 700 ppm for the bromine component, based on the solvent.
  • Air was used as a gas for performing an oxidation reaction with molecular oxygen. At this time, the oxygen content of the air was 21%, and compressed air was supplied into the reactor so that the oxygen concentration in the gas discharged from the reactor was 3% by volume or more and 7% by volume or less.
  • the obtained oxidation slurry is continuously transferred to a low-temperature oxidation reactor, and a supplemental oxidation reaction is performed at a temperature of 180 ° C. to 195 ° C., a pressure of 0.9 MPa to 1.7 MPa, and a reaction time of 40 minutes to 60 minutes. went.
  • Compressed air (21% oxygen content) was supplied as a gas for performing the oxidation reaction so that the oxygen concentration in the exhaust gas was 3% by volume to 7% by volume.
  • Solid-liquid separation was performed with a screen bowl decanter while maintaining the temperature and pressure of the crude terephthalic acid slurry after the reaction, and then the crude terephthalic acid cake was washed with an aqueous acetic acid solution. The crude terephthalic acid cake was dried by depressurizing and evaporating the adhered mother liquor with a pressure drier, and was transferred to the next purification step.
  • the crude terephthalic acid cake is mixed with water in a mixing tank, then heated and pressurized to 280 ° C to 300 ° C and 7MPa to 10MPa with steam and heat transfer oil, dissolved, and then hydrogenated using palladium-activated carbon as a fixed bed. Hydrogen was introduced into the reaction tower together with hydrogen to carry out a hydrogenation reaction.
  • the aqueous solution of terephthalic acid after the reaction is continuously sent to a crystallization tank, and is subjected to pressure reduction cooling and crystallization sequentially in a four-stage crystallization process, followed by solid-liquid separation at 100 ° C. to produce a high-purity terephthalic acid cake Washed with water and dried.
  • the dryer As the dryer, a pressure dryer by pressure-release evaporation and a fluidized bed dryer were used, and a high-purity terephthalic acid cake was obtained with a yield of 75 Ton / hr. Since the separation mother liquor contains an oxidation intermediate such as p-toluic acid, it was further cooled and crystallized, separated into solid and liquid, recovered as a solid, and recycled to the liquid phase oxidation reaction step. The mother liquor (drainage 2) from which the oxidized intermediate cake was separated was combined with the above-described wastewater 1 (hereinafter referred to as raw wastewater) and applied to the following wastewater treatment method.
  • raw wastewater hereinafter referred to as raw wastewater
  • the pH of the raw waste water is set to 5.5 in the pH adjustment tank 101, and the chelate resin tower filled with the chelate resin shown in Table 1 (Sybron-Chemicals-Inc.-A-LANXESS-COMPANY, Lewatit (R) -MonoPlus-TP-207)
  • the liquid was passed through 102 and 103.
  • the chelate resin ions are theoretical amounts, and almost all of them are converted to sodium type.
  • the raw wastewater contained 5 ppm of Co as a heavy metal, contained trace amounts of Mn and terephthalic acid and p-toluic acid as organic compounds, and CODcr was 4000 ppm.
  • the Co concentration was measured according to JIS K 0102 60 (60.3: ICP issue spectroscopic analysis), and the CODcr was measured according to JIS K 0102-20.
  • Each of the chelate resin towers 102 and 103 is a fixed bed flow reactor having a substantially cylindrical shape, and the ratio of the inner diameter and the height of the portion filled with the chelate resin is 1.0: 0.7, which is high in a stationary state.
  • the chelate resin particles were filled up to 50%.
  • the volume of the portion filled with the chelate resin is 30 m 3 or more.
  • the liquid flow is a distribution system, and two units (102 and 103) are arranged in parallel and can be switched.
  • the chelate resin tower 102 or 103 that has reached the breakthrough region is subjected to operations such as regeneration, washing, and Na ion exchange described below.
  • the temperature of the raw waste water adjusted to pH 5.5 was 55 ° C., and the solution was passed through the chelate resin tower 102 at a flow rate of 67.5 m 3 / hr and a linear velocity of 8.9 m / hr.
  • the wastewater after the liquid passing treatment was sent to the drainage tank 104 and stored, and then sent to the wastewater treatment apparatus.
  • the Co concentration in the wastewater after passing through was about 0.01 to 0.04 ppm in the initial stage of operation. Thereafter, the Co concentration in the wastewater after passing through gradually increased, but as described above, it was possible to maintain less than 1 ppm. From this result, the Co concentration in the wastewater discharged out of the system is usually 5 ppm, but can be suppressed to less than 1 ppm by performing the treatment of the present invention.
  • the breakthrough region is defined when the Co concentration becomes 1 ppm or more. However, the breakthrough region can be appropriately set as long as it exceeds the initial Co concentration in operation. It can be set as appropriate according to regulations and the like.
  • a regenerant tank containing 10% by mass of hydrogen bromide aqueous solution is used.
  • the solution was passed through 106.
  • the temperature of the regenerant at this time was room temperature, and the liquid flow rate was 5 m / hr. 90% or more of Co was desorbed by passing the liquid for 1 hour or longer.
  • the regenerated heavy metal compound such as Co is stored in the catalyst secondary recovery liquid tank 105 together with the regenerant hydrogen bromide water, and the secondary recovery liquid 29 ′ is combined with the primary recovery liquid 25 ′ in the catalyst mixing tank 21 of FIG. They were mixed, recycled to the oxidation reaction process and reused.
  • water 9 ′ is passed through the chelate resin tower 102 and the trace metals remaining in the resin are removed, and in order to prepare for the next adsorption, the regeneration solution is converted to hydrogen form.
  • a 5% by mass aqueous solution of caustic soda was passed through the resulting chelate resin tower 102 from the caustic soda tank 108 and the reserve tank 109. The liquid flow at this time was an upflow, the linear velocity was 5 m / hr, and the temperature was 35 ° C.
  • the Cu adsorption capacity of the chelate resin used in this example decreased from 0.71 mmol / cm 3 (new resin) at the start of use to 0.47 mmol / cm 3 , and the Cu adsorption capacity decrease rate was 5. 6% / month. This means that 34% of the ion exchange groups were lost in 6 months compared to the unused resin.
  • Example 2 Raw wastewater was treated by the same method and treatment conditions as in Example 1 except that 20% by mass of hydrogen bromide water was used in the regeneration treatment. As a result, it was found that the Co recovery rate of the adsorbed heavy metal remained at 80% compared to Example 1, and the heavy metal recovery rate was lowered.
  • heavy metal compounds such as cobalt and manganese contained in the wastewater derived from the aromatic carboxylic acid production process can be recovered with high efficiency and can be reused. Therefore, according to the present invention, the metal component released outside the manufacturing process can be suppressed to the minimum with respect to the total amount of the metal component used, and it is environmentally friendly like no other. It has become possible to provide a process for producing aromatic carboxylic acids. Furthermore, the economic effect obtained by collecting and reusing the heavy metal compound is great. In general, many petrochemical plants are formed by collecting different kinds of chemical plants in one area or industrial area.
  • the wastewater treatment method of the present invention includes wastewater from an aromatic carboxylic acid production process represented by terephthalic acid, even if wastewater from other dissimilar chemical plants exists. Since heavy metal compounds such as cobalt and manganese contained in the wastewater can be recovered and reused with high efficiency, the effect is great not only economically but also environmentally.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

 芳香族カルボン酸製造プロセス由来の重金属化合物を含んでなる排水から、該重金属化合物を効率良く回収することのできる排水の処理方法を提供する。芳香族カルボン酸製造プロセス由来の排水を特定のキレート樹脂に接触させて該排水中に含有する重金属化合物を該キレート樹脂に回収する排水の処理方法。

Description

排水の処理方法および処理装置
 本発明は、芳香族カルボン酸製造プロセスにおける排水の処理方法および処理装置に関する。
 重金属化合物を含有する排水は種々の化学プラント、電子部品製造設備、食品加工設備、金属加工設備、金属メッキ設備、印刷製版設備、写真設備等の各種産業プラント、更に火力発電や原子力発電などの発電設備などから排出される。例えば化学プラントとしては、エチレンオキサイド、エチレングリコール、メタノール、エタノール、高級アルコール、アクリル酸、アクリル酸エステルや、テレフタル酸、テレフタル酸エステル、イソフタル酸、イソフタル酸エステルなどの芳香族カルボン酸もしくはそのエステルの製造設備等が挙げられる。
 例えばテレフタル酸の製造を例に挙げれば、テレフタル酸はパラキシレンを酢酸溶媒中、コバルト、マンガン等の重金属化合物および臭素化合物よりなる触媒の存在下、分子状酸素による加圧下の液相酸化によって製造される。反応後のテレフタル酸を含むスラリーは固液分離・洗浄され、得られたテレフタル酸ケーキは乾燥して粗テレフタル酸とした後、精製のために水素添加工程に送られ、高純度テレフタル酸となる。一方、固液分離で生じた分離母液および洗浄液(以下、母液等)には酢酸溶媒のほか、テレフタル酸等の有機物や触媒の金属成分などの成分(以下、有価成分)が含有されているので、酸化反応工程にリサイクルして再使用される。ただし、母液等中の有機物のなかには、例えば、パラトルイル酸、4-カルボキシベンズアルデヒド、安息香酸などの不純物を含むので、そのような不純物の蓄積によるテレフタル酸の品質低下を回避するために、母液等の一部を製造工程外へパージし、残りを再利用することが行われる。しかし、製造工程外へパージする母液等には上記したように相当量の有価成分が含有されているので、有価成分の回収再利用が経済的にも環境的にも必要とされる。有価成分の回収方法としては、一般的には酢酸を蒸発させて、次いで蒸留して水分を分離して再利用し、蒸発時の残留物から触媒の重金属成分を回収している。
 特許文献1には、テレフタル酸製造時において、金属成分の回収率向上を目指した従来の方法が唱えられている。該文献によれば、反応母液の残留濃縮物に水を加えて触媒の重金属成分を溶解させて水溶液とし、この際、微量のテレフタル酸やその他反応副生物が固形分として析出する場合は固液分離する。得られた水溶液に炭酸アルカリを添加し、重金属成分であるコバルトおよびマンガンの炭酸塩を生成させて、連続式沈殿濃縮装置でスラリー化させ、装置底部より濃縮スラリーを取り出し、さらに酢酸と反応させた後に、酸化反応に再使用する方法が報告されている。
 特許文献2には、テレフタル酸製造時において、反応母液の濃縮物に水を加えてスラリー化し、スラリー中の芳香族アルデヒド濃度、酢酸濃度および冷却温度を調整して固液分離することにより、スラリー中の微粒子が原因で生じる固液分離不良による触媒回収率の低下を防止する方法が報告されている。
 特許文献3には同じくテレフタル酸の製造時において、反応母液の残留濃縮物を撹拌しながら熱水処理し、ついで得られた熱水スラリーを撹拌しながら造粒処理して造粒スラリーとし、この際、該熱水処理と造粒処理とを別々の撹拌槽で行い、得られた造粒スラリーを固液分離して触媒水溶液を回収する方法が報告されている。
 また、特許文献4には、芳香族酸の製造に由来する廃洗浄水を精製するための方法として、不溶性の芳香族酸をろ過機で分離した後、ろ液中の鉄、ニッケル、クロムなどの金属成分を強酸性カチオン交換樹脂で吸着し、ついでキレート樹脂で触媒金属のコバルトおよびマンガンを吸着し、さらに逆浸透膜システムを通して溶存有機物を除去して製造工程内へリサイクルする事例が提案されている。
日本国特開平5-15788号公報 日本国特開2004-321889号公報 日本国特開2006-312166号公報 日本国特表2003-507156号公報
 しかしながら、上記特許文献4に開示されている方法では、吸着能力の低下が早期におこり、キレート樹脂の寿命が不十分な点など、技術的かつ経済的な観点からも工業的に実用化する程度には達していないのが現状である。
 上記に示した技術によれば、重金属化合物の回収率は従来に比べてある程度は改善されているが、まだ工業的使用に十分なレベルではない。特に、テレフタル酸製造のような大規模な製造プラントにおいては、環境保全上更なる対応が望まれている。
 重金属化合物が残留して製造工程外へ排出される箇所としては、特許文献1における残留濃縮物から固液分離された固形分や、炭酸塩を生成した後に固液分離したろ液などである。さらには、高純度テレフタル酸スラリーを固液分離したろ液中にも重金属化合物は残留する。通常、固形分は焼却処理や埋め立て処理などが実施されるが、ろ液は通常、生物処理を施した後に排水として排出される。このようなテレフタル酸製造プロセスで生じたろ液中の重金属化合物は低濃度であるものの、低濃度で含有する重金属化合物を効率良く回収する方法は従来知られていなかった。このため、低濃度で重金属化合物を含有する排水は、生物処理した後に河川等へ放流される例が多く、効率的な重金属化合物の回収方法が未だ確立されていない。
 これらの製造工程外へ排出される重金属化合物量は、合計すると全使用量の5~10%にも及んでいるのが実態である。排水としての重金属の排出規制もますます厳しくなる中、排水からの重金属の効率的回収は経済的のみならず、環境的にも極めて重要な要素となりつつある。このような観点からも、重金属化合物の外部放出は極力抑制すべきであるが、これを十分に満足する排水の処理方法は従来知られていなかった。
 本発明は、上記の問題点に鑑みて創案されたもので、芳香族カルボン酸製造プロセス由来の重金属化合物を含んでなる排水から、該重金属化合物を効率良く回収することのできる排水の処理方法を提供することを課題とする。
 本発明者等は上記実情に鑑み種々検討した結果、芳香族カルボン酸製造プロセス由来の排水をキレート樹脂に接触させて該排水中に含有する重金属化合物を該キレート樹脂に回収するにあたり、特定の形状のキレート樹脂を用いることにより、効率的に重金属化合物を回収できることを見出し、以下の第1の本発明を完成するに至った。
 また、本発明者等は上記実情に鑑み種々検討した結果、芳香族カルボン酸製造プロセス由来の排水をキレート樹脂に接触させて該排水中に含有する重金属化合物を該キレート樹脂に回収するにあたり、特定のCu吸着容量低下率を示すキレート樹脂を用いることにより、効率的に重金属化合物を回収できることを見出し、以下の第2の本発明を完成するに至った。
 また、本発明者等は上記実情に鑑み種々検討した結果、芳香族カルボン酸製造プロセス由来の排水をキレート樹脂に接触させて該排水中に含有する重金属化合物を該キレート樹脂に回収した後、該キレート樹脂を再生して重金属化合物を含有する再生液を得るにあたり、特定の条件でキレート樹脂に排水を接触させ、さらに、排水と接触後のキレート樹脂を特定の条件で再生することにより、効率的に重金属化合物を回収できることを見出し、以下の第3の本発明を完成するに至った。
 すなわち、第1の本発明は、芳香族カルボン酸製造プロセス由来の排水をキレート樹脂に接触させて該排水中に含有する重金属化合物を該キレート樹脂に回収する排水の処理方法であって、該キレート樹脂は、均一係数が1.4以下の粒子であることを特徴とする排水の処理方法である。本発明における均一係数の測定方法については、後に詳述する。
 また、第2の本発明は、芳香族カルボン酸製造プロセス由来の排水をキレート樹脂に接触させて該排水中に含有する重金属化合物を該キレート樹脂に回収する排水の処理方法であって、該キレート樹脂のCu吸着容量低下率が11%/月以下であることを特徴とする排水の処理方法である。
 また、第1及び第2の本発明の排水の処理方法において、キレート樹脂に接触する排水のpHが5.1以上5.9以下であることが好ましい。排水のpHが前記範囲を超過すると重金属化合物が析出し、キレート樹脂表面に沈着して回収不能となる場合がある。一方、排水のpHが前記範囲未満であると、排水中に含まれるテレフタル酸やp-トルイル酸等有機物が沈積したり、また重金属回収率が低下したりする場合がある。
 また、第1及び第2の本発明の排水の処理方法において、キレート樹脂に接触する排水の流速が5m/hr以上14m/hr以下であることが好ましい。排水の流速が前記範囲を超過すると、偏流やチャネリングの影響によって、排水中に含有する重金属化合物をキレート樹脂で効率的に吸着できない傾向にあり、排水の流速が前記範囲未満であると、キレート樹脂を収容する容器を大きくする必要があるため経済的に不利な傾向にある。
 第3の本発明は、芳香族カルボン酸製造プロセス由来の排水をキレート樹脂に接触させて該排水中に含有する重金属化合物を該キレート樹脂に回収する工程と、該キレート樹脂を再生して重金属化合物を含有する再生液を得る工程とを含む排水の処理方法であって、該キレート樹脂に接触する排水のpHが5.1以上5.9以下であり、該キレート樹脂に接触する排水の流速が5m/hr以上14m/hr以下であり、かつ、7.1質量%以上19質量%以下の臭化水素水を用いて該キレート樹脂を再生することを特徴とする排水の処理方法である。
 また、第3の本発明の排水の処理方法において、キレート樹脂は、均一係数が1.4以下の粒子であることが好ましい。均一係数が上記範囲を超えた場合、固定床流動方式で該排水を吸着及び再生したときに、樹脂層内での圧力損失が起こりやすくなり、後に詳述する劣化率悪化の一つの原因ともなる場合がある。
 また、第1、第2及び第3の本発明の排水の処理方法において、キレート樹脂に接触する排水の温度が51℃以上59℃以下であることが好ましい。排水の温度が前記範囲未満では排水中にテレフタル酸が含まれる場合はこれが析出しやすくなる傾向があり、また重金属回収率が低下する場合がある。一方、排水の温度が前記範囲を超過するとキレート樹脂が劣化し易い傾向にある。
 また、第1、第2及び第3の本発明の排水の処理方法において、キレート樹脂のCu吸着容量が0.5mmol/mL以上であることが好ましい。本発明において使用されるキレート樹脂のCu吸着容量の上限は限定されず、排水処理前のキレート能が大きい程好ましい。Cu吸着容量の測定方法は後に詳述する。
 また、第3の本発明の排水の処理方法は、再生液を芳香族カルボン酸製造プロセスにおける酸化反応系に再循環させることができる。
 さらに、第4の本発明として、芳香族カルボン酸製造プロセス由来の排水をキレート樹脂に接触させて該排水中に含有する重金属化合物を該キレート樹脂に回収する排水の処理装置であって、該キレート樹脂は、均一係数が1.4以下の粒子であることを特徴とする排水の処理装置がある。
 第1、第2及び第4の本発明によれば、芳香族カルボン酸製造プロセス由来の排水中に含有されるコバルト、マンガンなどの重金属化合物を高効率で回収することができる。均一係数が所定の範囲を超えた場合、固定床流動方式で該排水を吸着するときに、樹脂層内での圧力損失が起こりやすくなる。
 第3の本発明によれば、芳香族カルボン酸製造プロセス由来の排水中に含有されるコバルト、マンガンなどの重金属化合物を高効率で回収し、再利用することが可能になる。
 本発明によれば上記のような効果を得られるため、製造工程外へ放出される上記金属成分を上記金属成分の全使用量に対して最小限に抑制することが可能になり、他に類を見ないほど環境にやさしい芳香族カルボン酸製造法を提供することが可能になった。さらに重金属化合物を回収し、再利用することで得られる経済的な効果も大きい。一般に石油化学系のプラントは、異種の化学プラントが一つの地域、あるいは工業地区に集合してなるものが多い。そのため排出される工業排水種もまちまちではあるが、場合によっては上記のような重金属化合物を排出する異種化学プラントからのプラント排水を合流させ、外部に放流させる場合もある。本発明の排水処理の方法は上記のように、テレフタル酸で代表されるような芳香族カルボン酸製造プロセス由来の排水を含む排水ならば、他の異種の化学プラントの排水等が存在しても該排水中に含有されるコバルト、マンガンなどの重金属化合物を高効率で回収・再利用することができるので、その効果は経済的のみならず、環境的にも多大である。
本発明に係わる高純度テレフタル酸製造工程の一例を概略的に示すフローチャートである。 本発明に係わる高純度テレフタル酸製造工程製造フロー例である。 本発明に係わる重金属化合物回収工程フロー例である。
 以下、本発明をより詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 <芳香族カルボン酸の製造方法>
 以下に芳香族カルボン酸の製造プロセス(方法)について説明する。芳香族カルボン酸を製造するための原料は限定されないが、通常、アルキル基を有する芳香族化合物が使用される。芳香族化合物を構成する芳香環は単環であっても、多環であってもよい。
 上記アルキル基としては、例えば、メチル基、エチル基、n-プロピル基およびイソプロピル基等を挙げることができる。
 アルキル基を有する芳香族化合物の具体的なものとしては、例えば、ジ-及びトリ-アルキルベンゼン類、ジ-及びトリ-アルキルナフタレン類並びにジ-及びトリ-アルキルビフェニル類が挙げられる。好ましくは、m-ジイソプロピルベンゼン、p-ジイソプロピルベンゼン、p-ジイソプロピルベンゼン、m-シメン、p-シメン、o-キシレン、m-キシレン、p-キシレン、トリメチルベンゼン類、2,6-又は2,7-ジメチルナフタレン、2,6-ジイソプロピルナフタレン、4,4’-ジメチルビフェニルなどが挙げられる。なかでも反応性が高いため好ましいものとして、メチル基、エチル基、n-プロピル基およびイソプロピル基等の、炭素数が1~4のアルキル基を2~4個有するアルキルベンゼン類、アルキルナフタレン類、およびアルキルビフェニル類などが挙げられる。
 また、アルキル基を有する芳香族化合物は一部酸化されていてもよい。これは、上記アルキルを有する芳香族化合物におけるアルキル基が酸化されて、アルデヒド基、アシル基、カルボキシル基又はヒドロキシアルキル基等に酸化されているものの、目的とする芳香族カルボン酸となる程には酸化されていない化合物である。具体的には、例えば3-メチルベンズアルデヒド、4-メチルベンズアルデヒド、m-トルイル酸、p-トルイル酸、3-ホルミル安息香酸、4-ホルミル安息香酸、および2-メチル6-ホルミルナフタレン類等を挙げることができる。
 これらの原料は、単独または2種以上を併用して用いることができる。
 以上総合して、原料としてはキシレン類(o-キシレン、m-キシレン、p-キシレン)が好ましく、特にp-キシレンが好ましい。原料としてp-キシレンを用いる場合、一部酸化されたアルキル基を有する芳香族化合物としては、例えば4-カルボキシベンズアルデヒド(4CBA)、p-トルアルデヒド、p-トルイル酸等が挙げられ、芳香族カルボン酸としてはテレフタル酸が得られる。
 これらの原料は、通常、低級脂肪族カルボン酸を含む反応溶媒中で、酸化触媒として重金属化合物および必要により臭素化合物を用いて、分子状酸素の存在下、高温高圧下で液相酸化することにより芳香族カルボン酸類が得られる。得られた芳香族カルボン酸は品質目標に応じて精製・分離工程を経て製品となる。
 本発明が適用される芳香族カルボン酸の種類は特に制限はないが、例えばオルトフタル酸、イソフタル酸、テレフタル酸、トリメリット酸(ベンゼントリカルボン酸)、2,6-、又は2,7-ナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸などが挙げられる。中でも本発明はフタル酸類(オルトフタル酸、イソフタル酸、テレフタル酸)の製造に適用することが好ましく、特にテレフタル酸の製造に適用することが好ましい。
 <高純度テレフタル酸の製造方法>
 本発明にかかる代表的な芳香族カルボン酸としては、高純度テレフタル酸が挙げられる。以下に、p-キシレンを原料として高純度テレフタル酸を得る製造方法について説明するが、他の芳香族カルボン酸を製造する際にも適宜変更して同様に製造することが可能である。高純度テレフタル酸の製造方法は、具体的には、例えば下記の工程からなる。
 図1は高純度テレフタル酸の製造工程の一例を概略的に示すフローチャートである。図1に示すように、高純度テレフタル酸の製造方法には、以下に示す11の工程が備えられる。
(S1)酸化工程:含水酢酸中、触媒の存在下、p-キシレンを酸化し、必要により晶析して粗テレフタル酸スラリー11’を得る工程。
(S2)第一固液分離工程:上記粗テレフタル酸スラリー11’を固液分離し、得られたテレフタル酸ケーキを洗浄して乾燥し、分離母液・洗浄液17’と粗テレフタル酸12’を得る工程。
(S3)水素添加工程:上記粗テレフタル酸12’を水に溶解し、水素を添加して、水素添加処理液13’を得る工程。
(S4)晶析工程:上記水素添加処理液13’を晶析して高純度テレフタル酸スラリー14’を得る工程。
(S5)第二固液分離工程:上記高純度テレフタル酸スラリー14’を固液分離、洗浄して高純度テレフタル酸ケーキ14’’と高純度テレフタル酸分離母液等19’を得る工程。
(S6)乾燥工程:上記高純度テレフタル酸ケーキ14’’を乾燥して高純度テレフタル酸15’および乾燥凝縮液15’’を得る工程。
(S7)有機化合物回収工程:上記工程S5および工程S6から排出される高純度テレフタル酸分離母液等19’、及び乾燥凝縮液15’’の全量または一部から有機化合物(p-トルイル酸等有機物27')を回収する工程。
(S8)リサイクル工程:上記工程S2で得られる分離母液・洗浄液17’の一部または全量を工程S1へリサイクルする工程。
(S9)一次回収工程:上記工程S8でリサイクルされない分離母液・洗浄液17’から酢酸22’を回収し、次いで触媒金属成分を含む触媒再生一次回収液25'を回収する工程。
(S10)二次回収工程:上記工程S7およびS9から発生する排水26’、28’から残留重金属化合物含む触媒二次回収液29’を回収し、再利用する工程。
(S11)生物処理工程:上記工程S1~S10から排出される排水の全量または一部を生物処理する工程。
 これらの工程を、図2に基づき、より詳細に説明する。図2は、本発明に係わる高純度テレフタル酸製造工程製造フロー例を示す図である。
 1.酸化工程(S1)
 工程S1は、含水酢酸中、p-キシレンを酸化して、粗テレフタル酸スラリーを得る酸化反応工程である。すなわち、まず、p-キシレン1’および酢酸等からなる溶媒3’を混合し、酸化反応装置11に送り、溶媒3’中で重金属および臭素化合物から構成される触媒31'の存在下に分子状酸素2'を用いて、p-キシレン1'を酸化する。これにより粗テレフタル酸スラリー11'が生成され、工程S2に送られる。また、この工程で生じる酸化排ガス洗浄水(排水)16'は後に詳述する工程S11で処理される。
 p-キシレン1'を酸化する際に用いる触媒としては、アルキル基を有する芳香族化合物を酸化し、芳香族カルボン酸に変換する能力を有するものであれば特に制限はないが、通常、重金属化合物が使用される。重金属化合物における重金属としては、例えばコバルト、マンガン、ニッケル、クロム、ジルコニウム、銅、鉛、ハフニウム、セリウム等を挙げることができる。これらは単独で、または組み合わせて用いることができ、コバルトとマンガンを組み合わせて用いるのが好ましい。このような重金属の化合物としては、例えば酢酸塩、硝酸塩、アセチルアセテート塩、ナフテン酸塩、ステアリン酸塩、臭化物等を挙げることができるが、酢酸塩、臭化物が好ましい。
 また、必要に応じて触媒には触媒助剤を含ませてもよく、触媒助剤としては、通常、臭素化合物が用いられる。臭素化合物としては、例えば分子状臭素、臭化水素、臭化ナトリウム、臭化カリウム、臭化コバルト、臭化マンガン等の無機臭素化合物や、臭化メチル、臭化メチレン、ブロモホルム、臭化ベンジル、ブロモメチルトルエン、ジブロモエタン、トリブロモエタン、テトラブロモエタン等の有機臭素化合物などを挙げることができる。これらの臭素化合物も単独で、または2種以上を組み合わせて用いることができる。
 すなわち、本発明においてp-キシレン1'を酸化する際に用いる触媒は、コバルト化合物、マンガン化合物及び臭素化合物の組み合わせであることが特に好ましく、その中でも酢酸コバルト、酢酸マンガン及び臭化水素の組み合わせがより好ましい。
 本発明において、上記重金属化合物と臭素化合物との組み合わせからなる触媒は、重金属1モルに対して臭素原子が好ましくは0.05モル以上10モル以下、より好ましくは0.1モル以上5モル以下である。
 このような触媒は、反応溶媒に対して好ましくは10質量ppm以上10000質量ppm以下、より好ましくは100質量ppm以上5000質量ppm以下、さらに好ましくは200質量ppm以上3000質量ppm以下の範囲で用いられる。触媒量が前記の下限値以上で反応速度が高まる傾向にあり、前記の上限値以下とすることでコストが削減できる傾向にある。
 酸化反応装置11でのp-キシレン1'の酸化反応温度は、好ましくは140℃以上230℃以下であり、より好ましくは150℃以上210℃以下であり、さらに好ましくは170℃以上200℃以下である。反応温度が前記範囲未満では反応速度が低下する傾向にあり、前記範囲超過では酢酸溶媒の燃焼による損失量が増大する傾向にある。反応圧力は、少なくとも反応温度において混合物が液相を保持できる圧力以上である必要があり、常圧を上回る圧力である必要がある。具体的には0.2MPa以上6MPa以下(絶対圧)が好ましく、0.4MPa以上3MPa以下(絶対圧)がより好ましい。
 酸化反応装置11としては、通常、攪拌槽、気泡塔などが使用される。酸化反応装置11として気泡塔を用いる場合は、攪拌槽を用いる場合よりも反応温度はやや低く、140℃以上180℃以下が好ましく、より好ましくは150℃以上170℃以下である。
2.第一固液分離工程(S2)
 工程S2は、固液分離・洗浄・乾燥装置12において、粗テレフタル酸スラリー11’を固液分離し、得られたテレフタル酸ケーキを洗浄して乾燥することで、分離母液・洗浄液17’と粗テレフタル酸12’を得る工程である。
 固液分離する方法としては、高温、高圧を維持したまま固液分離機にかける方法がある。また、粗テレフタル酸スラリー11'は加圧状態にあるので、圧力を下げると、溶解している粗テレフタル酸が析出する。このため、粗テレフタル酸スラリー11'を晶析槽(図示せず。)に送って、放圧冷却を行い、溶解している粗テレフタル酸を析出させてから、固液分離機にかける方法もある。なお上記放圧冷却とは、対象液をその圧力よりも低い圧力条件に放圧(圧力低下)させることにより、膨張および溶媒成分の気化によって冷却させることをいう。
 このようにして得られた粗テレフタル酸ケーキを洗浄、乾燥することにより、粗テレフタル酸12'を得られる。洗浄液としては通常、酢酸を用いるが、例えば後述する工程S9で回収された酢酸22’を用いても良いし、フレッシュな酢酸を用いても良い。
 得られた粗テレフタル酸12'には、酸化中間体である4-カルボキシベンズアルデヒド(以下、4CBAという場合がある)等が不純物として含まれる。これらを取り除くため、粗テレフタル酸12'は工程S3に送られる。
 3.水素添加工程(S3)
 工程S3は、水素添加反応装置13において、上記粗テレフタル酸12'を水に溶解して、水素4'を添加して還元処理する水素添加工程である。すなわち、この工程は不純物である4CBAを還元し、p-トルイル酸にする工程である。p-トルイル酸はテレフタル酸より水溶性が高いので、後に詳述する工程S5で、水素添加処理液13'から分離することができる。そして、このp-トルイル酸を上記工程S1に戻すことにより、テレフタル酸原料として使用する。水素添加処理液13'は、次に工程S4に送られる。
 4.晶析工程(S4)
 工程S4は、晶析装置14において、水素添加処理液13'を晶析して高純度テレフタル酸スラリー14'を得る工程である。晶析方法としては、溶媒である水の蒸発除去および冷却による方法や、放圧冷却する方法等が挙げられる。この工程において、上記したように、p-トルイル酸は、水溶性が高いため、その多くは溶媒に溶解したままであるので次の工程S5でp-トルイル酸とテレフタル酸とを分離することができる。高純度テレフタル酸スラリー14'は次の工程S5に送られ、この工程で生じる晶析時発生凝縮水(排水)18’は後に詳述する工程S11で処理される。
 5.第二固液分離工程(S5)
 工程S5は、固液分離・洗浄装置15aにおいて、高純度テレフタル酸スラリー14'を固液分離、洗浄して、高純度テレフタル酸ケーキと分離母液および洗浄液(高純度テレフタル酸分離母液等19')に分離する工程である。分離機としてはろ過機、遠心分離機等公知のものを採用できる。
 6.乾燥工程(S6)
 工程S6は、乾燥装置15bにおいて、高純度テレフタル酸ケーキを乾燥して高純度テレフタル酸15’および乾燥凝縮液15’’を得る工程である。乾燥装置としては放圧蒸発による乾燥機、通常の流動乾燥機などが用いられる。放圧蒸発などで気相部分で凝縮される乾燥凝縮液15’’には高純度テレフタル酸分離母液19'と同様の成分が含まれている。
 7.有機化合物回収工程(S7)
 工程S7は、工程S5で排出される高純度テレフタル酸分離母液等19'および工程S6から排出される乾燥凝縮液15’’の全量または一部から有機化合物を回収する工程である。高純度テレフタル酸分離母液等19'および工程S6から排出される乾燥凝縮液15’’にはp-トルイル酸などの不純物、触媒、テレフタル酸などが含有されているので、p-トルイル酸等回収装置19において冷却してp-トルイル酸、テレフタル酸等を析出させて回収し、p-トルイル酸等有機物27'は工程S1に戻される。分離されたp-トルイル酸等分離母液28'には重金属化合物等が残留しているので、後に詳述する工程S10に送られ、重金属化合物等を回収し再利用に供する。
 8.リサイクル工程(S8)
 工程S8は、工程S2で得られる分離母液・洗浄液17'の一部または全量を工程S1へリサイクルをする工程である。分離母液・洗浄液17'のうち分離母液については、常圧を上回る圧力を維持したままリサイクル母液とパージ母液とに分岐させることが好ましい。さらには、工程S2の操作圧力を実質的に維持した圧力であることが好ましい。リサイクル母液とパージ母液との分岐割合は製造プロセスに応じて任意に調節できるが、通常、分離母液のリサイクル率{リサイクル母液質量×100/(リサイクル母液質量+パージ母液質量)}の下限値は、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上である。リサイクル率を前記範囲とすることにより、分離母液内の有価成分が再利用でき、また排液処理工程の負荷が減少し、廃棄物量も低減できるので好ましい。また、分離母液の全量をリサイクルしても良いが、リサイクル率の上限値は好ましくは90%以下、より好ましくは80%以下である。リサイクル率を前記範囲とすることにより、系内への不純物の蓄積を抑えることができ、製品テレフタル酸の品質向上につながるので好ましい。
 分離母液・洗浄液17'のうち洗浄液のリサイクルは必ずしも必要ではないが、リサイクルする方が好ましい。洗浄液のリサイクル率{リサイクル洗浄液質量×100/(リサイクル洗浄液質量+パージ洗浄液質量)}は、通常60%以上、より好ましくは75%以上で、100%以下の範囲である。洗浄液をリサイクルすることにより、洗浄液中の有価成分を再利用でき、また排液処理工程の負荷が減り、廃棄物量を低減できるので好ましい。
 9.一次回収工程(S9)
 工程S9は、工程S2で得られる分離母液・洗浄液17'のうち工程S8でリサイクルされない分離母液(パージ母液)および洗浄液(パージ洗浄液)から酢酸22'を回収し、ついで触媒金属成分等の有価成分を回収する工程である。具体的には、分離母液・洗浄液17'を溶媒蒸発装置16にて蒸発させて得られた蒸発溶媒20’を、脱水蒸留装置17にて脱水することで、分離母液・洗浄液17'中に最も大量に含有される酢酸22'を回収する。このとき、脱水蒸留装置17で生じる脱水塔底液(排水)23'は後に詳述する工程S11で処理される。ついで、溶媒蒸発装置16で生じた濃縮残留物21'は、触媒回収・再生装置18において、水を添加して再スラリー化されて、ろ過機によって固形分と分離母液に分離される。固形分中の付着母液を極小化するために効率的な洗浄を実施した後に、ろ過残渣24'は工程S11で発生する活性汚泥32'とともに焼却装置22にて焼却処理する。ここで発生したろ液は、触媒再生工程排水26’として後述する工程S10で処理される。
 ついで上記再スラリー化後のろ過によって得た分離母液および洗浄液は苛性ソーダ水溶液にて中和後、炭酸ソーダ水溶液5'と反応させて、炭酸コバルト塩および炭酸マンガン塩を生成させ、炭酸塩を含むスラリーを固液分離して、炭酸塩のケーキを分離した後に水を添加して再スラリー化した後、酢酸と反応させて、酢酸コバルトおよび酢酸マンガンを生成させる。これを触媒再生一次回収液25'とする。触媒再生一次回収液25'は、触媒液混合槽21で後述する触媒二次回収液29'と混合されて、製造工程で損失された触媒量分の補充触媒6'を補充して触媒31'として工程S1に戻す。
 10.二次回収工程(S10)
 工程S10は、触媒回収・精製装置20において、工程S7から発生したp-トルイル酸等分離母液28'および/または工程S9から発生した触媒再生工程排水26’(以下、総称して処理排水という場合がある。)から残留重金属化合物を含む触媒二次回収液29’を得る工程である。すなわち工程S10は、処理排水中に残存している触媒に由来するコバルトやマンガン等の重金属成分を回収する工程である。具体的には、上記工程S7からの排水28'および/または工程S9からの排水26’を吸着工程に通し、キレート樹脂を使用して重金属化合物を吸着させ、吸着後は臭化水素水溶液で脱着・再生する。
 尚、本発明において得られる該処理排水中には、テレフタル酸や不純物として副生するp-トルイル酸、4-カルボキシベンズアルデヒド、3-カルボキシベンズアルデヒド、安息香酸、イソフタル酸、2,6-ジカルボキシフルオレノンから選ばれる1種以上が含まれていても差し支えない。
 以下に、本発明の特徴である工程S10についてさらに詳細に説明する。本発明で使用されるキレート樹脂は、イオン交換樹脂のイオン交換基の代わりに金属とキレート結合しやすいキレート生成基(以下、キレート基)を導入することにより、特定の金属を選択的に吸着することができる樹脂である。キレート基は一般のキレート剤と同様に、電子授与元素としてN、S、O、Pなどの元素を同種または異種2個以上組み合わせて含み、例えばN-O系、S-N系、N-N系、O-O系などの種類が挙げられる。これらのキレート基を三次元高分子基体に結合させると、キレート基特有の特定金属に対して選択性を有するキレート樹脂が得られる。重金属類の除去は陽イオン交換樹脂でも可能であるが、排水中にはアルカリ金属、アルカリ土類金属など、除去する必要のない金属が多量に存在し、同時に吸着されて再生剤の浪費につながるので、キレート樹脂を用いる必要がある。キレート基としては金属選択性があれば特に限定されるものではないが、例えば、イミノジ酢酸基、ポリアミン基、チオウレア基、アミノホスホン酸基、ポリアクリル酸基、N-メチルグルカミン基等が挙げられ、中でもイミノジ酢酸基がより好ましい。
 これらのキレート基は、予めその全量あるいは部分的にアルカリ金属でイオン化しておいたものを使用することが好ましい。この時に使用されるアルカリ金属としては、リチウム、カリウム、ナトリウム等が挙げられるが、この中でもナトリウムが最も一般的であり、また好ましい。
 上記のようなキレート樹脂をナトリウムでイオン化させるには、苛性ソーダ水溶液を用い、官能基末端基が水素形のキレート樹脂を充填した固定床流通方式にて行うことが好ましい。この時に使用される苛性ソーダは、水溶液中で好ましくは0.5質量%以上20質量%以下、より好ましくは1質量%以上10質量%以下のものが採用される。また固定床流通方式でイオン化させる際の線速度は、好ましくは1m/hr以上20m/hr以下、より好ましくは2m/hr以上15m/hr以下が採用される。固定床でのイオン化方式はダウンフローよりもアップフローが好ましく、このときのキレート樹脂が苛性ソーダ水溶液に2時間以上浸漬するような条件が好ましい。イオン化させる際の温度は、好ましくは10℃以上80℃以下、より好ましくは常温付近(15℃以上40℃以下)が採用される。本発明において、納入時にキレート樹脂の官能基が上記のようなアルカリ金属で既に全量または部分的にイオン化されている場合は、上記のような操作は必ずしも必要ではない。
 本発明で使用されるキレート基を結合させる樹脂基体としては、架橋ポリスチレン、スチレンとジビニルベンゼンとの共重合体、架橋ポリアクリル酸などがあるが、架橋ポリスチレンやスチレンとジビニルベンゼンとの共重合体が特に好ましい。
 キレート樹脂を構成する基体の高次構造としては、一般的にゲルタイプ、ポーラスタイプ、及びハイポーラスタイプに分類され、本発明で使用されるものは何れでも良いが、この中でもポーラスタイプやハイポーラスが好ましく、ポーラスタイプが最も好ましい。
 (均一係数)
 本発明は、特定形状のキレート樹脂に処理排水を接触させて、該処理排水中に含有する重金属化合物を該キレート樹脂に回収する排水の処理方法である。すなわち、第1及び第4の本発明においては、キレート樹脂の粒子径の均一性を示す均一係数が1.4以下、好ましくは1.2以下、より好ましくは1.1以下、特に好ましくは1.05以下である。均一係数が前記範囲を超えた場合、これを固定床流動方式で処理排水を吸着及び再生したとき、樹脂層内での圧力損失が起こりやすく、後述する劣化率悪化の一つの原因ともなる。
 ここで、均一係数は以下の方法により測定できる。先ず、試料(水で膨潤したキレート樹脂)約3gを計りとり、これにシリカ微粒子約0.06gを混合することにより、試料表面の付着水分を取り除く。これを、JIS標準篩(目開きが1180μm、850μm、710μm、600μm、425μm、355μm)がセットされた音波振動式自動フルイ分け粒度分布測定器(セイシン企業製、ロボットシフターRPS-85)の上部に投入する。なお、篩の最下部には、シリカ微粒子(ホワイトカーボン)のみを除去するために目開き106μmの篩を使用する。該粒度分布測定器の運転条件は、LEVEL(強度)7~9、TIME(時間)5分、INTERVAL(間隔)1秒とする。篩い分けられた各篩上の試料の質量は自動で測定される。得られた値から、以下の式で各粒径の容積比率を計算する。なお、ホワイトカーボンは目開き106μmの篩を通過するので、この計算には含まれない。
 V(g)=a+b+c+d+e+f+g  (a~gは、各篩上の試料質量)
a’(%)=a/V×100   a’:粒径1180μm以上の容積比率
b’(%)=b/V×100   b’:粒径850μm以上、1180μm未満の容積比率
c’(%)=c/V×100   c’:粒径710μm以上、850μm未満の容積比率
d’(%)=d/V×100   d’:粒径600μm以上、710μm未満の容積比率
e’(%)=e/V×100   e’:粒径425μm以上、600μm未満の容積比率
f’(%)=f/V×100   f’:粒径355μm以上、425μm未満の容積比率
g’(%)=g/V×100   b’:粒径355μm未満の容積比率
 該a'~g'の値から、対数確率座標上に、横軸を各篩の残留分の累計(%)、縦軸を篩の目開き径(μm)としてプロットする。例えば、縦軸425μmの点は、粒径425μm以上の累計であるので、a’~e’の合計値を横軸にとる。このプロット結果から、残留分の多い順(横軸で高い値の順)に3点をとり、これらの点にできるだけ近接するような直線を引く(必要に応じ最小二乗法などを用いる。)。この直線から、残留分の累計(横軸)が90%のときの目開き径(μm)および40%のときの目開き径(μm)を求め、次式によって均一係数を求める。
Figure JPOXMLDOC01-appb-M000001
 (平均粒径)
 また、本発明において使用されるキレート樹脂の平均粒径は、好ましくは0.2mm以上、より好ましくは0.4mm以上、さらに好ましくは0.5mm以上であり、好ましくは2mm以下、より好ましくは1mm以下、さらに好ましくは0.7mm以下、特に好ましくは0.65mm以下である。キレート樹脂の平均粒径が前記範囲未満では、キレート樹脂塔の下部に小粒径の粒子が堆積する傾向にあり、キレート樹脂塔の閉塞が生じる場合や、過密な充填によって吸着効率が低下する場合がある。更には、キレート樹脂塔上部からのキレート樹脂の流出やフィルターの閉塞等も生じ、安定した吸着操作が困難になる場合がある。キレート樹脂の平均粒径が前記範囲を超過する場合は、キレート樹脂塔内の流れが不安定・不均一になることで吸着効率が低下する場合がある。
 本発明において平均粒径の測定は、前記した均一係数の測定と同じ操作を行い、残留分の累計が50%に相当する目開き径(μm)を用いた。
 (Cu吸着容量)
 また本発明において使用されるキレート樹脂は、排水処理前のキレート能が大きい程好ましく、使用開始時のCu吸着容量が、好ましくは0.5mmol/mL以上、より好ましくは0.7mmol/mL以上である。Cu吸着容量の上限は限定されないが、通常、2mmol/mL以下である。Cu吸着容量は、被吸着金属としてCuを使用した総交換容量として以下の方法で測定される。
 試料のキレート樹脂約6gを正確に計量する。次に1L共栓付き三角フラスコに入れ、その中にホールピペットを用いて0.05M-CuClを200mL添加する。試料と0.05M-CuClを入れた三角フラスコを30±2℃の恒温振盪器中で6時間振盪する。振盪後、ホールピペットを用いて上澄み液を300mLのコニカルビーカーに10mL採取する。
 次に、その中に蒸留水90mL、後述する緩衝液1mL、および後述する指示薬適量を加え、0.01M-EDTA溶液で滴定する(amL)。ブランク試験として、前記の上澄み液10mLの代わりに0.05M-CuClを10mL用いる以外は同様にして滴定する(bmL)。
緩衝液: 氷酢酸5.8mLを水100mLに溶解した溶液と、酢酸ナトリウム13.6gを水100mLに溶解した溶液とを全量混合して、緩衝液とする。
指示薬: PAN(1-ピリジルアゾ-2-ナフトール)の0.1gをメタノール100mLに溶解した溶液。
 交換容量は、次式で算出する。
Figure JPOXMLDOC01-appb-M000002
F: 0.01M-EDTAの力価
 第2の本発明は、後述する排水の吸着、再生条件におけるキレート樹脂のCu吸着容量低下率が11%/月以下である。該Cu吸着容量低下率は、好ましくは10%/月以下、より好ましくは7%/月以下、さらに好ましくは6%/月以下である。Cu吸着容量低下率の下限は限定されないが、通常、0.3%/月以上である。また、Cu吸着容量低下率が前記範囲となるようなキレート樹脂を選択して用いることが望ましい。Cu吸着容量低下率が前記範囲を超過すると、重金属の吸着及び再生処理に多大な労力がかかる傾向にあり、処理能力が低下し、生産コスト高となって工業的には不利となる。
 本発明で使用されるキレート樹脂のCu吸着容量低下率の測定方法を以下に示す。
 使用するキレート樹脂塔は略円筒形状の固定床流通反応器(化学工学便覧・改定第四版、丸善株式会社、1978年10月24日発行、901頁の図11・67に記載の固定床式)であり、キレート樹脂を充填する部分の内径と高さとの比は1.0:0.7であり、静置状態で高さの50%部分までキレート樹脂の粒子を充填する。すなわち、上部の50%には液体が満たされており、液の流動によってキレート樹脂粒子が該上部へ流動可能となっている。キレート樹脂を充填する部分の容積は、1m以上とする。
 (1)吸着操作: pH5.5±0.2、温度55℃±2℃に設定されたCo濃度5.0±0.5質量ppmの水溶液(酢酸Co・四水塩を溶解して調製)を、線速度=0.15±0.02m/min、滞留時間13±2.0min、アップフローにて、ナトリウム型のキレート樹脂を充填したキレート樹脂塔に通液させる。キレート樹脂塔出口のCo濃度が1.0質量ppm以上になった時点を破過領域とみなし、吸着操作を終了する。なお、Co濃度の測定は、JIS K 0102 60(60.3:ICP発行分光分析法)を用いることとする。
 (2)再生操作: 破過領域に達した樹脂塔に再生剤として10±1質量%の臭化水素水を室温下、線速度0.083±0.008m/minにて通液し、吸着操作にて吸着されたCoの55±2%以上が脱着された時点を脱着終了とみなす。引き続き、純水を少なくともキレート樹脂塔容積と同容積分用いて、線速度0.15±0.02m/minにて通液洗浄する。
 純水による通液洗浄後、引き続き5.0±0.5質量%苛性ソーダ水溶液を用い、35±2℃、線速度0.083±0.008m/min、アップフローにて1時間以上通液することにより、キレート樹脂をH(水素)形からNa形とする。この操作により、90%以上がNa形となるので、次いで連続的に(1)の吸着操作に入る。
 上記の吸着操作、再生操作を6ヶ月間繰り返し行った後、以下の計算によりCu吸着容量低下率を算出した。
Cu吸着容量低下率〔%/月〕=(a-b)/(a×6)
a:試験前のキレート樹脂のCu吸着容量〔mmol/mL〕
b:6ヶ月試験後のキレート樹脂のCu吸着容量〔mmol/mL〕
 また、本発明で使用されるキレート樹脂は、水中に浸漬した状態において弾力性を有するものであることが好ましい。
 以上のような特性を持ち、好適なキレート樹脂の具体的な一例としては、これに限定されるものではないが、例えばSybron Chemicals Inc. A LANXESS COMPANY社から市販されているLewatit(R) MonoPlus TP 207が挙げられる。
 キレート樹脂のCu吸着容量低下率を前記範囲内とするための方法は、上記の通りキレート樹脂を選択して用いるほか、キレート樹脂塔へのキレート樹脂の充填方法や、キレート樹脂塔の構造を最適化することによっても達成できる。具体的には、キレート樹脂が充填された領域に処理排水を通過させるに際し、キレート樹脂粒子間の間隙を処理排水が均一に流れるように設計されていることが好ましい。換言すれば、処理排水が流れない滞留箇所や、特定の領域のみを処理排水が流れないよう設計することが好ましい。また、キレート樹脂が充填された領域にはメッシュ、パンチングメタル、フィルター等の仕切りを設け、粒径の小さなキレート樹脂粒子が処理排水とともに散逸しないよう設計することが好ましい。なお、本発明で規定する特定の均一係数をもつキレート樹脂を用いれば、粒径の小さなキレート樹脂粒子の散逸による性能低下を抑制することができる。更には、キレート樹脂塔内は通常、排水中の下部にキレート樹脂層を有し、上部は排水のみの層となっている。このため、キレート樹脂粒子は上部の排水層中を浮遊、対流することが可能であるが、この上部の排水層の液量や、上部層とキレート樹脂層との量的バランスを最適化することによっても、Cu吸着容量低下率を向上させることができる。
 第3の本発明は、処理排水をキレート樹脂に接触させて該処理排水中に含有する重金属化合物を該キレート樹脂に回収した後、該キレート樹脂を再生して重金属化合物を含有する再生液を得るにあたり、特定の条件でキレート樹脂に排水を接触させ、さらに、排水と接触後のキレート樹脂を特定の条件で再生する、排水の処理方法である。
 次にキレート樹脂を使用してコバルトやマンガン等の重金属化合物を含んでなる排水を吸着する方法及び条件について図3に基づき説明する。図3は、本発明に係わる重金属化合物回収工程フロー例を示す図である。
 工程S7から発生したp-トルイル酸等分離母液28'および工程S9から発生した触媒再生工程排水26’はpH調整槽101にて混合され、pHを調整し、まず前記したキレート樹脂が充填されたキレート樹脂塔102または103の何れかに通液する。キレート樹脂塔102および103は通常、固定床であり通液は流通方式が採用される。キレート樹脂塔102または103の何れかを通過した透過液は排水タンク104を経由して工程S11に送られる。キレート樹脂塔102が破過領域に達すると、処理排水の通液はキレート樹脂塔103に切り替え、透過液は上記と同様に排水タンク104に送られる。図3の太い実線が処理される排水の流れを示す。
 キレート樹脂塔102または103に通液される処理排水のpHは、pH調整槽101で調整されるが、処理排水のpHは、好ましくは5.1以上、より好ましくは5.2以上、さらに好ましくは5.3以上であり、好ましくは5.9以下、より好ましくは5.8以下、さらに好ましくは5.7以下である。処理排水のpHが前記範囲を超過すると重金属化合物が析出し、キレート樹脂表面に沈着して回収不能となる。処理排水のpHが前記範囲未満であると、処理排水中に含まれるテレフタル酸やp-トルイル酸等有機物が沈積したり、また重金属回収率が低下したりする。
 キレート樹脂塔102または103に通液される処理排水の温度は、好ましくは51℃以上、より好ましくは53℃以上、さらに好ましくは55℃以上であり、好ましくは59℃以下、より好ましくは57℃以下である。処理排水の温度が前記範囲未満では排水中にテレフタル酸が含まれる場合はこれが析出しやすくなる傾向があり、また重金属回収率が低下する。処理排水の温度が前記範囲を超過するとキレート樹脂が劣化し易い傾向にある。
 キレート樹脂塔102または103に通液される処理排水の通液速度は、線流速で、好ましくは5m/hr以上、より好ましくは7m/hr以上であり、好ましくは14m/hr以下、より好ましくは10m/hr以下である。流速が前記範囲を超過すると、キレート樹脂塔102または103内部で偏流やチャネリングが起こり、効率的な吸着ができない傾向にあり、流速が前記範囲未満であると、キレート樹脂塔102または103が大きくする必要があるため経済的に不利な傾向にある。
 重金属化合物を吸着するための方式としては、回分方式および連続方式があるが、連続方式が一般的であり、連続方式の固定床流通方式で行うのが望ましい。2基以上の処理槽を少なくとも並列に設置し、同時通液方式または切り替え方式にて行う。処理槽の材質はFRPライニングした炭素鋼などが通常用いられる。
 上記吸着条件でのコバルトおよびマンガンの吸着率は流入時の金属含有量に対して80%以上であり、さらに90%以上が好ましい。
 吸着工程が終了して他方のキレート樹脂塔102または103に切り替えた後、吸着を終了したキレート樹脂塔102または103は、ついで水で上下方向から洗浄し、吸着あるいは沈着した金属類や有機化合物を洗い出す。このときの温度、圧力は上記重金属吸着条件とほぼ同じ条件が採用される。
 次にキレート樹脂塔102または103の脱着・再生方法及び条件について説明する。
 吸着した重金属化合物の再生剤としては臭化水素水溶液を使用する。一般的にはキレート樹脂の再生には硫酸、塩酸などが使用されるが、本発明の場合、酸化反応触媒としてコバルト、マンガンおよび臭素化合物を使用する関係から臭化水素の使用が最も好ましい。
 本発明において用いられる臭化水素水の濃度は、7.1質量%以上、好ましくは7.5質量%以上、より好ましくは8質量%以上であり、19質量%以下、好ましくは15質量%以下、より好ましくは12質量%以下である。本発明においては、重金属化合物の回収量が臭化水素水濃度に依存し、また最適濃度があることを見出した。臭化水素水の濃度が前記範囲未満である場合や前記範囲超過である場合は、良好な重金属化合物の回収ができなくなる。
 臭化水素水7'のキレート樹脂塔102または103への通液速度は、線流速で1m/hr以上10m/hr以下の範囲が望ましい。この範囲内であれば、回収量への影響は見られない。通液の際の臭化水素水の温度は、常温付近(15℃以上40℃以下)の範囲が望ましい。臭化水素水による重金属化合物の脱着率は90%以上が好ましく、95%以上がより好ましく、さらには100%に近接するほど好ましい。
 図3において臭化水素水7'は再生剤タンク106に貯蔵され、破線に沿って吸着操作の終了したキレート樹脂塔102または103(図3の場合は102)に通液して重金属化合物の脱着が行われ、次いで水9'で洗浄して樹脂中に残る金属等を除去した後に苛性ソーダタンク108または苛性ソーダ予備タンク109に貯蔵された苛性ソーダ水溶液8’が再生操作の修了したキレート樹脂塔102または103に通液され、ナトリウムでイオン化したキレート樹脂あるいは部分的にナトリウムでイオン化したキレート樹脂の再生が行われる。
 苛性ソーダ水溶液8’の苛性ソーダ濃度は好ましくは1質量%以上10質量%以下、より好ましくは3質量%以上7質量%以下である。
 苛性ソーダ水溶液8’のキレート樹脂塔102または103への通液の線流速は、好ましくは1m/hr以上20m/hr以下、より好ましくは2m/hr以上15m/hr以下が採用される。キレート樹脂塔102または103が固定床の場合のイオン化方式はダウンフローよりもアップフローが好ましく、このときのキレート樹脂が苛性ソーダ水溶液に2時間以上浸漬するような条件が好ましい。イオン化させる際の温度は好ましくは10℃以上80℃以下、より好ましくは常温付近(15℃以上40℃以下)が採用される。
 工程S10で回収された重金属化合物は臭化水素とともに触媒二次回収液タンク105に貯蔵され、触媒二次回収液29'として図1の触媒液混合槽21にて触媒再生一次回収液25'と混合され損失触媒量を補充して、工程S1にリサイクルされ再利用される。
 洗浄に使用した触媒二次回収工程排水30'は、排水タンク104を経由して生物処理装置23に送られ処理される。
 脱着操作の終点近くなると、透過液の流路を切り替えて、脱着操作終末液タンク107に貯蔵する。脱着操作終末液タンク107に貯蔵した液は、次回脱着時にキレート樹脂塔102または103に通液して使用する。
 なお、キレート樹脂塔は、2塔を交互に運転する場合のみには限定されず、2塔を直列して同時運転してもよく、更には3塔以上を用いて適宜交互運転や直列運転を組み合わせてもよい。
 11.生物処理工程(S11)
 工程S11は、工程S1~S10から排出される最終的な排水の全量または一部を酸素存在下、微生物群によって生物処理する工程である。これら最終的な排水中の不純物は、生物処理装置23によって分解処理される。生物処理装置23は通常、一般的な沈降槽と曝気槽の組み合わせからなる。
 工程S1~S10から排出される排水16'、17'、18'、19'、23'、30'は必ずしも何ら処理を施さず直接この生物処理工程に送られ処理されるものではなく、工程毎に特有な排水組成に対応した処理を施し、生物処理工程に送らずそのままリサイクル使用される場合もある。
 生物処理後の処理排水33'は通常、河川等の公共水域へ放流される。発生する余剰生物汚泥32'は焼却装置22で焼却処理され、灰分34'は産業廃棄物として廃棄される。
 本発明の方法によれば、系外へ排出される重金属化合物量は、工程S1で使用する全量に対して1%程度の少量まで抑制することができた。従って、従来の5~10%という排出量に対して大幅な削減が達成できる。
 以上、芳香族カルボン酸の代表例として高純度テレフタル酸の製造方法に関して説明したが、例えば中純度テレフタル酸の場合も本発明は適用できる。
 中純度テレフタル酸製造の場合は、酸化反応で得られた粗テレフタル酸スラリーを水素添加せずにさらに高温、高圧で追酸化後、固液分離、洗浄、乾燥する工程を有する。追酸化後の分離母液、洗浄液等は一部、反応工程にリサイクル再使用され、一方残りの分離母液、洗浄液は高純度テレフタル酸と同様に有価成分の回収再利用のための処理がなされる。また、含有される重金属化合物も同様な工程を経て回収再利用が可能である。
 さらに本発明は、重金属触媒を酸化反応に使用する類似の製造工程を有するイソフタル酸など他の芳香族カルボン酸の製造工程にも適用可能で、環境面、経済面での効果が顕著である。
 本発明の排水の処理方法は、芳香族カルボン酸製造プロセス由来の排水のみならず、他の化学プラント由来の排水を含むものであってもよい。このような場合でも、効率良く重金属化合物が回収され、キレート樹脂の再生、更には再生液の循環使用にも何ら問題なく実施される。
 本発明は、単なる排水処理に係わる経済性効果のみならず、実用に供する環境にやさしい技術を提供することが可能であり、環境対策という意味からも極めて重要かつ効果の高いものである。
 以下、実施例により本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 (実施例1)
 高純度テレフタル酸の製造設備(生産量75Ton/hr)において、液相酸化反応器に連続的にパラキシレン、及びパラキシレンの約3質量倍の酢酸、触媒として酢酸コバルト、酢酸マンガン、臭化水素を供給し、温度185℃以上195℃以下、圧力1.0MPa以上1.7MPa以下、反応時間(平均滞留時間)90分で酸化反応を行った。触媒使用量は、溶媒に対し、コバルト成分およびマンガン成分が金属換算で各々300質量ppm、臭素成分は700ppmとした。分子状酸素による酸化反応を行うためのガスとしては空気を用いた。このとき空気の酸素含有率は21%であり、反応器から排出されるガス中の酸素濃度が3体積%以上7体積%以下になるように反応器中に圧縮空気を供給した。
 次いで、得られた酸化スラリーを低温酸化反応器に連続的に移送し、温度180℃以上195℃以下、圧力0.9MPa以上1.7MPa以下、反応時間40分以上60分以下で追酸化反応を行った。酸化反応を行うためのガスとして圧縮空気(酸素含有率21%)を、排ガス中の酸素濃度が3体積%以上7体積%以下になるように供給した。反応終了した粗テレフタル酸スラリーの温度及び圧力を維持したまま、スクリーンボウルデカンターにより固液分離した後、粗テレフタル酸ケーキを酢酸水溶液にて洗浄した。粗テレフタル酸ケーキは付着した母液を加圧乾燥機により放圧蒸発させて乾燥させ、次の精製工程に移送した。
 粗テレフタル酸スラリーの固液分離で得た分離母液のうち80%と、洗浄液の全量とを液相酸化反応器にリサイクルした。残りの20%の分離母液は、まず蒸発器により酢酸等の低沸点成分を2段階で蒸発させ、得られた酢酸は脱水した後に反応工程に再使用した。蒸発器の濃縮物には、水を添加して再スラリー化した後、水平ベルトフィルターで固液分離し、洗浄した。固形分は廃棄物とし、分離液からは触媒成分を回収し、反応工程で再利用した。触媒成分を回収した残留液(排水1)は、後述するキレート樹脂による排水処理に供した。
 粗テレフタル酸ケーキは混合槽で水と混合され、ついで蒸気と熱媒油で280℃以上300℃以下、7MPa以上10MPa以下に加熱、加圧され溶解後、パラジウム-活性炭を固定床とする水素化反応塔に水素と共に導入され水素添加反応を行った。反応後のテレフタル酸水溶液は、連続的に晶析槽に送られ、4段の晶析工程で順次に放圧冷却、晶析させた後、100℃で固液分離し、高純度テレフタル酸ケーキを水洗、乾燥した。乾燥機は放圧蒸発による加圧乾燥機および流動層乾燥機が用いられ、高純度テレフタル酸ケーキが75Ton/hrの収量で得られた。分離母液にはパラトルイル酸などの酸化中間体が含有されているので、さらに冷却して結晶析出させ、固液分離して固形分として回収し液相酸化反応工程にリサイクルした。酸化中間体ケーキを分離した母液(排水2)は、前述の排水1と併せ(以下原排水と称す)、これを以下の排水の処理方法に施用した。
 まず上記原排水のpHをpH調整槽101にて5.5とし、表1に示すキレート樹脂(Sybron Chemicals Inc. A LANXESS COMPANY社製、Lewatit(R) MonoPlus TP 207)が充填されたキレート樹脂塔102及び103に通液した。なお、キレート樹脂のイオンは理論量でそのほぼ全量がナトリウム型に変換されている。原排水中には、重金属としてCoが5ppm含まれる他、微量のMnや有機化合物としてテレフタル酸、およびパラトルイル酸を含有しており、CODcrは4000ppmであった。なお、Co濃度の測定は、JIS K 0102 60(60.3:ICP発行分光分析法)に準拠し、CODcrの測定は、JIS K 0102 20に準拠して測定した。
Figure JPOXMLDOC01-appb-T000003
 キレート樹脂塔102及び103は何れも略円筒形状の固定床流通反応器であり、キレート樹脂を充填する部分の内径と高さとの比は1.0:0.7であり、静置状態で高さの50%部分までキレート樹脂の粒子を充填した。キレート樹脂を充填する部分の容積は、30m以上である。通液は流通方式であり、2基(102及び103)並列に配置され、切り替えられるようになっている。破過領域に達したキレート樹脂塔102または103は、後述する再生、洗浄、Naイオン交換等操作が行われるようになっている。
 pH5.5に調整された原排水の温度を55℃とし、流量67.5m/hr、線速度8.9m/hrにてキレート樹脂塔102へ通液した。通液処理後の排水は、排水タンク104に送られて貯蔵された後、排水処理装置に送られた。
 キレート樹脂塔102出口のCo濃度が1ppm以上となった時を破過領域とみなし、通液をキレート樹脂塔103へ切り替えることで、通液は連続的に行われた。
 なお、通液後の排水中Co濃度は、運転初期は0.01~0.04ppm程度であった。その後、通液後の排水中Co濃度は徐々に上昇するが、上記の通り、1ppm未満を維持することができた。この結果より、系外へ排出される排水中のCo濃度は、通常であれば5ppmであるが、本発明の処理を行うことにより1ppm未満に抑制することができた。なお、本実施例では、Co濃度が1ppm以上となった時を破過領域としたが、破過領域は運転初期のCo濃度を越える値であれば適宜設定することが可能であり、排水の規制等に応じて適宜設定することができる。
 次に、破過領域に達したキレート樹脂塔102に、吸着されたCoや他の重金属類を再生(脱着)するために、再生剤として10質量%の臭化水素水溶液を用い、再生剤タンク106から通液を行った。このときの再生剤の温度は常温であり、通液速度は5m/hrとした。通液を1時間以上行うことにより、Coの90%以上を脱離させた。再生されたCo等の重金属化合物は再生剤の臭化水素水と共に触媒二次回収液タンク105に貯蔵され、二次回収液29'として図1の触媒混合槽21にて一次回収液25'と混合され、酸化反応工程にリサイクルされ再使用した。
 臭化水素水による再生操作が修了後、キレート樹脂塔102に水9'を通液洗浄し、樹脂中に残る微量金属類を除去後、次の吸着に備えるために、再生液により水素形になったキレート樹脂塔102に苛性ソーダタンク108及び予備タンク109から5質量%の苛性ソーダ水溶液を通液した。このときの通液はアップフローとし、線速度は5m/hr、温度は35℃とした。
 以上のような吸着、洗浄、再生(脱着)、洗浄、Na形交換の一連の繰り返し操作を、キレート樹脂塔102および103で切り替えて行うことで、重金属化合物の回収、精製操作を6ヶ月間繰り返し行った。
 その結果、本実施例で使用したキレート樹脂のCu吸着容量は、使用開始時の0.71mmol/cm(新品樹脂)から0.47mmol/cmに低下し、Cu吸着容量低下率は5.6%/月であった。これは未使用樹脂に比べて、6ヶ月間で34%のイオン交換基が損なわれたことを意味する。
 (比較例1)
 キレート樹脂を、均一係数が1.41である表1に示す樹脂とした以外は実施例1と同様の方法および処理条件で原排水の処理を行った。
 その結果、使用開始後、4ヶ月にて一連の吸着、洗浄、再生(脱着)、洗浄、Na形交換の連続繰り返し操作が工業的に使用レベルに耐えられない状態となって、新たに樹脂を交換しなければならなくなった。
 本比較例で使用したキレート樹脂の使用後のCu吸着容量を実施例と同じ方法で測定した結果、4ヶ月間の使用で、使用開始時0.71mmol/cm(新品樹脂)が0.40mmol/cmに低下した。これは未使用樹脂に比べて、わずか4ヶ月間で46%のイオン交換基が損なわれたことになり、そのCu吸着容量低下率を近似すれば11.5%/月であった。
 (参考例1)
 原排水のpHを6.0とした以外は実施例1と同様の方法及び処理条件にて原排水の処理を行った。その結果、原排水中の重金属類が析出することが判明し、通液のみならず、一連の吸着、洗浄、再生(脱着)、洗浄、Na形交換の連続繰り返し操作が行えなくなった。
 (参考例2)
 原排水のpHを5.0とした以外は実施例1と同様の方法及び処理条件にて原排水の処理を行った。その結果、原排水中の微量の有機化合物が析出することが判明し、通液のみならず、一連の吸着、洗浄、再生(脱着)、洗浄、Na形交換の連続繰り返し操作が行えなくなった。
 (参考例3)
 原排水のキレート樹脂塔102および103へ通液する線速度を15m/hrとした以外は実施例1と同様の方法及び処理条件にて原排水の処理を行った。その結果、線速度が速くなったことにより、樹脂の破過が進み、Cu吸着容量低下率は11.0%/月であった。
 (比較例2)
 再生処理において20質量%の臭化水素水を使用した以外は実施例1と同様の方法及び処理条件にて原排水の処理を行った。その結果、吸着した重金属のCo回収率が実施例1に較べて80%に留まり、重金属回収率が低下することが判明した。
 (比較例3)
 再生処理において5質量%の臭化水素水を使用した以外は実施例1と同様の方法及び処理条件にて原排水の処理を行った。その結果、吸着した重金属のCo回収率が実施例1に較べて75%に留まり、重金属回収率が低下することが判明した。
 (比較例4)
 再生処理において30質量%の臭化水素水を使用した以外は実施例1と同様の方法及び処理条件にて原排水の処理を行った。その結果、吸着した重金属のCo回収率が実施例1に較べて25%に留まり、重金属回収率が大幅に低下することが判明した。この結果、キレート樹脂の吸着、再生の繰り返しによる連続運転が困難であった。
 なお、2008年7月17日に出願された日本特許出願2008-186235号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の明示として、取り入れるものである。
 本発明によれば、芳香族カルボン酸製造プロセス由来の排水中に含有されるコバルト、マンガンなどの重金属化合物を高効率で回収することができ、更に再利用することが可能になる。したがって、本発明によれば、製造工程外へ放出される上記金属成分を上記金属成分の全使用量に対して最小限に抑制することが可能になり、他に類を見ないほど環境にやさしい芳香族カルボン酸製造法を提供することが可能になった。さらに重金属化合物を回収し、再利用することで得られる経済的な効果も大きい。一般に石油化学系のプラントは、異種の化学プラントが一つの地域、あるいは工業地区に集合してなるものが多い。そのため排出される工業排水種もまちまちではあるが、場合によっては上記のような重金属化合物を排出する異種化学プラントからのプラント排水を合流させ、外部に放流させる場合もある。本発明の排水処理の方法は上記のように、テレフタル酸で代表されるような芳香族カルボン酸製造プロセス由来の排水を含む排水ならば、他の異種の化学プラントの排水等が存在しても該排水中に含有されるコバルト、マンガンなどの重金属化合物を高効率で回収・再利用することができるので、その効果は経済的のみならず、環境的にも多大である。
11 酸化反応装置
12 固液分離・洗浄・乾燥装置
13 水素添加反応装置
14 晶析装置
15a 固液分離・洗浄装置
15b 乾燥装置
16 溶媒蒸発装置
17 脱水蒸留装置
18 触媒回収・再生装置
19 p-トルイル酸等回収装置
20 触媒回収・精製装置
21 触媒液混合槽
22 焼却装置
23 生物処理装置
101 pH調整槽
102、103 キレート樹脂塔
104 排水タンク
105 触媒二次回収液タンク
106 再生剤タンク
107 脱着操作終末液タンク
108 苛性ソーダタンク
109 苛性ソーダ予備タンク
1' p-キシレン
2' 分子状酸素
3' 酢酸等溶媒
4' 水素
5' 炭酸ソーダ水溶液
6' 補充触媒
7' 臭化水素水
8' 苛性ソーダ水
9' 水
11' 粗テレフタル酸スラリー
12' 粗テレフタル酸
13' 水素添加処理液
14' 高純度テレフタル酸スラリー
14'' 高純度テレフタル酸ケーキ
15' 高純度テレフタル酸
15'' 乾燥凝縮液
16' 酸化排ガス洗浄水
17' 分離母液・洗浄液
18' 晶析時発生凝縮水
19' 高純度テレフタル酸分離母液等
20' 蒸発溶媒
21' 濃縮残留物
22' 酢酸
23' 脱水塔底液
24' ろ過残渣
25' 触媒再生一次回収液
26' 触媒再生工程排水
27' p-トルイル酸等有機物
28' p-トルイル酸等分離母液
29' 触媒二次回収液
30' 触媒二次回収工程排水
31' 触媒
32' 活性汚泥
33' 放流水
34' 産業廃棄物(焼却灰)

Claims (10)

  1.  芳香族カルボン酸製造プロセス由来の排水をキレート樹脂に接触させて該排水中に含有する重金属化合物を該キレート樹脂に回収する排水の処理方法であって、
     該キレート樹脂は、均一係数が1.4以下の粒子であることを特徴とする排水の処理方法。
  2.  芳香族カルボン酸製造プロセス由来の排水をキレート樹脂に接触させて該排水中に含有する重金属化合物を該キレート樹脂に回収する排水の処理方法であって、
     該キレート樹脂のCu吸着容量低下率が11%/月以下であることを特徴とする排水の処理方法。
  3.  前記キレート樹脂に接触する排水のpHが5.1以上5.9以下である請求項1または2に記載の排水の処理方法。
  4.  前記キレート樹脂に接触する排水の流速が5m/hr以上14m/hr以下である請求項1~3の何れか1項に記載の排水の処理方法。
  5.  芳香族カルボン酸製造プロセス由来の排水をキレート樹脂に接触させて該排水中に含有する重金属化合物を該キレート樹脂に回収する工程と、及び該キレート樹脂を再生して重金属化合物を含有する再生液を得る工程とを含む排水の処理方法であって、
     該キレート樹脂に接触する排水のpHが5.1以上5.9以下であり、該キレート樹脂に接触する排水の流速が5m/hr以上14m/hr以下であり、かつ、7.1質量%以上19質量%以下の臭化水素水を用いて該キレート樹脂を再生することを特徴とする排水の処理方法。
  6.  前記キレート樹脂は、均一係数が1.4以下の粒子である請求項5に記載の排水の処理方法。
  7.  前記キレート樹脂に接触する排水の温度が51℃以上59℃以下である請求項1~6の何れか1項に記載の排水の処理方法。
  8.  前記キレート樹脂のCu吸着容量が0.5mmol/mL以上である請求項1~7の何れか1項に記載の排水の処理方法。
  9.  前記再生液を該芳香族カルボン酸製造プロセスにおける酸化反応系に再循環する請求項5~8の何れか1項に記載の排水の処理方法。
  10.  芳香族カルボン酸製造プロセス由来の排水をキレート樹脂に接触させて該排水中に含有する重金属化合物を該キレート樹脂に回収する排水の処理装置であって、
     該キレート樹脂は、均一係数が1.4以下の粒子であることを特徴とする排水の処理装置。
PCT/JP2009/062913 2008-07-17 2009-07-16 排水の処理方法および処理装置 WO2010008055A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP09797979.3A EP2301893B1 (en) 2008-07-17 2009-07-16 Method for treating wastewater
CN200980128662.4A CN102099300B (zh) 2008-07-17 2009-07-16 排水的处理方法以及处理装置
EP16151593.7A EP3034472B1 (en) 2008-07-17 2009-07-16 Treatment method and treatment apparatus of wastewater
BRPI0916222A BRPI0916222A2 (pt) 2008-07-17 2009-07-16 método de tratamento e equipamento de tratamento de águas residuais
PL16151593T PL3034472T3 (pl) 2008-07-17 2009-07-16 Sposób oczyszczania i aparatura do oczyszczania ścieku
PL09797979T PL2301893T3 (pl) 2008-07-17 2009-07-16 Sposób oczyszczania ścieku
RU2011105804/05A RU2516746C2 (ru) 2008-07-17 2009-07-16 Способ очистки и установка для очистки сточных вод

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008186235A JP2010022923A (ja) 2008-07-17 2008-07-17 排水の処理方法
JP2008-186235 2008-07-17

Publications (1)

Publication Number Publication Date
WO2010008055A1 true WO2010008055A1 (ja) 2010-01-21

Family

ID=41550455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062913 WO2010008055A1 (ja) 2008-07-17 2009-07-16 排水の処理方法および処理装置

Country Status (7)

Country Link
EP (2) EP2301893B1 (ja)
JP (1) JP2010022923A (ja)
CN (1) CN102099300B (ja)
BR (1) BRPI0916222A2 (ja)
PL (2) PL2301893T3 (ja)
RU (1) RU2516746C2 (ja)
WO (1) WO2010008055A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103387298A (zh) * 2013-06-18 2013-11-13 浙江逸盛石化有限公司 一种对苯二甲酸母液的金属离子的回收利用装置及工艺
CN107935093A (zh) * 2017-10-30 2018-04-20 复旦大学 一种化学镀铜废水的处理方法
US10919787B2 (en) 2015-11-13 2021-02-16 Sabic Global Technologies B.V. Process using ion exchange resins for the treatment of wastewater emanating from purified terephthalic acid production
CN115069313A (zh) * 2022-06-30 2022-09-20 金川集团股份有限公司 一种离子交换柱解析再生工艺

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013001972A1 (de) * 2013-02-05 2014-08-07 Thyssenkrupp Industrial Solutions Ag Verfahren zur selektiven Entfernung von Katalysatorbestandteilen aus Abströmen von Oxidationsreaktionen aromatischer Verbindungen, dafür geeignete Anlage und Verwendung
CN104512943B (zh) * 2013-09-29 2016-05-11 中国石油化工股份有限公司 一种芳香族羧酸生产过程中氧化废水回用工艺
JP2015071155A (ja) * 2013-10-04 2015-04-16 三菱レイヨン株式会社 排水処理方法及びテレフタル酸の製造方法
JP2015073914A (ja) * 2013-10-04 2015-04-20 三菱化学株式会社 排水処理方法及びテレフタル酸の製造方法
JP6433377B2 (ja) * 2015-05-28 2018-12-05 オルガノ株式会社 重金属の回収方法及び回収装置
JP6686406B2 (ja) * 2015-12-11 2020-04-22 Dic株式会社 水性顔料分散体の製造方法
BR112018013027B1 (pt) * 2015-12-31 2020-12-15 Bp Corporation North America Inc. Processo para recuperação de ácido acético a partir de correntes aquosas
CN108003011A (zh) * 2016-10-31 2018-05-08 中国石油化工股份有限公司 一种脱除杂质金属离子的方法
JP6836711B2 (ja) * 2016-12-01 2021-03-03 Dic株式会社 水性顔料分散液の製造方法及びインクジェット記録用インクの製造方法。
CN109574359A (zh) * 2018-12-30 2019-04-05 江门市崖门新财富环保工业有限公司 一种含镍废水中水回用以及镍的资源化工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515788A (ja) 1991-07-12 1993-01-26 Mitsubishi Kasei Corp パラキシレンの液相酸化触媒の回収方法
JPH1085740A (ja) * 1996-09-11 1998-04-07 Japan Organo Co Ltd 超純水製造装置
JPH11152246A (ja) * 1997-09-09 1999-06-08 Mitsubishi Gas Chem Co Inc 芳香族カルボン酸の製造方法
JP2003507156A (ja) 1999-08-17 2003-02-25 モービル プロセス テクノロジー,カンパニー 芳香族酸類の製造からの洗浄水の精製法
JP2004321889A (ja) 2003-04-23 2004-11-18 Toray Ind Inc スラリからの触媒回収方法および芳香族カルボン酸の製造方法
JP2006312166A (ja) 2005-04-08 2006-11-16 Mitsui Chemicals Inc 酸化触媒の回収方法
JP2008186235A (ja) 2007-01-30 2008-08-14 Sony Computer Entertainment Inc 文字入力装置、その制御方法、プログラム及び情報記憶媒体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9305902D0 (en) * 1993-03-22 1993-05-12 Bp Chem Int Ltd Process
SG72858A1 (en) * 1997-09-09 2000-05-23 Mitsubishi Gas Chemical Co Process for producing aromatic carboxylic acid
FR2797786B1 (fr) * 1999-08-27 2001-10-05 Commissariat Energie Atomique Procede et installation d'elimination des cations metalliques d'un liquide par des resines de polyazacycloalcanes greffes sur un support
EP1078690B1 (de) * 1999-08-27 2011-10-12 LANXESS Deutschland GmbH Verfahren zur Herstellung von monodispersen Ionenaustauschern mit chelatisierenden Gruppen
ATE370167T1 (de) * 1999-08-27 2007-09-15 Lanxess Deutschland Gmbh Verfahren zur herstellung von monodispersen, vernetzten perlpolymerisaten mit thioharnstoffgruppen und ihre verwendung zur adsorption von metallverbindungen
DE10327110A1 (de) * 2003-06-13 2005-01-05 Bayer Chemicals Ag Arsenadsorbierende Ionenaustauscher
DE10353534A1 (de) * 2003-11-14 2005-06-16 Bayer Chemicals Ag Chelataustauscher

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515788A (ja) 1991-07-12 1993-01-26 Mitsubishi Kasei Corp パラキシレンの液相酸化触媒の回収方法
JPH1085740A (ja) * 1996-09-11 1998-04-07 Japan Organo Co Ltd 超純水製造装置
JPH11152246A (ja) * 1997-09-09 1999-06-08 Mitsubishi Gas Chem Co Inc 芳香族カルボン酸の製造方法
JP2003507156A (ja) 1999-08-17 2003-02-25 モービル プロセス テクノロジー,カンパニー 芳香族酸類の製造からの洗浄水の精製法
JP2004321889A (ja) 2003-04-23 2004-11-18 Toray Ind Inc スラリからの触媒回収方法および芳香族カルボン酸の製造方法
JP2006312166A (ja) 2005-04-08 2006-11-16 Mitsui Chemicals Inc 酸化触媒の回収方法
JP2008186235A (ja) 2007-01-30 2008-08-14 Sony Computer Entertainment Inc 文字入力装置、その制御方法、プログラム及び情報記憶媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Kagaku Kogyo Binran", 24 October 1978, MARUZEN CO., LTD., pages: 901

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103387298A (zh) * 2013-06-18 2013-11-13 浙江逸盛石化有限公司 一种对苯二甲酸母液的金属离子的回收利用装置及工艺
US10919787B2 (en) 2015-11-13 2021-02-16 Sabic Global Technologies B.V. Process using ion exchange resins for the treatment of wastewater emanating from purified terephthalic acid production
CN107935093A (zh) * 2017-10-30 2018-04-20 复旦大学 一种化学镀铜废水的处理方法
CN107935093B (zh) * 2017-10-30 2020-09-29 复旦大学 一种化学镀铜废水的处理方法
CN115069313A (zh) * 2022-06-30 2022-09-20 金川集团股份有限公司 一种离子交换柱解析再生工艺

Also Published As

Publication number Publication date
RU2011105804A (ru) 2012-08-27
EP3034472B1 (en) 2021-03-10
PL3034472T3 (pl) 2021-08-23
RU2516746C2 (ru) 2014-05-20
BRPI0916222A2 (pt) 2015-11-03
EP2301893A1 (en) 2011-03-30
JP2010022923A (ja) 2010-02-04
EP2301893A4 (en) 2013-10-09
EP2301893B1 (en) 2018-06-13
EP3034472A1 (en) 2016-06-22
CN102099300B (zh) 2014-02-26
PL2301893T3 (pl) 2018-10-31
CN102099300A (zh) 2011-06-15

Similar Documents

Publication Publication Date Title
WO2010008055A1 (ja) 排水の処理方法および処理装置
US7462736B2 (en) Methods and apparatus for isolating carboxylic acid
US7888530B2 (en) Optimized production of aromatic dicarboxylic acids
WO2009115888A1 (en) Process for the recovery of water and valuable organics from wastewater in the production of aromatic carboxylic acids
KR20140004809A (ko) 산화기 퍼지 스트림으로부터의 불순물 제거 방법
CN106167451A (zh) 间二甲苯与乙苯多步共氧化生产芳香羧酸的方法
MX2012010604A (es) Recuperacion de acidos carboxilicos aromaticos y catalizador de oxidacion.
US7897810B2 (en) Optimized production of aromatic dicarboxylic acids
MX2007002503A (es) Produccion optimizada de acidos dicarboxilicos aromaticos.
JP2006298905A (ja) 高純度テレフタル酸の製造方法
KR101426571B1 (ko) 다목적 산화 부산물 퍼지 방법
EA027339B1 (ru) Улучшение скорости фильтрования при очистке терефталевой кислоты регулированием % воды в суспензии, подаваемой в фильтр
RU2394017C2 (ru) Способ получения высокочистой терефталевой кислоты
EA027100B1 (ru) Улучшение скорости фильтрационной очистки терефталевой кислоты посредством регулирования процентного содержания воды в суспензии, подаваемой на фильтр
KR20130090896A (ko) 필터 공급 슬러리중 물의 백분율을 제어함으로써 테레프탈산 퍼지 여과 속도를 개선하는 방법
JP7169241B2 (ja) 芳香族カルボン酸と脂肪族有機酸との混合物の製造方法
US9328051B2 (en) Methods and apparatus for isolating dicarboxylic acid
JP2008511653A (ja) 芳香族ジカルボン酸の最適化製造
US9388111B2 (en) Methods and apparatus for isolating dicarboxylic acid
MXPA99001937A (en) Catalyst recovery
KR980009221A (ko) 고순도 이소프탈산의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980128662.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797979

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009797979

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 347/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011105804

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0916222

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110117