WO2010002206A2 - Electrode material for aln substrate, method of forming electrode on aln substrate, and aln substrate - Google Patents

Electrode material for aln substrate, method of forming electrode on aln substrate, and aln substrate Download PDF

Info

Publication number
WO2010002206A2
WO2010002206A2 PCT/KR2009/003622 KR2009003622W WO2010002206A2 WO 2010002206 A2 WO2010002206 A2 WO 2010002206A2 KR 2009003622 W KR2009003622 W KR 2009003622W WO 2010002206 A2 WO2010002206 A2 WO 2010002206A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
substrate
weight
aln substrate
electrode material
Prior art date
Application number
PCT/KR2009/003622
Other languages
French (fr)
Korean (ko)
Other versions
WO2010002206A3 (en
Inventor
김성호
Original Assignee
(주) 아모엘이디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 아모엘이디 filed Critical (주) 아모엘이디
Publication of WO2010002206A2 publication Critical patent/WO2010002206A2/en
Publication of WO2010002206A3 publication Critical patent/WO2010002206A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49883Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials the conductive materials containing organic materials or pastes, e.g. for thick films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4867Applying pastes or inks, e.g. screen printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an electrode material of an Al substrate and a method of forming an electrode on an Al substrate, and more specifically, to an electrode formed on an Al substrate of a flat plate and an electrode formed on the Al substrate. A method and an Al substrate having an electrode thereby.
  • AION has a thermal conductivity of approximately 170 W / mK.
  • AION is a material that is frequently used in areas requiring high thermal conductivity due to its high thermal conductivity. The LED package is useful because the heat generated from the LED chip must be removed quickly.
  • Al is an insulator, in order to use it as a board
  • tungsten (W) electrode mainly having an Al firing temperature of about 1500 ° C. or higher and capable of withstanding high firing temperatures was mainly used.
  • a company that purchases and uses an Al substrate having a flat structure has a problem of forming an electrode.
  • the electrodes most of the electrodes were formed on the Al substrate by using a sputter method.
  • the sputtering method is adopted and used by various companies, the sputtering equipment is expensive, the target used in the process is expensive, and the process time is very long, resulting in low productivity.
  • the inventors of the present invention tried to form the electrode on the Al substrate by printing without adopting the sputtering method while devising a way to improve the productivity at a lower cost.
  • 1 is a printing method used by the applicant, and shows a process of forming an electrode on a flat Al substrate by a printing method.
  • a paste e.g., paste of Ag component
  • one side direction e.g., right direction
  • Printing by pushing to form the electrode 16 as shown in (b).
  • the electrode 16 is formed.
  • the first plating layer 18 of Ni is plated on the upper surface of the electrode 16, and then the second plating layer 20 of Ag or Au is plated thereon.
  • the Applicant has found that improving the components of the electrode material at the end of various experiments can solve the adhesion failure while searching for a way to solve the adhesion failure.
  • the present invention has been proposed to solve the above-mentioned conventional problems, and an object thereof is to provide an electrode material of an Al substrate which can improve the adhesion of the electrode to be formed on the Al substrate.
  • Still another object of the present invention is to provide an Al substrate having an electrode with improved adhesion.
  • the electrode material of the Al substrate according to the preferred embodiment of the present invention is an electrode material of the Al substrate
  • a main material comprising 50 to 80% by weight of Ag, 10 to 40% by weight of Bi-based glass, and 3 to 8% by weight of Al, and a submaterial of the remaining components.
  • Substances include Mg. In this case, Mg is 1 to 5 weight%.
  • the submaterial further comprises one or more of Si, Cu, and Zn.
  • Si is 4-10 weight%
  • Cu is 1-3 weight%
  • Zn is 4-10 weight%.
  • the method for forming an electrode on the Al substrate the preparation step of preparing a baked Al substrate; An application step of applying an electrode material comprising a main material comprising 50 to 80% by weight of Ag, 10 to 40% by weight of Bi-based glass, and 3 to 8% by weight of Al, and an ingredient of the remaining ingredients to an Al substrate; And a firing step of firing the applied electrode material.
  • the Al substrate according to the embodiment of the present invention the main material containing 50 to 80% by weight of Ag, 10 to 40% by weight of Bi-based glass, and 3 to 8% by weight of Al and the subsidiary material of the remaining components And the electrode formed by baking after the electrode material is apply
  • an electrode material comprising a main material containing 50 to 80% by weight of Ag, 10 to 40% by weight of Bi-based glass, and 3 to 8% by weight of Al and a component material of the remaining components is used.
  • the cost required for electrode formation can be reduced and productivity is improved.
  • the accuracy of the electrode pattern can be maintained as compared with the simultaneous firing type.
  • the adhesion of the electrode formed on the Al substrate is strong, the adhesion failure can be eliminated, whereby the Al substrate on which the electrode is formed can be provided.
  • 1 is a view for explaining the electrode forming process by a conventional printing method.
  • FIG. 2 is a view for explaining the poor adhesion after plating of the electrode formed by the method of FIG.
  • FIG 3 is a view showing the results of the test for the adhesion with the Al substrate after forming and plating the electrode on the Al substrate using the electrode material according to an embodiment of the present invention.
  • FIG. 4 is a view showing a result of a wire pearl test after forming and plating an electrode on an Al substrate using an electrode material according to an embodiment of the present invention.
  • FIG. 5 is a view showing the results of a lead heat test after forming and plating an electrode on an Al substrate using an electrode material according to an embodiment of the present invention.
  • the electrode material of the Al substrate according to the embodiment of the present invention is in the form of a paste and printed on the Al substrate.
  • the electrode paste is printed on the baked Al substrate.
  • the components of the paste constituting the electrode material are shown in the following table.
  • Table 1 ingredient Example of optimal component content (% by weight) Range of ingredient content (% by weight) Mg 3.66 1 to 5 Al 5.43 3 to 8 Si 6.53 4 to 10 Cu 1.55 1 to 3 Zn 6.28 4 to 10 Ag 62.84 50 to 80 Bi 11.72 10 to 40
  • Bi-based glass is an element that improves adhesion with an Al substrate.
  • Al like Bi-based glass, is an element that improves adhesion with A-N substrate.
  • Bi type glass contains about 10 to 40 weight%.
  • Mg, Si, Cu, and Zn become subsidiary materials (additives).
  • the content of Mg exceeds 1 to 5% by weight, the effect of improving adhesion decreases.
  • Si, Cu and Zn are low melting point materials.
  • the electrode paste of the embodiment of the present invention is fired at a firing temperature of about 800 to 900 degrees. Accordingly, low melting point materials such as Si, Cu, Zn and the like are included as additives for viscosity maintenance and the like.
  • Si is added at 4 to 10% by weight
  • Cu is added at 1 to 3% by weight
  • Zn is preferably added at 4 to 10% by weight.
  • Si, Cu, and Zn can be selectively used. That is, at least one of Si, Cu, and Zn is included as needed.
  • calcined Al substrate is prepared.
  • An electrode pattern is formed by applying (including printing) a paste containing the components exemplified in the table (eg, Mg, Al, Si, Cu, Zn, Ag, Bi-based glass) to the prepared Al substrate.
  • the paste must be printed on the fired Al substrate so that the electrode pattern does not shrink during subsequent firing, thereby maintaining the accuracy of the electrode pattern.
  • the cofired type has a problem in the precision of the electrode pattern due to the shrinkage rate.
  • the electrode pattern thus formed is fired at a firing temperature of about 800 to 900 degrees. When fired, it becomes an electrode.
  • the first plating layer of Ni and the second plating layer of Ag or Au are sequentially plated on the upper surface of the electrode. Ni prevents the electrode and the plating layer on the electrode from being peeled off by the reaction with the solder during the reflow process after SMT for mounting the LED package.
  • the plating method of the first plating layer an electrolytic plating method or an electroless plating method is used.
  • the reason for using Ag is that it can be wire bonded, serves as a reflector that reflects light, and has a good reaction with solder.
  • the reason for using Au is because of excellent wire bonding and excellent reaction with solder. What is necessary is just to determine the plating material of a 2nd plating layer in consideration of each condition.
  • an electroplating method or an electroless plating method is used as the plating method of the second plating layer.
  • plating was performed after the formation of electrodes on the baked substrate, and various tests were conducted.
  • the wire pearl test after plating is treated as bad if less than 5, when using the electrode material according to an embodiment of the present invention it can be seen that it is more than 5 as shown in FIG.
  • the lead heat test was performed after plating. After plating, all lead electrodes should be present. Test conditions were that 90% or more of lead was formed in the electrode at 10sec / 250 ° C. As a result of the lead heat test after plating, all the electrodes were present as shown in FIG. 5 (b) is based on the conventional method, and the electrode does not exist conventionally.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

Disclosed are an electrode material for an AlN substrate with which the adhesion of an electrode formed on the AlN substrate can be improved, a method in which an electrode is formed on the AlN substrate by utilizing electrode material that can improve the adhesion, and an AlN substrate having an electrode with improved adhesion. The electrode material of the AlN substrate is comprised of 50-80 wt% Ag, 10-40 wt% Bi glass, and 3-8 wt% Al as main materials and the remaining components as auxiliary material. The electrode material comprised of the main materials including 50-80 wt% Ag, 10-40 wt% Bi glass, and 3-8 wt% Al and the auxiliary material including the balance component is coated (printed) onto the AlN substrate and formed as an electrode in order to improve the adhesion between the AlN substrate and the electrode relative to existing techniques. When compared with existing sputtering techniques, the cost required for electrode formation can be reduced and productivity is also improved.

Description

AlN기판의 전극 재료와 AlN기판에 전극을 형성하는 방법 및 AlN기판A method for forming electrodes on electrode materials of Aln substrate and Aln substrate and Aln substrate
본 발명은 AlN기판의 전극 재료와 AlN기판에 전극을 형성하는 방법 및 AlN기판에 관한 것으로, 보다 상세하게는 평판의 AlN기판상에 형성되는 전극의 재료와 평판의 AlN기판상에 전극을 형성되는 방법 및 이에 의한 전극을 갖는 AlN기판에 관한 것이다.The present invention relates to an electrode material of an Al substrate and a method of forming an electrode on an Al substrate, and more specifically, to an electrode formed on an Al substrate of a flat plate and an electrode formed on the Al substrate. A method and an Al substrate having an electrode thereby.
AlN은 대략 170W/mK 정도의 열전도도를 가지고 있다. AlN은 열전도도가 높아서 열적으로 방열이 필요한 부분에 많이 사용되는 재료이다. LED패키지는 LED칩에서 발생하는 열을 빠른 시간내에 빼줘야 하므로, AlN이 유용하게 채택된다.AION has a thermal conductivity of approximately 170 W / mK. AION is a material that is frequently used in areas requiring high thermal conductivity due to its high thermal conductivity. The LED package is useful because the heat generated from the LED chip must be removed quickly.
그러나, AlN은 절연체이므로 LED패키지의 기판으로 사용하기 위해서는 AlN기판에 전극을 형성해야 한다.However, since Al is an insulator, in order to use it as a board | substrate of an LED package, an electrode must be formed in an Al substrate.
종래의 AlN구조에서 전극을 형성하기 위해서는 기판 제작시 전극을 동시에 소성하는 프로세스를 사용하였다. 이 경우, AlN 소성온도가 대략 1500℃ 이상이어서 전극 또한 높은 소성온도에서 견딜 수 있는 텅스텐(W) 전극을 주로 사용하였다.In order to form the electrodes in the conventional Al structure, a process of simultaneously firing the electrodes during fabrication of the substrate was used. In this case, a tungsten (W) electrode mainly having an Al firing temperature of about 1500 ° C. or higher and capable of withstanding high firing temperatures was mainly used.
이와 같이 AlN기판과 전극을 동시소성하기 위해서는 질소 분위기 노(furnace)가 필요한다. 질소 분위기 노는 고가이고 분위기 상태에서 소성해야 하므로 비용이 많이 든다. 그래서, 실질적으로 AlN기판과 전극을 동시소성하여 기판을 생산하는 업체는 드물고 동시소성시의 조건을 잡는 것 또한 굉장히 어렵다. 그리고, 동시소성을 하여도 열전도도가 이론치(대략 170W/mK 정도)보다 낮게 나온다.In this way, a nitrogen atmosphere furnace is required in order to co-fire the AA substrate and the electrode. Nitrogen atmosphere furnaces are expensive and expensive because they must be fired in an atmosphere. Therefore, companies that produce substrates by co-firing Al substrates and electrodes are rare, and it is also very difficult to set conditions for simultaneous firing. Also, even when co-firing, the thermal conductivity is lower than the theoretical value (about 170 W / mK).
이러한 이유로 인해, 현재 AlN기판을 제공하는 업체는 대부분 평탄한 구조의 전극 없는 AlN기판을 제공하고 있다.For this reason, most of the companies that provide Aln substrates now offer Aln substrates without electrodes having a flat structure.
따라서, 평탄한 구조의 AlN 기판(즉, 전극이 없음)을 구매하여 사용하는 업체로서는 전극을 형성시켜야 하는 문제가 발생하였다. 전극 형성시, 대부분 스퍼터(sputter) 방식을 사용하여 AlN기판에 전극을 형성하였다. 스퍼터 방식은 여러 업체에서 채택하여 사용하고 있지만, 스퍼터 장비가 고가이고 공정에서 사용하는 타겟(target)도 고가이며, 공정시간이 굉장히 오래 걸려서 생산성이 저하된다.Therefore, a company that purchases and uses an Al substrate having a flat structure (that is, no electrode) has a problem of forming an electrode. In forming the electrodes, most of the electrodes were formed on the Al substrate by using a sputter method. Although the sputtering method is adopted and used by various companies, the sputtering equipment is expensive, the target used in the process is expensive, and the process time is very long, resulting in low productivity.
그에 따라, 보다 저가이면서 생산성을 향상시킬 수 있는 방안을 강구하던 중에 본 출원인은 스퍼터 방식을 채택하지 않고 인쇄 방식으로 AlN 기판에 전극을 형성시켜 보았다.Accordingly, the inventors of the present invention tried to form the electrode on the Al substrate by printing without adopting the sputtering method while devising a way to improve the productivity at a lower cost.
도 1은 본 출원인이 사용한 인쇄 방식의 프로세스로서, 평탄한 AlN 기판에 인쇄 방식으로 전극을 형성하는 과정을 보여준다.1 is a printing method used by the applicant, and shows a process of forming an electrode on a flat Al substrate by a printing method.
도 1에 따르면, (a)에서와 같이 소성된 평탄한 AlN 기판(10)에 페이스트(예컨대, Ag 성분의 페이스트)(14)를 디스펜싱한 후에 스퀴즈(12)로 일측 방향(예컨대, 우측방향)으로 밀어서 인쇄하게 되면 (b)에서와 같이 전극(16)의 형상을 이루게 된다. 그리고 나서, 소성하게 되면 전극(16)이 된다. 그 후에, 전극(16)의 상면에 Ni의 제 1도금층(18)을 도금하고 나서 그 위에 Ag 또는 Au의 제 2도금층(20)을 도금한다.According to Fig. 1, after dispensing a paste (e.g., paste of Ag component) 14 onto a flat Al substrate 10 fired as in (a), one side direction (e.g., right direction) is applied to the squeeze 12. Printing by pushing to form the electrode 16 as shown in (b). Then, when fired, the electrode 16 is formed. Thereafter, the first plating layer 18 of Ni is plated on the upper surface of the electrode 16, and then the second plating layer 20 of Ag or Au is plated thereon.
도금이 완료된 후에는 리플로우를 진행하는데, 리플로우를 진행하고 나면 도 2에서와 같이 대부분 부착(adhesion) 불량이 발생한다. 즉, 도 2의 "A"에서와 같이 전극(16) 및 도금층(18, 20)이 AlN 기판(10)으로부터 떨어지는 경우가 다반사이다.After the plating is completed, the reflow proceeds. After the reflow, most of the adhesion failure occurs as shown in FIG. 2. That is, as in " A " of FIG. 2, the case where the electrode 16 and the plating layers 18 and 20 are separated from the Al substrate 10 is multireflective.
그에 따라, 본 출원인은 부착 불량을 해소시킬 수 있는 방안을 찾던 중에 다양한 실험끝에 전극 재료의 성분을 개선시키게 되면 부착 불량을 해소시킬 수 있음을 알게 되었다.Accordingly, the Applicant has found that improving the components of the electrode material at the end of various experiments can solve the adhesion failure while searching for a way to solve the adhesion failure.
본 발명은 상기한 종래의 문제점을 해결하기 위해 제안된 것으로, AlN 기판에 형성시킬 전극의 부착성을 향상시킬 수 있도록 한 AlN기판의 전극 재료를 제공함에 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been proposed to solve the above-mentioned conventional problems, and an object thereof is to provide an electrode material of an Al substrate which can improve the adhesion of the electrode to be formed on the Al substrate.
본 발명의 다른 목적은 부착성을 향상시킬 수 있는 전극 재료를 활용하여 AlN기판에 전극을 형성하는 방법을 제공함에 있다.It is another object of the present invention to provide a method for forming an electrode on an Al substrate by using an electrode material capable of improving adhesion.
본 발명의 또 다른 목적은 부착성이 향상된 전극을 갖는 AlN기판을 제공함에 있다.Still another object of the present invention is to provide an Al substrate having an electrode with improved adhesion.
상기와 같은 목적을 달성하기 위하여 본 발명의 바람직한 실시양태에 따른 AlN기판의 전극 재료는, AlN기판의 전극 재료로서,In order to achieve the above object, the electrode material of the Al substrate according to the preferred embodiment of the present invention is an electrode material of the Al substrate,
50 ~ 80중량%의 Ag, 10 ~ 40중량%의 Bi계 유리, 및 3 ~ 8중량%의 Al을 포함하는 주재료와 나머지 성분의 부재료를 포함한다.A main material comprising 50 to 80% by weight of Ag, 10 to 40% by weight of Bi-based glass, and 3 to 8% by weight of Al, and a submaterial of the remaining components.
부재료는 Mg를 포함한다. 이 경우, Mg는 1 ~ 5중량%이다.Substances include Mg. In this case, Mg is 1 to 5 weight%.
부재료는 Si, Cu, Zn중 하나 이상을 추가로 포함한다. 이 경우, Si는 4 ~ 10중량%이고, Cu는 1 ~ 3중량%이며, Zn은 4 ~ 10중량%이다.The submaterial further comprises one or more of Si, Cu, and Zn. In this case, Si is 4-10 weight%, Cu is 1-3 weight%, and Zn is 4-10 weight%.
한편, 본 발명의 실시양태에 따른 AlN기판에 전극을 형성하는 방법은, 소성된 AlN기판을 준비하는 준비 단계; 50 ~ 80중량%의 Ag, 10 ~ 40중량%의 Bi계 유리, 및 3 ~ 8중량%의 Al을 포함하는 주재료와 나머지 성분의 부재료를 포함하는 전극 재료를 AlN기판에 도포하는 도포 단계; 및 도포된 전극 재료를 소성하는 소성 단계를 포함한다.On the other hand, the method for forming an electrode on the Al substrate according to an embodiment of the present invention, the preparation step of preparing a baked Al substrate; An application step of applying an electrode material comprising a main material comprising 50 to 80% by weight of Ag, 10 to 40% by weight of Bi-based glass, and 3 to 8% by weight of Al, and an ingredient of the remaining ingredients to an Al substrate; And a firing step of firing the applied electrode material.
한편, 본 발명의 실시양태에 따른 AlN기판은, 50 ~ 80중량%의 Ag, 10 ~ 40중량%의 Bi계 유리, 및 3 ~ 8중량%의 Al을 포함하는 주재료와 나머지 성분의 부재료를 포함하는 전극 재료가 표면에 도포된 후 소성에 의해 형성된 전극을 포함한다.On the other hand, the Al substrate according to the embodiment of the present invention, the main material containing 50 to 80% by weight of Ag, 10 to 40% by weight of Bi-based glass, and 3 to 8% by weight of Al and the subsidiary material of the remaining components And the electrode formed by baking after the electrode material is apply | coated to the surface.
이러한 구성의 본 발명에 따르면, 50 ~ 80중량%의 Ag, 10 ~ 40중량%의 Bi계 유리, 및 3 ~ 8중량%의 Al을 포함하는 주재료와 나머지 성분의 부재료를 포함하는 전극 재료를 AlN기판에 도포(인쇄)하여 전극화시킴으로써, 기존의 방식에 비해 AlN기판과 전극간의 부착성을 향상시키는 효과를 얻게 된다.According to the present invention having such a configuration, an electrode material comprising a main material containing 50 to 80% by weight of Ag, 10 to 40% by weight of Bi-based glass, and 3 to 8% by weight of Al and a component material of the remaining components is used. By coating (printing) and electrodelizing the substrate, an effect of improving adhesion between the Al substrate and the electrode can be obtained as compared with the conventional method.
특히, 기존의 스퍼터 방식에 비해 전극 형성에 소요되는 비용을 저감시킬 수 있을 뿐만 아니라 생산성을 향상시키는 이점이 있다.In particular, compared with the conventional sputtering method, the cost required for electrode formation can be reduced and productivity is improved.
소성된 AlN기판에 인쇄를 하여 전극 패턴이 수축되지 않으므로, 동시소성 타입에 비해 전극 패턴의 정밀도를 유지할 수 있게 된다.Since the electrode pattern is not shrunk by printing on the fired Al substrate, the accuracy of the electrode pattern can be maintained as compared with the simultaneous firing type.
전극이 필요한 AlN기판을 사용하는 모든 분야에 적용가능할 뿐만 아니라, 하이파워의 발광소자를 채용한 단품 또는 어레이 형태의 대면적 LED 패키지에 유용하게 사용할 수 있게 된다.Not only can it be applied to all fields using an aluminum substrate that requires an electrode, but also it can be usefully used for a large area LED package in the form of a single unit or an array employing a high power light emitting device.
AlN기판에 형성된 전극의 부착성이 강하여 부착 불량을 해소시킴으로써 전극이 형성된 AlN기판의 제공이 가능하게 된다.Since the adhesion of the electrode formed on the Al substrate is strong, the adhesion failure can be eliminated, whereby the Al substrate on which the electrode is formed can be provided.
도 1은 종래의 인쇄 방법에 의한 전극 형성 과정을 설명하기 위한 도면이다. 1 is a view for explaining the electrode forming process by a conventional printing method.
도 2는 도 1의 방식에 의해 형성된 전극의 도금후의 부착 불량을 설명하기 위한 도면이다.FIG. 2 is a view for explaining the poor adhesion after plating of the electrode formed by the method of FIG.
도 3은 본 발명의 실시예에 따른 전극 재료를 사용하여 AlN기판에 전극을 형성하고 도금한 후에 AlN기판과의 부착성에 대해 테스트한 결과를 보여주는 도면이다.3 is a view showing the results of the test for the adhesion with the Al substrate after forming and plating the electrode on the Al substrate using the electrode material according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 전극 재료를 사용하여 AlN기판에 전극을 형성하고 도금한 후에 와이어 펄 테스트를 한 결과를 보여주는 도면이다.4 is a view showing a result of a wire pearl test after forming and plating an electrode on an Al substrate using an electrode material according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 전극 재료를 사용하여 AlN기판에 전극을 형성하고 도금한 후에 납 내열 테스트의 결과를 보여주는 도면이다.5 is a view showing the results of a lead heat test after forming and plating an electrode on an Al substrate using an electrode material according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 따른 AlN기판의 전극 재료에 대하여 설명하면 다음과 같다.Hereinafter, with reference to the accompanying drawings will be described with respect to the electrode material of the Al substrate according to an embodiment of the present invention.
본 발명의 실시예에 따른 AlN기판의 전극 재료는 페이스트(paste) 형태로 되어 AlN기판에 인쇄된다. 본 발명의 실시예에서는 전극용 페이스트는 소성된 AlN기판에 인쇄되는 것으로 한다.The electrode material of the Al substrate according to the embodiment of the present invention is in the form of a paste and printed on the Al substrate. In the embodiment of the present invention, the electrode paste is printed on the baked Al substrate.
전극 재료를 구성하는 페이스트의 성분을 예시하여 보면 하기의 표와 같다.The components of the paste constituting the electrode material are shown in the following table.
표 1
성분 최적의 성분 함량의 예 (중량%) 성분 함량의 범위 (중량%)
Mg 3.66 1 ~ 5
Al 5.43 3 ~ 8
Si 6.53 4 ~ 10
Cu 1.55 1 ~ 3
Zn 6.28 4 ~ 10
Ag 62.84 50 ~ 80
Bi 11.72 10 ~ 40
Table 1
ingredient Example of optimal component content (% by weight) Range of ingredient content (% by weight)
Mg 3.66 1 to 5
Al 5.43 3 to 8
Si 6.53 4 to 10
Cu 1.55 1 to 3
Zn 6.28 4 to 10
Ag 62.84 50 to 80
Bi 11.72 10 to 40
표에서, 50 ~ 80중량%의 Ag, 10 ~ 40중량%의 Bi계 유리, 및 3 ~ 8중량%의 Al을 주재료로 한다.In the table, 50 to 80 wt% Ag, 10 to 40 wt% Bi-based glass, and 3 to 8 wt% Al are the main materials.
AlN기판에 인쇄되는 페이스트에서 Ag가 대부분을 차지한다. Bi계 유리는 AlN기판과의 부착(adhesion)을 개선하는 요소이다. Al은 Bi계 유리와 마찬가지로 AlN기판과의 부착(adhesion)을 개선하는 요소이다Ag accounts for most of the paste printed on the aluminum substrate. Bi-based glass is an element that improves adhesion with an Al substrate. Al, like Bi-based glass, is an element that improves adhesion with A-N substrate.
Bi계 유리의 함량이 40중량%를 초과하게 되면 부착의 효과는 크지만 소성시 유리가 AlN기판의 표면에 노출되므로 전기저항이 높아져서 도금 진행시 도금이 잘 되지 않는 문제가 발생한다. Bi계 유리의 함량이 10중량% 보다 적을 경우에는 부착에 문제가 발생하여 전극으로의 활용이 불가능하다. 따라서, Bi계 유리는 대략 10 ~ 40중량% 정도를 포함시키는 것이 바람직하다.If the content of Bi-based glass exceeds 40% by weight, the effect of adhesion is great, but since the glass is exposed to the surface of the Al substrate during firing, the electrical resistance is increased, so that plating is not well performed during plating. When the content of Bi-based glass is less than 10% by weight, a problem arises in the adhesion, which makes it impossible to use as an electrode. Therefore, it is preferable that Bi type glass contains about 10 to 40 weight%.
Al의 함량이 3 ~ 8중량%를 벗어나게 되면 부착 개선 효과가 떨어지게 된다.When the Al content is outside the 3 to 8% by weight, the adhesion improvement effect is reduced.
상기 표에서 Mg, Si, Cu, Zn은 부재료(첨가물)가 된다. Mg의 함량이 1 ~ 5중량%를 벗어나게 되면 부착 개선 효과가 떨어지게 된다. Si, Cu, Zn은 저융점 재료이다. 본 발명의 실시예의 전극용 페이스트는 대략 800 ~ 900도 정도의 소성온도에서 소성된다. 그에 따라, Si, Cu, Zn 등과 같은 저융점 재료가 점도 유지 등을 위해 첨가제로 포함된다. 이 경우, Si는 4 ~ 10중량%로 첨가되고, Cu는 1 ~ 3중량%로 첨가되며, Zn은 4 ~ 10중량%로 첨가됨이 바람직하다. 부재료중 Si, Cu, Zn은 선택적으로 사용가능하다. 즉, Si, Cu, Zn은 필요에 따라 적어도 하나 이상이 포함된다.In the table, Mg, Si, Cu, and Zn become subsidiary materials (additives). When the content of Mg exceeds 1 to 5% by weight, the effect of improving adhesion decreases. Si, Cu and Zn are low melting point materials. The electrode paste of the embodiment of the present invention is fired at a firing temperature of about 800 to 900 degrees. Accordingly, low melting point materials such as Si, Cu, Zn and the like are included as additives for viscosity maintenance and the like. In this case, Si is added at 4 to 10% by weight, Cu is added at 1 to 3% by weight, and Zn is preferably added at 4 to 10% by weight. Among the materials, Si, Cu, and Zn can be selectively used. That is, at least one of Si, Cu, and Zn is included as needed.
본 발명의 실시예에 따른 전극 재료를 사용하여 전극을 형성하고 도금하는 과정에 대해 설명하면 다음과 같다.Referring to the process of forming and plating the electrode using the electrode material according to an embodiment of the present invention.
일단, 소성된 AlN기판을 준비한다. 준비된 AlN기판에 표에 예시된 성분들(예컨대, Mg, Al, Si, Cu, Zn, Ag, Bi계 유리)이 함유된 페이스트를 도포(인쇄 포함)하여 전극 패턴을 형성한다. 소성된 AlN기판에 페이스트를 인쇄해야 추후의 소성시 전극 패턴이 수축되지 않고 그로 인해 전극 패턴의 정밀도를 유지할 수 있게 된다. 동시소성 타입은 수축율로 인해 전극 패턴의 정밀도에 문제가 있다. First, calcined Al substrate is prepared. An electrode pattern is formed by applying (including printing) a paste containing the components exemplified in the table (eg, Mg, Al, Si, Cu, Zn, Ag, Bi-based glass) to the prepared Al substrate. The paste must be printed on the fired Al substrate so that the electrode pattern does not shrink during subsequent firing, thereby maintaining the accuracy of the electrode pattern. The cofired type has a problem in the precision of the electrode pattern due to the shrinkage rate.
이와 같이 형성된 전극 패턴은 대략 800 ~ 900도 정도의 소성온도에서 소성된다. 소성되면 전극으로 된다. 소성한 후에는 전극의 상면에 Ni의 제 1도금층 및 Ag 또는 Au의 제 2도금층을 순차적으로 도금한다. Ni는 LED 패키지를 실장하기 위한 SMT후 리플로우(reflow)공정 진행시 솔더와의 반응에 의해 전극 및 전극상의 도금층이 박리되는 것을 방지해 준다. 제 1도금층의 도금방법은 전해 도금법 또는 무전해 도금법이 사용된다. Ag를 사용하는 이유는 와이어 본딩이 가능하고 빛을 반사시키는 반사체의 역할을 하며 솔더와의 반응이 우수하기 때문이다. Au를 사용하는 이유는 와이어 본딩이 우수하고 솔더와의 반응이 우수하기 때문이다. 각각의 조건 등을 고려하여 제 2도금층의 도금재질을 결정하면 된다. 제 2도금층의 도금방법은 전해도금법 또는 무전해 도금법이 사용된다. The electrode pattern thus formed is fired at a firing temperature of about 800 to 900 degrees. When fired, it becomes an electrode. After firing, the first plating layer of Ni and the second plating layer of Ag or Au are sequentially plated on the upper surface of the electrode. Ni prevents the electrode and the plating layer on the electrode from being peeled off by the reaction with the solder during the reflow process after SMT for mounting the LED package. As the plating method of the first plating layer, an electrolytic plating method or an electroless plating method is used. The reason for using Ag is that it can be wire bonded, serves as a reflector that reflects light, and has a good reaction with solder. The reason for using Au is because of excellent wire bonding and excellent reaction with solder. What is necessary is just to determine the plating material of a 2nd plating layer in consideration of each condition. As the plating method of the second plating layer, an electroplating method or an electroless plating method is used.
상술한 바와 같이 소성된 AlN기판에 전극 형성후 도금을 행하고서 다양한 테스트를 진행하여 보았다.As described above, plating was performed after the formation of electrodes on the baked substrate, and various tests were conducted.
첫번째로, AlN기판과의 부착에 대해 테스트하기 위해, 도금후 대략 300℃에서 리플로우를 진행하여 보았다. 그 결과, 도 3에서와 같이 전극이 AlN기판에 계속 밀착되어 있음을 알 수 있었다. 이는 리플로우후에 전극과 AlN기판간의 부착에 전혀 문제가 없음을 보여준다.First, in order to test for adhesion with an Al substrate, reflow was performed at approximately 300 ° C. after plating. As a result, as shown in FIG. 3, it was found that the electrode was kept in close contact with the Al substrate. This shows that there is no problem in the adhesion between the electrode and the Al substrate after reflow.
두번째로, 도금후 와이어 펄(wire pull) 테스트를 하였다. 통상적으로, 도금후 와이어 펄 테스트에서 5 이하이면 불량으로 처리되는데, 본 발명의 실시예에 따른 전극 재료를 사용한 경우에는 도 4에서와 같이 5 이상이어서 양호함을 알 수 있다.Secondly, a wire pull test was performed after plating. Typically, the wire pearl test after plating is treated as bad if less than 5, when using the electrode material according to an embodiment of the present invention it can be seen that it is more than 5 as shown in FIG.
세번째로, 도금후 납 내열 테스트를 하여 보았다. 도금후 납 내열시 전극이 모두 있어야 한다. 테스트 조건은 10sec/250℃에서 전극에 납이 90%이상 형성되는 것으로 하였다. 도금후 납 내열 테스트를 해 본 결과, 도 5의 (a)에서와 같이 전극이 모두 존재하였다. 도 5의 (b)는 기존 방식에 의한 것으로서 기존에는 전극이 존재하지 않게 된다.Third, the lead heat test was performed after plating. After plating, all lead electrodes should be present. Test conditions were that 90% or more of lead was formed in the electrode at 10sec / 250 ° C. As a result of the lead heat test after plating, all the electrodes were present as shown in FIG. 5 (b) is based on the conventional method, and the electrode does not exist conventionally.
이와 같은 테스트들을 통해 본 발명의 실시예에 따른 전극 재료를 이용하여 AlN기판에 전극을 형성시키게 되면 도금 이후에 부착 불량이 제거됨을 알 수 있다.Through such tests, when the electrode is formed on the Al substrate using the electrode material according to the embodiment of the present invention, it can be seen that the adhesion failure is removed after plating.
한편, 본 발명은 상술한 실시예로만 한정되는 것이 아니라 본 발명의 요지를 벗어나지 않는 범위내에서 수정 및 변형하여 실시할 수 있고, 그러한 수정 및 변형이 가해진 기술사상 역시 이하의 특허청구범위에 속하는 것으로 보아야 한다.On the other hand, the present invention is not limited only to the above-described embodiment, but can be modified and modified within the scope not departing from the gist of the present invention, and the technical spirit to which such modifications and variations are applied also belong to the following claims Must see

Claims (17)

  1. AlN기판의 전극 재료로서,As the electrode material of the Al substrate,
    50 ~ 80중량%의 Ag, 10 ~ 40중량%의 Bi계 유리, 및 3 ~ 8중량%의 Al을 포함하는 주재료와 나머지 성분의 부재료를 포함하는 것을 특징으로 하는 AlN기판의 전극 재료.An electrode material of an Al substrate, comprising: a main material comprising 50 to 80% by weight of Ag, 10 to 40% by weight of Bi-based glass, and 3 to 8% by weight of Al;
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 부재료는 Mg를 포함하는 것을 특징으로 하는 AlN기판의 전극 재료.The submaterial comprises Mg. An electrode material of an Al substrate.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 Mg는 1 ~ 5중량%인 것을 특징으로 하는 AlN기판의 전극 재료.Wherein Mg is 1 to 5% by weight of the electrode material of the Al substrate.
  4. 청구항 2에 있어서,The method according to claim 2,
    상기 부재료는 Si, Cu, Zn중 하나 이상을 추가로 포함하는 것을 특징으로 하는 AlN기판의 전극 재료.The electrode material of an Al substrate, further comprising at least one of Si, Cu, and Zn.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 Si는 4 ~ 10중량%인 것을 특징으로 하는 AlN기판의 전극 재료.Si is 4 to 10% by weight of the electrode material of the Al substrate.
  6. 청구항 4에 있어서,The method according to claim 4,
    상기 Cu는 1 ~ 3중량%인 것을 특징으로 하는 AlN기판의 전극 재료.Cu is 1 to 3% by weight of the electrode material of the Al substrate.
  7. 청구항 4에 있어서,The method according to claim 4,
    상기 Zn은 4 ~ 10중량%인 것을 특징으로 하는 AlN기판의 전극 재료.Zn is 4 to 10% by weight of the electrode material of the EL substrate.
  8. 소성된 AlN기판을 준비하는 준비 단계; Preparing a calcined Al substrate;
    50 ~ 80중량%의 Ag, 10 ~ 40중량%의 Bi계 유리, 및 3 ~ 8중량%의 Al을 포함하는 주재료와 나머지 성분의 부재료를 포함하는 전극 재료를 상기 AlN기판에 도포하는 도포 단계; 및An application step of applying an electrode material including a main material comprising 50 to 80% by weight of Ag, 10 to 40% by weight of Bi-based glass, and 3 to 8% by weight of Al, and an ingredient of the remaining ingredients to the Al substrate; And
    상기 도포된 전극 재료를 소성하는 소성 단계를 포함하는 것을 특징으로 하는 AlN기판에 전극을 형성하는 방법.And firing the calcined electrode material.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 도포 단계의 부재료는 Mg를 포함하는 것을 특징으로 하는 AlN기판에 전극을 형성하는 방법.The method of forming an electrode on an Al substrate, characterized in that the material of the coating step comprises Mg.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 Mg는 1 ~ 5중량%인 것을 특징으로 하는 AlN기판에 전극을 형성하는 방법.Wherein the Mg is 1 to 5% by weight, the method of forming an electrode on an A substrate.
  11. 청구항 9에 있어서,The method according to claim 9,
    상기 부재료는 Si, Cu, Zn중 하나 이상을 추가로 포함하는 것을 특징으로 하는 AlN기판에 전극을 형성하는 방법.And said subsidiary material further comprises at least one of Si, Cu, and Zn.
  12. 청구항 11에 있어서,The method according to claim 11,
    상기 Si는 4 ~ 10중량%인 것을 특징으로 하는 AlN기판에 전극을 형성하는 방법.The Si is a method for forming an electrode on an Al substrate, characterized in that 4 to 10% by weight.
  13. 청구항 11에 있어서,The method according to claim 11,
    상기 Cu는 1 ~ 3중량%인 것을 특징으로 하는 AlN기판에 전극을 형성하는 방법.The Cu is a method for forming an electrode on an Al substrate, characterized in that 1 to 3% by weight.
  14. 청구항 11에 있어서,The method according to claim 11,
    상기 Zn은 4 ~ 10중량%인 것을 특징으로 하는 AlN기판에 전극을 형성하는 방법.Wherein Zn is 4 to 10% by weight of the electrode to form an electrode, characterized in that the substrate.
  15. 50 ~ 80중량%의 Ag, 10 ~ 40중량%의 Bi계 유리, 및 3 ~ 8중량%의 Al을 포함하는 주재료와 나머지 성분의 부재료를 포함하는 전극 재료가 표면에 도포된 후 소성에 의해 형성된 전극을 포함하는 것을 특징으로 하는 AlN기판.50 to 80 wt% Ag, 10 to 40 wt% Bi-based glass, and an electrode material comprising the main material comprising 3 to 8 wt% Al and the subsidiary materials of the remaining components were formed by firing after application to the surface. An EL substrate comprising an electrode.
  16. 청구항 15에 있어서,The method according to claim 15,
    상기 부재료는 Mg를 포함하는 것을 특징으로 하는 AlN기판.The substrate according to claim 1, wherein the submaterial comprises Mg.
  17. 청구항 16에 있어서,The method according to claim 16,
    상기 부재료는 Si, Cu, Zn중 하나 이상을 추가로 포함하는 것을 특징으로 하는 AlN기판.The substrate further comprises at least one of Si, Cu, and Zn.
PCT/KR2009/003622 2008-07-04 2009-07-02 Electrode material for aln substrate, method of forming electrode on aln substrate, and aln substrate WO2010002206A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080065037A KR100954722B1 (en) 2008-07-04 2008-07-04 Electrode material of ??? substrate, method of formating electrode on ??? substrate and ??? substrate
KR10-2008-0065037 2008-07-04

Publications (2)

Publication Number Publication Date
WO2010002206A2 true WO2010002206A2 (en) 2010-01-07
WO2010002206A3 WO2010002206A3 (en) 2010-04-22

Family

ID=41466479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/003622 WO2010002206A2 (en) 2008-07-04 2009-07-02 Electrode material for aln substrate, method of forming electrode on aln substrate, and aln substrate

Country Status (2)

Country Link
KR (1) KR100954722B1 (en)
WO (1) WO2010002206A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104952507A (en) * 2014-03-27 2015-09-30 浙江德汇电子陶瓷有限公司 Conductive composition, conductive slurry, circuit board and method for manufacturing circuit board

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101642009B1 (en) 2014-12-16 2016-07-22 한국과학기술연구원 Copper/AlN composite
KR102271060B1 (en) 2018-05-18 2021-06-29 연세대학교 산학협력단 Layered AlN, manufacturing method thereof and exfoliated AlN nanosheet therefrom

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144317A (en) * 1991-11-15 1993-06-11 Murata Mfg Co Ltd Conductive paste and chip type ceramic electronic parts having it used to form electrode
JPH08298018A (en) * 1995-04-26 1996-11-12 Kyocera Corp Conductive paste
KR20060099445A (en) * 2005-03-09 2006-09-19 이 아이 듀폰 디 네모아 앤드 캄파니 Black conductive thick film compositions, black electrodes, and methods of forming thereof
WO2007102287A1 (en) * 2006-03-07 2007-09-13 Murata Manufacturing Co., Ltd. Conductive paste and solar cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04112410A (en) * 1990-08-31 1992-04-14 Showa Denko Kk Composition of thick film conductor
JP2813447B2 (en) * 1990-09-27 1998-10-22 第一工業製薬株式会社 Conductor paste for aluminum nitride sintered substrate
JP3927250B2 (en) * 1995-08-16 2007-06-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Thick film conductor paste composition for aluminum nitride substrate
CN1307124C (en) 2001-10-09 2007-03-28 E·I·内穆尔杜邦公司 Thick film conductor compositions for use on aluminum nitride substrates

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144317A (en) * 1991-11-15 1993-06-11 Murata Mfg Co Ltd Conductive paste and chip type ceramic electronic parts having it used to form electrode
JPH08298018A (en) * 1995-04-26 1996-11-12 Kyocera Corp Conductive paste
KR20060099445A (en) * 2005-03-09 2006-09-19 이 아이 듀폰 디 네모아 앤드 캄파니 Black conductive thick film compositions, black electrodes, and methods of forming thereof
WO2007102287A1 (en) * 2006-03-07 2007-09-13 Murata Manufacturing Co., Ltd. Conductive paste and solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104952507A (en) * 2014-03-27 2015-09-30 浙江德汇电子陶瓷有限公司 Conductive composition, conductive slurry, circuit board and method for manufacturing circuit board

Also Published As

Publication number Publication date
KR20100004714A (en) 2010-01-13
KR100954722B1 (en) 2010-04-23
WO2010002206A3 (en) 2010-04-22

Similar Documents

Publication Publication Date Title
US9799449B2 (en) Multilayered ceramic capacitor with improved lead frame attachment
WO2012060545A1 (en) Led array module and manufacturing method thereof
WO2010002206A2 (en) Electrode material for aln substrate, method of forming electrode on aln substrate, and aln substrate
US4846163A (en) Method of sealing capacitor bushings
WO2010114238A2 (en) Circuit board, and method for manufacturing same
JPH05235497A (en) Copper conductive paste
CN100586256C (en) Ceramic substrate, electronic apparatus, and method for producing ceramic substrate
US4689270A (en) Composite substrate for printed circuits and printed circuit-substrate combination
KR100744855B1 (en) High Thermal Cycle Conductor System
WO2011138949A1 (en) Substrate on which element is to be mounted, and process for production thereof
JPH04277406A (en) Copper conductor paste
WO2017065407A1 (en) Ceramic circuit board and manufacturing method therefor
WO2018135755A2 (en) Ceramic circuit board and manufacturing method therefor
WO2020009338A1 (en) Metallized ceramic substrate and method for manufacturing same
WO2018199394A1 (en) Gold-deposited copper film and manufacturing method therefor
JP3098288B2 (en) Conductor composition and ceramic substrate using the same
JPH08298018A (en) Conductive paste
US6471805B1 (en) Method of forming metal contact pads on a metal support substrate
JPS63283184A (en) Circuit substrate covered with conductor composition
WO2018084509A1 (en) Solder composition for annular wire for solar cell module and annular wire for solar cell module including solder-plated layer formed thereof
JPH01107592A (en) Electric circuit board
WO2021066475A1 (en) Substrate for semiconductor light emitting device and semiconductor light emitting device using same
JPH02204904A (en) Conductor paste and ceramics substate
RU2024081C1 (en) Electroconductive paste
JP2632325B2 (en) Electric circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773742

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09773742

Country of ref document: EP

Kind code of ref document: A2