WO2018084509A1 - Solder composition for annular wire for solar cell module and annular wire for solar cell module including solder-plated layer formed thereof - Google Patents
Solder composition for annular wire for solar cell module and annular wire for solar cell module including solder-plated layer formed thereof Download PDFInfo
- Publication number
- WO2018084509A1 WO2018084509A1 PCT/KR2017/012042 KR2017012042W WO2018084509A1 WO 2018084509 A1 WO2018084509 A1 WO 2018084509A1 KR 2017012042 W KR2017012042 W KR 2017012042W WO 2018084509 A1 WO2018084509 A1 WO 2018084509A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solar cell
- annular wire
- cell module
- solder
- silver
- Prior art date
Links
- 229910000679 solder Inorganic materials 0.000 title claims abstract description 90
- 239000000203 mixture Substances 0.000 title claims abstract description 49
- 239000000758 substrate Substances 0.000 claims abstract description 51
- 239000004020 conductor Substances 0.000 claims abstract description 43
- 238000007747 plating Methods 0.000 claims description 60
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 40
- 229910052709 silver Inorganic materials 0.000 claims description 40
- 239000004332 silver Substances 0.000 claims description 40
- 239000010949 copper Substances 0.000 claims description 31
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 21
- 229910052802 copper Inorganic materials 0.000 claims description 21
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 15
- 229910052797 bismuth Inorganic materials 0.000 claims description 9
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 238000005476 soldering Methods 0.000 claims description 6
- 239000010410 layer Substances 0.000 description 59
- 230000000052 comparative effect Effects 0.000 description 19
- 230000000694 effects Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000007607 die coating method Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/05—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/02002—Arrangements for conducting electric current to or from the device in operations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to an annular wire of a solar cell module comprising a solder composition for an annular wire of a solar cell module and a solder plating layer formed therefrom.
- the present invention can easily form a solder plating layer on the surface of the conductor constituting the annular wire of the solar cell module with a uniform thickness, and improves the adhesion of the annular wire to the solar cell substrate at the same time
- the present invention relates to an annular wire of a solar cell module including a solder composition for an annular wire of a solar cell module capable of maximizing output and a solder plating layer formed therefrom.
- a solar cell is a device that converts light energy into electrical energy by using a p-type semiconductor and an n-type semiconductor, and electrons and electrons generated inside the light beam move to the p-pole and n-pole, respectively, between the p-pole and the n-pole. It is a device based on the photoelectric effect through which a potential difference (photovoltaic power) occurs and current flows.
- FIG. 1 schematically shows a conventional solar cell module.
- a plurality of solar cells 1, which are the smallest unit for generating electricity, are arranged in a panel, and the solar cell cells 1 are disposed to obtain a desired electromotive force.
- FIG. 2 schematically illustrates a cross-sectional structure of the annular wire 10 used in the solar cell module.
- the annular wire 10 for a solar cell module includes a circular conductor 11 and a solder plating layer 12 formed on the surface thereof for connection with the solar cell 1.
- the annular wire 10 and the solar cell 1 are connected by cooling after the solder plating layer 12 is melted while the wire 10 is disposed on the substrate of the solar cell 1.
- the solder composition for forming the solder plating layer 12 of the annular wire 10 for a solar cell module is usually composed of lead (Pb), tin (Sn), etc., and the circular conductor 11 of the annular wire 10.
- Pb lead
- Sn tin
- the solder plating layer 12 having a uniform thickness on the surface of the circular conductor 11, in particular the annular wire 10
- the output of the solar cell is reduced by reducing the light receiving surface of the solar exhibition chamber (1).
- the solder plating layer on the surface of the conductor constituting the annular wire of the solar cell module can be easily formed with a uniform thickness, and can improve the adhesion of the annular wire to the solar cell substrate while maximizing the output of the solar cell module.
- an annular wire of a solar cell module including a solder composition for an annular wire of a solar cell module and a solder plating layer formed therefrom.
- An object of the present invention is to provide an annular wire of a solar cell module comprising a solder composition capable of easily forming a solder plating layer on the surface of the conductor constituting the annular wire of the solar cell module with a uniform thickness and a solder plating layer formed therefrom. It is done.
- the present invention provides a solar cell module comprising a solder composition for an annular wire of a solar cell module and a solder plating layer formed therefrom, which can improve the adhesion of the annular wire to the solar cell substrate while maximizing the output of the solar cell module.
- An object of the present invention is to provide an annular wire.
- a solder composition for an annular wire of a solar cell module comprising 0.0032 to 0.0342 weight percent bismuth (Bi) and 0.071 to 1.26 weight percent copper (Cu), based on the total weight of the solder composition, and includes tin (Sn) and lead A solder composition further comprising (Pb), silver (Ag), or both.
- the solder composition based on the total weight thereof, includes 59 to 65% by weight of tin (Sn), 33 to 39% by weight of lead (Pb) and 1.5 to 2.5% by weight of silver (Ag), or tin (Sn A solder composition comprising 56 to 66% by weight and 33 to 43% by weight of lead (Pb), or 93.5 to 99.5% by weight of tin (Sn) and 0.1 to 3.5% by weight of silver (Ag). to provide.
- annular wire for a solar cell module comprising a circular conductor and a solder plating layer formed on the surface of the circular conductor and formed from the solder composition of claim 1, wherein on any cross section of the annular wire:
- annular wire for a solar cell module having a cross-sectional area ratio defined by 0.04 to 0.32.
- Cross sectional area ratio cross sectional area of solder plating layer / cross sectional area of circular conductor
- the cross-sectional area of the solder plating layer is (cross-sectional area of the annular wire minus the cross-sectional area of the circular conductor).
- the sum (Y) of the minimum thickness and the maximum thickness of the solder plating layer on any cross section of the annular wire is a range of the maximum value Y max and the minimum value Y min satisfying the conditions of Equations 2 and 3 below.
- an annular wire for a solar cell module is provided.
- ⁇ 0.14 to 0.15
- ⁇ 1 to 2
- X is the diameter ( ⁇ m) of the circular conductor.
- the diameter (X) of the circular conductor is characterized in that, 180 to 540 ⁇ m, provides an annular wire for a solar cell module.
- the attachment width of the annular wire and the substrate is 500 to 1,000 ⁇ m, providing an annular wire for a solar cell module.
- the circular conductor provides an annular wire for a solar cell module, characterized in that it is made of tough pitch copper (TPC), oxygen-free copper (OFC), or phosphorous deoxidized copper. .
- the resistance is 648 m ⁇ / m or less
- yield strength is 120 MPa or less
- tensile strength is 180 to 260 MPa
- elongation is 15 to 45%
- it provides an annular wire for a solar cell module.
- a solar cell module comprising a plurality of solar cell substrate and the annular wire for solar cell module of claim 3 connecting the plurality of substrates in series.
- a silver paste layer is formed on a portion where the annular wire is soldered on the solar cell substrate, and the silver (Ag) paste layer is formed on the silver paste layer to improve adhesion between the annular wire and the substrate.
- a plurality of silver (Ag) pads having a width greater than the width of a paste layer are provided.
- the size of the solar cell substrate is 4 to 8 inches
- the number of the annular wire is 8 to 30
- the width of the silver (Ag) paste layer is 30 to 70 ⁇ m
- adjacent silver (Ag) paste the interlayer spacing is 1.4 to 2.2 mm
- the silver (Ag) pad area is 500 to 900 ⁇ m 2
- the number of (Ag) pad provides a solar cell module, characterized in that 300 to 700 individuals.
- solder composition for an annular wire of the solar cell module can easily form a solder plating layer on the surface of the conductor constituting the annular wire of the solar cell module with a uniform thickness through precise control of the composition and the mixing ratio of the composition. Excellent effect.
- solder composition for the annular wire of the solar cell module according to the present invention exhibits an excellent effect of improving the adhesion of the annular wire to the solar cell substrate while maximizing the output of the solar cell module.
- FIG. 1 schematically shows a conventional solar cell module.
- Figure 2 schematically shows the cross-sectional structure of the annular wire used in the solar cell module.
- FIG. 3 schematically illustrates a state in which light is irradiated to a solar cell equipped with an annular wire for the solar cell module illustrated in FIG. 2.
- the solder composition for an annular wire of the solar cell module according to the present invention may include tin (Sn), bismuth (Bi) and copper (Cu), and may further include lead (Pb), silver (Ag), and the like. have.
- the solder composition comprises from 0.0032 to 0.0342 weight percent bismuth (Bi) and from 0.071 to 1.26 weight percent copper (Cu), based on its total weight, and further from 59 to 65 weight percent tin (Sn) , 33 to 39 weight percent lead (Pb) and 1.5 to 2.5 weight percent silver (Ag), 56 to 66 weight percent tin (Sn) and 33 to 43 weight percent lead (Pb), or tin (Sn) ) 93.5 to 99.5% by weight and 0.1 to 3.5% by weight of silver (Ag).
- the bismuth (Bi) lowers the overall melting point of the solder composition and when attaching the annular wire to the solar cell substrate by melting and cooling the solder plating layer formed from the solder composition through interaction with other components. It performs the function of forming a sufficient adhesion width.
- the content of tin (Sn), lead (Pb), silver (Ag), and the like is as described above, based on the total weight of the solder composition, the content of the bismuth (Bi) is less than 0.0032% by weight.
- the adhesion width between the solar cell substrate and the annular wire is excessively narrow due to the melting of the solder layer formed from the solder composition, so that the solar cell substrate and the annular wire are locally separated and the output of the solar cell module is sharply reduced.
- the adhesion between the annular wire and the silver paste on the solar cell substrate becomes stronger than the bonding force between the solar cell substrate and the silver paste due to the increase in the adhesion width.
- the silver paste may be separated from the solar cell during cooling shrinkage due to the difference in coefficient of thermal expansion.
- the output of the horizontal solar cell module may be drastically reduced.
- the resistance of the unstable junction may increase during the reliability test such as the thermal cycle test or the mechanic load test, thereby decreasing the output of the solar cell module.
- the copper (Cu) has a function to uniformly form the thickness of the solder plating layer formed from the solder composition by improving the adhesion of the solder composition to the conductor of the annular wire to improve the coating properties of the solder composition Perform.
- the content of tin (Sn), lead (Pb), silver (Ag) and the like is as described above, based on the total weight of the solder composition, the content of copper (Cu) is less than 0.071% by weight.
- the adhesion of the solder composition to the conductor constituting the annular wire is sharply reduced so that a solder plating layer with a uniform thickness cannot be formed, whereas in the case of more than 1.26% by weight, an excessive amount of intermetallic compound in the plating bath is generated to form an annular wire.
- a locally protruding plating layer called a plating bump may be formed on the surface, or a deviation may occur in the thickness of the plating layer of the annular wire manufactured by adhering the intermetallic compound inside the die hole.
- the present invention relates to an annular wire for a solar cell module comprising a solder plating layer formed from the solder composition described above.
- FIG. 2 schematically shows the cross-sectional structure of the annular wire for solar cell module.
- the annular wire 100 for a solar cell module according to the present invention is formed on the surface of the circular conductor 110 and the circular conductor 110 for connecting a plurality of solar cells in series. It may include a solder plating layer 120 formed from the solder composition described above as to connect the circular conductor 110 to the solar cell.
- the circular conductor 110 is a conductor mainly composed of copper (Cu), for example, Tough Pitch Copper (TPC), Oxygen-Free Copper (OFC), Phosphrous Deoxidized Copper).
- Cu copper
- TPC Tough Pitch Copper
- OFFC Oxygen-Free Copper
- the annular wire 100 for a solar cell module according to the present invention adopts the circular conductor 110 as a conductor to cover an absorbing surface of the substrate when fixed to the solar cell substrate by soldering as shown in FIG. 3. This is minimized, and also when the light is irradiated on the surface of the annular wire 100 causes diffuse reflection, it shows an excellent effect that can maximize the output rate of the solar cell.
- the annular wire 100 for the solar cell module according to the present invention has a thermal expansion coefficient of the circular conductor 10 by minimizing a local contact area with the substrate when the solar cell module is fixed to the solar cell substrate by soldering. Even if slightly different from the coefficient, since the crack of the substrate can be suppressed, it is not necessary to separately control the thermal expansion coefficient of the circular conductor 110, thereby reducing the manufacturing cost.
- the method of forming the solder plating layer 120 is not particularly limited, but may be formed by, for example, die coating.
- the central axis of the circular conductor 110 is eccentric from the central axis of the annular wire 100, the annular wire 100
- the thickness of the solder plating layer 120 may vary on any cross-section of the).
- the annular wire 100 according to the present invention may have a cross sectional area ratio of 0.04 to 0.32 defined by Equation 1 below on any cross section.
- Cross sectional area ratio cross sectional area of solder plating layer / cross sectional area of circular conductor
- the cross-sectional area of the solder plating layer is (cross-sectional area of the annular wire minus the cross-sectional area of the circular conductor).
- the cross-sectional area of the solder plating layer 120 is relatively thin so that when the annular wire 100 is fixed to the solar cell substrate by soldering, the adhesion width to the substrate is excessively narrow.
- the annular wire 100 can be easily peeled from the substrate, and thus there is a problem in that the output rate is greatly reduced during the long-term operation of the solar cell, thereby shortening the life, while the operation of the solar cell is more than 0.32. Due to the excessive decrease in output rate due to deterioration, the service life can be shortened and hard solder balls can be generated due to the excessive solder plating layer, and the solder balls on the solar cell substrate when the EVA layer is laminated on the solar cell substrate. There is a problem of causing cracks in the solar cell substrate by applying this pressure.
- the annular wire 100 according to the present invention may have different cross-sectional areas of the solder plating layer 120 depending on the diameter of the circular conductor 110 for improving adhesion to the solar cell substrate and suppressing cracking of the substrate during soldering. Therefore, the sum Y of the minimum thickness a and the maximum thickness b of the solder plating layer 120 on any cross section of the annular wire 100 satisfies the condition of the following equations (2) and (3). Y max ) and the minimum value (Y min ).
- ⁇ 0.14 to 0.15
- ⁇ 1 to 2
- X is the diameter ( ⁇ m) of the circular conductor.
- the solder width of the annular wire 100 is uniform to 500 to 1,000 ⁇ m when soldering the solar cell substrate by the solder plating layer 120. It may be formed stably, preferably the conductor diameter (X) may be about 180 to 540 ⁇ m. When the conductor diameter (X) is less than about 180 ⁇ m, the solar cell output may be less than 300 W, whereas when the conductor diameter (X) is greater than about 540 ⁇ m, cracks may occur in the solar cell substrate.
- the annular wire 100 for a solar cell module according to the present invention has a resistance of 648 m ⁇ / m or less, a yield strength of 120 MPa or less, a tensile strength of 180 to 260 MPa, and an elongation of 15 to 15 by the above-described configuration. Can be 45%.
- the present invention relates to a solar cell module including a plurality of solar cells including a silicon semiconductor substrate having a PN junction and the annular wire 100 for the solar cell module connecting the solar cells in series.
- the number of the annular wire 100 for the solar cell module may be different according to the desired electromotive force of the solar cell module, silver (Ag) on the portion where the annular wire 100 is soldered on the solar cell substrate.
- a layer formed of a paste is formed, and the silver paste layer has a plurality of widths greater than the width of the layer formed by the silver paste in order to improve adhesion between the annular wire 100 and the substrate.
- a silver pad may be further provided.
- the size of the solar cell substrate may be 4 to 8 inches, and based on one solar cell substrate, the number of the annular wires 100 may be 8 to 30, and the silver (Ag )
- the width of the paste layer is 30 to 70 ⁇ m, the spacing between adjacent silver (Ag) paste layers is 1.4 to 2.2 mm, the silver pad area is 500 to 900 ⁇ m 2 , and the number of silver pads is 300 To 700.
- a solar cell module was fabricated with an annular wire for a solar cell module and a 6-inch solar cell including a solder plating layer formed from the solder composition according to each of Examples and Comparative Examples with the components and contents shown in Table 1 below. Units of the content described in Table 1 below are by weight.
- Example 1 Sn Pb Ag Bi Cu Comparative Example 1 62.2 35.5 1.6 0.0012 0.66 Comparative Example 2 62.4 35.4 1.4 0.0023 0.66 Example 1 62.2 35.5 1.7 0.0032 0.66 Example 2 62.4 35.4 1.5 0.0041 0.66 Example 3 61.8 36.0 1.5 0.0048 0.66 Example 4 62.3 35.4 1.6 0.0303 0.66 Example 5 62.3 35.6 1.4 0.0310 0.66 Example 6 62.1 35.7 1.5 0.0319 0.66 Example 7 61.8 35.9 1.6 0.0331 0.66 Example 8 62.4 35.4 1.5 0.0342 0.66 Comparative Example 3 61.8 36.1 1.4 0.0347 0.66 Comparative Example 4 62.3 36.1 1.5 0.0187 0.0510 Comparative Example 5 62.4 36.1 1.4 0.0187 0.0602 Example 9 62.2 36.1 1.6 0.0187 0.0711 Example 10 62.1 36.2 1.6 0.0187 0.0805 Example 11 61.8 36.4 1.7 0.0187 0.0902 Example 12 62.1 36.1 1.6 0.0187 0.1022 Example 13 61.8 35.4 1.6 0.0187 1.
- the width of the attachment between the solar cell substrate and the annular wire was measured using an optical microscope.
- the output of the solar cell module was measured through a solar simulator.
- the solder composition of Examples 1 to 8 having a bismuth (Bi) content of 0.0032 to 0.0342 wt% in the solder composition forms an adhesion width between the solar cell substrate and the annular wire to about 500 ⁇ m.
- the solder compositions of Comparative Examples 4 and 5 having a copper (Cu) content of less than 0.071% by weight did not form the desired plating layer thickness, and the solder compositions of Comparative Example 6 having a copper (Cu) content of more than 0.126% by weight were formed plating layers. It was confirmed that plating nodules occurred on the surface and the variation in the thickness of the plating layer was large.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Photovoltaic Devices (AREA)
Abstract
The present invention relates to a solder composition for an annular wire for a solar cell module and an annular wire for a solar cell module including a solder-plated layer formed thereof. Specifically, the present invention relates to a solder composition for an annular wire for a solar cell module and an annular wire for a solar cell module including a solder-plated layer formed thereof, wherein the solder composition can easily form a solder-plated layer at a uniform thickness on the surface of a conductor constituting the annular wire for the solar cell, improve an attachment force of the annular wire with regard to a solar cell substrate, and maximize an output of the solar cell module.
Description
본 발명은 태양전지 모듈의 환형 와이어용 땜납 조성물 및 이로부터 형성된 땜납 도금층을 포함하는 태양전지 모듈의 환형 와이어에 관한 것이다. 구체적으로, 본 발명은 태양전지 모듈의 환형 와이어를 구성하는 도체 표면의 땜납 도금층을 균일한 두께로 용이하게 형성할 수 있고, 태양전지 셀 기판에 대한 환형 와이어의 부착력을 향상시키는 동시에 태양전지 모듈의 출력을 극대화할 수 있는 태양전지 모듈의 환형 와이어용 땜납 조성물 및 이로부터 형성된 땜납 도금층을 포함하는 태양전지 모듈의 환형 와이어에 관한 것이다.The present invention relates to an annular wire of a solar cell module comprising a solder composition for an annular wire of a solar cell module and a solder plating layer formed therefrom. Specifically, the present invention can easily form a solder plating layer on the surface of the conductor constituting the annular wire of the solar cell module with a uniform thickness, and improves the adhesion of the annular wire to the solar cell substrate at the same time The present invention relates to an annular wire of a solar cell module including a solder composition for an annular wire of a solar cell module capable of maximizing output and a solder plating layer formed therefrom.
태양전지는 p형 반도체와 n형 반도체를 이용해 빛 에너지를 전기 에너지로 바꾸는 장치로서, 빛을 비출때 내부에 발생하는 전자와 전공이 각각 p극과 n극으로 이동함으로써 p극과 n극 사이에 전위차(광기전력)가 발생하여 전류가 흐르는 광전효과를 원리로 하는 장치이다.A solar cell is a device that converts light energy into electrical energy by using a p-type semiconductor and an n-type semiconductor, and electrons and electrons generated inside the light beam move to the p-pole and n-pole, respectively, between the p-pole and the n-pole. It is a device based on the photoelectric effect through which a potential difference (photovoltaic power) occurs and current flows.
도 1은 종래 태양전지 모듈을 개략적으로 도시한 것이다.1 schematically shows a conventional solar cell module.
도 1에 도시된 바와 같이, 종래 태양전지 모듈은 전기를 일으키는 최소 단위인 태양전지 셀(solar cell)(1) 복수개가 패널 내에 배열되고, 목적한 기전력을 얻기 위해 상기 태양전지 셀(1)들을 직렬로 연결하는 환형 와이어(10)를 포함한다.As shown in FIG. 1, in the conventional solar cell module, a plurality of solar cells 1, which are the smallest unit for generating electricity, are arranged in a panel, and the solar cell cells 1 are disposed to obtain a desired electromotive force. An annular wire 10 connected in series.
도 2는 태양전지 모듈에서 사용되는 환형 와이어(10)의 횡단면 구조를 개략적으로 도시한 것이다.2 schematically illustrates a cross-sectional structure of the annular wire 10 used in the solar cell module.
도 2에 도시된 바와 같이, 태양전지 모듈용 환형 와이어(10)는 원형 도체(11)와 그 표면에 태양전지 셀(1)과의 접속을 위해 형성된 땜납 도금층(12)을 포함하고, 상기 환형 와이어(10)가 상기 태양전지 셀(1)의 기판 위에 배치된 상태로 상기 땜납 도금층(12)이 용융된 후 냉각함으로써 상기 환형 와이어(10)와 상기 태양전지 셀(1)이 접속하게 된다.As shown in FIG. 2, the annular wire 10 for a solar cell module includes a circular conductor 11 and a solder plating layer 12 formed on the surface thereof for connection with the solar cell 1. The annular wire 10 and the solar cell 1 are connected by cooling after the solder plating layer 12 is melted while the wire 10 is disposed on the substrate of the solar cell 1.
종래 태양전지 모듈용 환형 와이어(10)의 땜납 도금층(12)을 형성하는 땜납 조성물은 통상 납(Pb), 주석(Sn) 등을 주성분으로 하나, 상기 환형 와이어(10)의 원형 도체(11)로서 구리, 알루미늄 등의 소재로 이루어진 원형 도체(11)에 대한 접착력이 불충분해 상기 원형 도체(11) 표면에 균일한 두께의 땜납 도금층(12)을 형성하는 것이 곤란하고, 특히 상기 환형 와이어(10)와 상기 태양전지 셀(1)의 접속시 이들 사이의 부착폭을 조절하는 것이 극히 곤란하여, 상기 부착폭이 좁게 형성되는 경우 상기 태양전지 셀(1)로부터 상기 환형 와이어(10)가 국소적으로 분리되는 문제가 있고, 상기 부착폭이 넓게 형성되는 경우 태양전시 실(1)의 수광면이 감소함으로써 태양전지의 출력이 저하되는 문제가 발생할 수 있다.Conventionally, the solder composition for forming the solder plating layer 12 of the annular wire 10 for a solar cell module is usually composed of lead (Pb), tin (Sn), etc., and the circular conductor 11 of the annular wire 10. As a result, adhesion to the circular conductor 11 made of a material such as copper or aluminum is insufficient, and it is difficult to form the solder plating layer 12 having a uniform thickness on the surface of the circular conductor 11, in particular the annular wire 10 ), It is extremely difficult to control the adhesion width between them when the solar cell 1 is connected, so that the annular wire 10 is localized from the solar cell 1 when the adhesion width is narrow. There is a problem that is separated, and when the attachment width is formed wide, there is a problem that the output of the solar cell is reduced by reducing the light receiving surface of the solar exhibition chamber (1).
태양전지 모듈의 환형 와이어를 구성하는 도체 표면의 땜납 도금층을 균일한 두께로 용이하게 형성할 수 있고, 태양전지 셀 기판에 대한 환형 와이어의 부착력을 향상시키는 동시에 태양전지 모듈의 출력을 극대화할 수 있는 태양전지 모듈의 환형 와이어용 땜납 조성물 및 이로부터 형성된 땜납 도금층을 포함하는 태양전지 모듈의 환형 와이어가 절실히 요구되고 있는 실정이다.The solder plating layer on the surface of the conductor constituting the annular wire of the solar cell module can be easily formed with a uniform thickness, and can improve the adhesion of the annular wire to the solar cell substrate while maximizing the output of the solar cell module. There is an urgent need for an annular wire of a solar cell module including a solder composition for an annular wire of a solar cell module and a solder plating layer formed therefrom.
본 발명은 태양전지 모듈의 환형 와이어를 구성하는 도체 표면의 땜납 도금층을 균일한 두께로 용이하게 형성할 수 있는 땜납 조성물 및 이로부터 형성된 땜납 도금층을 포함하는 태양전지 모듈의 환형 와이어를 제공하는 것을 목적으로 한다.An object of the present invention is to provide an annular wire of a solar cell module comprising a solder composition capable of easily forming a solder plating layer on the surface of the conductor constituting the annular wire of the solar cell module with a uniform thickness and a solder plating layer formed therefrom. It is done.
또한, 본 발명은 태양전지 셀 기판에 대한 환형 와이어의 부착력을 향상시키는 동시에 태양전지 모듈의 출력을 극대화할 수 있는 태양전지 모듈의 환형 와이어용 땜납 조성물 및 이로부터 형성된 땜납 도금층을 포함하는 태양전지 모듈의 환형 와이어를 제공하는 것을 목적으로 한다.In addition, the present invention provides a solar cell module comprising a solder composition for an annular wire of a solar cell module and a solder plating layer formed therefrom, which can improve the adhesion of the annular wire to the solar cell substrate while maximizing the output of the solar cell module. An object of the present invention is to provide an annular wire.
상기 과제를 해결하기 위해, 본 발명은,In order to solve the above problems, the present invention,
태양전지 모듈의 환형 와이어용 땜납 조성물로서, 상기 땜납 조성물의 총 중량을 기준으로, 비스무트(Bi) 0.0032 내지 0.0342 중량% 및 구리(Cu) 0.071 내지 1.26 중량%를 포함하고, 주석(Sn)과 납(Pb), 은(Ag) 또는 이들 모두를 추가로 포함하는, 땜납 조성물을 제공한다.A solder composition for an annular wire of a solar cell module, comprising 0.0032 to 0.0342 weight percent bismuth (Bi) and 0.071 to 1.26 weight percent copper (Cu), based on the total weight of the solder composition, and includes tin (Sn) and lead A solder composition further comprising (Pb), silver (Ag), or both.
여기서, 상기 땜납 조성물은, 이의 총 중량을 기준으로, 주석(Sn) 59 내지 65 중량%, 납(Pb) 33 내지 39 중량% 및 은(Ag) 1.5 내지 2.5 중량%를 포함하거나, 주석(Sn) 56 내지 66 중량% 및 납(Pb) 33 내지 43 중량%를 포함하거나, 주석(Sn) 93.5 내지 99.5 중량% 및 은(Ag) 0.1 내지 3.5 중량%를 포함하는 것을 특징으로 하는, 땜납 조성물을 제공한다.Here, the solder composition, based on the total weight thereof, includes 59 to 65% by weight of tin (Sn), 33 to 39% by weight of lead (Pb) and 1.5 to 2.5% by weight of silver (Ag), or tin (Sn A solder composition comprising 56 to 66% by weight and 33 to 43% by weight of lead (Pb), or 93.5 to 99.5% by weight of tin (Sn) and 0.1 to 3.5% by weight of silver (Ag). to provide.
한편, 태양전지 모듈용 환형 와이어로서, 원형 도체 및 상기 원형 도체의 표면에 형성되고 제1항 또는 제2항의 땜납 조성물로부터 형성된 땜납 도금층을 포함하고, 상기 환형 와이어의 임의의 횡단면상에서 아래 수학식 1에 의해 정의되는 단면적 비율이 0.04 내지 0.32인, 태양전지 모듈용 환형 와이어를 제공한다.On the other hand, an annular wire for a solar cell module, comprising a circular conductor and a solder plating layer formed on the surface of the circular conductor and formed from the solder composition of claim 1, wherein on any cross section of the annular wire: Provided is an annular wire for a solar cell module having a cross-sectional area ratio defined by 0.04 to 0.32.
[수학식 1][Equation 1]
단면적 비율=땜납 도금층의 단면적/원형 도체의 단면적Cross sectional area ratio = cross sectional area of solder plating layer / cross sectional area of circular conductor
상기 수학식 1에서,In Equation 1,
땜납 도금층의 단면적은 (환형 와이어의 단면적 - 원형 도체의 단면적)이다.The cross-sectional area of the solder plating layer is (cross-sectional area of the annular wire minus the cross-sectional area of the circular conductor).
여기서, 상기 환형 와이어의 임의의 횡단면상에서 상기 땜납 도금층의 최소 두께와 최대 두께의 합(Y)이 아래 수학식 2 및 3의 조건을 만족하는 최대값(Ymax)과 최소값(Ymin)의 범위 내에 있는, 태양전지 모듈용 환형 와이어을 제공한다.Here, the sum (Y) of the minimum thickness and the maximum thickness of the solder plating layer on any cross section of the annular wire is a range of the maximum value Y max and the minimum value Y min satisfying the conditions of Equations 2 and 3 below. Provided is an annular wire for a solar cell module.
[수학식 2][Equation 2]
Ymax=αX+βY max = αX + β
[수학식 3][Equation 3]
Ymin=α'X+β'Y min = α'X + β '
상기 수학식 2 및 3에서,In Equations 2 and 3,
α는 0.14 내지 0.15이고,α is 0.14 to 0.15,
β는 1 내지 2이고,β is 1 to 2,
α'는 0.014 내지 0.025이고,α 'is 0.014 to 0.025,
β'는 -1 내지 -3이고,β 'is -1 to -3,
X는 원형 도체의 직경(㎛)이다.X is the diameter (μm) of the circular conductor.
또한, 상기 원형 도체의 직경(X)은 180 내지 540 ㎛인 것을 특징으로 하는, 태양전지 모듈용 환형 와이어를 제공한다.In addition, the diameter (X) of the circular conductor is characterized in that, 180 to 540 ㎛, provides an annular wire for a solar cell module.
그리고, 상기 환형 와이어를 태양전지 셀 기판에 남땜시 상기 환형 와이어와 상기 기판의 부착폭이 500 내지 1,000 ㎛인 것을 특징으로 하는, 태양전지 모듈용 환형 와이어를 제공한다.In addition, when the annular wire is soldered to the solar cell cell substrate, the attachment width of the annular wire and the substrate is 500 to 1,000 μm, providing an annular wire for a solar cell module.
나아가, 상기 원형 도체는 터프피치동(Tough Pitch Copper; TPC), 무산소동(Oxygen-Free Copper; OFC) 또는 인탈산동(Phosphrous Deoxidized Copper)으로 이루어진 것을 특징으로 하는, 태양전지 모듈용 환형 와이어을 제공한다.Furthermore, the circular conductor provides an annular wire for a solar cell module, characterized in that it is made of tough pitch copper (TPC), oxygen-free copper (OFC), or phosphorous deoxidized copper. .
또한, 저항이 648 mΩ/m 이하이고, 항복강도가 120 MPa 이하이고, 인장강도가 180 내지 260 MPa이고, 연신율이 15 내지 45 %인 것을 특징으로 하는, 태양전지 모듈용 환형 와이어를 제공한다.In addition, the resistance is 648 mΩ / m or less, yield strength is 120 MPa or less, tensile strength is 180 to 260 MPa, elongation is 15 to 45%, it provides an annular wire for a solar cell module.
한편, 복수의 태양전지 셀 기판 및 상기 복수의 기판을 직렬로 연결하는 제3항의 태양전지 모듈용 환형 와이어를 포함하는, 태양전지 모듈을 제공한다.On the other hand, it provides a solar cell module comprising a plurality of solar cell substrate and the annular wire for solar cell module of claim 3 connecting the plurality of substrates in series.
여기서, 상기 태양전지 셀 기판 위에는 상기 환형 와이어가 납땜되는 부분에 은(Ag) 페이스트층이 형성되고, 상기 은(Ag) 페이스트층에는 상기 환형 와이어와 상기 기판의 부착력을 향상시키기 위해 상기 은(Ag) 페이스트층의 폭 보다 큰 폭을 갖는 복수의 은(Ag) 패드가 추가로 구비되는, 태양전지 모듈을 제공한다.Here, a silver paste layer is formed on a portion where the annular wire is soldered on the solar cell substrate, and the silver (Ag) paste layer is formed on the silver paste layer to improve adhesion between the annular wire and the substrate. A plurality of silver (Ag) pads having a width greater than the width of a paste layer are provided.
또한, 상기 태양전지 셀 기판의 크기는 4 내지 8 인치이고, 상기 환형 와이어의 개수는 8 내지 30개이며, 상기 은(Ag) 페이스트층의 폭은 30 내지 70 ㎛이고, 인접한 은(Ag) 페이스트층간 간격은 1.4 내지 2.2 mm이며, 상기 은(Ag) 패드 면적은 500 내지 900 ㎛2이고, 상기 은(Ag) 패드의 개수는 300 내지 700개인 것을 특징으로 하는, 태양전지 모듈을 제공한다.In addition, the size of the solar cell substrate is 4 to 8 inches, the number of the annular wire is 8 to 30, the width of the silver (Ag) paste layer is 30 to 70 ㎛, adjacent silver (Ag) paste the interlayer spacing is 1.4 to 2.2 mm, the silver (Ag) pad area is 500 to 900 ㎛ 2, wherein the number of (Ag) pad provides a solar cell module, characterized in that 300 to 700 individuals.
본 발명에 따른 태양전지 모듈의 환형 와이어용 땜납 조성물은 조성물의 배합성분 및 배합비의 정밀한 제어를 통해 태양전지 모듈의 환형 와이어를 구성하는 도체 표면의 땜납 도금층을 균일한 두께로 용이하게 형성할 수 있는 우수한 효과를 나타낸다.The solder composition for an annular wire of the solar cell module according to the present invention can easily form a solder plating layer on the surface of the conductor constituting the annular wire of the solar cell module with a uniform thickness through precise control of the composition and the mixing ratio of the composition. Excellent effect.
또한, 본 발명에 따른 태양전지 모듈의 환형 와이어용 땜납 조성물은 태양전지 셀 기판에 대한 환형 와이어의 부착력을 향상시키는 동시에 태양전지 모듈의 출력을 극대화할 수 있는 우수한 효과를 나타낸다.In addition, the solder composition for the annular wire of the solar cell module according to the present invention exhibits an excellent effect of improving the adhesion of the annular wire to the solar cell substrate while maximizing the output of the solar cell module.
도 1은 종래 태양전지 모듈을 개략적으로 도시한 것이다.1 schematically shows a conventional solar cell module.
도 2는 태양전지 모듈에서 사용되는 환형 와이어의 횡단면 구조를 개략적으로 도시한 것이다.Figure 2 schematically shows the cross-sectional structure of the annular wire used in the solar cell module.
도 3은 도 2에 도시된 태양전지 모듈용 환형 와이어가 장착된 태양전지 셀에 빛이 조사되는 모습을 개략적으로 도시한 것이다.FIG. 3 schematically illustrates a state in which light is irradiated to a solar cell equipped with an annular wire for the solar cell module illustrated in FIG. 2.
이하, 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되어지는 것이다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, preferred embodiments of the present invention will be described in detail. However, the invention is not limited to the embodiments described herein but may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosure may be made thorough and complete, and to fully convey the spirit of the present invention to those skilled in the art. Like numbers refer to like elements throughout.
본 발명에 따른 태양전지 모듈의 환형 와이어용 땜납 조성물은 주석(Sn), 비스무트(Bi) 및 구리(Cu)를 포함하고, 선택적으로 납(Pb), 은(Ag) 등을 추가로 포함할 수 있다.The solder composition for an annular wire of the solar cell module according to the present invention may include tin (Sn), bismuth (Bi) and copper (Cu), and may further include lead (Pb), silver (Ag), and the like. have.
예를 들어, 상기 땜납 조성물은, 이의 총 중량을 기준으로, 비스무트(Bi) 0.0032 내지 0.0342 중량% 및 구리(Cu) 0.071 내지 1.26 중량%를 포함하고, 추가로 주석(Sn) 59 내지 65 중량%, 납(Pb) 33 내지 39 중량% 및 은(Ag) 1.5 내지 2.5 중량%를 포함하거나, 주석(Sn) 56 내지 66 중량% 및 납(Pb) 33 내지 43 중량%를 포함하거나, 주석(Sn) 93.5 내지 99.5 중량% 및 은(Ag) 0.1 내지 3.5 중량%를 포함할 수 있다.For example, the solder composition comprises from 0.0032 to 0.0342 weight percent bismuth (Bi) and from 0.071 to 1.26 weight percent copper (Cu), based on its total weight, and further from 59 to 65 weight percent tin (Sn) , 33 to 39 weight percent lead (Pb) and 1.5 to 2.5 weight percent silver (Ag), 56 to 66 weight percent tin (Sn) and 33 to 43 weight percent lead (Pb), or tin (Sn) ) 93.5 to 99.5% by weight and 0.1 to 3.5% by weight of silver (Ag).
여기서, 상기 비스무트(Bi)는 상기 땜납 조성물의 전체적인 융점을 낮추고 다른 성분들과의 상호작용을 통해 상기 땜납 조성물로부터 형성된 땜납 도금층의 용융 및 냉각에 의해 상기 환형 와이어를 태양전지 셀 기판에 부착시킬 때 충분한 부착폭이 형성되도록 하는 기능을 수행한다.Here, the bismuth (Bi) lowers the overall melting point of the solder composition and when attaching the annular wire to the solar cell substrate by melting and cooling the solder plating layer formed from the solder composition through interaction with other components. It performs the function of forming a sufficient adhesion width.
상기 주석(Sn), 납(Pb), 은(Ag) 등의 함량이 앞서 기술한 바와 같음을 전제로, 상기 땜납 조성물의 총 중량을 기준으로, 상기 비스무트(Bi)의 함량이 0.0032 중량% 미만인 경우 상기 땜납 조성물로부터 형성된 땜납층의 용융에 의한 태양전지 셀 기판과 환형 와이어 사이의 부착폭이 과도하게 좁게 형성되어 태양전지 셀 기판과 환형 와이어가 국소적으로 분리되어 태양전지 모듈의 출력이 급격히 저하될 수 있는 반면, 0.0342 중량% 초과인 경우 부착폭 증가로 환형와이어와 태양전지 셀 기판 위의 은(Ag) 페이스트 간의 접합력이 태양전지 셀 기판과 은(Ag) 페이스트간의 접합력보다 더 강해져서, 환형와이어가 태양전지 셀 기판에 땜납 접속 후 열팽창계수 차이로 인해 냉각 수축되는 과정에서 은(Ag) 페이스트가 태양전지 셀에서 분리될 수 있으며, 이로 인한 저항 증가로 태양전지 모듈의 출력이 급격히 저하될 수 있다. 또한, 은(Ag) 페이스트가 실제 분리되지 않았더라도 분리되기 직전의 상태라면 Thermal Cycle Test 또는 Mechanic Load Test 등의 신뢰성 Test 진행시 불안정한 접합부의 저항이 증가되어 태양전지 모듈의 출력이 저하될 수 있다.Assuming that the content of tin (Sn), lead (Pb), silver (Ag), and the like is as described above, based on the total weight of the solder composition, the content of the bismuth (Bi) is less than 0.0032% by weight. In this case, the adhesion width between the solar cell substrate and the annular wire is excessively narrow due to the melting of the solder layer formed from the solder composition, so that the solar cell substrate and the annular wire are locally separated and the output of the solar cell module is sharply reduced. On the other hand, if it is more than 0.0342% by weight, the adhesion between the annular wire and the silver paste on the solar cell substrate becomes stronger than the bonding force between the solar cell substrate and the silver paste due to the increase in the adhesion width. After the wire is soldered to the solar cell substrate, the silver paste may be separated from the solar cell during cooling shrinkage due to the difference in coefficient of thermal expansion. The output of the horizontal solar cell module may be drastically reduced. In addition, even if the silver (Ag) paste is not actually separated, if the state is just before the separation, the resistance of the unstable junction may increase during the reliability test such as the thermal cycle test or the mechanic load test, thereby decreasing the output of the solar cell module.
한편, 상기 구리(Cu)는 환형 와이어의 도체에 대한 땜납 조성물의 접착력을 향상시켜 상기 땜납 조성물의 코팅 특성을 향상시킴으로써 상기 땜납 조성물로부터 형성되는 땜납 도금층의 두께를 균일하게 형성할 수 있도록 하는 기능을 수행한다.On the other hand, the copper (Cu) has a function to uniformly form the thickness of the solder plating layer formed from the solder composition by improving the adhesion of the solder composition to the conductor of the annular wire to improve the coating properties of the solder composition Perform.
상기 주석(Sn), 납(Pb), 은(Ag) 등의 함량이 앞서 기술한 바와 같음을 전제로, 상기 땜납 조성물의 총 중량을 기준으로, 상기 구리(Cu)의 함량이 0.071 중량% 미만인 경우 환형 와이어를 구성하는 도체에 대한 상기 땜납 조성물의 접착력이 급격히 저하되어 균일한 두께의 땜납 도금층이 형성될 수 없는 반면, 1.26 중량% 초과인 경우 도금조내의 금속간 화합물이 과량으로 생성되어 환형 와이어 표면에 소위 도금혹이라고 하는 국소적으로 돌출된 도금층이 형성되거나 다이스 홀 내부에 금속간 화합물이 점착되어 제조되는 환형 와이어의 도금층 두께에 편차가 발생할 수 있다.Assuming that the content of tin (Sn), lead (Pb), silver (Ag) and the like is as described above, based on the total weight of the solder composition, the content of copper (Cu) is less than 0.071% by weight. In this case, the adhesion of the solder composition to the conductor constituting the annular wire is sharply reduced so that a solder plating layer with a uniform thickness cannot be formed, whereas in the case of more than 1.26% by weight, an excessive amount of intermetallic compound in the plating bath is generated to form an annular wire. A locally protruding plating layer called a plating bump may be formed on the surface, or a deviation may occur in the thickness of the plating layer of the annular wire manufactured by adhering the intermetallic compound inside the die hole.
본 발명은 앞서 기술한 땜납 조성물로부터 형성된 땜납 도금층을 포함하는 태양전지 모듈용 환형 와이어에 관한 것이다.The present invention relates to an annular wire for a solar cell module comprising a solder plating layer formed from the solder composition described above.
도 2는 태양전지 모듈용 환형 와이어의 횡단면 구조를 개략적으로 도시한 것이다. 도 2에 도시된 바와 같이, 본 발명에 따른 태양전지 모듈용 환형 와이어(100)는 복수의 태양전지 셀을 직렬로 연결하기 위한 원형 도체(110) 및 상기 원형 도체(110)의 표면에 형성되어 상기 원형 도체(110)를 태양전지 셀에 접속시키기 위한 것으로서 앞서 기술한 땜납 조성물로부터 형성된 땜납 도금층(120)을 포함할 수 있다.Figure 2 schematically shows the cross-sectional structure of the annular wire for solar cell module. As shown in FIG. 2, the annular wire 100 for a solar cell module according to the present invention is formed on the surface of the circular conductor 110 and the circular conductor 110 for connecting a plurality of solar cells in series. It may include a solder plating layer 120 formed from the solder composition described above as to connect the circular conductor 110 to the solar cell.
여기서, 상기 원형 도체(110)는 구리(Cu)를 주성분으로 하는 도체, 예를 들어, 터프피치동(Tough Pitch Copper; TPC), 무산소동(Oxygen-Free Copper; OFC), 인탈산동(Phosphrous Deoxidized Copper) 등으로 이루어질 수 있다.Here, the circular conductor 110 is a conductor mainly composed of copper (Cu), for example, Tough Pitch Copper (TPC), Oxygen-Free Copper (OFC), Phosphrous Deoxidized Copper).
본 발명에 따른 태양전지 모듈용 환형 와이어(100)는 도체로서 상기 원형 도체(110)를 채택함으로써 도 3에 도시된 바와 같이 납땜에 의해 태양전지 셀 기판에 고정시 상기 기판의 흡광면을 가리는 면적이 최소화되고, 또한 빛이 상기 환형 와이어(100)의 표면에 조사되는 경우 난반사를 유발하여, 태양전지의 출력율을 극대화할 수 있는 우수한 효과를 나타낸다.The annular wire 100 for a solar cell module according to the present invention adopts the circular conductor 110 as a conductor to cover an absorbing surface of the substrate when fixed to the solar cell substrate by soldering as shown in FIG. 3. This is minimized, and also when the light is irradiated on the surface of the annular wire 100 causes diffuse reflection, it shows an excellent effect that can maximize the output rate of the solar cell.
또한, 본 발명에 따른 태양전지 모듈용 환형 와이어(100)는 납땜에 의해 태양전지 셀 기판에 고정시 상기 기판과의 국소적인 접촉면적이 최소화됨으로써 원형 도체(10)의 열팽창계수가 상기 기판의 열팽창계수와 다소 차이가 나더라도 상기 기판의 크랙을 억제할 수 있기 때문에 상기 원형 도체(110)의 열팽창계수를 별도로 제어할 필요가 없어 제조비용을 절감할 수 있다.In addition, the annular wire 100 for the solar cell module according to the present invention has a thermal expansion coefficient of the circular conductor 10 by minimizing a local contact area with the substrate when the solar cell module is fixed to the solar cell substrate by soldering. Even if slightly different from the coefficient, since the crack of the substrate can be suppressed, it is not necessary to separately control the thermal expansion coefficient of the circular conductor 110, thereby reducing the manufacturing cost.
상기 땜납 도금층(120)을 형성하는 방법은 특별히 제한되지 않지만 예를 들어 다이스 코팅에 의해 형성될 수 있다. 상기 원형 도체(110)에 상기 땜납 도금층(120)을 형성하기 위한 다이스 코팅시 상기 원형 도체(110)의 중심축이 상기 환형 와이어(100)의 중심축에서 벗어나는 편심에 의해, 상기 환형 와이어(100)의 임의의 횡단면상에서 상기 땜남 도금층(120)의 두께가 다양할 수 있다.The method of forming the solder plating layer 120 is not particularly limited, but may be formed by, for example, die coating. When the die coating for forming the solder plating layer 120 on the circular conductor 110, the central axis of the circular conductor 110 is eccentric from the central axis of the annular wire 100, the annular wire 100 The thickness of the solder plating layer 120 may vary on any cross-section of the).
여기서, 본 발명에 따른 환형 와이어(100)는 임의의 횡단면상에서 아래 수학식 1에 의해 정의되는 단면적 비율이 0.04 내지 0.32일 수 있다.Here, the annular wire 100 according to the present invention may have a cross sectional area ratio of 0.04 to 0.32 defined by Equation 1 below on any cross section.
[수학식 1][Equation 1]
단면적 비율=땜납 도금층의 단면적/원형 도체의 단면적Cross sectional area ratio = cross sectional area of solder plating layer / cross sectional area of circular conductor
상기 수학식 1에서,In Equation 1,
땜납 도금층의 단면적은 (환형 와이어의 단면적 - 원형 도체의 단면적)이다.The cross-sectional area of the solder plating layer is (cross-sectional area of the annular wire minus the cross-sectional area of the circular conductor).
상기 단면적 비율이 0.04 미만인 경우 상기 땜납 도금층(120)의 단면적이 상대적으로 과도하게 얇아 상기 환형 와이어(100)를 납땜에 의해 태양전지 셀 기판에 고정시 상기 기판에 대한 부착폭이 과도하게 협소하여 상기 환형 와이어(100)가 상기 기판으로부터 용이하게 박리될 수 있고, 이로써 태양전지의 장기간 운용시 출력율이 크게 저하되어 수명이 단축되는 문제가 있는 반면, 상기 단면적 비율이 0.32 초과인 경우 태양전지의 운용시 열화에 의한 출력율 저하가 과도하게 크기 때문에 수명이 단축되고 또한 땜납 도금층의 과다로 딱딱한 솔더볼(solder ball)이 생성될 수 있고 태양전지 셀 기판 위에 EVA층을 적층시킬 때 태양전지 셀 기판에 솔더볼이 압력을 가하여 태양전지 셀 기판에 크랙을 발생시키는 문제가 있다.When the ratio of the cross-sectional area is less than 0.04, the cross-sectional area of the solder plating layer 120 is relatively thin so that when the annular wire 100 is fixed to the solar cell substrate by soldering, the adhesion width to the substrate is excessively narrow. The annular wire 100 can be easily peeled from the substrate, and thus there is a problem in that the output rate is greatly reduced during the long-term operation of the solar cell, thereby shortening the life, while the operation of the solar cell is more than 0.32. Due to the excessive decrease in output rate due to deterioration, the service life can be shortened and hard solder balls can be generated due to the excessive solder plating layer, and the solder balls on the solar cell substrate when the EVA layer is laminated on the solar cell substrate. There is a problem of causing cracks in the solar cell substrate by applying this pressure.
나아가, 본 발명에 따른 환형 와이어(100)는 태양전지 셀 기판에 대한 부착력 향상 및 납땜시 기판의 크랙 억제를 위한 땜납 도금층(120)의 단면적이 원형 도체(110)의 직경에 따라 상이할 수 있기 때문에, 상기 환형 와이어(100)의 임의의 횡단면상에서 땜납 도금층(120)의 최소 두께(a)와 최대 두께(b)의 합(Y)이 아래 수학식 2 및 3의 조건을 만족하는 최대값(Ymax)과 최소값(Ymin)의 범위 내에 있을 수 있다.Furthermore, the annular wire 100 according to the present invention may have different cross-sectional areas of the solder plating layer 120 depending on the diameter of the circular conductor 110 for improving adhesion to the solar cell substrate and suppressing cracking of the substrate during soldering. Therefore, the sum Y of the minimum thickness a and the maximum thickness b of the solder plating layer 120 on any cross section of the annular wire 100 satisfies the condition of the following equations (2) and (3). Y max ) and the minimum value (Y min ).
[수학식 2][Equation 2]
Ymax=αX+βY max = αX + β
[수학식 3][Equation 3]
Ymin=α'X+β'Y min = α'X + β '
상기 수학식 2 및 3에서,In Equations 2 and 3,
α는 0.14 내지 0.15이고,α is 0.14 to 0.15,
β는 1 내지 2이고,β is 1 to 2,
α'는 0.014 내지 0.025이고,α 'is 0.014 to 0.025,
β'는 -1 내지 -3이고,β 'is -1 to -3,
X는 원형 도체의 직경(㎛)이다.X is the diameter (μm) of the circular conductor.
여기서, 상기 환형 와이어(100)는 상기 수학식 2 및 3의 조건을 만족하는 경우 상기 땜납 도금층(120)에 의해 태양전지 셀 기판에 납땜시 상기 기판에 대한 부착폭이 500 내지 1,000 ㎛로 균일하고 안정적으로 형성될 수 있고, 바람직하게는 상기 도체 직경(X)은 약 180 내지 540 ㎛일 수 있다. 상기 도체 직경(X)이 약 180 ㎛ 미만인 경우 태양전지 출력이 300 W 미만일 수 있는 반면, 약 540 ㎛ 초과인 경우 태양전지 셀 기판에 크랙이 발생할 수 있다.Here, when the annular wire 100 satisfies the conditions of Equations 2 and 3, the solder width of the annular wire 100 is uniform to 500 to 1,000 μm when soldering the solar cell substrate by the solder plating layer 120. It may be formed stably, preferably the conductor diameter (X) may be about 180 to 540 ㎛. When the conductor diameter (X) is less than about 180 μm, the solar cell output may be less than 300 W, whereas when the conductor diameter (X) is greater than about 540 μm, cracks may occur in the solar cell substrate.
본 발명에 따른 태양전지 모듈용 환형 와이어(100)는 앞서 기술한 구성에 의해 저항이 648 mΩ/m 이하이고, 항복강도가 120 MPa 이하이고, 인장강도가 180 내지 260 MPa이고, 연신율이 15 내지 45 %일 수 있다.The annular wire 100 for a solar cell module according to the present invention has a resistance of 648 mΩ / m or less, a yield strength of 120 MPa or less, a tensile strength of 180 to 260 MPa, and an elongation of 15 to 15 by the above-described configuration. Can be 45%.
본 발명은 PN접합을 갖는 실리콘 반도체 기판을 포함하는 복수의 태양전지 셀 및 상기 태양전지 셀들을 직렬로 연결하는 상기 태양전지 모듈용 환형 와이어(100)를 포함하는 태양전지 모듈에 관한 것이다.The present invention relates to a solar cell module including a plurality of solar cells including a silicon semiconductor substrate having a PN junction and the annular wire 100 for the solar cell module connecting the solar cells in series.
여기서, 상기 태양전지 모듈용 환형 와이어(100)의 개수는 상기 태양전지 모듈의 목적한 기전력에 따라 상이할 수 있고, 상기 태양전지 셀 기판 위에는 상기 환형 와이어(100)가 납땜되는 부분에 은(Ag) 페이스트에 의한 층이 형성되고, 상기 은(Ag) 페이스트층에는 상기 환형 와이어(100)와 상기 기판의 부착력을 향상시키기 위해 상기 은(Ag) 페이스트에 의한 층의 폭보다 큰 폭을 갖는 복수의 은(Ag) 패드가 추가로 구비될 수 있다.Here, the number of the annular wire 100 for the solar cell module may be different according to the desired electromotive force of the solar cell module, silver (Ag) on the portion where the annular wire 100 is soldered on the solar cell substrate. A layer formed of a paste is formed, and the silver paste layer has a plurality of widths greater than the width of the layer formed by the silver paste in order to improve adhesion between the annular wire 100 and the substrate. A silver pad may be further provided.
예를 들어, 상기 태양전지 셀 기판의 크기는 4 내지 8 인치일 수 있고, 상기 태양전지 셀 기판 하나를 기준으로, 상기 환형 와이어(100)의 개수는 8 내지 30개일 수 있고, 상기 은(Ag) 페이스트층의 폭은 30 내지 70 ㎛이고, 인접한 은(Ag) 페이스트층간 간격은 1.4 내지 2.2 mm이며, 은(Ag) 패드 면적은 500 내지 900 ㎛2이고, 은(Ag) 패드의 개수는 300 내지 700개일 수 있다.For example, the size of the solar cell substrate may be 4 to 8 inches, and based on one solar cell substrate, the number of the annular wires 100 may be 8 to 30, and the silver (Ag ) The width of the paste layer is 30 to 70 μm, the spacing between adjacent silver (Ag) paste layers is 1.4 to 2.2 mm, the silver pad area is 500 to 900 μm 2 , and the number of silver pads is 300 To 700.
[실시예]EXAMPLE
1. 제조예1. Manufacturing Example
아패 표 1에 나타난 구성성분 및 함량으로 실시예 및 비교예 각각에 따른 땜납 조성물로부터 형성된 땜납 도금층을 포함하는 태양전지 모듈용 환형 와이어 및 6 인치 태양전지 셀을 구립한 태양전지 모듈을 제작하였다. 아래 표 1에 기재된 함량의 단위는 중량%이다.A solar cell module was fabricated with an annular wire for a solar cell module and a 6-inch solar cell including a solder plating layer formed from the solder composition according to each of Examples and Comparative Examples with the components and contents shown in Table 1 below. Units of the content described in Table 1 below are by weight.
SnSn | PbPb | AgAg | BiBi | CuCu | |
비교예 1Comparative Example 1 | 62.262.2 | 35.535.5 | 1.61.6 | 0.00120.0012 | 0.660.66 |
비교예 2Comparative Example 2 | 62.462.4 | 35.435.4 | 1.41.4 | 0.00230.0023 | 0.660.66 |
실시예 1Example 1 | 62.262.2 | 35.535.5 | 1.71.7 | 0.00320.0032 | 0.660.66 |
실시예 2Example 2 | 62.462.4 | 35.435.4 | 1.51.5 | 0.00410.0041 | 0.660.66 |
실시예 3Example 3 | 61.861.8 | 36.036.0 | 1.51.5 | 0.00480.0048 | 0.660.66 |
실시예 4Example 4 | 62.362.3 | 35.435.4 | 1.61.6 | 0.03030.0303 | 0.660.66 |
실시예 5Example 5 | 62.362.3 | 35.635.6 | 1.41.4 | 0.03100.0310 | 0.660.66 |
실시예 6Example 6 | 62.162.1 | 35.735.7 | 1.51.5 | 0.03190.0319 | 0.660.66 |
실시예 7Example 7 | 61.861.8 | 35.935.9 | 1.61.6 | 0.03310.0331 | 0.660.66 |
실시예 8Example 8 | 62.462.4 | 35.435.4 | 1.51.5 | 0.03420.0342 | 0.660.66 |
비교예 3Comparative Example 3 | 61.861.8 | 36.136.1 | 1.41.4 | 0.03470.0347 | 0.660.66 |
비교예 4Comparative Example 4 | 62.362.3 | 36.136.1 | 1.51.5 | 0.01870.0187 | 0.05100.0510 |
비교예 5Comparative Example 5 | 62.462.4 | 36.136.1 | 1.41.4 | 0.01870.0187 | 0.06020.0602 |
실시예 9Example 9 | 62.262.2 | 36.136.1 | 1.61.6 | 0.01870.0187 | 0.07110.0711 |
실시예 10Example 10 | 62.162.1 | 36.236.2 | 1.61.6 | 0.01870.0187 | 0.08050.0805 |
실시예 11Example 11 | 61.861.8 | 36.436.4 | 1.71.7 | 0.01870.0187 | 0.09020.0902 |
실시예 12Example 12 | 62.162.1 | 36.136.1 | 1.61.6 | 0.01870.0187 | 0.10220.1022 |
실시예 13Example 13 | 61.861.8 | 35.435.4 | 1.61.6 | 0.01870.0187 | 1.10801.1080 |
실시예 14Example 14 | 62.462.4 | 34.834.8 | 1.61.6 | 0.01870.0187 | 1.15201.1520 |
실시예 15Example 15 | 62.262.2 | 37.737.7 | 1.81.8 | 0.01870.0187 | 1.20301.2030 |
실시예 16Example 16 | 62.162.1 | 35.135.1 | 1.51.5 | 0.01870.0187 | 1.25221.2522 |
비교예 6Comparative Example 6 | 62.062.0 | 35.135.1 | 1.51.5 | 0.01870.0187 | 1.30201.3020 |
2. 부착폭 및 태양전지 출력 평가2. Evaluation of adhesion width and solar cell output
실시예 1 내지 8 및 비교예 1 내지 3 각각에 따른 땜납 조성물로부터 형성된 땜납 도금층을 포함하는 태양전지 모듈용 환형 와이어를 구비한 태양전지 모듈에 대하여 태양전지 셀 기판과 환형 와이어의 부착폭을 광학 현미경을 통해 측정하고, 태양광 시뮬레이터를 통해 태양전지 모듈의 출력을 측정했다.For the photovoltaic cell module having the annular wire for solar cell module including the solder plating layer formed from the solder composition according to Examples 1 to 8 and Comparative Examples 1 to 3, respectively, the width of the attachment between the solar cell substrate and the annular wire was measured using an optical microscope. The output of the solar cell module was measured through a solar simulator.
또한, 실시예 9 내지 16 및 비교예 4 내지 6 각각에 따른 땜납 조성물로부터 650 내지 850℃의 코팅 다이스를 통해 선속 100 mpm으로 도금층을 형성할 때 도금층 두께가 10 ㎛로 유지되는 구간의 길이를 측정하고, 도금층 표면의 도금혹 발생 여부를 육안으로 평가하며, 도금층 두께 편차 여부를 외경 측정기를 이용해 평가했다.In addition, when forming a plating layer at a line speed of 100 mpm through a coating die at 650 to 850 ° C. from the solder compositions according to Examples 9 to 16 and Comparative Examples 4 to 6, the length of the section where the plating layer thickness was maintained at 10 μm was measured. Then, the occurrence of plating nodules on the surface of the plating layer was visually evaluated, and the plating layer thickness deviation was evaluated using an outer diameter measuring instrument.
측정결과는 아래 표 2에 나타난 바와 같다.The measurement results are shown in Table 2 below.
부착폭(㎛)Adhesion Width (㎛) | 출력(W)Output (W) | 도금층 두께 10 ㎛상 유지 길이Plating layer thickness of 10 μm, holding length | 도금층 외관Plating layer appearance | |
비교예 1Comparative Example 1 | 345345 | 274274 | -- | -- |
비교예 2Comparative Example 2 | 341341 | 269269 | -- | -- |
실시예 1Example 1 | 508508 | 312312 | -- | -- |
실시예 2Example 2 | 508508 | 314314 | -- | -- |
실시예 3Example 3 | 510510 | 311311 | -- | -- |
실시예 4Example 4 | 520520 | 312312 | -- | -- |
실시예 5Example 5 | 522522 | 314314 | -- | -- |
실시예 6Example 6 | 521521 | 312312 | -- | -- |
실시예 7Example 7 | 522522 | 314314 | -- | -- |
실시예 8Example 8 | 523523 | 313313 | -- | -- |
비교예 3Comparative Example 3 | 532532 | 289289 | -- | -- |
비교예 4Comparative Example 4 | -- | -- | 5050 | 도금두께 형성 불가Inability to form plating thickness |
비교예 5Comparative Example 5 | -- | -- | 5050 | 도금두께 형성 불가Inability to form plating thickness |
실시예 9Example 9 | -- | -- | 32,00032,000 | 양호Good |
실시예 10Example 10 | -- | -- | 32,00032,000 | 양호Good |
실시예 11Example 11 | -- | -- | 32,00032,000 | 양호Good |
실시예 12Example 12 | -- | -- | 32,00032,000 | 양호Good |
실시예 13Example 13 | -- | -- | 32,00032,000 | 양호Good |
실시예 14Example 14 | -- | -- | 32,00032,000 | 양호Good |
실시예 15Example 15 | -- | -- | 32,00032,000 | 양호Good |
실시예 16Example 16 | -- | -- | 32,00032,000 | 양호Good |
비교예 6Comparative Example 6 | -- | -- | 32,00032,000 | 도금혹 발생,도금두께 편차 증가Plating lump occurrence, plating thickness variation increased |
상기 표 2에 기재된 바와 같이, 땜납 조성물 중 비스무트(Bi) 함량이 0.0032 내지 0.0342 중량%인 실시예 1 내지 8의 땜납 조성물은 태양전지 셀 기판과 환형 와이어 사이의 부착폭을 약 500 ㎛로 형성하고 이로써 태양전지 모듈의 출력이 300 W 이상인 반면, 비스무트(Bi) 함량이 0.0032 중량% 미만인 비교예 1 및 2의 땜납 조성물은 태양전지 셀 기판과 환형 와이어 사이의 부착폭을 500 ㎛에 크게 못미치게 형성하여 태양전지 모듈의 출력이 300 W에 크게 못미치는 것으로 확인되었다. 또한, 비스무트(Bi) 함량이 0.0342 중량% 초과인 비교예 3의 땜납 조성물은 부착폭 증가로 인해 환형와이어와 태양전지 셀 기판 위의 은(Ag) 페이스트 간의 접합력이 태양전지 셀 기판과 은(Ag) 페이스트간의 접합력보다 더 강해져서, 환형와이어가 태양전지 셀 기판에 땜납 접속 후 냉각 수축되는 과정에서 은(Ag) 페이스트가 태양전지 셀에서 분리되는 현상이 발생하여, 이로 인한 저항 증가로 태양전지 모듈의 출력이 300 W에 크게 못미치는 것으로 확인되었다. As shown in Table 2, the solder composition of Examples 1 to 8 having a bismuth (Bi) content of 0.0032 to 0.0342 wt% in the solder composition forms an adhesion width between the solar cell substrate and the annular wire to about 500 μm. As a result, the solder composition of Comparative Examples 1 and 2 having a bismuth (Bi) content of less than 0.0032% by weight while the output of the solar cell module was 300 W or more, formed a bond width less than 500 μm between the solar cell substrate and the annular wire. It was confirmed that the output of the solar cell module is significantly less than 300 W. In addition, in the solder composition of Comparative Example 3 having a bismuth (Bi) content of more than 0.0342 wt%, the bonding force between the annular wire and the silver paste on the solar cell substrate was increased due to the increased adhesion width. ) Stronger than the bonding force between the pastes, the silver paste is separated from the solar cell during the shrinkage of the annular wire after solder connection to the solar cell substrate, resulting in increased resistance. The output of was found to be well below 300 W.
또한, 땜납 조성물 중 구리(Cu)의 함량이 0.071 내지 1.26 중량%인 실시예 9 내지 16의 땜납 조성물은 환형 와이어에서 도금층의 두께가 균일하게 형성되고 도금층 표면에 도금혹 등이 발생하지 않는 반면, 구리(Cu)의 함량이 0.071 중량% 미만인 비교예 4 및 5의 땜납 조성물은 목적한 도금층 두께가 형성되지 않았고, 그리고 구리(Cu) 함량이 0.126 중량% 초과인 비교예 6의 땜납 조성물은 형성된 도금층 표면에 도금혹이 발생하고 도금층 두께의 편차가 큰 것으로 확인되었다.In addition, the solder composition of Examples 9 to 16 in which the content of copper (Cu) in the solder composition is 0.071 to 1.26% by weight, while the thickness of the plating layer is uniformly formed in the annular wire and plating nodules are not generated on the surface of the plating layer. The solder compositions of Comparative Examples 4 and 5 having a copper (Cu) content of less than 0.071% by weight did not form the desired plating layer thickness, and the solder compositions of Comparative Example 6 having a copper (Cu) content of more than 0.126% by weight were formed plating layers. It was confirmed that plating nodules occurred on the surface and the variation in the thickness of the plating layer was large.
본 명세서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 당업자는 이하에서 서술하는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경 실시할 수 있을 것이다. 그러므로 변형된 실시가 기본적으로 본 발명의 특허청구범위의 구성요소를 포함한다면 모두 본 발명의 기술적 범주에 포함된다고 보아야 한다.Although the present specification has been described with reference to preferred embodiments of the invention, those skilled in the art may variously modify and change the invention without departing from the spirit and scope of the invention as set forth in the claims set forth below. Could be done. Therefore, it should be seen that all modifications included in the technical scope of the present invention are basically included in the scope of the claims of the present invention.
Claims (11)
- 태양전지 모듈의 환형 와이어용 땜납 조성물로서,As a solder composition for an annular wire of a solar cell module,상기 땜납 조성물의 총 중량을 기준으로, 비스무트(Bi) 0.0032 내지 0.0342 중량% 및 구리(Cu) 0.071 내지 1.26 중량%를 포함하고,Based on the total weight of the solder composition, comprising 0.0032 to 0.0342 weight percent bismuth (Bi) and 0.071 to 1.26 weight percent copper (Cu),주석(Sn)과 납(Pb), 은(Ag) 또는 이들 모두를 추가로 포함하는, 땜납 조성물.The solder composition further comprising tin (Sn) and lead (Pb), silver (Ag), or both.
- 제1항에 있어서,The method of claim 1,상기 땜납 조성물은, 이의 총 중량을 기준으로, 주석(Sn) 59 내지 65 중량%, 납(Pb) 33 내지 39 중량% 및 은(Ag) 1.5 내지 2.5 중량%를 포함하거나, 주석(Sn) 56 내지 66 중량% 및 납(Pb) 33 내지 43 중량%를 포함하거나, 주석(Sn) 93.5 내지 99.5 중량% 및 은(Ag) 0.1 내지 3.5 중량%를 포함하는 것을 특징으로 하는, 땜납 조성물.The solder composition comprises, based on its total weight, 59 to 65 weight percent tin (Sn), 33 to 39 weight percent lead (Pb) and 1.5 to 2.5 weight percent silver (Ag), or tin (Sn) 56 To 66 weight percent and 33 to 43 weight percent lead (Pb), or 93.5 to 99.5 weight percent tin (Sn) and 0.1 to 3.5 weight percent silver (Ag).
- 태양전지 모듈용 환형 와이어로서,As annular wire for solar cell module,원형 도체 및 상기 원형 도체의 표면에 형성되고 제1항 또는 제2항의 땜납 조성물로부터 형성된 땜납 도금층을 포함하고,A circular conductor and a solder plating layer formed on the surface of said circular conductor and formed from the solder composition of claim 1,상기 환형 와이어의 임의의 횡단면상에서 아래 수학식 1에 의해 정의되는 단면적 비율이 0.04 내지 0.32인, 태양전지 모듈용 환형 와이어.An annular wire for a solar cell module, wherein the ratio of the cross-sectional area defined by Equation 1 below on any cross section of the annular wire is 0.04 to 0.32.[수학식 1][Equation 1]단면적 비율=땜납 도금층의 단면적/원형 도체의 단면적Cross sectional area ratio = cross sectional area of solder plating layer / cross sectional area of circular conductor상기 수학식 1에서,In Equation 1,땜납 도금층의 단면적은 (환형 와이어의 단면적 - 원형 도체의 단면적)이다.The cross-sectional area of the solder plating layer is (cross-sectional area of the annular wire minus the cross-sectional area of the circular conductor).
- 제3항에 있어서,The method of claim 3,상기 환형 와이어의 임의의 횡단면상에서 상기 땜납 도금층의 최소 두께와 최대 두께의 합(Y)이 아래 수학식 2 및 3의 조건을 만족하는 최대값(Ymax)과 최소값(Ymin)의 범위 내에 있는, 태양전지 모듈용 환형 와이어.The sum Y of the minimum thickness and the maximum thickness of the solder plating layer on any cross section of the annular wire is within the range of the maximum value Y max and the minimum value Y min satisfying the conditions of Equations 2 and 3 below. , Annular wire for solar cell module.[수학식 2][Equation 2]Ymax=αX+βY max = αX + β[수학식 3][Equation 3]Ymin=α'X+β'Y min = α'X + β '상기 수학식 2 및 3에서,In Equations 2 and 3,α는 0.14 내지 0.15이고,α is 0.14 to 0.15,β는 1 내지 2이고,β is 1 to 2,α'는 0.014 내지 0.025이고,α 'is 0.014 to 0.025,β'는 -1 내지 -3이고,β 'is -1 to -3,X는 원형 도체의 직경(㎛)이다.X is the diameter (μm) of the circular conductor.
- 제3항에 있어서,The method of claim 3,상기 원형 도체의 직경(X)은 180 내지 540 ㎛인 것을 특징으로 하는, 태양전지 모듈용 환형 와이어.The diameter (X) of the circular conductor is characterized in that 180 to 540 ㎛, annular wire for solar cell module.
- 제3항에 있어서,The method of claim 3,상기 환형 와이어를 태양전지 셀 기판에 남땜시 상기 환형 와이어와 상기 기판의 부착폭이 500 내지 1,000 ㎛인 것을 특징으로 하는, 태양전지 모듈용 환형 와이어.The annular wire for solar cell module, characterized in that the adhesion width of the annular wire and the substrate is 500 to 1,000 ㎛ when soldering the annular wire to the solar cell substrate.
- 제3항에 있어서,The method of claim 3,상기 원형 도체는 터프피치동(Tough Pitch Copper; TPC), 무산소동(Oxygen-Free Copper; OFC) 또는 인탈산동(Phosphrous Deoxidized Copper)으로 이루어진 것을 특징으로 하는, 태양전지 모듈용 환형 와이어.The circular conductor is a tough wire copper (TPC), oxygen-free copper (Oxygen-Free Copper; OFC), characterized in that made of copper (Phosphrous Deoxidized Copper), annular wire for a solar cell module.
- 제3항에 있어서,The method of claim 3,저항이 648 mΩ/m 이하이고, 항복강도가 120 MPa 이하이고, 인장강도가 180 내지 260 MPa이고, 연신율이 15 내지 45 %인 것을 특징으로 하는, 태양전지 모듈용 환형 와이어.An annular wire for solar cell modules, characterized in that the resistance is 648 mΩ / m or less, the yield strength is 120 MPa or less, the tensile strength is 180 to 260 MPa, and the elongation is 15 to 45%.
- 복수의 태양전지 셀 기판 및 상기 복수의 기판을 직렬로 연결하는 제3항의 태양전지 모듈용 환형 와이어를 포함하는, 태양전지 모듈.A solar cell module comprising a plurality of solar cell substrates and an annular wire for solar cell module of claim 3 for connecting the plurality of substrates in series.
- 제9항에 있어서,The method of claim 9,상기 태양전지 셀 기판 위에는 상기 환형 와이어가 납땜되는 부분에 은(Ag) 페이스트층이 형성되고, 상기 은(Ag) 페이스트층에는 상기 환형 와이어와 상기 기판의 부착력을 향상시키기 위해 상기 은(Ag) 페이스트층의 폭 보다 큰 폭을 갖는 복수의 은(Ag) 패드가 추가로 구비되는, 태양전지 모듈.A silver paste layer is formed on a portion where the annular wire is soldered on the solar cell substrate, and the silver paste is formed on the silver paste layer to improve adhesion between the annular wire and the substrate. A solar cell module, further comprising a plurality of silver (Ag) pads having a width greater than the width of the layer.
- 제10항에 있어서,The method of claim 10,상기 태양전지 셀 기판의 크기는 4 내지 8 인치이고, 상기 환형 와이어의 개수는 8 내지 30개이며, 상기 은(Ag) 페이스트층의 폭은 30 내지 70 ㎛이고, 인접한 은(Ag) 페이스트층간 간격은 1.4 내지 2.2 mm이며, 상기 은(Ag) 패드 면적은 500 내지 900 ㎛2이고, 상기 은(Ag) 패드의 개수는 300 내지 700개인 것을 특징으로 하는, 태양전지 모듈.The size of the solar cell substrate is 4 to 8 inches, the number of the annular wire is 8 to 30, the width of the silver (Ag) paste layer is 30 to 70 ㎛, the interval between adjacent silver (Ag) paste layer Is 1.4 to 2.2 mm, the silver (Ag) pad area is 500 to 900 ㎛ 2 , the number of the silver (Ag) pad, characterized in that 300 to 700, the solar cell module.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160145616A KR101992001B1 (en) | 2016-11-03 | 2016-11-03 | Solder composition for circular wire of solar cell module and cirfular wire for solar cell module having a solder plating layer formed from the same |
KR10-2016-0145616 | 2016-11-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018084509A1 true WO2018084509A1 (en) | 2018-05-11 |
Family
ID=62076964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/012042 WO2018084509A1 (en) | 2016-11-03 | 2017-10-30 | Solder composition for annular wire for solar cell module and annular wire for solar cell module including solder-plated layer formed thereof |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101992001B1 (en) |
WO (1) | WO2018084509A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2019415500A1 (en) * | 2018-12-28 | 2021-08-12 | Kos Ltd. | Molten solder for photovoltaic module, electrode wire, for photovoltaic module, comprising same, and photovoltaic module |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010066755A (en) * | 1999-12-03 | 2001-07-11 | 김수희 | Leadwires with Tin-Silver-Copper Plating Layers |
KR101059710B1 (en) * | 2003-04-01 | 2011-08-29 | 파나소닉 주식회사 | Solder paste and printed circuit board |
KR101479431B1 (en) * | 2010-08-30 | 2015-01-06 | 후루카와 덴키 고교 가부시키가이샤 | Solar cell lead wire and method of manufacturing thereof |
US20160126373A1 (en) * | 2014-10-31 | 2016-05-05 | Byd Company Limited | Method for manufacturing solar cell module |
KR20160063132A (en) * | 2014-11-26 | 2016-06-03 | 엘지전자 주식회사 | Solar cell module |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT502004B1 (en) * | 2005-06-01 | 2007-07-15 | Outokumpu Copper Neumayer Gmbh | ELECTRICAL CONNECTING ELEMENT, METHOD FOR THE PRODUCTION THEREOF AND SOLAR CELL AND MODULE WITH CONNECTING ELEMENT |
-
2016
- 2016-11-03 KR KR1020160145616A patent/KR101992001B1/en active IP Right Grant
-
2017
- 2017-10-30 WO PCT/KR2017/012042 patent/WO2018084509A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010066755A (en) * | 1999-12-03 | 2001-07-11 | 김수희 | Leadwires with Tin-Silver-Copper Plating Layers |
KR101059710B1 (en) * | 2003-04-01 | 2011-08-29 | 파나소닉 주식회사 | Solder paste and printed circuit board |
KR101479431B1 (en) * | 2010-08-30 | 2015-01-06 | 후루카와 덴키 고교 가부시키가이샤 | Solar cell lead wire and method of manufacturing thereof |
US20160126373A1 (en) * | 2014-10-31 | 2016-05-05 | Byd Company Limited | Method for manufacturing solar cell module |
KR20160063132A (en) * | 2014-11-26 | 2016-06-03 | 엘지전자 주식회사 | Solar cell module |
Also Published As
Publication number | Publication date |
---|---|
KR20180049835A (en) | 2018-05-14 |
KR101992001B1 (en) | 2019-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100798255B1 (en) | Electroconductive thick film composition, electrode, and solar cell formed therefrom | |
KR101375044B1 (en) | Method for applying full back surface field and silver busbar to solar cell | |
US20100096014A1 (en) | Conductive paste for solar cell | |
WO2017061764A1 (en) | Paste composition for solar cell front electrode, and solar cell using same | |
EP2109148A2 (en) | Wafer level interconnection and method | |
US20120238052A1 (en) | Method of producing a crystalline silicon solar cell | |
WO2011046365A2 (en) | Silver paste composition and solar cell using same | |
WO2013085112A1 (en) | Paste composition for solar cell electrode and electrode produced therefrom | |
WO2017175902A1 (en) | Rear electrode paste composition for solar cell | |
WO2019088526A1 (en) | Conductive paste for solar cell electrode, and solar cell manufactured using same | |
WO2014196712A1 (en) | Composition for forming electrode of solar cell and electrode formed therefrom | |
WO2016137059A1 (en) | Silver paste composition, front electrode for solar cell formed using it, and solar cell employing it | |
WO2019088525A1 (en) | Electroconductive paste for solar cell electrode, and solar cell manufactured using same | |
WO2017155224A1 (en) | Stranded conductor wire for solar cell module | |
WO2018084509A1 (en) | Solder composition for annular wire for solar cell module and annular wire for solar cell module including solder-plated layer formed thereof | |
WO2013105750A1 (en) | Silicon solar cell module using conductive paste as electrode and method for manufacturing same | |
WO2018070724A1 (en) | Solar cell module | |
WO2017183881A1 (en) | Paste composition for rear surface electrode of solar cell | |
WO2011132962A2 (en) | Electrode paste for solar cell, and solar cell manufactured using same | |
WO2020138599A1 (en) | Molten solder for photovoltaic module, electrode wire, for photovoltaic module, comprising same, and photovoltaic module | |
WO2019088520A2 (en) | Conductive paste for solar cell electrode, glass frit contained therein, and solar cell | |
WO2016190602A1 (en) | Ring-shaped wire for solar cell module | |
JP2013065588A (en) | Solar cell | |
KR101708556B1 (en) | Circular wire for solar cell module | |
WO2018080093A1 (en) | Solar cell substrate and solar cell comprising same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17868244 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17868244 Country of ref document: EP Kind code of ref document: A1 |