WO2011132962A2 - Electrode paste for solar cell, and solar cell manufactured using same - Google Patents

Electrode paste for solar cell, and solar cell manufactured using same Download PDF

Info

Publication number
WO2011132962A2
WO2011132962A2 PCT/KR2011/002879 KR2011002879W WO2011132962A2 WO 2011132962 A2 WO2011132962 A2 WO 2011132962A2 KR 2011002879 W KR2011002879 W KR 2011002879W WO 2011132962 A2 WO2011132962 A2 WO 2011132962A2
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
tga profile
electrode
paste
relaxant
Prior art date
Application number
PCT/KR2011/002879
Other languages
French (fr)
Korean (ko)
Other versions
WO2011132962A3 (en
Inventor
전태현
김덕곤
Original Assignee
에스에스씨피 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스에스씨피 주식회사 filed Critical 에스에스씨피 주식회사
Publication of WO2011132962A2 publication Critical patent/WO2011132962A2/en
Publication of WO2011132962A3 publication Critical patent/WO2011132962A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an electrode paste for a solar cell and a solar cell manufactured using the same.
  • a solar cell is a semiconductor device that converts solar energy into electrical energy and generally has a p-n junction.
  • the basic structure is the same as that of a diode.
  • FIG. 1 is a diagram schematically showing a general cross-sectional structure of a solar cell element.
  • the solar cell element is comprised using the p-type silicon semiconductor substrate 1 which is 220-300 micrometers in thickness generally.
  • an n-type impurity layer 2 having a thickness of 0.3 to 0.6 mu m, an antireflection film 3 and a front electrode 4 are formed thereon.
  • the back electrode 5 is formed on the back side of the p-type silicon semiconductor substrate 1.
  • the back electrode 5 is formed by applying an aluminum paste composition composed of aluminum powder, glass frit, and an organic vehicle by screen printing, drying, and firing at a temperature of 660 ° C. (melting point of aluminum) or higher.
  • aluminum diffuses into the p-type silicon semiconductor substrate 1, whereby an Al-Si alloy layer 6 is formed between the back electrode 5 and the p-type silicon semiconductor substrate 1, and at the same time, aluminum
  • the p + layer 7 is formed as an impurity layer due to the diffusion of atoms.
  • the presence of the p + layer 7 results in a back surface field (BSF) effect that prevents recombination of electrons and improves the collection efficiency of product carriers.
  • BSF back surface field
  • the anti-reflection film is eroded through the redox reaction of the glass frit powder, and the conductive metal crystals are precipitated in the form of the conductive powder crystals in the glass frit powder at the substrate interface.
  • the conductive metal crystals are precipitated in the form of the conductive powder crystals in the glass frit powder at the substrate interface.
  • it is known to exhibit contact by tunneling effect or direct adhesion with the bulk electrode depending on the thickness of the glass frit powder.
  • Firing consists of low temperature firing (500 to 750 °C) and high temperature firing (800 to 950 °C), and it is expected that the need for low temperature firing will gradually increase in the future, but so far, high temperature firing is necessary to sufficiently form the BSF layer of the back electrode. This is known to be necessary.
  • Such high-speed firing conditions are very different from the firing conditions of the conventional firing type electrode paste, and it is very difficult to commercialize it because it is very difficult to realize the high efficiency of using the existing electrode paste composition as it is.
  • the front electrode of the solar cell has to be in ohmic contact with the N layer by etching the anti-reflection film on the front surface of the substrate during the firing process, while the additional conditions such as the paste for PDP electrodes are added in that a difficult condition of not excessively etching the N layer is added.
  • the technique of the firing type paste There is a big limitation in employing the technique of the firing type paste.
  • the composition prepared from the electrode-type paste of the conventional firing type is generally heated up slowly to 300 ° C, then debinds for several minutes to debind the organic components, and the temperature is again raised to 500-600 ° C. After a few minutes firing process to induce the adhesion to the substrate sufficiently.
  • solar cell electrode firing follows a high-speed firing process of several to several tens of seconds, there is a limit in inducing sufficient adhesive force between the substrate and the electrode material for solar cell, and since the debinding process is only a few seconds, the rapid evaporation of organic matter. It was found that there is a problem in that high efficiency cannot be obtained due to the dropout between the substrate and the solar cell electrode during the firing process.
  • the firing characteristics of the electrode paste which has been preferably followed in the art and taken for granted, was that the organic vehicle in the paste composition should be easily removed even at a relatively low temperature without firing amount for the electrical composition of the electrode. Particularly in the case of high-speed firing, the firing time is short, so this firing characteristic is more common knowledge in the art. To this end, organic vehicles have been selected that can all be removed at relatively low temperatures. The present invention is entirely contrary to this conventional natural idea. In order to obtain a high-efficiency solar cell, it was found that at a high speed / high temperature firing, at least a certain amount of the organic vehicle must remain without being removed at a low firing temperature and must be removed at a high firing temperature. When all are removed at a low temperature, high-speed firing causes a slight lifting phenomenon between the electrode and the substrate due to sudden vaporization of the organic vehicle, thereby increasing the contact resistance, which leads to a decrease in efficiency.
  • the present invention is to solve the above problems, not only to control the temperature at which the organic material is vaporized, but also to control the evaporation rate of the organic material, even if the debinding process is only a few seconds, by stably inducing adhesion of the substrate and the electrode contact It is an object of the present invention to provide an electrode paste which can improve resistance and is advantageous for manufacturing high efficiency solar cells.
  • the parameter is the TGA profile of the electrode paste.
  • the present invention provides a paste for a solar cell electrode having an optimal TGA profile that can provide high efficiency even in a high speed firing process.
  • the present invention provides a paste for a solar cell electrode comprising a conductive metal powder, a glass frit, an organic vehicle, and a TGA profile relaxant.
  • the TGA profile relaxant provides a solar cell electrode paste, characterized in that the following formula is satisfied.
  • the TGA profile of the electrode paste has a D value of 15% or more at 300 ° C, and a value of
  • the TGA profile relaxant provides a solar cell electrode paste, characterized in that 0.5 to 15 parts by weight based on the total 100 weight of the electrode paste.
  • the TGA profile relaxant provides a solar cell electrode paste, characterized in that the TGA profile of the electrode paste is less than 5% D value at 550 °C.
  • the TGA profile relaxant provides a solar cell electrode paste, characterized in that the polyurethane-based or polyacrylate-based polymer dispersant.
  • the TGA profile relaxant provides a solar cell electrode paste, characterized in that the temperature evaporated by heat is an organic binder of 350 °C or more.
  • the present invention also provides a solar cell having a front electrode on an upper substrate and a back electrode on a lower substrate, wherein at least one of the front electrode and the rear electrode is manufactured by applying a paste for the solar cell electrode and firing the same. It provides a solar cell characterized in that.
  • the present invention having the above constitutive features not only controls the temperature at which the organic matter is vaporized through the TGA profile relaxant, but also regulates the vaporization rate of the organic matter, thereby stably adhering the substrate and the electrode even if the debinding process is only a few seconds.
  • By inducing the contact resistance can be improved to provide an electrode paste advantageous for the production of high efficiency solar cell and a solar cell manufactured using the same.
  • FIG. 1 is a cross-sectional schematic diagram of a conventional solar cell
  • FIG. 3 is an SEM photograph after electrode firing in Comparative Production Example 1.
  • the present invention provides a paste for a solar cell electrode comprising a conductive metal powder, a glass frit, an organic vehicle, and a TGA profile relaxant that satisfies certain conditions.
  • the conductive metal powder silver powder, copper powder, nickel powder, aluminum powder, or the like may be used.
  • silver powder is mainly used.
  • the conductive metal material will be described using silver powder as an example.
  • Silver powder has an average particle diameter of 0.5 to 5 ⁇ m, the shape may be at least one or more of spherical, needle-like, plate-like and amorphous.
  • the average particle diameter of the silver powder is preferably 0.5 ⁇ m to 5 ⁇ m in consideration of ease of pasting and density at firing.
  • the content of the silver powder is preferably 60 to 90% by weight based on the total weight of the electrode paste composition in consideration of the electrode thickness and the wire resistance formed during printing.
  • conductive metal powder is generally known to be advantageous in terms of efficiency when the particle size is small.
  • the density is high, which prevents the organic material from vaporizing and flying away, thereby causing the phenomenon of lifting between the electrode and the substrate. Due to this phenomenon, there is a limit to reducing the particle diameter of the conductive metal powder. Since the TGA profile relaxant according to the present invention can reduce the lifting phenomenon, there is an advantage that the particle diameter of the conductive metal powder can be made smaller.
  • the organic vehicle may include, but is not limited to, an organic binder, a solvent, and the like.
  • the binder used in the electrode paste composition according to the embodiment of the present invention is not limited, but a cellulose ester-based compound may be used as cellulose acetate, cellulose acetate butylate, or cellulose ether.
  • Compounds include ethyl cellulose, methyl cellulose, hydroxy flophyll cellulose, hydroxy ethyl cellulose, hydroxy propyl methyl cellulose, hydroxy ethyl methyl cellulose, and polyacrylamide, poly methacrylate, and poly methyl methacrylate.
  • the polyethyl methacrylate vinyl may be selected from at least one selected from polyvinyl butyral, polyvinyl acetate, and polyvinyl alcohol. It is preferable that the molecular weight of the said acryl-type compound is 5,000-50,000.
  • Solvents used for dilution of the composition include alpha-terpineol, texanol, dioctyl phthalate, dibutyl phthalate, cyclohexane, hexane, toluene, benzyl alcohol, dioxane, diethylene glycol, ethylene glycol mono butyl ether, ethylene At least one compound selected from the group consisting of glycol mono butyl ether acetate, diethylene glycol mono butyl ether, diethylene glycol mono butyl ether acetate, and the like is preferably used.
  • the glass frit used is not limited. Lead-free glass frits can be used as well as leaded glass frits. There is no restriction
  • the average particle diameter of the glass frit is 0.5 to 5 ⁇ m, and the components thereof are PbO 43 to 91 wt%, SiO2 21 wt% or less, B2O3 + Bi2O3 25 wt% or less, Al2O3 7 wt% or less, ZnO 20 wt% or less , Na2O + K2O + Li2O 15 wt% or less, BaO + CaO + MgO + SrO is preferably at least one or more of the glass powders, glass softening temperature is 320 ⁇ 520 °C, thermal expansion coefficient is 62 ⁇ 110 ⁇ 10 It is preferable that it is -7 / degreeC.
  • the content of the glass frit is preferably 1 to 10% by weight based on the total weight of the conductive paste composition. If the content is less than 1% by weight, incomplete firing may occur to increase the electrical resistivity. There are too many components, and there exists a possibility that an electrical resistivity may also become high.
  • the TGA profile relaxant refers to a substance that relaxes the TGA profile of the electrode paste while satisfying the following formula 1 in the TGA profile of the electrode paste. Any material that satisfies these conditions can be added without limitation.
  • the value of D is 15% or more at 300 ° C.
  • is 6% / 0.01 ° C. or less in any of the ranges of 270 to 550 ° C. T is at least 20 ° C).
  • the TGA profile relaxant has a D value of less than 5% at 550 ° C. This is a value related to the amount of residual coal after firing, and when the D value is 5% or more at 550 ° C., the residual coal residue of the organic matter after firing exceeds the allowable range and acts as an impurity in the electrode, and thus there is a problem in that the line resistance increases. .
  • the TGA profile relaxant is a material that serves to mitigate the sharp fall of the TGA profile of the electrode paste, and may be used without limitation as long as it satisfies the above formula.
  • the TGA profile relaxant may be an organic binder which is one of the components of the electrode paste, and may be one of various additives added for additional functions, and may be a component specifically added only for TGA profile relaxation.
  • an organic polymer in which vaporization occurs at 300 ° C or more can be given.
  • An example is polyvinyl butyral. Since polyvinyl alcohol is prepared using polyvinyl acetate and then reacted with aldehyde, a small amount of vinyl acetate group and vinyl alcohol group are present.
  • the weight average molecular weight of the polyvinyl butyral is suitably in the range of 5,000 to 1,000,000, preferably 10,000 to 500,000. It is preferable that the usage-amount of a polyvinyl butyral binder polymer is 1-15 weight%.
  • the binder which vaporization takes place especially at high temperature can be selected from the acrylate type binder whose molecular weight is 100,000 or more, As an example, Elvacite 2045 (made by Dupont) etc. is mentioned.
  • Ethyl cellulose (EC) etc. are mentioned as a cellulose binder.
  • Organic binders can also be designed for TGA profile relaxation. As one method, it is possible to obtain an organic binder in which vaporization occurs at a high temperature when synthesizing a polymer by combining the monomers having a high theoretical Tg well.
  • TGA profile modifier is a polymeric dispersant.
  • Some polymer dispersants can improve the dispersibility of the electrode paste while acting to relax the TGA profile.
  • there are also things that can improve wettability As an example, a polyurethane type polymer dispersing agent, a polyacrylate type polymer dispersing agent, etc. are mentioned.
  • the paste composition for electrodes according to the present invention may further include additives commonly known as necessary, for example, a dispersant, a defoaming agent, a leveling agent, and the like.
  • the present invention also provides a method for forming an electrode of a solar cell and a solar cell electrode produced by the method, characterized in that the paste for the solar cell electrode is applied on a substrate, dried and baked.
  • the substrate, printing, drying and firing is a general method that can be used for the manufacture of a solar cell, of course.
  • the substrate may be a silicon wafer
  • the electrode made of the paste of the present invention may be a front finger electrode, a busbar electrode, or a back electrode
  • the printing may be screen printing or offset printing. It may be made at 90 to 250 °C, the firing may be made at 600 to 950 °C.
  • the high-temperature / high speed firing is performed at 800 to 950 ° C., more preferably at 850 to 900 ° C. for 5 seconds to 1 minute, and the printing is preferably performed at a thickness of 20 to 60 ⁇ m.
  • the structure of the solar cell described in Korean Unexamined-Japanese-Patent No. 10-2006-0108550, 10-2006-0127813, Unexamined-Japanese-Patent No. 2001-202822, and 2003-133567, and its manufacturing method are mentioned. have.
  • a binder, a dispersant, a leveling agent, a glass frit (average particle diameter 1 ⁇ m) and the like were dispersed in a composition as shown in Table 1 below, and dispersed using a three-bone mill, followed by mixing silver powder (spherical shape, average particle diameter of 1 ⁇ m). It was dispersed using three bone mill. After that, degassed under reduced pressure to prepare a conductive paste.
  • the prepared electrically conductive paste was thermogravimetrically analyzed from room temperature to 600 degreeC using the TGA Q500 V6.3 Build 189 thermogravimetric analyzer on condition of 60 ml / min flow rate and the temperature increase rate of 10 degree-C / min in nitrogen atmosphere.
  • the D value at 300 ° C the maximum value of
  • the pastes prepared in Preparation Examples 1 to 5 and Comparative Preparation Examples 1 to 2 were pattern printed on the front surface of the wafer by screen printing, and dried at 150 ° C. for 6 minutes using a hot air drying furnace. After printing the Al paste on the back of the wafer and dried in the same way.
  • the cell formed by the above process was calcined for 20 seconds to 30 seconds between 500 to 900 ° C. using a belt-type kiln, and the cell thus manufactured was manufactured using solar cell efficiency measuring equipment (EndeasI, Quicksun120A), Isc, Voc , Fill Factor, and efficiency were observed, and relative values were indicated based on the value of Comparative Production Example 100.
  • the preparation examples of the present invention showed that the series resistance was greatly reduced compared to Comparative Preparation Example 1, and the Fill Factor and the efficiency were improved, and in Comparative Preparation Example 1, ⁇ W / 0.01 ⁇ T It was confirmed that the surface was rough because the value was large and the D (at 300 ° C.) value was small and the organic matter was rapidly removed. In addition, in the case of Comparative Production Example 2, the value of D (at 550 ° C.) is large, and thus the amount of residual coal is large.
  • the present invention having the above-described structural characteristics can improve the contact resistance by inducing adhesion of the substrate and the electrode stably through the TGA profile relaxant, which is advantageous for manufacturing a high efficiency solar cell electrode paste and a solar cell manufactured using the same. It can be very useful industrially.

Abstract

The present invention provides a paste for an electrode and a solar cell manufactured using the same, where the temperature at which organic matter is evaporated is adjusted through a TGA profile mitigator, and an evaporation speed of the organic matter is also adjusted in such a manner that contact resistance can be improved by stably inducing the attachment between a substrate and an electrode even though a debinding step is performed for only several seconds, whereby the invention is favorable to the manufacturing of a high-efficiency solar cell.

Description

태양전지용 전극 페이스트 및 이를 사용하여 제조된 태양전지Electrode paste for solar cell and solar cell manufactured using same
본 발명은 태양전지용 전극 페이스트 및 이를 사용하여 제조된 태양전지에 관한 것이다.The present invention relates to an electrode paste for a solar cell and a solar cell manufactured using the same.
태양 전지(solar cell)는 태양에너지를 전기에너지로 변환시켜주는 반도체 소자로서 일반적으로 p-n 접합 형태를 가지며 그 기본 구조는 다이오드와 동일하다.A solar cell is a semiconductor device that converts solar energy into electrical energy and generally has a p-n junction. The basic structure is the same as that of a diode.
도 1은 태양 전지 소자의 일반적인 단면 구조를 모식적으로 나타내는 도면이다. 도 1에 나타내는 바와 같이, 태양 전지 소자는 일반적으로 두께가 220∼300㎛인 p형 실리콘 반도체 기판(1)을 이용하여 구성된다. 실리콘 반도체 기판(1)의 수광면측에는, 두께가 0.3∼0.6㎛인 n형 불순물층(2)과, 그 위에 반사 방지막(3)과 전면 전극(4)이 형성되어 있다.1 is a diagram schematically showing a general cross-sectional structure of a solar cell element. As shown in FIG. 1, the solar cell element is comprised using the p-type silicon semiconductor substrate 1 which is 220-300 micrometers in thickness generally. On the light-receiving surface side of the silicon semiconductor substrate 1, an n-type impurity layer 2 having a thickness of 0.3 to 0.6 mu m, an antireflection film 3 and a front electrode 4 are formed thereon.
또한, p형 실리콘 반도체 기판(1)의 이면측에는 배면 전극(5)이 형성되어 있다. 배면 전극(5)은 알루미늄 분말, 유리 프릿 및 유기 비히클(organic vehicle)로 이루어지는 알루미늄 페이스트 조성물을 스크린 인쇄 등에 의해 도포하고 건조한 후, 660℃(알루미늄의 융점) 이상의 온도에서 소성함으로써 형성되어 있다. 이 소성시에 알루미늄이 p형 실리콘 반도체 기판(1)의 내부로 확산됨으로써, 배면 전극(5)과 p형 실리콘 반도체 기판(1) 사이에 Al―Si 합금층(6)이 형성됨과 동시에, 알루미늄 원자의 확산에 의한 불순물층으로서 p+층(7)이 형성된다. 이러한 p+층(7)의 존재에 의해 전자의 재결합을 방지하고, 생성 캐리어의 수집 효율을 향상시키는 BSF(Back Surface Field) 효과가 얻어진다.The back electrode 5 is formed on the back side of the p-type silicon semiconductor substrate 1. The back electrode 5 is formed by applying an aluminum paste composition composed of aluminum powder, glass frit, and an organic vehicle by screen printing, drying, and firing at a temperature of 660 ° C. (melting point of aluminum) or higher. During the firing, aluminum diffuses into the p-type silicon semiconductor substrate 1, whereby an Al-Si alloy layer 6 is formed between the back electrode 5 and the p-type silicon semiconductor substrate 1, and at the same time, aluminum The p + layer 7 is formed as an impurity layer due to the diffusion of atoms. The presence of the p + layer 7 results in a back surface field (BSF) effect that prevents recombination of electrons and improves the collection efficiency of product carriers.
한편, 소성시 전면 전극에서는 반사 방지막이 유리 프리트 분말의 산화 환원 반응을 통하여 침식되어지고, 유리 프리트 분말 내의 도전성 분말 결정이 기판 계면에 석출되는 형태로 도전성 금속 결정립이 석출되고 상기 석출된 금속 결정립이 벌크 전면 전극과 실리콘 기판의 가교 역할을 할뿐만 아니라, 유리 프리트 분말의 두께에 따라 터널링 효과 또는 벌크 전극과의 직접적인 접착에 의한 컨택을 나타내는 것으로 알려져 있다.On the other hand, during firing, the anti-reflection film is eroded through the redox reaction of the glass frit powder, and the conductive metal crystals are precipitated in the form of the conductive powder crystals in the glass frit powder at the substrate interface. In addition to acting as a crosslinking of the bulk front electrode and the silicon substrate, it is known to exhibit contact by tunneling effect or direct adhesion with the bulk electrode depending on the thickness of the glass frit powder.
소성은 저온소성(500 내지 750 ℃)과 고온소성(800 내지 950 ℃)으로 이루어지며, 향후 저온소성의 필요성이 점차 증대될 것으로 예상되나, 아직까지는 배면 전극의 BSF층이 충분히 형성되기 위해 고온 소성이 필요한 것으로 알려져 있다.Firing consists of low temperature firing (500 to 750 ℃) and high temperature firing (800 to 950 ℃), and it is expected that the need for low temperature firing will gradually increase in the future, but so far, high temperature firing is necessary to sufficiently form the BSF layer of the back electrode. This is known to be necessary.
최근에, 고온 소성은 저온 소성에 비하여 택트 타임이나 생산비용 측면에서 불리하기 때문에, 태양전지 제조 업체들은 고온 소성시 가온 속도를 급격히 증가시켜 짧은 시간에 소성이 이루어지는 고속 소성 조건을 채택하고 있다. Recently, since high temperature firing is disadvantageous in terms of tact time and production cost compared to low temperature firing, solar cell manufacturers are adopting high speed firing conditions in which the heating rate is rapidly increased at high temperature firing and firing is performed in a short time.
이러한 고속 소성 조건은 기존 소성 타입의 전극용 페이스트의 소성 조건과 매우 달라 기존의 전극용 페이스트 조성을 그대로 전용하여 사용하는 것은 매우 현실성이 떨어지며 고효율 실현이 불가하여 상용화가 어렵다. 특히나 태양전지의 전면전극은 상기 소성 공정 중 기판 전면의 반사 방지막을 에칭하여 N층과 오믹컨택을 이루어야 하는 한편, N층을 과하게 에칭하지 않아야 하는 까다로운 조건이 추가되는 점에서 PDP 전극용 페이스트 등 기존의 소성 타입 페이스트의 기술을 채용하는 데 큰 한계가 있다.Such high-speed firing conditions are very different from the firing conditions of the conventional firing type electrode paste, and it is very difficult to commercialize it because it is very difficult to realize the high efficiency of using the existing electrode paste composition as it is. In particular, the front electrode of the solar cell has to be in ohmic contact with the N layer by etching the anti-reflection film on the front surface of the substrate during the firing process, while the additional conditions such as the paste for PDP electrodes are added in that a difficult condition of not excessively etching the N layer is added. There is a big limitation in employing the technique of the firing type paste.
기존 소성 타입의 전극용 페이스트로 제조된 조성물은 일반적으로 300도 온도로 서서히 승온시킨 뒤 수 분의 시간 동안 탈바인딩 과정을 거쳐 유기물 성분을 탈바인딩시키고, 500 - 600도 온도로 다시 승온하여 그 범위에서 수 분의 소성 과정을 거쳐 기판과의 부착력을 충분히 유도하는 공정을 거친다. 그러나 태양전지 전극 소성시에는 수 내지 수십 초의 고속 소성 공정을 따르므로 기판과 태양전지용 전극재료 사이의 충분한 부착력을 유도하는데 한계가 있으며, 또한 탈바인딩 공정이 수초에 지나지 않는 관계로, 유기물의 급격한 기화에 의한 소성 과정 중 기판과 태양전지용 전극 사이의 탈락이 일어나 고효율을 얻을 수 없는 문제점이 있음을 발견하였다, The composition prepared from the electrode-type paste of the conventional firing type is generally heated up slowly to 300 ° C, then debinds for several minutes to debind the organic components, and the temperature is again raised to 500-600 ° C. After a few minutes firing process to induce the adhesion to the substrate sufficiently. However, since solar cell electrode firing follows a high-speed firing process of several to several tens of seconds, there is a limit in inducing sufficient adhesive force between the substrate and the electrode material for solar cell, and since the debinding process is only a few seconds, the rapid evaporation of organic matter. It was found that there is a problem in that high efficiency cannot be obtained due to the dropout between the substrate and the solar cell electrode during the firing process.
그동안 당업계에서 바람직하게 따르고 있었으며 당연시하였던 전극용 페이스트의 소성 특성은 전극의 전기적 특성을 위해 페이스트 조성 중 유기비히클은 소성시 잔탄량 없이 비교적 낮은 온도에서도 쉽게 제거되어야 한다는 것이었다. 특히 고속 소성의 경우 소성 시간이 짧으므로 이러한 소성 특성은 더욱 더 당업계의 상식이었다. 이를 위해, 비교적 낮은 온도에서 모두 제거될 수 있는 유기비히클을 선택하여 왔다. 본 발명은 이러한 종래의 당연한 생각과 전면적으로 대치된다. 고효율의 태양전지를 얻기 위해서는 고속/고온 소성시 적어도 유기비히클의 일정량은 낮은 소성 온도에서는 제거되지 않고 남아 있어야 하며 높은 소성 온도에 이르러서야 제거되야 함을 발견하였다. 낮은 온도에서 모두 제거될 경우 고속 소성에서는 유기비히클의 갑작스러운 기화에 의해 전극과 기판간의 미세한 들뜸 현상이 발생하여 접촉 저항을 높이게 되고 이는 결국 효율의 저하를 야기하게 된다. The firing characteristics of the electrode paste, which has been preferably followed in the art and taken for granted, was that the organic vehicle in the paste composition should be easily removed even at a relatively low temperature without firing amount for the electrical composition of the electrode. Particularly in the case of high-speed firing, the firing time is short, so this firing characteristic is more common knowledge in the art. To this end, organic vehicles have been selected that can all be removed at relatively low temperatures. The present invention is entirely contrary to this conventional natural idea. In order to obtain a high-efficiency solar cell, it was found that at a high speed / high temperature firing, at least a certain amount of the organic vehicle must remain without being removed at a low firing temperature and must be removed at a high firing temperature. When all are removed at a low temperature, high-speed firing causes a slight lifting phenomenon between the electrode and the substrate due to sudden vaporization of the organic vehicle, thereby increasing the contact resistance, which leads to a decrease in efficiency.
본 발명은 상기의 문제점을 해결하기 위한 것으로서, 유기물이 기화되는 온도를 조절할 뿐만 아니라, 유기물의 기화 속도를 조절하여, 탈바인딩 공정이 수초에 지나지 않아도, 안정적으로 기판과 전극의 부착을 유도하여 접촉저항을 향상시킬 수 있어 고효율 태양전지 제조에 유리한 전극용 페이스트를 제공하는 것을 목적으로 한다.The present invention is to solve the above problems, not only to control the temperature at which the organic material is vaporized, but also to control the evaporation rate of the organic material, even if the debinding process is only a few seconds, by stably inducing adhesion of the substrate and the electrode contact It is an object of the present invention to provide an electrode paste which can improve resistance and is advantageous for manufacturing high efficiency solar cells.
또한, 이러한 요구에 부합하는 전극용 페이스트를 연구한 결과, 종래에 알려지지 않았던 파라미터가 매우 중요함을 알게 되었다. 그 파라미터는 전극용 페이스트의 TGA 프로파일이다. 본 발명은 고속 소성 공정에서도 고효율을 제공할 수 있는 최적의 TGA 프로파일을 갖는 태양전지 전극용 페이스트를 제공한다. In addition, as a result of studying the electrode paste that meets these requirements, it was found that a parameter which is not known in the art is very important. The parameter is the TGA profile of the electrode paste. The present invention provides a paste for a solar cell electrode having an optimal TGA profile that can provide high efficiency even in a high speed firing process.
상기의 과제를 해결하기 위한 수단으로서, As a means for solving the above problems,
본 발명은 도전성 금속 분말, 유리 프릿, 유기 비히클 및 TGA 프로파일 완화제를 포함하여 이루어진 태양전지 전극용 페이스트를 제공한다.The present invention provides a paste for a solar cell electrode comprising a conductive metal powder, a glass frit, an organic vehicle, and a TGA profile relaxant.
또한, 상기 TGA 프로파일 완화제는 하기의 식을 만족하는 것을 특징으로 하는 태양전지 전극용 페이스트를 제공한다.In addition, the TGA profile relaxant provides a solar cell electrode paste, characterized in that the following formula is satisfied.
<식 1><Equation 1>
전극용 페이스트의 TGA 프로파일이 300℃에서 D값이 15% 이상이고, 270 ~ 550℃ 범위 중 임의의 범위에서 |△W/0.01△T|의 값이 6 %/0.01℃ 이하(단, △T는 20℃ 이상임)가 되도록 TGA 프로파일을 완화시키는 화합물.The TGA profile of the electrode paste has a D value of 15% or more at 300 ° C, and a value of | ΔW / 0.01ΔT | is 6% / 0.01 ° C or less in any of the ranges of 270 to 550 ° C. Is at least 20 ° C.).
D = (Wt - We)/(Wi - We)*100(%)D = (Wt-We) / (Wi-We) * 100 (%)
(D는 특정 온도에서의 유기물 잔존량을 나타내는 수치로서, TGA 프로파일에서 Wt는 특정 온도 t에서의 중량(%), Wi는 처음 중량으로서 100 중량(%), We는 600℃에서의 중량(%)임)(D is a numerical value representing the remaining amount of organic matter at a specific temperature, in the TGA profile, Wt is the weight (%) at a specific temperature t, Wi is 100 weight (%) as the initial weight, We is the weight (%) at 600 ℃ )being)
또한, 상기 TGA 프로파일 완화제는 전극용 페이스트 전체 총 100중량에 대하여 0.5 내지 15 중량부 포함되는 것을 특징으로 하는 태양전지 전극용 페이스트를 제공한다.In addition, the TGA profile relaxant provides a solar cell electrode paste, characterized in that 0.5 to 15 parts by weight based on the total 100 weight of the electrode paste.
또한, 상기 TGA 프로파일 완화제는 전극용 페이스트의 TGA 프로파일이 550℃에서 D값이 5% 미만이 되도록 하는 것을 특징으로 하는 태양전지 전극용 페이스트를 제공한다.In addition, the TGA profile relaxant provides a solar cell electrode paste, characterized in that the TGA profile of the electrode paste is less than 5% D value at 550 ℃.
또한, 상기 TGA 프로파일 완화제는 폴리우레탄계 또는 폴리아크릴레이트계 고분자 분산제인 것을 특징으로 하는 태양전지 전극용 페이스트를 제공한다.In addition, the TGA profile relaxant provides a solar cell electrode paste, characterized in that the polyurethane-based or polyacrylate-based polymer dispersant.
또한, 상기 TGA 프로파일 완화제는 열에 의해 기화되는 온도가 350℃ 이상인 유기 바인더인 것을 특징으로 하는 태양전지 전극용 페이스트를 제공한다.In addition, the TGA profile relaxant provides a solar cell electrode paste, characterized in that the temperature evaporated by heat is an organic binder of 350 ℃ or more.
본 발명은 또한, 기재 상부에 전면 전극을 구비하고, 기재 하부에 배면 전극을 구비한 태양전지에 있어서, 상기 전면 전극 및 배면 전극 중 적어도 하나는 상기 태양전지 전극용 페이스트를 도포한 후 소성시켜 제조된 것을 특징으로 하는 태양전지를 제공한다.The present invention also provides a solar cell having a front electrode on an upper substrate and a back electrode on a lower substrate, wherein at least one of the front electrode and the rear electrode is manufactured by applying a paste for the solar cell electrode and firing the same. It provides a solar cell characterized in that.
상기의 구성적 특징을 갖는 본 발명은 TGA 프로파일 완화제를 통하여 유기물이 기화되는 온도를 조절할 뿐만 아니라, 유기물의 기화 속도를 조절하여, 탈바인딩 공정이 수초에 지나지 않아도, 안정적으로 기판과 전극의 부착을 유도하여 접촉저항을 향상시킬 수 있어 고효율 태양전지 제조에 유리한 전극용 페이스트 및 이를 사용하여 제조된 태양전지를 제공할 수 있다. The present invention having the above constitutive features not only controls the temperature at which the organic matter is vaporized through the TGA profile relaxant, but also regulates the vaporization rate of the organic matter, thereby stably adhering the substrate and the electrode even if the debinding process is only a few seconds. By inducing the contact resistance can be improved to provide an electrode paste advantageous for the production of high efficiency solar cell and a solar cell manufactured using the same.
도 1은 종래의 태양전지의 단면 개략도,1 is a cross-sectional schematic diagram of a conventional solar cell,
도 2는 본 발명에 따른 제조예 1의 전극 소성 후의 SEM 사진,2 is a SEM photograph after the electrode firing of Preparation Example 1 according to the present invention,
도 3은 비교제조예 1의 전극 소성 후의 SEM 사진이다.3 is an SEM photograph after electrode firing in Comparative Production Example 1. FIG.
이하에서는 도면 및 실시예를 통하여 본 발명을 보다 상세히 설명하기로 한다. 하기의 설명은 본 발명의 구체적 일례에 대한 것이므로, 비록 단정적, 한정적 표현이 있더라도 특허청구범위로부터 정해지는 권리범위를 제한하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the drawings and embodiments. The following descriptions are for specific examples of the present invention, but are not intended to limit the scope of the rights set forth in the claims, even if there is an assertive or limited expression.
본 발명은 도전성 금속 분말, 유리 프릿, 유기 비히클 및 특정 조건을 만족시키는 TGA 프로파일 완화제를 포함하여 이루어진 태양전지 전극용 페이스트를 제공한다.The present invention provides a paste for a solar cell electrode comprising a conductive metal powder, a glass frit, an organic vehicle, and a TGA profile relaxant that satisfies certain conditions.
이하 각 성분을 구체적으로 설명한다.Each component is demonstrated concretely below.
<도전성 금속 분말><Conductive Metal Powder>
도전성 금속 분말로는 은 분말, 구리분말, 니켈 분말, 알루미늄 분말 등이 사용될 수 있는데, 전면 전극의 경우 은 분말이 주로 사용된다. 이하에서는 편의상 은 분말을 예로 들어 도전성 금속재료에 대해 설명한다. As the conductive metal powder, silver powder, copper powder, nickel powder, aluminum powder, or the like may be used. For the front electrode, silver powder is mainly used. For convenience, the conductive metal material will be described using silver powder as an example.
은 분말은 평균입경은 0.5 ~ 5㎛이며, 그 형상이 구상, 침상, 판상 그리고 무정상 중 적어도 1종 이상일 수 있다. 은 분말의 평균입경은 페이스트화 용이성 및 소성시 치밀도를 고려할 때 0.5㎛ 내지 5㎛이 바람직하다. 그리고, 은 분말의 함량은 인쇄시 형성되는 전극 두께 및 전극의 선저항을 고려할 때 전극용 페이스트 조성물 총중량을 기준으로 60 내지 90 중량%가 바람직하다.Silver powder has an average particle diameter of 0.5 to 5㎛, the shape may be at least one or more of spherical, needle-like, plate-like and amorphous. The average particle diameter of the silver powder is preferably 0.5 μm to 5 μm in consideration of ease of pasting and density at firing. In addition, the content of the silver powder is preferably 60 to 90% by weight based on the total weight of the electrode paste composition in consideration of the electrode thickness and the wire resistance formed during printing.
한편, 도전성 금속 분말은 일반적으로 입경이 작아야 효율면에서 유리한 것으로 알려져 있다. 그러나 도전성 금속 분말의 입경이 작을 경우 치밀도가 높아 유기물이 기화되어 날라가는 것을 방해하고 이로 인하여 전극과 기판간의 들뜸 현상이 발생하게 된다. 이러한 현상으로 인해 도전성 금속 분말의 입경을 작게 하는 것에 한계가 있었다. 본 발명에 따른 TGA 프로파일 완화제는 들뜸 현상을 감소시킬 수 있으므로 도전성 금속 분말의 입경을 보다 더 작게 가져갈 수 있는 장점이 있다. On the other hand, conductive metal powder is generally known to be advantageous in terms of efficiency when the particle size is small. However, when the particle diameter of the conductive metal powder is small, the density is high, which prevents the organic material from vaporizing and flying away, thereby causing the phenomenon of lifting between the electrode and the substrate. Due to this phenomenon, there is a limit to reducing the particle diameter of the conductive metal powder. Since the TGA profile relaxant according to the present invention can reduce the lifting phenomenon, there is an advantage that the particle diameter of the conductive metal powder can be made smaller.
<유기 비히클><Organic vehicle>
유기 비히클에는 제한되지 않으나 유기 바인더와 용제 등이 포함될 수 있다.본 발명의 실시예에 따른 전극용 페이스트 조성물에 사용되는 바인더는 제한되지 않으나 셀룰로오스 에스테르계 화합물로 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트, 셀룰로오스 에테르 화합물로는 에틸 셀룰로오스, 메틸 셀룰로오스, 하이드록시 플로필 셀룰로오스, 하이드록시 에틸 셀룰로오스, 하이드록시 프로필 메틸 셀룰로오스, 하이드록시 에틸 메틸 셀룰로오스, 아크릴계 화합물로는 폴리 아크릴아미드, 폴리 메타 아크릴레이트, 폴리 메틸 메타 아크릴레이트, 폴리 에틸 메타 아크릴레이트 비닐계로는 폴리비닐 부티랄, 폴리비닐 아세테이트 그리고 폴리비닐 알코올중 적어도 1종 이상 선택되어 사용될 수 있다. 상기 아크릴계 화합물의 분자량은 5,000 내지 50,000인 것이 바람직하다. The organic vehicle may include, but is not limited to, an organic binder, a solvent, and the like. The binder used in the electrode paste composition according to the embodiment of the present invention is not limited, but a cellulose ester-based compound may be used as cellulose acetate, cellulose acetate butylate, or cellulose ether. Compounds include ethyl cellulose, methyl cellulose, hydroxy flophyll cellulose, hydroxy ethyl cellulose, hydroxy propyl methyl cellulose, hydroxy ethyl methyl cellulose, and polyacrylamide, poly methacrylate, and poly methyl methacrylate. The polyethyl methacrylate vinyl may be selected from at least one selected from polyvinyl butyral, polyvinyl acetate, and polyvinyl alcohol. It is preferable that the molecular weight of the said acryl-type compound is 5,000-50,000.
조성물의 희석을 위해 사용되는 용제로서는 알파-터피네올, 텍사놀, 디옥틸 프탈레이트, 디부틸 프탈레이트, 시클로헥산, 헥산, 톨루엔, 벤질알코올, 디옥산, 디에틸렌글리콜, 에틸렌 글리콜 모노 부틸 에테르, 에틸렌 글리콜 모노 부틸 에테르 아세테이트, 디에틸렌 글리콜 모노 부틸 에테르, 디에틸렌 글리콜 모노 부틸 에테르 아세테이트, 등으로 이루어진 화합물 중에서 적어도 1종 이상 선택되어 사용되는 것이 좋다. Solvents used for dilution of the composition include alpha-terpineol, texanol, dioctyl phthalate, dibutyl phthalate, cyclohexane, hexane, toluene, benzyl alcohol, dioxane, diethylene glycol, ethylene glycol mono butyl ether, ethylene At least one compound selected from the group consisting of glycol mono butyl ether acetate, diethylene glycol mono butyl ether, diethylene glycol mono butyl ether acetate, and the like is preferably used.
<유리 프릿><Glass frit>
사용되는 유리 프릿은 제한되지 않는다. 유연 유리 프릿뿐만 아니라 무연 유리 프릿도 사용 가능하다. 그 조성이나 입경, 형상에 있어서도 특별히 제한을 두지 않는다. 바람직하기로는 유리 프릿의 평균 입경은 0.5 ~ 5㎛ 이며, 그 성분이, PbO 43 ~ 91 wt%, SiO2 21 wt% 이하, B2O3+Bi2O3 25 wt%이하, Al2O3 7wt% 이하, ZnO 20 wt% 이하, Na2O+K2O+Li2O 15 wt% 이하, BaO+CaO+MgO+SrO 15 wt% 이하인 유리분말중 적어도 1종 이상인 것이 바람직하며, 유리 연화온도가 320 ~ 520℃, 열팽창 계수가 62 ~ 110 × 10-7/℃ 인 것이 바람직하다. 유리 프릿의 함량은 도전성 페이스트 조성물 총중량을 기준으로 1 내지 10중량%가 바람직한데, 1 중량% 미만이면 불완전 소성이 이루어져 전기 비저항이 높아질 우려가 있고, 10 중량% 초과하면 은 분말의 소성체 내에 유리 성분이 너무 많아져 전기 비저항이 역시 높아질 우려가 있다. The glass frit used is not limited. Lead-free glass frits can be used as well as leaded glass frits. There is no restriction | limiting in particular also about the composition, particle diameter, and shape. Preferably, the average particle diameter of the glass frit is 0.5 to 5 µm, and the components thereof are PbO 43 to 91 wt%, SiO2 21 wt% or less, B2O3 + Bi2O3 25 wt% or less, Al2O3 7 wt% or less, ZnO 20 wt% or less , Na2O + K2O + Li2O 15 wt% or less, BaO + CaO + MgO + SrO is preferably at least one or more of the glass powders, glass softening temperature is 320 ~ 520 ℃, thermal expansion coefficient is 62 ~ 110 × 10 It is preferable that it is -7 / degreeC. The content of the glass frit is preferably 1 to 10% by weight based on the total weight of the conductive paste composition. If the content is less than 1% by weight, incomplete firing may occur to increase the electrical resistivity. There are too many components, and there exists a possibility that an electrical resistivity may also become high.
<TGA 프로파일 완화제><TGA profile relaxant>
TGA 프로파일 완화제는 전극용 페이스트의 TGA 프로파일에 있어서, 다음의 식 1을 만족시키면서 전극용 페이스트의 TGA 프로파일을 완화시키는 물질을 말한다. 이러한 조건을 만족시키는 물질이라면 제한되지 않고 첨가될 수 있다. The TGA profile relaxant refers to a substance that relaxes the TGA profile of the electrode paste while satisfying the following formula 1 in the TGA profile of the electrode paste. Any material that satisfies these conditions can be added without limitation.
<식 1><Equation 1>
전극용 페이스트의 TGA 프로파일에서, 300℃에서 D값이 15% 이상이고, 270 ~ 550℃ 범위 중 임의의 범위에서 |△W/0.01△T|의 값이 6 %/0.01℃ 이하(단, △T는 20℃ 이상임).In the TGA profile of the electrode paste, the value of D is 15% or more at 300 ° C., and the value of | ΔW / 0.01ΔT | is 6% / 0.01 ° C. or less in any of the ranges of 270 to 550 ° C. T is at least 20 ° C).
D = (Wt - We)/(Wi - We)*100(%)D = (Wt-We) / (Wi-We) * 100 (%)
(D는 특정 온도에서의 유기물 잔존량을 나타내는 수치로서, TGA 프로파일에서 Wt는 특정 온도 t에서의 중량(%), Wi는 처음 중량으로서 100 중량(%), We는 600℃에서의 중량(%)임)(D is a numerical value representing the remaining amount of organic matter at a specific temperature, in the TGA profile, Wt is the weight (%) at a specific temperature t, Wi is 100 weight (%) as the initial weight, We is the weight (%) at 600 ℃ )being)
300℃에서 D값이 15% 미만인 경우에는 소성 초기에 유기물의 기화가 집중되어 일어나게 되어 문제되며, |△W/0.01△T|의 값이 6 %/0.01℃를 초과할 경우에는 유기물의 기화가 급격하게 일어나 전극과 기판간에 들뜸 현상이 발생할 수 있어 효율을 떨어뜨린다.If the D value is less than 15% at 300 ° C, vaporization of organic matter occurs at the initial stage of firing, which is a problem. If the value of | △ W / 0.01 △ T | exceeds 6% / 0.01 ° C, the vaporization of organic matter is It may happen suddenly, causing a phenomenon of lifting between the electrode and the substrate, thereby decreasing efficiency.
TGA 프로파일 완화제는 더 바람직하기로는 550℃에서 D값이 5% 미만인 것이 좋다. 이는 소성 후의 잔탄량과 관련된 수치로서, 550℃에서 D값이 5% 이상인 경우에는 소성 후에 유기물의 잔탄량이 허용범위를 초과하여 전극의 불순물로 작용하게 되고 이 때문에 선저항 등이 증가하는 문제점이 있다.More preferably, the TGA profile relaxant has a D value of less than 5% at 550 ° C. This is a value related to the amount of residual coal after firing, and when the D value is 5% or more at 550 ° C., the residual coal residue of the organic matter after firing exceeds the allowable range and acts as an impurity in the electrode, and thus there is a problem in that the line resistance increases. .
TGA 프로파일 완화제는 전극용 페이스트의 TGA 프로파일이 급격하게 떨어지는 것을 완화시키는 역할을 하는 물질로서, 상기의 식을 만족시키는 것이라면 종류에 제한되지 않고 사용될 수 있다. TGA 프로파일 완화제는 전극용 페이스트의 성분 중 하나인 유기 바인더일 수 있으며, 부가적 기능을 위해 첨가하는 각종 첨가제 중에 하나일 수 있으며, 오직 TGA 프로파일 완화를 위해서 특별하게 첨가하는 성분일 수도 있다. The TGA profile relaxant is a material that serves to mitigate the sharp fall of the TGA profile of the electrode paste, and may be used without limitation as long as it satisfies the above formula. The TGA profile relaxant may be an organic binder which is one of the components of the electrode paste, and may be one of various additives added for additional functions, and may be a component specifically added only for TGA profile relaxation.
유기 바인더 역할을 겸할 수 있는 TGA 프로파일 완화제의 일례로서, 300℃ 이상에서 기화가 일어나는 유기 고분자를 들 수 있다. 그 예로서, 폴리비닐부티랄이 있다. 폴리비닐아세테이트를 이용하여 폴리비닐알코올을 제조한 다음 알데하이드를 반응시켜 제조하므로, 비닐아세테이트 그룹과 비닐알코올 그룹이 소량 존재한다. 폴리비닐부티랄의 중량 평균 분자량은 5,000 내지 1,000,000의 범위의 것이 적절하며, 바람직하게는, 10,000 내지 500,000인 것이 좋다. 폴리비닐부티랄 바인더 고분자의 사용량은 1 내지 15 중량%인 것이 바람직하다.As an example of the TGA profile relaxed agent which can also serve as an organic binder, an organic polymer in which vaporization occurs at 300 ° C or more can be given. An example is polyvinyl butyral. Since polyvinyl alcohol is prepared using polyvinyl acetate and then reacted with aldehyde, a small amount of vinyl acetate group and vinyl alcohol group are present. The weight average molecular weight of the polyvinyl butyral is suitably in the range of 5,000 to 1,000,000, preferably 10,000 to 500,000. It is preferable that the usage-amount of a polyvinyl butyral binder polymer is 1-15 weight%.
아크릴계 바인더로서는 분자량이 100,000 이상인 아크릴레이트계 바인더 중에서 기화가 특히 고온에서 일어나는 바인더를 선택할 수 있으며, 그 예로서, Elvacite 2045(Dupont사 제품) 등을 들 수 있다.As an acryl-type binder, the binder which vaporization takes place especially at high temperature can be selected from the acrylate type binder whose molecular weight is 100,000 or more, As an example, Elvacite 2045 (made by Dupont) etc. is mentioned.
셀룰로오스계 바인더로서는 에틸셀룰로오스(EC) 등을 들 수 있다. 분자량은 큰 것이 기화가 고온에서 일어나 바람직하다. Ethyl cellulose (EC) etc. are mentioned as a cellulose binder. The larger the molecular weight is, the higher the vaporization is at high temperature.
TGA 프로파일 완화를 위한 유기 바인더를 설계할 수도 있다. 하나의 방법으로서, 이론 Tg가 높은 모노머들을 잘 조합하여 고분자를 합성할 경우 고온에서 기화가 일어나는 유기 바인더를 얻을 수 있다.Organic binders can also be designed for TGA profile relaxation. As one method, it is possible to obtain an organic binder in which vaporization occurs at a high temperature when synthesizing a polymer by combining the monomers having a high theoretical Tg well.
TGA 프로파일 완화제의 또 다른 예로서, 고분자 분산제를 들 수 있다. 일부 고분자 분산제는 TGA 프로파일 완화의 역할을 하면서 전극용 페이스트의 분산성을 향상시킬 수 있다. 더 나아가 습윤성도 향상시킬 수 있는 것도 존재한다. 일례로서, 폴리우레탄계 고분자 분산제, 폴리아크릴레이트계 고분자 분산제 등을 들 수 있다.Another example of a TGA profile modifier is a polymeric dispersant. Some polymer dispersants can improve the dispersibility of the electrode paste while acting to relax the TGA profile. Furthermore, there are also things that can improve wettability. As an example, a polyurethane type polymer dispersing agent, a polyacrylate type polymer dispersing agent, etc. are mentioned.
본 발명에 의한 전극용 페이스트 조성물은 필요에 따라 통상적으로 알려져 있는 첨가제, 예를 들면, 분산제, 탈포제, 레벨링제 등을 더 포함할 수 있다. The paste composition for electrodes according to the present invention may further include additives commonly known as necessary, for example, a dispersant, a defoaming agent, a leveling agent, and the like.
또한 본 발명은 상기 태양전지 전극용 페이스트를 기재 위에 도포하고, 건조 및 소성하는 것을 특징으로 하는 태양전지의 전극 형성 방법 및 상기 방법에 의하여 제조된 태양전지 전극을 제공한다. 본 발명의 태양전지 전극 형성방법에서 상기 태양전지 전극 형성용 페이스트를 사용하는 것을 제외하고, 기재, 인쇄, 건조 및 소성은 통상적으로 태양전지의 제조에 사용되는 방법들이 사용될 수 있음은 물론이다. 일예로 상기 기재는 실리콘 웨이퍼일 수 있으며, 본 발명의 페이스트로 제조되는 전극은 전면의 핑거 전극, 버스바 전극 또는 배면 전극일 수 있으며, 상기 인쇄는 스크린 인쇄, 옵셋 인쇄일 수 있으며, 상기 건조는 90 내지 250 ℃에서 이루어 질 수 있으며, 상기 소성은 600 내지 950 ℃에서 이루어질 수 있다. 바람직하기로는 상기 소성이 800 내지 950 ℃, 더욱 바람직하게는 850 내지 900 ℃에서 5초 내지 1분간 이루어지는 고온/고속 소성을 하는 것이 좋으며, 상기 인쇄는 20 내지 60 ㎛의 두께로 인쇄를 하는 것이 좋다. 구체적인 일예로 대한민국 공개특허공보 제10-2006-0108550호, 제10-2006-0127813호, 일본국 공개특허공보 특개2001-202822 및 특개2003-133567에 기재된 태양전지의 구조 및 이의 제조방법을 들 수 있다. The present invention also provides a method for forming an electrode of a solar cell and a solar cell electrode produced by the method, characterized in that the paste for the solar cell electrode is applied on a substrate, dried and baked. Except for using the solar cell electrode forming paste in the method of forming a solar cell electrode of the present invention, the substrate, printing, drying and firing is a general method that can be used for the manufacture of a solar cell, of course. For example, the substrate may be a silicon wafer, and the electrode made of the paste of the present invention may be a front finger electrode, a busbar electrode, or a back electrode, and the printing may be screen printing or offset printing. It may be made at 90 to 250 ℃, the firing may be made at 600 to 950 ℃. Preferably, the high-temperature / high speed firing is performed at 800 to 950 ° C., more preferably at 850 to 900 ° C. for 5 seconds to 1 minute, and the printing is preferably performed at a thickness of 20 to 60 μm. . As a specific example, the structure of the solar cell described in Korean Unexamined-Japanese-Patent No. 10-2006-0108550, 10-2006-0127813, Unexamined-Japanese-Patent No. 2001-202822, and 2003-133567, and its manufacturing method are mentioned. have.
<실시예><Example>
페이스트 조성물의 제조Preparation of Paste Composition
하기 표 1에 나타낸 바와 같은 조성으로 바인더, 분산제, 레벨링제, 유리 프릿(평균 입경 1㎛) 등을 넣고 삼본밀을 사용하여 분산한 후, 실버 파우더(구상, 평균 입경 1㎛)를 혼합하고 또한 삼본밀을 사용하여 분산하였다. 그 뒤 감압 탈포하고 도전성 페이스트를 제조하였다. A binder, a dispersant, a leveling agent, a glass frit (average particle diameter 1 μm) and the like were dispersed in a composition as shown in Table 1 below, and dispersed using a three-bone mill, followed by mixing silver powder (spherical shape, average particle diameter of 1 μm). It was dispersed using three bone mill. After that, degassed under reduced pressure to prepare a conductive paste.
제조된 도전성 페이스트를 TGA Q500 V6.3 Build 189 열중량분석기를 이용하여, 질소 분위기하 60ml/min 유량, 승온 속도 10℃/min의 조건으로, 실온으로부터 600℃까지 열중량분석을 행했다. 열중량분석의 결과로 나온 TGA 데이타에서 300℃에서 D값, 270 ~ 550℃ 범위 중 임의의 범위에서 |△W/0.01△T|의 최대값(%/0.01℃), 550℃에서의 D값을 특정하여 표 1에 나타내었다. The prepared electrically conductive paste was thermogravimetrically analyzed from room temperature to 600 degreeC using the TGA Q500 V6.3 Build 189 thermogravimetric analyzer on condition of 60 ml / min flow rate and the temperature increase rate of 10 degree-C / min in nitrogen atmosphere. In the TGA data resulting from the thermogravimetric analysis, the D value at 300 ° C, the maximum value of | ΔW / 0.01ΔT | in any of the ranges from 270 to 550 ° C (% / 0.01 ° C), and the D value at 550 ° C. It is shown in Table 1 by specifying.
표 1
구분 제조예 1 제조예 2 제조예 3 제조예 4 제조예 5 비교제조예1 비교제조예2
ECa 1 1 1 1
PVBa 1
NCa 1
잔탄량문제바인더 1
부착증진바인더a 1 1 1 1 1 1 1
EFKA-4300 1.8 1.8 1.8
EFKA-5244 1.8
KD2 1.8
저분자분산제 1.8 1.8
용제 1 3.4 3.4 3.4 3.4 3.4 3.4 3.4
용제 2 2 2 2 2 2 2 2
유동성 첨가제 1.3 1.3 1.3 1.3 1.3 1.3 1.3
레벨링제 0.5 0.5 0.5 0.5 0.5 0.5 0.5
실버 파우더 78 78 78 78 78 78 78
유리 프릿 11 11 11 11 11 11 11
D(at 300℃) 20 23 25 26 16 9 32
|△W/0.01△T| 4.8 3.9 5.6 4.3 5.7 8.2 3.1
D(at 550℃) 1 3 1 2 1 1 6
Table 1
division Preparation Example 1 Preparation Example 2 Preparation Example 3 Preparation Example 4 Preparation Example 5 Comparative Production Example 1 Comparative Production Example 2
EC a One One One One
PVB a One
NC a One
Binder Problem Problem Binder One
Adhesion Promoting Binder a One One One One One One One
EFKA-4300 1.8 1.8 1.8
EFKA-5244 1.8
KD2 1.8
Low Molecular Dispersant 1.8 1.8
Solvent 1 3.4 3.4 3.4 3.4 3.4 3.4 3.4
Solvent 2 2 2 2 2 2 2 2
Fluid additives 1.3 1.3 1.3 1.3 1.3 1.3 1.3
Leveling agent 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Silver powder 78 78 78 78 78 78 78
Glass frit 11 11 11 11 11 11 11
D (at 300 ° C) 20 23 25 26 16 9 32
| △ W / 0.01 △ T | 4.8 3.9 5.6 4.3 5.7 8.2 3.1
D (at 550 ° C) One 3 One 2 One One 6
a: 고형분 기준a: solid content basis
<실험예> Cell의 제조 및 특성 테스트Experimental Example Preparation and Characterization of Cell
상기 제조예 1 내지 5 및 비교제조예 1 내지 2에서 제조한 페이스트를 Wafer의 전면에 스크린 프린팅 기법으로 패턴 인쇄하고 하고, 열풍식 건조로를 사용하여 150 ℃에서 6분 동안 건조시켰다. 이후 Wafer의 후면에 Al paste를 인쇄한 후 동일한 방법으로 건조하였다. 상기 과정으로 형성된 Cell을 벨트형 소성로를 사용하여 500 내지 900 ℃사이로 20초에서 30초간 소성을 행하였으며, 이렇게 제조 완료된 Cell은 태양전지효율측정장비(EndeasI社, Quicksun120A)를 사용하여, Isc, Voc, Fill Factor, 효율성능을 관찰하여 비교제조예의 값 100을 기준으로 상대적 값을 표시하였다. 또한 Cell 표면의 거침 정도는 육안으로 관찰하였으며, 표면에 거친 부분이 있는 경우는 "거침", 표면에 거친 부분이 없는 경우는 "양호"로 표시하였다. 또한, 전자현미경사진(SEM)을 통해 기판과 전극과의 들뜸 정도(컨택 특성)를 확인하였으며 대표적으로 제조예 1과 비교제조예 1의 SEM 사진을 각각 도 2 및 도 3에 나타내었다. The pastes prepared in Preparation Examples 1 to 5 and Comparative Preparation Examples 1 to 2 were pattern printed on the front surface of the wafer by screen printing, and dried at 150 ° C. for 6 minutes using a hot air drying furnace. After printing the Al paste on the back of the wafer and dried in the same way. The cell formed by the above process was calcined for 20 seconds to 30 seconds between 500 to 900 ° C. using a belt-type kiln, and the cell thus manufactured was manufactured using solar cell efficiency measuring equipment (EndeasI, Quicksun120A), Isc, Voc , Fill Factor, and efficiency were observed, and relative values were indicated based on the value of Comparative Production Example 100. In addition, the roughness of the surface of the cell was visually observed, and the roughness of the surface was marked with "roughness", and the roughness of the surface was marked with "good". In addition, the degree of lifting (contact characteristics) between the substrate and the electrode was confirmed through electron micrographs (SEM), and representative SEM images of Preparation Example 1 and Comparative Preparation Example 1 are shown in FIGS. 2 and 3, respectively.
표 2
구분 제조예 1 제조예 2 제조예 3 제조예 4 제조예 5 비교제조예1 비교제조예2
Isc 103.0 102.1 101.8 102.6 101.6 100.0 100.7
Rs 78.3 87.0 82.6 84.8 78.3 100.0 128.3
Rsh 157.1 180.0 145.7 157.1 151.4 100.0 157.1
Voc 101.2 102.4 100.8 100.8 100.8 100.0 100.0
Fill Factor 102.6 101.9 101.5 102.2 101.1 100.0 100.4
효율 105.5 103.2 103.7 104.6 102.3 100.0 100.9
표면 거침 양호 양호 양호 양호 양호 거침 양호
TABLE 2
division Preparation Example 1 Preparation Example 2 Preparation Example 3 Preparation Example 4 Preparation Example 5 Comparative Production Example 1 Comparative Production Example 2
Isc 103.0 102.1 101.8 102.6 101.6 100.0 100.7
Rs 78.3 87.0 82.6 84.8 78.3 100.0 128.3
Rush 157.1 180.0 145.7 157.1 151.4 100.0 157.1
Voc 101.2 102.4 100.8 100.8 100.8 100.0 100.0
Fill factor 102.6 101.9 101.5 102.2 101.1 100.0 100.4
efficiency 105.5 103.2 103.7 104.6 102.3 100.0 100.9
Surface roughness Good Good Good Good Good coarseness Good
표 2에 나타난 바와 같이, 본 발명의 제조예들은 비교제조예 1에 비하여 시리즈 저항이 크게 감소하였으며, Fill Factor와 효율이 좋아진 것을 확인할 수 있으며, 비교제조예 1의 경우 |△W/0.01△T|값이 크고, D(at 300℃) 값이 작아서 급격하게 유기물이 제거됨으로 인해 표면이 거친 것을 확인하였다. 또한 비교제조예 2의 경우에는 D(at 550℃)의 값이 커서 잔탄량이 많으며 이에 따라 시리즈 저항이 급격하게 나빠지는 것을 확인할 수 있다.As shown in Table 2, the preparation examples of the present invention showed that the series resistance was greatly reduced compared to Comparative Preparation Example 1, and the Fill Factor and the efficiency were improved, and in Comparative Preparation Example 1, ΔW / 0.01ΔT It was confirmed that the surface was rough because the value was large and the D (at 300 ° C.) value was small and the organic matter was rapidly removed. In addition, in the case of Comparative Production Example 2, the value of D (at 550 ° C.) is large, and thus the amount of residual coal is large.
이로써, 태양전지 전극용 도전성 페이스트의 TGA 데이타에서, |△W/0.01△T|와 D(at 300℃), D(at 550℃) 값은 소성 공정에서 형성되는 전극의 미세구조에 영향을 주는 인자임이 밝혀졌으며, 전기적 특성과 밀접한 관련이 있음을 확인할 수 있다. Thus, in the TGA data of the conductive paste for solar cell electrodes, | ΔW / 0.01ΔT | and D (at 300 ° C) and D (at 550 ° C) values affect the microstructure of the electrode formed in the firing process. It turned out to be a factor, and it is confirmed that it is closely related to the electrical properties.
또한, 도 2와 도 3의 사진으로 알 수 있는 바와 같이, 제조예 1의 경우 전극과 기판간의 컨택이 매우 좋은 것을 알 수 있으며, 이에 반하여 비교제조예 1의 경우 전극과 기판간에 공극이 많아 컨택이 불량하고 이에 따라 저항이 증가하고 효율이 떨어지는 문제점이 존재하는 것을 알 수 있다.In addition, as can be seen in the photo of Figure 2 and 3, in the case of Preparation Example 1 it can be seen that the contact between the electrode and the substrate is very good, on the other hand, in Comparative Preparation Example 1 there is a lot of voids between the electrode and the substrate contact It can be seen that there is a problem that this is poor and thereby the resistance increases and the efficiency decreases.
상기의 설명은 본 발명의 이해를 돕기 위한 일례이므로, 본 발명의 기술적 사상의 범위내에서 가할 수 있는 구성의 변형, 치환, 수정, 생략 등은 특허청구범위에 의해 정해지는 본 발명의 권리범위에 포함된다.Since the above description is an example for better understanding of the present invention, modifications, substitutions, modifications, omissions, and the like which can be added within the scope of the technical idea of the present invention are within the scope of the present invention defined by the claims. Included.
상기의 구성적 특징을 갖는 본 발명은 TGA 프로파일 완화제를 통하여 안정적으로 기판과 전극의 부착을 유도하여 접촉저항을 향상시킬 수 있어 고효율 태양전지 제조에 유리한 전극용 페이스트 및 이를 사용하여 제조된 태양전지를 제공할 수 있으므로 산업적으로 매우 유용하다.The present invention having the above-described structural characteristics can improve the contact resistance by inducing adhesion of the substrate and the electrode stably through the TGA profile relaxant, which is advantageous for manufacturing a high efficiency solar cell electrode paste and a solar cell manufactured using the same. It can be very useful industrially.

Claims (12)

  1. 도전성 금속 분말, 유리 프릿, 유기 비히클 및 TGA 프로파일 완화제를 포함하여 이루어진 태양전지 전극용 페이스트.A paste for solar cell electrodes comprising a conductive metal powder, a glass frit, an organic vehicle, and a TGA profile relaxant.
  2. 제1항에 있어서, 상기 TGA 프로파일 완화제는 하기의 식을 만족하는 것을 특징으로 하는 태양전지 전극용 페이스트.The paste for solar cell electrodes according to claim 1, wherein the TGA profile relaxant satisfies the following formula.
    <식 1><Equation 1>
    전극용 페이스트의 TGA 프로파일이 300℃에서 D값이 15% 이상이고, 270 ~ 550℃ 범위 중 임의의 범위에서 |△W/0.01△T|의 값이 6 %/0.01℃ 이하(단, △T는 20℃ 이상임)가 되도록 TGA 프로파일을 완화시키는 화합물.The TGA profile of the electrode paste has a D value of 15% or more at 300 ° C, and a value of | ΔW / 0.01ΔT | is 6% / 0.01 ° C or less in any of the ranges of 270 to 550 ° C. Is at least 20 ° C.).
    D = (Wt - We)/(Wi - We)*100(%)D = (Wt-We) / (Wi-We) * 100 (%)
    (D는 특정 온도에서의 유기물 잔존량을 나타내는 수치로서, TGA 프로파일에서 Wt는 특정 온도 t에서의 중량(%), Wi는 처음 중량으로서 100 중량(%), We는 600℃에서의 중량(%)임)(D is a numerical value representing the remaining amount of organic matter at a specific temperature, in the TGA profile, Wt is the weight (%) at a specific temperature t, Wi is 100 weight (%) as the initial weight, We is the weight (%) at 600 ℃ )being)
  3. 제1항에 있어서, 상기 TGA 프로파일 완화제는 전극용 페이스트 전체 총 100중량에 대하여 0.5 내지 15 중량부 포함되는 것을 특징으로 하는 태양전지 전극용 페이스트.The paste for solar cell electrodes according to claim 1, wherein the TGA profile relaxant is contained in an amount of 0.5 to 15 parts by weight based on a total of 100 parts by weight of the electrode paste.
  4. 제2항에 있어서, 상기 TGA 프로파일 완화제는 전극용 페이스트의 TGA 프로파일이 550℃에서 D값이 5% 미만이 되도록 하는 것을 특징으로 하는 태양전지 전극용 페이스트.The paste for solar cell electrodes according to claim 2, wherein the TGA profile relaxant has a D value of less than 5% at 550 ° C. of the TGA profile of the electrode paste.
  5. 제1항에 있어서, 상기 TGA 프로파일 완화제는 폴리우레탄계 또는 폴리아크릴레이트계 고분자 분산제인 것을 특징으로 하는 태양전지 전극용 페이스트.The paste for solar cell electrodes according to claim 1, wherein the TGA profile relaxant is a polyurethane-based or polyacrylate-based polymer dispersant.
  6. 제1항에 있어서, 상기 TGA 프로파일 완화제는 열에 의해 기화되는 온도가 350℃ 이상인 유기 바인더인 것을 특징으로 하는 태양전지 전극용 페이스트.The paste for solar cell electrodes according to claim 1, wherein the TGA profile relaxant is an organic binder having a temperature vaporized by heat of 350 ° C or higher.
  7. 기재 상부에 전면 전극을 구비하고, 기재 하부에 배면 전극을 구비한 태양전지에 있어서, In a solar cell having a front electrode on the upper substrate, and a back electrode on the lower substrate,
    상기 전면 전극 및 배면 전극 중 적어도 하나는, 도전성 금속 분말, 유리 프릿, 유기 비히클 및 TGA 프로파일 완화제를 포함하여 이루어진 태양전지 전극용 페이스트를 도포한 후 소성시켜 제조된 것을 특징으로 하는 태양전지.At least one of the front electrode and the back electrode is a solar cell, characterized in that produced by applying a paste for a solar cell electrode comprising a conductive metal powder, a glass frit, an organic vehicle, and a TGA profile relaxant.
  8. 제7항에 있어서, 상기 TGA 프로파일 완화제는 하기의 식을 만족하는 것을 특징으로 하는 태양전지.The solar cell of claim 7, wherein the TGA profile relaxant satisfies the following formula.
    <식 1><Equation 1>
    전극용 페이스트의 TGA 프로파일이 300℃에서 D값이 15% 이상이고, 270 ~ 550℃ 범위 중 임의의 범위에서 |△W/0.01△T|의 값이 6 %/0.01℃ 이하(단, △T는 20℃ 이상임)가 되도록 TGA 프로파일을 완화시키는 화합물.The TGA profile of the electrode paste has a D value of 15% or more at 300 ° C, and a value of | ΔW / 0.01ΔT | is 6% / 0.01 ° C or less in any of the ranges of 270 to 550 ° C. Is at least 20 ° C.).
    D = (Wt - We)/(Wi - We)*100(%)D = (Wt-We) / (Wi-We) * 100 (%)
    (D는 특정 온도에서의 유기물 잔존량을 나타내는 수치로서, TGA 프로파일에서 Wt는 특정 온도 t에서의 중량(%), Wi는 처음 중량으로서 100 중량(%), We는 600℃에서의 중량(%)임)(D is a numerical value representing the remaining amount of organic matter at a specific temperature, in the TGA profile, Wt is the weight (%) at a specific temperature t, Wi is 100 weight (%) as the initial weight, We is the weight (%) at 600 ℃ )being)
  9. 제7항에 있어서, 상기 TGA 프로파일 완화제는 전극용 페이스트 전체 총 100중량에 대하여 0.5 내지 15 중량부 포함되는 것을 특징으로 하는 태양전지.The solar cell according to claim 7, wherein the TGA profile relaxant is contained in an amount of 0.5 to 15 parts by weight based on 100 total weight of the electrode paste.
  10. 제8항에 있어서, 상기 TGA 프로파일 완화제는 전극용 페이스트의 TGA 프로파일이 550℃에서 D값이 5% 미만이 되도록 하는 것을 특징으로 하는 태양전지.The solar cell according to claim 8, wherein the TGA profile relaxant has a D value of less than 5% at a temperature of 550 ° C. of the TGA profile of the electrode paste.
  11. 제7항에 있어서, 상기 TGA 프로파일 완화제는 폴리우레탄계 또는 폴리아크릴레이트계 고분자 분산제인 것을 특징으로 하는 태양전지.The solar cell of claim 7, wherein the TGA profile relaxant is a polyurethane-based or polyacrylate-based polymer dispersant.
  12. 제7항에 있어서, 상기 TGA 프로파일 완화제는 열에 의해 기화되는 온도가 350℃ 이상인 유기 바인더인 것을 특징으로 하는 태양전지.The solar cell of claim 7, wherein the TGA profile relaxant is an organic binder having a temperature of vaporized by heat of 350 ° C. or higher.
PCT/KR2011/002879 2010-04-21 2011-04-21 Electrode paste for solar cell, and solar cell manufactured using same WO2011132962A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0036811 2010-04-21
KR1020100036811A KR20110117390A (en) 2010-04-21 2010-04-21 Electrode paste for solar cell's electrode and solar cell

Publications (2)

Publication Number Publication Date
WO2011132962A2 true WO2011132962A2 (en) 2011-10-27
WO2011132962A3 WO2011132962A3 (en) 2012-03-08

Family

ID=44834664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/002879 WO2011132962A2 (en) 2010-04-21 2011-04-21 Electrode paste for solar cell, and solar cell manufactured using same

Country Status (2)

Country Link
KR (1) KR20110117390A (en)
WO (1) WO2011132962A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2590177B1 (en) * 2011-11-04 2015-08-12 Heraeus Precious Metals North America Conshohocken LLC Organic vehicle for electroconductive paste
KR101974839B1 (en) * 2015-12-15 2019-05-03 삼성에스디아이 주식회사 Composition for forming electrode, electrode manufactured using the same and solar cell
JP6804255B2 (en) 2015-12-15 2020-12-23 三星エスディアイ株式会社Samsung SDI Co., Ltd. Electrode forming composition and electrodes and solar cells manufactured using the composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019069A (en) * 2005-07-05 2007-01-25 Toyo Aluminium Kk Paste composition and solar battery element using it
KR20080099406A (en) * 2007-05-09 2008-11-13 주식회사 동진쎄미켐 A paste for producing electrode of solar cell
KR20090110739A (en) * 2008-04-18 2009-10-22 계명대학교 산학협력단 Printing paste composition for electrode of solar cell and electrode forming method using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019069A (en) * 2005-07-05 2007-01-25 Toyo Aluminium Kk Paste composition and solar battery element using it
KR20080099406A (en) * 2007-05-09 2008-11-13 주식회사 동진쎄미켐 A paste for producing electrode of solar cell
KR20090110739A (en) * 2008-04-18 2009-10-22 계명대학교 산학협력단 Printing paste composition for electrode of solar cell and electrode forming method using the same

Also Published As

Publication number Publication date
WO2011132962A3 (en) 2012-03-08
KR20110117390A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
CN101000935B (en) Aluminum thick film composition, electrode, semiconductor device, and their manufacturing methods
WO2010071363A2 (en) Electrode for a solar cell, manufacturing method thereof, and solar cell
WO2015037933A1 (en) Composition for forming solar cell electrode and electrode manufactured therefrom
EP2250650B1 (en) Aluminum pastes and use thereof in the production of silicon solar cells
WO2018080094A1 (en) Conductive paste for solar cell electrode and solar cell manufactured by using same
WO2013085112A1 (en) Paste composition for solar cell electrode and electrode produced therefrom
WO2017061764A1 (en) Paste composition for solar cell front electrode, and solar cell using same
WO2011046365A2 (en) Silver paste composition and solar cell using same
WO2017175902A1 (en) Rear electrode paste composition for solar cell
WO2011078629A2 (en) Glass frit, paste composition, and solar cell
WO2019088526A1 (en) Conductive paste for solar cell electrode, and solar cell manufactured using same
WO2014098351A1 (en) Composition for forming solar cell electrode and electrode produced from same
WO2016137059A1 (en) Silver paste composition, front electrode for solar cell formed using it, and solar cell employing it
WO2019088525A1 (en) Electroconductive paste for solar cell electrode, and solar cell manufactured using same
WO2014196712A1 (en) Composition for forming electrode of solar cell and electrode formed therefrom
JP2007128872A (en) Aluminum thick film composition, electrode, semiconductor device, and their manufacturing methods
WO2012074314A2 (en) Paste composition for an electrode of a solar cell, method for preparing same, and solar cell
WO2011132962A2 (en) Electrode paste for solar cell, and solar cell manufactured using same
WO2015160066A1 (en) Conductive paste composition and semiconductor device comprising the same
WO2017160074A1 (en) Lead-free electroconductive paste for solar cell
WO2020111900A1 (en) Conductive paste for solar cell electrode, and solar cell manufactured using same
WO2019088520A2 (en) Conductive paste for solar cell electrode, glass frit contained therein, and solar cell
WO2017183881A1 (en) Paste composition for rear surface electrode of solar cell
WO2017074150A1 (en) Electrode paste for solar cell and solar cell prepared by using same
WO2017074151A1 (en) Electrode paste composition for solar cell and solar cell prepared by means of same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11772250

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/03/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11772250

Country of ref document: EP

Kind code of ref document: A2