WO2017160074A1 - Lead-free electroconductive paste for solar cell - Google Patents

Lead-free electroconductive paste for solar cell Download PDF

Info

Publication number
WO2017160074A1
WO2017160074A1 PCT/KR2017/002787 KR2017002787W WO2017160074A1 WO 2017160074 A1 WO2017160074 A1 WO 2017160074A1 KR 2017002787 W KR2017002787 W KR 2017002787W WO 2017160074 A1 WO2017160074 A1 WO 2017160074A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
lead
glass frit
conductive paste
paste composition
Prior art date
Application number
PCT/KR2017/002787
Other languages
French (fr)
Korean (ko)
Inventor
이진권
김진현
박준걸
이혜성
강성학
임종찬
브렌트스미스
Original Assignee
대주전자재료 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대주전자재료 주식회사 filed Critical 대주전자재료 주식회사
Publication of WO2017160074A1 publication Critical patent/WO2017160074A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes

Definitions

  • the present invention relates to a conductive paste composition for solar cells. More specifically, the present invention relates to a lead-free conductive paste composition for a solar cell that does not contain lead, which has excellent adhesiveness and has excellent conversion efficiency and resistance characteristics even though it has a low softening point, thereby improving power generation efficiency.
  • Solar cells generate current and voltage by using the photovoltaic effect of absorbing light energy from solar energy to generate electrons and holes. It has a semiconductor wafer or substrate on which pn junctions are made and an emitter layer. In this case, the emitter is positioned on the light incident surface of the substrate, and a pn junction is formed at the interface between the substrate and the emitter.
  • a front electrode that is energized with the emitter is formed on the emitter, and a rear electrode that is energized with the substrate is formed on the other surface facing the light incident surface.
  • the front electrode is formed through an interfacial reaction with the antireflection film using a conductive paste. That is, a conductive paste is applied to the surface of the antireflection film formed on the semiconductor substrate to form a conductive film having a pattern, and a punch through phenomenon that penetrates the antireflection film through a glass frit during firing is performed. Through the emitter layer.
  • the electrical contact layer of the solar cell is a light incident light is usually present in a grid pattern consisting of a finger bar (bus finger) or bus bar (bus bar).
  • the glass frit decomposes and removes the anti-reflective film under the conductive layer by interfacial reaction during melting to form a front electrode, and simultaneously bonds the front electrode and the semiconductor substrate so that both flow normally in the circuit.
  • the interfacial reaction is a redox reaction, in which some elements are reduced to produce by-products.
  • Conventional glass frit has been used to contain lead in order to lower the softening point, which leads to a large problem in environmental load because lead is left as a by-product by reduction.
  • the present invention has been made to solve the above problems, and an object thereof is to provide a lead-free conductive paste for solar cells that does not contain lead and has a low softening point and excellent adhesive strength.
  • an object of the present invention is to provide a lead-free conductive paste for solar cells that can improve the electrical characteristics of the solar cell, such as conversion efficiency, open voltage, curve factor in the solar cell.
  • the present invention comprises (a) a conductive powder, (b) a glass frit containing TeO 2 , BaO and ZnO and (c) an organic vehicle,
  • the glass frit may further include Li 2 O.
  • the glass frit may further include silver (Ag) oxide or vanadium (V) oxide.
  • the glass frit may have a glass transition temperature (Tg) of 200 to 350 ° C and a softening point (Ts) of 250 to 500 ° C.
  • the present invention also includes (a) a conductive powder, (b) a glass frit containing TeO 2 , BaO and ZnO and (c) an organic vehicle,
  • a lead-free conductive paste composition for a crystalline silicon solar cell front electrode wherein the glass frit does not contain lead (Pb).
  • the glass frit may include 65 to 85% by weight of TeO 2 , 1 to 25% by weight of BaO and 1 to 25% by weight of ZnO. have.
  • the glass frit may include 65 to 85% by weight of TeO 2 , 1 to 25% by weight of BaO and 1 to 25% by weight of ZnO. have.
  • the glass frit may further include Li 2 O.
  • the glass frit may further include silver (Ag) oxide or vanadium (V) oxide.
  • the glass frit may have a glass transition temperature (Tg) of 200 to 350 ° C and a softening point (Ts) of 250 to 500 ° C. have.
  • the glass frit may have an average particle diameter of 0.5 to 5.0 ⁇ m.
  • the composition may include 0.5 to 10 wt% of the total composition of glass frit.
  • the conductive powder is silver, gold, copper, nickel, aluminum, palladium, platinum, chromium, cobalt, tin, zinc, iron, iridium , Rhodium, tungsten, molybdenum and alloys thereof.
  • the conductive powder may be spherical, the average particle diameter of 0.5 to 5 ⁇ m, BET 0.2-0.8m2 / g.
  • the lead-free conductive paste composition for a crystalline silicon solar cell front electrode may be applied to a solar cell having a conventional type or a PERC type (Passivated Emitter and Rear Cell type) structure.
  • PERC type Passivated Emitter and Rear Cell type
  • the lead-free conductive paste for solar cells according to the present invention does not contain lead, so there is no concern about environmental load, and while having a low softening point, there is an advantage of excellent adhesion between the substrate and the electrode.
  • the lead-free conductive paste for solar cells according to the present invention has the advantage of lowering the contact resistance and greatly improving the conversion efficiency, the open voltage and the curve factor to improve the power generation efficiency of the solar cell.
  • the present invention is a.
  • (c) comprises an organic vehicle
  • a lead-free conductive paste composition for a solar cell wherein the glass frit does not contain lead.
  • the conductive powder is a powder of a metal that provides electrical properties in forming the solar cell front electrode, silver (Ag), gold (Au), copper (Cu), nickel (Ni), aluminum (Al), palladium (Pd), platinum (Pt), chromium (Cr), cobalt (Co), tin (Sn), zinc (Zn), iron (Fe), iridium (Ir), rhodium (Rh), tungsten (W), molybdenum (Mo) and the like can be used, and any metal powder having good conductivity can be used without particular limitation.
  • silver (Ag) is more preferably used in view of not oxidizing even when the firing treatment is carried out in the air and maintaining excellent conductivity.
  • the silver powder may be silver powder or a composite metal of silver powder.
  • silver (Ag) includes silver oxide, a silver alloy, a silver compound, and other materials capable of precipitation of the silver powder by firing, in addition to pure silver powder.
  • the conductive powder may have a spherical shape, a flake shape, a plate shape, an amorphous form, or a combination thereof.
  • the conductive powder has a spherical shape.
  • the particle diameter of the conductive powder can be adjusted to an appropriate range in consideration of the desired sintering speed and the influence of the process of forming the electrode. More preferably, the average particle diameter of the conductive powder may be 0.5 to 5 ⁇ m, preferably 0.7 to 2 ⁇ m. More preferably, a mixture of conductive powders having different average particle diameters is used.
  • the BET of the conductive powder is 0.2 to 0.8 m 2 / g, preferably 0.3 to 0.5 m 2 / g is better to improve the electrical properties.
  • the conductive powder of the present invention may be contained 60 to 95% by weight, preferably 65 to 85% by weight based on the total weight of the paste composition.
  • the viscosity of the paste may be lowered to cause phase separation, and the electrode may have a thin film thickness, thereby increasing resistance.
  • the conductive powder is more than 95% by weight, the viscosity is high, making printing difficult and costly. There is a problem that is raised.
  • the glass frit serves to improve the adhesion between the conductive powder and the substrate and to soften during sintering to lower the firing temperature.
  • the glass frit according to the present invention not only improves the electrical characteristics of the solar cell, but also lowers the contact resistance and has a low softening point, and at the same time, excellent adhesive strength can be achieved, and the lead-free conductive paste for solar cells including the glass frit
  • the composition can be used without being limited to the solar cell front electrode or the back electrode, and is more effective to use a finger bar or bus bar in the formation using a pattern.
  • the glass frit is preferably TeO 2 More preferably 65 to 85% by weight, 1 to 25% by weight BaO and 1 to 25% by weight ZnO.
  • the TeO 2 maintains the viscosity of the glass frit appropriately and improves the reactivity between the paste and the antireflection film.
  • the low viscosity of the glass frit allows etching in a wider area to occur during the interfacial reaction. This can be implemented in combination with BaO and ZnO, lowering the contact resistance to improve the light conversion efficiency, to form a stable glass phase in the interfacial reaction, and to improve the adhesion between the substrate and the electrode.
  • the content range in the glass frit of TeO 2 may be 40 to 90% by weight, preferably 65 to 85% by weight. When the above range is satisfied, the viscosity characteristics are excellent, and excellent contact resistance and adhesion can be realized.
  • the glass frit of the present invention necessarily includes a combination of TeO 2 , BaO and ZnO, thereby realizing environmentally friendly and excellent solar cell electrode properties by substituting a low softening point and high adhesive force, including conventional PbO.
  • BaO and ZnO in the components of the glass frit are each more preferably in the content range of 1 to 25% by weight, preferably 2 to 18% by weight in the glass frit. When the above range is satisfied, it is possible to realize excellent solar cell electrode efficiency and adhesive strength while lowering the softening point by combining with TeO 2 .
  • the weight ratio of ZnO and BaO is more preferably 10: 1 to 1:10, preferably 7: 1 to 1: 4.
  • the weight ratio of TeO 2 to BaO and ZnO is more preferably 40:60 to 90:10 in view of solar cell efficiency.
  • the glass frit according to the present invention may further include Li 2 O to further improve the desired effect.
  • Li 2 O may be in the content of 1 to 15% by weight of the glass frit, one embodiment of the more preferred glass frit is 65 to 85% by weight TeO 2 , 1 to 25% by weight BaO, 1 to 25% by weight ZnO And Li 2 O 1 to 15% by weight.
  • the present invention provides a lead-free conductive paste composition for crystalline silicon solar cell front electrodes comprising a glass frit containing TeO 2 , BaO, ZnO and Li 2 O in combination with a conductive powder and an organic vehicle.
  • the conductive paste composition forming the crystalline silicon solar cell front electrode includes a glass frit containing a combination of TeO 2 , BaO, ZnO and Li 2 O, the anti-reflection film is etched during the firing process, and the conductive powder It is more effective in producing crystal grains in the emitter region so that the melt can be lowered to lower the resistance.
  • it has a low softening point and at the same time can implement excellent adhesive strength, it is possible to improve the open voltage (Voc) and the curve factor (FF) to improve the efficiency of the solar cell.
  • the glass frit of the present invention may further contain a metal oxide in a range that does not reduce the desired effect.
  • Such metal oxides may preferably further include silver oxide.
  • the silver compound is an ionic compound silver cyanide (AgCN), silver nitrate (AgNO 3 ), silver halide (Ag-X), silver carbonate (Ag 2 CO 3 ), silver acetate (AgC 2 H 3 O 2 ), silver oxide (Ag 2 O ) May be used alone or in combination.
  • the silver oxide is not particularly limited, but it is more preferable to use silver oxide (Ag 2 O) to realize the desired effect in combination with other components.
  • the glass frit of the present invention may further include vanadium oxide.
  • vanadium pentoxide (V 2 O 5 ) as the vanadium oxide may improve electrical characteristics in combination with other components.
  • Glass frit of the present invention may further increase the adhesive strength between the substrate and the front electrode by selectively further comprising the silver oxide or vanadium oxide, it is possible to maximize the efficiency of the solar cell.
  • Glass frit according to an embodiment of the present invention is GeO 2 , Ga 2 O 3 , In 2 O 3 , NiO, CoO, B 2 O 3 , CaO, MgO, SrO, MnO, SeO 2 , MoO in addition to the metal oxide 3 , WO 3 , Y 2 O 3 , As 2 O 3 , La 2 O 3 , Nd 2 O 3 , Bi 2 O 3 , Ta 2 O 5 , FeO, HfO 2 , Cr 2 O 3 , CdO, Sb 2 O 3 , PbF 2 , ZrO 2 , Mn 2 O 3 , P 2 O 5 , CuO, Pr 2 O 3 , Gd 2 O 3 , Sm 2 O 3 , Dy 2 O 3 , Eu 2 O 3 , Ho 2 O 3 , Yb 2 OL 3 , Lu 2 O 3 , CeO 2 , BiF 3 , SnO, SiO 2 , Ag 2 O, Nb 2 O 5 , TiO
  • the metal halide examples include NaCl, KBr, NaI, ZnF 2 , and the like, but are not limited thereto. At this time, the content of the compound is 30% by weight or less, preferably 10% by weight or less of the total weight of the glass frit.
  • silver oxide or vanadium oxide it may further include any one or more selected from SiO 2 , B 2 O 3, Al 2 O 3 , Ta 2 O 5 , WO 3 , and MoO 3 .
  • One embodiment of the combination of the glass frit is limited to the components in the present invention may be composed of Ag 2 O in TeO 2 , BaO, ZnO and Li 2 O, in another embodiment TeO 2 , BaO, ZnO and Li 2 O to Ag 2 O, SiO 2 And B 2 O 3 .
  • Another glass frit may include TeO 2 , BaO, ZnO, and Li 2 O consisting of V 2 O 5 , and TeO 2 , BaO, ZnO, and Li 2 O of Bi 2 O 3 . It can be mentioned.
  • Another embodiment of the glass frit may include SiO 2 or SiO 2 and B 2 O 3 in TeO 2 , BaO, ZnO and Li 2 O.
  • preferred embodiments include TeO 2 , BaO, ZnO and Li 2 O in Ag 2 O, SiO 2 And B 2 O 3 , which not only improves the electrical characteristics of the solar cell with excellent conversion efficiency, open voltage and curve factor, but also has a low glass transition temperature and softening point, and at the same time, an excellent adhesion strength of 2N or more.
  • the conductive paste composition for solar cells according to the present invention may be used in one or more forms, i.e. alone or in a mixed form, and may be used by mixing one or more selected from Pb-based glass frits or Pb free-based glass frits, but does not contain lead. It is more preferable to use Pb free glass frit.
  • the content of the glass frit in the total composition of the glass frit may be 0.5 to 10% by weight, preferably 1 to 5% by weight. When the content range is satisfied, excellent viscosity characteristics can be maintained during the interfacial reaction, and excellent adhesion strength can be given while keeping the contact resistance between the substrate and the front electrode very low.
  • the glass frit according to the present invention can be used in admixture with a glass frit having other components.
  • the conductive paste may further include a compound in ZnO, CuO, MnO, NiO, Fe 2 O 3 and the like. In this case, not only the implementation of the desired effects in the present invention but also the advantages of the additional effects can be seen.
  • the glass frit may have a glass transition temperature (Tg) of 200 to 350 ° C, preferably 240 to 310 ° C.
  • the glass frit (b) of the present invention may have a softening point (Ts) of 250 to 500 ° C, preferably 290 to 350 ° C. When the glass transition temperature and the softening point range is satisfied, it is better to achieve the desired physical properties.
  • glass frit has an average particle diameter of 0.5 to 5.0 ⁇ m, preferably 0.7 to 3 ⁇ m. If the above range is satisfied, pinhole defects are not caused when the electrode is formed.
  • the organic vehicle (vehicle) imparts viscosity and rheological properties to the printability to the composition through physical mixing with the inorganic component of the solar cell paste.
  • the organic vehicle may be an organic vehicle that is commonly used in solar cell electrode pastes, and may be, for example, a mixture of a polymer and a solvent.
  • Trimethyl Pentanyl Diisobutylate TXIB
  • Dibasic ester Dibutyl ester
  • Butyl Carbitol BC Butyl Carbitol Acetate
  • Butyl Cellulsolve Butyl Cellulose Acetate
  • Propylene Glycol Monomethyl Ether Dipropylene Glycol Monomethyl ether, dimethyl adipate, dimethyl glutarate, propylene glycol monomethyl ether propionate, ethyl ether propionate, terpineol, propylene glycol monomethyl ether acetate, dimethylamino formaldehyde, methyl ethyl ketone
  • Cellulose resins such as ethylcellulose, methylcellulose, nitrocellulose, cellulose esters, rosin or polymethacrylates of alcohols in at least
  • the organic vehicle is 4 to 35% by weight, preferably 5 to 30% by weight based on the total weight of the paste.
  • the conductive paste for solar cells of the present invention may further include a conventional additive in order to improve the flow characteristics, process characteristics and stability in addition to the components described above.
  • the additives include, but are not limited to, dispersants, thickeners, thixotropic agents, leveling agents, plasticizers, viscosity stabilizers, antifoaming agents, pigments, ultraviolet stabilizers, antioxidants, coupling agents, and the like.
  • the dispersant may include, but is not limited to, LUBRISOL Corporation SOLSPERSE, BYK Corporation DISPERBYK-180, 110, 996, and 997.
  • the thickener may include, but is not limited to, BYK-410, 411, and 420 of BYK Corporation.
  • the thixotropic agent may include, but is not limited to, ELEMENTIS Co., Ltd. THIXATROL MAX, BYK Co., Ltd., ANTI-TERRA-203, 204, 205, and the like.
  • the leveling agent may include, but is not limited to, BYK-3932 P, BYK-378, BYK-306, BYK-3440, and the like.
  • the organic additive may be contained in an amount of about 1 to 20 wt% based on 100 wt% of the entire conductive paste composition.
  • the present invention can provide a solar cell front electrode formed using the lead-free conductive paste composition for solar cells described above.
  • the front electrode is formed through a process of printing, drying, and firing the conductive paste composition on a wafer substrate.
  • Printing methods may include screen printing, dispensing printing, pad printing, stencil printing, ink jet printing, hot melt printing or any suitable micro-lamination / direct writing, Double and / or multiple printing may be used, but is not particularly limited thereto.
  • the front electrode may have the same or different conductive paste used in two or more printing processes as the first conductive paste when the electrode is formed on the wafer substrate through a multi-printing process.
  • the site to be printed first and the site printed by two or more times may be the same or different.
  • the present invention provides a solar cell including the solar cell front electrode.
  • a solar cell comprises a substrate of a first conductivity type; An emitter layer of a second conductivity type formed on the substrate; An anti-reflection film formed on the emitter layer; A front electrode connected to the emitter layer through the anti-reflection film and manufactured using the conductive paste composition according to the present invention described above; And a rear electrode formed on the rear surface of the substrate.
  • the substrate of the first conductivity type is selected from P type or N type.
  • the emitter layer of the second conductivity type is selected to have a conductivity type opposite to that of the substrate.
  • Group 3 elements are doped with impurities to form the P + layer
  • Group 5 elements are doped with impurities to form the N + layer.
  • B, Ga, In may be doped to form a P + layer
  • P, As, Sb may be doped to form an N + layer.
  • a P-N junction is formed at an interface between the substrate and the emitter layer, which is a part that receives sunlight and generates a current by the photovoltaic effect. The electrons and holes generated by the photovoltaic effect are attracted to the P layer and the N layer, respectively, and move to the electrodes bonded to the lower substrate and the upper emitter layer, respectively.
  • the anti-reflection film reduces the reflectance of sunlight incident on the front surface of the solar cell.
  • the amount of light reaching the P-N junction is increased to increase the short circuit current of the solar cell, and the conversion efficiency of the solar cell is improved.
  • the anti-reflection film may have, for example, a single film selected from a silicon nitride film, a silicon nitride film including hydrogen, a silicon oxide film, a silicon oxynitride film, or a multi-film structure in which two or more are combined, but is not limited thereto.
  • the front electrode and the back electrode can be produced by various known techniques, but are preferably formed by screen printing.
  • the front electrode is formed by screen printing the front electrode formation point using the silver paste composition of the present invention and then performing heat treatment. When the heat treatment is performed, the front electrode penetrates the antireflection film and contacts the emitter layer by the punch through phenomenon.
  • the back electrode is formed by printing a paste composition containing aluminum as a conductive metal on the back of the substrate and performing heat treatment. During the heat treatment of the rear electrode, aluminum is diffused through the rear surface of the substrate to form a rear electric field on the rear electrode and the substrate interface. When the rear electric field layer is formed, the carriers can be prevented from moving to the back of the substrate to be recombined, thereby improving the conversion efficiency of the solar cell.
  • the solar cell according to the present invention may have a PERC structure.
  • the passivated emitter and rear cell (PERC) type solar cells have passivation not only on the emitter layer but also on the rear side, and can increase the open voltage and short circuit current density while reducing substrate damage.
  • the passivation on the back side increases the open voltage by increasing the doping level of phosphorous on the contact surface of the back electrode and the substrate compared to the emitter region, and increases the reflection of light from the backside without heat treatment.
  • the lead-free conductive paste for solar cells according to the present invention can be applied to the rear electrode of such a PERC type solar cell to maximize its effect.
  • the comparative example 4 contained lead and used Te-Pb type glass frit (DPS-1900V17 by Daeju Electronic Material Co., Ltd.).
  • Lead-free conductive pastes were prepared using the glass frits prepared in Examples and Comparative Examples, respectively.
  • Silver powder was used as the conductive powder.
  • Silver powder was used by mixing 45% by weight of silver particles (Technic) having an average particle diameter of 1.6 ⁇ m and 45% by weight of silver particles (Technic) having an average particle diameter of 2.1 ⁇ m. 2 wt% was used.
  • As a binder cellulose ester (EASTMAN CAB-382-20) and ethyl cellulose resin (AQUALON ECN-50) were used at 1% by weight, respectively, and as solvent, 1.5% by weight of Trimethyl Pentanyl Diisobutylate (TXIB) and butylcarbitol.
  • Phosphorus (P) was doped by a diffusion process using POCl 3 in a tube furnace (850 ° C.) using a 156 mm crystalline silicon wafer to form an emitter layer having an 80 ⁇ / sq sheet resistance.
  • a silicon nitride film was deposited on the emitter layer by using chemical vapor deposition (PECVD) to form a silicon nitride film using precursor SiH 4 and NH 3 to form an antireflection film.
  • PECVD chemical vapor deposition
  • the silver (Ag) paste prepared by the present invention Screen printing (using ASYS COMPANY printing press) was performed on the light-receiving surface where light was absorbed, applied in a constant pattern, and dried.
  • Screen printing a stainless wire 400 mesh of 450 mm x 450 mm frame was used.
  • the screen printing pattern consisted of 100 finger bars of 38 micrometer line width, and three bus bars of 1.5 mm width.
  • the dry film thickness after screen printing was 19 ⁇ m, the drying temperature was 250 °C.
  • the obtained solar cell silicon substrate was simultaneously fired in a belt type firing furnace at a peak temperature of about 800 ° C. under a condition of about IN-OUT for about 1 minute to prepare a desired solar cell.
  • the electrical characteristics (I-V characteristics) of the manufactured solar cells were tested using a solar simulator (SOL3A) manufactured by ORIEL. Ten samples were prepared for each paste, and the average value of the ten samples was used, and the characteristics of the manufactured solar cells are shown in Tables 2, 5, and 6. The results of Examples 8 to 19 and Comparative Examples 1 to 4 described relative values (%) based on the conversion efficiency, the open voltage, the curve factor, the short circuit current, and the line resistance of Comparative Example 1.
  • Tg Glass transition temperature
  • Ts softening temperature
  • the manufactured electrode measured the conversion efficiency (Eff,%), the open voltage (Voc, V), the curve factor (FF,%) of the solar cell using a solar cell efficiency measuring equipment (pasna, CT-801).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Photovoltaic Devices (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)

Abstract

The present invention relates to a lead-free electroconductive paste for solar cells and a lead-free electroconductive paste composition for solar cells, which contains no lead and exhibits outstanding adhesiveness in spite of the low softening point thereof, and excellent conversion efficiency and resistant properties, thus enhancing electrogenesis efficiency. Provided according to one embodiment of the present invention is a lead-free electroconductive paste composition for solar cells, comprising electroconductive powder; a glass frit containing TeO2, BaO, and ZnO; and an organic vehicle.

Description

태양전지용 무연 도전 페이스트Lead-free conductive paste for solar cells
본 발명은 태양전지용 도전 페이스트 조성물에 관한 것이다. 보다 구체적으로, 낮은 연화점을 가짐에도 불구하고 접착성이 뛰어나며, 우수한 변환 효율과 저항 특성을 가져 발전 효율을 향상시킬 수 있는 납을 함유하지 않은 태양전지용 무연 도전 페이스트 조성물에 관한 것이다. The present invention relates to a conductive paste composition for solar cells. More specifically, the present invention relates to a lead-free conductive paste composition for a solar cell that does not contain lead, which has excellent adhesiveness and has excellent conversion efficiency and resistance characteristics even though it has a low softening point, thereby improving power generation efficiency.
태양전지는 태양에너지로부터 광에너지를 흡수하여 전자와 정공을 발생하는 광기전 효과를 이용하여 전류, 전압을 생성한다. 이는 pn 접합이 이루어지는 반도체 웨이퍼 또는 기판(substarte)과 에미터층(emmitter layer)를 구비한다. 이때, 에미터는 기판의 광입사면에 위치하며, 기판과 에미턴의 계면에 pn접합이 형성된다.Solar cells generate current and voltage by using the photovoltaic effect of absorbing light energy from solar energy to generate electrons and holes. It has a semiconductor wafer or substrate on which pn junctions are made and an emitter layer. In this case, the emitter is positioned on the light incident surface of the substrate, and a pn junction is formed at the interface between the substrate and the emitter.
에미터 상부에는 상기 에미터와 통전되는 전면 전극이 형성되고, 광입사면과 대향되는 다른 면에는 기판과 통전되는 후면 전극이 형성된다. A front electrode that is energized with the emitter is formed on the emitter, and a rear electrode that is energized with the substrate is formed on the other surface facing the light incident surface.
한편, 전면 전극은 도전 페이스트를 이용하여 반사 방지막과의 계면 반응을 통해 형성된다. 즉, 반도체 기판 상에 형성된 반사 방지막의 표면에 도전 페이스트를 도포하여 패턴을 갖는 도전막을 형성하고, 소성 과정에서 유리 프릿(glass frit)을 매개로 반사 방지막을 관통하는 펀치 스루(punch through) 현상을 통해 에미터층과 접촉하게 된다. 또한, 태양전지의 전기적 접촉층은 광입사되는 곳으로 통상적으로 핑거바(finger bar) 또는 버스바(bus bar)로 이루어진 그리드 패턴에 존재한다. On the other hand, the front electrode is formed through an interfacial reaction with the antireflection film using a conductive paste. That is, a conductive paste is applied to the surface of the antireflection film formed on the semiconductor substrate to form a conductive film having a pattern, and a punch through phenomenon that penetrates the antireflection film through a glass frit during firing is performed. Through the emitter layer. In addition, the electrical contact layer of the solar cell is a light incident light is usually present in a grid pattern consisting of a finger bar (bus finger) or bus bar (bus bar).
유리 프릿은 용융 시 도전막 하층의 반사 방지막을 계면 반응에 의해 분해 제거하고 소결되어 전면 전극을 형성하는 동시에 상기 전면 전극과 반도체 기판을 접착시켜 양자가 회로에서 정상적으로 잘 흐르도록 한다. 이때, 계면 반응은 산화 환원 반응으로 일부 원소가 환원되어 부산물이 생성된다. 종래 유리 프릿은 연화점을 낮추기 위하여 납이 함유된 것을 사용해 왔는데, 이는 환원에 의해 납이 부산물로 남게 되어 환경 부하에 큰 문제점을 갖는다. The glass frit decomposes and removes the anti-reflective film under the conductive layer by interfacial reaction during melting to form a front electrode, and simultaneously bonds the front electrode and the semiconductor substrate so that both flow normally in the circuit. In this case, the interfacial reaction is a redox reaction, in which some elements are reduced to produce by-products. Conventional glass frit has been used to contain lead in order to lower the softening point, which leads to a large problem in environmental load because lead is left as a by-product by reduction.
따라서 납을 함유하지 않고, 낮은 연화점을 가지면서도 전극과 기판 사이의 접착력을 높일 수 있고, 태양전지 효율을 향상시킬 수 있는 재료에 대한 연구가 필요한 실정이다.Therefore, there is a need for research on a material that does not contain lead and has a low softening point and can increase the adhesion between the electrode and the substrate and improve the efficiency of the solar cell.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 납을 함유하지 않고, 낮은 연화점을 가지면서도 접착강도가 우수한 태양전지용 무연 도전 페이스트를 제공하는 것을 목적으로 한다. The present invention has been made to solve the above problems, and an object thereof is to provide a lead-free conductive paste for solar cells that does not contain lead and has a low softening point and excellent adhesive strength.
또한, 본 발명은 태양전지에서 변환효율, 개방전압, 곡선인자 등의 태양전지의 전기적 특성을 향상시킬 수 있는 태양전지용 무연 도전 페이스트를 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a lead-free conductive paste for solar cells that can improve the electrical characteristics of the solar cell, such as conversion efficiency, open voltage, curve factor in the solar cell.
상기와 같은 목적을 달성하기 위하여, 본 발명은 (a) 전도성 분말, (b) TeO2, BaO 및 ZnO를 함유하는 유리 프릿 및 (c) 유기 비히클을 포함하며, In order to achieve the above object, the present invention comprises (a) a conductive powder, (b) a glass frit containing TeO 2 , BaO and ZnO and (c) an organic vehicle,
상기 유리 프릿이 납(Pb)를 함유하지 않는 것을 특징으로 하는 태양전지용 무연(Pb free) 도전 페이스트 조성물을 제공한다. It provides a lead-free (Pb free) conductive paste composition for a solar cell, characterized in that the glass frit does not contain lead (Pb).
본 발명의 일 실시예에 따른 태양전지용 무연 도전 페이스트 조성물에 있어서, 유리 프릿은 Li2O를 더 포함할 수 있다. In the lead-free conductive paste composition for solar cells according to an embodiment of the present invention, the glass frit may further include Li 2 O.
본 발명의 일 실시예에 따른 태양전지용 무연 도전 페이스트 조성물에 있어서, 유리 프릿은 은(Ag) 산화물 또는 바나듐(V) 산화물을 더 포함할 수 있다. In the lead-free conductive paste composition for a solar cell according to an embodiment of the present invention, the glass frit may further include silver (Ag) oxide or vanadium (V) oxide.
본 발명의 일 실시예에 따른 태양전지용 무연 도전 페이스트 조성물에 있어서, 유리 프릿은 유리전이온도(Tg)가 200 내지 350℃이며, 연화점(Ts)이 250 내지 500℃인 것일 수 있다. In the lead-free conductive paste composition for solar cells according to an embodiment of the present invention, the glass frit may have a glass transition temperature (Tg) of 200 to 350 ° C and a softening point (Ts) of 250 to 500 ° C.
또한, 본 발명은 (a) 전도성 분말, (b) TeO2, BaO 및 ZnO를 함유하는 유리 프릿 및 (c) 유기 비히클을 포함하며, The present invention also includes (a) a conductive powder, (b) a glass frit containing TeO 2 , BaO and ZnO and (c) an organic vehicle,
상기 유리 프릿이 납(Pb)를 함유하지 않는 것을 특징으로 하는 결정질 실리콘 태양전지 전면전극용 무연 도전 페이스트 조성물을 제공한다. Provided is a lead-free conductive paste composition for a crystalline silicon solar cell front electrode, wherein the glass frit does not contain lead (Pb).
본 발명의 일 실시예에 따른 결정질 실리콘 태양전지 전면전극용 무연 도전 페이스트 조성물에 있어서, 유리 프릿은 TeO2 65 내지 85중량%, BaO 1 내지 25중량% 및 ZnO 1 내지 25중량%를 포함할 수 있다. In the lead-free conductive paste composition for a crystalline silicon solar cell front electrode according to an embodiment of the present invention, the glass frit may include 65 to 85% by weight of TeO 2 , 1 to 25% by weight of BaO and 1 to 25% by weight of ZnO. have.
본 발명의 일 실시예에 따른 결정질 실리콘 태양전지 전면전극용 무연 도전 페이스트 조성물에 있어서, 유리 프릿은 TeO2 65 내지 85중량%, BaO 1 내지 25중량% 및 ZnO 1 내지 25중량%를 포함할 수 있다. In the lead-free conductive paste composition for a crystalline silicon solar cell front electrode according to an embodiment of the present invention, the glass frit may include 65 to 85% by weight of TeO 2 , 1 to 25% by weight of BaO and 1 to 25% by weight of ZnO. have.
본 발명의 일 실시예에 따른 결정질 실리콘 태양전지 전면전극용 무연 도전 페이스트 조성물에 있어서, 유리 프릿은 Li2O를 더 포함할 수 있다. In the lead-free conductive paste composition for a crystalline silicon solar cell front electrode according to an embodiment of the present invention, the glass frit may further include Li 2 O.
본 발명의 일 실시예에 따른 결정질 실리콘 태양전지 전면전극용 무연 도전 페이스트 조성물에 있어서, 유리 프릿은 은(Ag) 산화물 또는 바나듐(V) 산화물을 더 포함할 수 있다. In the lead-free conductive paste composition for a crystalline silicon solar cell front electrode according to an embodiment of the present invention, the glass frit may further include silver (Ag) oxide or vanadium (V) oxide.
본 발명의 일 실시예에 따른 결정질 실리콘 태양전지 전면전극용 무연 도전 페이스트 조성물에 있어서, 유리 프릿은 유리전이온도(Tg)가 200 내지 350℃이며, 연화점(Ts)이 250 내지 500℃인 것일 수 있다. In the lead-free conductive paste composition for a crystalline silicon solar cell front electrode according to an embodiment of the present invention, the glass frit may have a glass transition temperature (Tg) of 200 to 350 ° C and a softening point (Ts) of 250 to 500 ° C. have.
본 발명의 일 실시예에 따른 결정질 실리콘 태양전지 전면전극용 무연 도전 페이스트 조성물에 있어서, 유리 프릿은 평균입경이 0.5 내지 5.0㎛인 것일 수 있다. In the lead-free conductive paste composition for a crystalline silicon solar cell front electrode according to an embodiment of the present invention, the glass frit may have an average particle diameter of 0.5 to 5.0㎛.
본 발명의 일 실시예에 따른 결정질 실리콘 태양전지 전면전극용 무연 도전 페이스트 조성물은 조성물은 유리 프릿이 전체 조성물 0.5 내지 10중량% 포함될 수 있다. In the lead-free conductive paste composition for a crystalline silicon solar cell front electrode according to an embodiment of the present invention, the composition may include 0.5 to 10 wt% of the total composition of glass frit.
본 발명의 일 실시예에 따른 결정질 실리콘 태양전지 전면전극용 무연 도전 페이스트 조성물에 있어서, 전도성 분말은 은, 금, 구리, 니켈, 알루미늄, 팔라듐, 백금, 크롬, 코발트, 주석, 아연, 철, 이리듐, 로듐, 텅스텐, 몰리브덴 및 이들의 합금 중에서 선택되는 하나 이상을 포함할 수 있다. In the lead-free conductive paste composition for a crystalline silicon solar cell front electrode according to an embodiment of the present invention, the conductive powder is silver, gold, copper, nickel, aluminum, palladium, platinum, chromium, cobalt, tin, zinc, iron, iridium , Rhodium, tungsten, molybdenum and alloys thereof.
본 발명의 일 실시예에 따른 결정질 실리콘 태양전지 전면전극용 무연 도전 페이스트 조성물에 있어서, 전도성 분말은 구형이며, 평균입경이 0.5 내지 5㎛, BET 0.2-0.8㎡/g 인 것일 수 있다. In the lead-free conductive paste composition for a crystalline silicon solar cell front electrode according to an embodiment of the present invention, the conductive powder may be spherical, the average particle diameter of 0.5 to 5㎛, BET 0.2-0.8㎡ / g.
본 발명의 일 실시예에 따른 결정질 실리콘 태양전지 전면전극용 무연 도전 페이스트 조성물은 일반형(Conventional type) 또는 PERC형(Passivated Emitter and Rear Cell type) 구조를 갖는 태양전지에 적용될 수 있다. The lead-free conductive paste composition for a crystalline silicon solar cell front electrode according to an embodiment of the present invention may be applied to a solar cell having a conventional type or a PERC type (Passivated Emitter and Rear Cell type) structure.
본 발명에 따른 태양전지용 무연 도전 페이스트는 납을 함유하지 않아 환경 부하의 염려가 없으며, 낮은 연화점을 가지면서도 기판과 전극 사이의 접착력이 탁월한 이점이 있다. The lead-free conductive paste for solar cells according to the present invention does not contain lead, so there is no concern about environmental load, and while having a low softening point, there is an advantage of excellent adhesion between the substrate and the electrode.
또한, 본 발명에 따른 태양전지용 무연 도전 페이스트는 접촉 저항을 낮추고 변환효율, 개방전압 및 곡선인자를 크게 개선하여 태양전지의 발전 효율을 향상시킬 수 있는 이점이 있다. In addition, the lead-free conductive paste for solar cells according to the present invention has the advantage of lowering the contact resistance and greatly improving the conversion efficiency, the open voltage and the curve factor to improve the power generation efficiency of the solar cell.
이하, 본 발명의 태양전지용 무연 도전 페이스트에 대하여 상세히 설명한다. 본 발명은 하기의 실시예에 의해 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이고, 첨부된 특허 청구범위에 의해 한정되는 보호범위를 제한하고자 하는 것은 아니다. 이때, 사용되는 기술 용어 및 과학 용어는 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가진다. Hereinafter, the lead-free conductive paste for solar cells of the present invention will be described in detail. The invention can be better understood by the following examples, which are intended for purposes of illustration of the invention and are not intended to limit the scope of protection defined by the appended claims. In this case, unless otherwise defined, the technical and scientific terms used have the meanings that are commonly understood by those of ordinary skill in the art.
본 발명은 The present invention
(a) 전도성 분말(a) conductive powder
(b) TeO2, BaO 및 ZnO를 함유하는 유리 프릿 및(b) glass frit containing TeO 2 , BaO and ZnO and
(c) 유기 비히클을 포함하며,(c) comprises an organic vehicle,
유리 프릿이 납을 함유하지 않는 것을 특징으로 하는 태양전지용 무연 도전 페이스트 조성물을 제공한다.Provided is a lead-free conductive paste composition for a solar cell, wherein the glass frit does not contain lead.
본 발명에서 (a) 전도성 분말은 태양전지 전면전극을 형성하는 데 있어서 전기적 특성을 부여하는 금속의 분말인 것으로, 은(Ag), 금(Au), 구리(Cu), 니켈(Ni), 알루미늄(Al), 팔라듐(Pd), 백금(Pt), 크롬(Cr), 코발트(Co), 주석(Sn), 아연(Zn), 철(Fe), 이리듐(Ir), 로듐(Rh), 텅스텐(W), 몰리브덴(Mo) 등을 사용할 수 있으며, 양호한 전도성을 가지는 금속 분말이라면 특별히 제한되지 않고 사용할 수 있다. 바람직하게는 은, 금, 구리, 니켈, 알루미늄 및 이들을 하나 이상 포함하는 합금 중에서 선택된 것이 좋다. 보다 바람직하게는 소성 처리를 대기 중에서 실시하는 경우에도 산화되지 않고, 우수한 전도성을 유지할 수 있는 측면에서 은(Ag)을 사용하는 것이 더욱 좋다. In the present invention (a) the conductive powder is a powder of a metal that provides electrical properties in forming the solar cell front electrode, silver (Ag), gold (Au), copper (Cu), nickel (Ni), aluminum (Al), palladium (Pd), platinum (Pt), chromium (Cr), cobalt (Co), tin (Sn), zinc (Zn), iron (Fe), iridium (Ir), rhodium (Rh), tungsten (W), molybdenum (Mo) and the like can be used, and any metal powder having good conductivity can be used without particular limitation. Preferably it is selected from silver, gold, copper, nickel, aluminum and alloys containing one or more thereof. More preferably, silver (Ag) is more preferably used in view of not oxidizing even when the firing treatment is carried out in the air and maintaining excellent conductivity.
상기 은 분말은 은 분말 또는 은 분말의 복합금속인 것일 수 있다. 이때, 은(Ag)은 순수한 은 분말 이외에도 산화 은, 은 합금, 은 화합물 및 기타 소성에 의해 은 분말의 석출이 가능한 물질을 포함한다. The silver powder may be silver powder or a composite metal of silver powder. In this case, silver (Ag) includes silver oxide, a silver alloy, a silver compound, and other materials capable of precipitation of the silver powder by firing, in addition to pure silver powder.
상기 전도성 분말의 형상은 구형, 플레이크(flake)형, 판상형, 무정형 또는 이들의 조합을 사용할 수 있으나, 바람직하게는 구형인 것이 더욱 좋다. The conductive powder may have a spherical shape, a flake shape, a plate shape, an amorphous form, or a combination thereof. Preferably, the conductive powder has a spherical shape.
또한, 전도성 분말의 입경은 원하는 소결 속도와 전극을 형성하는 공정에 따른 영향 등을 고려하여 적절한 범위로 조절할 수 있다. 보다 바람직하게는 전도성 분말의 평균입경은 0.5 내지 5㎛, 바람직하게는 0.7 내지 2㎛인 것일 수 있다. 더욱 좋게는 서로 다른 평균입경을 갖는 전도성 분말을 혼합하여 사용하는 것이 바람직하다.In addition, the particle diameter of the conductive powder can be adjusted to an appropriate range in consideration of the desired sintering speed and the influence of the process of forming the electrode. More preferably, the average particle diameter of the conductive powder may be 0.5 to 5 μm, preferably 0.7 to 2 μm. More preferably, a mixture of conductive powders having different average particle diameters is used.
또한, 상기 전도성 분말의 BET는 0.2 내지 0.8㎡/g, 바람직하게는 0.3 내지 0.5㎡/g인 것이 전기적 특성을 향상시키는데 더욱 좋다. In addition, the BET of the conductive powder is 0.2 to 0.8 m 2 / g, preferably 0.3 to 0.5 m 2 / g is better to improve the electrical properties.
본 발명의 전도성 분말은 페이스트 조성물 전체 중량에 대하여 60 내지 95중량%, 바람직하게는 65 내지 85중량% 함유될 수 있다. 상기 전도성 분말이 60중량% 미만인 경우에는 페이스트의 점도가 낮아져 상분리가 일어날 수 있고, 전극의 막 두께가 얇아져 저항이 증가할 수 있으며, 95중량%를 초과하는 경우에는 점도가 높아져 인쇄가 어려워지고 비용이 상승되는 문제점이 있다. The conductive powder of the present invention may be contained 60 to 95% by weight, preferably 65 to 85% by weight based on the total weight of the paste composition. When the conductive powder is less than 60% by weight, the viscosity of the paste may be lowered to cause phase separation, and the electrode may have a thin film thickness, thereby increasing resistance. When the conductive powder is more than 95% by weight, the viscosity is high, making printing difficult and costly. There is a problem that is raised.
본 발명에서 유리 프릿은 전도성 분말과 기판 사이의 접착력을 향상시키고, 소결 시 연화하여 소성 온도를 낮추는 역할을 한다. In the present invention, the glass frit serves to improve the adhesion between the conductive powder and the substrate and to soften during sintering to lower the firing temperature.
특히, 본 발명에 따른 유리 프릿은 태양전지의 전기적 특성을 향상시키는 것뿐만 아니라 접촉 저항을 낮추고, 낮은 연화점을 가지면서도 동시에 우수한 접착강도를 구현할 수 있어, 상기 유리 프릿을 포함하는 태양전지용 무연 도전 페이스트 조성물은 태양전지 전면 전극 또는 후면 전극에 제한되지 않고 사용할 수 있으며, 나아가 핑거바 또는 버스바를 패턴을 이용하여 형성 시 사용하는 데 더욱 효과적이다. In particular, the glass frit according to the present invention not only improves the electrical characteristics of the solar cell, but also lowers the contact resistance and has a low softening point, and at the same time, excellent adhesive strength can be achieved, and the lead-free conductive paste for solar cells including the glass frit The composition can be used without being limited to the solar cell front electrode or the back electrode, and is more effective to use a finger bar or bus bar in the formation using a pattern.
이때, 상기 유리 프릿은 바람직하게는 TeO2 65 내지 85중량%, BaO 1 내지 25중량% 및 ZnO 1 내지 25중량%를 포함하는 것이 더욱 좋다.In this case, the glass frit is preferably TeO 2 More preferably 65 to 85% by weight, 1 to 25% by weight BaO and 1 to 25% by weight ZnO.
상기 TeO2는 유리 프릿의 점도를 적절하게 유지시켜 주고, 페이스트와 반사 방지막 사이의 반응성을 양호하게 한다. 또한, 유리 프릿의 점도가 낮은 경우 계면 반응 시 보다 넓은 영역에서의 에칭이 일어날 수 있게 한다. 이는 BaO 및 ZnO와의 조합으로 효과를 구현할 수 있으며, 접촉 저항을 낮춰 광변환 효율을 좋게 하고, 계면 반응시 안정한 유리상을 형성시키고, 기판과 전극 사이의 접착력을 향상시킬 수 있다. 이때, 상기 TeO2의 유리 프릿 내 함량 범위는 40 내지 90중량%, 바람직하게는 65 내지 85중량%인 것일 수 있다. 상기 범위를 만족하는 경우 점도 특성이 뛰어나며, 우수한 접촉저항 및 접착력을 구현할 수 있다. The TeO 2 maintains the viscosity of the glass frit appropriately and improves the reactivity between the paste and the antireflection film. In addition, the low viscosity of the glass frit allows etching in a wider area to occur during the interfacial reaction. This can be implemented in combination with BaO and ZnO, lowering the contact resistance to improve the light conversion efficiency, to form a stable glass phase in the interfacial reaction, and to improve the adhesion between the substrate and the electrode. At this time, the content range in the glass frit of TeO 2 may be 40 to 90% by weight, preferably 65 to 85% by weight. When the above range is satisfied, the viscosity characteristics are excellent, and excellent contact resistance and adhesion can be realized.
더구나, 본 발명의 유리 프릿은 TeO2, BaO 및 ZnO의 조합을 반드시 포함함으로써 종래 PbO를 포함하여 낮은 연화점과 높은 접착력을 부여하는 것을 대체하여 환경 친화적이면서도 우수한 태양전지 전극 특성을 구현할 수 있다.In addition, the glass frit of the present invention necessarily includes a combination of TeO 2 , BaO and ZnO, thereby realizing environmentally friendly and excellent solar cell electrode properties by substituting a low softening point and high adhesive force, including conventional PbO.
상기 유리 프릿의 성분 중 BaO 및 ZnO는 각각 유리 프릿 내 함량 범위가 1 내지 25중량%, 바람직하게는 2 내지 18중량%인 것이 더욱 좋다. 상기 범위를 만족하는 경우 TeO2와의 조합으로 연화점을 낮추면서 우수한 태양전지 전극효율 및 접착강도를 구현할 수 있다. BaO and ZnO in the components of the glass frit are each more preferably in the content range of 1 to 25% by weight, preferably 2 to 18% by weight in the glass frit. When the above range is satisfied, it is possible to realize excellent solar cell electrode efficiency and adhesive strength while lowering the softening point by combining with TeO 2 .
이때, 상기 ZnO와 BaO의 중량비는 10:1 내지 1:10, 바람직하게는 7:1 내지 1:4인 것이 더욱 좋다. 또한, TeO2와 BaO 및 ZnO의 중량비는 40:60 내지 90:10인 것이 태양전지 효율 측면에서 보다 바람직하다. At this time, the weight ratio of ZnO and BaO is more preferably 10: 1 to 1:10, preferably 7: 1 to 1: 4. In addition, the weight ratio of TeO 2 to BaO and ZnO is more preferably 40:60 to 90:10 in view of solar cell efficiency.
또한, 본 발명에 따른 유리 프릿은 Li2O를 더 포함하여 목적하는 효과를 더욱 향상시킬 수 있다. 이때, Li2O는 유리 프릿 내 함량이 1 내지 15중량%일 수 있으며, 보다 바람직한 유리 프릿의 일 실시예는 TeO2 65 내지 85중량%, BaO 1 내지 25중량%, ZnO 1 내지 25중량% 및 Li2O 1 내지 15중량%를 포함하는 것일 수 있다. In addition, the glass frit according to the present invention may further include Li 2 O to further improve the desired effect. At this time, Li 2 O may be in the content of 1 to 15% by weight of the glass frit, one embodiment of the more preferred glass frit is 65 to 85% by weight TeO 2 , 1 to 25% by weight BaO, 1 to 25% by weight ZnO And Li 2 O 1 to 15% by weight.
나아가, 본 발명은 TeO2, BaO, ZnO 및 Li2O의 성분 조합을 함유한 유리 프릿이 전도성 분말 및 유기 비히클과 조합되어 포함되는 결정질 실리콘 태양전지 전면전극용 무연 도전 페이스트 조성물을 제공한다. 결정질 실리콘 태양전지 전면 전극을 형성하는 도전 페이스트 조성물에 상기 TeO2, BaO, ZnO 및 Li2O의 조합을 함유하는 유리 프릿을 포함하는 경우, 소성 공정시 반사 방지막을 에칭(etching)하고, 전도성 분말을 용융시켜 저항이 낮아질 수 있도록 에미터(emitter) 영역에 결정 입자를 생성시키는 데 더욱 효과적이다. 또한, 이는 낮은 연화점을 가지면서 동시에 우수한 접착강도를 구현할 수 있을 뿐만 아니라 개방전압(Voc) 및 곡선인자(FF)를 더욱 좋게 개선하여 태양전지의 효율을 향상시킬 수 있다. Furthermore, the present invention provides a lead-free conductive paste composition for crystalline silicon solar cell front electrodes comprising a glass frit containing TeO 2 , BaO, ZnO and Li 2 O in combination with a conductive powder and an organic vehicle. When the conductive paste composition forming the crystalline silicon solar cell front electrode includes a glass frit containing a combination of TeO 2 , BaO, ZnO and Li 2 O, the anti-reflection film is etched during the firing process, and the conductive powder It is more effective in producing crystal grains in the emitter region so that the melt can be lowered to lower the resistance. In addition, it has a low softening point and at the same time can implement excellent adhesive strength, it is possible to improve the open voltage (Voc) and the curve factor (FF) to improve the efficiency of the solar cell.
본 발명의 유리 프릿은 목적하는 효과를 저하시키지 않는 범위에서 금속 산화물을 더 포함할 수 있다. 이러한 금속 산화물로 바람직하게는 은 산화물을 더 포함할 수 있다.The glass frit of the present invention may further contain a metal oxide in a range that does not reduce the desired effect. Such metal oxides may preferably further include silver oxide.
상기 은 화합물은 이온결합 화합물로 시안화은(AgCN), 질산은(AgNO3), 할로겐화은(Ag-X), 탄산은(Ag2CO3), 초산은(AgC2H3O2), 산화은(Ag2O) 등을 단독 또는 혼합하여 사용할 수 있다. 또한, 상기 할로겐화은(Ag-X)은 X가 요오드, 플루오르, 염소 또는 브롬일수 있으며, 바람직하게는 요오드일 수 있다. The silver compound is an ionic compound silver cyanide (AgCN), silver nitrate (AgNO 3 ), silver halide (Ag-X), silver carbonate (Ag 2 CO 3 ), silver acetate (AgC 2 H 3 O 2 ), silver oxide (Ag 2 O ) May be used alone or in combination. In addition, the silver halide (Ag-X) is X may be iodine, fluorine, chlorine or bromine, preferably iodine.
상기 은 산화물은 크게 제한되는 것은 아니지만 다른 성분과의 조합으로 목적하는 효과를 구현하기에 바람직하게는 산화은(Ag2O)을 사용하는 것이 더욱 좋다. The silver oxide is not particularly limited, but it is more preferable to use silver oxide (Ag 2 O) to realize the desired effect in combination with other components.
또한, 본 발명의 유리 프릿은 바나듐 산화물을 더 포함할 수 있다. 상기 바나듐 산화물로는 오산화바나듐(V2O5)을 사용하는 것이 다른 성분과의 조합으로 전기적 특성을 개선할 수 있어 더욱 좋다. In addition, the glass frit of the present invention may further include vanadium oxide. Using vanadium pentoxide (V 2 O 5 ) as the vanadium oxide may improve electrical characteristics in combination with other components.
본 발명의 유리 프릿은 상기 은 산화물 또는 바나듐 산화물을 선택적으로 더 포함함으로써 기판과 전면 전극 사이의 접착 강도를 상승시킬 수 있으며, 태양전지의 효율을 극대화할 수 있다. Glass frit of the present invention may further increase the adhesive strength between the substrate and the front electrode by selectively further comprising the silver oxide or vanadium oxide, it is possible to maximize the efficiency of the solar cell.
본 발명의 일 실시예에 따른 유리 프릿은 상기의 금속산화물 이외에 GeO2, Ga2O3, In2O3, NiO, CoO, B2O3, CaO, MgO, SrO, MnO, SeO2, MoO3, WO3, Y2O3, As2O3, La2O3, Nd2O3, Bi2O3, Ta2O5, FeO, HfO2, Cr2O3, CdO, Sb2O3, PbF2, ZrO2, Mn2O3, P2O5, CuO, Pr2O3, Gd2O3, Sm2O3, Dy2O3, Eu2O3, Ho2O3, Yb2OL3, Lu2O3, CeO2, BiF3, SnO, SiO2, Ag2O, Nb2O5, TiO2, Rb2O, Na2O, K2O, Cs2O, Lu2O3, SnO2, Tl2O3 및 금속 할라이드 중에서 선택되는 어느 하나 이상을 더 포함할 수 있다. 상기 금속 할라이드는 일예로, NaCl, KBr, NaI, ZnF2 등을 들 수 있으며, 이에 제한되지 않는다. 이때, 상기 화합물의 함량은 유리 프릿 전체 중량의 30중량% 이하이며, 바람직하게는 10중량% 이하인 것이 더욱 좋다.Glass frit according to an embodiment of the present invention is GeO 2 , Ga 2 O 3 , In 2 O 3 , NiO, CoO, B 2 O 3 , CaO, MgO, SrO, MnO, SeO 2 , MoO in addition to the metal oxide 3 , WO 3 , Y 2 O 3 , As 2 O 3 , La 2 O 3 , Nd 2 O 3 , Bi 2 O 3 , Ta 2 O 5 , FeO, HfO 2 , Cr 2 O 3 , CdO, Sb 2 O 3 , PbF 2 , ZrO 2 , Mn 2 O 3 , P 2 O 5 , CuO, Pr 2 O 3 , Gd 2 O 3 , Sm 2 O 3 , Dy 2 O 3 , Eu 2 O 3 , Ho 2 O 3 , Yb 2 OL 3 , Lu 2 O 3 , CeO 2 , BiF 3 , SnO, SiO 2 , Ag 2 O, Nb 2 O 5 , TiO 2 , Rb 2 O, Na 2 O, K 2 O, Cs 2 O, Lu It may further include any one or more selected from 2 O 3 , SnO 2 , Tl 2 O 3, and metal halides. Examples of the metal halide include NaCl, KBr, NaI, ZnF 2 , and the like, but are not limited thereto. At this time, the content of the compound is 30% by weight or less, preferably 10% by weight or less of the total weight of the glass frit.
또한, 더 좋게는 은 산화물 또는 바나듐 산화물 이외에 SiO2 , B2O3, Al2O3 , Ta2O5, WO3, 및 MoO3 중에서 선택되는 어느 하나 이상을 더 포함할 수 있다. Further, more preferably, in addition to silver oxide or vanadium oxide, it may further include any one or more selected from SiO 2 , B 2 O 3, Al 2 O 3 , Ta 2 O 5 , WO 3 , and MoO 3 .
본 발명에서 구성 성분이 제한되는 유리 프릿의 조합의 일 구현예는 TeO2, BaO, ZnO 및 Li2O에 Ag2O으로 이루어진 것일 수 있으며, 다른 구현예로는 TeO2, BaO, ZnO 및 Li2O에 Ag2O, SiO2 및 B2O3으로 이루어진 것일 수 있다. One embodiment of the combination of the glass frit is limited to the components in the present invention may be composed of Ag 2 O in TeO 2 , BaO, ZnO and Li 2 O, in another embodiment TeO 2 , BaO, ZnO and Li 2 O to Ag 2 O, SiO 2 And B 2 O 3 .
또 다른 유리 프릿의 구현예로는 TeO2, BaO, ZnO 및 Li2O에 V2O5로 이루어진 것을 들 수 있으며, 또한, TeO2, BaO, ZnO 및 Li2O에 Bi2O3로 이루어진 것을 들 수 있다. 또 다른 유리 프릿의 구현예로는 TeO2, BaO, ZnO 및 Li2O에 SiO2 또는 SiO2 및 B2O3을 포함하는 것일 수 있다. Another glass frit may include TeO 2 , BaO, ZnO, and Li 2 O consisting of V 2 O 5 , and TeO 2 , BaO, ZnO, and Li 2 O of Bi 2 O 3 . It can be mentioned. Another embodiment of the glass frit may include SiO 2 or SiO 2 and B 2 O 3 in TeO 2 , BaO, ZnO and Li 2 O.
이 중 바람직한 구현예로는 TeO2, BaO, ZnO 및 Li2O에 Ag2O, SiO2 및 B2O3을 포함하는 것으로, 이는 우수한 변환효율, 개방전압 및 곡선인자로 태양전지의 전기적 특성을 향상시킬 수 있을 뿐만 아니라, 낮은 유리전이온도 및 연화점을 가지면서 동시에 접착력이 2N 이상의 탁월한 효과를 갖는다. Among them, preferred embodiments include TeO 2 , BaO, ZnO and Li 2 O in Ag 2 O, SiO 2 And B 2 O 3 , which not only improves the electrical characteristics of the solar cell with excellent conversion efficiency, open voltage and curve factor, but also has a low glass transition temperature and softening point, and at the same time, an excellent adhesion strength of 2N or more. Has
본 발명에 따른 태양전지용 도전 페이스트 조성물은 하나 이상, 즉 단독 혹은 혼합의 형태로 사용될 수 있으며, Pb계 유리 프릿 또는 Pb free계 유리 프릿으로부터 하나 이상을 선택하여 혼합하여 사용할 수 있으나, 납을 함유하지 않는 Pb free계 유리 프릿을 사용하는 것이 보다 바람직하다. 이때, 상기 유리 프릿은 전체 조성물 내 상기 유리 프릿의 함량은 0.5 내지 10중량%, 바람직하게는 1 내지 5중량%일 수 있다. 상기 함량 범위를 만족하는 경우 계면 반응 시 우수한 점도 특성을 유지할 수 있고, 기판과 전면 전극 사이의 접촉저항을 매우 낮게 하면서 우수한 접착강도를 부여할 수 있다. 유리 프릿이 상기 범위를 벗어나는 경우 전도성 분말의소결성, 부착력 및 저항이 높아져 태양전지의 효율을 저하시킬 수 있다. 또한, 본 발명에 따른 유리 프릿은 다른 성분을 갖는 유리 프릿과 혼합하여 사용할 수 있다. The conductive paste composition for solar cells according to the present invention may be used in one or more forms, i.e. alone or in a mixed form, and may be used by mixing one or more selected from Pb-based glass frits or Pb free-based glass frits, but does not contain lead. It is more preferable to use Pb free glass frit. In this case, the content of the glass frit in the total composition of the glass frit may be 0.5 to 10% by weight, preferably 1 to 5% by weight. When the content range is satisfied, excellent viscosity characteristics can be maintained during the interfacial reaction, and excellent adhesion strength can be given while keeping the contact resistance between the substrate and the front electrode very low. When the glass frit is out of the above range, the sinterability, adhesion, and resistance of the conductive powder may be increased, thereby reducing the efficiency of the solar cell. In addition, the glass frit according to the present invention can be used in admixture with a glass frit having other components.
또한, 상기의 전도성 페이스트에 ZnO, CuO, MnO, NiO, Fe2O3 등에 화합물을 더 포함할 수 있다. 이 경우, 본 발명에서 목적하는 효과의 구현 뿐만 아니라 추가 효과의 이점을 볼 수 있다. In addition, the conductive paste may further include a compound in ZnO, CuO, MnO, NiO, Fe 2 O 3 and the like. In this case, not only the implementation of the desired effects in the present invention but also the advantages of the additional effects can be seen.
본 발명에서 (b) 유리 프릿은 유리전이온도(Tg)가 200 내지 350℃, 바람직하게는 240 내지 310℃인 것일 수 있다. 또한, 본 발명의 (b) 유리 프릿은 연화점(Ts)이 250 내지 500℃, 바람직하게는 290 내지 350℃인 것일 수 있다. 상기 유리전이온도 및 연화점 범위를 만족하는 경우 목적하는 물성의 효과 달성에 더욱 좋다. In the present invention (b) the glass frit may have a glass transition temperature (Tg) of 200 to 350 ° C, preferably 240 to 310 ° C. In addition, the glass frit (b) of the present invention may have a softening point (Ts) of 250 to 500 ° C, preferably 290 to 350 ° C. When the glass transition temperature and the softening point range is satisfied, it is better to achieve the desired physical properties.
본 발명에서 (b) 유리 프릿은 평균입경이 0.5 내지 5.0㎛, 바람직하게는 0.7 내지 3㎛인 것이 좋다. 상기 범위를 만족하는 경우 전극 형성 시 핀홀 불량을 유발하지 않는다.In the present invention (b) glass frit has an average particle diameter of 0.5 to 5.0㎛, preferably 0.7 to 3㎛. If the above range is satisfied, pinhole defects are not caused when the electrode is formed.
본 발명에서 (c) 유기 비히클(vehicle)은 태양전지용 페이스트의 무기성분과 물리적 혼합을 통하여 조성물에 인쇄성을 좋게 하도록 점도 및 유변학적 특성을 부여한다. In the present invention (c) the organic vehicle (vehicle) imparts viscosity and rheological properties to the printability to the composition through physical mixing with the inorganic component of the solar cell paste.
상기 유기 비히클은 통상적으로 태양전지 전극 페이스트에 사용되는 유기 비히클이 사용될 수 있으며, 일예로 고분자와 용매의 혼합물일 수 있다. 바람직하게는 TXIB(Trimethyl Pentanyl Diisobutylate), 디베이직 에스테르(Dibasic ester), 부틸카비톨BC(BUTYL CARBITOL), 부틸카비톨아세테이트, 부틸셀루솔브, 부틸셀루솔브아세테이트, 프로필렌글리콜 모노메틸에테르, 디프로필렌글리콜모노메틸에테르, 디메틸 아디페이트, 디메틸 글루타레이트, 프로필렌글리콜모노메틸에테르프로피오네이트, 에틸에테르프로피오네이트, 테르피네올(terpineol), 프로필렌글리콜모노메틸에테르아세테이트, 디메틸아미노포름알데히드, 메틸에틸케톤, 감마 부티로락톤, 에틸락테이트 및 텍사놀(Texanol) 중에서 선택된 하나 이상의 용매 중에 에틸셀룰로스, 메틸셀룰로스, 니트로셀룰로스, 셀룰로오스 에스테르 등의 셀룰로스계 수지, 로진(rosin) 또는 알콜의 폴리메타크릴레이트, 아크릴산 에스테르 등의 아크릴계 수지 및 폴리비닐 알코올, 폴리비닐 부티랄 등의 폴리비닐계 수지 중에서 선택된 하나 이상의 수지를 첨가한 것일 수 있다. The organic vehicle may be an organic vehicle that is commonly used in solar cell electrode pastes, and may be, for example, a mixture of a polymer and a solvent. Preferably, Trimethyl Pentanyl Diisobutylate (TXIB), Dibasic ester, Dibutyl ester, Butyl Carbitol BC, Butyl Carbitol Acetate, Butyl Cellulsolve, Butyl Cellulose Acetate, Propylene Glycol Monomethyl Ether, Dipropylene Glycol Monomethyl ether, dimethyl adipate, dimethyl glutarate, propylene glycol monomethyl ether propionate, ethyl ether propionate, terpineol, propylene glycol monomethyl ether acetate, dimethylamino formaldehyde, methyl ethyl ketone , Cellulose resins such as ethylcellulose, methylcellulose, nitrocellulose, cellulose esters, rosin or polymethacrylates of alcohols in at least one solvent selected from gamma butyrolactone, ethyl lactate and texanol, Acrylic resins such as acrylic acid esters and polyvinyl alcohols, One or more resins selected from polyvinyl resins such as polyvinyl butyral may be added.
상기 유기 비히클은 페이스트 전체 중량에 대하여 4 중량% 내지 35 중량%, 바람직하게는 5 내지 30중량%인 것이 좋다. 상기 범위를 만족하는 경우 전도성 분말을 용이하게 분산시키고, 소성 후 잔류 탄소에 의한 저항증가로 태양전지의 변환효율이 저하되는 것을 방지할 수 있다. The organic vehicle is 4 to 35% by weight, preferably 5 to 30% by weight based on the total weight of the paste. When satisfying the above range it is possible to easily disperse the conductive powder, it is possible to prevent the conversion efficiency of the solar cell is lowered by the increase in resistance by the residual carbon after firing.
본 발명의 태양전지용 도전 페이스트는 상술한 구성 요소 이외에 유동 특성, 공정 특성 및 안정성을 향상시키기 위하여 통상의 첨가제를 더 포함할 수 있다. 상기 첨가제로는 분산제, 증점제, 요변제, 레벨링제, 가소제, 점도안정화제, 소포제, 안료, 자외선 안정제, 산화방지제, 커플링제 등을 들 수 있으며, 이에 제한되는 것은 아니다. The conductive paste for solar cells of the present invention may further include a conventional additive in order to improve the flow characteristics, process characteristics and stability in addition to the components described above. The additives include, but are not limited to, dispersants, thickeners, thixotropic agents, leveling agents, plasticizers, viscosity stabilizers, antifoaming agents, pigments, ultraviolet stabilizers, antioxidants, coupling agents, and the like.
상기 분산제로는 LUBRISOL사 SOLSPERSE, BYK사의 DISPERBYK-180, 110, 996, 및 997 등을 들 수 있으나 이에 한정되지는 않는다. 상기 증점제로는 BYK사의 BYK-410, 411, 420 등을 들 수 있으나 이에 한정되지는 않는다. 상기 요변제로는 ELEMENTIS사 THIXATROL MAX, BYK사의 ANTI-TERRA-203, 204, 205 등을 들 수 있으나 이에 한정되지는 않는다. 상기 레벨링제로는 BYK사의 BYK-3932 P, BYK-378, BYK-306, BYK-3440 등을 들 수 있으나 이에 한정되지는 않는다. 유기 첨가제는 도전 페이스트 조성물 전체 100wt%에 대하여, 약 1 내지 20wt%로 함유될 수 있다.The dispersant may include, but is not limited to, LUBRISOL Corporation SOLSPERSE, BYK Corporation DISPERBYK-180, 110, 996, and 997. The thickener may include, but is not limited to, BYK-410, 411, and 420 of BYK Corporation. The thixotropic agent may include, but is not limited to, ELEMENTIS Co., Ltd. THIXATROL MAX, BYK Co., Ltd., ANTI-TERRA-203, 204, 205, and the like. The leveling agent may include, but is not limited to, BYK-3932 P, BYK-378, BYK-306, BYK-3440, and the like. The organic additive may be contained in an amount of about 1 to 20 wt% based on 100 wt% of the entire conductive paste composition.
본 발명은 상술한 태양전지용 무연 도전 페이스트 조성물을 이용하여 형성된 태양전지 전면 전극을 제공할 수 있다. 전면 전극은 상기의 도전 페이스트 조성물을 웨이퍼 기판 상에 인쇄하고 건조 및 소성하는 공정을 통하여 형성된다. 인쇄방법은 스크린 인쇄, 디스펜싱 인쇄, 패드(pad) 인쇄, 스텐실(stencil) 인쇄, 잉크젯(ink jet) 인쇄, 핫멜트(hot melt) 인쇄 또는 임의의 적절한 마이크로-적층/직접 라이팅(direct writing), 다중 인쇄(double and/or multiple printing) 등을 이용할 수 있으며, 특별히 이에 한정되는 것은 아니다.The present invention can provide a solar cell front electrode formed using the lead-free conductive paste composition for solar cells described above. The front electrode is formed through a process of printing, drying, and firing the conductive paste composition on a wafer substrate. Printing methods may include screen printing, dispensing printing, pad printing, stencil printing, ink jet printing, hot melt printing or any suitable micro-lamination / direct writing, Double and / or multiple printing may be used, but is not particularly limited thereto.
전면 전극은 상기의 도전 페이스트 조성물을 웨이퍼 기판 상에 다중 인쇄 공정을 통하여 전극 형성 시 에는 처음 인쇄하는 전도성 페이스트와 2회 이상의 인쇄공정에서 사용하는 전도성 페이스트가 동일하거나 상이할 수도 있다. 또한 처음 인쇄하는 부위와 2회 이상의 의해서 인쇄되는 부위가 동일하거나 상이한 것일 수 있다. The front electrode may have the same or different conductive paste used in two or more printing processes as the first conductive paste when the electrode is formed on the wafer substrate through a multi-printing process. In addition, the site to be printed first and the site printed by two or more times may be the same or different.
본 발명은 상기 태양전지 전면전극을 포함하는 태양전지를 제공한다.The present invention provides a solar cell including the solar cell front electrode.
본 발명의 일 실시예에 따른 태양전지는 제 1 전도성 타입의 기판; 상기 기판상에 형성된 제 2 전도성 타입의 에미터층; 상기 에미터층 상에 형성된 반사방지막; 상기 반사방지막을 관통하여 상기 에미터층에 접속되며 상술한 본 발명에 따른 도전 페이스트 조성물을 이용하여 제조되는 전면 전극; 및 상기 기판의 배면에 형성된 후면 전극을 포함한다.A solar cell according to an embodiment of the present invention comprises a substrate of a first conductivity type; An emitter layer of a second conductivity type formed on the substrate; An anti-reflection film formed on the emitter layer; A front electrode connected to the emitter layer through the anti-reflection film and manufactured using the conductive paste composition according to the present invention described above; And a rear electrode formed on the rear surface of the substrate.
제 1 전도성 타입의 기판은 P형 또는 N형에서 선택된다. 제 2 전도성 타입의 에미터층은 기판과 반대 도전형을 가지는 것으로 선택된다. P+층의 형성을 위해서는 3족 원소가 불순물로 도핑되고, N+층의 형성을 위해서는 5족 원소가 불순물로 도핑된다. 예를 들어, P+층 형성을 위해 B, Ga, In이 도핑되고, N+층 형성을 위해 P, As, Sb가 도핑될 수 있다. 상기 기판 및 에미터층 사이 계면에 P-N접합이 형성되고, 이는 태양광을 받아 광기전력효과에 의해 전류를 발생시키는 부분이다. 광기전력효과에 의해 발생된 전자와 정공은 각각 P층 및 N층으로 끌어 당겨져 각각 기판 하부 및 에미터층 상부와 접합된 전극으로 이동하며, 전극에 부하를 걸어 여기에서 발생한 전기를 이용할 수 있다.The substrate of the first conductivity type is selected from P type or N type. The emitter layer of the second conductivity type is selected to have a conductivity type opposite to that of the substrate. Group 3 elements are doped with impurities to form the P + layer, and Group 5 elements are doped with impurities to form the N + layer. For example, B, Ga, In may be doped to form a P + layer, and P, As, Sb may be doped to form an N + layer. A P-N junction is formed at an interface between the substrate and the emitter layer, which is a part that receives sunlight and generates a current by the photovoltaic effect. The electrons and holes generated by the photovoltaic effect are attracted to the P layer and the N layer, respectively, and move to the electrodes bonded to the lower substrate and the upper emitter layer, respectively.
반사방지막은 태양전지 전면으로 입사되는 태양광의 반사율을 감소시킨다. 태양광의 반사율이 감소되면 P-N접합까지 도달하는 광량이 증대되어 태양전지의 단락전류가 증가되고, 태양전지의 변환효율이 향상된다.The anti-reflection film reduces the reflectance of sunlight incident on the front surface of the solar cell. When the reflectance of the solar light is reduced, the amount of light reaching the P-N junction is increased to increase the short circuit current of the solar cell, and the conversion efficiency of the solar cell is improved.
반사방지막은 예를 들면 실리콘 질화막, 수소를 포함한 실리콘 질화막, 실리콘 산화막, 실리콘 산화질화막에서 선택된 어느 하나의 단일막 또는 2개 이상이 조합된 다중막 구조를 가질 수 있으나, 이에 한정되는 것은 아니다.The anti-reflection film may have, for example, a single film selected from a silicon nitride film, a silicon nitride film including hydrogen, a silicon oxide film, a silicon oxynitride film, or a multi-film structure in which two or more are combined, but is not limited thereto.
전면 전극과 후면 전극은 공지된 여러 가지 기술에 의해 제조 가능하지만, 바람직하게는 스크린 인쇄법에 의해 형성된다. 전면 전극은 본 발명의 은 페이스트 조성물을 이용하여 전면 전극 형성 지점에 스크린 인쇄한 후 열처리를 수행 하여 형성한다. 열처리가 수행되면 펀치 스루 현상에 의해 전면 전극이 반사방지막을 뚫고 에미터층과 접촉된다.The front electrode and the back electrode can be produced by various known techniques, but are preferably formed by screen printing. The front electrode is formed by screen printing the front electrode formation point using the silver paste composition of the present invention and then performing heat treatment. When the heat treatment is performed, the front electrode penetrates the antireflection film and contacts the emitter layer by the punch through phenomenon.
후면 전극은 전도성 금속으로 알루미늄을 포함하는 페이스트 조성물을 기판 배면에 인쇄한 후 열처리를 수행하여 형성한다. 후면 전극 열처리시에는 알루미늄이 기판 배면을 통해 확산됨으로써 후면 전극과 기판 경계면에 후면 전계층이 형성될 수 있다. 후면 전계층이 형성되면 캐리어가 기판 배면으로 이동하여 재결합되는 것을 방지할 수 있어 태양전지의 변환효율이 향상된다.The back electrode is formed by printing a paste composition containing aluminum as a conductive metal on the back of the substrate and performing heat treatment. During the heat treatment of the rear electrode, aluminum is diffused through the rear surface of the substrate to form a rear electric field on the rear electrode and the substrate interface. When the rear electric field layer is formed, the carriers can be prevented from moving to the back of the substrate to be recombined, thereby improving the conversion efficiency of the solar cell.
또한, 본 발명에 따른 태양전지는 PERC 구조를 갖는 것일 수 있다. 상기 PERC(Passivated Emitter and Rear Cell) 타입의 태양전지는 에미터층 뿐만 아니라 후면에도 패시베이션(passivation)을 갖는 것으로, 기판 손상을 줄이면서 개방전압과 단락 전류밀도를 높일 수 있다. 구체적으로, 후면의 패시베이션은 에미터 영역에 비해서 후면 전극과 기판의 접촉면에 인(phosphorous)도핑 수준을 높임(heavy doping)으로써 개방전압을 증가시키고, 열처리를 하지 않아 후면에서의 빛 반사를 높여 light trapping 효과를 향상시킨다. 본 발명에 따른 태양전지용 무연 도전 페이스트는 이러한 PERC 타입의 태양전지의 후면 전극에 적용되어 그 효과를 극대화할 수 있다. In addition, the solar cell according to the present invention may have a PERC structure. The passivated emitter and rear cell (PERC) type solar cells have passivation not only on the emitter layer but also on the rear side, and can increase the open voltage and short circuit current density while reducing substrate damage. Specifically, the passivation on the back side increases the open voltage by increasing the doping level of phosphorous on the contact surface of the back electrode and the substrate compared to the emitter region, and increases the reflection of light from the backside without heat treatment. Improve trapping effect The lead-free conductive paste for solar cells according to the present invention can be applied to the rear electrode of such a PERC type solar cell to maximize its effect.
이하 본 발명에 따른 태양전지용 무연 도전 페이스트에 대한 일예를 들어 설명하는 바, 본 발명이 하기 실시예에 한정되는 것은 아니다. Hereinafter, an example of the lead-free conductive paste for solar cells according to the present invention will be described, but the present invention is not limited to the following examples.
(실시예 1 내지 20 및 비교예 1 내지 4)(Examples 1 to 20 and Comparative Examples 1 to 4)
실시예 1 내지 7 및, 실시예 8 내지 20과 비교예 1 내지 3은 각각 하기 표 1 내지 3의 조성에 따라 유리 프릿에 해당하는 성분들을 반응기에 투입하여 혼합하고, 이를 1100℃에서 30분 동안 용융하여 순수(H2O)로 켄칭(Quenching)하여 급냉시켰다. 급냉된 유리 용융물은 볼밀(Ball-mill)로 분쇄하여, 2 ㎛의 평균입경을 갖는 유리 프릿을 제조하였다. 한편, 비교예 4는 납을 포함하는 것으로, Te-Pb계 유리 프릿(대주전자재료(주)의 DPS-1900V17)을 사용하였다.Examples 1 to 7, and Examples 8 to 20 and Comparative Examples 1 to 3, respectively, according to the composition of Tables 1 to 3, the components corresponding to the glass frit were added to the reactor and mixed, and this was carried out at 1100 ° C. for 30 minutes. It was melted and quenched by quenching with pure water (H 2 O). The quenched glass melt was ground in a ball-mill to produce a glass frit having an average particle diameter of 2 μm. On the other hand, the comparative example 4 contained lead and used Te-Pb type glass frit (DPS-1900V17 by Daeju Electronic Material Co., Ltd.).
(은 페이스트의 제조)(Production of Silver Paste)
상기 실시예 및 비교예에서 제조한 유리 프릿을 사용하여 무연 도전 페이스트를 각각 제조하였다. 전도성 분말로는 은 분말을 사용하였다. 은 분말은 평균입경이 1.6㎛인 은 입자(Technic사) 45중량%와 평균입경이 2.1㎛인 은 입자(Technic사) 45중량%를 혼합하여 사용하였고, 유리 프릿은 표 1 내지 3의 조성으로 제조된 것을 2중량% 사용하였다. 바인더로는 셀룰로오스 에스테르(EASTMAN사 CAB-382-20)와 에틸 셀룰로오스 수지(AQUALON사 ECN-50)를 각각 1중량%로 사용하였으며, 용매로는 TXIB(Trimethyl Pentanyl Diisobutylate) 1.5중량% 및 부틸카르비톨(Butyl Carbitol) 3.5중량%를 사용하였으며, 첨가제로는 요변성 조정제(ELEMENTIS사 THIXATROL MAX) 0.5중량%와 분산제(LUBRISOL사 SOLSPERSE) 0.5중량%를 첨가하여 은(Ag)페이스트 조성물을 제조하였다.Lead-free conductive pastes were prepared using the glass frits prepared in Examples and Comparative Examples, respectively. Silver powder was used as the conductive powder. Silver powder was used by mixing 45% by weight of silver particles (Technic) having an average particle diameter of 1.6 μm and 45% by weight of silver particles (Technic) having an average particle diameter of 2.1 μm. 2 wt% was used. As a binder, cellulose ester (EASTMAN CAB-382-20) and ethyl cellulose resin (AQUALON ECN-50) were used at 1% by weight, respectively, and as solvent, 1.5% by weight of Trimethyl Pentanyl Diisobutylate (TXIB) and butylcarbitol. (Butyl Carbitol) 3.5% by weight was used, and as an additive, 0.5 wt% of a thixotropic modifier (ELEMENTIS Co., Ltd. THIXATROL MAX) and a dispersant (LUBRISOL SOLSPERSE) were added to prepare a silver paste composition.
(태양전지의 제조)(Manufacture of Solar Cell)
156mm 결정질 실리콘 웨이퍼를 이용하여 관상로(tube furnace,850℃)에서 POCl3을 사용하는 확산 공정을 통해 인(P)을 도핑하여 80Ω/sq 시트 저항을 가지는 에미터층을 형성하였다. 상기 에미터층 상에 화학기상증착법(PECVD 방법)으로 전구체 SiH4와 NH3를 사용하여 실리콘 질화막을 증착하여 70nm두께로 형성하여 반사방지막을 형성하였다. 이후, 상기 실리콘 기판 후면에 알루미늄 페이스트(대주전자재료(주), DPA-3110L-3)를 도포한 후 250℃에서 2분 동안 건조하고, 상기 본 발명에 의해 제조된 은(Ag) 페이스트를 태양광이 흡수되는 수광면에 스크린 인쇄(ASYS COMPANY사 인쇄기 이용)하여, 일정한 패턴으로 도포하고 건조하였다. 스크린 인쇄시, 450㎜× 450㎜ 프레임의 스테인레스 와이어 400메쉬를 사용하였다. 스크린 인쇄 패턴은 38㎛ 선폭의 핑거바(finger bar) 100개와 1.5㎜ 폭의 3개의 버스바(bus bar)로 하였다. 스크린 인쇄 후 건조된 도막 두께는 19㎛이었으며, 건조온도는 250℃였다. 얻어진 태양전지 실리콘 기판을 벨트타입 소성로에서 피크온도 약 800℃에서 IN-OUT 약 1분의 조건으로 동시에 소성하여 목적하는 태양전지를 제조하였다.Phosphorus (P) was doped by a diffusion process using POCl 3 in a tube furnace (850 ° C.) using a 156 mm crystalline silicon wafer to form an emitter layer having an 80Ω / sq sheet resistance. A silicon nitride film was deposited on the emitter layer by using chemical vapor deposition (PECVD) to form a silicon nitride film using precursor SiH 4 and NH 3 to form an antireflection film. Then, after applying an aluminum paste (Daeju Electronics Materials Co., Ltd., DPA-3110L-3) on the back of the silicon substrate and dried for 2 minutes at 250 ℃, the silver (Ag) paste prepared by the present invention Screen printing (using ASYS COMPANY printing press) was performed on the light-receiving surface where light was absorbed, applied in a constant pattern, and dried. In screen printing, a stainless wire 400 mesh of 450 mm x 450 mm frame was used. The screen printing pattern consisted of 100 finger bars of 38 micrometer line width, and three bus bars of 1.5 mm width. The dry film thickness after screen printing was 19 ㎛, the drying temperature was 250 ℃. The obtained solar cell silicon substrate was simultaneously fired in a belt type firing furnace at a peak temperature of about 800 ° C. under a condition of about IN-OUT for about 1 minute to prepare a desired solar cell.
제조된 태양전지의 전기적 특성(I-V특성)을 ORIEL사 제조의 솔라 시뮬레이터 (SOL3A)를 사용하여 테스트하였다. 각 페이스트 당 10매의 샘플을 제조하고 10매 샘플의 평균치를 사용하였으며, 제조된 태양전지의 특성을 표 2, 5 및 6에 나타내었다. 실시예 8 내지 19 및 비교예 1 내지 4의 결과는 비교예 1의 변환효율, 개방전압, 곡선인자, 단락전류 및 선저항을 기준으로 하여, 상대적인 값(%)을 기재하였다. The electrical characteristics (I-V characteristics) of the manufactured solar cells were tested using a solar simulator (SOL3A) manufactured by ORIEL. Ten samples were prepared for each paste, and the average value of the ten samples was used, and the characteristics of the manufactured solar cells are shown in Tables 2, 5, and 6. The results of Examples 8 to 19 and Comparative Examples 1 to 4 described relative values (%) based on the conversion efficiency, the open voltage, the curve factor, the short circuit current, and the line resistance of Comparative Example 1.
(평가)(evaluation)
(1) 유리전이온도(Tg)와 연화온도(Ts)(1) Glass transition temperature (Tg) and softening temperature (Ts)
열분석기(SDT:Q600, TA Instruments, 미국)을 사용하여 승온속도 10℃/min으로 1000℃ 까지의 범위에서 측정하였다.Using a thermal analyzer (SDT: Q600, TA Instruments, USA) was measured in the range up to 1000 ℃ at a heating rate of 10 ℃ / min.
(2) 태양전지의 효율(변환효율, 개방전압, 곡선인자)(2) Solar cell efficiency (conversion efficiency, open voltage, curve factor)
제조된 전극은 태양전지효율 측정장비(pasna사, CT-801)을 이용하여 태양전지의 변환효율(Eff, %), 개방전압(Voc, V), 곡선인자(FF, %)를 측정하였다.The manufactured electrode measured the conversion efficiency (Eff,%), the open voltage (Voc, V), the curve factor (FF,%) of the solar cell using a solar cell efficiency measuring equipment (pasna, CT-801).
(3) 리본접착력(N)(3) Ribbon adhesive force (N)
전극 형성 공정 상 형성된 전면전극의 표면에 SnPbAg계 솔더리본(solder ribbon, 2mm 선폭, indium corporation, SUNTABTM)을 이용하여 200℃의 온도로 열을 가하여 10cm 길이로 부착시키고, 부착된 부분의 한쪽 끝을 잡고 만능시험인장력평가기(COMETECH사 QC-508E)와 180° 방향으로 잡아 당기면서 전극과 솔더리본이 박리될 때까지의 힘(N, newton)을 기준으로 측정하였다. On the surface of the front electrode formed during the electrode formation process, heat was applied at a temperature of 200 ℃ using SnPbAg-based solder ribbon (solder ribbon, 2mm line width, indium corporation, SUNTABTM) and attached 10cm in length, and one end of the attached part was attached. It was measured based on the force (N, newton) until the electrode and the solder ribbon peeled while pulling in the 180 ° direction with a universal testing tensile force rating (COMETECH company QC-508E).
유리 프릿성분(wt%)Glass frit ingredient (wt%) 실시예Example
1One 22 33 44 55 66 77
TeO2 TeO 2 6767 7373 7171 7878 7676 7474 8484
BaOBaO 2222 1616 2121 1111 1616 2020 55
ZnOZnO 1111 1111 88 1111 88 66 1111
유리 프릿성분(wt%)Glass frit ingredient (wt%) 실시예Example
88 99 1010 1111 1212 1313 1414 1515
TeO2 TeO 2 78.578.5 7777 75.575.5 7474 7777 74.574.5 74.574.5 74.574.5
BaOBaO 1212 1111 66 33 99 66 55 44
ZnOZnO 55 99 99 99 77 99 77 22
Li2OLi 2 O 4.54.5 22 2.52.5 66 55 2.52.5 2.52.5 2.52.5
SiO2 SiO 2 -- -- -- -- -- -- 1One 22
B2O3 B 2 O 3 -- -- -- -- 22 - - 22 - -
V2O5 V 2 O 5 -- -- 77 -- -- -- -- --
Ag2OAg 2 O -- -- -- 88 -- 88 88 1515
유리 프릿성분(wt%)Glass frit ingredient (wt%) 실시예Example 비교예Comparative example
1616 1717 1818 1919 2020 1One 22 33
TeO2 TeO 2 7878 7171 6262 8686 8181 7777 8080 8080
BaOBaO 77 33 22 33 66 -- -- 1010
ZnOZnO 11.511.5 77 66 55 1111 1010 1010 --
Li2OLi 2 O 2.52.5 2.52.5 22 2.52.5 -- 2.52.5 77 33
SiO2 SiO 2 -- -- -- -- 1One 22 -- 77
B2O3 B 2 O 3 -- -- -- -- 1One 8.58.5 33 --
V2O5 V 2 O 5 -- -- 2828 -- -- -- -- --
PbOPbO -- -- -- -- -- -- -- --
Bi2O3 Bi 2 O 3 -- -- -- 1.51.5 -- -- -- --
Ag2OAg 2 O 1One 16.516.5 -- 22 -- -- -- --
구분division 실시예Example
1One 22 33 44 55 66 77
Tg(℃)Tg (℃) 340340 339339 343343 331331 326326 330330 323323
Ts(℃)Ts (℃) 385385 380380 385385 369369 369369 404404 405405
구분division 실시예Example
88 99 1010 1111 1212 1313 1414 1515
Tg(℃)Tg (℃) 261261 274274 287287 253253 247247 255255 260260 266266
Ts(℃)Ts (℃) 301301 301301 330330 344344 298298 306306 320320 332332
변환효율(Eff %)Conversion efficiency (Eff%) 16.8516.85 16.5016.50 16.7016.70 17.0517.05 17.6217.62 18.2018.20 18.4118.41 18.6718.67
개방전압(Voc V)Open Voltage (Voc V) 0.6340.634 0.6340.634 0.6350.635 0.620.62 0.6350.635 0.6360.636 0.6360.636 0.6370.637
곡선인자(FF %)Curve Factor (FF%) 71.5971.59 71.0071.00 70.3170.31 77.877.8 74.4274.42 76.9576.95 77.0577.05 78.5478.54
리본접착력(N)Ribbon adhesive force (N) 3.563.56 3.43.4 5.25.2 5.235.23 3.893.89 4.534.53 4.264.26 3.923.92
구분division 실시예Example 비교예Comparative example
1616 1717 1818 1919 2020 1One 22 33 44
Tg(℃)Tg (℃) 223223 231231 275275 245245 234234 유리화xVitrification x 유리화xVitrification x 유리화xVitrification x 323323
Ts(℃)Ts (℃) 330330 228228 334334 304304 325325 405405
변환효율(Eff %)Conversion efficiency (Eff%) 17.5217.52 18.8218.82 17.1217.12 18.7518.75 17.517.5 2.72.7
개방전압(Voc V)Open Voltage (Voc V) 0.6350.635 0.6360.636 0.6340.634 0.6360.636 0.6240.624 0.620.62
곡선인자(FF %)Curve Factor (FF%) 75.4375.43 79.1279.12 76.6376.63 78.9478.94 78.8478.84 2626
리본접착력(N)Ribbon adhesive force (N) 4.984.98 2.562.56 4.554.55 4.214.21 1.871.87 3.983.98
이상과 같이 본 발명에서는 한정된 실시예에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. As described above in the present invention has been described by a limited embodiment, but this is only provided to help a more general understanding of the present invention, the present invention is not limited to the above embodiments, the present invention is not limited to the common knowledge Those having a variety of modifications and variations are possible from these descriptions.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention should not be limited to the described embodiments, and all the things that are equivalent to or equivalent to the claims as well as the following claims will belong to the scope of the present invention. .

Claims (13)

  1. (a) 전도성 분말(a) conductive powder
    (b) TeO2, BaO 및 ZnO 을 함유하는 유리 프릿 및(b) glass frit containing TeO 2 , BaO and ZnO and
    (c) 유기 비히클(c) organic vehicle
    을 포함하는 태양전지용 무연 도전 페이스트 조성물.Lead-free conductive paste composition for a solar cell comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 유리 프릿은 Li2O를 더 포함하는 태양전지 무연 도전 페이스트 조성물.The glass frit further comprises Li 2 O solar cell lead-free conductive paste composition.
  3. 제1항에 있어서,The method of claim 1,
    상기 유리 프릿은 은(Ag) 산화물 또는 바나듐(V) 산화물을 더 포함하는 태양전지 무연 도전 페이스트 조성물.The glass frit further comprises a silver (Ag) oxide or vanadium (V) oxide solar cell lead-free conductive paste composition.
  4. 제1항 내지 제3항에 있어서,The method according to claim 1, wherein
    상기 유리 프릿은 유리전이온도(Tg)가 200 내지 350℃이며, 연화점(Ts)이 250 내지 500℃인 태양전지 무연 도전 페이스트 조성물.The glass frit has a glass transition temperature (Tg) of 200 to 350 ° C and a softening point (Ts) of 250 to 500 ° C.
  5. (a) 전도성 분말(a) conductive powder
    (b) TeO2, BaO, ZnO 및 Li2O를 함유하는 유리 프릿 및(b) glass frit containing TeO 2 , BaO, ZnO and Li 2 O and
    (c) 유기 비히클(c) organic vehicle
    을 포함하는 결정질 실리콘 태양전지 전면전극용 무연 도전 페이스트 조성물.Lead-free conductive paste composition for a crystalline silicon solar cell front electrode comprising a.
  6. 제5항에 있어서,The method of claim 5,
    상기 유리 프릿은 TeO2 65 내지 85중량%, BaO 1 내지 25중량%, ZnO 1 내지 25중량% 및 Li2O 1 내지 15중량%를 포함하는 결정질 실리콘 태양전지 전면전극용 무연 도전 페이스트 조성물.The glass frit is lead-free conductive paste composition for crystalline silicon solar cell front electrode comprising 65 to 85% by weight of TeO 2 , 1 to 25% by weight BaO, 1 to 25% by weight ZnO and 1 to 15% by weight of Li 2 O.
  7. 제5항에 있어서,The method of claim 5,
    상기 유리 프릿은 은(Ag) 산화물 또는 바나듐(V) 산화물을 더 포함하는 결정질 실리콘 태양전지 전면전극용 무연 도전 페이스트 조성물.The glass frit is a lead-free conductive paste composition for a crystalline silicon solar cell front electrode further comprises a silver (Ag) oxide or vanadium (V) oxide.
  8. 제5항에 있어서,The method of claim 5,
    상기 유리 프릿은 유리전이온도(Tg)가 200 내지 350℃이며, 연화점(Ts)이 250 내지 500℃인 결정질 실리콘 태양전지 전면전극용 무연 도전 페이스트 조성물.The glass frit has a glass transition temperature (Tg) of 200 to 350 ° C and a softening point (Ts) of 250 to 500 ° C.
  9. 제5항에 있어서,The method of claim 5,
    상기 유리 프릿은 평균입경이 0.5 내지 5.0㎛인 결정질 실리콘 태양전지 전면전극용 무연 도전 페이스트 조성물.The glass frit is a lead-free conductive paste composition for a crystalline silicon solar cell front electrode having an average particle diameter of 0.5 to 5.0㎛.
  10. 제5항에 있어서,The method of claim 5,
    상기 조성물은 유리 프릿이 전체 조성물 0.5 내지 10중량% 포함되는 결정질 실리콘 태양전지 전면전극용 무연 도전 페이스트 조성물.The composition is a lead-free conductive paste composition for a crystalline silicon solar cell front electrode containing a glass frit 0.5 to 10% by weight of the total composition.
  11. 제5항에 있어서,The method of claim 5,
    상기 전도성 분말은 은, 금, 구리, 니켈, 알루미늄, 팔라듐, 백금, 크롬, 코발트, 주석, 아연, 철, 이리듐, 로듐, 텅스텐, 몰리브덴 및 이들의 합금 중에서 선택되는 하나 이상을 포함하는 결정질 실리콘 태양전지 전면전극용 무연 도전 페이스트 조성물.The conductive powder is a crystalline silicon solar cell comprising at least one selected from silver, gold, copper, nickel, aluminum, palladium, platinum, chromium, cobalt, tin, zinc, iron, iridium, rhodium, tungsten, molybdenum and alloys thereof. Lead-free conductive paste compositions for battery front electrodes.
  12. 제11항에 있어서,The method of claim 11,
    상기 전도성 분말은 구형이며, 평균입경이 0.5 내지 5㎛, BET 0.2-0.8㎡/g 인 결정질 실리콘 태양전지 전면전극용 무연 도전 페이스트 조성물.The conductive powder is spherical, the average particle diameter of 0.5 to 5㎛, BET 0.2-0.8 m2 / g lead-free conductive paste composition for crystalline silicon solar cell front electrode.
  13. 제 1항 내지 12항에 있어서,The method according to claim 1 to 12,
    상기 조성물은 일반형(Conventional type) 또는 PERC형(Passivated Emitter and Rear Cell type) 구조의 태양전지에 적용되는 결정질 실리콘 태양전지 전면전극용 무연 도전 페이스트 조성물. The composition is a lead-free conductive paste composition for a crystalline silicon solar cell front electrode applied to a solar cell of the conventional type (Conventional type) or PERC (Passivated Emitter and Rear Cell type) structure.
PCT/KR2017/002787 2016-03-18 2017-03-15 Lead-free electroconductive paste for solar cell WO2017160074A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0032698 2016-03-18
KR1020160032698A KR20170108577A (en) 2016-03-18 2016-03-18 Lead Free Conductive Paste for solar cell

Publications (1)

Publication Number Publication Date
WO2017160074A1 true WO2017160074A1 (en) 2017-09-21

Family

ID=59851327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002787 WO2017160074A1 (en) 2016-03-18 2017-03-15 Lead-free electroconductive paste for solar cell

Country Status (3)

Country Link
KR (1) KR20170108577A (en)
TW (1) TWI635514B (en)
WO (1) WO2017160074A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190045758A (en) * 2017-10-24 2019-05-03 삼성에스디아이 주식회사 Composition for forming solar cell electrode and electrode prepared using the same
KR20190066158A (en) * 2017-12-05 2019-06-13 삼성에스디아이 주식회사 Composition for forming solar cell electrode and electrode prepared using the same
CN109493993B (en) * 2018-12-07 2020-11-27 浙江中希电子科技有限公司 Silver paste for front electrode of crystalline silicon solar cell and preparation method thereof
CN110021450A (en) * 2019-04-17 2019-07-16 北京大学深圳研究生院 A kind of lead-free glass powder being used to prepare silver paste of solar cells and its application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100125273A (en) * 2008-01-30 2010-11-30 바스프 에스이 Glass frits
KR20130062191A (en) * 2011-12-02 2013-06-12 제일모직주식회사 Paste composition for forming electrode of solar cell, electrode fabricated using the same and solar cell using the same
KR101298970B1 (en) * 2013-03-12 2013-08-22 주식회사 파티클로지 Low melting temperature glass frit composition for laser sealing, low melting temperature glass frit using the same and sealing method of amoled using the low melting temperature glass frit
KR20140103233A (en) * 2013-02-15 2014-08-26 제일모직주식회사 The composition for forming solar cell electrode comprising the same, and electrode prepared using the same
KR20140119247A (en) * 2013-03-27 2014-10-10 제일모직주식회사 Composition for forming solar cell electrode and electrode prepared using the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI448444B (en) * 2010-08-11 2014-08-11 Hitachi Ltd A glass composition for an electrode, a paste for an electrode for use, and an electronic component to which the electrode is used
JP5698365B2 (en) * 2010-09-16 2015-04-08 ダウニア・ソーラー・セル・ソシエタ・ア・レスポンサビリタ・リミタータDAUNIA SOLAR CELL S.r.L. Sealant with low softening temperature useful for the preparation of electronic devices
JP5888493B2 (en) * 2011-02-10 2016-03-22 セントラル硝子株式会社 Conductive paste and solar cell element using the conductive paste
US8900488B2 (en) * 2012-09-06 2014-12-02 E I Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
TW201419309A (en) * 2012-11-02 2014-05-16 Du Pont Thick film silver paste and its use in the manufacture of semiconductor devices
JP6114389B2 (en) * 2013-11-20 2017-04-12 株式会社ノリタケカンパニーリミテド Method for producing conductive composition
JP5903424B2 (en) * 2013-12-21 2016-04-13 株式会社ノリタケカンパニーリミテド Conductive paste composition for solar cell and method for producing the same
JP5998178B2 (en) * 2014-06-05 2016-09-28 株式会社ノリタケカンパニーリミテド Photovoltaic surface electrode paste for solar cell, method for producing the same, and method for producing solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100125273A (en) * 2008-01-30 2010-11-30 바스프 에스이 Glass frits
KR20130062191A (en) * 2011-12-02 2013-06-12 제일모직주식회사 Paste composition for forming electrode of solar cell, electrode fabricated using the same and solar cell using the same
KR20140103233A (en) * 2013-02-15 2014-08-26 제일모직주식회사 The composition for forming solar cell electrode comprising the same, and electrode prepared using the same
KR101298970B1 (en) * 2013-03-12 2013-08-22 주식회사 파티클로지 Low melting temperature glass frit composition for laser sealing, low melting temperature glass frit using the same and sealing method of amoled using the low melting temperature glass frit
KR20140119247A (en) * 2013-03-27 2014-10-10 제일모직주식회사 Composition for forming solar cell electrode and electrode prepared using the same

Also Published As

Publication number Publication date
TWI635514B (en) 2018-09-11
TW201735054A (en) 2017-10-01
KR20170108577A (en) 2017-09-27

Similar Documents

Publication Publication Date Title
WO2017175902A1 (en) Rear electrode paste composition for solar cell
WO2015037933A1 (en) Composition for forming solar cell electrode and electrode manufactured therefrom
WO2014126293A1 (en) Composition for forming electrode of solar cell and electrode formed thereof
WO2017061764A1 (en) Paste composition for solar cell front electrode, and solar cell using same
WO2013085112A1 (en) Paste composition for solar cell electrode and electrode produced therefrom
KR20140062573A (en) Electrode paste for solar cell and electrode prepared thereof
KR101693841B1 (en) silver paste composition, a front electrode for solar cell formed using it, and a solar cell employing it
WO2017160074A1 (en) Lead-free electroconductive paste for solar cell
WO2014157800A1 (en) Composition for forming solar cell electrode and electrode produced from same
WO2019088525A1 (en) Electroconductive paste for solar cell electrode, and solar cell manufactured using same
KR102004490B1 (en) Rear electrode paste for solar cell
WO2014196712A1 (en) Composition for forming electrode of solar cell and electrode formed therefrom
WO2014098351A1 (en) Composition for forming solar cell electrode and electrode produced from same
WO2019088526A1 (en) Conductive paste for solar cell electrode, and solar cell manufactured using same
WO2015160066A1 (en) Conductive paste composition and semiconductor device comprising the same
WO2017183881A1 (en) Paste composition for rear surface electrode of solar cell
WO2015160065A1 (en) Conductive paste composition and semiconductor device comprising the same
WO2019088520A2 (en) Conductive paste for solar cell electrode, glass frit contained therein, and solar cell
WO2015160067A1 (en) Conductive paste composition and semiconductor device comprising the same
KR101737172B1 (en) Composition for forming solar cell electrode and electrode prepared using the same
WO2019088521A1 (en) Conductive paste for solar cell electrode and solar cell manufactured using same
WO2018080093A1 (en) Solar cell substrate and solar cell comprising same
WO2017222181A1 (en) Composition for p-type solar cell electrode, electrode prepared therefrom and p-type solar cell prepared using the same
WO2021137570A1 (en) Conductive paste for solar cell electrode, and solar cell manufactured using same
WO2017074149A1 (en) Electrode paste for solar cell and solar cell prepared by means of same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766975

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766975

Country of ref document: EP

Kind code of ref document: A1