WO2009157388A1 - 殺菌方法および殺菌装置 - Google Patents

殺菌方法および殺菌装置 Download PDF

Info

Publication number
WO2009157388A1
WO2009157388A1 PCT/JP2009/061236 JP2009061236W WO2009157388A1 WO 2009157388 A1 WO2009157388 A1 WO 2009157388A1 JP 2009061236 W JP2009061236 W JP 2009061236W WO 2009157388 A1 WO2009157388 A1 WO 2009157388A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous liquid
electrode
voltage
counter electrode
ion adsorption
Prior art date
Application number
PCT/JP2009/061236
Other languages
English (en)
French (fr)
Inventor
棚橋正治
棚橋正和
Original Assignee
有限会社ターナープロセス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ターナープロセス filed Critical 有限会社ターナープロセス
Priority to JP2010517982A priority Critical patent/JP4627337B2/ja
Priority to CN2009801237327A priority patent/CN102066266A/zh
Priority to EP09770098A priority patent/EP2301894A4/en
Priority to US13/000,254 priority patent/US20110108437A1/en
Publication of WO2009157388A1 publication Critical patent/WO2009157388A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/03Electric current
    • A61L2/035Electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/11Apparatus for generating biocidal substances, e.g. vaporisers, UV lamps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46145Fluid flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • the present invention relates to a sterilization method and a sterilization device, for example, an aqueous liquid sterilization method and a sterilization device.
  • the present invention also relates to a method and apparatus for sterilizing an object such as an instrument.
  • Japanese Patent Laid-Open No. 2000-153278 As a sterilizing apparatus for using sterilized water, an apparatus that releases sterilizing metal ions by electrolysis has been proposed (Japanese Patent Laid-Open No. 2000-153278). However, this apparatus is not suitable for a water producing apparatus for beverages, and its application is limited. Further, a water purifier having a filtering member containing an antibacterial agent has been proposed (Japanese Patent Laid-Open No. 5-309370). In this water purifier, the growth of germs on the filter member is suppressed, but the sterilization of the produced purified water is not sufficiently performed. A sterilization electrolytic cell for sterilizing drinking water by electrolysis has also been proposed (Japanese Patent Laid-Open No. 7-108274).
  • JP 2000-153278 A JP-A-5-309370 JP-A-7-108274
  • Japanese Patent Application Laid-Open No. 7-108274 describes that radical generation oxygen is generated by electrolysis, and sterilization is performed by this generation oxygen (paragraph [0005] in Japanese Patent Application Laid-Open No. 7-108274). ). However, since such radical oxygen has a short lifetime, it is considered difficult to sufficiently sterilize water flowing away from the electrode with only radical oxygen.
  • an object of the present invention is to provide a novel sterilization method and sterilization apparatus.
  • aqueous liquids can be sterilized by performing specific scanning using specific electrodes.
  • the present invention is based on this new knowledge.
  • the sterilization apparatus of the present invention includes a first ion adsorption electrode and a counter electrode, and a power source for applying a voltage between the first ion adsorption electrode and the counter electrode, and the first ion adsorption electrode.
  • the electrode includes a first conductive material capable of reversibly adsorbing ions.
  • the aqueous solution is applied by applying a voltage between the first ion adsorption electrode and the counter electrode.
  • the step of changing the pH of the liquid to be less than 5 or greater than 9 and (ii) the step of setting the pH of the aqueous liquid in the range of 5 to 9 are performed in this order.
  • sterilization of a predetermined object can be performed with a simple device.
  • the sterilization apparatus of the present invention is easy to maintain.
  • the method and apparatus of the present invention does not require special chemicals for sterilization. Since the method and apparatus of the present invention can sterilize aqueous liquids and instruments with a small amount of power, it is particularly useful in areas and situations where there is no power supply (for example, during disasters).
  • FIG. 1A is a schematic view showing an example of the sterilization apparatus of the present invention.
  • FIG. 1B is a diagram illustrating an operation of the sterilizer illustrated in FIG. 1A.
  • FIG. 1C is a diagram illustrating an operation of the sterilizer illustrated in FIG. 1A.
  • FIG. 2A is a schematic view showing another example of the sterilization apparatus of the present invention.
  • FIG. 2B is a diagram illustrating an operation of the sterilizer illustrated in FIG. 2A.
  • FIG. 2C is a diagram illustrating an operation of the sterilizer illustrated in FIG. 2A.
  • FIG. 3A is a schematic view showing another example of the sterilization apparatus of the present invention.
  • FIG. 3B is a diagram illustrating an operation of the sterilizer illustrated in FIG. 3A.
  • FIG. 3C is a diagram illustrating an operation of the sterilizer illustrated in FIG. 3A.
  • FIG. 3D is a diagram illustrating an operation of the sterilizer illustrated in FIG. 3A.
  • FIG. 3E is a flowchart showing an example of the operation of the sterilizer shown in FIG. 3A.
  • FIG. 3F is a diagram illustrating an operation of the sterilizer illustrated in FIG. 3A.
  • FIG. 4A is a schematic view showing another example of the sterilization apparatus of the present invention.
  • 4B is a diagram illustrating an operation of the sterilizer illustrated in FIG. 4A.
  • FIG. 4C is a diagram illustrating an operation of the sterilizer illustrated in FIG. 4A.
  • FIG. 4D is a diagram illustrating an operation of the sterilizer illustrated in FIG. 4A.
  • FIG. 4A is a schematic view showing another example of the sterilization apparatus of the present invention.
  • 4B is a diagram illustrating an operation of the sterilizer illustrated in FIG. 4A.
  • FIG. 4C is
  • FIG. 5A is a schematic view showing another example of the sterilization apparatus of the present invention.
  • FIG. 5B is a diagram illustrating an operation of the sterilizer illustrated in FIG. 5A.
  • FIG. 5C is a diagram illustrating a potential state in the operation illustrated in FIG. 5B.
  • FIG. 6 is a schematic view showing another example of the sterilization apparatus of the present invention.
  • FIG. 7 is a schematic view showing another example of the sterilization apparatus of the present invention.
  • FIG. 8 is a schematic view showing another example of the sterilization apparatus of the present invention.
  • FIG. 9 is a schematic view showing another example of the sterilization apparatus of the present invention.
  • FIG. 10 is a schematic view showing a part of the sterilizing apparatus shown in FIG. FIG.
  • FIG. 11 is a flowchart showing an example of the operation of the sterilizer shown in FIG.
  • FIG. 12 is a view showing an example of an ion adsorption electrode used in the sterilization apparatus of the present invention.
  • FIG. 13A is a top view of the sterilizer used in the examples.
  • FIG. 13B is a side view showing the ion adsorption electrode used in the example.
  • FIG. 13C is a side view showing the counter electrode used in the example.
  • the method of the present invention is a method of sterilizing a predetermined object (for example, a liquid or an instrument).
  • a predetermined object for example, a liquid or an instrument.
  • an aqueous liquid containing ions other than hydrogen ions (H + ) and hydroxide ions (OH ⁇ ) can be sterilized.
  • ions other than hydrogen ions (H + ) and hydroxide ions (OH ⁇ ) may be referred to as “ions (L)”.
  • the method of the present invention includes the following steps (i) and (ii).
  • step (i) the pH of the aqueous liquid is adjusted by applying a voltage between the first ion-adsorbing electrode containing the first conductive material capable of reversibly adsorbing ions and the counter electrode in the aqueous liquid.
  • the pH of the aqueous liquid (5-9) is changed to be greater than 9 (alkaline).
  • the pH of an aqueous liquid having a pH of 5 to 9 may be changed to 4 or less (acidic). Further, the pH of the aqueous liquid having a pH of 5 to 9 may be changed to 10 or more (alkaline).
  • the aqueous liquid can be sterilized.
  • examples of the aqueous liquid having a pH of less than 5 include an aqueous liquid having a pH of 4.5 or less, an aqueous liquid having a pH of 4 or less, or an aqueous liquid having a pH of 3.5 or less.
  • examples of the aqueous liquid having a pH higher than 9 include an aqueous liquid having a pH of 9.5 or higher, an aqueous liquid having a pH of 10 or higher, and an aqueous liquid having a pH of 10.5 or higher.
  • examples of the aqueous liquid having a pH in the range of 5 to 9 include an aqueous liquid having a pH in the range of 5.5 to 8.5 and an aqueous liquid having a pH in the range of 6 to 8.
  • step (i) a voltage is applied between the first ion-adsorbing electrode and the counter electrode so that ions (L) are adsorbed on the first conductive substance and water is electrolyzed at the counter electrode.
  • the electrode to which a voltage is applied is placed in contact with the aqueous liquid. In one example, an electrode to which a voltage is applied is immersed in an aqueous liquid.
  • Step (i) may be performed by a batch method or a liquid passing method. It is possible to enhance the sterilizing effect by carrying out in a batch system. Moreover, it is possible to sterilize a large amount of aqueous liquid by carrying out by a liquid passing system. Steps other than step (i) are usually performed by a batch method, but may be performed by a method other than the batch method (for example, a liquid passing method).
  • the 1st ion adsorption electrode and the counter electrode may be arrange
  • the liquid flow method is a method in which liquid is continuously introduced into and discharged from the tank.
  • voltage application is performed by this liquid passing method.
  • the conductive material on the upstream side becomes Even when the ion adsorption capacity is reached, there may be a situation in which the downstream conductive material cannot sufficiently adsorb ions. In that case, the entire conductive material in the ion-adsorbing electrode cannot be used efficiently.
  • the liquid flow type may cause problems such as (1) the entire ion adsorption electrode cannot be efficiently used, and (2) the performance of the conductive material of the ion adsorption electrode is deteriorated. is there.
  • the batch method has an advantage that does not cause such a problem.
  • the batch method means a method of processing the liquid in the tank without substantially replacing the liquid in the tank during one step.
  • the aqueous liquid in the tank is usually discharged, and another liquid is introduced into the tank.
  • the addition or discharge of the aqueous liquid in the tank is not performed until the processing is completed, but this corresponds to the batch-type processing if the liquid in the tank is not substantially replaced until the processing is completed. That is, even if a small amount of aqueous liquid is added or discharged so as not to affect the treatment, it corresponds to the batch method.
  • an aqueous liquid of 20% by volume or less for example, 10% by volume or less, 5% by volume or less, or 1% by volume or less
  • aqueous liquid in the tank is added or discharged during the treatment, it corresponds to the batch method. Then you can consider it.
  • the aqueous liquid is a liquid containing water, and the water content is, for example, 50% by weight or more, 75% by weight or more, or 90% by weight or more.
  • the medium is only water.
  • the aqueous liquid may contain alcohol or the like.
  • a typical aqueous liquid is an aqueous solution containing ions other than hydrogen ions (H + ) and hydroxide ions (OH ⁇ ). Examples of such an aqueous solution include tap water, river water, lake water, sea water, rain water, well water, side water, ground water, and the like.
  • the conductivity of the aqueous liquid may be in the range of 50 ⁇ S / cm to 10 mS / cm, or in the range of 100 ⁇ S / cm to 500 ⁇ S / cm.
  • an aqueous liquid having a relatively low concentration of ions (L) Specifically, an aqueous liquid having a conductivity of 500 ⁇ S / cm or less (for example, 100 ⁇ S / cm or less) can be used.
  • the concentration of ions (L) in the aqueous liquid is too low, the pH may not be changed greatly.
  • a salt may be added to the aqueous liquid.
  • the salt to add it is preferable to select a salt in consideration of the use of the aqueous liquid after sterilization.
  • the salt to be added include sodium nitrate, sodium chloride, calcium chloride, potassium sulfate, and potassium acetate.
  • the ion (L) concentration may be adjusted by previously adsorbing ions (L) to the ion adsorption electrode and releasing the ions (L) into the aqueous liquid.
  • Step (ii) is performed after step (i).
  • the pH of the aqueous liquid is set to a range of 5 to 9 (for example, a range of 6 to 8).
  • a range of 5 to 9 neutral or near neutral
  • water suitable for beverages can be obtained.
  • corrosion of the instrument can be prevented by washing the instrument with an aqueous liquid having a pH of 5 to 9 after the sterilization treatment.
  • step (ii) may be performed by applying a voltage between the first ion-adsorbing electrode and the counter electrode in the aqueous liquid.
  • This sterilization method includes the following two examples.
  • step (i) of the first example the pH of the aqueous liquid is adjusted by applying a voltage between the first ion adsorption electrode and the counter electrode so that the first ion adsorption electrode becomes a cathode in the aqueous liquid. Is less than 5 (for example, 4 or less).
  • the first conductive material By applying a voltage between the first ion-adsorbing electrode as the cathode (cathode) and the counter electrode as the anode (anode), the first conductive material adsorbs cations in the aqueous liquid.
  • Water electrolysis occurs. In the electrolysis of water at the counter electrode, hydrogen ions (H + ) and oxygen gas are generated. Therefore, application of the voltage in step (i) lowers the pH of the aqueous liquid and makes the aqueous liquid have a high oxidation potential. As a result, the aqueous liquid is sterilized.
  • the concentration of cations other than hydrogen ions in the aqueous liquid is reduced by applying the voltage in step (i).
  • step (ii) of the first example the pH of the aqueous liquid is adjusted by applying a voltage between the first ion adsorption electrode and the counter electrode so that the first ion adsorption electrode becomes an anode in the aqueous liquid. Is in the range of 5-9.
  • a voltage between the first ion adsorption electrode and the counter electrode so that the first ion adsorption electrode becomes an anode in the aqueous liquid.
  • the cation adsorbed on the first conductive material is released into the aqueous liquid, and water is electrolyzed at the counter electrode.
  • hydroxide ions (OH ⁇ ) and hydrogen gas are generated. Therefore, the pH of the aqueous liquid is increased by the voltage application in step (ii).
  • the concentration of the ions (L) in the aqueous liquid after step (ii) is completed can be approximately the same as that before starting step (i).
  • step (i) of the second example the pH of the aqueous liquid is adjusted by applying a voltage between the first ion adsorption electrode and the counter electrode so that the first ion adsorption electrode becomes an anode in the aqueous liquid. Is larger than 9 (for example, 10 or more).
  • step (i) By applying a voltage between the first ion-adsorbing electrode as the anode (anode) and the counter electrode as the cathode (cathode), anions in the aqueous liquid are adsorbed to the first conductive material, Water electrolysis occurs. In the electrolysis of water at the counter electrode, hydroxide ions and hydrogen gas are generated. Therefore, application of the voltage in step (i) raises the pH of the aqueous liquid and lowers the potential of the aqueous liquid to a reduction potential. As a result, the aqueous liquid is sterilized. Moreover, the concentration of anions other than hydroxide ions in the aqueous liquid is reduced by applying the voltage in step (i).
  • step (ii) of the second example the pH of the aqueous liquid is adjusted by applying a voltage between the first ion adsorption electrode and the counter electrode in the aqueous liquid so that the first ion adsorption electrode becomes a cathode. Is in the range of 5-9.
  • a voltage between the first ion adsorption electrode and the counter electrode in the aqueous liquid Is in the range of 5-9.
  • the anion adsorbed on the first conductive material is released into the aqueous liquid, and water is electrolyzed at the counter electrode. In the electrolysis of water at the counter electrode, hydrogen ions and oxygen gas are generated. Therefore, the pH of the aqueous liquid is lowered by the voltage application in step (ii).
  • the concentration of the ions (L) in the aqueous liquid after step (ii) is completed can be approximately the same as that before starting step (i).
  • the applied voltage is in the range of 2 to 50 volts (eg, 2 to 20 volts).
  • step (ii) applies a voltage between the second ion-adsorbing electrode containing the second conductive material capable of reversibly adsorbing ions and the counter electrode in the aqueous liquid. May be performed.
  • the first and second ion adsorption electrodes are used.
  • This sterilization method includes the following two examples.
  • step (i) of the first example the pH of the aqueous liquid is less than 5 by applying a voltage between the first ion adsorption electrode and the counter electrode so that the first ion adsorption electrode becomes a cathode (for example, 4 or less).
  • step (ii) the pH of the aqueous liquid is adjusted to a range of 5 to 9 by applying a voltage between the second ion adsorption electrode and the counter electrode so that the second ion adsorption electrode becomes an anode. To do.
  • step (i) of the second example the pH of the aqueous liquid is set higher than 9 by applying a voltage between the first ion adsorption electrode and the counter electrode so that the first ion adsorption electrode becomes an anode ( (For example, 10 or more).
  • step (ii) the pH of the aqueous liquid is adjusted to a range of 5 to 9 by applying a voltage between the second ion adsorption electrode and the counter electrode so that the second ion adsorption electrode becomes a cathode. To do.
  • ions (L) are adsorbed on the first and second ion adsorption electrodes. Therefore, according to the second method, the concentration of ions (L) in the aqueous liquid can be reduced. If the ion concentration in the aqueous liquid after the sterilization treatment is desired to be substantially the same as that before the sterilization treatment, a voltage may be applied between the ion adsorption electrode and the counter electrode in the opposite direction to the above steps (others). The same applies to the method). By applying a voltage between the first ion adsorption electrode and the counter electrode in the opposite direction to the above step, ions adsorbed on the first ion adsorption electrode can be released.
  • ions adsorbed on the second ion adsorption electrode can be released.
  • ions adsorbed on both can be released.
  • the ions adsorbed on both the ions can also be released by short-circuiting the first ion-adsorbing electrode and the second ion-adsorbing electrode.
  • the second method may include another step (y) before or after step (ii).
  • step (y) an ion concentration in the aqueous liquid is decreased by applying a voltage between the first ion adsorption electrode and the second ion adsorption electrode. This step is usually performed after step (ii).
  • step (y) the concentration of ions (L) can be further reduced.
  • the sterilization method of the present invention may include another step (x) between step (i) and step (ii).
  • step (x) if the pH of the aqueous liquid after step (i) is less than 5, it is changed so that it is greater than 9. If the pH of the aqueous liquid after step (i) is greater than 9, it is Change to be less than 5.
  • step (x) the pH of the aqueous liquid whose pH is 4 or less or 10 or more in step (i) is changed to 6 or less to 4 or less or 10 or more.
  • Changing the pH by 6 or more means that when the pH of the aqueous liquid is set to 4 or less in step (i), the pH of the aqueous liquid is set to 10 or more in step (x), and the pH of the aqueous liquid is set in step (i).
  • 10 is 10 or more, it means that the pH of the aqueous liquid is 4 or less in step (x).
  • the sterilization method including step (x) includes the following three examples.
  • step (x) and step (ii) are performed by applying a voltage between the first ion-adsorbing electrode and the counter electrode in the aqueous liquid. That is, steps (i), (x), and (ii) are performed by applying a voltage between the first ion adsorption electrode and the counter electrode.
  • the application direction of the voltage to the counter electrode in step (i) and step (ii) is opposite to that in step (x) (the same applies to the following second and third examples).
  • ions adsorbed on the conductive material are released into the aqueous liquid in step (ii). Therefore, the concentration of ions (L) in the aqueous liquid after step (ii) is completed is almost the same as the concentration of ions (L) in the aqueous liquid before step (i) is performed.
  • a first example of the third method includes, after step (ii), a second ion-adsorbing electrode including a second ion-adsorbing electrode containing a second conductive material capable of reversibly adsorbing ions in an aqueous liquid,
  • the method may further include a step (y) of reducing a concentration of ions in the aqueous liquid by applying a voltage between the ion adsorption electrode and the ion adsorption electrode.
  • step (x) is performed between the second ion-adsorbing electrode containing the second conductive material capable of reversibly adsorbing ions in the aqueous liquid and the counter electrode. This is done by applying a voltage. Then, step (ii) is performed by applying a voltage between the first ion adsorption electrode and the counter electrode in the aqueous liquid. In this example, the concentration of ions (L) in the aqueous liquid after step (ii) is completed is lower than that before step (i) is performed.
  • step (x) is performed by applying a voltage between the first ion-adsorbing electrode and the counter electrode in the aqueous liquid.
  • step (ii) is performed by applying a voltage between the second ion-adsorbing electrode containing the second conductive material capable of reversibly adsorbing ions and the counter electrode in the aqueous liquid.
  • the concentration of ions (L) in the aqueous liquid after step (ii) is completed is lower than that before step (i).
  • the aqueous liquid may be a first aqueous liquid
  • the counter electrode may be a first counter electrode.
  • step (i) may include the following steps (ia) and (ib).
  • step (ia) the first ion-adsorbing electrode and the first counter electrode are immersed in the first aqueous liquid disposed in the first tank. Then, by applying a voltage between the first ion adsorption electrode and the first counter electrode, the pH of the first aqueous liquid is set to less than 5 (for example, 4 or less). The voltage is applied so that the first ion adsorption electrode serves as a cathode.
  • step (ib) the second ion-adsorbing electrode containing the second conductive material capable of reversibly adsorbing ions to the second aqueous liquid disposed in the second tank and the second Immerse the counter electrode. Then, by applying a voltage between the second ion adsorption electrode and the second counter electrode, the pH of the second aqueous liquid is made higher than 9 (for example, 10 or more). The voltage is applied so that the second ion adsorption electrode serves as an anode.
  • step (ia) or step (ib) may be performed first or simultaneously.
  • the fourth method can be performed by separating the aqueous liquid into the first aqueous liquid and the second aqueous liquid and then treating each of them.
  • step (ii) may be performed by applying a voltage in the opposite direction to step (i) between the ion adsorption electrode and the counter electrode.
  • the pH of the first aqueous liquid is changed in the order of [less than 5 (for example, 4 or less)] ⁇ [greater than 9 (for example, 10 or more)] ⁇ [5 to 9]. More than 9 (for example, 10 or more)] ⁇ [less than 5 (for example, 4 or less)] ⁇ [5 to 9] may be changed in this order.
  • Such pH change can be performed by controlling the voltage application direction and the application time.
  • the aqueous liquid may be a first aqueous liquid.
  • step (i) may include the following steps.
  • a 1st ion adsorption electrode and a counter electrode are made to contact the 1st aqueous liquid arrange
  • a second ion-adsorbing electrode containing a second conductive material capable of reversibly adsorbing ions and the counter electrode are brought into contact with a second aqueous liquid disposed in the second tank. Further, the counter electrode is in an electrically floating state.
  • the pH of the first aqueous liquid is set to less than 5 (for example, 4 or less), and the second aqueous liquid
  • the pH of the is higher than 9 (for example, 10 or more).
  • the counter electrode may function as a partition wall that divides one tank into a first tank and a second tank. This partition wall (counter electrode) does not allow aqueous liquid and ions to pass therethrough.
  • step (ii) may be a step of mixing the first aqueous liquid and the second aqueous liquid.
  • a first aqueous liquid having a pH of less than 5 for example, 4 or less
  • a second aqueous liquid having a pH of greater than 9 for example, 10 or more
  • the object to be sterilized may be sterilized by immersing the object to be sterilized (such as an instrument) in an aqueous liquid at the time of voltage application in step (i).
  • the object to be sterilized is immersed in an aqueous liquid until step (ii) is completed.
  • the target object may be sterilized by bringing the target object to be sterilized into contact with the aqueous liquid obtained in step (i).
  • the counter electrode is preferably shaped so that the object to be sterilized and the counter electrode can easily come into contact with each other.
  • the counter electrode may be a cage type, and an object to be sterilized may be disposed in the cage type counter electrode.
  • a counter electrode having a hook-shaped portion may be used, and the object may be hung on the hook-shaped portion.
  • the pH of the aqueous liquid in the step of setting the pH of the aqueous liquid to less than 5, the pH of the aqueous liquid may be 2.5 or less. By setting the pH to 2.5 or less, stronger sterilization is possible.
  • the pH of the aqueous liquid may be 11.5 or higher in the step of setting the pH of the aqueous liquid to be greater than 9. By setting the pH to 11.5 or more, more powerful sterilization is possible.
  • Each of the first and second ion-adsorbing electrodes may include a current collector that supports the first and second conductive materials and a current collector attached to the first and second conductive materials. Good.
  • the first and second conductive materials are materials that can reversibly adsorb and release ions.
  • the conductive substance a substance having a large specific surface area can be used.
  • the conductive substance includes a carbon material such as activated carbon or graphite.
  • the conductive material may be a conductive sheet formed by agglomerating granular activated carbon. Further, the conductive material may be a conductive sheet formed by agglomerating granular activated carbon and conductive carbon.
  • the conductive substance may be an activated carbon block formed by solidifying activated carbon particles.
  • the conductive material may be activated carbon fiber cloth, that is, a cloth formed using activated carbon fiber.
  • the activated carbon fiber cloth for example, ACC5092-10, ACC5092-15, ACC5092-20, and ACC5092-25 manufactured by Nippon Kainol Corporation may be used.
  • the first conductive substance and the second conductive substance may be made of the same material, or may be made of different materials.
  • the specific surface area of the conductive substance is, for example, 300 m 2 / g or more, preferably 900 m 2 / g or more.
  • the upper limit of the specific surface area is not particularly limited, but may be, for example, 3000 m 2 / g or less or 2500 m 2 / g or less.
  • the “specific surface area” of the first and second conductive materials is a value measured by the BET method using nitrogen gas.
  • An example of the counter electrode is a metal electrode.
  • a preferred example of the counter electrode is an electrode on the surface of which a metal (for example, platinum) that easily undergoes electrolysis of water is present.
  • a metal for example, platinum
  • an electrode made of titanium, an electrode made of platinum, or an electrode made of a metal coated with platinum (for example, titanium, niobium, or tantalum) can be used as the counter electrode.
  • the counter electrode used in step (i) and the counter electrode used in other steps may be the same one counter electrode, or a plurality of different electrodes It may be a counter electrode.
  • a metal sheet may be used, a metal wire may be used, or a plurality of connected metal wires may be used.
  • the surface area of the counter electrode may not be large.
  • the surface area per gram of the counter electrode of an example may be 100 m 2 or less, and may be in the range of 5 ⁇ 10 ⁇ 5 to 50 m 2 .
  • the sterilization apparatus of the present invention is an apparatus for carrying out the above-described sterilization method of the present invention. Since the matter described in the sterilization method described above can be applied to the sterilization apparatus of the present invention, a duplicate description may be omitted. In addition, the matter demonstrated about the sterilizer of this invention is applicable to the sterilization method of this invention.
  • the sterilization apparatus of the present invention includes a first ion adsorption electrode and a counter electrode, and a power source for applying a voltage between the first ion adsorption electrode and the counter electrode.
  • the first ion adsorption electrode includes a first conductive material capable of reversibly adsorbing ions.
  • the sterilization apparatus of the present invention may include a tank in which an aqueous liquid, a first ion adsorption electrode, and a counter electrode are arranged.
  • the sterilization apparatus of the present invention may be an apparatus in which an electrode (including a first ion adsorption electrode and a counter electrode) is put into an aqueous liquid, and in that case, a tank may not be included.
  • the sterilization apparatus of the present invention may include a pH sensor (pH meter) for monitoring the pH of the aqueous liquid.
  • a pH sensor pH meter
  • the pH of the aqueous liquid can be monitored. If the pH value or amount of the aqueous liquid to be treated is known, the relationship between the voltage application conditions (for example, the voltage application time and the amount of charge flowing between the electrodes) and the pH change should be obtained in advance. Therefore, it is possible to carry out the sterilization method of the present invention without a pH sensor.
  • the sterilization apparatus of the present invention may include the second ion adsorption electrode and the second counter electrode described above. Moreover, the sterilizer of the present invention may include a counter electrode that functions as a partition wall.
  • the sterilization apparatus of the present invention executes the sterilization method of the present invention described above. Specifically, the above steps (i) and (ii) are performed in this order. Step (i) is performed in a batch system or a liquid flow system. In addition to steps (i) and (ii), other steps described above may be performed.
  • an aqueous liquid can be sterilized.
  • an object such as an instrument immersed in an aqueous liquid can be sterilized.
  • the object to be sterilized may be sterilized by immersing the object to be sterilized in an aqueous liquid when applying the voltage in step (i).
  • the object may be sterilized by supplying the aqueous liquid having a pH of less than 5 or greater than 9 prepared in step (i) to a container in which the object to be sterilized is placed.
  • an aqueous liquid prepared to have a pH of less than 5 or greater than 9 may be brought into contact with an object to be sterilized.
  • the object is immersed in an aqueous liquid until step (ii) is completed.
  • step (ii) it is more preferable to perform at least the step of setting the pH of the aqueous liquid to less than 5.
  • step of lowering the pH of the aqueous liquid to less than 5 and the step of raising the pH of the aqueous liquid to greater than 9 sterilization is performed under different conditions, so that stronger sterilization is possible.
  • the tank is not particularly limited as long as it can stably hold an aqueous liquid. Since the pH of the aqueous liquid changes, a resin tank having resistance to pH change is preferably used.
  • the power source is a power source that applies a DC voltage.
  • the power source may be an AC / DC converter that converts an AC voltage from an outlet into a DC voltage.
  • the power source may be a primary battery such as a dry battery, or a secondary battery such as a lead storage battery, a nickel metal hydride battery, or a lithium ion battery.
  • the power source may be a power generation device such as a solar battery, a wind power generation device, or a manual power generation device. By using the power generation device as a power source, the device of the present invention can be used in regions and situations where power is not supplied. Such use is useful in remote areas and in the production of drinking water in an emergency.
  • the sterilization apparatus of the present invention may include a controller for executing the steps.
  • the controller includes an arithmetic processing unit (which may include an internal memory), and further includes an external memory as necessary.
  • a program for executing the steps is recorded in the memory.
  • An example of the controller includes a large scale integrated circuit (LSI).
  • the controller is connected to various devices (power supply, pump, valve, etc.) and measuring instruments (for example, pH sensor, ion concentration meter, conductivity meter).
  • the controller executes steps by controlling various devices based on the output from the measuring instrument.
  • the sterilization apparatus of the present invention may include an input device for inputting a target pH value and a processing method to the controller, and a display device for displaying a processing state.
  • the sterilization apparatus of the present invention may include a salt addition mechanism for adding salt to the aqueous liquid when the ion concentration of the aqueous liquid is low.
  • the sterilization apparatus of the present invention is a conductivity meter for measuring the conductivity of an aqueous liquid or a device for confirming gas generation from a counter electrode (for example, an LED or a laser diode).
  • a counter electrode for example, an LED or a laser diode
  • the sterilization apparatus of this invention may be equipped with the voltmeter for measuring the voltage applied between electrodes, and the ammeter for measuring the electric current which flows between electrodes.
  • the sterilization apparatus of the present invention may include various filters such as a hollow fiber membrane filter and an activated carbon filter. Moreover, the sterilization apparatus of this invention may be equipped with the apparatus which implements sterilization methods other than the sterilization method of this invention. By performing a plurality of sterilization methods, more reliable sterilization becomes possible.
  • the sterilization apparatus of the present invention may be provided with a diaphragm (for example, an ion exchange membrane) that selectively allows ions to pass therethrough as necessary.
  • a diaphragm for example, an ion exchange membrane
  • an aqueous solution prepared in steps other than step (i) in addition to sterilization with an aqueous liquid having a pH of less than 5 prepared in step (i), an aqueous solution prepared in steps other than step (i).
  • the liquid may be brought into contact with the object to be sterilized. Corrosion of the object can be prevented by bringing the aqueous liquid having a pH of 5 to 9 adjusted in step (ii) into contact with the object.
  • a plurality of first ion adsorption electrodes may be used, a plurality of second ion adsorption electrodes may be used, or a plurality of counter electrodes may be used.
  • the sterilization apparatus of the present invention may be connected to a system containing an aqueous liquid.
  • the internal volume of the tank in which the ion adsorption electrode and the counter electrode are arranged may be smaller than the volume of the aqueous liquid present in the system.
  • the internal volume of the tank may be 1/5 or less of the volume of the aqueous liquid present in the system. According to this configuration, a large amount of aqueous liquid can be sterilized with a small apparatus.
  • step (i) and other steps may be independently performed in a batch mode or a liquid passing mode.
  • the liquid flow method has advantages that it is easy to control and can continuously treat an aqueous liquid.
  • a plurality of the above-described sterilization apparatuses of the present invention may be connected in series or in parallel.
  • some sterilizers perform the sterilization process where the aqueous liquid finally becomes acidic
  • other sterilizers perform the sterilization process where the aqueous liquid finally becomes alkaline
  • Embodiment 1 In the first embodiment, an example of the first example of the first method described above and an apparatus used therefor will be described.
  • the sterilization apparatus of Embodiment 1 is shown to FIG. 1A.
  • the 1A includes an ion adsorption electrode (first ion adsorption electrode) 11, a counter electrode 13, a tank 20, a power source 31, a pH sensor (pH meter) 32, valves 33a and 34a, pumps 33 and 34, and a controller. 35.
  • the ion adsorption electrode 11 includes a conductive substance 11a and a current collector 11b.
  • the power supply 31, the valve 33a, the valve 34a, the pump 33, and the pump 34 are controlled by a controller 35.
  • a signal from the pH sensor 32 is input to the controller 35.
  • the aqueous liquid 21 is introduced into the tank 20 from the inlet 36 as shown in FIG. 1A.
  • a voltage is applied between the ion adsorption electrode 11 and the counter electrode 13 so that the ion adsorption electrode 11 becomes a cathode.
  • the cation M + in the aqueous liquid 21 is adsorbed to the conductive substance 11 a of the ion adsorption electrode 11.
  • hydrogen ions and oxygen gas are generated by water electrolysis.
  • the pH of the aqueous liquid 21 decreases.
  • the voltage application is performed until the pH of the aqueous liquid 21 reaches a predetermined value less than 5 (for example, 4 or less).
  • the electrode potential of the counter electrode 13 is polarized to generate oxygen gas, the potential of the counter electrode 13 is higher than the oxidation potential. Therefore, a strong oxidizing power acts on the surface of the counter electrode 13, sterilization occurs on the surface of the counter electrode 13, and the aqueous liquid 21 itself also has a strong oxidizing power.
  • the next step is performed immediately or after a certain period of time. Specifically, as shown in FIG. 1C, a voltage is applied between the ion adsorption electrode 11 and the counter electrode 13 so that the ion adsorption electrode 11 becomes an anode. By applying this voltage, the cation M + adsorbed on the conductive substance 11 a is released into the aqueous liquid 21. At the counter electrode 13, electrolysis of water occurs, and hydroxide ions and hydrogen gas are generated. This voltage application is performed until the pH of the aqueous liquid 21 reaches a predetermined value in the range of 5 to 9.
  • the aqueous liquid 21 is discharged from the discharge port 37 by operating the valve 34a and the pump 34, and is used as a sterilized liquid.
  • Embodiment 2 In the second embodiment, an example of the above-described first example of the second method and the apparatus used therefor will be described.
  • the sterilizer of Embodiment 2 is shown in FIG. 2A.
  • the sterilization apparatus 200 of FIG. 2A includes a first ion adsorption electrode 11, a second ion adsorption electrode 12, a counter electrode 13, a tank 20, a power source 31, a pH sensor 32, valves 33a and 34a, pumps 33 and 34, and a controller 35. Is provided.
  • the ion adsorption electrode 12 includes a conductive substance 12a and a current collector 12b.
  • the aqueous liquid 21 is introduced into the tank 20 from the inlet 36 as shown in FIG. 2A.
  • a voltage is applied between the ion adsorption electrode 11 and the counter electrode 13 so that the ion adsorption electrode 11 becomes a cathode.
  • This step is similar to the step shown in FIG. 1B. This step sterilizes the aqueous liquid 21 as described in the first embodiment.
  • the next step is performed immediately or after a certain period of time. Specifically, as shown in FIG. 2C, a voltage is applied between the ion adsorption electrode 12 and the counter electrode 13 so that the ion adsorption electrode 12 becomes an anode. By this voltage application, the anion A ⁇ in the aqueous liquid 21 is adsorbed to the ion adsorption electrode 12. At the counter electrode 13, electrolysis of water occurs, and hydroxide ions and hydrogen gas are generated. This voltage application is performed until the pH of the aqueous liquid 21 reaches a predetermined value in the range of 5 to 9.
  • the aqueous liquid 21 is discharged from the discharge port 37 by operating the valve 34a and the pump 34, and is used as a sterilized liquid.
  • ions adsorbed on the ion adsorption electrodes 11 and 12 are released to the aqueous liquid 21 unless a voltage is applied between the ion adsorption electrode and the counter electrode in the direction opposite to the above step. rare. The same applies to other forms using ion adsorption electrodes. Although the reason for this is not clear, it is conceivable that, for example, ions are attracted to the surface charge of the conductive material to form an electric double layer. It is generally known in the field of electric double layer capacitors that such a phenomenon occurs. Therefore, when the aqueous liquid 21 contains harmful ions (for example, heavy metal ions), the concentration of harmful ions in the aqueous liquid 21 can be reduced according to the method of the second embodiment.
  • harmful ions for example, heavy metal ions
  • the ion-adsorption electrode can be periodically replaced or periodically regenerate the ion adsorption electrode.
  • the ion-adsorbing electrode can be regenerated by releasing the ions adsorbed on the conductive material. For example, when it is desired to release the cation M + adsorbed on the conductive material 11a, an aqueous liquid for cleaning is introduced into the tank 20, and the ion adsorption electrode 11 and the counter electrode 13 so that the ion adsorption electrode 11 becomes an anode. A voltage may be applied between the two.
  • the cation M + adsorbed on the conductive material 11a can be released into the cleaning aqueous liquid.
  • a voltage between the ion adsorbing electrode 12 and the counter electrode 13 so that the ion adsorbing electrode 12 becomes a cathode the anion A ⁇ adsorbed on the conductive substance 12a is converted into an aqueous liquid for cleaning. Can be released.
  • a voltage may be applied between the ion adsorption electrode 11 and the ion adsorption electrode 12 so that the ion adsorption electrode 11 becomes an anode.
  • the ion adsorption electrode 11 and the ion adsorption electrode 12 may be short-circuited.
  • FIG. 3A has the same configuration as the apparatus shown in FIG. 2A.
  • the aqueous liquid 21 is introduced into the tank 20 from the inlet 36 as shown in FIG. 3A.
  • a voltage is applied between the ion adsorption electrode 11 and the counter electrode 13 so that the ion adsorption electrode 11 becomes a cathode.
  • This step is similar to the step shown in FIG. 1B. This step sterilizes the aqueous liquid 21 as described in the first embodiment.
  • the next step is performed immediately or after a certain period of time. Specifically, as shown in FIG. 3C, a voltage is applied between the ion adsorption electrode 12 and the counter electrode 13 so that the ion adsorption electrode 12 becomes an anode. By this voltage application, the anion A ⁇ in the aqueous liquid 21 is adsorbed to the ion adsorption electrode 12. At the counter electrode 13, electrolysis of water occurs, and hydroxide ions and hydrogen gas are generated. This voltage application is performed until the pH of the aqueous liquid 21 reaches a predetermined value greater than 9 (for example, 10 or more).
  • the electrode potential of the counter electrode 13 is polarized to generate hydrogen gas, the potential of the counter electrode 13 is lower than the reduction potential. Therefore, a strong reducing force acts on the surface of the counter electrode 13, sterilization occurs on the surface of the counter electrode 13, and the aqueous liquid 21 itself also has a strong reducing force.
  • disassembly of organic substance etc. may arise on the counter electrode 13 surface.
  • the next step is performed immediately or after a certain period of time. Specifically, as shown in FIG. 3D, a voltage is applied between the ion adsorption electrode 11 and the counter electrode 13 so that the ion adsorption electrode 11 becomes a cathode. By this voltage application, the reaction described in FIG. 1B occurs, and the pH of the aqueous liquid 21 decreases. This voltage application is performed until the pH of the aqueous liquid 21 reaches a predetermined value in the range of 5 to 9.
  • the aqueous liquid 21 is discharged from the discharge port 37 by operating the valve 34a and the pump 34, and is used as a sterilized liquid.
  • FIG. 3E The steps performed by the method of Embodiment 3 are shown in FIG. 3E.
  • the aqueous liquid 21 is introduced into the tank 20 by driving the valve 33a and the pump 33 (S301).
  • voltage application between the ion adsorption electrode 11 and the counter electrode 13 is started so that the ion adsorption electrode 11 becomes a cathode (S302). This voltage application is continued until the pH of the aqueous liquid 21 reaches a predetermined value less than 5 (S303).
  • This voltage application is continued until the pH of the aqueous liquid 21 reaches a predetermined value in the range of 5 to 9 (S307).
  • the aqueous liquid 21 is discharged from the tank 20 and used. It is also possible to use the aqueous liquid 21 while it is in the tank 20.
  • the process returns to step S301 to continue the process (S309).
  • a program for performing the above process is recorded.
  • steps similar to some of the steps shown in FIG. 3E are performed. Specifically, when the pH of the aqueous liquid reaches a predetermined value defined in each step, the next step is performed.
  • this voltage it is possible to reduce cations and anions in the aqueous liquid 21 as shown in FIG. 3F.
  • Embodiment 4 In the fourth embodiment, an example of the second example of the third method described above and an apparatus used therefor will be described. In each step of the fourth embodiment, a voltage is applied in the opposite direction to that of the third embodiment.
  • the sterilization apparatus of Embodiment 4 is shown to FIG. 4A. 4A has the same configuration as the apparatus shown in FIG. 2A.
  • the aqueous liquid 21 is introduced into the tank 20 from the inlet 36 as shown in FIG. 4A.
  • a voltage is applied between the ion adsorption electrode 11 and the counter electrode 13 so that the ion adsorption electrode 11 becomes an anode. This voltage application is performed until the pH of the aqueous liquid 21 reaches a predetermined value greater than 9. This step produces the same reaction as the step shown in FIG. 3C. This step sterilizes the aqueous liquid 21 as described in the third embodiment.
  • the next step is performed immediately or after a certain period of time. Specifically, as shown in FIG. 4C, a voltage is applied between the ion adsorption electrode 12 and the counter electrode 13 so that the ion adsorption electrode 12 becomes a cathode. This voltage application is performed until the pH of the aqueous liquid 21 reaches a predetermined value of less than 5. In this step, the same reaction as in the step shown in FIG. 1B occurs. This step sterilizes the aqueous liquid 21 as described in the first embodiment.
  • the next step is performed immediately or after a certain period of time. Specifically, as shown in FIG. 4D, a voltage is applied between the ion adsorption electrode 11 and the counter electrode 13 so that the ion adsorption electrode 11 becomes an anode. This voltage application is performed until the pH of the aqueous liquid 21 reaches a predetermined value in the range of 5-9.
  • the aqueous liquid 21 is discharged from the discharge port 37 by operating the valve 34a and the pump 34, and is used as a sterilized liquid.
  • Embodiment 5 In the fifth embodiment, an example of the above-described fourth method and the apparatus used therefor will be described.
  • the sterilization apparatus of Embodiment 5 is shown to FIG. 5A.
  • the sterilizer 500 of FIG. 5A is different from the sterilizer 200 shown in FIG. 2A in that a counter electrode 51 is provided instead of the counter electrode 13.
  • the counter electrode 51 functions as a partition wall that divides the tank 20 into a tank 20a and a tank 20b.
  • the counter electrode 51 is a metal plate and does not transmit liquid and ions.
  • the counter electrode 51 is not connected to the power source 31 and is in an electrically floating state.
  • An introduction port 36 and a discharge port 37 are connected to the tank 20a and the tank 20b, respectively.
  • the 1st ion adsorption electrode 11 is arrange
  • the 2nd ion adsorption electrode 12 is arrange
  • the aqueous liquid 21 is introduced into the tanks 20a and 20b from the introduction port 36 as shown in FIG. 5A.
  • the aqueous liquid 21 in the tank 20 is divided into an aqueous liquid 21 a and an aqueous liquid 21 b by the counter electrode 51.
  • FIG. 5B a voltage is applied between the ion adsorption electrode 11 and the ion adsorption electrode 12 so that the ion adsorption electrode 11 becomes a cathode.
  • the potential gradient between the ion adsorption electrode 11 and the ion adsorption electrode 12 at this time is schematically shown in FIG. 5C.
  • voltage application between the ion adsorption electrode 11 and the ion adsorption electrode 12 acts as voltage application between the ion adsorption electrode 11 and the counter electrode 13 and voltage application between the ion adsorption electrode 12 and the counter electrode 13. That is, the same reaction as in FIG.
  • the aqueous liquid 21a in the tank 20a and the aqueous liquid 21b in the tank 20b are discharged from the discharge port 37 and mixed by operating the valve 34a and the pump 34. Thereby, a neutral aqueous liquid is obtained.
  • the pH of the aqueous liquid 21a may be set higher than 9 and the pH of the aqueous liquid 21b may be set lower than 5 by applying a voltage in the reverse direction after the step of FIG. 5B. . Thereafter, the aqueous liquid 21a and the aqueous liquid 21b may be mixed.
  • the counter electrode 13 includes a counter electrode 13a disposed in the tank 20a, a counter electrode 13b disposed in the tank 20b, and a wiring 13c connecting them.
  • the counter electrode 13 is in an electrically floating state.
  • FIG. 7 shows a sterilizer according to the sixth embodiment.
  • the sterilizer 700 of FIG. 7 differs from the sterilizer 100 of FIG. 1 in that a counter electrode 73 is used instead of the counter electrode 13.
  • the counter electrode 73 is a cage electrode formed of a metal wire.
  • An instrument 71 to be sterilized is disposed inside the counter electrode 73.
  • the instrument to be sterilized by this apparatus is preferably an instrument having acid and / or alkali resistance properties.
  • the same steps as in the first embodiment are performed.
  • the potential of the instrument 71 is close to the potential of the counter electrode 73. Therefore, like the surface of the counter electrode 73, a strong oxidizing power is generated on the surface of the instrument 71, thereby sterilizing the surface of the instrument 71.
  • the configuration of the sixth embodiment can be applied to apparatuses of other embodiments.
  • Embodiment 7 In the seventh embodiment, an example of a method and apparatus for sterilizing an aqueous liquid stored in a container will be described.
  • a sterilizer 500a according to Embodiment 7 is shown in FIG.
  • the sterilizer 500a includes a container 80 and a sterilizer 500 connected to the container 80 via two pipes 81 and 82.
  • the sterilizer 500 is the sterilizer described in the fifth embodiment.
  • One of the pipes 81 and 82 is connected to the inlet of the sterilizer 500, and the other is connected to the outlet of the sterilizer 500.
  • An aqueous liquid 21 is disposed in the container 80.
  • the pH sensor 32 of the sterilizer 500 may be disposed in the container 80.
  • the container 80 may be a water tank such as a bathtub or a pool. Further, the container 80 may be a sterilization tank for sterilizing an instrument or the like in the container 80. Further, the container 80 may be replaced with a circulating water system such as a cooling tower. In one aspect, the sterilizer 500 of FIG. 8 is connected to a system that includes the aqueous liquid 21.
  • the sterilizer 500 executes the steps described in the fifth embodiment. As a result, the aqueous liquid 21 introduced from the container 80 into the sterilizer 500 is returned to the container 80 after being sterilized.
  • the aqueous liquid sterilized at a time is a part of the aqueous liquid 21 in the container 80, but the growth of bacteria in the aqueous liquid 21 can be suppressed by repeating the treatment.
  • sterilization apparatus described in the first to fourth embodiments may be used instead of the sterilization apparatus 500.
  • the sterilization apparatus described in Embodiments 1 to 7 may perform the treatment by a liquid passing method.
  • an electrode is disposed between the aqueous liquid inlet and the aqueous liquid outlet. That is, the introduction port, the electrode, and the discharge port may be arranged so that the ion adsorption electrode and the counter electrode exist in the middle of the flow of the aqueous liquid in the tank (container).
  • a liquid passing sterilization apparatus may be used instead of the sterilization apparatus 500 of FIG. 8.
  • FIG. 9 The sterilizer 500b of FIG. 9 includes a container 80 and a sterilizer 100b connected to the container 80 by pipes 81 and 82. In the sterilizer 500b, the pH sensor 32 is disposed in the container 80. Note that two or more sterilization apparatuses 100b may be connected to the container 80 in parallel or in series.
  • the sterilizer 100b has the shape of the tank 20, the point where the valve 34a and the pump 34 are not provided, the position where the inlet 36 and the outlet 37 are connected to the tank 20, and the point where the pH sensor 32 is disposed in the container 80. This is different from the apparatus 100 of the first embodiment. Other points are the same as those of the apparatus 100 of the first embodiment.
  • the aqueous liquid 21 is continuously introduced from the inlet 36, and the aqueous liquid 21 is continuously discharged from the outlet 37.
  • the internal volume of the tank 20 is smaller than the volume of water present in the container 80.
  • the step mentioned above is performed in the state which the aqueous liquid 21 is moving in the tank 20.
  • FIG. the sterilizer 100b of FIG. 9 is connected to a system containing the aqueous liquid 21.
  • the aqueous liquid 21 in the container 80 is introduced into the sterilization apparatus 100b through the pipe 81, processed, and returned to the container 80 through the pipe 82.
  • the pH of the aqueous liquid 21 in the container 80 gradually changes.
  • the voltage application in step (i) is performed until the pH of the aqueous liquid 21 becomes a predetermined value less than 5 or greater than 9.
  • step (ii) described above is performed.
  • step (ii) in addition to step (ii), other steps described above may be performed.
  • FIG. 11 shows an example of processing when only step (i) and step (ii) are performed in the sterilizer 500b.
  • a voltage is applied between the ion adsorption electrode and the counter electrode while the aqueous liquid 21 is flowing through the tank 20 of the sterilizer 100b (S1101). This voltage application is continued until the pH of the aqueous liquid 21 reaches a predetermined value less than 5 or greater than 9 (S1102).
  • a voltage is applied between the ion-adsorbing electrode and the counter electrode immediately or after a certain period of time by reversing the voltage application direction ( S1103).
  • This voltage application is continued until the pH of the aqueous liquid 21 reaches a predetermined value in the range of 5 to 9 (S1104). In this way, the aqueous liquid 21 is sterilized.
  • Step (ii) is performed by connecting two sterilizers in parallel, making the aqueous liquid acidic with the first sterilizer, making the aqueous liquid alkaline with the second sterilizer, and mixing the aqueous liquids. You may go.
  • the ion adsorption electrode 91 of FIG. 12 includes an activated carbon fiber cloth 91a and a current collector 91b attached thereto. By using the current collector 91b, the potential fluctuation in the activated carbon fiber cloth 91a can be reduced.
  • the pH value of the test solution is a value measured in advance using a dummy test solution. That is, the pH value when a voltage is applied using the dummy test solution under the same conditions as in the example is the pH value of the test solution.
  • FIG. 13A A top view of the sterilizer used is shown in FIG. 13A.
  • the sterilization apparatus of FIG. 13A includes a container 110, an ion adsorption electrode 101 disposed in the container, and a counter electrode 103.
  • the container 110 had a height of about 80 mm, and its internal dimensions were about 20 mm in length and about 90 mm in width.
  • the ion adsorption electrode 101 and the counter electrode 103 were arranged to face each other with an interval of about 20 mm.
  • the wire constituting the counter electrode 103 was disposed so as to be parallel to the surface of the ion adsorption electrode 101.
  • FIG. 13B A side view of the ion adsorption electrode 101 is shown in FIG. 13B.
  • the height H of the ion adsorption electrode 101 was about 70 mm, and the width W was about 90 mm.
  • An activated carbon fiber cloth (manufactured by Nihon Kynol Co., Ltd., ACC-5092-10, basis weight: 200 g / m 2 , thickness 0.53 mm, specific surface area 1100 m 2 / g) was used as the conductive material of the ion adsorption electrode 101. .
  • three activated carbon fiber cloths 101a having a size of about 70 mm ⁇ 90 mm were stacked and used. Between the two activated carbon fiber cloths and one activated carbon fiber cloth, the wiring 101b was disposed.
  • FIG. 13C A side view of the counter electrode 103 is shown in FIG. 13C.
  • the height h of the counter electrode 103 was about 70 mm, and the width w was about 90 mm.
  • the counter electrode 103 was formed using a platinum-coated titanium wire 103a (about 1 mm in diameter). Specifically, the counter electrode 103 was formed by arranging 20 wires 103a in a stripe shape and connecting their ends with the wire 103a.
  • test solution 120 ml of the test solution was placed in the sterilizer.
  • a neutral sodium chloride aqueous solution containing bacteria sodium chloride concentration: 0.78 g / liter
  • a voltage was applied between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode became an anode.
  • This voltage application was performed for 15 minutes with a current of 200 mA flowing between the electrodes.
  • the pH of the test solution became 13.1.
  • the voltage application was stopped and the test solution was allowed to stand for 15 minutes. By this standing, the pH of the test solution became 12.8.
  • the test solution After a predetermined time from the start of the experiment, a part of the test solution was extracted and the number of viable bacteria existing therein was measured.
  • the viable cell count was measured by adding the test solution to the SCDLP medium (Nippon Pharmaceutical Co., Ltd.) and culturing.
  • SCDLP medium Natural Chemical Co., Ltd.
  • the number of viable bacteria was measured at the start of the test and after a predetermined time had elapsed from the start of the test for the test solution that was not sterilized.
  • the experiment and the measurement of the number of viable bacteria were requested by the Japan Food Analysis Center.
  • the method for measuring the number of viable bacteria and the method for the control experiment the following examples were also carried out in the same manner.
  • Table 1 shows the relationship between the elapsed time from the start of the test, the pH of the test solution, and the number of viable bacteria.
  • the number of Bacillus subtilis hardly changed after the alkali treatment, but became 1/100 or less after the acid treatment.
  • the number of E. coli became 1/10 or less after the alkali treatment, and 1 / 10,000 or less after the acid treatment.
  • the number of Staphylococcus aureus hardly changed after the alkali treatment, but became 1 / 10,000 or less after the acid treatment.
  • the number of black mold was less than 1/50 after the alkali treatment, but there was almost no change in the acid treatment.
  • the number of black mold became 1 / 1,000 or less after the alkali treatment and 1 / 10,000 or less after the acid treatment.
  • the number of Candida was 1 / 1,000 or less after the alkali treatment, and 1 / 10,000 or less after the acid treatment. As described above, it was confirmed that sterilization was possible by the method and apparatus of the present invention.
  • Example 2 In Example 2, the aqueous liquid was sterilized using the same sterilization apparatus as that used in Example 1. However, in Example 2, an aqueous solution of potassium sulfate (K 2 SO 4 ) was used as the aqueous liquid.
  • K 2 SO 4 potassium sulfate
  • test solution 120 ml of the test solution was placed in the sterilizer.
  • a potassium sulfate aqueous solution containing bacteria (potassium sulfate concentration: 1.16 g / liter) was used as a test solution.
  • a voltage was applied between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode became an anode.
  • This voltage application was performed for 15 minutes with a current of 200 mA flowing between the electrodes. By applying this voltage, the pH of the test solution became 13.2.
  • the voltage application was stopped and the test solution was allowed to stand for 15 minutes. By this standing, the pH of the test solution became 12.9.
  • the bactericidal effect was obtained even when the aqueous liquid was an aqueous potassium sulfate solution, as in the case where the aqueous liquid was an aqueous sodium chloride solution.
  • Example 3 In Example 3, the aqueous liquid was sterilized using the same sterilization apparatus as that used in Example 1. However, in Example 3, commercially available mineral water (conductivity: 208 ⁇ S / cm) was used as the aqueous liquid.
  • test solution 120 ml of the test solution was placed in the sterilizer. Mineral water containing bacteria was used for the test solution. Next, a voltage was applied between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode became an anode. This voltage application was performed for 15 minutes with a current of 200 mA flowing between the electrodes. By applying this voltage, the pH of the test solution became 10.5. Next, a voltage was applied between the electrodes for 15 minutes so that a current of 20 mA flowed between the electrodes and the ion-adsorbing electrode became an anode. By applying this voltage, the pH of the test solution became 10.6.
  • Example 4 In Example 4, the aqueous liquid was sterilized using the same sterilization apparatus as that used in Example 1. However, in Example 4, two types of sodium chloride aqueous solutions having different concentrations were used as aqueous liquids. Specifically, a sodium chloride aqueous solution having a sodium chloride concentration of 0.78 g / liter or 1.56 g / liter was used.
  • test solution 120 ml of the test solution was placed in the sterilizer.
  • an aqueous sodium chloride solution containing Bacillus subtilis sodium chloride concentration: 0.78 g / liter
  • a voltage was applied between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode became an anode.
  • This voltage application was performed for 30 minutes with a current of 200 mA flowing between the electrodes.
  • the pH of the test solution became 13.3.
  • a voltage was applied between the electrodes for 5 minutes so that a current of 20 mA flowed between the electrodes and the ion-adsorbing electrode became an anode.
  • the pH of the test solution after this voltage application was 13.3.
  • a voltage was applied between the electrodes for 60 minutes so that a current of 200 mA flows between the electrodes and the ion-adsorbing electrode becomes a cathode.
  • the pH of the test solution became 2.4.
  • a voltage was applied between the electrodes for 25 minutes so that a current of 20 mA flows between the electrodes and the ion-adsorbing electrode becomes a cathode.
  • the pH of the test solution after application of this voltage was 2.4.
  • Example 5 In Example 5, the aqueous liquid was sterilized using the same sterilization apparatus as that used in Example 1.
  • test solution 120 ml of the test solution was placed in the sterilizer.
  • a sodium chloride aqueous solution sodium chloride concentration: 0.78 g / liter
  • Staphylococcus aureus or Candida was used as a test solution.
  • a voltage was applied between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode became a cathode. This voltage application was performed for 7 minutes with a current of 1.4 mA flowing between the electrodes. After the voltage application, the voltage application was stopped and the test solution was allowed to stand for 4 minutes. During this standing (after about 8 minutes from the start of the test), the viable cell count and pH were measured. The pH was 4.9.
  • a voltage was applied between the electrodes for 7 minutes so that the ion-adsorbing electrode becomes a cathode and a current of 4.6 mA flows between the electrodes.
  • the voltage application was stopped and the test solution was allowed to stand for 4 minutes. During the standing (after about 19 minutes from the start of the test), the viable cell count and pH were measured. The pH was 3.9.
  • the present invention can be used for a sterilization method and a sterilization apparatus.
  • the present invention can be applied to a drinking water production method and apparatus, a drinking water sterilization method and sterilization apparatus, a bath and pool water sterilization method and sterilization apparatus, an instrument sterilization method and a sterilization apparatus. Since the sterilization method and the sterilization apparatus of the present invention can be miniaturized, they can be used even in regions and situations where power is not supplied. Therefore, the sterilization method and sterilization apparatus of the present invention can be preferably used in an emergency such as a disaster.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

 本発明の殺菌方法は、ステップ(i)および(ii)を含む。ステップ(i)では、水性液体(21)中において、イオンを可逆的に吸着可能な第1の導電性物質(11a)を含む第1のイオン吸着電極(11)と対極(13)との間に電圧を印加することによって水性液体(21)のpHを5未満となるようにまたは9より大きくなるように変化させる。ステップ(ii)では、水性液体21のpHを5~9の範囲とする。

Description

殺菌方法および殺菌装置
 本発明は、殺菌方法および殺菌装置に関し、たとえば水性液体の殺菌方法および殺菌装置に関する。また、本発明は、器具などの対象物の殺菌を行う方法および装置に関する。
 水中の菌を殺す強力な方法として、過酢酸による酸化・分解反応を利用する方法や、フタラールの還元反応を利用する方法が挙げられる。これらは、医療器具等の洗浄には適しているが、殺菌処理した水を利用する用途には適していない。また、これらの方法は、殺菌の際に過酢酸やフラクタールといった化学物質を供給することを必要とする。
 殺菌処理した水を利用するための殺菌装置として、殺菌性の金属イオンを電解によって放出させる装置が提案されている(特開2000-153278号公報)。しかし、この装置は、飲料用の水の生成装置には向いておらず、用途が限定される。また、抗菌剤を含む濾過部材を備える浄水器が提案されている(特開平5-309370号公報)。この浄水器では、濾過部材における雑菌の増殖は抑えられるが、生成される浄水の殺菌が充分に行われるわけではない。また、電解によって飲料水を殺菌する殺菌用電解槽も提案されている(特開平7-108274号公報)。
特開2000-153278号公報 特開平5-309370号公報 特開平7-108274号公報
 特開平7-108274号公報には、電解によってラジカルな発生期の酸素が生じ、この発生期の酸素によって殺菌が行われる、と記載されている(特開平7-108274号公報の[0005]段落)。しかし、そのようなラジカルの酸素は寿命が短いため、ラジカルの酸素のみでは、電極から離れたところを流れる水を充分に殺菌することは難しいと考えられる。
 このような状況において、本発明は、新規な殺菌方法および殺菌装置を提供することを目的の1つとする。
 上記目的を達成するため、検討した結果、本願発明者らは、特定の電極を用いて特定の走査を行うことによって水性液体の殺菌が可能であることを見出した。本発明は、この新たな知見に基づくものである。
 すなわち、本発明の殺菌方法は、(i)水性液体中において、イオンを可逆的に吸着可能な第1の導電性物質を含む第1のイオン吸着電極と対極との間に電圧を印加することによって前記水性液体のpHを5未満となるようにまたは9より大きくなるように変化させるステップと、(ii)前記水性液体のpHを5~9の範囲とするステップと、をこの順序で含む。
 また、本発明の殺菌装置は、第1のイオン吸着電極および対極と、前記第1のイオン吸着電極と前記対極との間に電圧を印加するための電源とを備え、前記第1のイオン吸着電極は、イオンを可逆的に吸着可能な第1の導電性物質を含み、(i)水性液体中において、前記第1のイオン吸着電極と前記対極との間に電圧を印加することによって前記水性液体のpHを5未満となるようにまたは9より大きくなるように変化させるステップと、(ii)前記水性液体のpHを5~9の範囲とするステップとがこの順序で行われる。
 本発明によれば、所定の対象物(水性液体や器具など)の殺菌を、簡易な装置によって行うことができる。本発明の殺菌装置は、メンテナンスが容易である。また、本発明の方法および装置は、殺菌のための特殊な化学物質を必要としない。本発明の方法および装置は、少量の電力で水性液体や器具を殺菌することが可能であるため、電力の供給がない地域や状況(たとえば災害時)に特に有用である。
図1Aは、本発明の殺菌装置の一例を示す模式図である。 図1Bは、図1Aに示した殺菌装置の動作を示す図である。 図1Cは、図1Aに示した殺菌装置の動作を示す図である。 図2Aは、本発明の殺菌装置の他の一例を示す模式図である。 図2Bは、図2Aに示した殺菌装置の動作を示す図である。 図2Cは、図2Aに示した殺菌装置の動作を示す図である。 図3Aは、本発明の殺菌装置のその他の一例を示す模式図である。 図3Bは、図3Aに示した殺菌装置の動作を示す図である。 図3Cは、図3Aに示した殺菌装置の動作を示す図である。 図3Dは、図3Aに示した殺菌装置の動作を示す図である。 図3Eは、図3Aに示した殺菌装置の動作の一例を示すフローチャートである。 図3Fは、図3Aに示した殺菌装置の動作を示す図である。 図4Aは、本発明の殺菌装置のその他の一例を示す模式図である。 図4Bは、図4Aに示した殺菌装置の動作を示す図である。 図4Cは、図4Aに示した殺菌装置の動作を示す図である。 図4Dは、図4Aに示した殺菌装置の動作を示す図である。 図5Aは、本発明の殺菌装置のその他の一例を示す模式図である。 図5Bは、図5Aに示した殺菌装置の動作を示す図である。 図5Cは、図5Bに示した動作における電位の状態を示す図である。 図6は、本発明の殺菌装置のその他の一例を示す模式図である。 図7は、本発明の殺菌装置のその他の一例を示す模式図である。 図8は、本発明の殺菌装置のその他の一例を示す模式図である。 図9は、本発明の殺菌装置のその他の一例を示す模式図である。 図10は、図9に示した殺菌装置の一部を示す模式図である。 図11は、図9に示した殺菌装置の動作の一例を示すフローチャートである。 図12は、本発明の殺菌装置に用いられるイオン吸着電極の一例を示す図である。 図13Aは、実施例で用いた殺菌装置の上面図である。 図13Bは、実施例で用いたイオン吸着電極を示す側面図である。 図13Cは、実施例で用いた対極を示す側面図である。
 以下、本発明の実施の形態について説明する。なお、以下の説明では、本発明の実施形態について例を挙げて説明するが、本発明は以下で説明する例に限定されない。以下の説明において特定の数値や特定の材料を例示する場合があるが、本発明の効果が得られる限り、他の数値や他の材料を適用してもよい。
 [殺菌方法]
 本発明の方法は、所定の対象物(たとえば液体や器具など)を殺菌する方法である。本発明の方法によれば、水素イオン(H+)および水酸化物イオン(OH-)以外のイオンを含む水性液体を殺菌できる。以下では、水素イオン(H+)および水酸化物イオン(OH-)以外のイオンを「イオン(L)」と呼ぶ場合がある。本発明の方法は、以下のステップ(i)および(ii)を含む。
 ステップ(i)では、水性液体中において、イオンを可逆的に吸着可能な第1の導電性物質を含む第1のイオン吸着電極と対極との間に電圧を印加することによって水性液体のpHを5未満となるようにまたは9より大きくなるように変化させる。すなわち、ステップ(i)では、pHが5以上の水性液体(たとえばpHが5~9の水性液体)のpHを5未満(酸性)に変化させるか、pHが9以下の水性液体(たとえばpHが5~9の水性液体)のpHを9より大きく(アルカリ性)なるように変化させる。たとえば、pHが5~9の水性液体のpHを4以下(酸性)に変化させてもよい。また、pHが5~9の水性液体のpHを10以上(アルカリ性)に変化させてもよい。ステップ(i)によって、水性液体を殺菌できる。
 この明細書において、pHが5未満の水性液体の例には、pHが4.5以下の水性液体やpHが4以下の水性液体やpHが3.5以下の水性液体が含まれる。また、pHが9より大きい水性液体の例には、pHが9.5以上の水性液体やpHが10以上の水性液体やpHが10.5以上の水性液体が含まれる。また、pHが5~9の範囲にある水性液体の例には、pHが5.5~8.5の範囲にある水性液体や、pHが6~8の範囲にある水性液体が含まれる。
 ステップ(i)では、第1の導電性物質にイオン(L)が吸着され、対極において水の電気分解が生じるように、第1のイオン吸着電極と対極との間に電圧が印加される。ステップ(i)では、電圧が印加される電極が水性液体に接触するように配置される。一例では、電圧が印加される電極が水性液体に浸漬される。
 ステップ(i)は、バッチ方式で行ってもよいし、通液方式で行ってもよい。バッチ方式で行うことによって、殺菌効果を高めることが可能である。また、通液方式で行うことによって、多量の水性液体を殺菌することが可能である。ステップ(i)以外のステップは、通常バッチ方式で行われるが、バッチ方式以外の方式(たとえば通液方式)で行ってもよい。
 ステップ(i)を通液方式で行う場合、水性液体を含む系に接続された槽に第1のイオン吸着電極と対極とが配置されていてもよい。そして、その槽を水性液体が連続的に流れている状態でステップ(i)が行われてもよい。
 通液方式は、液体を連続的に槽に導入および排出する方式である。この通液方式で電圧印加を行う場合について考える。通液方式において、液体が流入する上流側と液体が排出される下流側とで液体中のイオン(L)の濃度が大きく異なるような条件で電圧印加を行うと、上流側の導電性物質がイオン吸着容量に到達しても下流側の導電性物質は充分にイオンを吸着できていないという状況が生じる場合がある。その場合、イオン吸着電極中の導電性物質の全体を効率よく利用することができない。また、上流側の導電性物質によってイオン(L)が吸着される結果、下流側ではイオン(L)の濃度が低くなる。そのため、下流側における液体の抵抗が大きくなり、下流側では液体による電圧降下(I-Rドロップ)が大きくなる。このような状態において対極で水の電気分解が生じるように高い電圧を印加すると、液体による電圧降下が小さい上流側では、イオン吸着電極の導電性物質の表面で水の電気分解が生じる場合がある。導電性物質の表面において水の電気分解が生じると、発生したガスによって導電性物質の性能が劣化する。これらの理由により、通液型は、(1)イオン吸着電極の全体を効率よく利用することができない、(2)イオン吸着電極の導電性物質の性能の劣化を招く、といった問題が生じる場合がある。これに対して、バッチ方式は、そのような問題を生じさせない利点を有する。ステップ(i)を通液方式で行う場合、上記問題点を回避するために、液体が流入する上流側と液体が排出される下流側とで液体中のイオン(L)の濃度が大きく異ならない条件で行うことが好ましい。
 なお、バッチ方式とは、1つのステップを実施する間に槽内の液体の入れ替えを実質的に行うことなく、槽内の液体の処理を行う方式を意味する。バッチ方式において水性液体の処理が完了すると、通常、槽内の水性液体は排出され、槽内には他の液体が導入される。通常、処理が完了するまで槽内の水性液体の追加や排出が行われないが、処理が完了するまで槽内の液体の入れ替えが実質的に行われなければバッチ方式の処理に該当する。すなわち、処理に影響しないほどの微量の水性液体の追加や排出があったとしてもバッチ方式に該当する。たとえば、処理の間に、槽内の水性液体の20体積%以下(たとえば10体積%以下や5体積%以下や1体積%以下)の水性液体が追加または排出されたとしても、バッチ方式に該当するとみなせる。
 水性液体は水を含む液体であり、水の含有率はたとえば50重量%以上や75重量%以上や90重量%以上である。水性液体の典型的な一例では、媒質が水のみである。本発明の効果が得られる限り、水性液体はアルコールなどを含んでもよい。典型的な水性液体は、水素イオン(H+)および水酸化物イオン(OH-)以外のイオンを含む水溶液である。そのような水溶液としては、たとえば、水道水、河川水、湖水、海水、雨水、井戸水、わき水、地下水などが挙げられる。
 水性液体の伝導度は、50μS/cm~10mS/cmの範囲にあってもよく、100μS/cm~500μS/cmの範囲にあってもよい。本発明の殺菌方法および殺菌装置では、イオン(L)の濃度が比較的低い水性液体を用いてそのpHを変化させることが可能である。具体的には、伝導度が500μS/cm以下(たとえば100μS/cm以下)の水性液体を用いることが可能である。
 なお、本発明の殺菌方法および殺菌装置では、水性液体中のイオン(L)の濃度が低すぎると、pHを大きく変化させることができない場合がある。そのような場合には、水性液体に塩を加えてもよい。加える塩に限定はないが、殺菌後の水性液体の用途を考慮して塩を選択することが好ましい。添加する塩としては、たとえば、硝酸ナトリウム、塩化ナトリウム、塩化カルシウム、硫酸カリウム、酢酸カリウムなどが挙げられる。また、イオン吸着電極に予めイオン(L)を吸着させておき、そのイオン(L)を水性液体中に放出することによってイオン(L)の濃度を調整してもよい。
 ステップ(ii)は、ステップ(i)の後に行われる。ステップ(ii)では、水性液体のpHを5~9の範囲(たとえば6~8の範囲)とする。pHを5~9の範囲(中性または中性に近い範囲)とすることによって、飲料に適した水が得られる。また、金属製の器具などの殺菌を行う場合、殺菌処理後に、pHが5~9の範囲の水性液体で器具を洗浄することによって、器具の腐食を防止できる。
 上記ステップの実行方法として、以下の例が挙げられる。なお、以下のそれぞれの例において行われる一連のステップは、複数回繰り返してもよい。
 [第1の方法]
 本発明の殺菌方法では、ステップ(ii)が、水性液体中において、第1のイオン吸着電極と対極との間に電圧を印加することによって行われてもよい。この殺菌方法には、以下の2つの例が含まれる。
 [第1の方法の第1の例]
 第1の例のステップ(i)では、水性液体中において、第1のイオン吸着電極がカソードとなるように第1のイオン吸着電極と対極との間に電圧を印加することによって水性液体のpHを5未満(たとえば4以下)とする。
 第1のイオン吸着電極をカソード(陰極)とし対極をアノード(陽極)として両者の間に電圧を印加することによって、第1の導電性物質には水性液体中の陽イオンが吸着され、対極では水の電気分解が生じる。対極における水の電気分解では、水素イオン(H+)と酸素ガスとが発生する。そのため、ステップ(i)の電圧印加によって、水性液体のpHが低下し、また、水性液体の電位が高い酸化電位になる。その結果、水性液体が殺菌される。また、ステップ(i)の電圧印加によって、水性液体における、水素イオン以外の陽イオンの濃度が減少する。
 第1の例のステップ(ii)では、水性液体中において、第1のイオン吸着電極がアノードとなるように第1のイオン吸着電極と対極との間に電圧を印加することによって水性液体のpHを5~9の範囲とする。この電圧印加によって、第1の導電性物質に吸着されていた陽イオンが水性液体中に放出され、対極では水の電気分解が生じる。対極における水の電気分解では、水酸化物イオン(OH-)と水素ガスとが発生する。そのため、ステップ(ii)の電圧印加によって、水性液体のpHが上昇する。ステップ(ii)が終了した後の水性液体中のイオン(L)の濃度は、ステップ(i)を開始する前のそれとほぼ同じにすることができる。
 [第1の方法の第2の例]
 第2の例のステップ(i)では、水性液体中において、第1のイオン吸着電極がアノードとなるように第1のイオン吸着電極と対極との間に電圧を印加することによって水性液体のpHを9より大きく(たとえば10以上に)する。
 第1のイオン吸着電極をアノード(陽極)とし対極をカソード(陰極)として両者の間に電圧を印加することによって、第1の導電性物質には水性液体中の陰イオンが吸着され、対極では水の電気分解が生じる。対極における水の電気分解では、水酸化物イオンと水素ガスとが発生する。そのため、ステップ(i)の電圧印加によって、水性液体のpHが上昇し、また、水性液体の電位が低い還元電位になる。その結果、水性液体が殺菌される。また、ステップ(i)の電圧印加によって、水性液体における、水酸化物イオン以外の陰イオンの濃度が減少する。
 第2の例のステップ(ii)では、水性液体中において、第1のイオン吸着電極がカソードとなるように第1のイオン吸着電極と対極との間に電圧を印加することによって水性液体のpHを5~9の範囲とする。この電圧印加によって、第1の導電性物質に吸着されていた陰イオンが水性液体中に放出され、対極では水の電気分解が生じる。対極における水の電気分解では、水素イオンと酸素ガスとが発生する。そのため、ステップ(ii)の電圧印加によって、水性液体のpHが低下する。ステップ(ii)が終了した後の水性液体中のイオン(L)の濃度は、ステップ(i)を開始する前のそれとほぼ同じにすることができる。
 対極において水の電気分解が生じるためには、通常、電極間に2ボルト以上の電圧を印加する必要がある。このことは、ステップ(i)に限らず、対極で水の電気分解が生じる他のステップにおいても同様である。水性液体の抵抗による電圧降下(IRドロップ)が大きい場合、より高い電圧を印加することが必要になる。一例では、印加される電圧は、2ボルト~50ボルト(たとえば2ボルト~20ボルト)の範囲にある。
 [第2の方法]
 本発明の殺菌方法では、ステップ(ii)が、水性液体中において、イオンを可逆的に吸着可能な第2の導電性物質を含む第2のイオン吸着電極と対極との間に電圧を印加することによって行われてもよい。この殺菌方法では、第1および第2のイオン吸着電極が用いられる。この殺菌方法には、以下の2つの例が含まれる。
 [第2の方法の第1の例]
 第1の例のステップ(i)では、第1のイオン吸着電極がカソードとなるように第1のイオン吸着電極と対極との間に電圧を印加することによって水性液体のpHを5未満(たとえば4以下)とする。次に、ステップ(ii)では、第2のイオン吸着電極がアノードとなるように第2のイオン吸着電極と対極との間に電圧を印加することによって水性液体のpHを5~9の範囲とする。
 [第2の方法の第2の例]
 第2の例のステップ(i)では、第1のイオン吸着電極がアノードとなるように第1のイオン吸着電極と対極との間に電圧を印加することによって水性液体のpHを9より大きく(たとえば10以上に)する。次に、ステップ(ii)では、第2のイオン吸着電極がカソードとなるように第2のイオン吸着電極と対極との間に電圧を印加することによって水性液体のpHを5~9の範囲とする。
 第2の方法では、ステップ(ii)の終了後に、第1および第2のイオン吸着電極にはイオン(L)が吸着されている。そのため、第2の方法によれば、水性液体中のイオン(L)の濃度を低減できる。なお、殺菌処理後の水性液体におけるイオンの濃度を、殺菌処理前のそれとほぼ同じにしたい場合、イオン吸着電極と対極との間に上記ステップとは逆方向に電圧を印加すればよい(他の方法においても同様である)。第1のイオン吸着電極と対極との間に上記ステップとは逆方向に電圧を印加することによって、第1のイオン吸着電極に吸着されたイオンを放出させることができる。また、第2のイオン吸着電極と対極との間に上記ステップとは逆方向に電圧を印加することによって、第2のイオン吸着電極に吸着されたイオンを放出させることができる。また、第1のイオン吸着電極と第2のイオン吸着電極との間に、適切な方向に電圧を印加することによって、両者に吸着されたイオンを放出させることができる。また、第1のイオン吸着電極と第2のイオン吸着電極とを短絡させることによっても、両者に吸着されたイオンを放出させることができる。
 第2の方法は、ステップ(ii)の前または後に、他のステップ(y)を含んでもよい。ステップ(y)では、第1のイオン吸着電極と第2のイオン吸着電極との間に電圧を印加することによって、水性液体中のイオン濃度を減少させる。通常、このステップは、ステップ(ii)の後で行われる。ステップ(y)を行うことによって、イオン(L)の濃度をさらに低減できる。
 [第3の方法]
 本発明の殺菌方法は、ステップ(i)とステップ(ii)との間に、他のステップ(x)を含んでもよい。ステップ(x)では、ステップ(i)を経た水性液体のpHが5未満であればそれが9より大きくなるように変化させ、ステップ(i)を経た水性液体のpHが9より大きければそれが5未満となるように変化させる。ステップ(x)の一例では、ステップ(i)によってpHが4以下または10以上となった水性液体のpHを6以上変化させて4以下または10以上とする。「pHを6以上変化させる」ということは、ステップ(i)で水性液体のpHを4以下としたときにはステップ(x)で水性液体のpHを10以上とし、ステップ(i)で水性液体のpHを10以上としたときにはステップ(x)で水性液体のpHを4以下とする、ということを意味している。ステップ(x)を含む殺菌方法は、以下の3つの例を含む。
 [第3の方法の第1の例]
 第1の例では、ステップ(x)およびステップ(ii)が、水性液体中において、第1のイオン吸着電極と対極との間に電圧を印加することによって行われる。すなわち、ステップ(i)、(x)および(ii)が、第1のイオン吸着電極と対極との間に電圧を印加することによって行われる。ステップ(i)およびステップ(ii)における対極への電圧の印加方向と、ステップ(x)におけるそれとは逆である(以下の第2および第3の例でも同様である)。この例では、導電性物質に吸着されたイオンがステップ(ii)において水性液体中に放出される。そのため、ステップ(ii)が終了した後の水性液体中のイオン(L)の濃度は、ステップ(i)を行う前の水性液体中のイオン(L)の濃度とほぼ同じである。
 第3の方法の第1の例は、ステップ(ii)ののちに、水性液体中において、イオンを可逆的に吸着可能な第2の導電性物質を含む第2のイオン吸着電極と第1のイオン吸着電極との間に電圧を印加することによって、水性液体におけるイオンの濃度を減少させるステップ(y)をさらに含んでもよい。
 [第3の方法の第2の例]
 第3の方法の第2の例では、ステップ(x)が、水性液体中において、イオンを可逆的に吸着可能な第2の導電性物質を含む第2のイオン吸着電極と対極との間に電圧を印加することによって行われる。そして、ステップ(ii)が、水性液体中において、第1のイオン吸着電極と対極との間に電圧を印加することによって行われる。この例では、ステップ(ii)が終了した後の水性液体中のイオン(L)の濃度は、ステップ(i)を行う前のそれよりも低くなる。
 [第3の方法の第3の例]
 第3の方法の第3の例では、ステップ(x)が、水性液体中において、第1のイオン吸着電極と対極との間に電圧を印加することによって行われる。また、ステップ(ii)が、水性液体中において、イオンを可逆的に吸着可能な第2の導電性物質を含む第2のイオン吸着電極と対極との間に電圧を印加することによって行われる。この例では、ステップ(ii)が終了した後の水性液体中のイオン(L)の濃度は、ステップ(i)を行う前のそれよりも低くなる。
 [第4の方法]
 本発明の殺菌方法では、上記水性液体が第1の水性液体であり、上記対極が第1の対極であってもよい。そして、ステップ(i)は、以下のステップ(i-a)および(i-b)を含んでもよい。
 ステップ(i-a)では、第1の槽に配置された第1の水性液体に第1のイオン吸着電極および第1の対極を浸漬する。そして、第1のイオン吸着電極と第1の対極との間に電圧を印加することによって第1の水性液体のpHを5未満(たとえば4以下)とする。電圧は、第1のイオン吸着電極がカソードとなるように印加される。
 また、ステップ(i-b)では、第2の槽に配置された第2の水性液体に、イオンを可逆的に吸着可能な第2の導電性物質を含む第2のイオン吸着電極および第2の対極を浸漬する。そして、第2のイオン吸着電極と第2の対極との間に電圧を印加することによって、第2の水性液体のpHを9より大きく(たとえば10以上に)する。電圧は、第2のイオン吸着電極がアノードとなるように印加される。
 ステップ(i-a)とステップ(i-b)とは、どちらを先に行ってもよいし、同時に行ってもよい。第4の方法は、水性液体を第1の水性液体と第2の水性液体とに分離したのち、それぞれを処理することによって行うことができる。
 第4の方法におけるステップ(i)の後のステップには、上述した他の方法のステップ(i)の後のステップと同様のステップを適用してもよい。たとえば、ステップ(ii)は、イオン吸着電極と対極との間に、ステップ(i)とは逆方向に電圧を印加することによって行ってもよい。また、第1の水性液体のpHを[5未満(たとえば4以下)]→[9より大きい(たとえば10以上)]→[5~9]の順に変化させ、第2の水性液体のpHを[9より大きい(たとえば10以上)]→[5未満(たとえば4以下)]→[5~9]の順に変化させてもよい。そのようなpH変化は、電圧の印加方向と印加時間とを制御することによって行うことができる。
 [第5の方法]
 本発明の殺菌方法では、上記水性液体が第1の水性液体であってもよい。そして、ステップ(i)は、以下のステップを含んでもよい。第1の槽に配置された第1の水性液体に第1のイオン吸着電極および対極を接触させる。また、第2の槽に配置された第2の水性液体にイオンを可逆的に吸着可能な第2の導電性物質を含む第2のイオン吸着電極および前記対極を接触させる。また、対極を電気的にフローティングの状態とする。この状態で、第1のイオン吸着電極と第2のイオン吸着電極との間に電圧を印加することによって、第1の水性液体のpHを5未満(たとえば4以下)とし、第2の水性液体のpHを9より大きく(たとえば10以上に)する。
 なお、第5の方法におけるステップ(i)の後のステップには、上述した他の方法のステップ(i)の後のステップと同様のステップを適用してもよい。
 第5の方法では、対極が、1つの槽を第1の槽と第2の槽とに2分する隔壁として機能するものであってもよい。この隔壁(対極)は、水性液体およびイオンを透過させない。
 第4および第5の方法では、ステップ(ii)が、第1の水性液体と第2の水性液体とを混合するステップであってもよい。pHが5未満(たとえば4以下)の第1の水性液体と、pHが9より大きい(たとえば10以上)の第2の水性液体とを混合することによって、ほぼ中性の水性液体を得ることが可能である。
 本発明の殺菌方法では、ステップ(i)における電圧印加の際に、殺菌の対象物(器具など)を水性液体中に浸漬しておくことによって当該対象物の殺菌を行ってもよい。好ましい一例では、ステップ(ii)が終了するまで、殺菌の対象物が水性液体中に浸漬される。器具などの対象物を殺菌する場合、水性液体のpHを5未満(たとえば4以下)にするステップを少なくとも行うことがより好ましい。水性液体のpHを5未満(たとえば4以下)にするステップ、および水性液体のpHを9より大きく(たとえば10以上に)するステップの両方を行う場合、異なる条件で殺菌が行われるため、より強力な殺菌が可能である。また、本発明の殺菌方法では、ステップ(i)で得られた水性液体に殺菌の対象物を接触させることによって、当該対象物の殺菌を行ってもよい。
 なお、導電性を有する対象物(器具など)の殺菌を上記ステップによって行う場合、当該対象物を水性液体に浸漬し、且つ対極に接触させた状態でイオン吸着電極と対極との間に電圧を印加してもよい。この構成では殺菌の対象物の電位が対極の電位に近くなるため、後述するように当該対象物がより殺菌されやすくなる。この構成の場合、対極の形状を、殺菌しようとする対象物と対極とが接触しやすいような形状とすることが好ましい。たとえば対極をカゴ型とし、そのカゴ型の対極の中に殺菌しようとする対象物を配置してもよい。また、フック状の部分を有する対極を用い、そのフック状の部分に対象物をぶらさげてもよい。
 本発明の方法において、水性液体のpHを5未満とするステップでは、水性液体のpHを2.5以下としてもよい。pHを2.5以下とすることによって、より強力な殺菌が可能である。また、本発明の方法において、水性液体のpHを9より大きくするステップでは、水性液体のpHを11.5以上としてもよい。pHを11.5以上とすることによって、より強力な殺菌が可能である。
 [第1および第2のイオン吸着電極]
 第1および第2のイオン吸着電極はそれぞれ、第1および第2の導電性物質を支持する集電体や、第1および第2の導電性物質に貼り付けられた集電体を備えてもよい。
 第1および第2の導電性物質はそれぞれ、可逆的にイオンを吸着・放出できる物質である。導電性物質には、比表面積が大きい物質を用いることができる。好ましい一例では、導電性物質は、活性炭や黒鉛などの炭素材料を含む。導電性物質は、粒状活性炭を凝集させることによって形成された導電性シートであってもよい。また、導電性物質は、粒状活性炭と導電性カーボンとを凝集させることによって形成された導電性シートであってもよい。また、導電性物質は、活性炭粒子を固めて形成された活性炭ブロックであってもよい。また、導電性物質は、活性炭繊維クロス、すなわち、活性炭繊維を用いて形成されたクロス(cloth)であってもよい。活性炭繊維クロスとしては、たとえば、日本カイノール株式会社製のACC5092-10、ACC5092-15、ACC5092-20、ACC5092-25を用いてもよい。第1の導電性物質と第2の導電性物質とは同じ材料からなるものであってもよいし、異なる材料からなるものであってもよい。
 導電性物質の比表面積は、たとえば300m2/g以上であり、好ましくは900m2/g以上である。比表面積の上限に特に限定はないが、たとえば3000m2/g以下や2500m2/g以下であってもよい。なお、この明細書において、第1および第2の導電性物質の「比表面積」とは、窒素ガスを用いたBET法で測定された値である。
 [対極]
 対極の一例は、金属電極である。対極の好ましい一例は、水の電気分解が生じやすい金属(たとえば白金)が表面に存在する電極である。たとえば、対極として、チタンからなる電極や、白金からなる電極や、白金でコートされた金属(たとえばチタン、ニオブ、タンタル)からなる電極を用いることができる。なお、ステップ(i)以外のステップでも対極が用いられる場合、ステップ(i)で用いられる対極とそれ以外のステップで用いられる対極とは、同じ1つの対極であってもよいし、異なる複数の対極であってもよい。対極として、金属シートを用いてもよいし、金属ワイヤを用いてもよいし、接続された複数の金属ワイヤを用いてもよい。
 第1および第2の導電性物質とは異なり、対極の表面積は大きくなくてもよい。一例の対極の1グラム当たりの表面積は、100m2以下であってもよく、5×10-5~50m2の範囲にあってもよい。
 [殺菌装置]
 本発明の殺菌装置は、上述した本発明の殺菌方法を実施するための装置である。上述した殺菌方法で説明した事項は本発明の殺菌装置に適用できるため、重複する説明を省略する場合がある。なお、本発明の殺菌装置について説明した事項は、本発明の殺菌方法に適用できる。
 本発明の殺菌装置は、第1のイオン吸着電極および対極と、第1のイオン吸着電極と対極との間に電圧を印加するための電源とを備える。第1のイオン吸着電極は、イオンを可逆的に吸着可能な第1の導電性物質を含む。本発明の殺菌装置は、水性液体、第1のイオン吸着電極、および対極が配置される槽を含んでもよい。ただし、本発明の殺菌装置は、電極(第1のイオン吸着電極および対極を含む)を水性液体に投入する形式の装置であってもよく、その場合には槽を含まなくてもよい。本発明の殺菌装置は、水性液体のpHをモニタするためのpHセンサ(pHメータ)を備えてもよい。pHセンサを備えることによって、水性液体のpHをモニタできる。なお、処理される水性液体のpH値や量が分かっている場合には、電圧印加の条件(たとえば電圧印加時間や電極間を流れる電荷量)とpHの変化との関係を予め求めておくことによって、pHセンサがなくても本発明の殺菌方法を実施することが可能である。
 本発明の殺菌装置は、上述した第2のイオン吸着電極および第2の対極を含んでもよい。また、本発明の殺菌装置は、隔壁として機能する対極を含んでもよい。
 本発明の殺菌装置は、上述した本発明の殺菌方法を実行する。具体的には、上記ステップ(i)および(ii)がこの順に行われる。ステップ(i)は、バッチ方式または通液方式で行われる。ステップ(i)および(ii)に加えて、上述した他のステップが行われてもよい。
 本発明の殺菌装置によれば、水性液体を殺菌できる。また、本発明の殺菌装置によれば、水性液体に浸漬された物体(器具など)を殺菌できる。本発明の殺菌装置では、ステップ(i)における電圧印加の際に、殺菌の対象物を水性液体中に浸漬しておくことによって当該対象物の殺菌を行ってもよい。また、ステップ(i)で調製されたpHが5未満または9より大きい水性液体を、殺菌しようとする対象物が配置された容器に供給することによって当該対象物を殺菌してもよい。いずれにしろ、pHが5未満または9より大きくなるように調製された水性液体と、殺菌しようとする対象物とを接触させればよい。
 特定の対象物(器具など)を殺菌する好ましい一例では、ステップ(ii)が終了するまで、水性液体中に当該対象物が浸漬される。器具などの対象物を殺菌する場合、水性液体のpHを5未満にするステップを少なくとも行うことがより好ましい。水性液体のpHを5未満にするステップ、および水性液体のpHを9より大きくするステップの両方を行う場合、異なる条件で殺菌が行われるため、より強力な殺菌が可能である。
 槽は、水性液体を安定に保持できるものである限り、特に限定はない。水性液体のpHが変化することから、pH変化に耐性を有する樹脂槽が好ましく用いられる。電源は、直流電圧を印加する電源である。電源は、コンセントからの交流電圧を直流電圧に変換するAC/DCコンバータであってもよい。また、電源は、乾電池などの一次電池や、鉛蓄電池、ニッケル水素電池、リチウムイオン電池といった二次電池であってもよい。また、電源は、太陽電池や風力発電装置や手動発電装置などの発電装置であってもよい。発電装置を電源として用いることによって、電力が供給されていない地域や状況において本発明の装置を用いることが可能となる。そのような利用は、僻地や緊急時における飲料水の製造などに有用である。
 電圧の印加は手動で制御することが可能であるが、本発明の殺菌装置は、ステップを実行するためのコントローラを備えてもよい。コントローラは、演算処理装置(内部メモリを含んでもよい)を備え、必要に応じてさらに外部メモリを含む。メモリには、ステップを実行するためのプログラムが記録される。コントローラの一例には大規模集積回路(LSI)が含まれる。コントローラは、各種機器(電源、ポンプ、バルブなど)および計測器(たとえばpHセンサやイオン濃度計や伝導度計)に接続される。コントローラは、計測器からの出力に基づき、各種機器を制御してステップを実行する。
 また、本発明の殺菌装置は、目標とするpH値や処理の方法をコントローラに入力するための入力装置や、処理の状態を表示するための表示装置を備えてもよい。また、本発明の殺菌装置は、水性液体のイオン濃度が低いときに水性液体に塩を加えるための塩添加機構を備えてもよい。
 本発明の殺菌装置は、電極に印加する電圧を決定するために、水性液体の伝導度を測定する伝導度計や、対極からのガス発生を確認するための装置(たとえばLEDやレーザダイオードなどの発光素子と、フォトダイオードなどの受光素子との組み合わせ)を備えてもよい。また、本発明の殺菌装置は、電極間に印加される電圧を測定するための電圧計や、電極間を流れる電流を測定するための電流計を備えてもよい。
 本発明の殺菌装置は、中空糸膜フィルタや活性炭フィルタなどの各種フィルタを備えてもよい。また、本発明の殺菌装置は、本発明の殺菌方法以外の殺菌方法を実施する装置を備えてもよい。複数の殺菌方法を実施することによって、より確実な殺菌が可能になる。
 本発明の殺菌装置は、イオンを選択的に透過させるような隔膜(たとえばイオン交換膜)を必要に応じて備えてもよい。しかし、通常、そのような隔膜を用いる必要はない。
 本発明の殺菌装置によって特定の対象物(器具など)を殺菌する場合、ステップ(i)で調製されたpH5未満の水性液体による殺菌に加えて、ステップ(i)以外のステップで調製された水性液体を、殺菌しようとする対象物に接触させてもよい。ステップ(ii)で調整されるpHが5~9の水性液体を当該対象物に接触させることによって、当該対象物の腐食を防止できる。
 なお、本発明の方法および装置において、複数の第1のイオン吸着電極を用いてもよいし、複数の第2のイオン吸着電極を用いてもよいし、複数の対極を用いてもよい。また、複数のイオン吸着電極を用いる場合、一部のイオン吸着電極の機能を各ステップごとに変えてもよい。たとえば、最初のステップではすべてのイオン吸着電極を第1のイオン吸着電極として用い、その後のステップでは一部のイオン吸着電極を第1のイオン吸着電極として用い他のイオン吸着電極を第2のイオン吸着電極として用いてもよい。
 本発明の殺菌装置は、水性液体を含む系に接続されていてもよい。その場合、イオン吸着電極と対極とが配置される槽の内容積が、系に存在する水性液体の体積よりも小さくてもよい。たとえば、槽の内容積は、系に存在する水性液体の体積の5分の1以下であってもよい。この構成によれば、小さい装置で多量の水性液体を殺菌することが可能である。水性液体を含む系に殺菌装置が接続されている場合、ステップ(i)および他のステップは、それぞれ独立に、バッチ方式で行われてもよいし、通液方式で行われてもよい。通液方式は、制御が容易であり、水性液体を連続的に処理できるという長所を有する。
 また、本発明の殺菌装置では、上述した本発明の殺菌装置が複数個直列または並列に接続されていてもよい。複数の殺菌装置が並列に接続されている場合、一部の殺菌装置で水性液体が最終的に酸性となる殺菌処理を行い、他の殺菌装置で水性液体が最終的にアルカリ性となる殺菌処理を行ってもよい。そして、得られた酸性の水性液体とアルカリ性の水性液体とを混合することによってステップ(ii)を行ってもよい。
 以下、本発明の実施形態について図面を参照しながら説明する。図面を用いた説明では、同様の部分に同一の符号を付して重複する説明を省略する場合がある。また、以下の説明で用いる図面は、模式的な図である。以下の図では、図面を見やすくするために化学当量については考慮していない。また、以下の図では、水素イオン以外の陽イオンをM+と表示し、水酸化物イオン以外の陰イオンをA-と表示しているが、水性液体中の陽イオンおよび陰イオンはそれぞれ、1価のイオンに限定されず、また、1種類に限定されない。また、以下の図では、水性液体21のハッチングを省略する場合がある。また、以下の図において、イオン吸着電極11、イオン吸着電極12および対極13はそれぞれ複数であってもよい。また、以下の装置は、複数個が直列または並列に連結されてもよい。
 [実施形態1]
 実施形態1では、上述した第1の方法の第1の例およびそれに用いられる装置について、一例を説明する。実施形態1の殺菌装置を図1Aに示す。
 図1Aの殺菌装置100は、イオン吸着電極(第1のイオン吸着電極)11、対極13、槽20、電源31、pHセンサ(pHメータ)32、バルブ33aおよび34a、ポンプ33および34、ならびにコントローラ35を備える。イオン吸着電極11は、導電性物質11aと集電体11bとを備える。電源31、バルブ33a、バルブ34a、ポンプ33およびポンプ34は、コントローラ35によって制御される。pHセンサ32からの信号は、コントローラ35に入力される。
 まず、バルブ33aおよびポンプ33を操作することによって、図1Aに示すように、水性液体21が導入口36から槽20内に導入される。次に、図1Bに示すように、イオン吸着電極11がカソードとなるようにイオン吸着電極11と対極13との間に電圧を印加する。この電圧印加によって、イオン吸着電極11の導電性物質11aには、水性液体21中の陽イオンM+が吸着される。また、対極13の表面では、水の電気分解によって水素イオンと酸素ガスとが発生する。その結果、水性液体21のpHが減少する。電圧印加は、水性液体21のpHが、5未満(たとえば4以下)の所定の値となるまで行われる。
 実施形態1の方法および装置では、酸性の水性液体21による殺菌、発生した酸素の酸化力による殺菌、および、対極13表面の酸化力による殺菌が生じる。
 pHが4で酸素分圧が1気圧のときの酸化電位E0は、E0=1.228-0.0591pH+0.0147logP(O2)=0.99ボルトである。pHが2で酸素分圧が1気圧のときの酸化電位E0は、E0=1.11ボルトである。また、対極13の電極電位は酸素ガス発生のために分極されているため、対極13の電位は、上記酸化電位よりも高くなっている。そのため、対極13表面では強い酸化力が働き、対極13表面において殺菌が生じるとともに、水性液体21自体も酸化力が強い状態となる。
 pHが所定の値になったことをコントローラ35が検知すると、すぐに、または一定の時間をおいて、次のステップが行われる。具体的には、図1Cに示すように、イオン吸着電極11がアノードとなるようにイオン吸着電極11と対極13との間に電圧を印加する。この電圧印加によって、導電性物質11aに吸着された陽イオンM+が水性液体21中に放出される。対極13では、水の電気分解が生じ、水酸化物イオンと水素ガスとが発生する。この電圧印加は、水性液体21のpHが、5~9の範囲にある所定の値になるまで行われる。
 このようにして水性液体21の殺菌処理が終わると、水性液体21は、バルブ34aおよびポンプ34を操作することによって排出口37から排出され、殺菌された液体として利用される。
 [実施形態2]
 実施形態2では、上述した第2の方法の第1の例およびそれに用いられる装置について、一例を説明する。実施形態2の殺菌装置を図2Aに示す。
 図2Aの殺菌装置200は、第1のイオン吸着電極11、第2のイオン吸着電極12、対極13、槽20、電源31、pHセンサ32、バルブ33aおよび34a、ポンプ33および34、ならびにコントローラ35を備える。イオン吸着電極12は、導電性物質12aと集電体12bとを備える。
 まず、バルブ33aおよびポンプ33を操作することによって、図2Aに示すように、水性液体21が導入口36から槽20内に導入される。次に、図2Bに示すように、イオン吸着電極11がカソードとなるようにイオン吸着電極11と対極13との間に電圧を印加する。このステップは、図1Bに示したステップと同様である。このステップによって、実施形態1で説明したように、水性液体21が殺菌される。
 pHが5未満(たとえば4以下)の所定の値になったことをコントローラ35が検知すると、すぐに、または一定の時間をおいて、次のステップが行われる。具体的には、図2Cに示すように、イオン吸着電極12がアノードとなるようにイオン吸着電極12と対極13との間に電圧を印加する。この電圧印加によって、水性液体21中の陰イオンA-がイオン吸着電極12に吸着される。対極13では、水の電気分解が生じ、水酸化物イオンと水素ガスとが発生する。この電圧印加は、水性液体21のpHが、5~9の範囲にある所定の値になるまで行われる。
 このようにして水性液体21の殺菌処理が終わると、水性液体21は、バルブ34aおよびポンプ34を操作することによって排出口37から排出され、殺菌された液体として利用される。
 実施形態2の方法では、イオン吸着電極と対極との間に上記ステップとは逆方向に電圧を印加しない限り、イオン吸着電極11および12に吸着されたイオンが水性液体21に放出されることはほとんどない。これは、イオン吸着電極を用いる他の形態でも同様である。この理由については明確ではないが、たとえば、イオンが導電性物質の表面電荷に引き寄せられて電気二重層を形成していることが考えられる。このような現象が起こることは、電気二重層コンデンサの分野で一般的に知られている。そのため、水性液体21が有害なイオン(たとえば重金属イオン)を含む場合、実施形態2の方法によれば、水性液体21中の有害なイオンの濃度を低下させることが可能である。
 なお、導電性物質に吸着されているイオンが過剰となることを防止するため、イオン吸着電極を定期的に交換するか、イオン吸着電極を定期的に再生することが好ましい。導電性物質に吸着されているイオンを放出させることによって、イオン吸着電極を再生することが可能である。たとえば、導電性物質11aに吸着されている陽イオンM+を放出させたい場合、洗浄用の水性液体を槽20に導入し、イオン吸着電極11がアノードとなるようにイオン吸着電極11と対極13との間に電圧を印加すればよい。この電圧印加によって、導電性物質11aに吸着された陽イオンM+を洗浄用の水性液体に放出させることができる。同様に、イオン吸着電極12がカソードとなるようにイオン吸着電極12と対極13との間に電圧を印加することによって、導電性物質12aに吸着された陰イオンA-を洗浄用の水性液体に放出させることができる。また、イオン吸着電極11がアノードとなるように、イオン吸着電極11とイオン吸着電極12との間に電圧を印加してもよい。また、イオン吸着電極11とイオン吸着電極12とを短絡させてもよい。殺菌後の水性液体におけるイオンの濃度を殺菌前のそれとほぼ同等にしたい場合、導電性物質に吸着されたイオンを上記方法によって放出させればよい。
 [実施形態3]
 実施形態3では、上述した第3の方法の第2の例およびそれに用いられる装置について、一例を説明する。実施形態3の殺菌装置を図3Aに示す。図3Aの殺菌装置200は、図2Aに示した装置と同じ構成を有する。
 まず、バルブ33aおよびポンプ33を操作することによって、図3Aに示すように、水性液体21が導入口36から槽20内に導入される。次に、図3Bに示すように、イオン吸着電極11がカソードとなるようにイオン吸着電極11と対極13との間に電圧を印加する。このステップは、図1Bに示したステップと同様である。このステップによって、実施形態1で説明したように、水性液体21が殺菌される。
 pHが5未満(たとえば4以下)の所定の値になったことをコントローラ35が検知すると、すぐに、または一定の時間をおいて、次のステップが行われる。具体的には、図3Cに示すように、イオン吸着電極12がアノードとなるようにイオン吸着電極12と対極13との間に電圧を印加する。この電圧印加によって、水性液体21中の陰イオンA-がイオン吸着電極12に吸着される。対極13では、水の電気分解が生じ、水酸化物イオンと水素ガスとが発生する。この電圧印加は、水性液体21のpHが9より大きい(たとえば10以上)所定の値になるまで行われる。
 図3Cのステップでは、アルカリ性の水性液体21による殺菌、発生した水素の還元力による殺菌、および、対極13表面の還元力による殺菌が生じる。
 pHが10で水素分圧が1気圧のときの還元電位E0は、E0=0.000-0.0591pH+0.0295logP(H2)=-0.59ボルトである。pHが12で水素分圧が1気圧のときの還元電位E0は、E0=-0.71ボルトである。また、対極13の電極電位は水素ガス発生のために分極されているため、対極13の電位は、上記還元電位よりも低くなっている。そのため、対極13表面では強い還元力が働き、対極13表面において殺菌が生じるとともに、水性液体21自体も還元力が強い状態になる。また、対極13表面で有機物の分解などが生じる場合もある。
 pHが所定の値になったことをコントローラ35が検知すると、すぐに、または一定の時間をおいて、次のステップが行われる。具体的には、図3Dに示すように、イオン吸着電極11がカソードとなるようにイオン吸着電極11と対極13との間に電圧を印加する。この電圧印加によって、図1Bで説明した反応が生じ、水性液体21のpHが低下する。この電圧印加は、水性液体21のpHが、5~9の範囲にある所定の値になるまで行われる。
 このようにして水性液体21の殺菌処理が終わると、水性液体21は、バルブ34aおよびポンプ34を操作することによって排出口37から排出され、殺菌された液体として利用される。
 実施形態3の方法で行われるステップを、図3Eに示す。まず、バルブ33aおよびポンプ33を駆動することによって、水性液体21が槽20に導入される(S301)。次に、イオン吸着電極11がカソードとなるようにイオン吸着電極11と対極13との間の電圧印加を開始する(S302)。この電圧印加は、水性液体21のpHが5未満の所定の値になるまで続けられる(S303)。水性液体21のpHが5未満の所定の値になると、イオン吸着電極11と対極13との間の電圧印加を終了し、イオン吸着電極12と対極13との間の電圧印加を開始する(S304)。この電圧印加は、水性液体21のpHが9より大きい所定の値になるまで続けられる(S305)。水性液体21のpHが9より大きい所定の値になると、イオン吸着電極12と対極13との間の電圧印加を終了し、イオン吸着電極11と対極13との間の電圧印加を開始する(S306)。この電圧印加は、水性液体21のpHが5~9の範囲の所定の値になるまで続けられる(S307)。水性液体21のpHが5~9の範囲の所定の値になると、水性液体21を槽20から排出して利用する。なお、水性液体21を槽20に入れたままで利用することも可能である。処理を継続する場合には、ステップS301に戻って処理を続ける(S309)。
 実施形態3の殺菌装置200のコントローラのメモリには、上記処理を行うためのプログラムが記録される。他の実施形態の装置でも、図3Eに示すステップの一部と同様のステップが行われる。具体的には、水性液体のpHがそれぞれのステップで規定されている所定の値に到達すると、次のステップが行われる。
 なお、図3Dのステップののちに、イオン吸着電極11がカソードとなるように、イオン吸着電極11とイオン吸着電極12との間に電圧を印加してもよい。この電圧印加によって、図3Fに示すように、水性液体21中の陽イオンおよび陰イオンを減少させることが可能である。
 [実施形態4]
 実施形態4では、上述した第3の方法の第2の例およびそれに用いられる装置について、一例を説明する。実施形態4の各ステップでは、実施形態3とは逆方向に電圧が印加される。実施形態4の殺菌装置を図4Aに示す。図4Aの殺菌装置200は、図2Aに示した装置と同じ構成を有する。
 まず、バルブ33aおよびポンプ33を操作することによって、図4Aに示すように、水性液体21が導入口36から槽20内に導入される。次に、図4Bに示すように、イオン吸着電極11がアノードとなるようにイオン吸着電極11と対極13との間に電圧を印加する。この電圧印加は、水性液体21のpHが、9より大きい所定の値になるまで行われる。このステップでは、図3Cに示したステップと同じ反応が生じる。このステップによって、実施形態3で説明したように、水性液体21が殺菌される。
 pHが所定の値になったことをコントローラ35が検知すると、すぐに、または一定の時間をおいて、次のステップが行われる。具体的には、図4Cに示すように、イオン吸着電極12がカソードとなるようにイオン吸着電極12と対極13との間に電圧を印加する。この電圧印加は、水性液体21のpHが、5未満の所定の値になるまで行われる。このステップでは、図1Bに示したステップと同じ反応が生じる。このステップによって、実施形態1で説明したように、水性液体21が殺菌される。
 pHが所定の値になったことをコントローラ35が検知すると、すぐに、または一定の時間をおいて、次のステップが行われる。具体的には、図4Dに示すように、イオン吸着電極11がアノードとなるようにイオン吸着電極11と対極13との間に電圧を印加する。この電圧印加は、水性液体21のpHが、5~9の範囲の所定の値になるまで行われる。
 このようにして水性液体21の殺菌処理が終わると、水性液体21は、バルブ34aおよびポンプ34を操作することによって排出口37から排出され、殺菌された液体として利用される。
 [実施形態5]
 実施形態5では、上述した第4の方法およびそれに用いられる装置について、一例を説明する。実施形態5の殺菌装置を図5Aに示す。図5Aの殺菌装置500は、対極13の代わりに対極51を備える点で、図2Aに示した殺菌装置200とは異なる。
 対極51は、槽20を槽20aと槽20bとに分ける隔壁として機能する。対極51は、金属製の板であり、液体およびイオンを透過させない。対極51は電源31に接続されておらず、電気的にフローティングの状態にある。
 槽20aおよび槽20bには、それぞれ、導入口36および排出口37が接続されている。第1のイオン吸着電極11は槽20a内に配置されており、第2のイオン吸着電極12は槽20b内に配置されている。
 まず、バルブ33aおよびポンプ33を操作することによって、図5Aに示すように、水性液体21を導入口36から槽20aおよび20b内に導入する。槽20内の水性液体21は、対極51によって、水性液体21aと水性液体21bとに分けられる。
 次に、図5Bに示すように、イオン吸着電極11がカソードとなるようにイオン吸着電極11とイオン吸着電極12との間に電圧を印加する。このときのイオン吸着電極11とイオン吸着電極12との間の電位勾配を、図5Cに模式的に示す。図5Cに示すように、イオン吸着電極11およびイオン吸着電極12間の電圧印加は、イオン吸着電極11および対極13間の電圧印加、ならびにイオン吸着電極12および対極13間の電圧印加として作用する。すなわち、槽20a内では図1Bと同様の反応が生じ、槽20b内では図3Cと同じ反応が生じる。その結果、槽20a内の水性液体21aおよび槽20b内の水性液体21bは、殺菌される。電圧印加は、水性液体21aのpHが5未満の所定の値となり、水性液体21bのpHが9より大きい所定の値となるまで続けられる。
 次に、槽20aの水性液体21aおよび槽20bの水性液体21bは、バルブ34aおよびポンプ34を操作することによって排出口37から排出され、混合される。これによって、中性の水性液体が得られる。
 上述したように、殺菌装置500では、図5Bのステップののちに、逆方向に電圧を印加することによって、水性液体21aのpHを9より大きくし、水性液体21bのpHを5未満としてもよい。そしてその後に、水性液体21aと水性液体21bとを混合してもよい。
 なお、図6に示すように、槽20aおよび槽20bは、分離されていてもよい。対極13は、槽20aに配置される対極13aと、槽20bに配置される対極13bと、それらを結ぶ配線13cとを含む。対極13は、電気的にフローティングの状態にある。イオン吸着電極11がカソードとなるようにイオン吸着電極11とイオン吸着電極12との間に電圧を印加すると、図5Bと同様の反応が生じる。
 [実施形態6]
 実施形態6では、器具を殺菌する方法および装置について一例を説明する。実施形態6の殺菌装置を図7に示す。図7の殺菌装置700は、対極13の代わりに対極73を用いる点で、図1の殺菌装置100と異なる。対極73は、金属線で形成されたカゴ状の電極である。対極73の内側には、殺菌される器具71が配置される。この装置で殺菌される器具は、耐酸性および/または耐アルカリ性の性質を有する器具であることが好ましい。
 殺菌装置700において、実施形態1と同様のステップを行う。器具71が導電性を有する場合、器具71の電位は対極73の電位に近くなる。そのため、対極73の表面と同様に、器具71の表面では強い酸化力が生じ、それによって器具71の表面が殺菌される。なお、実施形態6の構成は、他の実施形態の装置にも適用できる。
 [実施形態7]
 実施形態7では、容器内に貯められた水性液体を殺菌する方法および装置について一例を説明する。実施形態7の殺菌装置500aを図8に示す。
 殺菌装置500aは、容器80と、2本のパイプ81および82を介して容器80に接続された殺菌装置500とを含む。殺菌装置500は、実施形態5で説明した殺菌装置である。パイプ81および82の一方は殺菌装置500の導入口に接続されており、他方は殺菌装置500の排出口に接続されている。容器80には水性液体21が配置されている。なお、殺菌装置500のpHセンサ32は、容器80内に配置されてもよい。
 容器80は、浴槽やプールなどの貯水槽であってもよい。また、容器80は、その内部において器具等の殺菌を行うための殺菌槽であってもよい。また、容器80をクーリングタワーなどの循環水系に置き換えてもよい。1つの観点では、図8の殺菌装置500は、水性液体21を含む系に接続されている。
 殺菌装置500は、実施形態5で説明したステップを実行する。その結果、容器80から殺菌装置500に導入された水性液体21は、殺菌されたのちに容器80に戻される。一度に殺菌される水性液体は容器80の水性液体21のうちの一部であるが、処理を繰り返すことによって、水性液体21中の菌の増殖を抑制できる。
 なお、殺菌装置500の代わりに上記実施形態1~4で説明した殺菌装置を用いてもよい。
 また、実施形態1~7で説明した殺菌装置は、通液方式で処理を行ってもよい。その場合の好ましい装置の一例では、水性液体の導入口と水性液体の排出口との間に電極が配置される。すなわち、槽(容器)における水性液体の流れの途中にイオン吸着電極と対極とが存在するように、導入口、電極、および排出口が配置されてもよい。たとえば、図8の殺菌装置500の代わりに、通液方式の殺菌装置を用いてもよい。そのような一例を、図9に示す。図9の殺菌装置500bは、容器80と、パイプ81および82によって容器80に接続された殺菌装置100bとを含む。殺菌装置500bでは、pHセンサ32が容器80内に配置されている。なお、容器80に2つ以上の殺菌装置100bが並列または直列に接続されていてもよい。
 殺菌装置100bの詳細を図10に示す。殺菌装置100bは、槽20の形状、バルブ34aおよびポンプ34がない点、導入口36および排出口37が槽20に接続される位置、およびpHセンサ32が容器80内に配置されている点で、実施形態1の装置100とは異なる。その他の点は、実施形態1の装置100と同様である。殺菌装置100bでは、導入口36から連続的に水性液体21が導入されるとともに、排出口37から水性液体21が連続的に排出される。槽20の内容積は、容器80内に存在する水の体積よりも小さい。そして、水性液体21が槽20内を移動している状態で、上述したステップが行われる。1つの観点では、図9の殺菌装置100bは、水性液体21を含む系に接続されている。
 殺菌装置500bにおいて、容器80内の水性液体21はパイプ81を介して殺菌装置100bに導入され、処理された後にパイプ82を介して容器80内に戻される。ステップ(i)の電圧印加を行うことによって、容器80内の水性液体21のpHが徐々に変化する。ステップ(i)の電圧印加は、水性液体21のpHが5未満または9より大きい所定の値となるまで行われる。その後、上述したステップ(ii)が行われる。ステップ(ii)に加えて、上述した他のステップが行われてもよい。殺菌装置500bにおいてステップ(i)およびステップ(ii)のみを行う場合の処理の一例を、図11に示す。
 まず、水性液体21が殺菌装置100bの槽20を流れている状態で、イオン吸着電極と対極との間に電圧を印加する(S1101)。この電圧印加は、水性液体21のpHが5未満または9より大きい所定の値となるまで続けられる(S1102)。水性液体21のpHが所定の値に到達したことをコントローラが検知すると、すぐに、または一定の時間ののち、電圧印加方向を逆にしてイオン吸着電極と対極との間に電圧を印加する(S1103)。この電圧印加は、水性液体21のpHが5~9の範囲にある所定の値になるまで続けられる(S1104)。このようにして、水性液体21が殺菌される。
 図9の殺菌装置500bでは、小さい殺菌装置100bによって多量の水を殺菌することが可能である。この場合、電極間隔を狭くすることが可能であるため、水性液体の抵抗による電圧降下を小さくすることが可能である。その結果、電極間に印加する電圧を低くでき、安価な電源を用いることが可能となる。なお、2つの殺菌装置を並列に接続し、第1の殺菌装置で水性液体を酸性とし、第2の殺菌装置で水性液体をアルカリ性とし、それらの水性液体を混合することによってステップ(ii)を行ってもよい。
 [イオン吸着電極の一例]
 本発明の殺菌装置で用いられるイオン吸着電極の一例を、図12に示す。図12のイオン吸着電極91は、活性炭繊維クロス91aと、それに貼り付けられた集電体91bとを備える。集電体91bを用いることによって、活性炭繊維クロス91a内における電位の変動を小さくできる。
 以下に、本発明の方法によって水性液体の殺菌を行った一例を説明する。この実施例では、容器と、容器内に配置されたイオン吸着電極および対極とを含む殺菌装置を用いた。なお、以下の実施例において、試験液のpH値は、ダミーの試験液を用いて予め測定された値を示している。すなわち、ダミーの試験液を用いて実施例における条件と同じ条件で電圧印加を行ったときのpH値を、試験液のpH値としている。
 [実施例1]
 用いた殺菌装置の上面図を図13Aに示す。図13Aの殺菌装置は、容器110と、容器内に配置されたイオン吸着電極101と、対極103とを備える。容器110は、高さが約80mmであり、その内寸は、縦が約20mmで横が約90mmであった。イオン吸着電極101と対極103とは、約20mmの間隔をおいて対向するように配置された。対極103を構成するワイヤは、イオン吸着電極101の表面と平行になるように配置された。
 イオン吸着電極101の側面図を図13Bに示す。イオン吸着電極101の高さHは約70mmとし、幅Wは約90mmとした。イオン吸着電極101の導電性物質には、活性炭繊維クロス(日本カイノール株式会社製、ACC-5092-10、目付:200g/m2、厚さ0.53mm、比表面積1100m2/g)を用いた。イオン吸着電極101には、サイズが約70mm×90mmの活性炭繊維クロス101aを3枚重ねて用いた。2枚の活性炭繊維クロスと1枚の活性炭繊維クロスの間には、配線101bを配置した。
 対極103の側面図を図13Cに示す。対極103の高さhは約70mmとし、幅wは約90mmとした。対極103は、白金コートされたチタンワイヤ103a(直径約1mm)を用いて形成した。具体的には、20本のワイヤ103aをストライプ状に並べ、それらの端部をワイヤ103aで接続することによって対極103を形成した。
 まず、殺菌装置内に試験液120mlを入れた。試験液には、菌を含む中性の塩化ナトリウム水溶液(塩化ナトリウム濃度:0.78g/リットル)を用いた。次に、イオン吸着電極がアノードとなるように、イオン吸着電極と対極との間に電圧を印加した。この電圧印加は、電極間に200mAの電流が流れる状態で15分間行った。この電圧印加によって、試験液のpHは13.1になった。その電圧印加の後、電圧印加を中止して試験液を15分間静置した。この静置によって、試験液のpHは12.8になった。15分間の静置後に、イオン吸着電極がカソードとなるようにイオン吸着電極と対極との間に電圧を印加することを開始した。この電圧印加は、電極間に200mAの電流が流れる状態で30分間行った。この電圧印加によって、試験液のpHは2.3になった。その電圧印加の後、試験液を15分間静置したところ、pHは2.5となった。静置前の試験液のpHは2.3であり、静置後の試験液のpHは2.5であることから、静置開始から10分後の試験液のpHは2.4程度であると予測される。
 実験開始から所定の時間経過後に、試験液の一部を抜き取ってその中に存在する生菌数を測定した。生菌数は、試験液をSCDLP培地(日本製薬株式会社製)に添加して培養することによって測定した。なお、対照として、殺菌処理をしなかった試験液について、試験開始時および試験開始から所定時間経過後に生菌数を測定した。実験および生菌数の測定は、財団法人日本食品分析センターに依頼して行った。生菌数の測定方法および対照実験の方法については、以下の実施例についても同様の方法で行った。
 試験開始からの経過時間と、試験液のpHおよび生菌数との関係を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、枯草菌の数は、アルカリ処理後にはほとんど変化しなかったが、酸性処理後には100分の1以下になった。大腸菌の数は、アルカリ処理後に10分の1以下になり、酸性処理後には1万分の1以下になった。黄色ブドウ球菌の数は、アルカリ処理後にはほとんど変化しなかったが、酸性処理後には1万分の1以下になった。黒こうじカビの数は、アルカリ処理後に50分の1以下になったが、酸性処理ではほとんど変化がなかった。クロカワカビの数は、アルカリ処理後に千分の1以下になり、酸性処理後に1万分の1以下になった。カンジダ菌の数は、アルカリ処理後に千分の1以下になり、酸性処理後に1万分の1以下になった。以上のように、本発明の方法および装置によって殺菌できることが確認された。
 [実施例2]
 実施例2では、実施例1で用いた殺菌装置と同じ殺菌装置を用いて水性液体の殺菌を行った。ただし、実施例2では、水性液体として硫酸カリウム(K2SO4)の水溶液を用いた。
 まず、殺菌装置内に試験液120mlを入れた。試験液には、菌を含む硫酸カリウム水溶液(硫酸カリウム濃度:1.16g/リットル)を用いた。次に、イオン吸着電極がアノードとなるように、イオン吸着電極と対極との間に電圧を印加した。この電圧印加は、電極間に200mAの電流が流れる状態で15分間行った。この電圧印加によって、試験液のpHは13.2になった。その電圧印加の後、電圧印加を中止して15分間試験液を静置した。この静置によって試験液のpHは12.9になった。15分間の静置後に、イオン吸着電極がカソードとなるようにイオン吸着電極と対極との間に電圧を印加することを開始した。この電圧印加は、電極間に200mAの電流が流れる状態で30分間行った。この電圧印加によって、試験液のpHが2.4になった。その電圧印加の後、電圧印加を中止して15分間試験液を静置した。この静置によって試験液のpHが2.5になった。試験開始からの経過時間と、試験液のpHおよび生菌数との関係を、表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、水性液体が塩化ナトリウム水溶液である場合と同様に、水性液体が硫酸カリウム水溶液の場合でも殺菌効果が得られた。
 [実施例3]
 実施例3では、実施例1で用いた殺菌装置と同じ殺菌装置を用いて水性液体の殺菌を行った。ただし、実施例3では、水性液体として市販のミネラルウォーター(導電率:208μS/cm)を用いた。
 まず、殺菌装置内に試験液120mlを入れた。試験液には、菌を含むミネラルウォーターを用いた。次に、イオン吸着電極がアノードとなるように、イオン吸着電極と対極との間に電圧を印加した。この電圧印加は、電極間に200mAの電流が流れる状態で15分間行った。この電圧印加によって、試験液のpHは10.5になった。次に、電極間に20mAの電流が流れるように且つイオン吸着電極がアノードとなるように、電極間に15分間電圧を印加した。この電圧印加によって、試験液のpHは10.6になった。次に、電極間に200mAの電流が流れるように且つイオン吸着電極がカソードとなるように、電極間に30分間電圧を印加した。この電圧印加によって、試験液のpHは3.4になった。次に、電極間に20mAの電流が流れるように且つイオン吸着電極がカソードとなるように、電極間に15分間電圧を印加した。この電圧印加によって、試験液のpHは3.5になった。試験開始からの経過時間と、試験液のpHおよび生菌数との関係を、表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、塩を加えていないミネラルウォーターでも、殺菌効果が得られた。すなわち、本発明の方法および装置では水道水や河川の水でも殺菌効果が得られることが示された。
 [実施例4]
 実施例4では、実施例1で用いた殺菌装置と同じ殺菌装置を用いて水性液体の殺菌を行った。ただし、実施例4では、濃度が異なる2種類の塩化ナトリウム水溶液を水性液体として用いた。具体的には、塩化ナトリウムの濃度が0.78g/リットルまたは1.56g/リットルである塩化ナトリウム水溶液を用いた。
 まず、殺菌装置内に試験液120mlを入れた。試験液には、枯草菌を含む塩化ナトリウム水溶液(塩化ナトリウム濃度:0.78g/リットル)を用いた。次に、イオン吸着電極がアノードとなるように、イオン吸着電極と対極との間に電圧を印加した。この電圧印加は、電極間に200mAの電流が流れる状態で30分間行った。この電圧印加によって、試験液のpHは13.3になった。次に、電極間に20mAの電流が流れるように且つイオン吸着電極がアノードとなるように、電極間に5分間電圧を印加した。この電圧印加後の試験液のpHは13.3であった。次に、電極間に200mAの電流が流れるように且つイオン吸着電極がカソードとなるように、電極間に60分間電圧を印加した。この電圧印加によって、試験液のpHは2.4となった。次に、電極間に20mAの電流が流れるように且つイオン吸着電極がカソードとなるように、電極間に25分間電圧を印加した。この電圧印加後の試験液のpHは2.4であった。
 また、枯草菌を含む塩化ナトリウム水溶液(塩化ナトリウム濃度:1.56g/リットル)を用いて同様の試験を行った。また、黒こうじカビを含む塩化ナトリウム水溶液(塩化ナトリウム濃度:0.78g/リットル)を用いて同様の実験を行った。ただし、黒こうじカビについての試験では、枯草菌についての試験とは逆方向に電圧を印加した。試験開始からの経過時間と、試験液のpHおよび生菌数との関係を、表4~表6に示す。表4~表6に示すように、実施例4の条件でも殺菌効果が得られた。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 [実施例5]
 実施例5では、実施例1で用いた殺菌装置と同じ殺菌装置を用いて水性液体の殺菌を行った。
 まず、殺菌装置内に試験液120mlを入れた。試験液には、黄色ブドウ球菌またはカンジダ菌を含む塩化ナトリウム水溶液(塩化ナトリウム濃度:0.78g/リットル)を用いた。次に、イオン吸着電極がカソードとなるように、イオン吸着電極と対極との間に電圧を印加した。この電圧印加は、電極間に1.4mAの電流が流れる状態で7分間行った。その電圧印加の後、電圧印加を中止して4分間試験液を静置した。この静置の途中(試験開始から約8分経過後)において、生菌数およびpHを測定した。pHは4.9であった。
 次に、イオン吸着電極がカソードとなるように且つ電極間に4.6mAの電流が流れるように、電極間に7分間電圧を印加した。その電圧印加の後、電圧印加を中止して4分間試験液を静置した。この静置の途中(試験開始から約19分経過後)において、生菌数およびpHを測定した。pHは3.9であった。
 次に、イオン吸着電極がカソードとなるように且つ電極間に37mAの電流が流れるように、電極間に7分間電圧を印加した。その電圧印加の後、電圧印加を中止して4分間試験液を静置した。この静置の途中(試験開始から約30分経過後)において、生菌数およびpHを測定した。pHは2.9であった。試験開始からの経過時間と、試験液のpHおよび生菌数との関係を、表7に示す。表7に示すように、実施例5の条件でも殺菌効果が得られた。
Figure JPOXMLDOC01-appb-T000007
 本発明は、殺菌方法および殺菌装置に利用できる。たとえば、本発明は、飲料水の製造方法および製造装置、飲料水の殺菌方法および殺菌装置、風呂やプールの水の殺菌方法および殺菌装置、器具の殺菌方法および殺菌装置に適用できる。本発明の殺菌方法および殺菌装置は、小型化することが可能であるため、電力の供給がない地域や状況においても使用することが可能である。そのため、本発明の殺菌方法および殺菌装置は、災害時などの緊急時に好ましく用いることができる。

Claims (15)

  1.  (i)水性液体中において、イオンを可逆的に吸着可能な第1の導電性物質を含む第1のイオン吸着電極と対極との間に電圧を印加することによって前記水性液体のpHを5未満となるようにまたは9より大きくなるように変化させるステップと、
     (ii)前記水性液体のpHを5~9の範囲とするステップと、をこの順序で含む、殺菌方法。
  2.  前記(i)のステップがバッチ方式で行われる、請求項1に記載の殺菌方法。
  3.  前記水性液体を含む系に接続された槽に前記第1のイオン吸着電極と前記対極とが配置されており、
     前記槽を前記水性液体が連続的に流れている状態で前記(i)のステップが行われる、請求項1に記載の殺菌方法。
  4.  前記(ii)のステップが、前記水性液体中において前記第1のイオン吸着電極と対極との間に電圧を印加することによって行われる、請求項1に記載の殺菌方法。
  5.  前記(ii)のステップが、前記水性液体中においてイオンを可逆的に吸着可能な第2の導電性物質を含む第2のイオン吸着電極と対極との間に電圧を印加することによって行われる、請求項1に記載の殺菌方法。
  6.  前記(i)のステップと前記(ii)のステップとの間に、(x)前記(i)のステップを経た前記水性液体のpHが5未満であればそれが9より大きくなるように変化させ、前記(i)のステップを経た前記水性液体のpHが9より大きければそれが5未満となるように変化させるステップをさらに含む、請求項1に記載の殺菌方法。
  7.  前記(i)のステップにおける電圧印加の際に、殺菌の対象物を前記水性液体中に浸漬しておくことによって前記対象物の殺菌が行われる、請求項1に記載の殺菌方法。
  8.  第1のイオン吸着電極および対極と、前記第1のイオン吸着電極と前記対極との間に電圧を印加するための電源とを備え、
     前記第1のイオン吸着電極は、イオンを可逆的に吸着可能な第1の導電性物質を含み、
     (i)水性液体中において、前記第1のイオン吸着電極と前記対極との間に電圧を印加することによって前記水性液体のpHを5未満となるようにまたは9より大きくなるように変化させるステップと、
     (ii)前記水性液体のpHを5~9の範囲とするステップとがこの順序で行われる、殺菌装置。
  9.  前記水性液体が配置される槽をさらに備える、請求項8に記載の殺菌装置。
  10.  前記水性液体のpHをモニタするためのpHセンサをさらに備える、請求項8に記載の殺菌装置。
  11.  前記(i)のステップがバッチ方式で行われる、請求項8に記載の殺菌装置。
  12.  前記(i)のステップにおける電圧印加の際に、殺菌の対象物を前記水性液体中に浸漬しておくことによって前記対象物の殺菌が行われる、請求項8に記載の殺菌装置。
  13.  前記水性液体を含む系に接続されている、請求項8に記載の殺菌装置。
  14.  前記(i)のステップが通液方式で行われる、請求項13に記載の殺菌装置。
  15.  前記第1の導電性物質が活性炭を含む、請求項8に記載の殺菌装置。
PCT/JP2009/061236 2008-06-23 2009-06-19 殺菌方法および殺菌装置 WO2009157388A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010517982A JP4627337B2 (ja) 2008-06-23 2009-06-19 殺菌方法および殺菌装置
CN2009801237327A CN102066266A (zh) 2008-06-23 2009-06-19 杀菌方法以及杀菌装置
EP09770098A EP2301894A4 (en) 2008-06-23 2009-06-19 STERILIZATION PROCESS AND STERILIZATION DEVICE
US13/000,254 US20110108437A1 (en) 2008-06-23 2009-06-19 Disinfection method and disinfection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008163327 2008-06-23
JP2008-163327 2008-06-23

Publications (1)

Publication Number Publication Date
WO2009157388A1 true WO2009157388A1 (ja) 2009-12-30

Family

ID=41444456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061236 WO2009157388A1 (ja) 2008-06-23 2009-06-19 殺菌方法および殺菌装置

Country Status (5)

Country Link
US (1) US20110108437A1 (ja)
EP (1) EP2301894A4 (ja)
JP (1) JP4627337B2 (ja)
CN (1) CN102066266A (ja)
WO (1) WO2009157388A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014127466A (ja) * 2012-12-26 2014-07-07 Kazuhiro Hayashi 電解液中の電極間の物質移動過程は電圧印加で促進
WO2014199849A1 (ja) * 2013-06-12 2014-12-18 有限会社ターナープロセス 機能水を生成する方法ならびに機能水生成装置およびそれを用いた機器
WO2015093094A1 (ja) * 2013-12-19 2015-06-25 シャープ株式会社 機能水生成器
JP2016123953A (ja) * 2015-01-07 2016-07-11 シャープ株式会社 弱酸性還元水の製造装置
CN108147528A (zh) * 2018-01-09 2018-06-12 宁波大红鹰学院 一种电刺激微生物生态修复装置
CN108178289A (zh) * 2018-01-09 2018-06-19 宁波大红鹰学院 一种强化曝气生态修复装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101193822B (zh) * 2005-06-08 2013-06-12 棚氏处理有限公司 液体的pH调节方法以及pH调节装置
EP1939143A4 (en) * 2005-09-27 2011-05-25 Tanah Process Ltd METHOD FOR CONTROLLING ION CONCENTRATION AND APPARATUS THEREFOR
JP4461271B2 (ja) * 2008-03-25 2010-05-12 有限会社ターナープロセス 飲料水の硬度を調整するための携帯用硬度調整装置
JP2013129184A (ja) * 2011-11-21 2013-07-04 Ricoh Co Ltd 画像形成装置
CN107049511A (zh) * 2017-04-26 2017-08-18 南宁腾科宝迪生物科技有限公司 一种强力杀菌医疗器械包布
EP3822232A1 (de) * 2019-11-12 2021-05-19 Weidner Wassertechnik GmbH Verfahren zum schutz von brauchwasser vor mikrobieller belastung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150113A (ja) * 1987-12-08 1989-06-13 Matsushita Refrig Co Ltd コンタクトレンズの洗浄方法
JPH05309370A (ja) 1992-05-08 1993-11-22 Matsushita Electric Ind Co Ltd 浄水器
JPH07108274A (ja) 1993-10-12 1995-04-25 Yoshimi Sano 殺菌用電解槽
JP2000153278A (ja) 1998-11-19 2000-06-06 Toto Ltd 携帯用殺菌水生成器
JP2001524388A (ja) * 1997-12-02 2001-12-04 ジェンマ・インダストリアル・エコロジー,リミテッド 液体のpHを調節する方法及び装置
JP2006175360A (ja) * 2004-12-22 2006-07-06 Air Water Inc 溶液のpH制御方法および装置
WO2006132160A1 (ja) * 2005-06-08 2006-12-14 Tanah Process Ltd. 液体のpH調整方法およびpH調整装置
JP2007075673A (ja) * 2005-09-12 2007-03-29 Yoshihiro Sekiguchi 水の殺菌処理システム及び貯留水循環殺菌システム

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2505228A (en) * 1947-08-18 1950-04-25 Burton L Chase Silver cleaning device
US3730885A (en) * 1971-01-21 1973-05-01 Tvco Lab Inc Electrochemical control of adsorption and desorption with activated carbon
IN152661B (ja) * 1980-03-05 1984-03-03 Airwick Ag
US4888098A (en) * 1986-02-20 1989-12-19 Raychem Corporation Method and articles employing ion exchange material
US5192432A (en) * 1990-04-23 1993-03-09 Andelman Marc D Flow-through capacitor
US5415768A (en) * 1990-04-23 1995-05-16 Andelman; Marc D. Flow-through capacitor
US5620597A (en) * 1990-04-23 1997-04-15 Andelman; Marc D. Non-fouling flow-through capacitor
US5196115A (en) * 1990-04-23 1993-03-23 Andelman Marc D Controlled charge chromatography system
GB9012186D0 (en) * 1990-05-26 1990-07-18 Atomic Energy Authority Uk Electrochemical ion exchange
US5447110A (en) * 1992-07-24 1995-09-05 Brown; Wesley J. Collapsible container
US5456812A (en) * 1994-06-14 1995-10-10 Chak; Maryan Device for silverizing water
JP3409448B2 (ja) * 1994-07-06 2003-05-26 東陶機器株式会社 無隔膜型電解槽を備えたイオンリッチ水生成装置
FR2731420B1 (fr) * 1995-03-10 1997-06-13 Mercier Dominique Procede et dispositif de traitement de l'eau en vue de son adoucissement par voie electrochimique
US5925230A (en) * 1997-10-06 1999-07-20 Southeastern Trading, Llp Deionization apparatus having non-sacrificial electrodes of different types
US6315886B1 (en) * 1998-12-07 2001-11-13 The Electrosynthesis Company, Inc. Electrolytic apparatus and methods for purification of aqueous solutions
US6346187B1 (en) * 1999-01-21 2002-02-12 The Regents Of The University Of California Alternating-polarity operation for complete regeneration of electrochemical deionization system
US6778378B1 (en) * 1999-07-30 2004-08-17 Biosource, Inc. Flow-through capacitor and method
JP3296812B2 (ja) * 2000-06-26 2002-07-02 三洋電機株式会社 水処理方法、水処理装置及びそれを用いた水耕栽培システム
JP3568487B2 (ja) * 2001-04-11 2004-09-22 三洋電機株式会社 水処理方法、水処理装置及びそれを用いた水耕栽培システム
JP2004537411A (ja) * 2001-08-07 2004-12-16 インベントキュージャヤ エスディーエヌ ビーエイチディー 可動電極フロースルー・キャパシター
JP5140218B2 (ja) * 2001-09-14 2013-02-06 有限会社コヒーレントテクノロジー 表面洗浄・表面処理に適した帯電アノード水の製造用電解槽及びその製造法、並びに使用方法
US7008709B2 (en) * 2001-10-19 2006-03-07 Delphi Technologies, Inc. Fuel cell having optimized pattern of electric resistance
US6911128B2 (en) * 2002-03-27 2005-06-28 Ars Usa Llc Device for decontamination of water
US6798639B2 (en) * 2002-08-07 2004-09-28 Inventojaya Sdn. Bhd. Fluid deionization flow through capacitor systems
JP4662730B2 (ja) * 2003-09-12 2011-03-30 ローム アンド ハース カンパニー エネルギー貯蔵装置において有用なマクロレティキュラー炭質材料
CN101107200A (zh) * 2005-01-27 2008-01-16 荷兰联合利华有限公司 水软化装置及方法
EP1939143A4 (en) * 2005-09-27 2011-05-25 Tanah Process Ltd METHOD FOR CONTROLLING ION CONCENTRATION AND APPARATUS THEREFOR
US20090223811A1 (en) * 2006-05-12 2009-09-10 Tanah Process Ltd. Process for producing conductive substance with ion adsorbed thereon, method of regulating ion concentration, and ion supply source
EP1933330A1 (en) * 2006-12-11 2008-06-18 Trasis S.A. Electrochemical 18F extraction, concentration and reformulation method for radiolabeling

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150113A (ja) * 1987-12-08 1989-06-13 Matsushita Refrig Co Ltd コンタクトレンズの洗浄方法
JPH05309370A (ja) 1992-05-08 1993-11-22 Matsushita Electric Ind Co Ltd 浄水器
JPH07108274A (ja) 1993-10-12 1995-04-25 Yoshimi Sano 殺菌用電解槽
JP2001524388A (ja) * 1997-12-02 2001-12-04 ジェンマ・インダストリアル・エコロジー,リミテッド 液体のpHを調節する方法及び装置
JP2000153278A (ja) 1998-11-19 2000-06-06 Toto Ltd 携帯用殺菌水生成器
JP2006175360A (ja) * 2004-12-22 2006-07-06 Air Water Inc 溶液のpH制御方法および装置
WO2006132160A1 (ja) * 2005-06-08 2006-12-14 Tanah Process Ltd. 液体のpH調整方法およびpH調整装置
JP2007075673A (ja) * 2005-09-12 2007-03-29 Yoshihiro Sekiguchi 水の殺菌処理システム及び貯留水循環殺菌システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2301894A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014127466A (ja) * 2012-12-26 2014-07-07 Kazuhiro Hayashi 電解液中の電極間の物質移動過程は電圧印加で促進
WO2014199849A1 (ja) * 2013-06-12 2014-12-18 有限会社ターナープロセス 機能水を生成する方法ならびに機能水生成装置およびそれを用いた機器
WO2015093094A1 (ja) * 2013-12-19 2015-06-25 シャープ株式会社 機能水生成器
JP2016123953A (ja) * 2015-01-07 2016-07-11 シャープ株式会社 弱酸性還元水の製造装置
CN108147528A (zh) * 2018-01-09 2018-06-12 宁波大红鹰学院 一种电刺激微生物生态修复装置
CN108178289A (zh) * 2018-01-09 2018-06-19 宁波大红鹰学院 一种强化曝气生态修复装置

Also Published As

Publication number Publication date
CN102066266A (zh) 2011-05-18
EP2301894A4 (en) 2013-03-06
JP4627337B2 (ja) 2011-02-09
US20110108437A1 (en) 2011-05-12
EP2301894A1 (en) 2011-03-30
JPWO2009157388A1 (ja) 2011-12-15

Similar Documents

Publication Publication Date Title
JP4627337B2 (ja) 殺菌方法および殺菌装置
JP3988827B2 (ja) 負および正の酸化還元電位(orp)水を生成するための方法および装置
TWI447990B (zh) 臭氧水製造裝置,臭氧水製造方法,殺菌方法,廢水和廢液處理方法
JP3349710B2 (ja) 電解槽および電解水生成装置
JP5913693B1 (ja) 電解装置及び電解オゾン水製造装置
JP3994417B2 (ja) 液体のpH調整方法およびpH調整装置
KR101812008B1 (ko) 3차원 다공성 단극 전극체를 구비한 전기살균 필터 및 이를 이용한 수처리 방법
JP2010527337A (ja) 水性の次亜塩素酸(HOCl)含有溶液をベースとする消毒薬、それを製造するための方法、及びその使用
JP5764474B2 (ja) 電解合成装置、電解処理装置、電解合成方法及び電解処理方法
KR101220891B1 (ko) 3차원 다공성 복극 전극 및 이를 구비한 전기살균 필터와 이를 이용한 수처리 방법
JP6017911B2 (ja) 個人透析用の人工透析用水製造装置
US10131555B2 (en) Method and apparatus for controlling concentration of free chlorine, and sterilization method and sterilization apparatus each utilizing said method and said apparatus
JP2012081448A (ja) 殺菌水製造装置および殺菌水の製造方法
JP2011131118A (ja) 植物用の散布水の調製方法および調製装置
US20130098819A1 (en) Enhanced resin regeneration
RU80840U1 (ru) Устройство для повышения биологической активности и очистки воды (варианты)
KR100958677B1 (ko) 고성능 무격막 전해셀 및 이를 포함하는 이산화염소 발생장치
JP6847477B1 (ja) 電解水製造装置及びこれを用いる電解水の製造方法
CN110214791B (zh) 一种叠加银量子点的杀菌颗粒及其制备方法
RU69075U1 (ru) Устройство для очистки и обеззараживания воды
CN109761322A (zh) 一种水处理复合杀菌方法及其装置
RU2351546C2 (ru) Способ снижения окислительно-восстановительного потенциала воды
AU2012201437B2 (en) Method and apparatus for producing negative and positive oxidative reductive potential (ORP) water
KR101314639B1 (ko) 살균처리시스템
JPH09117766A (ja) 被処理水の電解処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980123732.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770098

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010517982

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13000254

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009770098

Country of ref document: EP