WO2009157224A1 - 液晶表示装置の制御装置、液晶表示装置、液晶表示装置の制御方法、プログラムおよび記録媒体 - Google Patents

液晶表示装置の制御装置、液晶表示装置、液晶表示装置の制御方法、プログラムおよび記録媒体 Download PDF

Info

Publication number
WO2009157224A1
WO2009157224A1 PCT/JP2009/054936 JP2009054936W WO2009157224A1 WO 2009157224 A1 WO2009157224 A1 WO 2009157224A1 JP 2009054936 W JP2009054936 W JP 2009054936W WO 2009157224 A1 WO2009157224 A1 WO 2009157224A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
liquid crystal
image
crystal display
display area
Prior art date
Application number
PCT/JP2009/054936
Other languages
English (en)
French (fr)
Inventor
塩見 誠
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to BRPI0914855A priority Critical patent/BRPI0914855A2/pt
Priority to JP2010517796A priority patent/JP4806102B2/ja
Priority to US12/736,660 priority patent/US8917293B2/en
Priority to EP09769934.2A priority patent/EP2290435B1/en
Priority to RU2010144182/28A priority patent/RU2471214C2/ru
Priority to CN200980114798XA priority patent/CN102016699B/zh
Publication of WO2009157224A1 publication Critical patent/WO2009157224A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0232Special driving of display border areas
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0238Improving the black level
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/0646Modulation of illumination source brightness and image signal correlated to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0407Resolution change, inclusive of the use of different resolutions for different screen areas
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix

Definitions

  • the present invention relates to a control device and a control method for a liquid crystal display device having a backlight.
  • Patent Document 1 discloses a technique for dividing image data into a plurality of video regions and controlling the luminance of a backlight corresponding to each region according to the APL (average luminance) of each divided region. Yes.
  • Patent Document 2 discloses a technique for correcting display image data in accordance with the brightness distribution of a backlight.
  • Japanese Patent Gazette Patent No. 3766231 (published on November 24, 2000)
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2005-309338 (published on November 4, 2005)”
  • the aspect ratio of the number of pixels (dot number) of the display image in the image data input to the liquid crystal display device may be different from the aspect ratio of the number of pixels of the display screen of the liquid crystal display device.
  • the number of vertical and horizontal dots is not fixed as a standard format (standard), and 4096 dots in digital cinema.
  • the aspect ratio is different for each image, such that a resolution of 2160 lines is used and a resolution of 3840 dots ⁇ 2160 lines is used in high vision.
  • a resolution of 2048 ⁇ 1080, a resolution of 1920 ⁇ 1080, or the like is generally used.
  • the number of vertical and horizontal pixels on the display screen (liquid crystal display panel) of the liquid crystal display device is determined at the time of manufacture.
  • image data having various aspect ratios when image data having various aspect ratios is displayed on a common liquid crystal display device, the aspect ratio of the image data differs from the aspect ratio of the display screen of the liquid crystal display device depending on the image data.
  • the conventional technique described above has a problem that the brightness of the backlight cannot be appropriately controlled at the boundary between the image display area and the image non-display area in the display screen, and the display quality of the image is deteriorated. It was.
  • the luminance distribution of the light sources has a wide spread, so the luminance distribution in the liquid crystal display panel is obtained by superimposing the luminance distributions of the plurality of light sources. Become. For this reason, if the luminance of the light source in the image non-display area is set to 0, the video displayed near the boundary between the image display area and the image display area adjacent to the image non-display area becomes insufficient in luminance. It may become a thing.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a liquid crystal display including a liquid crystal display panel and a backlight unit having a plurality of light sources arranged on the back surface of the liquid crystal display panel.
  • the display quality at the boundary between the image display area and the image non-display area is improved.
  • a control device for a liquid crystal display device of the present invention comprises a liquid crystal display panel and a backlight unit having a plurality of light sources arranged in a matrix on the back side of the liquid crystal display panel.
  • a liquid crystal display control device for controlling the operation of the liquid crystal display device, a liquid crystal control unit for controlling each pixel of the liquid crystal display panel based on the input image data, and each light source based on the input image data.
  • the peripheral edge of the input image data or the image data obtained by performing predetermined processing on the input image data An image size adjustment unit for generating size-adjusted image data having an aspect ratio corresponding to the aspect ratio of the liquid crystal display panel by adding dummy image data to the unit
  • the backlight control unit divides the size-adjusted image data into a plurality of blocks respectively corresponding to the arrangement positions of the light sources, and a light source corresponding to an image display area that is an image display area corresponding to the input image data.
  • the light source to be obtained is obtained by further dividing the average luminance level of each pixel included in the block of the image display area adjacent to the block corresponding to the light source or the block of the image display area adjacent to the block corresponding to the light source. Based on the average luminance level of the small blocks adjacent to the block in the image non-display area corresponding to the light source. There are is characterized by determining the light emission luminance.
  • the backlight control unit is configured to use the gradation value of each pixel included in the block corresponding to the light source.
  • the light emission luminance is determined based on the maximum value of the image display area adjacent to the block corresponding to the light source The average luminance level of each pixel included in the block or the image non-display area corresponding to the light source among the plurality of small blocks obtained by further dividing the block of the image display area adjacent to the block corresponding to the light source.
  • the light emission luminance is determined based on the average luminance level of the small blocks adjacent to the block. Thereby, it is possible to prevent the display quality from being deteriorated due to insufficient brightness of the irradiation light from the backlight unit in the image display area adjacent to the image non-display area.
  • the backlight control unit displays an image closest to the block corresponding to the light source for a light source corresponding to the non-display area of the light source that has no block in the image display area adjacent to the block corresponding to the light source.
  • the light emission luminance may be determined based on the average luminance level of the block.
  • the light emission luminance of the light source having no block in the image display area adjacent to the block corresponding to the light source is set to the block in the nearest image display area or the image display area.
  • the backlight control unit sets the emission luminance of each light source corresponding to the block of the image non-display area at a distance from the image display area. It is good also as a structure set so that it may become so dark that it increases.
  • the influence of the light source on the display characteristics of the image display area becomes smaller as the position of the light source is farther from the image display area. Therefore, by setting the light emission luminance of each light source corresponding to the block of the image non-display area so that it becomes darker as the distance from the image display area increases, the display quality of the image display area is suppressed and the image non-display area is suppressed.
  • the power consumption can be reduced by lowering the light emission luminance of the light source corresponding to.
  • a luminance distribution data generation unit that generates luminance distribution data in the liquid crystal display panel by irradiation light from each light source when the light sources emit light with the light emission luminance determined by the backlight control unit
  • the liquid crystal control unit includes a correction unit that corrects the input image data based on the luminance distribution data, and controls each pixel of the liquid crystal display panel based on the image data corrected by the correction unit. It is good.
  • the liquid crystal control unit corrects the input image data based on the luminance distribution data by the correction unit, and controls each pixel of the liquid crystal display panel based on the corrected image data. Thereby, the luminance distribution of the display image visually recognized by the user can be appropriately controlled.
  • the image size adjustment unit may add the dummy image data so that an image corresponding to the input image data is displayed at substantially the center of the liquid crystal display panel.
  • the image corresponding to the input image data can be displayed at the approximate center of the liquid crystal display panel.
  • the liquid crystal display device of the present invention includes a liquid crystal display panel, a backlight unit having a plurality of light sources arranged in a matrix on the back side of the liquid crystal display panel, and any of the control devices described above.
  • a method for controlling a liquid crystal display device of the present invention includes a liquid crystal display panel and a backlight unit having a plurality of light sources arranged in a matrix on the back side of the liquid crystal display panel.
  • a liquid crystal display device control method for controlling the operation of the liquid crystal display device comprising: a liquid crystal control step for controlling each pixel of the liquid crystal display panel based on input image data; and a method for controlling each light source based on input image data.
  • the backlight control process for controlling the light emission state differs from the aspect ratio of the input image data and the aspect ratio of the liquid crystal display panel, the peripheral edge of the input image data or the image data obtained by performing a predetermined process on the input image data
  • the backlight control step includes a step of dividing the size-adjusted image data into a plurality of blocks respectively corresponding to the arrangement positions of the light sources, and an image display region which is an image display region corresponding to the input image data And a display area of an image corresponding to the dummy image data, and a step of determining a light emission luminance based on a maximum value among gradation values of each pixel included in a block corresponding to the light source.
  • the average luminance level of each pixel included in the block of the image display area adjacent to the block corresponding to the light source, or the block of the image display area adjacent to the block corresponding to the light source is characterized by a step of determining a light emission luminance based on the average luminance level of the click.
  • each pixel included in the block of the image display area adjacent to the block corresponding to the light source Of the small block adjacent to the block of the image non-display area corresponding to the light source among a plurality of small blocks obtained by further dividing the block of the image display area adjacent to the block corresponding to the light source. Determining emission brightness based on the average brightness level. Thereby, it is possible to prevent the display quality from being deteriorated due to insufficient brightness of the irradiation light from the backlight unit in the image display area adjacent to the image non-display area.
  • the image processing apparatus may be realized by a computer.
  • Possible recording media are also included in the scope of the present invention.
  • FIG. 1 is a block diagram illustrating a schematic configuration of a liquid crystal display device according to an embodiment of the present invention.
  • (A) And (b) is explanatory drawing which shows the example of the coupling
  • (A) And (b) is explanatory drawing which shows an example of the production
  • (A) is explanatory drawing which shows an example of the image displayed on a liquid crystal display panel
  • (b) is the liquid crystal display panel by the irradiation light of the backlight unit by which the light emission state was controlled based on the image of (a). It is explanatory drawing which shows luminance distribution.
  • FIG. 2 is a block diagram illustrating a schematic configuration of an upscale circuit provided in the liquid crystal display device illustrated in FIG. 1.
  • FIG. 2 is a block diagram illustrating a schematic configuration of an edge detection circuit provided in the liquid crystal display device illustrated in FIG. 1.
  • summary of the difference calculation process performed in the liquid crystal display device shown in FIG. It is explanatory drawing which shows an example of the result of having performed the difference calculation process in the liquid crystal display device shown in FIG.
  • FIG. 1 is a block diagram showing a schematic configuration of a liquid crystal display device 100 according to the present embodiment. As shown in this figure, the liquid crystal display device 100 includes a control device 1, a liquid crystal display panel 2, and a backlight unit 3.
  • the liquid crystal display panel 2 is for displaying an image according to the image data.
  • a panel having a display size of 4096 ⁇ 2160 dots is used.
  • the present invention is not limited to this, and various conventionally known liquid crystal display panels can be used.
  • the backlight unit 3 is provided on the back side with respect to the display surface of the liquid crystal display panel 2 and irradiates the liquid crystal display panel 2 with light for display, and includes a plurality of LEDs (light sources) as light sources. Yes.
  • a backlight unit including LEDs arranged in an 8 ⁇ 4 matrix as a light source is used.
  • the number of LEDs is not limited to this, and for example, a configuration having a larger number of LEDs may be adopted.
  • this embodiment demonstrates the case where LED is used for a light source, the light source of this invention is not limited to this, For example, other light emitting elements, such as EL (Electro-Luminescence) light emitting element, are used.
  • this embodiment demonstrates the case where what is called a direct illuminating device which arrange
  • an edge light type illumination in which a single light guide plate is provided below the light emitting surface of the lighting device, and a plurality of light source substrates are arranged in parallel to at least one of the four sides surrounding the light guide plate.
  • Another type of lighting device such as a tandem type in which a light guide plate is provided for each device or light emitting element may be used.
  • the control device 1 includes a preprocessing circuit 10, division circuits 11 a and 11 b, upscale circuits 12 a to 12 d, a down converter 13, correction circuits 14 a to 14 d, a liquid crystal drive circuit 15, a display map generation circuit 16, and an LED resolution signal generation circuit 17. , A luminance distribution data generation circuit 18, an LED drive circuit 19, and switches SW1, SW2a to SW2d.
  • dummy image data for example, black pixels
  • the preprocessing circuit 10 performs dummy operations on the right and left sides of the input image data so that the position of the image corresponding to the input image data is shifted to the right by 128 dots from the left end of the display screen of the liquid crystal display panel 2. Add image data.
  • the preprocessing circuit 10 outputs the image data after the adjustment processing to the dividing circuit 11a and the down converter 13 when the input image data is 4K2K class image data, and the input image data is an image of 2K1K class or less. If it is data, it is output to the dividing circuit 11b and the display map generating circuit 16.
  • the image data input to the control device 1 is divided image data obtained by dividing the original image data (4K2K class image data) into a plurality of pieces according to the display area
  • the divided image data is subjected to the adjustment process described above and output to the dividing circuit 11a, and image data obtained by combining the divided image data after the adjustment process is output to the down converter 13.
  • the dividing circuit 11a outputs the divided image data input from the preprocessing circuit 10 to the correction circuits 14a to 14d, respectively.
  • a non-display area is not generated between the divided image data or the display position of each divided image data is not shifted.
  • An additional position of dummy image data for each divided image data is set for each divided image data. For example, as shown in FIG. 2A, when dummy image data is uniformly added to the right side and the lower side of each divided image data, a non-display area is generated between the divided image data.
  • the division circuit 11a shows the position where the dummy image data is added so that a non-display area is not generated between the divided image data and the display position of each divided image data is not shifted. Control for each area.
  • the preprocessing circuit 10 determines that the input image is input when the image data input to the control device 1 is image data for one screen and the aspect ratio of the input image data is different from the aspect ratio of the liquid crystal display panel 2. Dummy image data (for example, black pixels) is added around the image corresponding to the input image data so that the data is displayed at the center of the display screen of the liquid crystal display panel 2.
  • the aspect ratio (size) of the image data for example, for the horizontal size, the number of clock signals during the period in which the data enable signal is at a high level after the horizontal synchronization signal is input is counted. Can be detected. Further, the vertical size can be detected by counting the number of times the data enable signal is switched from the low level to the high level after the vertical synchronization signal is input.
  • the division circuit (first division unit) 11a When the image data input from the preprocessing circuit 10 is a video signal H of 4K2K class (resolution of about 4000 dots ⁇ 2000 dots), the division circuit (first division unit) 11a outputs a predetermined number of the video signals H.
  • the image data is divided into image data for each display area (four in this embodiment), and the divided image data is output to the correction circuits 14a to 14d via the switches SW2a to SW2d.
  • the dividing circuit 11a converts the image data into the upper left, upper right, lower left, and lower right image data (each 1920 ⁇ 1080 dots). ).
  • the number of image divisions and the arrangement positions of the divided regions are not limited to this.
  • the divided areas may be divided so that they are arranged in the horizontal direction, or the divided areas may be divided so that they are arranged in the vertical direction.
  • Which division method is adopted may be selected in view of characteristics of each division method, circuit technology at the time of implementation, liquid crystal panel technology, and the like.
  • the image data is divided into four upper left, upper right, lower left, and lower right image data as in the present embodiment, the image data of each area becomes 2K1K image data, and is therefore used in a conventional 2K1K class display device.
  • the driving method can be applied as it is, and the same signal processing circuit (signal processing LSI) as the conventional one used in the 2K1K class can be used. Therefore, there is an advantage that the manufacturing cost and the development cost can be reduced.
  • the dividing circuit 11a converts each divided image data into a correction circuit via the switches SW2a to SW2d. Output to 14a to 14d.
  • the switches SW2a to SW2d are divided into a dividing circuit 11a and correction circuits 14a to 14d when the image data input to the control device 1 is a plurality of divided image data for the 4K2K class video signal H or 4K2K class image data.
  • a control unit (not shown) is connected so that the upscale circuits 12a to 12d and the correction circuits 14a to 14d are respectively connected when the video signal L is 2K1K class (resolution of about 2000 dots ⁇ 1000 dots) or less. It is switched by.
  • the downconverter (downconverter) 13 downconverts the video signal H into image data of 2K1K class (1920 ⁇ 1080 dots in this embodiment). (Reduction conversion) and output to the display map generation circuit 16 via the switch SW1.
  • the down-conversion method is not particularly limited. For example, an average value of four pixels of the input image signal may be set as a value of one pixel at a position corresponding to these four pixels in the output image signal.
  • the switch SW1 generates a display map for the video signal output from the down converter 13 when the image data input to the control device 1 is a plurality of divided image data for the 4K2K class video signal H or 4K2K class image data.
  • the video signal L is input to the circuit 16 and is a 2K1K class video signal L, the video signal L is switched by a control unit (not shown) so as to be input to the display map generation circuit 16.
  • the dividing circuit (second dividing unit) 11b divides the 2K1K class video signal L input to the control apparatus 1 into image data of a predetermined number of regions, and outputs the divided image data to the upscale circuits 12a to 12d, respectively. To do.
  • 2K1K class high-definition data is input as the video signal L and is divided into four regions of image data in the upper left, upper right, lower left, and lower right.
  • the number of image divisions and the arrangement positions of the divided regions are not limited to this.
  • the upscaling circuits (upscaling units) 12a to 12d each receive the image data divided by the dividing circuit 11b, and perform upscaling processing on the input image data.
  • the upscale circuits 12a to 12d output the image data subjected to the upscale processing to the correction circuits 14a to 14d via the switches SW2a to SW2d, respectively. Details of the image data division processing and upscaling processing will be described later.
  • the correction circuits (correction units) 14 a to 14 d correct the image data according to the luminance distribution data input from the luminance distribution data generation circuit 18 described later, and output the corrected image data to the liquid crystal drive circuit 15. That is, in the LED backlight system in which a plurality of LEDs are arranged on the back surface of the liquid crystal display panel, a luminance distribution is generated such that the luminance increases immediately above each LED and decreases as the distance from the LED increases. Further, the luminance distribution generated in each part of the liquid crystal display panel 2 by the LED backlight is obtained by superimposing the luminance distributions of the respective LEDs.
  • the correction circuits 14a to 14d reduce the transmittance of the liquid crystal at a position directly above the LED according to the luminance distribution data input from the luminance distribution data generation circuit 18, and increase the transmittance as the distance from the correction circuit 14a to 14d increases. Correct the image data.
  • FIG. 3 shows the gradation value of the input image signal at the target pixel and the display image when the liquid crystal display panel has an input gradation of 64 gradations (0 to 63) and a gradation luminance characteristic of ⁇ 2.2. It is a graph showing the relationship with the luminance, the solid line is when the luminance of the incident light from the backlight to the target pixel is 100%, and the broken line is the case where the luminance of the incident light from the backlight to the target pixel is 30% An example is shown. In the example shown in this figure, when the gradation value of the input image signal is 20, and the luminance of the backlight is 100%, the luminance of the display image is about 8%.
  • FIG. 4 shows an input image when the input gradation is 64 gradations (0 to 63), the gradation luminance characteristic of the liquid crystal display panel is ⁇ 2.2, and the backlight luminance is set to 30%. It is a graph which shows the relationship between the gradation value of a signal, and a correction gradation value. As shown in this figure, even if the backlight brightness is 30%, the gradation values 0 to 32 of the input image signal are corrected (converted) to 0 to 55 without changing the brightness of the display image. Display can be made. In addition, this makes it possible to increase the contrast by lowering the display brightness when displaying a black image. In addition, power consumption can be reduced by reducing the luminance of the backlight.
  • the configuration is not limited to the configuration in which the corrected gradation value is calculated, for example, an LUT (Look Up Table) indicating the relationship between the input gradation value and the corrected gradation value is prepared for each backlight luminance.
  • the corrected gradation value may be determined based on this LUT. Also, depending on the LSI to be designed, such an exponential calculation may not be appropriately processed. In such a case, it is preferable to perform gradation conversion by LUT.
  • the corrected gradation value is calculated using an exponential operation. It is often more efficient to determine a combination of an appropriate LUT and interpolation operation than to do this.
  • the liquid crystal drive circuit (liquid crystal drive unit) 15 controls the liquid crystal display panel 2 based on the image data input from the correction circuits 14a to 14d, and displays an image corresponding to the image data on the liquid crystal display panel 2.
  • the liquid crystal driving circuit 15 is described as one block. However, the present invention is not limited to this, and the liquid crystal driving circuit 15 may be configured by a plurality of blocks.
  • liquid crystal drive circuits 15a to 15d may be provided corresponding to the correction circuits 14a to 14d, and the divided regions in the liquid crystal display panel 2 may be driven by the liquid crystal drive circuits.
  • each region can be easily matched, which has the advantage of good controllability, but the number of input / output pins increases.
  • the circuit size (IC size) becomes large.
  • the chip size can be reduced (in particular, in the case of the present embodiment, each divided area is a 2K1K class, so that the conventional 2K1K class display device is provided.
  • the display map generation circuit (display map generation unit) 16 is configured so that when the aspect ratio of the image data input via the switch SW1 is different from the aspect ratio of the number of LEDs provided in the backlight unit 3, both of these aspect ratios are displayed. Adjust the size of the image data so that the ratio is close. That is, the position corresponding to the image data input via the switch SW1 is specified on the position on the area corresponding to each LED of the backlight unit 3, and the image is input via the switch SW1. Mapping image data is generated by mapping the image data onto the image data of an integral multiple of the resolution according to the arrangement of each LED provided in the backlight unit 3 according to the above-described specific result.
  • the dummy image data is added to the image data as necessary so that these two aspect ratios coincide with each other. You may do it.
  • the dummy image data may be copied from adjacent pixel data as shown in FIG. 5, or may be an average value of a block composed of a plurality of pixels including adjacent pixels.
  • the LED resolution signal generation circuit (LED luminance setting unit) 17 generates a luminance signal of LED resolution (8 ⁇ 4 in the present embodiment) based on the mapping image data input from the display map generation circuit 16, and luminance distribution data This is output to the generation circuit 18 and the LED drive circuit 19.
  • the LED resolution signal generation circuit 17 converts each pixel of the mapping image data (2048 ⁇ 1080 dots) input from the display map generation circuit 16 into the backlight unit 3. Is divided into a plurality of blocks (8 ⁇ 4 blocks) corresponding to each LED. Therefore, each block includes data for 256 ⁇ 270 pixels in the mapping image data. For the block corresponding to the image display area, the luminance signal for each block is set based on the maximum gradation value among the gradation values of the pixels included in each block. That is, among the blocks shown in FIG.
  • the maximum luminance value in each block is used as the reference luminance.
  • a luminance signal corresponding to each block is set based on the reference luminance value.
  • the LED resolution signal generation circuit 17 generates a block in an area (image non-display area) where there is no image data in the liquid crystal display panel 2 that occurs when the aspect ratio of the input image data is different from the aspect ratio of the liquid crystal display panel 2. Generates a luminance signal based on the average luminance level (APL) in the block in the image display area adjacent to the block or the average luminance level (APL) in a part of the block adjacent to the image non-display area.
  • APL average luminance level
  • the block of the image display area adjacent to the block of the image non-display area is further divided into a plurality of small blocks.
  • the data for 85 ⁇ 90 pixels or 86 ⁇ 90 pixels in FIG. is calculated for each of the small blocks adjacent to the block in the non-image display area (for example, the small blocks A3, A6, and A9 for the block a7).
  • APL average luminance level
  • the blocks a1, b1, c1, d1, a8, b8, c8, and d8 which are blocks of the image non-display area, each small block adjacent to the image non-display area in the block of the image display area adjacent to each of these blocks.
  • the maximum value of the average luminance levels of the blocks or the average value of the average luminance levels of these small blocks is set as a reference luminance value, and a luminance signal is set based on this reference luminance value. Therefore, in the example of FIG. 6B, the luminance signal corresponding to the block a8 has the maximum value among the average luminance levels of the small blocks A3, A6, A9 or the average luminance level of the small blocks A3, A6, A9.
  • the luminance signal set based on the average value and corresponding to the block b8 is set to the maximum value among the average luminance levels of the small blocks B3, B6, B9 or the average value of the average luminance levels of the small blocks B3, B6, B9. Set based on.
  • the luminance signals corresponding to the blocks a1, b1, c1, d1, c8, d8 are also set in the same way.
  • the luminance corresponding to this block a9 may be set in the same manner as the luminance signal corresponding to the block a8, and a coefficient corresponding to the distance from the image display area is set to the average value or the maximum value of the average luminance levels of the small blocks A3, A6, A9.
  • a luminance signal corresponding to the block a9 may be set based on the multiplied value. In this case, the coefficient is appropriately set according to the luminance distribution characteristics of the emitted light of each LED so that the LEDs arranged on the back surface of the image non-display area do not adversely affect the image quality of the image display area. Good.
  • the luminance distribution of each LED provided in the backlight unit 3 has a broadness, and the luminance distribution in the liquid crystal display panel is obtained by superimposing the luminance distributions of a plurality of LEDs.
  • FIG. 7 shows the irradiation light from the backlights of the blocks b1 to b7 in the liquid crystal display panel when only the LEDs arranged immediately below the block b4 shown in FIG. 6A are turned on and the other LEDs are turned off. It is a graph which shows the luminance distribution by. FIG. 7 shows the luminance of each small block arranged in the horizontal direction when each block is divided into 3 ⁇ 3 small blocks.
  • the luminance of the small block at the center in block b4 is the highest (brighter), and the luminance is lower (darker) the further away from it.
  • FIG. 8 shows the backlight of the blocks b1 to b7 in the liquid crystal display panel when only the LEDs arranged immediately below the blocks b1 to b7 shown in FIG. 6A are turned on and the other LEDs are turned off. It is a graph which shows the luminance distribution by the irradiation light of. FIG. 8 shows the luminance of each small block arranged in the horizontal direction when each block is divided into 3 ⁇ 3 small blocks.
  • substantially the same luminance is obtained for the blocks b3 to b5, while the luminance in the blocks b1, b2, b6, and b7 is lower than that of the blocks b3 to b5.
  • the brightness of the blocks b3 to b5 is much higher than when only the LEDs arranged immediately below the block b4 are turned on.
  • the luminance distribution in the liquid crystal display panel is obtained by superimposing the luminance distributions of a plurality of LEDs.
  • the maximum value of the luminance signal corresponding to each block is the liquid crystal display when all the LEDs arranged immediately below the 3 ⁇ 3 block centering on the block are turned on at 100%.
  • a value corresponding to the luminance due to the irradiation light from the backlight unit 3 of the block in the panel is set.
  • the present invention is not limited to this.
  • the maximum value of the luminance signal corresponding to each block may be set higher than in the above case.
  • the lower part may be set lower than the above case.
  • the luminance of the light emitted from the backlight of each block in the liquid crystal display panel is affected by each neighboring block, it is sufficient to change the light emission luminance of the LED arranged immediately below the adjacent block. In some cases, the required brightness cannot be secured. For this reason, it is preferable to set the luminance signal so that it does not change suddenly in each block by passing it through a low-pass filter.
  • the calculation may be complicated in order to appropriately calculate the luminance of each block in consideration of the influence of the LED arranged immediately below each peripheral block, and the appropriate calculation may not always be performed. Since there is a table prepared by storing combinations of the reference luminance values determined for each block and the luminance signal setting values of the blocks corresponding to these combinations, each table set using this table is prepared. A set value of the luminance signal of the block may be set. In addition, the set value of the luminance signal of each block set using the table may be further smoothed by a low-pass filter.
  • a white backlight is used, and the luminance of the white backlight is controlled using luminance information obtained from image data.
  • the present invention is not limited to this.
  • it is good also as a structure provided with the backlight of each color of RGB, and controlling the brightness
  • the contrast is improved, but also the contrast between colors in the same area can be expanded, so that a vivid video with higher color purity can be created.
  • the independence between colors can be enhanced by matching the emission spectrum of the backlight with the color filter absorption spectrum.
  • each block is divided into 9 blocks of 3 ⁇ 3.
  • the present invention is not limited to this. While there is an advantage that luminance discontinuity due to the backlight is less likely to occur as the number of divisions increases, there is a problem that the circuit scale increases when the number of divisions increases excessively. Therefore, the number of divisions may be set as appropriate in consideration of these characteristics.
  • each block has 8 ⁇ in the case where 128 ⁇ 128 pixels exist in each block. There was no problem that could be visually recognized even in the case of 8 divided into 64. Further, when reproducing a DVD image (an image of about 720 ⁇ 480 dots) and the like, there is no particular problem even with a division number of about 4 ⁇ 4. It should be noted that a pure 4K video (originally generated as 4K2K class video data) preferably has a number of divisions of 16 ⁇ 16 or more in order to display a higher quality image.
  • the LED resolution (the number of LEDs arranged) is set to 8 ⁇ 4 for convenience of explanation.
  • the present invention is not limited to this, and the LED resolution may be increased to improve the image quality.
  • the LED resolution is about 64 ⁇ 32 to 16 ⁇ 8 so that the block corresponding to one LED corresponds to a pixel of about 64 dots ⁇ 64 dots to 256 dots to 256 dots in 4K2K class image data. It is preferable to set to.
  • the LED resolution By setting the LED resolution to 16 ⁇ 8 or more, it is possible to prevent the user from visually recognizing the difference in luminance between the blocks and to make the user visually recognize a sharp image.
  • the LED resolution is preferably set to 64 ⁇ 32 or less.
  • the shape of the block corresponding to each LED is not limited to a square, and may be appropriately set according to the number of members and the convenience of arrangement.
  • Luminance data (luminance distribution data) of each pixel obtained by superimposing the luminance distributions generated on the display panel 2 is generated, and the generated luminance distribution data is divided for each display area in the liquid crystal display panel 2 to correct the correction circuit 14a. To 14d.
  • FIG. 9A shows an example of image data displayed on the liquid crystal display panel 2
  • FIG. 9B shows an example of luminance distribution data corresponding to this image data.
  • the LED drive circuit (LED drive unit) 19 controls the brightness of each LED based on the LED resolution brightness signal generated by the LED resolution signal generation circuit 17. That is, the LED drive circuit 19 controls the light emission luminance of each LED so as to be a luminance corresponding to the luminance of the dot corresponding to each LED in the luminance signal.
  • FIG. 10 is an explanatory diagram schematically showing processing in the control device 1 in this case.
  • the preprocessing circuit 10 generates image data Q1, Q2, Q3, and Q4 obtained by expanding each image data P1, P2, P3, and P4 to 2040 dots ⁇ 1080 dots, and outputs the generated image data to the down converter 13 and the dividing circuit 11a. .
  • the dividing circuit 11a outputs the image data Q1, Q2, Q3 and Q4 to the correction circuits 14a to 14d via the switches SW2a to SW2d.
  • the preprocessing circuit 10 performs the above-mentioned expansion by right-justifying the upper left and lower left image data and adding dummy image data (for example, black pixels) on the left side, and for the upper right and lower right image data.
  • the above-mentioned expansion is performed by left-justifying and assigning dummy image data (for example, black pixels) on the right side. If the vertical size of the input image data is different from the vertical size of the liquid crystal display panel, the upper left and upper right image data is bottom-padded and dummy image data is added to the upper left, and the lower left and lower right For the image data, the dummy image data may be added to the lower side.
  • dummy image data for example, black pixels
  • the down converter 13 down-converts 4096 ⁇ 2160 dot image data obtained by combining the image data Q1, Q2, Q3, and Q4, generates 1920 ⁇ 1080 dot image data R1, and displays it via the switch SW1. Output to the map generation circuit 16.
  • the display map generation circuit 16 performs mapping processing that matches the aspect ratio of the input image data with the aspect ratio of the backlight unit 3, and generates mapping image data R2. At this time, for an area where no image data exists, image data of peripheral pixels may be copied, or an average value of image data of a plurality of pixels including the peripheral pixels may be used.
  • the LED resolution signal generation circuit 17 generates a luminance signal S1 of LED resolution based on the mapping image data generated by the display map generation circuit 16, and uses the generated luminance signal S1 as the luminance distribution data generation circuit 18 and the LED. Output to the drive circuit 19.
  • the method for generating the luminance signal S1 is as described above.
  • the luminance distribution data generation circuit 18 is a luminance distribution (in the liquid crystal display panel 2 by light emitted from each LED when the LEDs are driven based on the LED resolution luminance signal S1 input from the LED resolution signal generation circuit 17 ( (Luminance of each pixel) T is calculated, and the calculated luminance distribution T is divided for each display area in the liquid crystal display panel 2 to generate luminance distribution signals T1 to T4 for each area, and output them to the correction circuits 14a to 14d. .
  • the correction circuits 14a to 14d correct the gradation levels of the image data Q1 to Q4 according to the luminance distribution signals T1 to T4 input from the luminance distribution data generation circuit 18, and drive the corrected image data U1 to U4 by liquid crystal Output to the circuit 15.
  • the liquid crystal drive circuit 15 displays an image corresponding to the image data U1 to U4 input from the correction circuits 14a to 14d in each display area of the liquid crystal display panel 2.
  • the LED drive circuit 19 controls the light emission state of each LED according to the luminance signal input from the LED resolution signal generation circuit 17.
  • the preprocessing circuit 10 adds dummy image data (for example, black pixels) to the image data P1 of 1920 dots ⁇ 1080 dots, and an image of 2048 ⁇ 1080 dots having the same aspect ratio as that of the liquid crystal display panel 2. Extends to data PX1. At this time, the preprocessing circuit 10 adds dummy image data to the peripheral portion of the image data P1 so that the image corresponding to the image data P1 is finally displayed near the center of the display area of the liquid crystal display panel 2. .
  • the image data PX1 generated by the preprocessing circuit 10 is output to the dividing circuit 11b and the display map generating circuit 16.
  • the display map generation circuit 16 performs mapping processing that matches the aspect ratio of the input image data with the aspect ratio of the backlight unit 3, and generates mapping image data R2. At this time, for an area where no image data exists, image data of peripheral pixels may be copied, or an average value of image data of a plurality of pixels including the peripheral pixels may be used.
  • the LED resolution signal generation circuit 17 generates a luminance signal S1 of LED resolution based on the mapping image data generated by the display map generation circuit 16, and uses the generated luminance signal S1 as the luminance distribution data generation circuit 18 and the LED. Output to the drive circuit 19.
  • the method for generating the luminance signal S1 is as described above.
  • the luminance distribution data generation circuit 18 calculates a luminance distribution (luminance of each pixel) T in the liquid crystal display panel 2 when each LED is driven based on the LED resolution luminance signal S1 input from the LED resolution signal generation circuit 17. Then, the calculated luminance distribution T is divided for each display area in the liquid crystal display panel 2, and the luminance distribution signals T1 to T4 of each display area are output to the correction circuits 14a to 14d, respectively.
  • the dividing circuit 11b divides the image data P1 input from the preprocessing circuit 10 into image data corresponding to the four areas of the upper left, lower left, upper right, and lower right, and each of the divided image data QX1 to Qx4 is divided. Output to the upscale circuits 12a to 12d.
  • the upscale circuits 12a to 12d upconvert the divided image data QX1 to QX4 into image data of 2048 ⁇ 1080 dots, respectively, and output them to the correction circuits 14a to 14d. Details of the dividing process in the dividing circuit 11b and the upscaling processes in the upscale circuits 12a to 12d will be described later.
  • the correction circuits 14a to 14d correct the gradation levels of the image data Q1 to Q4 according to the luminance distribution signals T1 to T4 input from the luminance distribution data generation circuit 18, and drive the corrected image data U1 to U4 by liquid crystal Output to the circuit 15.
  • the liquid crystal drive circuit 15 displays an image corresponding to the image data U1 to U4 input from the correction circuits 14a to 14d in each display area of the liquid crystal display panel 2.
  • the LED drive circuit 19 controls the light emission state of each LED according to the luminance signal input from the LED resolution signal generation circuit 17.
  • the correction circuit is divided into four systems of the correction circuits 14a to 14d.
  • the present invention is not limited to this.
  • the luminance distribution data generation circuit 18 outputs the luminance distribution T for the entire area of the liquid crystal display panel 2 to the correction circuit, and the correction circuit corrects the gradation values of the image data Q1 to Q4 based on the luminance distribution T. Then, the corrected image data U1 to U4 may be output to the liquid crystal driving circuit 15.
  • the backlight unit 3 may be one that can independently control the luminance of each color of RGB, or may be one that cannot perform luminance control for each color, such as a white LED or CCFL.
  • the display map generation circuit 16 converts the input RGB color space image data into YUV color space image data
  • the luminance distribution data generation circuit 18 may convert data in the YUV color space into data in the RGB color space and output the data to the correction circuits 14a to 14d.
  • FIG. 11 is an explanatory diagram schematically showing processing in the dividing circuit 11b and the upscale circuits 12a to 12d.
  • the dividing circuit 11b converts this input image data into four divided image data of (1K + ⁇ ) ⁇ (0.5K + ⁇ ). To divide.
  • the broken line portion ( ⁇ portion) shown in FIG. 11 is an overlap portion with other adjacent divided image data.
  • the upscale circuits 12a to 12d perform interpolation processing (upscale processing) on each divided image data divided as described above, and generate 2K1K post-interpolation image data (upscaled image data).
  • the upscale circuits 12a to 12d perform the above interpolation processing in parallel.
  • the correction circuits 14a to 14d perform the above-described correction processing on each post-interpolation image data interpolated by the upscale circuits 12a to 12d, and the liquid crystal driving circuit 15 stores and corrects each of the post-interpolation processing and correction processing.
  • a divided video signal corresponding to the subsequent image data is generated, and an image corresponding to each divided video signal is displayed in each divided region of the liquid crystal display panel 2.
  • FIG. 12 is a block diagram showing a schematic configuration of the upscale circuits 12a to 12d.
  • each of the upscale circuits 12a to 12d includes an edge detection circuit 21 and an interpolation circuit 22.
  • the edge detection circuit 21 detects the position and direction of the edge in the divided image data.
  • the interpolation circuit 22 performs an interpolation process using different interpolation methods for the edge portion and the portion other than the edge portion. Specifically, for the edge portion, interpolation is performed using the average value of the pixel values of pixels adjacent in the edge direction, and for other than the edge portion, interpolation is performed using the weighted average value of the pixel values of pixels adjacent to all directions. To do.
  • FIG. 13 is a block diagram showing a schematic configuration of the edge detection circuit 21.
  • the edge detection circuit 21 includes a difference circuit 31, a filter rotation circuit 32, a direction setting circuit 33, an averaging circuit 34, a correlation calculation circuit 35, and an edge identification circuit 36.
  • the difference circuit 31 calculates a difference image data by performing a difference calculation using a difference filter on the input image data, and outputs the calculated difference image data to the averaging circuit 34 and the correlation calculation circuit 35.
  • a differential filter in which a filter coefficient is set for each dot of 3 dots ⁇ 3 dots is applied to a 5 dot ⁇ 5 dot block centered on the target pixel in the input image data. Applying this, a difference calculation result of 3 dots ⁇ 3 dots centered on the target pixel is obtained.
  • the pixel value of each dot in the input image data is dij (i and j are integers of 1 to 3)
  • the difference filter is aij
  • the pixel value of each dot in the difference calculation result is bkl (k , L is an integer from 1 to 3)
  • the difference filter aij is a 1: 2: 1 filter shown below,
  • the difference filter aij is not limited to this, and any filter can be used as long as it can extract an edge in an image by calculation using a differentiation or difference of gradation values near the target pixel.
  • the following 3: 2: 3, 1: 1: 1, or 1: 6: 1 filter may be used.
  • Etc. may be used.
  • the difference filter is expressed as a: b: a as described above, the greater the weight of b, the more accurately the neighborhood of the pixel of interest can be evaluated, but the weaker against noise.
  • the smaller the weight of b the easier it is to miss a small change, although the state around the pixel of interest can be comprehensively captured.
  • the filter coefficient of the difference filter may be appropriately selected according to the target image characteristics. For example, in a content such as a photograph that is essentially dense and less blurry, it is easier to grasp the feature when the weight of b is larger.
  • a 3 dot ⁇ 3 dot filter is used as the difference filter.
  • the present invention is not limited to this.
  • a 5 dot ⁇ 5 dot or 7 dot ⁇ 7 dot difference filter may be used.
  • the filter rotation circuit 32 performs a rotation process on the difference filter used in the difference circuit 31.
  • the direction setting circuit 33 controls the rotation of the difference filter by the filter rotation circuit 32 and outputs a signal indicating the application state of the difference filter to the edge identification circuit 36.
  • the difference calculation is performed on the input image data using the difference filter aij to perform horizontal edge detection processing, and then the filter obtained by rotating the difference filter aij by 90 degrees is used.
  • the vertical edge is detected by performing the difference calculation again on the input image data.
  • the edge detection processing in the horizontal direction and the vertical direction may be performed in parallel.
  • the difference circuit 31, the filter rotation circuit 32, the direction setting circuit 33, the averaging circuit 34, the correlation calculation circuit 35, Two sets of edge identification circuits 36 may be provided.
  • FIG. 15 shows an image with sharp edges in the vertical direction (image A), an image with thin lines extending in the vertical direction (image B), an image with messy lines (image C), and 1 for each of these images.
  • FIG. 6 is an explanatory diagram showing a result of performing a difference calculation in the horizontal direction and the vertical direction using a difference filter of 2: 1: 1;
  • the pattern of 3 dots ⁇ 3 dots around the target pixel (center pixel) in the input image data is the same, and the difference calculation result (median value) in the horizontal direction of the target pixel is 4 in all cases.
  • the ratio of the average value for the 3 dot ⁇ 3 dot block centered on the target pixel in the horizontal difference calculation result to the median value is 0.67 for image A, 0.33 for image B, and 0.33 for image C.
  • the numerical value is larger as there is a clear edge (or an image close to the edge). That is, the thin line image B may be an edge but may be a pattern (texture), and the average value of the difference calculation result (a value indicating edge property (edge-likeness)) is half that of the image A. There is only a degree. Further, the image C of the messy line cannot be distinguished whether it is a real edge or noise, and the average value of the difference calculation results is about 1/3 compared to the image A.
  • edge detection process may be performed, and the processing result may be databased as an exception process when an erroneous detection occurs in edge detection using 3 dot ⁇ 3 dot difference image data.
  • edge detection with higher accuracy can be performed. For example, even an edge that is buried in a texture with high periodicity can be detected appropriately.
  • FIG. 16 shows a sharp edge image (image D), a thin line image (image E) extending in the diagonal direction, a messy line image (image F), and 1 for each of these images. : It is explanatory drawing which shows the result of having performed the difference calculation of the horizontal direction and the vertical direction using the difference filter of 2: 1.
  • the ratio of the average value for the 3 dot ⁇ 3 dot block centered on the target pixel to the median value is 0.67 for image D and 0 for image E.
  • the numerical value increases as there is a clear edge (or an image close to the edge).
  • the ratio of the average value to the median value for the 3 dot ⁇ 3 dot block is 0.06, and it is difficult to be recognized as an edge.
  • FIG. 17 shows an image with an edge with an inclination 1/2 (image G), an image with an edge with inclination 1 (image H), an image with an edge with inclination 2 (image I), and 1: 2 for each of these images: It is explanatory drawing which shows the result of having performed the difference calculation of the horizontal direction and the vertical direction using 1 difference filter. Since each image in FIG. 17 is an edge portion image, the ratio of the average value to the median value of the 3 dot ⁇ 3 dot block centered on the target pixel in the difference calculation results in the horizontal direction and the vertical direction is increased. Yes.
  • the ratio of the median value of the difference calculation results in the horizontal direction and the median value of the difference calculation results in the vertical direction in these images is 2/4 for the image G, 3/3 for the image H, and 4/2 for the image I. And coincides with the inclination of the edge in each image.
  • the median value the value of the pixel of interest
  • the slope of the edge is calculated on the basis of the ratio. As for the edge in the horizontal direction or the vertical direction, since either the median value in the difference calculation result in the horizontal direction or the median value in the difference calculation result in the horizontal direction is 0, the edge direction can be easily determined.
  • the averaging circuit 34 Based on the difference image data bij input from the difference circuit 31, the averaging circuit 34 generates averaged image data in which the pixel value of the target pixel is a value obtained by averaging the pixel values of the target pixel and its surrounding pixels. To do.
  • the above averaging process may be performed by a filter process using a low-pass filter (LPF) of 2 dots ⁇ 2 dots, for example, as shown in FIG.
  • LPF low-pass filter
  • a filter coefficient is set for each dot of 2 dots ⁇ 2 dots and a low pass filter is applied to a 3 dot ⁇ 3 dot block in the difference image data input from the difference circuit 31.
  • An average processing result of 2 dots ⁇ 2 dots is obtained.
  • the above-described averaging operation is performed such that the pixel value of each dot in the difference image data is bij (i and j are integers of 1 to 3), the low-pass filter is cij, and the pixel value of each dot in the averaged image data is b. If 'ij,
  • the averaging circuit 34 calculates b13, b23, b31, b32, and b33 by sequentially shifting a 3 dot ⁇ 3 dot block in the difference image data by one dot at a time. That is, averaged image data is calculated for a total of nine pixels including the target pixel and the surrounding eight pixels. Then, the averaged image data of these nine pixels is output to the correlation calculation circuit 35.
  • the edge identification circuit 36 determines whether or not the target pixel is an edge pixel by comparing the correlation value R for the target pixel input from the correlation calculation circuit 35 with a preset threshold Th. .
  • the above-mentioned threshold value Th calculates the correlation value R of each pixel based on a large number of sample images, the correlation value R calculated for the pixels in the edge portion, and the correlation value R calculated for the pixels other than the edge portion. May be set in advance by conducting an experiment to compare the two.
  • FIG. 19 is an explanatory diagram showing the concept of edge identification processing by the edge identification circuit 36.
  • the difference image data reflects the influence of the edge portion and noise, so that the edge detection is performed using only the difference image data. Is affected by this noise.
  • the difference image data obtained by performing the above-described difference calculation on this input image data has a non-zero value, and becomes zero when there is no gradation change.
  • the value of the difference image data is a non-zero value.
  • noise can be removed from the difference image data as shown in FIG.
  • noise that exists in only one dot within the averaging range is erased by the averaging process. Further, if the averaging range is increased to 3 dots ⁇ 3 dots, 4 dots ⁇ 4 dots, 5 dots ⁇ 5 dots, minute noise, texture, and the like can be erased.
  • the edge portion remains as it is even after the averaging process, so that the correlation value R increases in the edge portion, and conversely in the other portions than the edge portion.
  • the value R becomes smaller.
  • the correlation value R has a value of 1 or a value close to 1 at the edge portion, and becomes a value abruptly smaller than the correlation value of the edge portion except for the edge portion. Therefore, the edge portion can be detected with very high accuracy by checking in advance the range in which the correlation value changes abruptly through experiments or the like and setting the threshold Th within this range.
  • the edge identification circuit 36 detects the edge direction (edge extension direction) using the result of the difference calculation process in the horizontal direction and the result of the difference calculation process in the vertical direction, and the detection result is interpolated by the interpolation circuit. 22 for output.
  • the value of the ratio a may vary due to the influence of noise included in the input image data. For this reason, it is not always necessary to calculate the angle ⁇ strictly for the edge direction, and any one of the five patterns shown in FIG. 20 or any of the nine patterns including an intermediate inclination of these five patterns. It only has to be classified. Therefore, in order to simplify the detection process of the edge direction and reduce the circuit scale required for the detection of the edge direction, the value of the ratio a does not necessarily have to be directly calculated. It may be determined which one of the five patterns shown in FIG.
  • a 5 dot ⁇ 5 dot filter may be used to detect the inclination in the edge direction.
  • the interpolation circuit 22 performs an interpolation process suitable for each characteristic on the edge part and the part other than the edge based on the edge detection result of the edge identification circuit 36.
  • FIGS. 21A and 21B When the resolution of the input image data is upscaled twice in the horizontal direction and the vertical direction, two types of interpolation methods shown in FIGS. 21A and 21B can be considered.
  • the value (luminance) of each pixel (reference point: ⁇ in the figure) in the input image data is left as it is, and pixels between these pixels are left as they are. This is a method of interpolating ( ⁇ mark in the figure).
  • the second method is a method of interpolating 4 pixels ( ⁇ mark in the drawing) around each pixel (reference point: ⁇ mark in the drawing) in the input image data. is there.
  • the pixel value (luminance) of each pixel in the input image data does not remain after the interpolation process.
  • the present invention is not limited to this, and the second method can also be used.
  • FIG. 22 is an explanatory diagram for explaining an interpolation method for an edge portion, and shows an example of interpolation for an edge portion in an oblique direction having a slope of 1.
  • FIG. 22 is an explanatory diagram for explaining an interpolation method for an edge portion, and shows an example of interpolation for an edge portion in an oblique direction having a slope of 1.
  • interpolation method shown in this figure, first, four pixels around the pixel to be interpolated are selected. It should be noted that the interpolation calculation can be facilitated by selecting four pixels so as to form each vertex of the parallelogram including a line segment parallel to the tilt direction.
  • pixels B, E, F, and I are selected as peripheral pixels
  • pixels D, E, H, and I are selected as peripheral pixels.
  • the pixels adjacent in the edge direction are selected as peripheral pixels.
  • an average value of values obtained by multiplying the pixel values of the surrounding four pixels by a coefficient set for each pixel according to the inclination may be used.
  • z ((3 ⁇ E + F) / 4 + (H + 3 ⁇ I)) / 2
  • y ((3 ⁇ E + D) / 4 + (3 ⁇ H + I) / 4 ) / 2
  • x (B + I) / 2.
  • a value corresponding to the above 5 pattern or 9 pattern that can be expressed by a block of 3 dots ⁇ 3 dots may be set in advance by approximation calculation or the like.
  • a texture-oriented interpolation method in which the edge is not conspicuous is applied.
  • Texture emphasis here refers to processing that is relatively resistant to noise, with emphasis on tone and hue maintenance and continuity of tone change.
  • various conventionally known methods such as a bilinear method, a bicubic method, and a lanczos filter method (LANCZOS method) can be used.
  • LANCZOS method when the upscale enlargement factor is constant (in this embodiment, the enlargement factor is double), the LANCZOS method is known as an excellent and simple filter and is suitable.
  • each display area in the liquid crystal display panel 2 is controlled based on a plurality of divided image data obtained by dividing the image data for one screen according to the display area of the liquid crystal display panel 2. Then, the operation of each LED in the backlight unit 3 is controlled based on the image data for one screen that is not divided.
  • the aspect ratio of the input image data and the aspect ratio of the liquid crystal display panel 2 are different, and there is no image non-display in which there is no corresponding input image data in the display screen of the liquid crystal display panel 2.
  • the luminance of the LED corresponding to the non-image display region is set based on the average luminance (APL) at the end of the image display region.
  • the aspect ratio of the input image data and the aspect ratio of the liquid crystal display panel 2 are different, and there is no image non-display in which there is no corresponding input image data in the display screen of the liquid crystal display panel 2.
  • the display map generation circuit 16 determines mapping position in the display screen to display an image corresponding to the input image data, generates mapping image data (display map information), and this mapping image. The light emission brightness of each LED is set based on the data, and each divided image data is corrected.
  • the display map generation circuit 16 has each position in each divided image data for displaying an image according to the input image data on the liquid crystal display panel 2 and each position in the image data to be used for controlling the LEDs that are not divided. Position information is generated as display map information so that and match each other. Thereby, even if the aspect ratio of the input image data is different from the aspect ratio of the liquid crystal display panel 2, an image corresponding to the input image data can be appropriately displayed. Moreover, the light emission state of each LED can be appropriately controlled according to the display position of the image corresponding to the input image data.
  • the target pixel is an edge portion based on difference image data and averaged image data calculated based on 5 dot ⁇ 5 dot image data centered on the target pixel in the input image data.
  • Judge whether or not. Therefore, when the input image data is divided into a plurality of regions, each of the divided image data obtained by simply dividing the input image data into four is divided into two boundary portions included in the image data of the divided regions adjacent to the divided image data.
  • the edge portion in each divided image data is It can be detected with high accuracy.
  • the number of pixels in the horizontal direction of the input image data is nx and the number of pixels in the vertical direction is ny
  • the number of pixels in each divided area is set to nx / 2 + 2 in the horizontal direction and ny + 2 in the vertical direction.
  • Edge detection and upscaling can be performed with high accuracy without considering the interaction with the region.
  • the circuit scale can be reduced and the processing time can be shortened. That is, since it is not necessary to track the edge of the entire image as in the prior art, it is not necessary to pass the information of the entire image to each divided upscale circuit for edge determination. Therefore, edge detection can be performed with high accuracy in each upscale circuit without considering the interaction with other divided regions.
  • each circuit (each block) constituting the control device 1 may be realized by software using a processor such as a CPU. That is, the control device 1 includes a CPU (central processing unit) that executes instructions of a control program that realizes each function, a ROM (read only memory) that stores the program, a RAM (random access memory) that expands the program, It is good also as a structure provided with memory
  • an object of the present invention is to provide a recording medium in which a program code (execution format program, intermediate code program, source program) of a control program of the control device 1 which is software for realizing the above-described functions is recorded so as to be readable by a computer. This is achieved by supplying to the control device 1 and reading and executing the program code recorded on the recording medium by the computer (or CPU or MPU).
  • a program code execution format program, intermediate code program, source program
  • Examples of the recording medium include tapes such as magnetic tapes and cassette tapes, magnetic disks such as floppy (registered trademark) disks / hard disks, and disks including optical disks such as CD-ROM / MO / MD / DVD / CD-R.
  • Card system such as IC card, IC card (including memory card) / optical card, or semiconductor memory system such as mask ROM / EPROM / EEPROM / flash ROM.
  • control device 1 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network.
  • the communication network is not particularly limited.
  • the Internet intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network, telephone line network, mobile communication network, satellite communication. A net or the like is available.
  • the transmission medium constituting the communication network is not particularly limited.
  • wired such as IEEE 1394, USB, power line carrier, cable TV line, telephone line, ADSL line, etc.
  • infrared rays such as IrDA and remote control, Bluetooth (Registered trademark), 802.11 wireless, HDR, mobile phone network, satellite line, terrestrial digital network, and the like can also be used.
  • the present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.
  • each circuit (each block) of the control device 1 may be realized by using software, may be configured by hardware logic, or hardware that performs a part of processing. And a calculation unit that executes software for controlling the hardware and performing the remaining processing may be used.
  • the present invention can be applied to a control device and a control method for a liquid crystal display device having a backlight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

 本発明は、液晶表示パネルと、この液晶表示パネルの背面に配置された複数の光源を有するバックライトユニットとを備えた液晶表示装置に関する。入力画像データの周縁部にダミー画像を付加した画像データを、各LEDの配置位置にそれぞれ対応する複数のブロックに分割する。 入力画像データに対応する画像の表示領域である画像表示領域に対応するLEDについては当該LEDに対応するブロックに含まれる各画素の階調値の最大値に基づいて発光輝度を決定する。 ダミー画像データに対応する画像の表示領域である画像非表示領域に対応するLEDについては、当該LEDに対応するブロックに隣接する画像表示領域のブロックをさらに分割して得られる複数の小ブロックのうち当該LEDに対応する画像非表示領域のブロックに隣接する小ブロックの平均輝度レベルに基づいて発光輝度を決定する。本発明によると、入力画像データの縦横比が液晶表示パネルの縦横比と異なる場合に、画像表示領域と画像非表示領域との境界部における表示品位を向上させることができる。

Description

液晶表示装置の制御装置、液晶表示装置、液晶表示装置の制御方法、プログラムおよび記録媒体
 本発明は、バックライトを備えた液晶表示装置の制御装置および制御方法に関するものである。
 従来より、液晶表示パネルの表示画面内における複数の領域について、表示する画像データに応じて各領域に対応するバックライトの輝度を制御する技術が種々提案されている。
 例えば、特許文献1には、画像データを複数の映像領域に分割し、分割した各領域のAPL(平均輝度)に応じて当該各領域に対応するバックライトの輝度を制御する技術が開示されている。
 また、特許文献2には、バックライトの明度分布に応じて表示用画像データを補正する技術が開示されている。
日本国特許公報「特許第3766231号公報(平成12年11月24日公開)」 日本国公開特許公報「特開2005-309338号公報(平成17年11月4日公開)」
 ところで、液晶表示装置の用途によっては、この液晶表示装置に入力される画像データにおける表示画像の画素数(ドット数)の縦横比と液晶表示装置の表示画面の画素数の縦横比とが異なる場合がある。
 例えば、4K2Kクラス(水平方向4000画素×垂直方向2000画素程度)の高詳細画像を表示する高詳細表示の場合、縦横のドット数が標準フォーマット(規格)として定まっておらず、デジタルシネマでは4096ドット×2160ラインの解像度が用いられ、ハイビジョンでは3840ドット×2160ラインの解像度が用いられるといったように画像毎に縦横比が異なっている。また、2K1Kクラス(水平方向2000画素×垂直方向1000画素程度)の表示においても、一般に2048×1080の解像度や1920×1080の解像度などが用いられている。
 これに対して、液晶表示装置の表示画面(液晶表示パネル)における縦横の画素数は製造時に決まっている。
 このため、多様な縦横比の画像データを共通の液晶表示装置に表示させる場合、画像データによっては画像データの縦横比と液晶表示装置の表示画面の縦横比とが異なるため、表示画面の端部において画像が表示されない領域(画像非表示領域)が生じる。具体的には、例えば4096×2160ドットの液表表示パネルに3840×2160ドットの4K2K画像を表示させる場合、4096-3840=256ドット分だけ液晶表示パネル上に画像非表示領域が生じる。
 しかしながら、上記従来の技術では、入力画像データの縦横比と表示画面の縦横比とが同じ場合しか想定されておらず、入力画像データの縦横比と表示画面の縦横比とが異なる場合に画像非表示領域のバックライトをどのように制御するかについては何ら考慮されていなかった。このため、上記従来の技術では、表示画面内における画像表示領域と画像非表示領域との境界部においてバックライトの輝度を適切に制御できず、画像の表示品位が低下してしまうという問題があった。
 例えば、表示画面の背後に配置した複数の光源をバックライトとして用いる場合、光源の輝度分布は広がりを持っているため、液晶表示パネルにおける輝度分布は複数の光源の輝度分布を重ね合わせたものになる。このため、画像非表示領域の光源の輝度を0にすると、この画像非表示領域に隣接する画像表示領域における画像表示領域との境界部付近に表示される映像が輝度不足になって不自然なものとなってしまう場合がある。
 なお、画像データの縦横比と液晶表示パネルの縦横比との不一致を解消するための1つの方法として、画像データを縦方向または横方向に伸張させて画像データのアスペクト比を変更する方法が従来から知られている(例えば、一般に市販されているテレビセットにおけるフル画面表示)。しかしながら、この方法によれば、画像データの縦横比と液晶表示パネルの縦横比とのサイズの不一致を解消できるものの、表示される画像を変形することになるので、画像の表示品位の低下は避けられない。特に、4K2Kクラスの様な高品位の映像を表示するためのディスプレイにおいて表示画像を変形して視聴することは多くの場合好まれない。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、液晶表示パネルと、この液晶表示パネルの背面に配置された複数の光源を有するバックライトユニットとを備えた液晶表示装置において、画像表示領域と画像非表示領域との境界部における表示品位を向上させることにある。
 本発明の液晶表示装置の制御装置は、上記の課題を解決するために、液晶表示パネルと、上記液晶表示パネルの背面側にマトリクス状に配置された複数の光源を有するバックライトユニットとを備えた液晶表示装置の動作を制御する液晶表示装置の制御装置であって、入力画像データに基づいて上記液晶表示パネルの各画素を制御する液晶制御部と、入力画像データに基づいて上記各光源の発光状態を制御するバックライト制御部と、入力画像データの縦横比と上記液晶表示パネルの縦横比とが異なる場合に、上記入力画像データまたは入力画像データに所定の処理を施した画像データの周縁部にダミー画像データを付加して上記液晶表示パネルの縦横比に応じた縦横比を有するサイズ調整画像データを生成する画像サイズ調整部とを備え、上記バックライト制御部は、上記サイズ調整画像データを上記各光源の配置位置にそれぞれ対応する複数のブロックに分割し、上記入力画像データに対応する画像の表示領域である画像表示領域に対応する光源については当該光源に対応するブロックに含まれる各画素の階調値のうちの最大値に基づいて発光輝度を決定し、上記ダミー画像データに対応する画像の表示領域である画像非表示領域に対応する光源については、当該光源に対応するブロックに隣接する画像表示領域のブロックに含まれる各画素の平均輝度レベル、または当該光源に対応するブロックに隣接する画像表示領域のブロックをさらに分割して得られる複数の小ブロックのうち当該光源に対応する画像非表示領域のブロックに隣接する小ブロックの平均輝度レベルに基づいて発光輝度を決定することを特徴としている。
 上記の構成によれば、上記バックライト制御部は、入力画像データに対応する画像の表示領域である画像表示領域に対応する光源については当該光源に対応するブロックに含まれる各画素の階調値のうちの最大値に基づいて発光輝度を決定し、上記ダミー画像データに対応する画像の表示領域である画像非表示領域に対応する光源については、当該光源に対応するブロックに隣接する画像表示領域のブロックに含まれる各画素の平均輝度レベル、または当該光源に対応するブロックに隣接する画像表示領域のブロックをさらに分割して得られる複数の小ブロックのうち当該光源に対応する画像非表示領域のブロックに隣接する小ブロックの平均輝度レベルに基づいて発光輝度を決定する。これにより、画像表示領域における画像非表示領域との隣接部においてバックライトユニットからの照射光の輝度が不足して表示品位が低下することを防止できる。
 また、上記バックライト制御部は、画像非表示領域に対応する光源のうち、当該光源に対応するブロックに隣接する画像表示領域のブロックがない光源について、当該光源に対応するブロックから最も近い画像表示領域のブロックに含まれる各画素の平均輝度レベル、またはこの画像表示領域のブロックをさらに分割して得られる複数の小ブロックのうち当該光源に対応する画像非表示領域側に位置する一部の小ブロックの平均輝度レベルに基づいて発光輝度を決定する構成としてもよい。
 上記の構成によれば、画像非表示領域の光源のうち、当該光源に対応するブロックに隣接する画像表示領域のブロックがない光源の発光輝度を、最も近い画像表示領域のブロックまたはこの画像表示領域のブロックをさらに分割した小ブロックの平均輝度レベルに基づいて決定することで、画像表示領域における画像非表示領域との隣接部においてバックライトユニットからの照射光の輝度が不足して表示品位が低下することを防止できる。
 また、上記バックライト制御部は、画像表示領域から遠ざかる方向に画像非表示領域のブロックが複数並ぶ場合に、画像非表示領域のブロックに対応する各光源の発光輝度を、画像表示領域から距離が増すほど暗くなるように設定する構成としてもよい。
 光源の配置位置が画像表示領域から遠いほど、この光源が上記画像表示領域の表示特性に及ぼす影響は小さくなる。そこで、画像非表示領域のブロックに対応する各光源の発光輝度を、画像表示領域から距離が増すほど暗くなるように設定することにより、画像表示領域の表示品位を抑制しつつ、画像非表示領域に対応する光源の発光輝度を低くすることで消費電力を低減することができる。
 また、上記各光源を上記バックライト制御部によって決定された発光輝度で発光させたときの各光源からの照射光による上記液晶表示パネルでの輝度分布データを生成する輝度分布データ生成部を備え、上記液晶制御部は、上記入力画像データを上記輝度分布データに基づいて補正する補正部を備えており、上記補正部によって補正された画像データに基づいて上記液晶表示パネルの各画素を制御する構成としてもよい。
 上記の構成によれば、輝度分布データ生成部が上記各光源を上記バックライト制御部によって決定された発光輝度で発光させたときの各光源からの照射光による上記液晶表示パネルでの輝度分布データを生成し、上記液晶制御部が上記補正部によって上記入力画像データを上記輝度分布データに基づいて補正し、補正された画像データに基づいて上記液晶表示パネルの各画素を制御する。これにより、ユーザに視認される表示画像の輝度分布を適切に制御することができる。
 また、上記画像サイズ調整部は、入力画像データに対応する画像が上記液晶表示パネルの略中央に表示されるように上記ダミー画像データを付加する構成としてもよい。
 上記の構成によれば、入力画像データに対応する画像を液晶表示パネルの略中央に表示させることができる。
 本発明の液晶表示装置は、液晶表示パネルと、上記液晶表示パネルの背面側にマトリクス状に配置された複数の光源を有するバックライトユニットと、上記したいずれかの制御装置とを備えている。
 上記の構成によれば、画像表示領域における画像非表示領域との隣接部においてバックライトユニットからの照射光の輝度が不足して表示品位が低下することを防止できる。
 本発明の液晶表示装置の制御方法は、上記の課題を解決するために、液晶表示パネルと、上記液晶表示パネルの背面側にマトリクス状に配置された複数の光源を有するバックライトユニットとを備えた液晶表示装置の動作を制御する液晶表示装置の制御方法であって、入力画像データに基づいて上記液晶表示パネルの各画素を制御する液晶制御工程と、入力画像データに基づいて上記各光源の発光状態を制御するバックライト制御工程と、入力画像データの縦横比と上記液晶表示パネルの縦横比とが異なる場合に、上記入力画像データまたは入力画像データに所定の処理を施した画像データの周縁部にダミー画像データを付加して上記液晶表示パネルの縦横比に応じた縦横比を有するサイズ調整画像データを生成する画像サイズ調整工程とを含み、上記バックライト制御工程は、上記サイズ調整画像データを上記各光源の配置位置にそれぞれ対応する複数のブロックに分割する工程と、上記入力画像データに対応する画像の表示領域である画像表示領域に対応する光源について、当該光源に対応するブロックに含まれる各画素の階調値のうちの最大値に基づいて発光輝度を決定する工程と、上記ダミー画像データに対応する画像の表示領域である画像非表示領域に対応する光源について、当該光源に対応するブロックに隣接する画像表示領域のブロックに含まれる各画素の平均輝度レベル、または当該光源に対応するブロックに隣接する画像表示領域のブロックをさらに分割して得られる複数の小ブロックのうち当該光源に対応する画像非表示領域のブロックに隣接する各小ブロックの平均輝度レベルに基づいて発光輝度を決定する工程とを含むことを特徴としている。
 上記の方法は、入力画像データに対応する画像の表示領域である画像表示領域に対応する光源については当該光源に対応するブロックに含まれる各画素の階調値のうちの最大値に基づいて発光輝度を決定する工程と、上記ダミー画像データに対応する画像の表示領域である画像非表示領域に対応する光源については、当該光源に対応するブロックに隣接する画像表示領域のブロックに含まれる各画素の平均輝度レベル、または当該光源に対応するブロックに隣接する画像表示領域のブロックをさらに分割して得られる複数の小ブロックのうち当該光源に対応する画像非表示領域のブロックに隣接する小ブロックの平均輝度レベルに基づいて発光輝度を決定する工程とを含んでいる。これにより、画像表示領域における画像非表示領域との隣接部においてバックライトユニットからの照射光の輝度が不足して表示品位が低下することを防止できる。
 なお、上記画像処理装置は、コンピュータによって実現してもよく、この場合には、コンピュータを上記各部として動作させることにより、上記画像処理装置をコンピュータにて実現させるプログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に含まれる。
本発明の一実施形態にかかる液晶表示装置の概略構成を示すブロック図である。 (a)および(b)は、分割画像データの結合方法の例を示す説明図である。 バックライトの輝度を異ならせた場合の入力画像信号の階調値と表示画像の階調値との関係を示すグラフである。 バックライトの輝度を変化させても表示画像の階調を変化させないようにするための、入力画像信号の階調値と補正後の階調値との関係を示すグラフである。 マッピング画像データの生成処理の一例を示す説明図である。 (a)および(b)は、LED解像度の輝度信号の生成方法の一例を示す説明図である。 バックライトからの照射光による液晶表示パネルの各部の輝度を示すグラフである。 バックライトからの照射光による液晶表示パネルの各部の輝度を示すグラフである。 (a)は液晶表示パネルに表示させる画像の一例を示す説明図であり、(b)は(a)の画像に基づいて発光状態を制御されたバックライトユニットの照射光による液晶表示パネルでの輝度分布を示す説明図である。 図1に示した液晶表示装置における処理の流れを概略的に示した説明図である。 図1に示した液晶表示装置におけるアップスケール処理の概要を示す説明図である。 図1に示した液晶表示装置に備えられるアップスケール回路の概略構成を示すブロック図である。 図1に示した液晶表示装置に備えられるエッジ検出回路の概略構成を示すブロック図である。 図1に示した液晶表示装置において行われる差分演算処理の概要を示す説明図である。 図1に示した液晶表示装置において差分演算処理を行った結果の一例を示す説明図である。 図1に示した液晶表示装置において差分演算処理を行った結果の一例を示す説明図である。 図1に示した液晶表示装置において差分演算処理を行った結果の一例を示す説明図である。 図1に示した液晶表示装置において行われる平均化処理の概要を示す説明図である。 図1に示した液晶表示装置において行われるエッジ検出処理の概要を示す説明図である。 図1に示した液晶表示装置において3ドット×3ドットのブロックで表現されるエッジの傾きのパターンを示す説明図である。 (a)および(b)はアップスケール処理で用いられる補間方法の一例を示す説明図である。 図1に示した液晶表示装置においてエッジ部分に適用される補間方法を示す説明図である。
符号の説明
1 制御装置
2 液晶表示パネル
3 バックライトユニット
10 前処理回路(画像サイズ調整部、画像復元部)
11a 分割回路(液晶制御部)
11b 分割回路(液晶制御部)
12a~12d アップスケール回路(液晶制御部)
13 ダウンコンバータ(液晶制御部)
14a~14d 補正回路(液晶制御部)
15 液晶駆動回路(液晶制御部)
16 表示マップ生成回路(バックライト制御部)
17 LED解像度信号生成回路(バックライト制御部部)
18 輝度分布データ生成回路(バックライト制御部)
19 LED駆動回路(バックライト制御部)
21 エッジ検出回路
22 補間回路(補間処理部)
31 差分回路(差分演算部)
32 フィルタ回転回路
33 方向設定回路
34 平均化回路(平均化処理部)
35 相関演算回路(相関演算部)
36 エッジ識別回路
100 液晶表示装置
 本発明の一実施形態について説明する。
  (1-1.液晶表示装置100の構成)
 図1は、本実施形態にかかる液晶表示装置100の概略構成を示すブロック図である。この図に示すように、液晶表示装置100は、制御装置1、液晶表示パネル2、およびバックライトユニット3を備えている。
 液晶表示パネル2は画像データに応じた画像を表示するためのものである。本実施形態では、4096×2160ドットの表示サイズを有するパネルを用いる。ただし、これに限らず、従来から公知の種々の液晶表示パネルを用いることができる。
 バックライトユニット3は、液晶表示パネル2の表示面に対して背面側に備えられ、液晶表示パネル2に表示のための光を照射するものであり、複数のLED(光源)を光源として備えている。本実施形態では、8×4のマトリクス状に配置されたLEDを光源として備えたバックライトユニットを用いる。ただし、LEDの個数はこれに限るものではなく、例えばさらに多数のLEDを備えた構成としてもよい。また、本実施形態では、LEDを光源に使用した場合について説明するが、本発明の光源はこれに限定されるものではなく、例えば、EL(Electro-Luminescence)発光素子などの他の発光素子を光源に用いることもできる。また、本実施形態では、液晶表示パネルの直下に導光板を介さずにLED(光源)を配置する、いわゆる直下型の照明装置を構成した場合について説明するが、本発明はこれに限定されるものではなく、例えば照明装置の発光面の下方に単一の導光板を設けるとともに、当該導光板を囲んだ四辺の少なくとも一辺に対して、平行に複数の光源基板を配列したエッジライト型の照明装置や発光素子毎に導光板を設けたタンデム型などの他の形式の照明装置を用いてもよい。
 制御装置1は、前処理回路10、分割回路11a,11b、アップスケール回路12a~12d、ダウンコンバータ13、補正回路14a~14d、液晶駆動回路15、表示マップ生成回路16、LED解像度信号生成回路17、輝度分布データ生成回路18、LED駆動回路19、およびスイッチSW1,SW2a~SW2dを備えている。
 前処理回路(画像サイズ調整部、画像復元部)10は、入力された画像データの縦横比と液晶表示パネル2の縦横比とが異なる場合、入力された画像データにダミー画像データ(例えば黒画素)を付加するなどして画像データの縦横比と液晶表示パネル2の縦横比とを合わせる調整処理を行う。例えば、制御装置1に入力される画像データのサイズが3840×2160ドットである場合、液晶表示パネル2の表示画面サイズが4096×2160なので、横方向のサイズ(3840ドット)が表示画面サイズ(4096ドット)よりも小さくなる。このため、左半分の分割領域の画像については、2048-1920=128ドット分だけ右側にずらして表示する必要がある。そこで、前処理回路10は、入力画像データに対応する画像の位置が液晶表示パネル2の表示画面の左端から128ドット分だけ右にずらした位置になるように入力画像データの右側および左側にダミー画像データを付与する。
 また、前処理回路10は、調整処理後の画像データを、入力画像データが4K2Kクラスの画像データである場合には分割回路11aおよびダウンコンバータ13に出力し、入力画像データが2K1Kクラス以下の画像データである場合には分割回路11bおよび表示マップ生成回路16に出力する。
 なお、前処理回路10は、制御装置1に入力される画像データが元の1画面分の画像データ(4K2Kクラスの画像データ)を表示領域に応じて複数に分割した分割画像データである場合、各分割画像データに上記の調整処理を施して分割回路11aに出力するとともに、調整処理後の各分割画像データを結合した画像データをダウンコンバータ13に出力する。この場合、分割回路11aは前処理回路10から入力された各分割画像データをそれぞれ補正回路14a~14dに出力することになる。
 また、前処理回路10は、各分割画像データに対して上記調整処理を行う際、分割画像データ同士の間に非表示領域が生じたり各分割画像データ同士の表示位置がずれたりしないように、各分割画像データに対するダミー画像データの付加位置を分割画像データ毎に設定する。例えば、図2(a)に示すように、各分割画像データの右側および下側に一律にダミー画像データを付加すると、各分割画像データ同士の間に非表示領域が生じる。そこで、分割回路11aは、分割画像データ同士の間に非表示領域が生じたり各分割画像データの表示位置がずれたりしないように、ダミー画像データを付加する位置を図2(b)に示すように領域毎に制御する。
 また、前処理回路10は、制御装置1に入力される画像データが1画面分の画像データであってこの入力画像データの縦横比と液晶表示パネル2の縦横比とが異なる場合、この入力画像データが液晶表示パネル2の表示画面の中央に表示されるように入力画像データに対応する画像の周囲にダミー画像データ(例えば黒画素)を付加する。
 なお、画像データの縦横比(サイズ)は、例えば、水平方向のサイズについては、水平同期信号が入力された後、データイネーブル信号がハイレベルになっている期間中のクロック信号の数をカウントすることによって検出することができる。また、垂直方向のサイズについては、垂直同期信号が入力された後、データイネーブル信号がローレベルからハイレベルに切り替わる回数をカウントすることによって検出することができる。
 分割回路(第1分割部)11aは、前処理回路10から入力された画像データが4K2Kクラス(4000ドット×2000ドット程度の解像度)の映像信号Hである場合に、この映像信号Hを所定数(本実施形態では4つ)の表示領域毎の画像データに分割し、分割した各画像データを、スイッチSW2a~SW2dを介して補正回路14a~14dに出力する。例えば、分割回路11aは、4K2Kクラスの映像信号Hとして3840×2160ドットの画像データが入力された場合、これを左上,右上,左下,および右下の4領域の画像データ(それぞれ1920×1080ドット)に分割する。ただし、画像の分割数および各分割領域の配置位置はこれに限るものではない。例えば、各分割領域が水平方向に並ぶように分割してもよく、各分割領域が垂直方向に並ぶように分割してもよい。いずれの分割方法を採用するかについては、各分割方法の特性と、実施する時点での回路技術、液晶パネル技術などに鑑みて選択すればよい。本実施形態のように左上,右上,左下,および右下の4領域の画像データに分割する場合、各領域の画像データは2K1Kの画像データになるので、従来の2K1Kクラスの表示装置で用いられている駆動方式をそのまま適用でき、また信号処理回路(信号処理LSI)も2K1Kクラスで用いられている従来と同じものを使用できるため、製造コストおよび開発コストを低減できるという利点がある。
 また、分割回路11aは、前処理回路10から元の1画面分の画像データを複数に分割した分割画像データを入力された場合、これら各分割画像データを、スイッチSW2a~SW2dを介して補正回路14a~14dに出力する。
 スイッチSW2a~SW2dは、制御装置1に入力される画像データが4K2Kクラスの映像信号Hあるいは4K2Kクラスの画像データについての複数の分割画像データである場合には分割回路11aと補正回路14a~14dとをそれぞれ接続し、2K1Kクラス(2000ドット×1000ドット程度の解像度)以下の映像信号Lである場合にはアップスケール回路12a~12dと補正回路14a~14dとをそれぞれ接続するように図示しない制御部によって切り替えられる。
 ダウンコンバータ(ダウンコンバート部)13は、4K2Kクラスの映像信号Hが制御装置1に入力された場合に、この映像信号Hを2K1Kクラス(本実施形態では1920×1080ドット)の画像データにダウンコンバート(縮小変換)し、スイッチSW1を介して表示マップ生成回路16に出力する。ダウンコンバートの方法は特に限定されるものではないが、例えば、入力画像信号の4画素の平均値を、出力画像信号におけるこれら4画素に対応する位置の1画素の値とすればよい。
 スイッチSW1は、制御装置1に入力される画像データが4K2Kクラスの映像信号Hあるいは4K2Kクラスの画像データについての複数の分割画像データであるにはダウンコンバータ13から出力される映像信号を表示マップ生成回路16に入力させ、2K1Kクラスの映像信号Lである場合にはこの映像信号Lを表示マップ生成回路16に入力させるように図示しない制御部によって切り替えられる。
 分割回路(第2分割部)11bは、制御装置1に入力された2K1Kクラスの映像信号Lを所定数の領域の画像データに分割し、分割した画像データをそれぞれアップスケール回路12a~12dに出力する。なお、本実施形態では、映像信号Lとして2K1Kクラスのハイビジョンデータが入力され、これを左上,右上,左下,および右下の4領域の画像データに分割する場合について説明する。ただし、画像の分割数および各分割領域の配置位置はこれに限るものではない。
 アップスケール回路(アップスケール部)12a~12dは、分割回路11bによって分割された画像データをそれぞれ入力され、入力された画像データにアップスケール処理を施す。そして、アップスケール回路12a~12dは、アップスケール処理を施した画像データを、スイッチSW2a~SW2dを介して補正回路14a~14dにそれぞれ出力する。なお、画像データの分割処理およびアップスケール処理の詳細については後述する。
 補正回路(補正部)14a~14dは、後述する輝度分布データ生成回路18から入力される輝度分布データに応じて画像データを補正し、補正後の画像データを液晶駆動回路15に出力する。すなわち、液晶表示パネルの背面に複数のLEDを配置したLEDバックライト方式では、個々のLEDの直上では輝度が高くなりLEDの直上から離れるにしたがって輝度が低くなるように輝度分布が生じる。また、LEDバックライトによって液晶表示パネル2の各部に生じる輝度分布は各LEDによる輝度分布を重ね合わせたものとなる。そこで、補正回路14a~14dは、輝度分布データ生成回路18から入力される輝度分布データに応じて、LEDの直上の位置では液晶の透過率を低くし、そこから離れるにつれて透過率が高くなるように画像データを補正する。
 図3は、入力階調が64階調(0から63)であって、階調輝度特性がγ2.2の液晶表示パネルを用いる場合の注目画素における入力画像信号の階調値と表示画像の輝度との関係を示すグラフであり、実線は注目画素へのバックライトからの入射光の輝度が100%である場合、破線は注目画素へのバックライトからの入射光の輝度が30%の場合の例を示している。この図に示す例では、入力画像信号の階調値が20であり、バックライトの輝度が100%の場合、表示画像の輝度は約8%になっている。一方、バックライトの輝度を30%に絞る場合、そのままでは表示画像の輝度が図3に示すように約2.4%に低下するので、表示画像の輝度を変更することなく表示させたい場合には入力画像信号の階調値をバックライトの輝度に応じて補正する必要がある。具体的には、入力画像信号の階調値を、バックライトの輝度を100%としたときに、バックライトの輝度を100%にした場合の表示画像の輝度(約8%)をバックライトの輝度(30%)で除算した輝度(約26.7%)の表示画像が得られる階調値(34.5)に補正する必要がある。より具体的には、補正後の階調値=((入力階調値/63)2.2/バックライト輝度)(1/2.2)×63となるように画像信号の階調値を補正する必要がある。
 図4は、入力階調が64階調(0から63)、液晶表示パネルの階調輝度特性がγ2.2の場合であって、バックライトの輝度を30%に設定する場合の、入力画像信号の階調値と補正階調値との関係を示すグラフである。この図に示すように、バックライトの輝度を30%にしても、入力画像信号の階調値0~32を0~55に補正(変換)することで、表示画像の輝度を変更することなく表示を行うことができる。また、これにより、黒画像を表示する場合の表示輝度を下げてコントラストを上昇させることができる。また、バックライトの輝度を低下させて消費電力を低減できる。
 なお、上記の説明では、説明を簡単にするために入力階調が64階調(0から63)であって、階調輝度特性がγ2.2の液晶表示パネルを用いる場合について説明したが、これに限るものではない。また、補正後の階調値を演算によって算出する構成に限らず、例えばバックライトの輝度毎に入力階調値と補正後の階調値との関係を示すLUT(ルックアップテーブル)を用意しておき、このLUTに基づいて補正後の階調値を決定するようにしてもよい。また、設計するLSIによってはこのような指数演算が適切に処理できない場合があるので、そのような場合にはLUTによる階調変換を行うことが好ましい。また、バックライトの輝度を0~100%の数値で与えるよりも、γ変換された階調データとして与える方が制御が容易であるので、補正後の階調値をを指数演算を用いて算出するよりも、適切なLUTと補間演算を組み合わせて決定する方が効率的であることが多い。
 液晶駆動回路(液晶駆動部)15は、各補正回路14a~14dから入力される各画像データに基づいて液晶表示パネル2を制御し、上記各画像データに応じた画像を液晶表示パネル2に表示させる。なお、本実施形態では液晶駆動回路15を1つのブロックとして表記しているが、これに限らず、複数のブロックによって構成されていてもよい。例えば、各補正回路14a~14dに対応して液晶駆動回路15a~15dを設け、これら各液晶駆動回路によって液晶表示パネル2における各分割領域を駆動するようにしてもよい。1つの液晶駆動回路15で液晶表示パネル2の全体を駆動する場合、各領域の駆動タイミングを容易に一致させることができるので制御性がよいという利点がある一方、入出力ピン数が多くなるので回路サイズ(ICサイズ)が大きくなってしまう。また、液晶駆動回路15を分割領域に応じて複数設ける場合、チップサイズを小さくできるという利点がある(特に本実施形態の場合、各分割領域が2K1Kクラスであるので従来の2K1Kクラスの表示装置に用いられている2Kコントロールチップを使用できるので経済的である)一方、各液晶駆動回路の同期を保つための調停回路を設ける必要がある。
 表示マップ生成回路(表示マップ生成部)16は、スイッチSW1を介して入力された画像データの縦横比とバックライトユニット3に備えられるLEDの配置個数の縦横比とが異なる場合に、これら両縦横比を近づけるように画像データのサイズを調整する。つまり、スイッチSW1を介して入力された画像データに応じた画像がバックライトユニット3の各LEDに対応する領域上のどの位置に表示されるかを特定し、このスイッチSW1を介して入力された画像データを、上記の特定結果に応じてバックライトユニット3に備えられる各LEDの配置に応じた解像度の整数倍の画像データ上にマッピングしてマッピング画像データを生成する。なお、スイッチSW1を介して入力された画像の縦横比がLEDの配置個数の縦横比と異なる場合、これら両縦横比を一致あるいは近づけるように必要に応じて上記画像データにダミー画像データを付与するようにしてもよい。この場合、ダミー画像データは、図5に示すように隣接する画素のデータをコピーしてもよく、隣接する画素を含む複数の画素からなるブロックの平均値を用いるようにしてもよい。
 LED解像度信号生成回路(LED輝度設定部)17は、表示マップ生成回路16から入力されたマッピング画像データに基づいてLED解像度(本実施形態では8×4)の輝度信号を生成し、輝度分布データ生成回路18およびLED駆動回路19に出力する。
 具体的には、LED解像度信号生成回路17は、図6(a)に示すように、表示マップ生成回路16から入力されたマッピング画像データ(2048×1080ドット)の各画素を、バックライトユニット3における各LEDに対応する複数のブロック(8×4ブロック)に分割する。したがって、各ブロックにはマッピング画像データにおける256×270画素分のデータが含まれることになる。そして、画像表示領域に対応するブロックについては、各ブロックに含まれる画素の階調値のうちの最大階調値に基づいて当該各ブロックに対する輝度信号を設定する。つまり、図6(a)に示した各ブロックのうち画像表示領域のブロックであるブロックa2~a7,b2~b7,c2~c7,d2~d7については、当該各ブロックにおける最大輝度値を参照輝度値とし、この参照輝度値に基づいて当該各ブロックに対応する輝度信号を設定する。
 また、LED解像度信号生成回路17は、入力画像データの縦横比が液晶表示パネル2の縦横比と異なる場合などに生じる、液晶表示パネル2における画像データがない領域(画像非表示領域)のブロックについては、当該ブロックに隣接する画像表示領域の上記ブロックにおける平均輝度レベル(APL)、あるいは画像非表示領域に隣接する上記ブロックの一部における平均輝度レベル(APL)に基づいて輝度信号を生成する。
 本実施形態では、図6(b)に示すように、画像非表示領域のブロックに隣接する画像表示領域のブロックをさらに複数の小ブロックに分割する(これにより、各小ブロックにはマッピング画像データにおける85×90画素分あるいは86×90画素分のデータが含まれることになる)。そして、これら各小ブロックのうち画像非表示領域のブロックに隣接するブロック(例えばブロックa7については小ブロックA3,A6,A9)について平均輝度レベル(APL)をそれぞれ算出する。そして、画像非表示領域のブロックであるブロックa1、b1、c1、d1,a8,b8,c8,d8については、これら各ブロックに隣接する画像表示領域のブロックにおける画像非表示領域に隣接する各小ブロックの平均輝度レベルのうちの最大値、あるいはこれら各小ブロックの平均輝度レベルの平均値を参照輝度値とし、この参照輝度値に基づいて輝度信号を設定する。したがって、図6(b)の例では、ブロックa8に対応する輝度信号は、小ブロックA3,A6,A9の平均輝度レベルのうちの最大値、あるいは小ブロックA3,A6,A9の平均輝度レベルの平均値に基づいて設定され、ブロックb8に対応する輝度信号は、小ブロックB3,B6,B9の平均輝度レベルのうちの最大値、あるいは小ブロックB3,B6,B9の平均輝度レベルの平均値に基づいて設定される。ブロックa1,b1,c1,d1,c8,d8,に対応する輝度信号についても同様の方法で設定される。
 なお、画像非表示領域のブロックa8に対して画像表示領域のブロックa7とは反対側にさらに画像非表示領域のブロックa9(図示せず)が存在する場合には、このブロックa9に対応する輝度信号をブロックa8に対応する輝度信号と同じように設定してもよく、上記小ブロックA3,A6,A9の各平均輝度レベルの平均値あるいは最大値に画像表示領域からの距離に応じた係数を乗じた値に基づいてブロックa9に対応する輝度信号を設定してもよい。この場合、上記係数は、各LEDの出射光の輝度分布特性に応じて、画像非表示領域の背面に配置されているLEDが画像表示領域の画像品位に悪影響を及ぼさないように適宜設定すればよい。
 ところで、バックライトユニット3に備えられる各LEDの輝度分布は広がりを持っており、液晶表示パネルにおける輝度分布は複数のLEDの輝度分布を重ね合わせたものになる。
 図7は、図6(a)に示したブロックb4の直下に配置されたLEDのみを点灯させ、その他のLEDを消灯させた場合の液晶表示パネルにおけるブロックb1~b7のバックライトからの照射光による輝度分布を示すグラフである。なお、図7は、各ブロックを3×3の小ブロックに分割した場合に水平方向に並ぶ各小ブロックの輝度を示している。
 この図に示すように、ブロックb4における中央の小ブロックの輝度が最も高くなり(明るくなり)、そこから離れるほど輝度が低くなる(暗くなる)。
 図8は、図6(a)に示したブロックb1~b7の直下に配置された各LEDのみを点灯させ、その他のLEDを消灯させた場合の液晶表示パネルにおけるブロックb1~b7のバックライトからの照射光による輝度分布を示すグラフである。なお、図8は、各ブロックを3×3の小ブロックに分割した場合に水平方向に並ぶ各小ブロックの輝度を示している。
 この図に示すように、ブロックb3~b5については略同様の輝度が得られる一方、ブロックb1,b2,b6,b7においてはブロックb3~b5よりも輝度が低くなる。また、ブロックb3~b5についてはブロックb4の直下に配置されたLEDのみを点灯させた場合よりもはるかに高い輝度になる。
 このように、液晶表示パネルにおける輝度分布は複数のLEDの輝度分布を重ね合わせたものになる。
 そこで、本実施形態では、各ブロックに対応する輝度信号の最大値を、当該ブロックを中心とする3×3のブロックの直下に配置された各LEDを全て100%で点灯させたときの液晶表示パネルにおける当該ブロックのバックライトユニット3からの照射光による輝度に対応する値にする。ただし、これに限らず、例えば、ダイナミックレンジを強調してより明るい表示を行いたいような場合には各ブロックに対応する輝度信号の最大値を上記の場合より高く設定してもよく、液晶表示パネルの暗部の表現力が元々優れている場合や階調数が非常に多く圧縮が気にならないような場合には上記の場合より低く設定するようにしてもよい。
 また、液晶表示パネルにおける各ブロックのバックライトからの照射光による輝度は、周辺の各ブロックの影響を受けるので、隣り合うブロックの直下に配置されたLEDの発光輝度を変化させるだけでは十分なメリハリをつけることができず、必要な輝度を確保できない場合がある。このため、上記輝度信号は、ローパスフィルタを通すなどして各ブロックにおいて急激な変化が起こらないように設定することが好ましい。また、周辺の各ブロックの直下に配置されたLEDの影響を考慮した各ブロックの輝度を演算によって適切に求めるためには演算が複雑になる場合があり、また必ずしも適切な演算を行えない場合があるので、各ブロックについて決定した上記参照輝度値の組合せとこれら各組合せに対応する各ブロックの輝度信号の設定値との組合せを記憶したテーブルを用意しておき、このテーブルを用いて設定した各ブロックの輝度信号の設定値を設定してもよい。また、上記テーブルを用いて設定した各ブロックの輝度信号の設定値をさらにローパスフィルタで平滑化処理してもよい。
 また、本実施形態では、白色バックライトを用い、この白色バックライトの輝度を画像データから得られる輝度情報を用いて制御するものとするが、これに限るものではない。例えば、RGBの各色のバックライトを備え、RGBそれぞれの輝度を独立に制御する構成としてもよい。その場合、コントラストを向上させるだけでなく、同一エリア内での色間のコントラスを拡大できるため、より色純度の高い鮮やかな映像を作成できる。また、バックライトの発光スペクトルとカラーフィルター吸収スペクトルとのマッチングを取ることにより、色間の独立性を高めることができる。
 また、上記の説明では、各ブロックを縦3×横3の9分割にしているがこれに限るものではない。分割数が多いほどバックライトによる輝度の不連続性が生じにくいという利点がある一方で、分割数が増えすぎると回路規模が増大するという問題がある。したがって、分割数はこれらの特性を考慮して適宜設定すればよい。
 なお、上記の分割数は、表示すべき映像の精細度、SN比などにも大きく影響されるので、入力される映像の種類やSN比などに応じて適宜設定することが好ましい。例えば、4K×2Kクラスの液晶表示パネルを用い、HD映像(1440×1080ドット程度の映像)を拡大して表示させる場合、各ブロック内に128×128画素が存在するケースにおいて各ブロックを8×8の64分割にしても視認できるほどの不具合は発生しなかった。また、DVD映像(720×480ドット程度の映像)などを拡大して再現する場合、4×4分割程度の分割数でも特に不具合が発生しなかった。なお、ピュア4Kの映像(もともと4K2Kクラスの映像データとして生成された映像)では、より高品位な画像を表示させるために16×16分割以上の分割数であることが好ましい。
 また、本実施形態では、説明の便宜上、LED解像度(LEDの配置個数)を8×4としているが、これに限るものではなく、映像品位を向上させるためにはLED解像度をより高くすることが好ましい。具体的には、1つのLEDに対応するブロックが4K2Kクラスの画像データにおける64ドット×64ドット~256ドット~256ドット程度の画素に対応するように、LED解像度を64×32~16×8程度に設定することが好ましい。LED解像度を16×8以上にすることにより、ブロック間の輝度の相違がユーザに視認されることを防止してメリハリのある映像をユーザに視認させることができる。また、LED解像度を高くしすぎると、回路規模の増大やLED用の電源回路の増大などの問題があるので、LED解像度は64×32以下にすることが好ましい。また、各LEDに対応するブロックの形状は正方形に限るものではなく、各部材の数や配置の都合に応じて適宜設定すればよい。
 輝度分布データ生成回路(輝度分布データ生成部)18は、LED解像度信号生成回路17によって生成されたLED解像度の輝度信号に基づいて各LEDを駆動した場合に、これら各LEDからの照射光によって液晶表示パネル2に生じる輝度分布を互いに重ね合わせて得られる各画素の輝度データ(輝度分布データ)を生成し、生成した輝度分布データを液晶表示パネル2における各表示領域毎に分割して補正回路14a~14dに出力する。
 つまり、LEDは点光源であるが、LEDから出射された光は液晶表示パネル2へ到達するまでに拡散し、液晶表示パネル2ではLEDの直上の位置を頂点とする山状の輝度分布を持つことになるので、液晶表示パネル2においては、LEDの直上では輝度が高くそこから離れるにつれて輝度が低下する。そこで、輝度分布データ生成回路18は、個々のLEDによって液晶表示パネル2に生じる輝度分布を重ね合わせることにより、バックライトユニット3全体(バックライトユニット3に備えられる各LED)によって液晶表示パネル2に生じる輝度分布を算出して輝度分布データを生成する。図9(a)は液晶表示パネル2に表示させる画像データの一例を示しており、図9(b)はこの画像データに対応する輝度分布データの一例を示している。
 LED駆動回路(LED駆動部)19は、LED解像度信号生成回路17によって生成されたLED解像度の輝度信号に基づいて各LEDの輝度を制御する。つまり、LED駆動回路19は、各LEDの発光輝度を、上記輝度信号における各LEDに対応するドットの輝度に応じた輝度になるように制御する。
  (1-2.制御装置1における処理)
 次に、制御装置1における処理の流れについて説明する。まず、制御装置1に対して、3840×2160ドットの画像データを左上、左下、右上、および右下の4つの領域に対応する1920ドット×1080ドットの4つの画像データP1,P2,P3、P4に分割した画像データが入力された場合の例について説明する。図10はこの場合の制御装置1における処理を概略的に示した説明図である。
 まず、前処理回路10は、各画像データP1,P2,P3、P4を2040ドット×1080ドットに拡張した画像データQ1,Q2,Q3,Q4を生成し、ダウンコンバータ13および分割回路11aに出力する。分割回路11aはこの画像データQ1,Q2,Q3,Q4を、スイッチSW2a~SW2dを介して補正回路14a~14dに出力する。この際、前処理回路10は、左上および左下の画像データについては右詰にして左側にダミー画像データ(例えば黒画素)を付与することで上記の拡張を行い、右上および右下の画像データについては左詰めにして右側にダミー画像データ(例えば黒画素)を付与することで上記の拡張を行う。なお、入力画像データの縦方向のサイズと液晶表示パネルの縦方向のサイズとが異なる場合には、左上および右上の画像データについては下詰めにして上側にダミー画像データ付与し、左下および右下の画像データについては上詰めにして下側にダミー画像データ付与すればよい。
 ダウンコンバータ13は、画像データQ1,Q2,Q3,Q4を結合して得られる4096×2160ドットの画像データをダウンコンバートし、1920×1080ドットの画像データR1を生成し、スイッチSW1を介して表示マップ生成回路16に出力する。
 表示マップ生成回路16は、入力された画像データの縦横比をバックライトユニット3の縦横比に合わせるマッピング処理を行い、マッピング画像データR2を生成する。この際、画像データの存在しない領域については周辺画素の画像データをコピーしてもよく、周辺画素を含む複数の画素の画像データの平均値を用いてもよい。
 次に、LED解像度信号生成回路17は、表示マップ生成回路16によって生成されたマッピング画像データに基づいてLED解像度の輝度信号S1を生成し、生成した輝度信号S1を輝度分布データ生成回路18およびLED駆動回路19に出力する。輝度信号S1の生成方法は上記した通りである。
 輝度分布データ生成回路18は、LED解像度信号生成回路17から入力されたLED解像度の輝度信号S1に基づいて各LEDを駆動した場合の各LEDからの照射光による液晶表示パネル2での輝度分布(各画素の輝度)Tを算出し、算出した輝度分布Tを液晶表示パネル2における各表示領域毎に分割して各領域の輝度分布信号T1~T4を生成し、補正回路14a~14dに出力する。
 補正回路14a~14dは、輝度分布データ生成回路18から入力された輝度分布信号T1~T4に応じて画像データQ1~Q4の階調レベルを補正し、補正後の画像データU1~U4を液晶駆動回路15に出力する。
 液晶駆動回路15は、補正回路14a~14dから入力された画像データU1~U4に応じた画像を液晶表示パネル2における各表示領域に表示させる。また、これと同期して、LED駆動回路19は、LED解像度信号生成回路17から入力された輝度信号に応じて各LEDの発光状態を制御する。
 次に、制御装置1に対して、1920ドット×1080ドットの画像データP1が入力された場合の例について説明する。
 この場合、前処理回路10は、1920ドット×1080ドットの画像データP1にダミー画像データ(例えば黒画素)を付加し、液晶表示パネル2の縦横比と同じ縦横比である2048×1080ドットの画像データPX1に拡張する。この際、前処理回路10は、画像データP1に対応する画像が最終的に液晶表示パネル2の表示領域の中央付近に表示されるように、画像データP1の周縁部にダミー画像データを付加する。前処理回路10によって生成された画像データPX1は分割回路11bおよび表示マップ生成回路16に出力される。
 表示マップ生成回路16は、入力された画像データの縦横比をバックライトユニット3の縦横比に合わせるマッピング処理を行い、マッピング画像データR2を生成する。この際、画像データの存在しない領域については周辺画素の画像データをコピーしてもよく、周辺画素を含む複数の画素の画像データの平均値を用いてもよい。
 次に、LED解像度信号生成回路17は、表示マップ生成回路16によって生成されたマッピング画像データに基づいてLED解像度の輝度信号S1を生成し、生成した輝度信号S1を輝度分布データ生成回路18およびLED駆動回路19に出力する。輝度信号S1の生成方法は上記した通りである。
 輝度分布データ生成回路18は、LED解像度信号生成回路17から入力されたLED解像度の輝度信号S1に基づいて各LEDを駆動した場合の液晶表示パネル2における輝度分布(各画素の輝度)Tを算出し、算出した輝度分布Tを液晶表示パネル2における各表示領域毎に分割し、各表示領域の輝度分布信号T1~T4をそれぞれ補正回路14a~14dに出力する。
 一方、分割回路11bは、前処理回路10から入力された画像データP1を左上、左下、右上、および右下の4つ領域に対応する画像データに分割し、各分割画像データQX1~Qx4をそれぞれアップスケール回路12a~12dに出力する。アップスケール回路12a~12dは、分割画像データQX1~QX4をそれぞれ2048×1080ドットの画像データにアップコンバートし、補正回路14a~14dに出力する。なお、分割回路11bにおける分割処理およびアップスケール回路12a~12dにおけるアップスケール処理の詳細については後述する。
 補正回路14a~14dは、輝度分布データ生成回路18から入力された輝度分布信号T1~T4に応じて画像データQ1~Q4の階調レベルを補正し、補正後の画像データU1~U4を液晶駆動回路15に出力する。
 液晶駆動回路15は、補正回路14a~14dから入力された画像データU1~U4に応じた画像を液晶表示パネル2における各表示領域に表示させる。また、これと同期して、LED駆動回路19は、LED解像度信号生成回路17から入力された輝度信号に応じて各LEDの発光状態を制御する。
 なお、本実施形態では、補正回路が補正回路14a~14dの4系統に分割された構成としているが、これに限らず、例えばメモリ容量と処理速度とを十分に確保できる場合には一つの回路で処理するようにしてもよい。この場合、輝度分布データ生成回路18が液晶表示パネル2の全領域についての輝度分布Tを補正回路に出力し、補正回路がこの輝度分布Tに基づいて画像データQ1~Q4の階調値を補正し、補正後の画像データU1~U4を液晶駆動回路15に出力するようにすればよい。
 また、バックライトユニット3は、RGBの各色の輝度を独立して制御できるものであってもよく、白色LED,CCFLなどのように色別の輝度制御ができないものであってもよい。色別の輝度制御ができない構成の場合、回路規模を縮小するために、表示マップ生成回路16が入力されたRGB色空間の画像データをYUV色空間の画像データに変換し、輝度分布データ生成回路18がYUV色空間のデータをRGB色空間のデータに変換して補正回路14a~14dに出力するようにしてもよい。
  (1-3.分割回路11bおよびアップスケール回路12a~12dの処理)
 次に、分割回路11bにおける画像データの分割方法、およびアップスケール回路12a~12dにおけるアップスケール処理について説明する。
 図11は、分割回路11bおよびアップスケール回路12a~12dにおける処理を概略的に示した説明図である。この図に示すように、入力画像(原画像)データとして2K1Kの画像データが入力されると、分割回路11bがこの入力画像データを(1K+α)×(0.5K+α)の4つの分割画像データに分割する。なお、図11に示した破線部分(αの部分)は隣接する他の分割画像データとのオーバーラップ部分である。
 上記のように分割された各分割画像データに対して、アップスケール回路12a~12dが補間処理(アップスケール処理)を行い、2K1Kの補間後画像データ(アップスケール後画像データ)を生成する。なお、アップスケール回路12a~12dは上記の補間処理を並列処理する。
 その後、アップスケール回路12a~12dによって補間処理された各補間後画像データに対して補正回路14a~14dが上述した補正処理を行い、液晶駆動回路15が補間処理および補正処理後の各保管・補正後画像データに応じた分割映像信号を生成し、これら各分割映像信号に応じた画像を液晶表示パネル2の各分割領域に表示させる。
 図12は、アップスケール回路12a~12dの概略構成を示すブロック図である。この図に示すように、各アップスケール回路12a~12dは、エッジ検出回路21と、補間回路22とを備えている。エッジ検出回路21は、分割画像データにおけるエッジの位置および方向を検出する。補間回路22は、エッジ部分とエッジ部分以外とで異なる補間方法を用いて補間処理を行う。具体的には、エッジ部分についてはエッジ方向に隣接する画素の画素値の平均値を用いて補間し、エッジ部分以外については全方位に隣接する各画素の画素値の加重平均値を用いて補完する。
 図13は、エッジ検出回路21の概略構成を示すブロック図である。この図に示すように、エッジ検出回路21は、差分回路31、フィルタ回転回路32、方向設定回路33、平均化回路34、相関演算回路35、およびエッジ識別回路36を備えている。
 差分回路31は、入力されてくる画像データに対して差分フィルタを用いた差分演算を行って差分画像データを算出し、算出した差分画像データを平均化回路34および相関演算回路35に出力する。
 例えば、図14に示すように、入力された画像データにおける注目画素を中心とする5ドット×5ドットのブロックに対して、3ドット×3ドットの各ドットにそれぞれフィルタ係数を設定した差分フィルタを適用し、注目画素を中心とする3ドット×3ドットの差分演算結果を得る。この場合、上記の差分演算は、入力画像データにおける各ドットの画素値をdij(i,jは1~3の整数)、差分フィルタをaij、差分演算結果における各ドットの画素値をbkl(k、lは1~3の整数)とすると、
Figure JPOXMLDOC01-appb-M000001
で表される。
 なお、本実施形態では、差分フィルタaijとして、以下に示す1:2:1のフィルタ、
Figure JPOXMLDOC01-appb-M000002
を用いる。ただし、差分フィルタaijはこれに限るものではなく、注目画素近傍の階調値の微分または差分を用いた演算によって画像中のエッジを抽出できるものであればよい。例えば、以下に示す3:2:3,1:1:1,あるいは1:6:1のフィルタを用いてもよい。
Figure JPOXMLDOC01-appb-M000003
などを用いてもよい。差分フィルタを上記のようにa:b:aと表現した場合、bの重みが大きいほど注目画素の近傍を正確に評価できる一方でノイズには弱くなる。また、bの重みが小さいほど注目画素の周辺の様子を包括的にとらえることができるものの小さな変化を逃しやすくなる。このため、差分フィルタのフィルタ係数については、目標とする画像特性に応じて適宜選択すればよい。例えば、写真のような本質的に緻密でぼやけが少ないようなコンテンツではbの重みが大きい方がその特徴をつかみやすい。また、動きの激しい映像、特に暗い映像など、ぼやけ,ノイズが大きくなりやすいコンテンツではbの重みを相対的に小さくすることで誤判定を抑制できる。また、本実施形態では差分フィルタとして3ドット×3ドットのフィルタを用いているが、これに限るものではなく、例えば5ドット×5ドットや7ドット×7ドットの差分フィルタを用いてもよい。
 フィルタ回転回路32は差分回路31で用いる差分フィルタに回転処理を施すものである。また、方向設定回路33はフィルタ回転回路32による差分フィルタの回転を制御するとともに、差分フィルタの適用状態を示す信号をエッジ識別回路36に出力するものである。
 本実施形態では、入力画像データに対してまず上記の差分フィルタaijを用いて差分演算を行うことで水平方向のエッジ検出処理を行い、その後、上記の差分フィルタaijを90度回転させたフィルタを用いて上記入力画像データに対して差分演算を再度行うことで垂直方向のエッジを検出する。なお、水平方向および垂直方向のエッジ検出処理を並行して行うようにしてもよく、この場合には差分回路31、フィルタ回転回路32、方向設定回路33、平均化回路34、相関演算回路35、およびエッジ識別回路36を2組設けておけばよい。
 図15は、垂直方向のはっきりとしたエッジの画像(画像A)、垂直方向に延伸する細い線の画像(画像B)、乱雑な線の画像(画像C)、およびこれら各画像に対して1:2:1の差分フィルタを用いて水平方向および垂直方向の差分演算を行った結果を示す説明図である。
 この図に示すように、入力画像データにおける注目画素(中心画素)の周囲3ドット×3ドットのパターンは同じであり、注目画素の水平方向についての差分演算結果(中央値)はいずれも4になる。ところが、水平方向の差分演算結果における注目画素を中心とする3ドット×3ドットのブロックについての平均値の中央値に対する比率は、画像Aが0.67、画像Bが0.33、画像Cが0.22となっており、はっきりとしたエッジ(あるいはエッジに近い画像)があるものほど数値が大きくなる。つまり、細い線の画像Bはエッジであるかもしれないが模様(テクスチャ)である可能性もあり、画像Aに比べて差分演算結果の平均値(エッジ性(エッジらしさ)を示す値)が半分程度しかない。また、乱雑な中にある線の画像Cは、本当のエッジであるのかノイズであるのかの区別ができず、画像Aに比べて差分演算結果の平均値が1/3程度になっている。
 なお、差分画像データにおける5ドット×5ドットあるいは7ドット×7ドットのブロックでは、入力画像データのパターンの違いによる平均値の差が3ドット×3ドットの場合に比べて小さくなっている。このため、差分画像データにおける5ドット×5ドットあるいは7ドット×7ドットのブロックの平均値を用いてエッジ検出を行う場合には詳細な条件判断を行う必要がある。このことから、エッジ検出処理には3ドット×3ドットの差分画像データを用いることが好ましい。なお、3ドット×3ドットの差分画像データを得るためには入力画像データにおける5ドット×5ドットのブロックを参照することになる。
 また、回路規模に余裕がある場合には、3ドット×3ドットの差分画像データを用いたエッジ検出に加えて、5ドット×5ドットおよび/または7ドット×7ドットの差分画像データを用いたエッジ検出処理を行い、その処理結果を3ドット×3ドットの差分画像データを用いたエッジ検出で誤検出が生じる場合の例外処理としてデータベース化するようにしてもよい。これにより、より高精度なエッジ検出を行うことができる。例えば、周期性の高いテクスチャの中に埋もれているようなエッジであっても適切に検出できる。
 図16は、斜め方向のはっきりとしたエッジの画像(画像D)、斜め方向に延伸する細い線の画像(画像E)、乱雑な線の画像(画像F)、およびこれら各画像に対して1:2:1の差分フィルタを用いて水平方向および垂直方向の差分演算を行った結果を示す説明図である。
 画像D,Eに対する水平方向および垂直方向の差分演算結果における注目画素を中心とする3ドット×3ドットのブロックについての平均値の中央値に対する比率は、画像Dが0.67、画像Eが0.33となっており、画像A,Bに対する水平方向の差分演算結果と同様、はっきりとしたエッジ(あるいはエッジに近い画像)があるものほど数値が大きくなる。また、画像Fでは、3ドット×3ドットのブロックについての平均値の中央値に対する比率が0.06となっており、エッジとして認識されにくくなっている。
 図17は、傾き1/2のエッジの画像(画像G)、傾き1のエッジの画像(画像H)、傾き2のエッジの画像(画像I)、およびこれら各画像に対して1:2:1の差分フィルタを用いて水平方向および垂直方向の差分演算を行った結果を示す説明図である。図17における各画像はエッジ部分の画像なので、水平方向および垂直方向の差分演算結果における注目画素を中心とする3ドット×3ドットのブロックについての平均値の中央値に対する比率はいずれも大きくなっている。
 また、これら各画像における水平方向の差分演算結果の中央値と垂直方向の差分演算結果の中央値との比は、画像Gが2/4、画像Hが3/3、画像Iが4/2となっており、各画像におけるエッジの傾きと一致している。本実施形態では、この特性を用いて、後述するエッジ識別回路36が、注目画素がエッジ部分であると判定した場合に、水平方向および垂直方向の差分演算結果における中央値(注目画素の値)の比に基づいてエッジの傾きを算出するようになっている。なお、水平方向または垂直方向のエッジについては、水平方向の差分演算結果における中央値または水平方向の差分演算結果における中央値のいずれかが0になるので、エッジ方向を容易に判定できる。
 平均化回路34は、差分回路31から入力される差分画像データbijに基づいて、注目画素の画素値を当該注目画素およびその周辺画素の画素値で平均化した値とした平均化画像データを生成する。
 なお、上記の平均化処理は、例えば図18に示すように2ドット×2ドットのローパスフィルタ(LPF)を用いたフィルタ処理によって行ってもよい。図18に示す例では、差分回路31から入力された差分画像データにおける3ドット×3ドットのブロックに対して、2ドット×2ドットの各ドットにそれぞれフィルタ係数を設定しローパスフィルタを適用し、2ドット×2ドットの平均化処理結果を得る。この場合、上記の平均化演算は、差分画像データにおける各ドットの画素値をbij(i,jは1~3の整数)、ローパスフィルタをcij、平均化画像データにおける各ドットの画素値をb’ijとすると、
Figure JPOXMLDOC01-appb-M000004
で表される。
 また、平均化回路34は、差分画像データにおける3ドット×3ドットのブロックを1ドットずつ順次ずらして同様の演算を行うことにより、b13,b23,b31,b32,およびb33を算出する。すなわち、注目画素およびその周囲8画素の合計9画素についての平均化画像データを算出する。そして、これら9画素の平均化画像データを相関演算回路35に出力する。
 相関演算回路35は、差分回路31から入力された差分画像データと、平均化回路34から入力された平均化画像データとの相関を示す値を算出する。具体的には、差分回路31から入力された注目画素を中心とする9画素の差分画像データの平均値A、および平均化回路34から入力された注目画素を中心とする9画素の平均化画像データの平均値Bを算出し、これらの平均値AおよびBに基づいて注目画素についての相関値R=B/Aを算出する処理を、水平方向および垂直方向についてそれぞれ行う。そして、水平方向について算出した相関値Rおよび垂直方向について算出した相関値Rのうち、値が大きい方の相関値Rを採用してエッジ識別回路36に出力する。
 エッジ識別回路36は、相関演算回路35から入力された注目画素についての相関値Rと、予め設定された閾値Thとを比較することにより、この注目画素がエッジ画素であるか否かを判断する。なお、上記の閾値Thは、多数のサンプル画像に基づいて各画素の相関値Rを算出し、エッジ部分の画素について算出された相関値Rとエッジ部分以外の画素について算出された相関値Rとを比較する実験を行うことによって予め設定しておけばよい。
 図19は、エッジ識別回路36によるエッジ識別処理の概念を示す説明図である。図19に示すように、入力画像データにエッジ部分とノイズとが混在している場合、差分画像データにはエッジ部分とノイズの影響とが反映されるので、差分画像データだけを用いてエッジ検出を行うとこのノイズの影響を受けてしまう。
 つまり、入力画像データにおいて縦方向にのびるエッジがある場合、この入力画像データに対して上記の差分演算を行った差分画像データは0でない値をもち、階調変化がない状態では0となる。ところが、このポイントにノイズが存在する場合や、細かい縦ストライプが存在する場合にも差分画像データの値は0でない値になる。
 これに対して、差分画像データに平均化処理を施すことにより、図19に示すように、差分画像データからノイズを除去することができる。
 つまり、平均化の範囲内に1ドットだけ存在するノイズは平均化処理によって消し去られる。また、平均化の範囲を3ドット×3ドット、4ドット×4ドット、5ドット×5ドットというように大きくしていくと、微小なノイズやテクスチャ等を消し去ることができる。
 一方、エッジ部分については、比較的大きな領域を分割しているので、平均化処理されたブロックにおいても平均化処理前の差分情報が維持されやすい。
 このため、差分画像データとこの差分画像データを平均化処理した平均化画像データとの相関関係を調べることにより、ノイズあるいはテクスチャを識別してエッジ部分を精度よく検出することができる。
 つまり、平均化画像データではノイズやテクスチャが消し去られる一方、エッジ部分は平均化処理してもそのまま残るので、エッジ部分では上記の相関値Rが大きくなり、逆にエッジ部分以外では上記の相関値Rが小さくなる。また、上記の相関値Rは、エッジ部分では1あるいは1に近い値を有しており、エッジ部分以外ではエッジ部分の相関値よりも急激に小さな値になる。したがって、この相関値が急激に変化する範囲を実験等により予め調べ、閾値Thをこの範囲内に設定しておくことにより、エッジ部分を非常に精度よく検出することができる。
 また、エッジ識別回路36は、水平方向について差分演算処理を行った結果と垂直方向について差分演算処理を行った結果とを用いてエッジ方向(エッジの伸長方向)を検出し、検出結果を補間回路22に出力する。
 具体的には、水平方向についての差分演算結果における注目画素の値をa1、垂直方向についての差分演算結果における注目画素の値をa2として、これらの比a=a1/a2を算出する。そして、このように算出した比aを用いて、エッジの傾き角度θをθ=arctan(a)より算出する。
 なお、3ドット×3ドットのブロックで表現できる傾きのパターン(種類)は図20に示す5種類しかない。また、上記の比aの値は入力画像データに含まれるノイズの影響によって変動する場合がある。このため、エッジ方向については、必ずしも上記角度θを厳密に算出する必要はなく、図20に示した5パターンのうちのいずれか、あるいはこれら5パターンの中間の傾きを含む9パターンのうちのいずれかに分類できればよい。したがって、エッジ方向の検出処理の簡略化およびエッジ方向の検出に要する回路規模の低減を図るためには、上記比aの値は必ずしも直接計算する必要はなく、例えば乗算回路と比較とによって図20に示した5パターンまたはその中間を含む9パターンのうちのいずれに相当するかを判定すればよい。
 また、エッジ方向の傾きを検出するために5ドット×5ドットのフィルタを用いてもよい。5ドット×5ドットの領域で判定できる傾きのパターンは単純なパターンで9種類あり、これら9種類の中間の傾きを考慮すると10数種類ある。したがって、5ドット×5ドットのフィルタを用いてエッジ方向の傾きをより精度よく判定し、傾きの各パターンに応じた補間演算を行うことにより、3ドット×3ドットのブロックで傾きを判定する場合よりもより広域のエッジ状態を良好に補間することができる。ただし、5ドット×5ドットのブロックでエッジ方向の傾きを判定する場合には、3ドット×3ドットのブロックで判定する場合よりも小さい周期で方向が変化するようなエッジを見逃しやすい。したがって、いずれのブロックでエッジ方向の傾きを判定するかについては、表示するコンテンツの種類,特性等に応じて適宜選択するようにしてもよい。
 補間回路22は、エッジ識別回路36のエッジ検出結果に基づいて、エッジ部分およびエッジ以外の部分に対して、それぞれの特性に適した補間処理を行う。
 なお、入力された画像データの解像度を水平方向および垂直方向について2倍にアップスケールする場合、図21(a)および図21(b)に示す2種類の補間方法が考えられる。
 第1の方法は、図21(a)に示すように、入力された画像データにおける各画素(基準点:図中の○印)の値(輝度)をそのまま残し、これら各画素の間の画素(図中の△印)を補間する方法である。
 第2の方法は、図21(b)に示すように、入力された画像データにおける各画素(基準点:図中の○印)の周囲4画素(図中の△印)を補間する方法である。この方法では入力された画像データにおける各画素の画素値(輝度)は補間処理後には残らない。
 入力された画像に鮮明なエッジがあった場合、第2の方法では入力画像データの各画素の画素値が残らないので、エッジがぼやけてしまう場合がある。また、第2の方法よりも第1の方法の方が、演算が容易であり、回路規模を低減できる。このため、本実施形態では第1の方法を採用する。ただし、本発明はこれに限るものではなく、第2の方法を用いることも可能である。
 図22は、エッジ部分の補間方法を説明するための説明図であり、傾きの大きさが1の斜め方向のエッジ部分についての補間の例を示している。
 この図に示す補間方法では、まず補間する画素の周辺4画素を選択する。なお、傾き方向に平行な線分を含む平行四辺形の各頂点を形成するように4画素を選択することにより、補間演算を容易にすることができる。
 具体的には、図22に示す補間画素xについては周辺画素として画素B,E,F,Iが選択され、補間画素yについては周辺画素として画素D,E,H,Iが選択される。なお、補間画素zのようにエッジ方向に隣接する画素同士を結ぶ直線上に存在する補間画素についてはエッジ方向に隣接する上記各画素(この場合2画素)を周辺画素として選択する。そして、選択した各周辺画素の平均値を補間画素の画素値とする。すなわち、z=(E+I)/2、y=(D+E+H+I)/4、x=(B+E+F+I)/4とする。
 なお、エッジ方向の傾きの大きさが1ではない場合、周辺4画素の各画素値に傾きに応じて画素毎に設定される係数を乗じた値の平均値を用いればよい。例えば、図22において傾きの大きさが2の場合、z=((3×E+F)/4+(H+3×I))/2、y=((3×E+D)/4+(3×H+I)/4)/2、x=(B+I)/2といったように設定すればよい。
 上記のエッジの傾きに応じた係数は、例えば3ドット×3ドットのブロックで表現できる上記の5パターンあるいは9パターンに対応する値を予め近似計算等によって設定しておいてもよい。
 一方、エッジ部分ではないと判定された部分(例えばなだらかな階調変化を表現している部分やノイズ部分など)については、エッジが際立たないテクスチャ重視の補間方法を適用する。ここで言うテクスチャ重視とは、階調や色相の保全性、階調変化の連続性に重点を置き、比較的ノイズに強い処理のことを意味する。このような方法としては、例えば、バイリニア法、バイキュービック法、lanczosフィルタ法(LANCZOS法)などの従来から公知の種々の方法を用いることができる。特に、アップスケールの拡大率が一定である場合(本実施形態では拡大率は2倍)、LANCZOS法は優秀かつ簡易なフィルタとして知られており、好適である。
 以上のように、本実施形態では、1画面分の画像データを液晶表示パネル2の表示領域に応じて分割した複数の分割画像データに基づいて液晶表示パネル2における上記各表示領域の動作を制御し、分割されていない1画面分の画像データに基づいてバックライトユニット3における上記各LEDの動作を制御する。
 これにより、各表示領域の境界部におけるLEDを適切に制御することができるので、各表示領域の境界部における表示品位が低下することを防止できる。
 また、本実施形態にかかる液晶表示装置100では、入力画像データの縦横比と液晶表示パネル2の縦横比とが異なり、液晶表示パネル2の表示画面内に対応する入力画像データがない画像非表示領域が生じる場合に、この画像非表示領域に対応するLEDの輝度を、画像表示領域の端部における平均輝度(APL)に基づいて設定する。これにより、画像端部における画像品位の低下を抑制し、自然な画像を表示させることができる。
 また、本実施形態にかかる液晶表示装置100では、入力画像データの縦横比と液晶表示パネル2の縦横比とが異なり、液晶表示パネル2の表示画面内に対応する入力画像データがない画像非表示領域が生じる場合に、表示マップ生成回路16が、入力画像データに対応する画像を表示画面内のどの位置に表示させるかを決定してマッピング画像データ(表示マップ情報)を生成し、このマッピング画像データに基づいて各LEDの発光輝度を設定するとともに、各分割画像データの補正を行う。つまり、表示マップ生成回路16は、液晶表示パネル2に入力画像データに応じた画像を表示するための各分割画像データにおける各位置と分割されていないLEDの制御に用いるための画像データにおける各位置とが互いに一致するように位置情報を表示マップ情報として生成する。これにより、入力画像データの縦横比と液晶表示パネル2の縦横比とが異なる場合であっても、入力画像データに応じた画像を適切に表示することができる。また、入力画像データに応じた画像の表示位置に応じて各LEDの発光状態を適切に制御することができる。
 また、本実施形態にかかる液晶表示装置100では、入力画像データに対して差分演算を施した差分画像データと、この差分画像データに対して平均化処理を施した平均化画像データとの相関値を算出し、算出した相関値に基づいてエッジ部分およびエッジ方向を検出する。これにより、入力画像データにおけるエッジ部分を高精度に検出することができる。
 また、本実施形態では、入力画像データにおける注目画素を中心とする5ドット×5ドットの画像データに基づいて算出される差分画像データおよび平均化画像データに基づいて注目画素がエッジ部分であるか否かを判断する。したがって、入力画像データを複数の領域毎に分割する際、入力画像データを単純に4分割した各分割画像データに、これら各分割画像データに隣接する分割領域の画像データに含まれる境界部の2ドット分(水平方向に隣接する分割画像データの2列分および垂直方向に隣接する分割画像データの2行分)の画像データを付加(オーバーラップ)させるだけで、各分割画像データにおけるエッジ部分を高精度に検出することができる。つまり、入力画像データの水平方向の画素数をnx、垂直方向の画素数をnyとすると、各分割領域の画素数を水平方向nx/2+2、垂直方向ny+2とすることにより、各分割領域において他の領域との相互作用を考えずに個別にエッジ検出およびアップスケールを精度よく行える。
 したがって、エッジ検出処理に用いる画像データを少なくできるので、回路規模を小さくすること、および処理時間を短縮することができる。つまり、従来のように画像全体についてエッジを追跡する必要がないので、エッジ判定のために画像全体の情報を分割された各アップスケール回路に渡す必要がない。このため、各アップスケール回路において他の分割領域との相互作用を考慮することなくエッジ検出を高精度に行える。
 また、制御装置1を構成する各回路(各ブロック)は、CPU等のプロセッサを用いてソフトウェアによって実現されてもよい。すなわち、制御装置1は、各機能を実現する制御プログラムの命令を実行するCPU(central processing unit)、上記プログラムを格納したROM(read only memory)、上記プログラムを展開するRAM(random access memory)、上記プログラムおよび各種データを格納するメモリ等の記憶装置(記録媒体)などを備えている構成としてもよい。この場合、本発明の目的は、上述した機能を実現するソフトウェアである制御装置1の制御プログラムのプログラムコード(実行形式プログラム、中間コードプログラム、ソースプログラム)をコンピュータで読み取り可能に記録した記録媒体を、制御装置1に供給し、そのコンピュータ(またはCPUやMPU)が記録媒体に記録されているプログラムコードを読み出し実行することによって達成される。
 上記記録媒体としては、例えば、磁気テープやカセットテープ等のテープ系、フロッピー(登録商標)ディスク/ハードディスク等の磁気ディスクやCD-ROM/MO/MD/DVD/CD-R等の光ディスクを含むディスク系、ICカード(メモリカードを含む)/光カード等のカード系、あるいはマスクROM/EPROM/EEPROM/フラッシュROM等の半導体メモリ系などを用いることができる。
 また、制御装置1を通信ネットワークと接続可能に構成し、通信ネットワークを介して上記プログラムコードを供給してもよい。この通信ネットワークとしては、特に限定されず、例えば、インターネット、イントラネット、エキストラネット、LAN、ISDN、VAN、CATV通信網、仮想専用網(virtual private network)、電話回線網、移動体通信網、衛星通信網等が利用可能である。また、通信ネットワークを構成する伝送媒体としては、特に限定されず、例えば、IEEE1394、USB、電力線搬送、ケーブルTV回線、電話線、ADSL回線等の有線でも、IrDAやリモコンのような赤外線、Bluetooth(登録商標)、802.11無線、HDR、携帯電話網、衛星回線、地上波デジタル網等の無線でも利用可能である。なお、本発明は、上記プログラムコードが電子的な伝送で具現化された、搬送波に埋め込まれたコンピュータデータ信号の形態でも実現され得る。
 また、制御装置1の各回路(各ブロック)は、ソフトウェアを用いて実現されるものであってもよく、ハードウェアロジックによって構成されるものであってもよく、処理の一部を行うハードウェアと当該ハードウェアの制御や残余の処理を行うソフトウェアを実行する演算手段とを組み合わせたものであってもよい。
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
産業上の利用の可能性
 本発明は、バックライトを備えた液晶表示装置の制御装置および制御方法に適用できる。

Claims (9)

  1.  液晶表示パネルと、上記液晶表示パネルの背面側にマトリクス状に配置された複数の光源を有するバックライトユニットとを備えた液晶表示装置の動作を制御する液晶表示装置の制御装置であって、
     入力画像データに基づいて上記液晶表示パネルの各画素を制御する液晶制御部と、
     入力画像データに基づいて上記各光源の発光状態を制御するバックライト制御部と、
     入力画像データの縦横比と上記液晶表示パネルの縦横比とが異なる場合に、上記入力画像データまたは入力画像データに所定の処理を施した画像データの周縁部にダミー画像データを付加して上記液晶表示パネルの縦横比に応じた縦横比を有するサイズ調整画像データを生成する画像サイズ調整部とを備え、
     上記バックライト制御部は、
     上記サイズ調整画像データを上記各光源の配置位置にそれぞれ対応する複数のブロックに分割し、
     上記入力画像データに対応する画像の表示領域である画像表示領域に対応する光源については当該光源に対応するブロックに含まれる各画素の階調値のうちの最大値に基づいて発光輝度を決定し、
     上記ダミー画像データに対応する画像の表示領域である画像非表示領域に対応する光源については、当該光源に対応するブロックに隣接する画像表示領域のブロックに含まれる各画素の平均輝度レベル、または当該光源に対応するブロックに隣接する画像表示領域のブロックをさらに分割して得られる複数の小ブロックのうち当該光源に対応する画像非表示領域のブロックに隣接する小ブロックの平均輝度レベルに基づいて発光輝度を決定することを特徴とする液晶表示装置の制御装置。
  2.  上記バックライト制御部は、
     画像非表示領域に対応する光源のうち、当該光源に対応するブロックに隣接する画像表示領域のブロックがない光源について、当該光源に対応するブロックから最も近い画像表示領域のブロックに含まれる各画素の平均輝度レベル、またはこの画像表示領域のブロックをさらに分割して得られる複数の小ブロックのうち当該光源に対応する画像非表示領域側に位置する一部の小ブロックの平均輝度レベルに基づいて発光輝度を決定することを特徴とする請求項1に記載の液晶表示装置の制御装置。
  3.  上記バックライト制御部は、
     画像表示領域から遠ざかる方向に画像非表示領域のブロックが複数並ぶ場合に、画像非表示領域のブロックに対応する各光源の発光輝度を、画像表示領域から距離が増すほど暗くなるように設定することを特徴とする請求項2に記載の液晶表示装置の制御装置。
  4.  上記各光源を上記バックライト制御部によって決定された発光輝度で発光させたときの各光源からの照射光による上記液晶表示パネルでの輝度分布データを生成する輝度分布データ生成部を備え、
     上記液晶制御部は、上記入力画像データを上記輝度分布データに基づいて補正する補正部を備えており、上記補正部によって補正された画像データに基づいて上記液晶表示パネルの各画素を制御することを特徴とする請求項1から3のいずれか1項に記載の液晶表示装置の制御装置。
  5.  上記画像サイズ調整部は、
     入力画像データに対応する画像が上記液晶表示パネルの略中央に表示されるように上記ダミー画像データを付加することを特徴とする請求項1から4のいずれか1項に記載の液晶表示装置の制御装置。
  6.  液晶表示パネルと、上記液晶表示パネルの背面側にマトリクス状に配置された複数の光源を有するバックライトユニットと、請求項1から5のいずれか1項に記載の制御装置とを備えていることを特徴とする液晶表示装置。
  7.  液晶表示パネルと、上記液晶表示パネルの背面側にマトリクス状に配置された複数の光源を有するバックライトユニットとを備えた液晶表示装置の動作を制御する液晶表示装置の制御方法であって、
     入力画像データに基づいて上記液晶表示パネルの各画素を制御する液晶制御工程と、
     入力画像データに基づいて上記各光源の発光状態を制御するバックライト制御工程と、
     入力画像データの縦横比と上記液晶表示パネルの縦横比とが異なる場合に、上記入力画像データまたは入力画像データに所定の処理を施した画像データの周縁部にダミー画像データを付加して上記液晶表示パネルの縦横比に応じた縦横比を有するサイズ調整画像データを生成する画像サイズ調整工程とを含み、
     上記バックライト制御工程は、
     上記サイズ調整画像データを上記各光源の配置位置にそれぞれ対応する複数のブロックに分割する工程と、
     上記入力画像データに対応する画像の表示領域である画像表示領域に対応する光源について、当該光源に対応するブロックに含まれる各画素の階調値のうちの最大値に基づいて発光輝度を決定する工程と、
     上記ダミー画像データに対応する画像の表示領域である画像非表示領域に対応する光源について、当該光源に対応するブロックに隣接する画像表示領域のブロックに含まれる各画素の平均輝度レベル、または当該光源に対応するブロックに隣接する画像表示領域のブロックをさらに分割して得られる複数の小ブロックのうち当該光源に対応する画像非表示領域のブロックに隣接する各小ブロックの平均輝度レベルに基づいて発光輝度を決定する工程とを含むことを特徴とする液晶表示装置の制御方法。
  8.  請求項1から5のいずれか1項に記載の制御装置を動作させるプログラムであって、コンピュータを上記各部として機能させるためのプログラム。
  9.  請求項8に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2009/054936 2008-06-27 2009-03-13 液晶表示装置の制御装置、液晶表示装置、液晶表示装置の制御方法、プログラムおよび記録媒体 WO2009157224A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BRPI0914855A BRPI0914855A2 (pt) 2008-06-27 2009-03-13 dispositivo de controle para dispositivo de exibição de cristal líquido, dispositivo de exibição de cristal líquido, método para controle de dispositivo de exibição de cristal líquido, programa e meio de armazenameto.
JP2010517796A JP4806102B2 (ja) 2008-06-27 2009-03-13 液晶表示装置の制御装置、液晶表示装置、液晶表示装置の制御方法、プログラムおよび記録媒体
US12/736,660 US8917293B2 (en) 2008-06-27 2009-03-13 Control device for liquid crystal display device, liquid crystal display device, method for controlling liquid crystal display device, program, and storage medium
EP09769934.2A EP2290435B1 (en) 2008-06-27 2009-03-13 Liquid crystal display device, method for controlling liquid crystal display device, and recording medium
RU2010144182/28A RU2471214C2 (ru) 2008-06-27 2009-03-13 Устройство управления жидкокристаллическим дисплеем, жидкокристаллический дисплей, способ управления жидкокристаллическим дисплеем, программа и носитель данных
CN200980114798XA CN102016699B (zh) 2008-06-27 2009-03-13 液晶显示装置的控制装置、液晶显示装置、液晶显示装置的控制方法、程序以及记录介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-169424 2008-06-27
JP2008169424 2008-06-27

Publications (1)

Publication Number Publication Date
WO2009157224A1 true WO2009157224A1 (ja) 2009-12-30

Family

ID=41444296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054936 WO2009157224A1 (ja) 2008-06-27 2009-03-13 液晶表示装置の制御装置、液晶表示装置、液晶表示装置の制御方法、プログラムおよび記録媒体

Country Status (7)

Country Link
US (1) US8917293B2 (ja)
EP (1) EP2290435B1 (ja)
JP (1) JP4806102B2 (ja)
CN (1) CN102016699B (ja)
BR (1) BRPI0914855A2 (ja)
RU (1) RU2471214C2 (ja)
WO (1) WO2009157224A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777312A (zh) * 2010-03-12 2010-07-14 彩虹集团公司 Led动态背光的误差扩散调节方法
CN101923825A (zh) * 2010-07-27 2010-12-22 深圳市中庆微科技开发有限公司 一种平面发光设备区域校正方法
CN101984488A (zh) * 2010-10-15 2011-03-09 广州创维平面显示科技有限公司 侧光式led背光动态分区控制方法
EP2372686A1 (en) * 2010-03-09 2011-10-05 Vestel Elektronik Sanayi ve Ticaret A.S. A method for local dimming boost using salient features
CN102651201A (zh) * 2011-05-04 2012-08-29 京东方科技集团股份有限公司 侧光式led背光源的动态控制方法
US20130033491A1 (en) * 2011-08-04 2013-02-07 Dolby Laboratories Licensing Corporation Method and Apparatus for Full Resolution 3D Display
JP5302961B2 (ja) * 2008-06-27 2013-10-02 シャープ株式会社 液晶表示装置の制御装置、液晶表示装置、液晶表示装置の制御方法、プログラムおよびその記録媒体
JP2014059546A (ja) * 2012-08-23 2014-04-03 Canon Inc 表示装置及びその制御方法
US8722718B2 (en) 2006-04-20 2014-05-13 Janssen Pharmaceutica Nv Inhibitors of C-FMS kinase
WO2014115449A1 (ja) * 2013-01-22 2014-07-31 シャープ株式会社 液晶表示装置
US8917293B2 (en) 2008-06-27 2014-12-23 Sharp Kabushiki Kaisha Control device for liquid crystal display device, liquid crystal display device, method for controlling liquid crystal display device, program, and storage medium
WO2015080096A1 (ja) * 2013-11-26 2015-06-04 圭祐 戸田 表示装置および表示方法
JP2017534896A (ja) * 2014-08-27 2017-11-24 深▲せん▼市華星光電技術有限公司Shenzhen China Star Optoelectronics Technology Co., Ltd. 画面補正方法、及び画面補正を有するディスプレイ
CN114582279A (zh) * 2022-05-05 2022-06-03 卡莱特云科技股份有限公司 基于误差扩散的显示屏对比度提升方法、装置及电子设备

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5486678B2 (ja) * 2010-05-21 2014-05-07 シャープ株式会社 色判定装置、色判定方法、画像処理回路及びプログラム
KR101324453B1 (ko) * 2010-11-25 2013-10-31 엘지디스플레이 주식회사 로컬 디밍 방법과 이를 이용한 액정표시장치
JP5335851B2 (ja) * 2011-04-20 2013-11-06 シャープ株式会社 液晶表示装置、マルチディスプレイ装置、発光量決定方法、プログラム、及び記録媒体
JP6009538B2 (ja) * 2011-04-28 2016-10-19 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Hdr画像を符号化及び復号するための装置及び方法
TWI439996B (zh) * 2011-05-10 2014-06-01 Au Optronics Corp 調整顯示器背光的方法及相關裝置
US8525927B1 (en) * 2012-08-17 2013-09-03 Shenzhen China Star Optoelectronics Technology Co., Ltd. Method for enlarging 4K2K resolution and 4K2K resolution enlarging system using same
CN102903320B (zh) * 2012-08-17 2015-02-18 深圳市华星光电技术有限公司 4k2k分辨率放大方法及应用该方法的4k2k分辨率放大系统
CN103347163B (zh) * 2013-06-28 2017-02-08 冠捷显示科技(厦门)有限公司 一种超高清视频图像处理和传送的系统及其方法
KR102073685B1 (ko) * 2013-09-06 2020-02-06 삼성디스플레이 주식회사 액정 표시 장치
TWI526980B (zh) * 2013-10-16 2016-03-21 聯詠科技股份有限公司 用於液晶顯示器之非重疊資料資料傳輸之方法以及相關傳輸電路
TWI536341B (zh) * 2014-03-21 2016-06-01 緯創資通股份有限公司 顯示補償方法與顯示補償系統
CN104050944B (zh) 2014-06-13 2016-09-28 京东方科技集团股份有限公司 液晶显示控制方法、系统及显示装置
CN104240650B (zh) * 2014-08-28 2016-08-24 青岛海信电器股份有限公司 一种宽银幕电影显示模式下背光源亮度的控制方法及装置
US10163408B1 (en) * 2014-09-05 2018-12-25 Pixelworks, Inc. LCD image compensation for LED backlighting
KR102270460B1 (ko) * 2014-09-19 2021-06-29 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이의 열화 보상 방법
KR102357378B1 (ko) * 2015-07-07 2022-02-03 삼성디스플레이 주식회사 영상 처리 장치 및 이를 포함하는 표시 장치
KR102656664B1 (ko) * 2016-10-06 2024-04-12 삼성디스플레이 주식회사 표시장치
KR102578167B1 (ko) * 2016-11-02 2023-09-14 삼성디스플레이 주식회사 표시 장치의 구동 방법 및 이를 수행하는 표시 장치
JP6650915B2 (ja) * 2017-08-22 2020-02-19 キヤノン株式会社 表示装置及び表示制御方法
CN111295703A (zh) * 2017-11-01 2020-06-16 夏普株式会社 影像处理装置、显示装置、影像处理方法、控制程序、以及记录介质
US10650712B2 (en) * 2018-06-29 2020-05-12 Disney Enterprises, Inc. Ordered mapping on a three-dimensional projection surface
WO2020252777A1 (en) * 2019-06-21 2020-12-24 Boe Technology Group Co., Ltd. A picture frame display apparatus and a display method
CN112185295B (zh) * 2020-09-17 2024-01-30 北京集创北方科技股份有限公司 显示驱动方法及装置
CN112489601B (zh) * 2020-12-10 2021-10-22 深圳市瀚达美电子有限公司 MiniLED背光源亮度调节方法、系统和背光源装置
US11887518B2 (en) * 2022-01-06 2024-01-30 Sharp Kabushiki Kaisha Display device having displayable area expansion unit and cutting unit and control method thereof
CN116013209B (zh) * 2022-12-28 2023-08-15 北京显芯科技有限公司 一种背光区域调节方法、装置、电子设备及存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003255915A (ja) * 2002-03-07 2003-09-10 Hitachi Ltd 表示装置及びその駆動方法
JP2004184937A (ja) * 2002-12-06 2004-07-02 Sharp Corp 液晶表示装置
JP2004212503A (ja) * 2002-12-27 2004-07-29 Casio Comput Co Ltd 照明装置及びその発光駆動方法並びに表示装置
JP2005309338A (ja) 2004-04-26 2005-11-04 Mitsubishi Electric Corp 画像表示装置および画像表示方法
JP3766231B2 (ja) 1999-05-10 2006-04-12 Necビューテクノロジー株式会社 液晶表示装置
JP2007225871A (ja) * 2006-02-23 2007-09-06 Alpine Electronics Inc 表示装置及びその表示方法
JP2007310319A (ja) * 2006-05-22 2007-11-29 Sharp Corp 表示装置
JP2008116554A (ja) * 2006-11-01 2008-05-22 Sharp Corp バックライト制御装置、及び該装置を備えた映像表示装置
JP2008287118A (ja) * 2007-05-18 2008-11-27 Semiconductor Energy Lab Co Ltd 液晶表示装置およびその駆動方法
JP2009031585A (ja) * 2007-07-27 2009-02-12 Toshiba Corp 液晶表示装置

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0358459B1 (en) 1988-09-08 1996-06-19 Sony Corporation Picture processing apparatus
KR100360206B1 (ko) 1992-12-10 2003-02-11 소니 가부시끼 가이샤 화상신호변환장치
JP3243861B2 (ja) 1992-12-10 2002-01-07 ソニー株式会社 画像情報変換装置
JPH06189231A (ja) * 1992-12-16 1994-07-08 Toshiba Corp 液晶表示装置
KR100652100B1 (ko) 1999-08-05 2006-12-01 산요덴키가부시키가이샤 화상 보간 방법
JP2001078113A (ja) 1999-09-06 2001-03-23 Sony Corp 映像機器および映像表示方法
JP4340821B2 (ja) * 1999-09-06 2009-10-07 ソニー株式会社 映像機器および映像表示方法
JP2001346070A (ja) 2000-06-02 2001-12-14 Alps Electric Co Ltd 画像信号の輪郭検出回路及びそれを備えた画像表示装置
JP4920834B2 (ja) * 2000-06-26 2012-04-18 キヤノン株式会社 画像表示装置、及び画像表示装置の駆動方法
JP4150947B2 (ja) 2000-08-23 2008-09-17 ソニー株式会社 画像処理装置および方法、並びに記録媒体
JP3523170B2 (ja) 2000-09-21 2004-04-26 株式会社東芝 表示装置
JP4610793B2 (ja) * 2001-06-08 2011-01-12 パナソニック株式会社 表示装置及び方法
AU2003211470A1 (en) * 2002-03-04 2003-09-16 Sanyo Electric Co., Ltd. Organic electroluminescence display and its application
JP2004191490A (ja) 2002-12-09 2004-07-08 Hitachi Displays Ltd 液晶表示装置
JP4628770B2 (ja) * 2004-02-09 2011-02-09 株式会社日立製作所 照明装置を備えた画像表示装置及び画像表示方法
JP2005293265A (ja) 2004-03-31 2005-10-20 Canon Inc 画像処理装置及び方法
JP4480476B2 (ja) 2004-06-07 2010-06-16 Necディスプレイソリューションズ株式会社 画像処理装置および画像処理方法
JP2006084710A (ja) 2004-09-15 2006-03-30 Toshiba Matsushita Display Technology Co Ltd 表示制御回路、表示制御方法、および液晶表示装置
US20060132383A1 (en) 2004-09-27 2006-06-22 Idc, Llc System and method for illuminating interferometric modulator display
JP4904783B2 (ja) 2005-03-24 2012-03-28 ソニー株式会社 表示装置及び表示方法
TWI330270B (en) * 2005-03-29 2010-09-11 Chi Mei Optoelectronics Corp Region-based displayer and display method thereof
JP2006308665A (ja) 2005-04-26 2006-11-09 Canon Inc 画像処理装置
JP4950480B2 (ja) * 2005-11-22 2012-06-13 東芝モバイルディスプレイ株式会社 液晶表示装置
KR101192779B1 (ko) * 2005-12-29 2012-10-18 엘지디스플레이 주식회사 액정 표시장치의 구동장치 및 구동방법
KR100815916B1 (ko) 2006-02-09 2008-03-21 엘지.필립스 엘시디 주식회사 액정 표시장치의 구동장치 및 구동방법
JP5114872B2 (ja) 2006-06-03 2013-01-09 ソニー株式会社 表示制御装置、表示装置及び表示制御方法
JP4857975B2 (ja) 2006-07-14 2012-01-18 富士ゼロックス株式会社 画像処理システムおよび画像処理プログラム
JP2008096956A (ja) 2006-09-15 2008-04-24 Olympus Corp 画像表示方法および画像表示装置
US8018424B2 (en) * 2006-10-19 2011-09-13 Au Optronics Corporation Backlight device with zone control
JP4479709B2 (ja) 2006-10-27 2010-06-09 セイコーエプソン株式会社 画像表示装置、画像表示方法、画像表示プログラム、及び画像表示プログラムを記録した記録媒体、並びに電子機器
TWI354960B (en) 2006-11-07 2011-12-21 Realtek Semiconductor Corp Method for controlling display device
JP4285532B2 (ja) * 2006-12-01 2009-06-24 ソニー株式会社 バックライト制御装置、バックライト制御方法、および液晶表示装置
US20080186272A1 (en) * 2007-02-02 2008-08-07 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Backlit Display and Backlight System Thereof
KR100885285B1 (ko) * 2007-05-08 2009-02-23 닛뽕빅터 가부시키가이샤 액정 표시 장치 및 이에 이용되는 영상 표시 방법
JP2008299145A (ja) * 2007-05-31 2008-12-11 Toshiba Corp 表示装置および表示方法
US8354992B2 (en) * 2007-07-13 2013-01-15 Tte Indianapolis Appearance improvement for zone backlit LCD displays
KR100867104B1 (ko) 2007-07-27 2008-11-06 전자부품연구원 영상 표시 장치의 백라이트 밝기 제어 방법 및 장치
EP2290435B1 (en) 2008-06-27 2019-05-22 Sharp Kabushiki Kaisha Liquid crystal display device, method for controlling liquid crystal display device, and recording medium
KR100950682B1 (ko) * 2008-07-24 2010-03-31 전자부품연구원 표시 장치 및 방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3766231B2 (ja) 1999-05-10 2006-04-12 Necビューテクノロジー株式会社 液晶表示装置
JP2003255915A (ja) * 2002-03-07 2003-09-10 Hitachi Ltd 表示装置及びその駆動方法
JP2004184937A (ja) * 2002-12-06 2004-07-02 Sharp Corp 液晶表示装置
JP2004212503A (ja) * 2002-12-27 2004-07-29 Casio Comput Co Ltd 照明装置及びその発光駆動方法並びに表示装置
JP2005309338A (ja) 2004-04-26 2005-11-04 Mitsubishi Electric Corp 画像表示装置および画像表示方法
JP2007225871A (ja) * 2006-02-23 2007-09-06 Alpine Electronics Inc 表示装置及びその表示方法
JP2007310319A (ja) * 2006-05-22 2007-11-29 Sharp Corp 表示装置
JP2008116554A (ja) * 2006-11-01 2008-05-22 Sharp Corp バックライト制御装置、及び該装置を備えた映像表示装置
JP2008287118A (ja) * 2007-05-18 2008-11-27 Semiconductor Energy Lab Co Ltd 液晶表示装置およびその駆動方法
JP2009031585A (ja) * 2007-07-27 2009-02-12 Toshiba Corp 液晶表示装置

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8815867B2 (en) 2006-04-20 2014-08-26 Janssen Pharmaceutica Nv Inhibitors of c-fms kinase
US9403804B2 (en) 2006-04-20 2016-08-02 Janssen Pharmaceutica Nv Inhibitors of c-fms kinase
US9394289B2 (en) 2006-04-20 2016-07-19 Janssen Pharmaceutica Nv Inhibitors of c-fms kinase
US9266866B2 (en) 2006-04-20 2016-02-23 Janssen Pharmaceutica Nv Inhibitors of C-FMS kinase
US8722718B2 (en) 2006-04-20 2014-05-13 Janssen Pharmaceutica Nv Inhibitors of C-FMS kinase
US9105243B2 (en) 2008-06-27 2015-08-11 Sharp Kabushiki Kaisha Control device for liquid crystal display device, liquid crystal display device, method for controlling liquid crystal display device, program, and storage medium for program
JP5302961B2 (ja) * 2008-06-27 2013-10-02 シャープ株式会社 液晶表示装置の制御装置、液晶表示装置、液晶表示装置の制御方法、プログラムおよびその記録媒体
US8917293B2 (en) 2008-06-27 2014-12-23 Sharp Kabushiki Kaisha Control device for liquid crystal display device, liquid crystal display device, method for controlling liquid crystal display device, program, and storage medium
EP2372686A1 (en) * 2010-03-09 2011-10-05 Vestel Elektronik Sanayi ve Ticaret A.S. A method for local dimming boost using salient features
CN101777312A (zh) * 2010-03-12 2010-07-14 彩虹集团公司 Led动态背光的误差扩散调节方法
CN101923825B (zh) * 2010-07-27 2012-10-24 深圳市中庆微科技开发有限公司 一种平面发光设备区域校正方法
CN101923825A (zh) * 2010-07-27 2010-12-22 深圳市中庆微科技开发有限公司 一种平面发光设备区域校正方法
CN101984488A (zh) * 2010-10-15 2011-03-09 广州创维平面显示科技有限公司 侧光式led背光动态分区控制方法
CN102651201A (zh) * 2011-05-04 2012-08-29 京东方科技集团股份有限公司 侧光式led背光源的动态控制方法
US20130033491A1 (en) * 2011-08-04 2013-02-07 Dolby Laboratories Licensing Corporation Method and Apparatus for Full Resolution 3D Display
US9338445B2 (en) * 2011-08-04 2016-05-10 Dolby Laboratories Licensing Corporation Method and apparatus for full resolution 3D display
JP2014059546A (ja) * 2012-08-23 2014-04-03 Canon Inc 表示装置及びその制御方法
WO2014115449A1 (ja) * 2013-01-22 2014-07-31 シャープ株式会社 液晶表示装置
WO2015080096A1 (ja) * 2013-11-26 2015-06-04 圭祐 戸田 表示装置および表示方法
US10182226B2 (en) 2013-11-26 2019-01-15 Keisuke Toda Display unit, display system, and display method
JP2017534896A (ja) * 2014-08-27 2017-11-24 深▲せん▼市華星光電技術有限公司Shenzhen China Star Optoelectronics Technology Co., Ltd. 画面補正方法、及び画面補正を有するディスプレイ
CN114582279A (zh) * 2022-05-05 2022-06-03 卡莱特云科技股份有限公司 基于误差扩散的显示屏对比度提升方法、装置及电子设备
CN114582279B (zh) * 2022-05-05 2022-07-22 卡莱特云科技股份有限公司 基于误差扩散的显示屏对比度提升方法、装置及电子设备

Also Published As

Publication number Publication date
US20110037785A1 (en) 2011-02-17
EP2290435A4 (en) 2011-06-15
JPWO2009157224A1 (ja) 2011-12-08
RU2471214C2 (ru) 2012-12-27
US8917293B2 (en) 2014-12-23
BRPI0914855A2 (pt) 2019-09-24
EP2290435B1 (en) 2019-05-22
CN102016699A (zh) 2011-04-13
JP4806102B2 (ja) 2011-11-02
RU2010144182A (ru) 2012-08-10
CN102016699B (zh) 2012-11-21
EP2290435A1 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
JP4806102B2 (ja) 液晶表示装置の制御装置、液晶表示装置、液晶表示装置の制御方法、プログラムおよび記録媒体
JP5302961B2 (ja) 液晶表示装置の制御装置、液晶表示装置、液晶表示装置の制御方法、プログラムおよびその記録媒体
JP5430068B2 (ja) 表示装置
CN107492334B (zh) 电子显示方法、系统和非暂态程序存储设备
CN109979401B (zh) 驱动方法、驱动装置、显示设备和计算机可读介质
US9093033B2 (en) Image display device and image display method
CN101630498B (zh) 显示装置、驱动用的集成电路、其驱动方法及信号处理方法
JP5595516B2 (ja) 画像データ・ブロックの統計的属性を使ったバックライト制御のための方法およびシステム
JP4005904B2 (ja) 表示装置、及び表示方法
US8483479B2 (en) Light detection, color appearance models, and modifying dynamic range for image display
KR100772906B1 (ko) 영상신호 표시 방법 및 장치
US20140210870A1 (en) Method and Apparatus For Adjusting Drive Values for Dual Modulation Displays
CN103354935B (zh) 发光控制装置和方法、发光装置、图像显示装置
CN103325351A (zh) 图像处理装置和图像处理方法
US6778184B2 (en) Color signal correction circuit, color signal correction apparatus, color signal correction method, color signal correction program, and display apparatus
JP2006308631A (ja) 画像表示装置、画像表示方法、画像表示プログラムおよび画像表示プログラムを記録した記録媒体
CN113658559A (zh) 显示器驱动装置及驱动方法
JP2006120030A (ja) コントラスト調整装置、コントラスト調整方法
WO2019239914A1 (ja) 制御装置、表示装置および制御方法
US8125436B2 (en) Pixel dithering driving method and timing controller using the same
JP5903283B2 (ja) 画像処理装置、画像表示システム、および画像表示方法
JP7481828B2 (ja) 表示装置および制御方法
JP5203316B2 (ja) 表示制御装置、および、モアレ解消方法
JP2024083233A (ja) 表示装置および表示装置の制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980114798.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09769934

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010517796

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009769934

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12736660

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 6934/CHENP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010144182

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0914855

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101214