JP2005293265A - 画像処理装置及び方法 - Google Patents

画像処理装置及び方法 Download PDF

Info

Publication number
JP2005293265A
JP2005293265A JP2004107751A JP2004107751A JP2005293265A JP 2005293265 A JP2005293265 A JP 2005293265A JP 2004107751 A JP2004107751 A JP 2004107751A JP 2004107751 A JP2004107751 A JP 2004107751A JP 2005293265 A JP2005293265 A JP 2005293265A
Authority
JP
Japan
Prior art keywords
interpolation
pixels
edge amount
image
image processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004107751A
Other languages
English (en)
Inventor
Mitsuru Uzawa
充 鵜沢
Hiroshi Kaburagi
浩 蕪木
Kiminori Matsuzaki
公紀 松崎
Reiji Misawa
玲司 三沢
Osamu Iinuma
修 飯沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004107751A priority Critical patent/JP2005293265A/ja
Publication of JP2005293265A publication Critical patent/JP2005293265A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4007Scaling of whole images or parts thereof, e.g. expanding or contracting based on interpolation, e.g. bilinear interpolation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Editing Of Facsimile Originals (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

【課題】 画像がぼやける若しくは画像が揺れる等の画質の劣化を防止し、より高画質な解像度変換を可能とする。
【解決手段】 高解像度化の処理において、変換前画像上の画素の垂直方向、水平方向について隣接する画素間の階調値を補間するための階調曲線を算出する(ステップ700)。ここではベジェ曲線で補間され、画素(格子点)間の階調値を算出する階調曲線を算出する。次に、変換前画像と変換後画像とを重ねた際に、それらの直線の交点の階調値を算出する(ステップ701)。次に、求められた交点の階調値を用いて、変換後画像上の水平方向及び垂直方向の直線上を補間するための階調曲線を算出する(ステップ702)。ここではベジェ曲線で補間され、直線の交点の画素(格子点)間の階調値を算出する階調曲線を算出する。次に、求められた階調曲線を利用して、変換後画像上の格子点における階調値を算出する(ステップ703)。
【選択図】 図7

Description

本発明は、画像処理装置及び方法に関する。より詳細には、本発明は、文字、グラフィックス、自然画像等で構成した静止画像や動画像等のデジタル画像情報を異なる画素数の画像情報に変換し、ディスプレイ等に表示する解像度変換に係り、特に、デジタルカメラ、ビデオカメラ等で撮影された画像を高解像度画像へ変換し出力するための、画像処理装置及び方法並びにプログラムに関する。
近年、銀塩式の撮影機に代わり、撮影後の撮影物の操作・加工が簡易に行えるデジタルカメラ、デジタルビデオカメラ等が広く普及している。またこれらの撮影機器は携帯電話等の通信機器に装備されるなど、電気機器の付属の機能としても利用されつつある。それら撮影機器は気軽に撮影することが可能な一方で、得られる画像は出力機器に比べ非常に低解像度であることが多い。よって、デジタル撮影機で得られた低解像度の画像を、解像度変換を施して高精細の出力機器で高画質に出力することが望まれている。
解像度変換手法として、種々提案されており、現在一般に広く利用されている解像度変換手法としては、ニアレストネイバー法(最近隣法)、バイリニア法(線形補間)、バイキュービック法(3次畳み込み)などが挙げられる。これら解像度変換手法は当業者には周知であるが、以下、簡単に説明する。
図11は、上述の各手法によって原画像を2倍に拡大補間した際の模式図である。図11において、原画像の3つの画素a1、a2、a3は各々、拡大後の画素b1、b2、b3に対応し、画素c1、c2は補間によって得られた画素である。ニアレストネイバー法は、階調値(濃度値)を求めるべき画素の最近傍の画素の階調値がそのまま求めるべき階調値となる単純なアルゴリズムである。一方バイリニア法は、1次補間の一種であり、階調値を求めるべき画素の周囲の4つの画素の階調値から、その階調値を求めるべき画素の座標(実数値)に応じて線形の階調(濃度)補間を行う。この手法は、ニアレストネイバー法のようにエイリアシングが発生することはない。バイキュービック法は、高精度で補間を行うために、階調値を求めるべき画素の周囲の16個の画素の階調値から、3次関数を用いて補間する。補間に用いる式は、sin(πx)/πxで、理論(サンプリング定理)的には最も完全な階調補間式である。バイキュービックの特徴としてバイリニア法ほど画像がぼやけないことがあげられ一般的に最も結果のよい解像度変換手法といえる。
また、画像を高解像度化する手法として、予め定められたブロックごとに、スプライン関数やベジェ関数を用いて補間する解像度変換手法がある(特許文献1参照)。
また、画像信号が階段波形、即ちエッジか否かの判断結果に応じて、バイキュービック法とニアレストネイバー法とを選択的に切り替える方法も提案されている(特許文献2参照)。
特開平8−286658号公報 特開平11−203467号公報
しかしながら、ニアレストネイバー法は、エイリアシングが発生してしまい、モザイク状のギザギザが目立つ画像となり、画質が劣化する。一方バイリニア法は、輝度変化が直線的になりすぎ、画像がぼやける。さらにバイキュービック法は、16個の近傍画像を利用するため、処理速度が遅く、また画像に揺らぎが生じる。このように従来の解像度変換手法は、変換する画像一面を一律に評価しているため線形に近い解像度変換を行えば画像はぼやけてしまい、一方、バイキュービックのようなエッジ量(濃淡の変化量)を保つような解像度変換を行えば画像に揺らぎが生じてしまう。特許文献2はエッジか否かに応じて選択的に補間方法を切り替えることで、こうした課題の解決を試みているが、これは二者択一的な制御であり、エッジ量(エッジの強弱)に対する適応的な制御はできていないという解決すべき課題が従来技術にはあった。特に、昨今ではインフラや各種ハードウェア・ソフトウェアの機能向上に伴い、高解像度画像を利用することが増加しており、上述したような、エッジ量に基づく制御が重要視されている。
また、特許文献1に開示されている解像度変換手法を用いた場合、予め決められた補間式を用いているため上記従来手法と同様に画像がぼやける、若しくは画像に揺らぎが生じる可能性がある。また、水平方向補間後に垂直方向の補間を行っているため、画像の2次曲面の推定に誤差が生じる可能性が高い、という解決すべき課題が従来技術にはあった。
本発明は、このような課題に鑑みてなされたもので、その目的とするところは、画像がぼやける若しくは画像が揺れる等の画質の劣化を防止し、より高画質な解像度変換を可能とする画像処理装置及び方法を提供することにある。
このような目的を達成するために、本発明の画像処理装置は、画像データの画素間を補間することによって解像度を変換し、当該変換された画像データを生成する画像処理装置であって、前記画素間のエッジ量を算出するエッジ量算出手段と(ステップ700又は702の処理におけるステップ800)、前記エッジ量算出手段によって算出された前記エッジ量が小さいほど線形補間の度合いを強め、前記エッジ量が大きいほどエッジ量を保存する度合いを強めるように補間条件を設定する補間条件設定手段と(ステップ700又は702の処理におけるステップ801)、前記補間条件設定手段によって設定された前記補間条件に基づいて、前記画素間を補間する補間手段と(ステップ700又は702の処理におけるステップ802)、前記補間手段によって得られた新たな画素から、解像度を変換された画像データを生成する画像データ生成手段と(ステップ701、703)を備えたことを特徴とする。
また上記目的を達成するために、本発明の画像処理方法は、画像データの画素間を補間することによって解像度を変換し、当該変換された画像データを生成する画像処理装置の画像処理方法であって、前記画像処理装置のCPUが、前記画素間のエッジ量を算出するエッジ量算出ステップと、前記CPUが、前記エッジ量算出ステップにおいて算出された前記エッジ量が小さいほど線形補間の度合いを強め、前記エッジ量が大きいほどエッジ量を保存する度合いを強めるように補間条件を設定する補間条件設定ステップと、前記CPUが、前記補間条件設定ステップによって設定された前記補間条件に基づいて、前記画素間を補間する補間ステップと、前記CPUが、前記補間ステップにおいて得られた新たな画素から、解像度を変換された画像データを生成する画像データ生成ステップとを備えることを特徴とする。
なお、特許請求の範囲の構成要素と対応する実施形態中の図中符号を()で示した。ただし、特許請求の範囲に記載した構成要素は上記()部の実施形態の構成要素に限定されるものではない。
本発明の以上の構成により、エッジ量の大きい部分ではエッジ量を保存するような解像度変換を行い、エッジ量が小さい部分では揺らぎの生じない線形補間に近い解像度変換を行う。
以上説明したように本発明によれば、画素間のエッジ量に応じて補間パラメータを変化させるので、エッジ量に応じて、線形補間に近い特性を持ち、若しくはエッジ量を保つ補間に近い特性を持つことが可能となる。これにより画像がぼやける若しくは画像が揺れる等の画質の劣化を防止し、より高画質な解像度変換が可能となる効果を奏する。
以下、図面を参照して本発明を適用できる実施形態を詳細に説明する。なお、各図面において同様の機能を有する箇所には同一の符号を付し、説明の重複は省略する。
本実施形態は、所望の画像を高解像度画像へ変換する解像度変換の方法及びその方法を実現する装置を説明する。本実施形態では、例示の目的のため、汎用コンピュータ上で実行するプログラムの処理として説明する。尚、本実施形態は専用画像処理システム上でも実施でき、あるいは画像処理用ソフトウェアの形態で、またはデジタル画像処理を含むデバイス・ドライバおよび他のアプリケーションの形態で実施することも可能である。
図1は、本実施形態の画像処理装置の構成を示す図である。図1において、画像処理装置1は、デジタルカメラ、デジタルビデオカメラ等のデジタル機器である他の装置27から供給された所定の画像データを、プリンタ3若しくはモニタ2などの出力機器に対応する解像度へ変換する機能を有する。ROM(read only memory)22は、CPU(central processing unit)21が読み出して動作するための、後述する図2などに示す処理手順に対応したプログラムや、テーブルデータその他の固定データを記憶している。RAM(random access memory)23は、CPU21による処理の際に、所定のデータやプログラムを一時的に記憶する。出力周辺インタフェース(I/F)24は、CPU21により供給された信号をプリンタ3に出力する。ビデオインタフェース25は、CPU21より供給された信号をモニタ3に出力する。ユーザー入力インタフェース26は、例えばパラレルポート、ユニバーサルシリアルバス(USB)等のインタフェースで、例えばデジタルカメラ、デジタルビデオカメラ等の他の装置27より供給された信号をCPU21に出力するとともに、CPU21より供給された信号を他の装置27に出力する。画像処理装置1の上述した各システム構成要素は、システムバス28を介してCPU21に結合されている。
図2は、画像処理装置1のCPU21が実行する解像度変換の処理手順を示すフローチャートである。この処理は、CPU21がROM22に記憶されている解像度変換の方法のプログラムを読み出して実行することにより行われる。図2において、CPU21は、ステップ200で他の装置27より入力された画像データに対し、その原画像(入力画像)の解像度を取得する(ステップ201)。そしてCPU21は、解像度を取得した原画像の画像データを一旦RAM23等の記憶装置に記憶し(ステップ202)、原画像の画像データに対して解像度変換の処理を施す(ステップ203)。処理された変換後の画像データの画像(出力画像)は、CPU21によってモニタ2、プリンタ3等の出力機器へ出力される(ステップ204)。
図3は、図2のステップ203の解像度変換の処理を示すフローチャートである。図3において、CPU21は、入力画像の解像度とプリンタ3等の出力機器との解像度が一致した場合にはそのまま出力する(ステップ300→END)。入力画像の解像度が出力機器の解像度より大きい場合には、CPU21は、低解像度化の処理(ステップ300→301→302)を行う。入力画像の解像度が出力機器の解像度より低い場合には、CPU21は、高解像度化の処理(ステップ300→301→303)を行う。尚、低解像度化の処理(ステップ302)には、バイキュービック法等の一般的な周知の手法を適用すればよい。
以下、高解像度化の処理(ステップ303)について詳述する。本実施形態は、高解像度化の処理において、3次ベジェ曲線によるベジェ補間を用いた解像度変換を行うことで、エッジ量を保存し、かつ画像の揺らぎによる画質劣化も生じない解像度変換手法である。まず、3次ベジェ曲線について説明し、それを用いた解像度変換手法について説明する。
図4は、3次ベジェ曲線を示す図である。図4に示すように、3次ベジェ曲線は、アンカーポイントQ0、Q3とその間の曲線を制御するコントロールポイントQ1、Q2の4点により構成される。尚、ベジェ曲線の特徴として、曲線は各アンカーポイントQ0、Q3において直線Q0Q1、Q2Q3とそれぞれ接している。尚、3次ベジェ曲線P(t)(0≦t≦1)は、以下の式(1)で表現される。
Figure 2005293265
ここで、Q0、Q3はアンカーポイントの座標値であり、Q1、Q2はコントロールポイントの座標値である。
図5(a)、(b)、(c)は、アンカーポイントとコントロールポイントの距離に応じた3次ベジェ曲線の特性について表した図である。3次ベジェ曲線は、例えば各アンカーポイントQ0、Q3に対し、それぞれコントロールポイントQ1、Q2との距離が近ければ図5(a)のようにバイリニア法に近い特性となる。一方、各アンカーポイントQ0、Q3に対し、各コントロールポイントQ1、Q2が離れれば、3次ベジェ曲線は図5(b)のようにエッジを強調するようなバイキュービック法に近い特性となる。各コントロールポイントQ1、Q2が極端に離れた例の場合、3次ベジェ曲線は図5(c)のようにニアレストネイバー法に近い特性となる。
以上のように3次ベジェ曲線は、コントロールポイントとアンカーポイントとの距離(後述の補間パラメータ)の設定次第で、リニアに近い補間と、バイキュービック等のエッジ量が保存されるような補間との両方の手法に近い特性を持つことが可能である。
次にベジェ補間を用いた解像度変換手法について説明する。図6(a)、(b)、(c)は、本実施形態においてベジェ補間を用いた解像度変換を適用する解像度変換前後の画像の図である。図6(a)は解像度変換前の画像、図6(b)は解像度変換後の画像、図6(c)は図6(b)の一部の拡大図である。図6(a)〜(c)の各画像は、画像中の1画素を格子における1格子点とし表現している。本実施形態の解像度変換では、図6(a)における画像の2次元曲面を推定し、図6(b)の格子点を求める。
図6(a)中の原画像の4つの画素a11、a21、a12、a22は各々、高解像度化の処理後の図6(b)中の画素b11、b21、b12、b22に対応する。図6(c)は、図6(b)中の画素b11、b21、b12、b22で囲まれる領域の拡大図で、図6(c)中の画素c11、c21、c31、d11、d12、d13、c12、c22、c32、d21、d22、d23、e11、e12、e21、e22等は、補間によって得られた画素である。
図7は、図3の高解像度化の処理(ステップ303)を示す、ベジェ補間を用いた解像度変換のフローチャートである。まず、CPU21は、変換前画像上の画素の垂直方向、水平方向について隣接する画素間の階調値を補間するための階調曲線を算出する(ステップ700)。例えば、図6(a)の画素a11とa21間、a11とa12間等の階調値を補間するための階調曲線を算出する。ステップ700においては、図6(a)の水平方向及び垂直方向の直線は全て補間される。具体的にはベジェ曲線で補間されるので、式(1)を用いて図6(a)の画素(格子点)間の階調値を算出する階調曲線を算出する。
次に、CPU21は、ステップ700において求められた図6(a)上の階調曲線(補間曲線、即ちベジェ曲線)を利用して、図6(a)の変換前画像と図6(b)の変換後画像とを重ねた際に、その階調曲線上にある図6(a)上の直線と図6(b)上の直線との交点の階調値を算出する(ステップ701)。例えば、図6(b)の画素b11、b21、b12、b22および画素c11、c21、c31、d11、d12、d13、c12、c22、c32、d21、d22、d23等の階調値を算出する。
次に、CPU21は、ステップ701において求められた図6(a)上の直線と図6(b)上の直線との交点の階調値を用いて、図6(b)の変換後画像上の水平方向及び垂直方向の直線上を補間するための階調曲線を算出する(ステップ702)。例えば、図6(b)の画素c11とc12間、d11とd21間等の階調値を補間するための階調曲線を算出する。ステップ702においては、図6(b)の水平方向及び垂直方向の直線は全て補間される。具体的にはベジェ曲線で補間されるので、式(1)を用いて図6(a)上の直線と図6(b)上の直線との交点の画素(格子点)間の階調値を算出する階調曲線を算出する。
次に、CPU21は、ステップ702において求められた図6(b)上の階調曲線(補間曲線、即ちベジェ曲線)を利用して、その階調曲線上にある図6(b)の変換後画像上の格子点における階調値を算出する(ステップ703)。例えば、図6(b)の画素e11、e12、e21、e22等の階調値を算出する。以上で、図6(b)の変換後画像における全ての格子点(画素)の階調値が求まり解像度変換が完了する。尚、ステップ703では図6(b)における1格子点について、垂直方向の階調曲線によって求まる階調値と水平方向の階調曲線によって求まる階調値との2つの階調値が求まるが、これらを平均化することで、その格子点における階調値とする。
図8を参照し、ステップ700、702で適用される補間処理について詳細に述べる。特に本実施形態は、3次のベジェ曲線を用いたベジェ補間による補間処理であり、原画像におけるエッジ量に応じて補間パラメータを変化させる。図8は、ステップ700、702で適用される補間処理で、画素間の階調曲線を作成するフローチャートである。CPU21は、まず注目画素間におけるエッジ量を算出し(ステップ800)、補間パラメータαを導出する(ステップ801)。CPU21は、ステップ802で、導出された補間パラメータαを用いて3次のベジェ曲線を生成する。
以下、図8の各ステップについて詳細に説明する。CPU21は、ステップ800において、画素間におけるエッジ量を算出する。算出方法としては、最も単純な方法として2画素間の階調値の差分により求められる。尚、エッジ量は2画素の階調値の差分に限定するものでなく、近隣複数画素を用いた微分演算により求めてもよい。
次にCPU21は、ステップ801において、求められたエッジ量により補間パラメータα(αは実数)を導出する。ここで補間パラメータは例えばエッジ量に一意に対応するαとして定義される。尚、エッジ量がある閾値Θ1より大きくΘ2より小さい場合は補間パラメータα=α1とする、など複数の場合分けにより補間パラメータαを生成するようにしてもよい。次にCPU21は、ステップ802において、ステップ801で求めた補間パラメータを利用して階調曲線を生成する。階調曲線の生成は3次ベジェ関数のベジェ補間により求められるが、その補間手法について図9を参照して説明する。
図9は、図8のステップ802における補間手法の説明図である。図9は、原画像中の例えば水平方向へ連続する4画素a1、a2、a3、a4のx座標値を横軸に、各画素の階調値を縦軸に表したグラフであり、各4画素a1、a2、a3、a4に対応する座標を各々A1、A2、A3、A4とする。ここでは、4画素a1、a2、a3、a4の階調値を利用して画素a2とa3との画素間を3次ベジェ曲線で補間する例を示す。求める3次ベジェ曲線のアンカーポイントは、画素a2、a3における階調値を有する座標A2、A3である。アンカーポイントA2、A3に対するコントロールポイントをそれぞれC2、C3とする。ここで、A2における階調曲線の接線成分は直線A2A4と平行であると仮定すると、A2に対するコントロールポイントC2は図の点線上に存在することになる。
ここで、図5を参照し前述したように、コントロールポイントC2がアンカーポイントA2に近いほど線形補間の特性が強くなり、C2とA2との距離が離れるほどエッジ量を保存する特性の強い補間処理となる。補間特性に影響を与えるC2とA2との距離は上述の図8のステップ801で求めた補間パラメータαとする。すなわち画素a2、a3間のエッジ量が大きいほどC2とA2との距離は離れ(補間パラメータαがより大きく)、画素a2、a3間のエッジ量が小さいほどC2とA2との距離は短く(補間パラメータαがより小さく)なる。以上によりC2が求まり、もう一方のアンカーポイントA3に対するコントロールポイントC3も、A3における階調曲線の接線成分が直線A2A4と平行であると仮定すると、A2、A4と補間パラメータαを用いることにより同様にして求めることが可能である。
以上により図8のステップ802において(即ち、図7のステップ700、702で適用される補間処理において)、3次ベジェ曲線を用いて階調曲線が生成される。階調曲線を作成するための補間パラメータαはエッジ量に応じて求められた値であり、よって階調曲線の特性もエッジ量に応じて変化することになる。
また、上記実施形態で示した例では説明を簡単にするため、階調曲線を作成する際、2組のコントロールポイントとアンカーポイントとの距離を同一の補間パラメータαを用いたが、各アンカーポイントに対し近隣画素のエッジ量に応じて別々に補間パラメータα1、α2等を作成しそれらを各アンカーポイントに対して用いて階調曲線を作成してもよい。
(実施形態の効果)
以上説明したように本実施形態によれば、エッジ量の大きい部分ではエッジ量を保存するような解像度変換を行い、エッジ量が小さい部分では揺らぎの生じない線形補間に近い解像度変換を行う。これにより、エッジ量に応じて解像度変換の特性を変化させることで、エッジ量の大きい部分ではエッジ量が保存されるのでぼやけることはなく、またエッジ量の小さい部分では線形に近い解像度変換を行うため画像の揺らぎが防止できる。特に本実施形態では、3次ベジェ曲線によるベジェ補間を用いて解像度変換を行う。ベジェ補間では、補間パラメータの調節により、線形補間にも近い特性を持ち、またエッジ量を保つ補間も可能である。例えばエッジ量の小さい部分では線形補間に近くなるよう補間パラメータを調節し、エッジ量の大きい部分ではエッジ量を保つ補間になるよう補間パラメータを調節するように、エッジ量に応じて補間パラメータを調節することで、エッジ量の大きい部分はエッジが保たれ、かつ揺らぎも生じない高品質な画像が生成できる。また、画像の曲面の推定の際は縦方向の補間と横方向の補間との平均をとることで、より縦方向のエッジ量と横方向のエッジ量が考慮された推定誤差の少ない画像を得ることが可能である。
本発明を適用できる実施形態の画像処理装置の構成を示す図である。 本発明を適用できる実施形態の解像度変換の処理手順を示すフローチャートである。 本発明を適用できる実施形態の解像度変換の処理手順を示すフローチャートである。 本発明を適用できる実施形態の3次ベジェ曲線を示す図である。 本発明を適用できる実施形態の3次ベジェ曲線の特性について表した図で、(a)はバイリニア法に近い特性、(b)はバイキュービック法に近い特性、(c)はニアレストネイバー法に近い特性の図である。 本発明を適用できる実施形態のベジェ補間を用いた解像度変換を適用する解像度変換前後の画像の図で、(a)は解像度変換前の画像、(b)は解像度変換後の画像、(c)は(b)の一部の拡大図である。 本発明を適用できる実施形態の解像度変換の処理手順を示すフローチャートである。 本発明を適用できる実施形態の解像度変換の処理手順を示すフローチャートである。 本発明を適用できる実施形態の補間手法の説明図である。 本発明を適用できる他の実施形態の解像度変換の処理手順を示すフローチャートである。 従来の原画像を2倍に拡大補間した際の模式図である。
符号の説明
1 画像処理装置
2 モニタ
3 プリンタ
21 CPU
22 ROM
23 RAM
24 出力周辺インタフェース
25 ビデオインタフェース
26 ユーザー入力インタフェース
27 他の装置

Claims (7)

  1. 画像データの画素間を補間することによって解像度を変換し、当該変換された画像データを生成する画像処理装置において、
    前記画素間のエッジ量を算出するエッジ量算出手段と、
    前記エッジ量算出手段によって算出された前記エッジ量が小さいほど線形補間の度合いを強め、前記エッジ量が大きいほどエッジ量を保存する度合いを強めるように補間条件を設定する補間条件設定手段と、
    前記補間条件設定手段によって設定された前記補間条件に基づいて、前記画素間を補間する補間手段と、
    前記補間手段によって得られた新たな画素から、解像度を変換された画像データを生成する画像データ生成手段と
    を備えたことを特徴とする画像処理装置。
  2. 前記補間条件は、ベジェ補間におけるコントロールポイントとアンカーポイントとの距離であり、
    前記補間手段は、ベジェ補間によって前記画素間を補間する
    ことを特徴とする請求項1に記載の画像処理装置。
  3. 前記新たな画素は、前記補間手段によって補間された第1の画素間と第2の画素間との両方に位置し、
    前記画像データ生成手段は、前記第1の画素間に位置する前記新たな画素の第1の階調値と前記第2の画素間に位置する前記新たな画素の第2の階調値との2つの階調値の平均値を、前記新たな画素の階調値とする
    ことを特徴とする請求項1または2に記載の画像処理装置。
  4. 画像データの画素間を補間することによって解像度を変換し、当該変換された画像データを生成する画像処理装置の画像処理方法において、
    前記画像処理装置のCPUが、前記画素間のエッジ量を算出するエッジ量算出ステップと、
    前記CPUが、前記エッジ量算出ステップにおいて算出された前記エッジ量が小さいほど線形補間の度合いを強め、前記エッジ量が大きいほどエッジ量を保存する度合いを強めるように補間条件を設定する補間条件設定ステップと、
    前記CPUが、前記補間条件設定ステップによって設定された前記補間条件に基づいて、前記画素間を補間する補間ステップと、
    前記CPUが、前記補間ステップにおいて得られた新たな画素から、解像度を変換された画像データを生成する画像データ生成ステップと
    を備えることを特徴とする画像処理方法。
  5. 前記補間条件は、ベジェ補間におけるコントロールポイントとアンカーポイントとの距離であり、
    前記補間ステップにおいて、前記CPUはベジェ補間によって前記画素間を補間する
    ことを特徴とする請求項4に記載の画像処理方法。
  6. 前記新たな画素は、前記補間ステップにおいて補間された第1の画素間と第2の画素間との両方に位置し、
    前記画像データ生成ステップにおいて、前記CPUは、前記第1の画素間に位置する前記新たな画素の第1の階調値と前記第2の画素間に位置する前記新たな画素の第2の階調値との2つの階調値の平均値を、前記新たな画素の階調値とする
    ことを特徴とする請求項4または5に記載の画像処理方法。
  7. 請求項4乃至6のいずれかに記載の画像処理方法の各ステップをコンピュータに実行させることを特徴とするプログラム。
JP2004107751A 2004-03-31 2004-03-31 画像処理装置及び方法 Withdrawn JP2005293265A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004107751A JP2005293265A (ja) 2004-03-31 2004-03-31 画像処理装置及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004107751A JP2005293265A (ja) 2004-03-31 2004-03-31 画像処理装置及び方法

Publications (1)

Publication Number Publication Date
JP2005293265A true JP2005293265A (ja) 2005-10-20

Family

ID=35326122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004107751A Withdrawn JP2005293265A (ja) 2004-03-31 2004-03-31 画像処理装置及び方法

Country Status (1)

Country Link
JP (1) JP2005293265A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130820A1 (ja) * 2008-04-21 2009-10-29 シャープ株式会社 画像処理装置、表示装置、画像処理方法、プログラムおよび記録媒体
US8917293B2 (en) 2008-06-27 2014-12-23 Sharp Kabushiki Kaisha Control device for liquid crystal display device, liquid crystal display device, method for controlling liquid crystal display device, program, and storage medium
US9105243B2 (en) 2008-06-27 2015-08-11 Sharp Kabushiki Kaisha Control device for liquid crystal display device, liquid crystal display device, method for controlling liquid crystal display device, program, and storage medium for program
US9275446B2 (en) 2013-10-15 2016-03-01 Samsung Electronics Co., Ltd. Large radius edge-preserving low-pass filtering
KR20210046832A (ko) * 2018-09-17 2021-04-28 돌비 레버러토리즈 라이쎈싱 코오포레이션 전력-제한 디스플레이 상에서의 하이 다이나믹 레인지 이미지를 위한 디스플레이 매핑
WO2022017337A1 (zh) * 2020-07-24 2022-01-27 深圳市万普拉斯科技有限公司 一种圆角曲线绘制方法、电子设备及存储介质

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130820A1 (ja) * 2008-04-21 2009-10-29 シャープ株式会社 画像処理装置、表示装置、画像処理方法、プログラムおよび記録媒体
US8358307B2 (en) 2008-04-21 2013-01-22 Sharp Kabushiki Kaisha Image processing device, display device, image processing method, program, and storage medium
US8917293B2 (en) 2008-06-27 2014-12-23 Sharp Kabushiki Kaisha Control device for liquid crystal display device, liquid crystal display device, method for controlling liquid crystal display device, program, and storage medium
US9105243B2 (en) 2008-06-27 2015-08-11 Sharp Kabushiki Kaisha Control device for liquid crystal display device, liquid crystal display device, method for controlling liquid crystal display device, program, and storage medium for program
US9275446B2 (en) 2013-10-15 2016-03-01 Samsung Electronics Co., Ltd. Large radius edge-preserving low-pass filtering
KR20210046832A (ko) * 2018-09-17 2021-04-28 돌비 레버러토리즈 라이쎈싱 코오포레이션 전력-제한 디스플레이 상에서의 하이 다이나믹 레인지 이미지를 위한 디스플레이 매핑
KR102287095B1 (ko) 2018-09-17 2021-08-06 돌비 레버러토리즈 라이쎈싱 코오포레이션 전력-제한 디스플레이 상에서의 하이 다이나믹 레인지 이미지를 위한 디스플레이 매핑
US11361699B2 (en) 2018-09-17 2022-06-14 Dolby Laboratories Licensing Corporation Display mapping for high dynamic range images on power-limiting displays
WO2022017337A1 (zh) * 2020-07-24 2022-01-27 深圳市万普拉斯科技有限公司 一种圆角曲线绘制方法、电子设备及存储介质

Similar Documents

Publication Publication Date Title
US10515437B2 (en) Image processing apparatus and image processing method that perform noise reduction processing on image data
US7149355B2 (en) Image processing apparatus, image processing method, image processing program, and computer-readable record medium storing image processing program
JP3167120B2 (ja) 画像処理装置及び方法
JP2010034964A (ja) 画像合成装置、画像合成方法及び画像合成プログラム
JP4274238B2 (ja) 画像処理装置及び画像処理方法、並びにコンピュータ・プログラム
JP6904842B2 (ja) 画像処理装置、画像処理方法
US8743419B2 (en) Image processing apparatus and method converting low-resolution image to high-resolution using signal value patterns
JP4065462B2 (ja) 画像処理装置及び画像処理方法
JP2005293265A (ja) 画像処理装置及び方法
JP5042251B2 (ja) 画像処理装置および画像処理方法
JP4055908B2 (ja) ワイプパターン生成装置
JP2000354244A (ja) 画像処理装置、方法及びコンピュータ読み取り可能な記憶媒体
JP3200351B2 (ja) 画像処理装置及びその方法
JP6444049B2 (ja) 画像処理装置、方法およびプログラム
JP4879084B2 (ja) 画像処理装置
JP3624153B2 (ja) 画像処理装置及び画像処理方法
JP4730525B2 (ja) 画像処理装置及びそのプログラム
JP2015106318A (ja) 画像処理装置および画像処理方法
JP6157234B2 (ja) 画像処理装置、画像処理方法およびプログラム
JP4265362B2 (ja) 画像処理装置
JP3753900B2 (ja) 画像処理装置
JP4767313B2 (ja) 画像処理装置、方法およびプログラム
JP5134585B2 (ja) 変倍画像生成装置および変倍画像生成法
JP2001086368A (ja) 画像処理装置
JP2008166983A (ja) 解像度変換処理方法、画像処理装置、画像表示装置及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060622

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070724