WO2009157057A1 - 紫外線吸光度測定装置 - Google Patents

紫外線吸光度測定装置 Download PDF

Info

Publication number
WO2009157057A1
WO2009157057A1 PCT/JP2008/061459 JP2008061459W WO2009157057A1 WO 2009157057 A1 WO2009157057 A1 WO 2009157057A1 JP 2008061459 W JP2008061459 W JP 2008061459W WO 2009157057 A1 WO2009157057 A1 WO 2009157057A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
flow cell
sample water
control unit
pure water
Prior art date
Application number
PCT/JP2008/061459
Other languages
English (en)
French (fr)
Inventor
良英 神吉
亨久 板橋
博司 村上
正晃 菊竹
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2010517614A priority Critical patent/JP5013000B2/ja
Priority to CN2008801280055A priority patent/CN101971005B/zh
Priority to PCT/JP2008/061459 priority patent/WO2009157057A1/ja
Publication of WO2009157057A1 publication Critical patent/WO2009157057A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1893Water using flow cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • G01N2021/152Scraping; Brushing; Moving band

Definitions

  • the present invention relates to an ultraviolet absorbance measuring apparatus for measuring the amount (concentration) of organic pollutants present in sample water.
  • an ultraviolet absorbance measuring device that measures the amount of organic pollutants in sample water using ultraviolet absorbance is often used.
  • the ultraviolet absorbance measurement apparatus quantifies organic substances contained in sample water by irradiating the flow cell in which the sample water is passed with ultraviolet rays and measuring the absorbance.
  • the conventional UV absorbance measurement device is based on the premise that the sample water is continuously supplied to the flow cell for measurement, and the intermittent measurement is such that the supply of the sample water to the flow cell is stopped and then the measurement is restarted. Is not assumed. Therefore, in the conventional apparatus, the measurement is performed as it is even after the supply of the sample water to the flow cell is stopped.
  • the sample water in the flow cell does not circulate, so that the sample water easily adheres to the wall surface of the flow cell, and after that time, the stain cannot be removed by washing. Sometimes. In addition, when the supply of sample water is stopped and all the sample water is discharged to make the flow cell empty, dirt attached to the wall surface of the flow cell may be dried and cannot be removed.
  • the present invention aims to prevent the wall surface of the flow cell from being contaminated by sample water even when the UV absorbance measurement is interrupted.
  • the ultraviolet absorbance measurement apparatus of the present invention includes a flow cell, a sample water / pure water supply unit that is connected to the flow cell and can selectively supply either sample water or pure water to the flow cell, and a flow cell.
  • a drainage control unit for controlling the drainage of the water, a light source for irradiating the flow cell with ultraviolet light, and a photodetector for detecting the ultraviolet light that has passed through the flow cell.
  • Measurement unit that measures the UV absorbance of water
  • a cleaning mechanism that cleans the inside of the flow cell, sample water is circulated in the flow cell at the time of measurement, and the sample water is stopped after measurement and the flow cell is cleaned by the cleaning mechanism
  • a control unit that controls the operation of the sample water / pure water supply unit, drainage control unit, light source, measurement calculation unit, and cleaning mechanism, including the operation of filling the flow cell with pure water.
  • the control unit also performs an operation of cleaning the flow cell at the start of measurement. If it does so, the stain
  • the control unit sets the set time set in the measurement time setting unit. Based on this, the operation of the sample water / pure water supply unit, drainage control unit, light source, measurement calculation unit, and cleaning mechanism is controlled.
  • time related to measurement refers to the start time and end time of measurement. If operation control by the control unit is performed based on these set times, the measurer simply sets the time of each operation in the measurement time setting unit, and the device automatically follows the set time. Since the operation is performed, it is not necessary for the measurer to instruct the apparatus to start, end, or restart the measurement at the measurement site.
  • the ultraviolet absorbance measurement apparatus of the present invention includes a flow cell, a sample water / pure water supply unit, a drainage control unit, a light source, a measurement calculation unit, a cleaning mechanism, and a control unit. Since the flow cell is cleaned by the cleaning mechanism and the flow cell is filled with pure water, the flow cell is not contaminated with sample water during measurement interruption, and measurement can be interrupted. The measurement after resumption can be performed with high accuracy.
  • FIG. 1 is a block diagram schematically showing an embodiment of an ultraviolet absorbance measuring apparatus.
  • An ultraviolet light source 4 is arranged on the side of the flow cell 2 so as to irradiate the flow cell 2 through which sample water is circulated, and the ultraviolet light that has passed through the flow cell 2 is detected on the opposite side of the light source 4 across the flow cell 2.
  • a light measuring unit 6 is provided that includes a light detector 8 and a calculation unit 10 that obtains the ultraviolet absorbance of a sample flowing in the flow cell 2 based on the detection amount of the light detector 8.
  • the sample water / pure water supply unit 14 is connected to the inlet 12 of the flow cell 2.
  • the sample water / pure water supply unit 14 has a structure in which a sample water supply channel 18 for supplying sample water and a pure water supply channel 20 for supplying pure water are connected to the inlet 12 via a channel switching valve 16.
  • the pure water supplied from the pure water supply channel 20 is tap water that has passed through the activated carbon filter 22.
  • the pure water is once stored in the pure water tank 24 and pumped up from the pure water tank 24 by the pump 26.
  • either sample water or pure water can be supplied to the inlet 12 side.
  • both supply can be stopped by stopping the pump 26 in the state which made the flow-path switching valve 16 into the pure water side.
  • the outlet of the flow cell 2 is configured to be opened and closed by a drainage control unit 28 including an on-off valve.
  • a cleaning mechanism 30 for cleaning the inside of the flow cell 2 is provided.
  • the cleaning mechanism 30 includes a wiper 30 a and a moving mechanism 30 c that is driven by a motor 30 b to move the wiper 30 a, and moves the wiper 30 a up and down while contacting the wall surface of the flow cell 2.
  • the dirt on the wall surface of the flow cell 2 is physically removed by moving in the direction.
  • the moving mechanism 30c includes a bar screw that is rotated by the motor 30b, and a drive unit that is screwed with the bar screw and moves in the axial direction of the bar screw when the bar screw rotates.
  • the base end portion of the wiper 30a is fixed to a drive unit that moves on a bar screw.
  • the cleaning mechanism 30 may further have a function of supplying a cleaning liquid to the flow cell 2.
  • the operations of the light source 4, the light measurement unit 6, the sample water / pure water supply unit 14, the drainage control unit 28, and the cleaning mechanism 30 are controlled by the control unit 32.
  • the control unit 32 performs control based on an instruction from the measurer input via the operation input unit 34.
  • a time related to measurement is set in the measurement time setting unit 36 including a timer, the setting is performed. It is configured to perform specific control when it is time.
  • the measurement time is, for example, a measurement start time or a measurement end time.
  • FIG. 2 is a flowchart showing an example of the operation of the ultraviolet absorbance measuring apparatus of this embodiment.
  • the operation of the apparatus of this embodiment will be described with reference to FIG.
  • the measurer can instruct the control unit 32 to start measurement via the operation input unit 34, or can set the measurement time setting unit 36 with respect to measurement such as measurement start time and measurement end time (step S1). .
  • the measurement time setting unit 36 transmits a signal to the control unit 32 when the measurement start time is reached, and the control unit 32 receives the signal and controls the measurement operation (step S2). If the measurement start time is not set, the measurement unit inputs a measurement start instruction via the operation input unit 34, and the control unit controls the measurement operation (step S3).
  • the flow cell 2 before the start of measurement is in a state filled with pure water by the operation of step S12 described later.
  • step S2 When the measurement start time is reached (step S2) or the measurement start instruction is input from the measurer (step S3), the inside of the flow cell 2 filled with pure water is cleaned by the cleaning mechanism 30 (step S4). Thereafter, the outlet of the flow cell 2 is opened, pure water is discharged from the flow cell 2, sample water is supplied from the sample water / pure water supply mechanism 14 (step S6), and measurement of ultraviolet absorbance is started (step S7).
  • the measurement is started, the flow cell 2 is irradiated with ultraviolet rays from the light source 4, and the ultraviolet rays that have passed through the flow cell 2 are received by the photodetector 8.
  • the photodetector 8 transmits a signal corresponding to the amount of received ultraviolet light to the calculation unit 10, and the calculation unit 10 calculates the ultraviolet absorbance of the sample water in the flow cell 2 based on the signal.
  • step S8 and S9 When the measurement end time is set in the measurement time setting unit 36, measurement is performed up to that time, and when the measurement time is reached, the measurement time setting unit 36 transmits a signal to the control unit 32, and the control unit 32 In response to the signal, operation control for ending the measurement is performed (steps S8 and S9).
  • the measurement end time is not set in the measurement time setting unit 36, measurement is performed until the measurer inputs a measurement end instruction, and when the measurement end instruction is input by the measurer, the control unit 32 Operation control for the end of measurement is performed (steps S8 and S10).
  • the UV absorbance measurement is interrupted by the control unit 32.
  • the control unit 32 discharges all the sample water in the flow cell 2. Thereafter, pure water is supplied from the sample water / pure water supply unit 14, the inside of the flow cell 2 is cleaned by the cleaning mechanism 30 (step S 11), and the outlet of the flow cell 2 is closed by the drainage control unit 28. Is filled with pure water (step S12), and the pump 26 is stopped. Thereafter, the flow cell 2 is kept filled with pure water while the measurement is interrupted.
  • the flow cell 2 is filled with pure water during the measurement interruption from the end of the ultraviolet absorbance measurement to the start of the next measurement. It is possible to prevent problems such as contamination of the inside by sample water or removal of dirt by drying.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

フローセル2の入口12には試料水・純水供給部14が接続されている。試料水・純水供給部14は流路切替バルブ16の切り替えにより、試料水、純水のいずれか一方を入口12側へ供給することができるほか、いずれの供給も停止することができる。試料水・純水供給部14は制御部32によって制御されている。制御部32は紫外線吸光度測定の終了後に洗浄機構30によってフローセル2の洗浄を行なうとともに試料水・純水供給部14から純水を供給してフローセル2を純水で満たすように制御を行なう。

Description

紫外線吸光度測定装置
 本発明は、試料水中に存在する有機汚濁物質量(濃度)を測定する紫外線吸光度測定装置に関するものである。
 例えば河川水や排水の水質分析を行なうために、試料水中の有機汚濁物質量を紫外線吸光度を利用して測定する紫外線吸光度測定装置がよく用いられる。紫外線吸光度測定装置は、試料水を流通させたフローセルに紫外線を照射してその吸光度を測定することにより試料水に含まれる有機物の定量を行なうものである。
 紫外線吸光度測定装置では、試料水として河川水や排水などをくみ上げてフローセルを流通させるため、フローセルの壁面に有機物や浮遊物が付着して光透過性が悪くなり、紫外線吸光度測定に影響を与える。そこで、フローセル内の汚れをワイパーなどを用いて除去する洗浄機構を装置に設けることが提案されている(例えば、特許文献1参照。)。
特公平6-58323号公報
 しかし従来の紫外線吸光度測定装置は、常時フローセルに試料水を供給し続けて測定することを前提としており、フローセルへの試料水の供給を一旦停止してから後に測定を再開するといった断続的な測定は想定していない。そのため、従来の装置では、フローセルへの試料水の供給が停止した後もそのまま測定が行なわれてしまう。
 試料水の供給を停止した場合、フローセル内の試料水が流通しないためにフローセルの壁面に試料水による汚れが付着しやすくなり、その状態で時間が経過するとその汚れが洗浄によっても取れなくなってしまうことがある。また、試料水の供給を停止して試料水を全て排出してフローセルを空の状態にしていると、フローセルの壁面に付着した汚れが乾燥して取れなくなってしまうことがある。
 そこで本発明は、紫外線吸光度測定を中断しても、その中断中にフローセルの壁面が試料水によって汚れないようにすることを目的とするものである。
 本発明の紫外線吸光度測定装置は、フローセルと、フローセルに接続され、フローセルに試料水及び純水のいずれか一方を選択的に切り替えて供給することができる試料水・純水供給部と、フローセルからの排水を制御する排水制御部と、フローセルに対して紫外線を照射するための光源と、フローセルを透過した紫外線を検出する光検出器を含んで、光検出器の光検出量に基づいて試料水の紫外線吸光度を測定する測定演算部と、フローセル内を洗浄する洗浄機構と、測定時はフローセル内で試料水を流通させ、測定終了後は試料水の供給を停止してフローセルを洗浄機構で洗浄するとともにフローセル内を純水で満たす動作を含んで、試料水・純水供給部、排水制御部、光源、測定演算部及び洗浄機構の動作を制御する制御部と、を備えたものである。
 本発明の紫外線吸光度測定装置においては、制御部は、測定開始時にフローセル内の洗浄を行なう動作も行なうことが好ましい。そうすれば、測定の中断中にフローセルが純水で満たされることによって落ちやすくなったフローセル壁面の汚れを測定開始時に落とすことができ、より正確な紫外線吸光度測定を行なうことができるようになる。
 測定時間に関する情報を入力して測定に関する時間を設定することができる測定時間設定部をさらに備えていてもよく、その場合には、制御部が、測定時間設定部に設定されている設定時間に基づいて試料水・純水供給部、排水制御部、光源、測定演算部及び洗浄機構の動作を制御する。ここでの「測定に関する時間」とは測定の開始時間や終了時間などである。制御部による動作制御がこれらの設定時間に基づいて行なわれるようになっていれば、測定者は各動作の時間を測定時間設定部に設定しておくだけでその設定時間に従って装置が自動的にその動作を行なうので、測定者が測定現場で測定の開始、終了、再開などの指示をその都度装置に指示する必要がなくなる。
 本発明の紫外線吸光度測定装置は、フローセル、試料水・純水供給部、排水制御部、光源、測定演算部、洗浄機構及び制御部を備えたものであって、測定終了後は試料水の供給が停止されてフローセルが洗浄機構で洗浄されるとともにフローセル内が純水で満たされるようになっているので、測定の中断中にフローセルが試料水で汚れることがなく、測定を中断することができ、再開後の測定も高精度に行なうことができる。
紫外線吸光度測定装置の一実施例を概略的に示すブロック図である。 同実施例の紫外線吸光度測定装置の動作を示すフローチャートである。 同実施例の洗浄機構の一例を示す概略構成図である。
符号の説明
   2  フローセル
   4  光源
   6  光測定部
   8  光検出器
  10  演算部
  12  フローセル入口
  14  試料水・純水供給部
  16  流路切替バルブ
  18  試料水供給流路
  20  純水供給流路
  22  活性炭フィルタ
  24  純水タンク
  26  ポンプ
  28  排水制御部
  30  洗浄機構
  30a ワイパー
  30b モータ
  30c 移動機構
  32  制御部
  34  操作入力部
  36  測定時間設定部
 図1は紫外線吸光度測定装置の一実施例を概略的に示すブロック図である。
 試料水を流通させるフローセル2に対して紫外線を照射するように紫外光源4がフローセル2の側方に配置されており、フローセル2を挟んで光源4の反対側にフローセル2を通過した紫外線を検出する光検出器8及び光検出器8の検出量に基づいてフローセル2内を流通する試料の紫外線吸光度を求める演算部10からなる光測定部6が配置されている。
 フローセル2の入口12には試料水・純水供給部14が接続されている。試料水・純水供給部14は試料水を供給する試料水供給流路18と純水を供給する純水供給流路20とを流路切替バルブ16を介して入口12に接続する構造をもつ。この実施例において純水供給流路20から供給される純水とは活性炭素フィルタ22を通した水道水である。純水はいったん純水タンク24に貯留され、純水タンク24からポンプ26によって汲み上げられる。流路切替バルブ16の切替えにより、試料水と純水のいずれか一方を入口12側へ供給することができる。また、流路切替バルブ16を純水側にした状態でポンプ26を停止することにより両方の供給を停止することができる。
 フローセル2の出口は開閉弁からなる排水制御部28によって開閉されるように構成されている。
 また、フローセル2内を洗浄するための洗浄機構30が設けられている。洗浄機構30は、例えば、図3に示されているように、ワイパー30aと、モータ30bによって駆動されてワイパー30aを移動させる移動機構30cを備え、ワイパー30aをフローセル2の壁面に接触させながら上下方向に移動させることによってフローセル2の壁面の汚れを物理的に落とすものである。移動機構30cとしては、モータ30bによって回転される棒ネジと、棒ネジと螺合し、棒ネジが回転することにより棒ネジの軸方向に移動する駆動部とを備えたものである。ワイパー30aの基端部は棒ネジ上を移動する駆動部に固定されている。洗浄機構30はさらに洗浄液をフローセル2に供給する機能も備えていてもよい。
 光源4、光測定部6、試料水・純水供給部14、排水制御部28及び洗浄機構30の各動作は制御部32によって制御される。制御部32は操作入力部34を介して入力された測定者からの指示に基づいた制御を行なうほか、タイマーを備えた測定時間設定部36において測定に関する時間が設定されている場合にはその設定時間になったときに特定の制御を行なうように構成されている。測定に関する時間とは、例えば測定開始時間、測定終了時間である。
 図2はこの実施例の紫外線吸光度測定装置の動作の一例を示すフローチャートである。図2に基づいてこの実施例の装置の動作を説明する。
 測定者は操作入力部34を介して制御部32に測定開始を指示するか、測定開始時間や測定終了時間といった測定に関する時間を測定時間設定部36に設定しておくことができる(ステップS1)。測定開始時間が設定されている場合、測定時間設定部36は測定開始時間になると制御部32に信号を送信し、制御部32はその信号を受けて測定動作の制御を行なう(ステップS2)。測定開始時間が設定されていない場合には、測定者が操作入力部34を介して測定開始の指示を入力することによって制御部が測定動作の制御を行なう(ステップS3)。なお、この測定開始前の時点のフローセル2内は、後述するステップS12の動作により、純水で満たされた状態となっている。
 測定開始時間になるか(ステップS2)又は測定者からの測定開始の指示が入力される(ステップS3)と、純水で満たされたフローセル2内を洗浄機構30によって洗浄する(ステップS4)。その後、フローセル2の出口を開放して純水をフローセル2から排出し、試料水・純水供給機構14から試料水を供給し(ステップS6)、紫外線吸光度の測定を開始する(ステップS7)。測定が開始されると、フローセル2に対して光源4から紫外線が照射され、フローセル2を通過した紫外線は光検出器8で受光される。光検出器8は受光した紫外線量に相当する信号を演算部10へ送信し、演算部10はその信号に基づいてフローセル2内の試料水の紫外線吸光度を算出する。
 測定時間設定部36に測定終了時間が設定されている場合はその時間まで測定を行ない、測定時間になったときに測定時間設定部36が制御部32に信号を送信し、制御部32はその信号を受けて測定を終了するための動作制御を行なう(ステップS8,S9)。測定時間設定部36に測定終了時間が設定されていない場合には、測定者が測定終了の指示を入力するまで測定を行ない、測定者による測定終了の指示が入力されたときに制御部32が測定終了の動作制御を行なう(ステップS8,S10)。
 測定終了時間になるか又は測定者によって測定終了の指示が入力されると、制御部32によって紫外線吸光度測定は中断される。制御部32はフローセル2内の試料水を全て排出する。その後、試料水・純水供給部14から純水を供給し、洗浄機構30によってフローセル2内の洗浄を行ない(ステップS11)、さらにはフローセル2の出口を排水制御部28によって閉じることによりフローセル2を純水で満たした後(ステップS12)、ポンプ26を停止する。その後、測定中断中はフローセル2内が純水で満たされたままで維持される。
 なお、紫外線吸光度測定終了後に純水でフローセル2を純水で満たして洗浄を行なった後で、一旦その純水を排出してから再度フローセル2を純水で満たすようにしてもよい。そうすれば、洗浄によって発生した汚れが純水供給前にフローセル2外へ排出されるため、それらの汚れが紫外線吸光度測定の中断中にフローセル2の壁面に再付着することを防止できる。なお、その場合には、紫外線吸光度測定開始前の洗浄(ステップS4)を省略することも可能である。
 以上のように、この実施例の紫外線吸光度測定装置は、紫外線吸光度測定の終了時から次の測定開始時までの測定中断中はフローセル2内が純水で満たされた状態となるので、フローセル2内が試料水によって汚れたり乾燥によって汚れが取れなくなってしまったりするなどの問題を防止することができる。

Claims (3)

  1.  フローセルと、
     前記フローセルに接続され前記フローセルに試料水及び純水のいずれか一方を切り替えて供給することができる試料水・純水供給部と、
     前記フローセルからの排水を制御する排水制御部と、
     前記フローセルに対して紫外線を照射するための光源と、
     前記フローセルを透過した紫外線を検出する光検出器を含んで、前記光検出器の光検出量に基づいて試料水の紫外線吸光度を測定する測定演算部と、
     前記フローセル内を洗浄する洗浄機構と、
     測定時は前記フローセル内で試料水を流通させ、測定終了後は前記試料水の供給を停止してフローセルを前記洗浄機構で洗浄するとともにフローセル内を純水で満たす動作を含んで、前記試料水・純水供給部、排水制御部、光源、測定演算部及び洗浄機構の動作を制御する制御部と、を備えた紫外線吸光度測定装置。
  2.  前記制御部は、測定開始時に前記洗浄機構によるフローセル内の洗浄を行なう動作の行なう請求項1に記載の紫外線吸光度測定装置。
  3.  測定時間に関する情報を入力して測定に関する時間を設定することができる測定時間設定部をさらに備え、
     前記制御部は、前記測定時間設定部に設定されている測定に関する設定時間に基づいて前記試料水・純水供給部、排水制御部、光源、測定演算部及び洗浄機構の動作を制御する請求項1又は2に記載の紫外線吸光度測定装置。
PCT/JP2008/061459 2008-06-24 2008-06-24 紫外線吸光度測定装置 WO2009157057A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010517614A JP5013000B2 (ja) 2008-06-24 2008-06-24 紫外線吸光度測定装置
CN2008801280055A CN101971005B (zh) 2008-06-24 2008-06-24 紫外线吸光度测定装置
PCT/JP2008/061459 WO2009157057A1 (ja) 2008-06-24 2008-06-24 紫外線吸光度測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/061459 WO2009157057A1 (ja) 2008-06-24 2008-06-24 紫外線吸光度測定装置

Publications (1)

Publication Number Publication Date
WO2009157057A1 true WO2009157057A1 (ja) 2009-12-30

Family

ID=41444135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/061459 WO2009157057A1 (ja) 2008-06-24 2008-06-24 紫外線吸光度測定装置

Country Status (3)

Country Link
JP (1) JP5013000B2 (ja)
CN (1) CN101971005B (ja)
WO (1) WO2009157057A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017901A (ja) * 2013-07-11 2015-01-29 栗田工業株式会社 水質測定装置
US9683927B2 (en) 2011-12-02 2017-06-20 Biochrom Limited Device for receiving small volume liquid samples

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103398966A (zh) * 2013-08-20 2013-11-20 杭州北斗星膜制品有限公司 光谱仪在有机溶液中测定tmc浓度的方法
US20220137403A1 (en) * 2019-02-15 2022-05-05 Kemira Oyj Method and arrangement for cleaning a sensor
MX2021015046A (es) * 2019-06-07 2022-01-18 Hach Co Dispositivos y sistemas de limpieza y calibracion de sensor.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412250A (ja) * 1990-04-28 1992-01-16 Tsurumi Seiki:Kk 水のcod測定装置
JPH0915144A (ja) * 1995-07-03 1997-01-17 Toa Denpa Kogyo Kk 吸光光度計およびこの吸光光度計の温度補償方法
JPH10206328A (ja) * 1997-01-24 1998-08-07 Suido Kiko Kaisha Ltd 水質計
JPH10206415A (ja) * 1997-01-17 1998-08-07 Mitsubishi Heavy Ind Ltd ボイラ燃料等に使用する黒液の発熱量自動測定方法と該測定方法を利用したボイラの駆動制御方法
JP2003305454A (ja) * 2003-02-17 2003-10-28 Meidensha Corp 取水水質管理装置
JP2006153738A (ja) * 2004-11-30 2006-06-15 Dkk Toa Corp 積分球式濁度計

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4165179A (en) * 1976-08-19 1979-08-21 Nippon Precision Optical Instrument Co., Ltd. Device for wiping optical window in turbidimeter or similar optical instrument for examining liquid sample
CN1967215A (zh) * 2006-11-08 2007-05-23 浙江大学 紫外扫描式多光谱水质cod快速检测方法及其装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412250A (ja) * 1990-04-28 1992-01-16 Tsurumi Seiki:Kk 水のcod測定装置
JPH0915144A (ja) * 1995-07-03 1997-01-17 Toa Denpa Kogyo Kk 吸光光度計およびこの吸光光度計の温度補償方法
JPH10206415A (ja) * 1997-01-17 1998-08-07 Mitsubishi Heavy Ind Ltd ボイラ燃料等に使用する黒液の発熱量自動測定方法と該測定方法を利用したボイラの駆動制御方法
JPH10206328A (ja) * 1997-01-24 1998-08-07 Suido Kiko Kaisha Ltd 水質計
JP2003305454A (ja) * 2003-02-17 2003-10-28 Meidensha Corp 取水水質管理装置
JP2006153738A (ja) * 2004-11-30 2006-06-15 Dkk Toa Corp 積分球式濁度計

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9683927B2 (en) 2011-12-02 2017-06-20 Biochrom Limited Device for receiving small volume liquid samples
JP2015017901A (ja) * 2013-07-11 2015-01-29 栗田工業株式会社 水質測定装置

Also Published As

Publication number Publication date
CN101971005A (zh) 2011-02-09
JPWO2009157057A1 (ja) 2011-12-01
JP5013000B2 (ja) 2012-08-29
CN101971005B (zh) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5013000B2 (ja) 紫外線吸光度測定装置
JP6601490B2 (ja) 水質分析装置
JP4775937B2 (ja) 近赤外線分光器を利用したリソグラフィ工程用組成物の実時間制御システム及びその制御方法
WO2017097063A1 (zh) 一种带有水位监测的试管双重洗刷装置
JP6225522B2 (ja) 水質測定装置
JP2001047040A (ja) 紫外線殺菌装置
US20070127028A1 (en) Optical measuring device
JP2013015387A (ja) 水質分析計
US20160101389A1 (en) Method of performing a cleaning operation on a water filtration device
KR20210039734A (ko) Toc 측정 시스템
JPH1090134A (ja) 水中の微量揮発性有機化合物の分析方法およびその 装置
JP2005345315A (ja) 自動水質計測器
KR101267710B1 (ko) 복합 부식시험기
JP2010117133A (ja) 金属濃度監視装置
KR101985781B1 (ko) 필터 장치
JP3371632B2 (ja) 光学式水質測定器の洗浄方法
JP3442891B2 (ja) 全自動濁度計測装置
JPH07209180A (ja) 水質監視装置
KR101957804B1 (ko) 흡광광도법을 이용한 농도 측정 장치 및 방법
JP5821349B2 (ja) 水処理設備の制御装置
KR101131500B1 (ko) 정수 처리 시스템에서의 침전률 분석 장치 및 분석 방법
JP5750343B2 (ja) 測定用容器
KR20110005376A (ko) 수처리를 위한 센서세정모듈
JPH0722686B2 (ja) 分離膜の洗浄方法
JP2002098628A (ja) 排泄物測定装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880128005.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08765803

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010517614

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08765803

Country of ref document: EP

Kind code of ref document: A1