WO2009153859A1 - エンジン制御装置 - Google Patents

エンジン制御装置 Download PDF

Info

Publication number
WO2009153859A1
WO2009153859A1 PCT/JP2008/061030 JP2008061030W WO2009153859A1 WO 2009153859 A1 WO2009153859 A1 WO 2009153859A1 JP 2008061030 W JP2008061030 W JP 2008061030W WO 2009153859 A1 WO2009153859 A1 WO 2009153859A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
pulse rate
control unit
voltage value
battery voltage
Prior art date
Application number
PCT/JP2008/061030
Other languages
English (en)
French (fr)
Inventor
允令 友松
康弘 高橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2010517583A priority Critical patent/JP5106632B2/ja
Priority to CN200880129577.5A priority patent/CN102046957B/zh
Priority to PCT/JP2008/061030 priority patent/WO2009153859A1/ja
Priority to TW097130013A priority patent/TWI362474B/zh
Publication of WO2009153859A1 publication Critical patent/WO2009153859A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3082Control of electrical fuel pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/503Battery correction, i.e. corrections as a function of the state of the battery, its output or its type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/02Fuel evaporation in fuel rails, e.g. in common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/1035Details of the valve housing
    • F02D9/105Details of the valve housing having a throttle position sensor

Definitions

  • This invention relates to an engine control device for a vehicle or the like in which the control of a stepping motor of a fuel pump is improved in engine control.
  • a motor that drives a fuel pump for discharging fuel from a fuel tank of a vehicle has been controlled by switching on / off the energization using an electromagnetic relay.
  • the electromagnetic relay is composed of a magnet capable of exerting an electromagnetic action and a switch in which the contact is mechanically connected and separated by the electromagnetic action.
  • the fuel is pumped from the fuel tank to the pressure fuel pipe by the fuel pump, and the fuel is injected into the engine cylinder by the injector.
  • the fuel temperature rises due to heat received from peripheral parts such as the engine or the motor of the fuel pump, the pressure fuel pipe Among them, there is a problem that the fuel is vaporized and bubbles (vapor) are easily generated.
  • the rotation speed and discharge amount of the fuel pump are determined by the torque of the motor. Since the motor torque is determined by the voltage applied to the motor, if the voltage applied to the motor is low due to voltage drop at engine startup or battery deterioration, the motor torque is insufficient and the required fuel pressure is achieved. There is a possibility that the pressurization of the resin becomes slow. If the pressurization is not enough and the fuel pressure is reduced, there is a risk that the commercial value of the vehicle will be remarkably reduced, such as deterioration in startability and reduction in acceleration due to the failure to inject a required amount of fuel. Further, when the applied voltage of the motor is higher than necessary, there is a problem that the motor itself generates heat due to an increase in current consumption of the motor, and vapor is likely to be generated.
  • the present invention has been made to solve the above-described problems, and its object is to improve the engine startability by ensuring the startability of the motor when the battery voltage is abnormal and to reduce the current consumption of the motor during normal operation.
  • An engine control device capable of suppressing the occurrence of vapor is obtained.
  • An engine control apparatus includes a stepping motor that is a power source of a fuel pump that sucks and discharges fuel from a fuel tank, and a pulse width modulation control of a voltage applied to the stepping motor determined by a driving pulse rate.
  • a control unit that controls the discharge amount, and the control unit corrects the target drive pulse rate based on the battery voltage value of the battery, and calculates the drive pulse rate so as to approach the corrected target drive pulse rate.
  • the pulse width modulation control duty ratio of the pulse application time of the applied voltage is corrected based on the battery voltage value of the battery.
  • the engine control apparatus improves the engine startability by ensuring the startability of the fuel pump motor when the battery voltage is abnormal, and consumes the motor during normal operation without using a special circuit as the fuel pump motor. There is an effect that vapor generation can be suppressed by reducing current.
  • Embodiment 1 of the present invention will be described below.
  • FIG. 1 is a diagram showing a system configuration of an engine including an engine control apparatus according to Embodiment 1 of the present invention.
  • the control unit 1 stores a program and a map for controlling the operation of the entire engine in a memory (not shown).
  • the control unit 1 is provided in the air cleaner 2 on the intake side, and an intake air temperature sensor 3 that measures the temperature of the engine intake air, and a throttle position sensor 6 that is provided in the intake pipe 4 and measures the opening of the throttle valve 5. From the information of the intake pressure sensor 7 that measures the intake air pressure downstream of the throttle valve 5, the engine temperature sensor 9 that measures the wall surface temperature of the engine 8, and the crank angle sensor 11 that measures the position of the crankshaft 10, The fuel injection timing and the fuel injection amount are calculated, and a drive signal is output to the injector 24 which is a fuel injection device.
  • An exhaust pipe 12 and a muffler 13 are coupled to the exhaust side of the engine 8 (left side in FIG. 1).
  • control unit 1 outputs an ignition signal to the ignition coil 14 at an appropriate timing based on information from various sensors, generates a spark with the ignition plug 15, and the mixture of the fuel and intake air in the engine cylinder burns.
  • the crankshaft 10 rotates.
  • the fuel injected into the engine 8 is driven by the motor 22 of the fuel pump 21 in response to a drive signal from the control unit 1 and sucks and discharges the fuel from the fuel tank 20 through the filter.
  • the discharged fuel is adjusted to a predetermined pressure, passes through the pressure fuel pipe 23, and is supplied to the injector 24.
  • a stepping motor is applied as the motor 22 that drives the fuel pump 21.
  • the control unit 1 detects a battery voltage value from a battery 25 mounted on the vehicle, and corrects a target drive pulse rate of a tapping motor 22 of a fuel pump 21 and a PWM (pulse width modulation) control duty ratio, which will be described later. Use.
  • PWM pulse width modulation
  • FIG. 2 is a view showing the relationship between the stator and terminals of the stepping motor of the engine control apparatus according to Embodiment 1 of the present invention.
  • the stepping motor 22 can rotate step by step by shifting the terminals T1, T3 and the terminals T4, T6 by 90 degrees in electrical angle and sequentially switching energization within each phase.
  • Terminals T2 and T5 are connected to the battery 25.
  • FIG. 3 is a diagram showing an energization pattern of the drive pulse rate in the stepping motor according to the first embodiment of the present invention.
  • a pulse application time (corresponding to the pulse application time shown in FIG. 3) corresponding to a unit time in which a PWM-controlled drive pulse is applied to the stepping motor 22 is a first half period (first time). Period) and the second half period (second period). And the electric current value of each period is controlled by setting each PWM control duty ratio.
  • the pulse application time is divided into two stages, but it may be divided into a plurality of periods of three or more sections, and in this case, finer control is possible.
  • FIG. 4 is a flowchart showing drive control of the stepping motor of the engine control apparatus according to Embodiment 1 of the present invention.
  • step 100 the control unit 1 outputs output signals from various sensors such as an intake air temperature sensor 3, a throttle position sensor 6, an intake pressure sensor 7, an engine temperature sensor 9, and a crank angle sensor 11 connected to the control unit 1. Read. Further, the control unit 1 reads the battery voltage value Vb of the battery 25.
  • various sensors such as an intake air temperature sensor 3, a throttle position sensor 6, an intake pressure sensor 7, an engine temperature sensor 9, and a crank angle sensor 11 connected to the control unit 1.
  • the control unit 1 reads the battery voltage value Vb of the battery 25.
  • the control unit 1 detects the state of the vehicle from various sensors and calculates the fuel injection amount required by the vehicle.
  • the fuel injection amount is calculated from a map that describes the relationship between the throttle position detected by the throttle position sensor 6 and the engine speed calculated based on the detection signal of the crank angle sensor 11.
  • step 102 the control unit 1 determines the amount of fuel discharged by the fuel pump 21 in accordance with the fuel injection amount calculated in the previous step 101. Since the amount of fuel to be discharged varies depending on the drive pulse rate of the stepping motor 22 that drives the fuel pump 21, the target drive pulse rate of the stepping motor 22 is determined by the fuel injection amount. For example, the target drive pulse rate is calculated from a map that describes the relationship between the fuel injection amount and the engine speed. When the fuel injection amount is large, the control unit 1 sets the target drive pulse rate to a high frequency in order to drive the stepping motor 22 at a high speed to increase the fuel discharge amount from the fuel pump 21. Conversely, when the fuel injection amount is small, such as during idling, the fuel discharge amount from the fuel pump 21 can be small, so the control unit 1 sets the target drive pulse rate to a low frequency.
  • step 103 the control unit 1 corrects the target drive pulse rate determined in the previous step 102 in accordance with the battery voltage value Vb.
  • the battery voltage value Vb is lowered, the voltage applied to the stepping motor 22 is also lowered, and the motor torque is also lowered. Therefore, the stepping motor 22 is likely to step out.
  • the control unit 1 determines that the battery voltage value has decreased from the map describing the relationship between the battery voltage value and the drive pulse rate correction amount in FIG. 5, that is, the relationship between the battery voltage value and the drive pulse rate correction amount.
  • the target drive pulse rate is corrected to be low when the voltage is reduced to 12V.
  • the corresponding drive pulse rate correction amount is 0.8. Therefore, the target drive pulse rate is multiplied by the correction amount 0.8. That is, the target drive pulse rate is set so that torque can be secured even when the battery voltage value is lowered.
  • the control unit 1 determines a high correction amount as shown in FIG. 5 and sets the target drive pulse rate high. For example, when the normal voltage value is approximately 14V, the target drive pulse rate is corrected to be high when the voltage value is increased to 16V. Specifically, referring to FIG. 5, when the battery voltage value is 16V, the corresponding drive pulse rate correction amount is 1.3. Therefore, the target drive pulse rate is multiplied by the correction amount 1.3. By doing so, even when the voltage applied to the stepping motor 22 is increased, the current consumption can be suppressed by shortening the application time, and the heat generation of the stepping motor 22 can be suppressed. Further, since the range of the drive pulse rate that can be set is determined depending on the type of the stepping motor 22 to be used, the corrected target drive pulse rate is limited to be within the range.
  • step 104 the control unit 1 compares the currently set current drive pulse rate with the target drive pulse rate corrected in step 103, and if the current drive pulse rate is lower than the target drive pulse rate ( YES), go to step 105. Conversely, if the current drive pulse rate is equal to or higher than the target drive pulse rate (NO), the process proceeds to step 106.
  • step 105 the control unit 1 increments the current drive pulse rate by the minimum resolution and approaches the target drive pulse rate.
  • step 106 the control unit 1 performs a comparison opposite to that in step 104. If the current drive pulse rate is higher than the target drive pulse rate (YES), the process proceeds to step 107. If the comparison at step 106 is not established (NO), it is determined that the current drive pulse rate matches the target drive pulse rate, and the process proceeds to step 108 without changing the current drive pulse rate.
  • step 107 the control unit 1 decrements the current drive pulse rate by the minimum resolution and approaches the target drive pulse rate.
  • the control unit 1 determines the PWM control duty ratio for each divided period of the pulse application time applied to the stepping motor 22 according to the current drive pulse rate calculated in step 105 and step 107.
  • the PWM control duty ratio is calculated from a map describing the relationship between the current drive pulse rate and the engine temperature detected by the engine temperature sensor 9.
  • the current drive pulse rate is high, the current consumption is low because the pulse application time to the stepping motor 22 is short.
  • the current drive pulse rate is low, the pulse application time to the stepping motor 22 is long, so the current consumption becomes higher. Therefore, by controlling the PWM control duty ratio, it is possible to reduce current consumption by increasing the duty ratio even if the current drive pulse rate is low.
  • Embodiment 1 of the present invention it is assumed that the PWM control duty ratio is determined for each divided period, but the duty ratio of the entire pulse application time may be changed uniformly.
  • step 109 the control unit 1 corrects the PWM control duty ratio in accordance with the battery voltage value as in step 103.
  • the control unit 1 reduces the battery voltage value from the map that describes the relationship between the battery voltage value and the PWM control duty ratio correction amount, that is, the relationship between the battery voltage value and the PWM control duty ratio correction amount in FIG. For example, when the normal voltage value is approximately 14V and the voltage is reduced to 10V, the PWM control duty ratio is corrected to be high.
  • the corresponding PWM control duty ratio correction amount is 1.5. Therefore, the PWM control duty ratio is multiplied by the correction amount 1.5. As a result, it is possible to increase the voltage applied to the stepping motor 22 and improve the torque.
  • the control unit 1 corrects the PWM control duty ratio to be low so as to reduce the current consumption in order to prevent the stepping motor 22 from generating heat.
  • the PWM control duty ratio is corrected to be low.
  • the corresponding PWM control duty ratio correction amount is 0.7. Therefore, the PWM control duty ratio is multiplied by the correction amount 0.7.
  • the range of the PWM control duty ratio that can be set is limited depending on the type of the stepping motor 22 to be used, the limiting process is performed so that the corrected PWM control duty ratio is within the range.
  • the correction of the PWM control duty ratio may be performed only in the first half period (first period) or only in the second half period (second period) of the pulse application time.
  • the control unit 1 uniformly reduces the PWM control duty ratio for each of the divided periods within the pulse application time determined in Step 108 and Step 109. For example, it is set 10% lower uniformly. By doing so, the current consumption of the stepping motor 22 is reduced, and the heat generation of the stepping motor 22 is suppressed.
  • step 111 the control unit 1 drives the stepping motor 22 by supplying an applied voltage to the stepping motor 22 of the fuel pump 21 according to the above-described current drive pulse rate and PWM control duty ratio.
  • the engine control apparatus pulses a voltage applied to a stepping motor 22 that is a power source of a fuel pump 21 that sucks and discharges fuel from a fuel tank 20 and a stepping motor 22 determined by a drive pulse rate.
  • a control unit 1 that controls the fuel discharge amount by performing width modulation control.
  • the control unit 1 corrects the target drive pulse rate based on the battery voltage value of the battery 25, and approaches the corrected target drive pulse rate.
  • the driving pulse rate is calculated and the pulse width modulation control duty ratio of the pulse application time of the applied voltage is corrected based on the battery voltage value of the battery 25. Therefore, the stepping motor 22 of the fuel pump 21 is special. Battery voltage difference without using a circuit It is possible to realize the suppression of vapor generation by reducing the current consumption of the stepping motor 22 starts ensuring engine startability Boosts the stepping motor 22 of the fuel pump 21, during normal operation at the time.
  • the control unit 1 corrects the drive pulse rate applied to the stepping motor 22 to a low frequency when the battery voltage value of the battery 25 tends to be low.
  • the torque of the stepping motor 22 can be ensured by switching the drive pulse rate to a low frequency and applying a current to the stepping motor 22. Become. By ensuring the torque, fuel can be supplied from the fuel pump even when the battery voltage drops.
  • the control unit 1 corrects the driving pulse rate applied to the stepping motor 22 to a high frequency when the battery voltage value of the battery 25 tends to be high.
  • the voltage application time to the motor 22 can be shortened and current consumption can be reduced. By reducing the current consumption, it is effective for the case where the stepping motor 22 generates heat.
  • the control unit 1 performs PWM control duty in the first period among the periods divided into a plurality of periods within the pulse application time to the stepping motor 22.
  • the ratio is corrected based on the battery voltage value.
  • the control unit 1 has a period after the second period among the periods divided into a plurality of periods within the pulse application time to the stepping motor 22. Since the PWM control duty ratio is corrected based on the battery voltage value, the torque is ensured in the first period and the stepping motor 22 is reliably rotated, and the inertia of the rotor of the stepping motor 22 is reduced after the second period. It is possible to control the torque to a level that is not, and it is possible to reduce the Joule heat of the motor coil due to the reduction in current consumption.
  • the control unit 1 corrects the PWM control duty ratio to be high when the battery voltage value of the battery 25 tends to be low. As a result, the voltage applied to the stepping motor 22 can be increased, and the motor torque can be secured so that no step-out occurs.
  • the control unit 1 corrects the PWM control duty ratio to be low when the battery voltage value of the battery 25 tends to be high. As a result, the applied voltage becomes high and the heat generation of the stepping motor 22 due to the increase in current consumption can be prevented, and the generation of vapor can also be suppressed.
  • the control unit 1 performs PWM control over the entire period within the pulse application time divided into a plurality of periods when the battery voltage value of the battery 25 exceeds the specified value. Since the duty ratio is switched to a low value, an abnormally high voltage value is not applied to the stepping motor 22, and it becomes possible to prevent an increase in current consumption, heat generation of the stepping motor 22, and generation of vapor. Further, since the thermal deterioration of the coil is suppressed, it can be useful for improving the reliability of the fuel supply device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Stepping Motors (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

 この発明のエンジン制御装置は、燃料タンクから燃料を吸引し吐出する燃料ポンプの動力源であるステッピングモータと、駆動パルスレートによって決まるステッピングモータへの印加電圧をパルス幅変調制御することにより燃料吐出量を制御するコントロールユニットとを設け、コントロールユニットが、バッテリのバッテリ電圧値に基づいて目標駆動パルスレートを補正し、この補正した目標駆動パルスレートに近づくように前記駆動パルスレートを演算するとともに、バッテリのバッテリ電圧値に基づいて前記印加電圧のパルス印加時間のパルス幅変調制御デューティ比を補正する。

Description

エンジン制御装置
 この発明は、エンジン制御の中で、特に燃料ポンプのステッピングモータの制御を改良した車両等のエンジン制御装置に関するものである。
 従来、車両の燃料タンクから燃料を吐出するための燃料ポンプを駆動するモータは、電磁式リレーを用いて、その通電のON/OFFを切り替えることで制御していた。電磁式リレーとは、電磁作用を及ぼすことができるマグネットと、その電磁作用によって接点が機械的に接離を行うスイッチから構成されるものである。
 燃料ポンプによって燃料を燃料タンクから圧力燃料配管まで圧送し、インジェクタによりエンジン気筒内に燃料が噴射されるが、エンジンあるいは燃料ポンプのモータなど周辺部品からの受熱によって、燃料温度が上昇すると圧力燃料配管中では燃料が気化し気泡(ベーパ)が発生しやすくなる問題がある。
 ベーパが発生した場合、燃料を加圧できず燃圧が不安定になり、インジェクタからの噴射量も不安定となる。ベーパの発生を防止する為に、燃料ポンプのモータの消費電流を抑えることを目的として、例えば、要求燃料噴射量が少ないアイドル時は燃料ポンプのモータのデューティ比を抑えて、消費電流の低減を図ることが行われている(例えば、特許文献1参照)。
 また、小型二輪車など小型車両の燃料ポンプの場合、車両レイアウトの関係から燃料ポンプの形状をより小さくすることが求められており、燃料ポンプを駆動させるモータのコンパクト化が必要となっている。
特開2000-220548号公報
 ところで、燃料ポンプの回転数や吐出量はモータのトルクにより決定される。このモータのトルクは、モータへの印加電圧により決定される為、エンジン始動時の電圧低下時やバッテリ劣化などにより、モータへの印加電圧が低い場合はモータのトルクが足りず、必要な燃圧への加圧が遅くなる可能性が生じる。加圧が足りず燃圧が低下していると、必要量の燃料を噴射することができないことによる始動性の悪化、加速性の低下等、車両の商品性を著しく低下させる恐れがある。また、モータの印加電圧が必要以上に高い場合は、モータの消費電流が増大することによりモータ自体が発熱し、ベーパが発生し易くなるという問題点があった。
 この発明は、上述のような課題を解決するためになされたもので、その目的は、バッテリ電圧異常時におけるモータの起動性確保によるエンジンの始動性向上、通常動作時におけるモータの消費電流低減によるベーパ発生の抑制を実現することができるエンジン制御装置を得るものである。
 この発明に係るエンジン制御装置は、燃料タンクから燃料を吸引し吐出する燃料ポンプの動力源であるステッピングモータと、駆動パルスレートによって決まる前記ステッピングモータへの印加電圧をパルス幅変調制御することにより燃料吐出量を制御するコントロールユニットとを設け、前記コントロールユニットは、バッテリのバッテリ電圧値に基づいて目標駆動パルスレートを補正し、この補正した目標駆動パルスレートに近づくように前記駆動パルスレートを演算するとともに、前記バッテリのバッテリ電圧値に基づいて前記印加電圧のパルス印加時間のパルス幅変調制御デューティ比を補正するものである。
 この発明に係るエンジン制御装置は、燃料ポンプのモータとしては特別な回路を用いることなく、バッテリ電圧異常時における燃料ポンプのモータの起動性確保によるエンジンの始動性向上、通常動作時におけるモータの消費電流低減によるベーパ発生の抑制を実現することができるという効果を奏する。
この発明の実施例1に係るエンジン制御装置を含むエンジンのシステム構成を示す図である。 この発明の実施例1に係るエンジン制御装置のステッピングモータの固定子と端子の関係を示す図である。 この発明の実施例1に係るエンジン制御装置のステッピングモータにおける駆動パルスレートの通電パターンを示す図である。 この発明の実施例1に係るエンジン制御装置のステッピングモータの駆動制御を示すフローチャートである。 この発明の実施例1に係るエンジン制御装置のバッテリ電圧値と駆動パルスレート補正量の関係を示す図である。 この発明の実施例1に係るエンジン制御装置のバッテリ電圧値とPWM制御デューティ比補正量の関係を示す図である。
 この発明の実施例1について以下説明する。
 この発明の実施例1に係るエンジン制御装置について図1から図6までを参照しながら説明する。図1は、この発明の実施例1に係るエンジン制御装置を含むエンジンのシステム構成を示す図である。
 図1において、コントロールユニット1は、エンジン全体の動作を制御する為のプログラムやマップをメモリ(図示せず)に格納している。コントロールユニット1は、吸気側のエアークリーナ2に設けられ、エンジン吸入空気の温度を計測する吸気温センサ3と、吸気管4に設けられ、スロットル弁5の開度を計測するスロットルポジションセンサ6と、スロットル弁5の下流の吸入空気圧を計測する吸気圧センサ7と、エンジン8の壁面温度を計測するエンジン温度センサ9と、クランクシャフト10の位置を計測するクランク角センサ11の情報から、適切な燃料噴射時期、燃料噴射量を演算し、燃料噴射装置であるインジェクタ24に駆動信号を出力する。
 なお、エンジン8の排気側(図1では左側)には、排気管12と、マフラー13が結合されている。
 また同じく、コントロールユニット1は、各種センサの情報から適切なタイミングで点火信号を点火コイル14に出力し、点火プラグ15で火花を発生させてエンジンシリンダ内の燃料と吸入空気の混合気が燃焼し、エンジン8のピストンが押し出されることによりクランクシャフト10が回転する。
 エンジン8に噴射される燃料は、コントロールユニット1からの駆動信号により、燃料ポンプ21のモータ22が駆動し、フィルタを介して燃料タンク20から燃料を吸引し吐出する。吐出された燃料は、所定圧力に調整され、圧力燃料配管23を通り、インジェクタ24に供給される。
 本発明の実施例1では、燃料ポンプ21を駆動するモータ22として、ステッピングモータを適用している。
 コントロールユニット1は、車両に搭載されたバッテリ25からバッテリ電圧値を検出し、後述する燃料ポンプ21のテッピングモータ22の目標駆動パルスレートの補正及びPWM(パルス幅変調)制御デューティ比の補正に用いる。
 図2は、この発明の実施例1に係るエンジン制御装置のステッピングモータの固定子と端子の関係を示す図である。端子T1、T3及び端子T4、T6を電気角90°位相ずらして、それぞれの相内で順次通電を切替えることで、ステッピングモータ22は、ステップ角度ずつ回転することができる。端子T2、T5は、バッテリ25へ接続される。
 図3は、この発明の実施例1に係るステッピングモータにおける駆動パルスレートの通電パターンを示す図である。どの瞬間においても、いずれかの2つの相が常時通電される2相フルステップ通電となっている。模式的に示すように、PWM制御された駆動パルスがステッピングモータ22へ印加される単位時間に相当するパルス印加時間(図3に図示されたパルス印加時間に相当)は、前半期間(第1番目の期間)と後半期間(第2番目の期間)の2段階に区分される。そして、それぞれの期間の電流値をそれぞれのPWM制御デューティ比を設定することで制御する。ここでは、パルス印加時間を2段階に区分したが、3区分以上の複数の期間に分割してもよく、その場合、より細かい制御をすることが可能となる。
 つぎに、この発明の実施例1に係るステッピングモータの駆動制御について図面を参照しながら説明する。図4は、この発明の実施例1に係るエンジン制御装置のステッピングモータの駆動制御を示すフローチャートである。
 まず、ステップ100において、コントロールユニット1は、コントロールユニット1に接続された吸気温センサ3、スロットルポジションセンサ6、吸気圧センサ7、エンジン温度センサ9、クランク角センサ11など各種センサからの出力信号を読込む。また、コントロールユニット1は、バッテリ25のバッテリ電圧値Vbを読込む。
 次に、ステップ101において、コントロールユニット1は、各種センサから車両の状態を検出し、車両が必要とする燃料噴射量を演算する。例えば、スロットルポジションセンサ6により検出されたスロットルポジションと、クランク角センサ11の検出信号に基づき計算されたエンジン回転速度との関係を記述したマップから、燃料噴射量を演算する。
 次に、ステップ102において、コントロールユニット1は、前のステップ101で演算した燃料噴射量に応じて、燃料ポンプ21が吐出する燃料量を決める。この吐出する燃料量は、燃料ポンプ21を駆動させるステッピングモータ22の駆動パルスレートによって変化することから、ステッピングモータ22の目標駆動パルスレートは燃料噴射量により決定する。例えば、燃料噴射量と、エンジン回転速度との関係を記述したマップから、目標駆動パルスレートを演算する。燃料噴射量が多い場合は、ステッピングモータ22を高回転で駆動させて燃料ポンプ21からの燃料吐出量を上げるため、コントロールユニット1は、目標駆動パルスレートを高周波に設定する。逆に、アイドル時など燃料噴射量が少ない場合には、燃料ポンプ21からの燃料吐出量も少なくて済むため、コントロールユニット1は、目標駆動パルスレートを低周波に設定する。
 次に、ステップ103において、コントロールユニット1は、前のステップ102で決定した目標駆動パルスレートをバッテリ電圧値Vbに応じて補正する。バッテリ電圧値Vbが低下している場合、ステッピングモータ22への印加電圧も低下し、モータトルクも落ちている為、ステッピングモータ22が脱調を起こし易くなる。駆動パルスレートが高い場合はモータトルクが低くなっていることから、バッテリ電圧低下の影響を特に受けて、より脱調を引き起こすことになる。従って、コントロールユニット1は、図5のバッテリ電圧値と駆動パルスレート補正量の関係、つまり、バッテリ電圧値と駆動パルスレート補正量の関係を記述したマップから、バッテリ電圧値が低下している場合、例えば、正常な電圧値が略14Vの場合に、12Vに低下しているときには目標駆動パルスレートを低く補正する。具体的には、図5を参照すると、バッテリ電圧値が12Vのときには、対応する駆動パルスレート補正量は0.8となる。従って、目標駆動パルスレートと補正量0.8を掛算する。すなわち、バッテリ電圧値が低下している場合でもトルクが確保できる目標駆動パルスレートに設定する。
 逆に、バッテリ電圧値が高い場合は、コントロールユニット1は、図5のように高い補正量を決定し、目標駆動パルスレートを高く設定する。例えば、正常な電圧値が略14Vの場合に、16Vに上昇しているときには目標駆動パルスレートを高く補正する。具体的には、図5を参照すると、バッテリ電圧値が16Vのときには、対応する駆動パルスレート補正量は1.3となる。従って、目標駆動パルスレートと補正量1.3を掛算する。こうすることにより、ステッピングモータ22への印加電圧が高くなる場合でも、印加時間を短くすることで消費電流を抑え、ステッピングモータ22の発熱を抑制することが可能となる。また、用いるステッピングモータ22の種類によって、設定できる駆動パルスレートの範囲は決っている為、補正後の目標駆動パルスレートがその範囲内になるように制限する。
 次に、ステップ104において、コントロールユニット1は、現在設定されている現在駆動パルスレートとステップ103で補正された目標駆動パルスレートを比較し、現在駆動パルスレートが目標駆動パルスレートよりも低い場合(YES)はステップ105に進む。逆に、現在駆動パルスレートが目標駆動パルスレート以上の場合(NO)はステップ106に進む。
 次に、ステップ105において、コントロールユニット1は、現在駆動パルスレートを最小分解能分だけインクリメントし、目標駆動パルスレートに近づけていく。
 一方、ステップ106において、コントロールユニット1は、ステップ104とは逆の比較を実施し、現在駆動パルスレートが目標駆動パルスレートよりも高い場合(YES)はステップ107に進む。ステップ106での比較が非成立の場合(NO)は現在駆動パルスレートと目標駆動パルスレートが一致していると判断し、現在駆動パルスレートの変更をしないでステップ108に進む。
 次に、ステップ107において、コントロールユニット1は、現在駆動パルスレートを最小分解能分だけデクリメントし、目標駆動パルスレートに近づけていく。
 ステップ104からステップ107までの一連の操作によって、現在駆動パルスレートを急に変更しないので、ステッピングモータ22の脱調を防止することが可能である。しかし、ステッピングモータ22の性能によっては、現在駆動パルスレートを大きく切替えても脱調しないことも考えられる為、ステップ105及びステップ107の現在駆動パルスレートの変化量は最小分解能分に限定する必要はない。
 ステップ108において、コントロールユニット1は、ステップ105及びステップ107で演算した現在駆動パルスレートに応じて、ステッピングモータ22へ印加するパルス印加時間の区分された各期間のPWM制御デューティ比を決定する。例えば、現在駆動パルスレートと、エンジン温度センサ9により検出されたエンジン温度との関係を記述したマップから、PWM制御デューティ比を演算する。現在駆動パルスレートが高い場合は、ステッピングモータ22へのパルス印加時間が短いため消費電流は低いが、現在駆動パルスレートが低い場合は、ステッピングモータ22へのパルス印加時間が長くなることから消費電流が高くなる。そこで、PWM制御デューティ比を制御することにより、現在駆動パルスレートが低くてもデューティ比を高めることにより消費電流を低減させることが可能となる。本発明の実施例1では、区分された期間毎にPWM制御デューティ比を決定することを想定しているが、パルス印加時間全体のデューティ比を一律変化させても良い。
 次に、ステップ109において、コントロールユニット1は、ステップ103と同様にPWM制御デューティ比をバッテリ電圧値に応じて補正する。バッテリ電圧値が低い場合は、ステップ103で記述したようにステッピングモータ22への印加電圧が低下する為、PWM制御デューティ比を高めて電流値を下げることはモータトルク低下に繋がり、脱調を引き起こす恐れがある。従って、コントロールユニット1は、図6のバッテリ電圧値とPWM制御デューティ比補正量の関係、つまり、バッテリ電圧値とPWM制御デューティ比補正量の関係を記述したマップから、バッテリ電圧値が低下している場合、例えば、正常な電圧値が略14Vの場合に、10Vに低下しているときには、PWM制御デューティ比を高く補正する。具体的には、図6を参照すると、バッテリ電圧値が10Vのときには、対応するPWM制御デューティ比補正量は1.5となる。従って、PWM制御デューティ比と補正量1.5を掛算する。その結果、ステッピングモータ22への印加電圧を高めてトルクを向上させることが可能となる。
 逆に、バッテリ電圧値が高い場合は、コントロールユニット1は、ステッピングモータ22の発熱を防止する為に消費電流を下げるようにPWM制御デューティ比を低く補正する。例えば、正常な電圧値が略14Vの場合に、16Vに上昇しているときにはPWM制御デューティ比を低く補正する。具体的には、図6を参照すると、バッテリ電圧値が16Vのときには、対応するPWM制御デューティ比補正量は0.7となる。従って、PWM制御デューティ比と補正量0.7を掛算する。また、用いるステッピングモータ22の種類によって、設定可能なPWM制御デューティ比の範囲は制限される為、補正後のPWM制御デューティ比が範囲内になるように制限処理を行う。なお、PWM制御デューティ比の補正は、パルス印加時間の前半期間(第1番目の期間)だけでも良く、後半期間(第2番目の期間)だけでも良い。
 次に、ステップ110において、バッテリ電圧値が規定値を超えているような異常電圧を示している場合はステッピングモータ22への印加電圧が非常に高くなる。そこで、コントロールユニット1は、バッテリ電圧値が、例えば、18Vを超えている場合は、ステップ108及びステップ109で決定した、パルス印加時間内の区分された各期間それぞれのPWM制御デューティ比を一律低く、例えば、一律10%低く設定する。こうすることで、ステッピングモータ22の消費電流を低減し、ステッピングモータ22の発熱を抑制する。
 そして、ステップ111において、コントロールユニット1は、前述した現在駆動パルスレート及びPWM制御デューティ比に応じて、燃料ポンプ21のステッピングモータ22に印加電圧を供給し、ステッピングモータ22を駆動する。
 この発明の実施例1に係るエンジン制御装置は、燃料タンク20から燃料を吸引し吐出する燃料ポンプ21の動力源であるステッピングモータ22と、駆動パルスレートによって決まるステッピングモータ22への印加電圧をパルス幅変調制御することにより燃料吐出量を制御するコントロールユニット1とを備え、コントロールユニット1が、バッテリ25のバッテリ電圧値に基づいて目標駆動パルスレートを補正し、この補正した目標駆動パルスレートに近づくように前記駆動パルスレートを演算するとともに、バッテリ25のバッテリ電圧値に基づいて前記印加電圧のパルス印加時間のパルス幅変調制御デューティ比を補正するので、燃料ポンプ21のステッピングモータ22としては特別な回路を用いることなく、バッテリ電圧異常時における燃料ポンプ21のステッピングモータ22の起動性確保によるエンジンの始動性向上、通常動作時におけるステッピングモータ22の消費電流低減によるベーパ発生の抑制を実現することができる。
 また、この発明の実施例1に係るエンジン制御装置は、コントロールユニット1が、バッテリ25のバッテリ電圧値が低い傾向にある場合はステッピングモータ22へ印加する駆動パルスレートを低周波に補正する為、バッテリ電圧が低下し、ステッピングモータ22のトルク低下の恐れがある場合は駆動パルスレートを低周波に切替えてステッピングモータ22への電流を与えることで、ステッピングモータ22のトルクを確保させることが可能となる。トルクを確保することにより、バッテリ電圧低下時でも燃料ポンプから燃料の供給が可能となる。
 また、この発明の実施例1に係るエンジン制御装置は、コントロールユニット1が、バッテリ25のバッテリ電圧値が高い傾向にある場合はステッピングモータ22へ印加する駆動パルスレートを高周波に補正する為、ステッピングモータ22への電圧印加時間を短くし、消費電流を低減することができる。消費電流を低減させることにより、ステッピングモータ22が発熱する場合に対して有効である。
 また、この発明の実施例1に係るエンジン制御装置は、コントロールユニット1が、ステッピングモータ22へのパルス印加時間内で複数の期間に区分した期間の中で、第1番目の期間のPWM制御デューティ比をバッテリ電圧値に基づいて補正する。第1番目の期間のPWM制御デューティ比を他の期間とは別に設定することで、高い負荷がかかるステッピングモータ22の駆動開始時においても高いトルクを確保することが可能となる。
 また、この発明の実施例1に係るエンジン制御装置は、コントロールユニット1が、ステッピングモータ22へのパルス印加時間内で複数の期間に区分した期間の中で、第2番目の期間以降の期間のPWM制御デューティ比をバッテリ電圧値に基づいて補正するので、第1番目の期間でトルクを確保し確実にステッピングモータ22を回転させ、第2番目の期間以降ではステッピングモータ22のロータの慣性を落とさない程度のトルクに制御することが可能となり、消費電流低減によるモータコイルのジュール熱を低減させることが可能となる。
 また、この発明の実施例1に係るエンジン制御装置は、コントロールユニット1が、バッテリ25のバッテリ電圧値が低い傾向にある場合はPWM制御デューティ比を高く補正する。これにより、ステッピングモータ22への印加電圧を高くし、脱調が発生しないようにモータトルクを確保することが可能となる
 また、この発明の実施例1に係るエンジン制御装置は、コントロールユニット1が、バッテリ25のバッテリ電圧値が高い傾向にある場合はPWM制御デューティ比を低く補正する。これにより、印加電圧が高くなり消費電流増大によるステッピングモータ22の発熱を防ぐことが可能となり、ベーパの発生も抑制することが出来る。
 さらに、この発明の実施例1に係るエンジン制御装置は、コントロールユニット1が、バッテリ25のバッテリ電圧値が規定値を超える場合は複数の期間に区分されたパルス印加時間内の全期間のPWM制御デューティ比を低く切替えるので、ステッピングモータ22に異常に高い電圧値が印加されることがなく、消費電流の増大、ステッピングモータ22の発熱、ベーパの発生を防止することが可能となる。また、コイルの熱的な劣化を抑えることから燃料供給装置の信頼性向上に役立つことができる。

Claims (8)

  1.  燃料タンクから燃料を吸引し吐出する燃料ポンプの動力源であるステッピングモータと、
     駆動パルスレートによって決まる前記ステッピングモータへの印加電圧をパルス幅変調制御することにより燃料吐出量を制御するコントロールユニットとを備え、
     前記コントロールユニットは、
      バッテリのバッテリ電圧値に基づいて目標駆動パルスレートを補正し、この補正した目標駆動パルスレートに近づくように前記駆動パルスレートを演算するとともに、
      前記バッテリのバッテリ電圧値に基づいて前記印加電圧のパルス印加時間のパルス幅変調制御デューティ比を補正する
     エンジン制御装置。
  2.  前記コントロールユニットは、前記バッテリのバッテリ電圧値が正常値より低い場合は前記駆動パルスレートを低周波に補正する
     請求項1記載のエンジン制御装置。
  3.  前記コントロールユニットは、前記バッテリのバッテリ電圧値が正常値より高い場合は前記駆動パルスレートを高周波に補正する
     請求項1記載のエンジン制御装置。
  4.  前記コントロールユニットは、前記パルス印加時間を複数の期間に区分し、前記複数の期間のうち、第1番目の期間のパルス幅変調制御デューティ比を前記バッテリ電圧値に基づいて補正する
     請求項1記載のエンジン制御装置。
  5.  前記コントロールユニットは、前記パルス印加時間を複数の期間に区分し、前記複数の期間のうち、第2番目の期間以降の期間のパルス幅変調制御デューティ比を前記バッテリ電圧値に基づいて補正する
     請求項1記載のエンジン制御装置。
  6.  前記コントロールユニットは、前記バッテリのバッテリ電圧値が正常値より低い場合は前記パルス幅変調制御デューティ比を高く補正する
     請求項4又は5記載のエンジン制御装置。
  7.  前記コントロールユニットは、前記バッテリのバッテリ電圧値が正常値より高い場合は前記パルス幅変調制御デューティ比を低く補正する
     請求項4又は5記載のエンジン制御装置。
  8.  前記コントロールユニットは、前記バッテリのバッテリ電圧値が規定値を超えて異常電圧の場合は前記パルス印加時間内のパルス幅変調制御デューティ比を低く設定する
     請求項1記載のエンジン制御装置。
PCT/JP2008/061030 2008-06-17 2008-06-17 エンジン制御装置 WO2009153859A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010517583A JP5106632B2 (ja) 2008-06-17 2008-06-17 エンジン制御装置
CN200880129577.5A CN102046957B (zh) 2008-06-17 2008-06-17 发动机控制装置
PCT/JP2008/061030 WO2009153859A1 (ja) 2008-06-17 2008-06-17 エンジン制御装置
TW097130013A TWI362474B (en) 2008-06-17 2008-08-07 Engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/061030 WO2009153859A1 (ja) 2008-06-17 2008-06-17 エンジン制御装置

Publications (1)

Publication Number Publication Date
WO2009153859A1 true WO2009153859A1 (ja) 2009-12-23

Family

ID=41433789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/061030 WO2009153859A1 (ja) 2008-06-17 2008-06-17 エンジン制御装置

Country Status (4)

Country Link
JP (1) JP5106632B2 (ja)
CN (1) CN102046957B (ja)
TW (1) TWI362474B (ja)
WO (1) WO2009153859A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060872A (ja) * 2011-09-13 2013-04-04 Hitachi Automotive Systems Ltd 燃料ポンプの駆動制御装置
JP2013060881A (ja) * 2011-09-13 2013-04-04 Hitachi Automotive Systems Ltd 燃料ポンプの駆動制御装置
JP2015119571A (ja) * 2013-12-19 2015-06-25 キヤノン株式会社 ステッピングモータ制御装置、ステッピングモータ制御プログラム、光学機器および交換レンズ
JP2017057741A (ja) * 2015-09-15 2017-03-23 株式会社デンソー バルブ装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6822456B2 (ja) * 2017-09-22 2021-01-27 株式会社デンソー 車両電源システム、および電源制御装置
CN109653844A (zh) * 2018-12-27 2019-04-19 凯龙高科技股份有限公司 一种尿素溶液供给泵压力稳定的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164062A (ja) * 1985-01-17 1986-07-24 Honda Motor Co Ltd 内燃エンジン用燃料供給装置
JPH09126029A (ja) * 1995-11-01 1997-05-13 Kokusan Denki Co Ltd 内燃機関用燃料噴射装置の燃料ポンプ制御方法及び装置
JPH10318069A (ja) * 1997-05-20 1998-12-02 Honda Motor Co Ltd 自動二輪車用燃料ポンプの駆動装置
JP2003120452A (ja) * 2001-10-09 2003-04-23 Mikuni Corp プランジャポンプの駆動方法
WO2005083257A1 (ja) * 2004-03-01 2005-09-09 Yamaha Hatsudoki Kabushiki Kaisha 燃料ポンプ制御装置および燃料ポンプ制御方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4067384B2 (ja) * 2002-10-30 2008-03-26 株式会社ミクニ 燃料噴射方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164062A (ja) * 1985-01-17 1986-07-24 Honda Motor Co Ltd 内燃エンジン用燃料供給装置
JPH09126029A (ja) * 1995-11-01 1997-05-13 Kokusan Denki Co Ltd 内燃機関用燃料噴射装置の燃料ポンプ制御方法及び装置
JPH10318069A (ja) * 1997-05-20 1998-12-02 Honda Motor Co Ltd 自動二輪車用燃料ポンプの駆動装置
JP2003120452A (ja) * 2001-10-09 2003-04-23 Mikuni Corp プランジャポンプの駆動方法
WO2005083257A1 (ja) * 2004-03-01 2005-09-09 Yamaha Hatsudoki Kabushiki Kaisha 燃料ポンプ制御装置および燃料ポンプ制御方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060872A (ja) * 2011-09-13 2013-04-04 Hitachi Automotive Systems Ltd 燃料ポンプの駆動制御装置
JP2013060881A (ja) * 2011-09-13 2013-04-04 Hitachi Automotive Systems Ltd 燃料ポンプの駆動制御装置
JP2015119571A (ja) * 2013-12-19 2015-06-25 キヤノン株式会社 ステッピングモータ制御装置、ステッピングモータ制御プログラム、光学機器および交換レンズ
JP2017057741A (ja) * 2015-09-15 2017-03-23 株式会社デンソー バルブ装置

Also Published As

Publication number Publication date
CN102046957A (zh) 2011-05-04
JPWO2009153859A1 (ja) 2011-11-24
CN102046957B (zh) 2013-03-27
TW201000828A (en) 2010-01-01
JP5106632B2 (ja) 2012-12-26
TWI362474B (en) 2012-04-21

Similar Documents

Publication Publication Date Title
JP5106632B2 (ja) エンジン制御装置
JPH09151823A (ja) 燃料供給装置
JP4148127B2 (ja) 燃料噴射装置
US9322410B2 (en) Electric pump device
JP2010255444A (ja) 内燃機関の燃料噴射制御装置及び方法
JP2008031947A (ja) 内燃機関の高圧燃料ポンプ制御装置
JP2007285153A (ja) グロープラグ通電制御装置
JP5356320B2 (ja) ブラシレスモータの駆動装置
WO2016125688A1 (ja) 内燃機関の制御装置
US7287501B2 (en) Control device of internal combustion engine
US7412953B2 (en) Engine control device
JP4032356B2 (ja) 燃料噴射装置
JP2009121458A (ja) 燃料供給制御システム
JP2008267250A (ja) エンジンの燃料ポンプ制御装置
JP2007064203A (ja) Lpi車両の始動装置及びその制御方法
JP2007224822A (ja) 車載内燃機関の燃料ポンプ制御装置
JP4706588B2 (ja) 燃料ポンプの駆動装置
JP2007170338A (ja) エンジンの燃料噴射装置
JP4442614B2 (ja) グロープラグの異常診断装置
JP2010037986A (ja) アナログ電圧のデータ処理方法及び車両動作制御装置
KR100395207B1 (ko) 연료공급 펌프용 브러시리스 직류모터의 제어방법 및제어장치
JP2006342706A (ja) エンジンのアイドル回転数制御装置及びアイドル回転数制御方法
JPH05321732A (ja) 内燃機関の燃料噴射制御装置
JP2007162616A (ja) 電子ガバナ
JPH04318237A (ja) 内燃機関制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880129577.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08777268

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010517583

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 6466/CHENP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08777268

Country of ref document: EP

Kind code of ref document: A1