WO2009151003A1 - スパッタリング用酸化物焼結体ターゲット及びその製造方法 - Google Patents

スパッタリング用酸化物焼結体ターゲット及びその製造方法 Download PDF

Info

Publication number
WO2009151003A1
WO2009151003A1 PCT/JP2009/060324 JP2009060324W WO2009151003A1 WO 2009151003 A1 WO2009151003 A1 WO 2009151003A1 JP 2009060324 W JP2009060324 W JP 2009060324W WO 2009151003 A1 WO2009151003 A1 WO 2009151003A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface area
target
specific surface
powder
sputtering
Prior art date
Application number
PCT/JP2009/060324
Other languages
English (en)
French (fr)
Inventor
幸三 長田
洋明 大塚
Original Assignee
日鉱金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉱金属株式会社 filed Critical 日鉱金属株式会社
Priority to US12/864,553 priority Critical patent/US9045823B2/en
Priority to CN200980115641.9A priority patent/CN102016112B/zh
Priority to EP09762433.2A priority patent/EP2284293B1/en
Priority to KR1020107015038A priority patent/KR101224769B1/ko
Priority to JP2010516833A priority patent/JP5202630B2/ja
Publication of WO2009151003A1 publication Critical patent/WO2009151003A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides

Definitions

  • the present invention is generally referred to as an oxide sintered compact target for sputtering (“IGZO”) composed of indium (In), gallium (Ga), zinc (Zn), oxygen (O) and inevitable impurities. This will be described using “IGZO” as necessary.) And a manufacturing method thereof.
  • IGZO oxide sintered compact target for sputtering
  • a thin film transistor called TFT (Thin Film Transistor) is composed of a three-terminal element having a gate terminal, a source terminal, and a drain terminal.
  • TFT Thin Film Transistor
  • a semiconductor thin film formed on a substrate is used as a channel layer in which electrons or holes move, a voltage is applied to the gate terminal to control a current flowing in the channel layer, and a current flows between the source terminal and the drain terminal. It has a function of switching current.
  • the most widely used device is a device using a polycrystalline silicon film or an amorphous silicon film as a channel layer.
  • a silicon-based material (polycrystalline silicon or amorphous silicon) absorbs in the visible light region, there is a problem that the thin film transistor malfunctions due to generation of carriers due to light incidence.
  • a light blocking layer such as metal is provided, but there is a problem that the aperture ratio decreases.
  • the amorphous silicon film which can be produced at a lower temperature than polycrystalline silicon, requires a high temperature of about 200 ° C. or higher.
  • Patent Literature 2 Patent Literature 3
  • Patent Literature 4 Patent Literature 5
  • Patent Literature 6 Patent Literature 7
  • Patent Literature 8 See Patent Document 9
  • Patent Document 1 there is a suggestion that the sputtering method is most suitable for the film formation of the amorphous oxide.
  • the film is formed by the pulse laser deposition method (PLD method).
  • PLD method pulse laser deposition method
  • RF radio frequency
  • Patent Documents 2 to 9 also disclose the characteristics of a field effect transistor, or merely show a reactive epitaxial method or a pulsed laser deposition method as a film forming method. There is no one that offers high direct current (DC) sputtering.
  • DC direct current
  • This direct current (DC) sputtering requires a target, but an In—Ga—Zn—O-based (IGZO) oxide target is not easy to manufacture. It is composed of multi-component components, is manufactured by mixing each oxide powder, is affected by the properties and conditions of the powder, the properties of the sintered body differ depending on the sintering conditions, This is because there are many problems such as loss of electrical conductivity due to the sintering conditions and composition of ingredients, and generation of nodules and abnormal discharge during sputtering depending on the nature and state of the target. For this reason, the present applicant has proposed an invention that suppresses the generation of nodules and abnormal discharge during sputtering. The present invention further improves this.
  • the present invention relates to an oxide sintered compact target for sputtering composed of indium (In), gallium (Ga), zinc (Zn), oxygen (O), and inevitable impurities. It is an object of the present invention to provide an IGZO target that can suppress the formation of a phase that is a generation source, minimizes the bulk resistance value, has high density, can suppress abnormal discharge, and can perform DC sputtering.
  • the present inventors have conducted intensive research, and as a result, have found that it is extremely effective to reduce the spinel phase in the target structure in the IGZO target.
  • Oxide sintered compact target 2 The above 1) characterized in that the maximum particle size of the spinel phase of ZnGa 2 O 4 existing in the range of 90 ⁇ m ⁇ 90 ⁇ m area of the oxide sintered compact target is 5 ⁇ m or less
  • the spatterin described Use oxide sintered body target 3) The sputtering oxide as described in 1) or 2) above, wherein the target has a density of 6.0 g / cm 3 or more and a bulk resistance value of 5.0 ⁇ 10 ⁇ 2 ⁇ ⁇ cm or less.
  • a sintered compact target is provided.
  • the present invention also provides: 4)
  • the ratio of the raw material powders of In 2 O 3 A method for producing an oxide sintered compact target for sputtering, characterized in that the surface area is 10 m 2 / g or less, these powders are mixed, further pulverized, and then sintered in a temperature
  • the number of ZnGa 2 O 4 spinel phases having an average particle diameter of 3 ⁇ m or more present in the structure of the sintered body target is 10 or less.
  • the generation of nodules can be reduced, and abnormal discharge caused by nodules can be significantly reduced.
  • the bulk resistance value can be lowered, DC sputtering is easy, and an excellent effect that high-density and stable film formation is possible is obtained.
  • Example 2 is a micrograph of a target test piece shown in Example 1; 3 is a micrograph of a target test piece shown in Example 2.
  • 3 is a micrograph of a target test piece shown in Example 3.
  • 3 is a micrograph of a target test piece shown in Example 4;
  • 6 is a micrograph of a target test piece shown in Example 5.
  • 3 is a micrograph of a target test piece shown in Comparative Example 1.
  • 3 is a micrograph of a target test piece shown in Comparative Example 2.
  • 4 is a micrograph of a target test piece shown in Comparative Example 3.
  • 6 is a micrograph of a target test piece shown in Comparative Example 4.
  • 6 is a micrograph of a target test piece shown in Comparative Example 5.
  • 6 is a micrograph of a target test piece shown in Comparative Example 6.
  • 10 is a micrograph of
  • the sputtering target of the present invention is an oxide sintered body made of In, Ga, Zn, O and unavoidable impurities.
  • the value is lower than the lower limit, the mobility of the film is lowered, and the characteristics of the element are deteriorated.
  • the Ga ratio is increased, the carrier concentration of the film tends to decrease. Since In and Ga have the opposite effects of increasing and decreasing, it is optimal to be within the above range. Since the composition ratio of the target is directly reflected in the sputter deposition, adjustment of the composition ratio of the target is indispensable in order to maintain the film characteristics.
  • the required component composition of the IGZO thin film is a composition that is mainly required for use as a thin film transistor using a transparent oxide semiconductor, and can be said to be a known component composition.
  • the problem is that nodules that cause abnormal discharge occur in a sputtering target having such a component composition.
  • This abnormal discharge causes the generation of foreign matter in the sputtered film and causes the film characteristics to deteriorate. Therefore, it was necessary to investigate the cause of this nodule generation in the IGZO target.
  • this invention is an IGZO sintered compact target, as shown in the Example and comparative example which are mentioned later, a granular micro structure
  • nodules are generated from the particle as a base point.
  • the occurrence of nodules tends to cause abnormal discharge starting from that. From this, it was necessary to finely disperse the spinel phase of ZnGa 2 O 4 , and it was confirmed that the quantitative regulation can effectively suppress nodules.
  • the present invention is based on this finding, and the number of the spinel phases of ZnGa 2 O 4 having an average particle diameter of 3 ⁇ m or more existing in the range of the area of 90 ⁇ m ⁇ 90 ⁇ m of the oxide sintered compact target is 10 or less. It is what.
  • the adjusted oxide sintered compact target for sputtering can suppress the generation of nodules and can reduce the abnormal discharge starting from the nodules. This is the most effective nodule suppression means. When the number exceeds 10, nodules increase, and abnormal discharge increases proportionally, causing deterioration of the film quality.
  • the maximum particle size of the spinel phase of ZnGa 2 O 4 existing in the range of 90 ⁇ m ⁇ 90 ⁇ m area of the oxide sintered body target is 5 ⁇ m or less.
  • An oxide sintered compact target for sputtering is also provided.
  • the present invention has one goal to obtain a conductive target. For this purpose, it is necessary to lower the bulk resistance value. When the amount of the ZnGa 2 O 4 spinel phase increases, the bulk resistance value tends to increase. In the present invention, a bulk resistance value of 5.0 ⁇ 10 ⁇ 2 ⁇ ⁇ cm or less can be achieved. This is also a condition where DC sputtering can be easily performed, and is one of the major features of the usefulness of the present invention. Furthermore, in order to enable stable sputtering, a higher target density is desirable, and in the present invention, it is possible to achieve 6.0 g / cm 3 or more.
  • the specific surface area is 10 m 2 / g or less.
  • the raw material powder of In 2 O 3 is used. Ingredient powders of indium oxide (In 2 O 3 ), gallium oxide (Ga 2 O 3 ), and zinc oxide (ZnO) are all mixed together and pulverized again. Only the raw material powder of In 2 O 3 before mixing requires attention, and it is necessary that the specific surface area is 10 m 2 / g or less at the raw material stage.
  • the particle size and specific surface area of the In 2 O 3 raw material powder are used as indices, and the In 2 O 3 raw material powder having a relatively large particle size and small specific surface area is pulverized.
  • In 2 O 3 penetrates between other oxides, and sufficient mixing and pulverization with other oxides can be achieved, so that the generation of the spinel phase of ZnGa 2 O 4 can be effectively prevented. This is probably because of this.
  • the step of mixing and pulverizing raw material powders of In 2 O 3 , Ga 2 O 3 and ZnO it is more effective to pulverize until the specific surface area difference before and after pulverization becomes 2.0 m 2 / g or more. is there.
  • the sintering temperature it is desirable to sinter in the temperature range of 1400 to 1490 ° C. If it is less than 1400 degreeC, sintering is not enough and a sintering density does not improve. Further, at a temperature exceeding 1490 ° C., ZnO is formed in the structure, and the density similarly decreases. Therefore, the above temperature range is a suitable temperature range.
  • a representative example of the manufacturing process of the oxide sintered body according to the present invention is as follows.
  • a raw material indium oxide (In 2 O 3 ), gallium oxide (Ga 2 O 3 ), and zinc oxide (ZnO) can be used.
  • a raw material having a purity of 4N or higher In order to avoid an adverse effect on electrical characteristics due to impurities, it is desirable to use a raw material having a purity of 4N or higher.
  • Each raw material powder is weighed so as to have a desired composition ratio. As described above, impurities inevitably contained in these are included.
  • a raw material powder having a specific surface area selected at the raw material stage is used for the raw material powder of indium oxide (In 2 O 3 ).
  • each component will segregate in the manufactured target and there will be a high resistivity region and a low resistivity region, and arcing due to charging etc. in the high resistivity region during sputter deposition. Therefore, sufficient mixing and pulverization are necessary.
  • After mixing each raw material with a super mixer they are packed in an alumina sagger and calcined at a temperature in the range of 950 to 1350 ° C. The holding time is 2 to 10 hours and the atmosphere is used.
  • these raw materials are finely pulverized in units of 1000 g per batch with an attritor ( ⁇ 3 mm zirconia beads, agitator rotational speed 300 rpm) for about 2 to 5 hr.
  • the degree of pulverization is different in each example and comparative example.
  • Comparative Example 6 and Comparative Example 8 are 1 hr, and Comparative Example 7 is not crushed.
  • the finely pulverized slurry is dried at 100 to 150 ° C. for 5 to 48 hours with a hot air dryer, and sieved with a sieve having an opening of 250 ⁇ m to collect powder.
  • the specific surface area of each powder is measured before and after pulverization.
  • 20 cc of a PVA aqueous solution (PVA solid content 3%) is mixed with 1000 g of IGZO powder, and sieved with a sieve having an opening of 500 ⁇ m.
  • a mold of ⁇ 210 mm is filled with 1000 g of powder and pressed at a surface pressure of 400 to 1000 kgf ⁇ cm 2 to obtain a molded body.
  • This molded body is double vacuum packed with vinyl and CIPed at 1500 to 4000 kgf / cm 2 . Then, sintering is performed at a predetermined temperature (retention time 5 to 24 hours, in an oxygen atmosphere) to obtain a sintered body.
  • the oxide sintered body obtained as described above is processed into a target of, for example, 152.4 ⁇ ⁇ 5 tmm by performing cylindrical grinding on the outer periphery and surface grinding on the surface side. Further, for example, an indium alloy or the like is bonded to a copper backing plate as a bonding metal to obtain a sputtering target.
  • the properties of the raw material powder used in the examples and comparative examples are as follows.
  • the red component was separated from the obtained Ga mapping image (set with a threshold value of 100), and the particle size (maximum distance between parallel tangents of particles) and the number (targeting particles of 3 ⁇ m or more) were counted.
  • the image processing software used was analySIS ver.5 (manufactured by Soft Imaging System GmbH). (Sputtering conditions) The prepared test specimens of the target were sputtered under the sputtering conditions shown in Table 2, and the generation of nodules was visually observed.
  • Example 1 Sintering was performed at 1450 ° C.
  • the maximum size of the spinel phase of ZnGa 2 O 4 existing in the area of 90 ⁇ m ⁇ 90 ⁇ m is less than 3 ⁇ m, and the average particle size is 3 ⁇ m or more.
  • the number of spinel phases was zero. These met the conditions of the present invention.
  • the density was as high as 6.26 g / cm 3
  • the bulk resistance value was 6.0 m ⁇ ⁇ cm
  • the bulk resistance value was sufficiently low to allow DC sputtering.
  • the number of nodules was 222, which was less than half that of a comparative example described later.
  • the effect of preventing the formation of the spinel phase of ZnGa 2 O 4 in the target uses a powder whose specific surface area of the raw material powder of In 2 O 3 is 10 m 2 / g or less (specific surface area 4.4 m 2 / g). Is the result. Further, in this case, in the step of mixing and pulverizing the raw material powders of In 2 O 3 , Ga 2 O 3 and ZnO, the condition of pulverizing until the specific surface area difference before and after pulverization becomes 2.0 m 2 / g or more is satisfied It was.
  • Example 2 In Example 2, as the In 2 O 3 raw material, the above (1) In 2 O 3 powder having a particle size of 10.7 ⁇ m and a specific surface area of 4.4 m 2 / g was used.
  • Example 2 the maximum size of the spinel phase of ZnGa 2 O 4 existing in the area of 90 ⁇ m ⁇ 90 ⁇ m (maximum particle size of the spinel phase) is 4.53 ⁇ m, and the average particle size is 3 ⁇ m or more.
  • the number of the same spinel phases was 5. These met the conditions of the present invention.
  • the density was as high as 6.26 g / cm 3 , the bulk resistance value was 6.0 m ⁇ ⁇ cm, and the bulk resistance value was sufficiently low to allow DC sputtering.
  • the effect of preventing the formation of the spinel phase of ZnGa 2 O 4 in the target uses a powder whose specific surface area of the raw material powder of In 2 O 3 is 10 m 2 / g or less (specific surface area 4.4 m 2 / g).
  • specific surface area of the raw material powder of In 2 O 3 is 10 m 2 / g or less (specific surface area 4.4 m 2 / g).
  • In 2 O 3 permeates between other oxides and other oxides. It is considered that the sufficient mixing and pulverization can be achieved, and the generation of the spinel phase of ZnGa 2 O 4 can be effectively prevented.
  • the specific surface area of the raw material powder of In 2 O 3 serves as an index for producing an IGZO target that can suppress the generation of nodules. The above results are similarly shown in Table 3.
  • Example 3 In Example 3, as the In 2 O 3 raw material, the above (3) In 2 O 3 powder having a particle size of 1.6 ⁇ m and a specific surface area of 5.8 m 2 / g was used, and as the Ga 2 O 3 raw material, the above (2 ) Using a Ga 2 O 3 powder with a particle size of 5.6 ⁇ m and a specific surface area of 9.1 m 2 / g, as a ZnO raw material, the above (1) ZnO powder with a particle size of 1.07 ⁇ m and a specific surface area of 3.8 m 2 / g Using.
  • these powders were mixed, and further calcined in the atmosphere at 1350 ° C. for 5 hours.
  • the specific surface area (BET) before pulverization was 6.9 m 2 / g.
  • the specific surface area (BET) after pulverization was 17.1 m 2 / g. This difference was 10.2 m 2 / g.
  • Table 3 powder mixing, pulverization, calcination, sintering, target production, and various measurements and evaluations were performed in the same manner as in Example 1.
  • Example 3 the maximum size of the spinel phase of ZnGa 2 O 4 existing in the area of 90 ⁇ m ⁇ 90 ⁇ m (maximum particle size of the spinel phase) is less than 3 ⁇ m, and the average particle size is 3 ⁇ m or more.
  • the number of spinel phases was zero. These met the conditions of the present invention.
  • the density was as high as 6.29 g / cm 3 , the bulk resistance value was 12.0 m ⁇ ⁇ cm, and the bulk resistance value was low enough to allow DC sputtering.
  • the effect of preventing the formation of the spinel phase of ZnGa 2 O 4 in the target uses a powder whose specific surface area of the raw material powder of In 2 O 3 is 10 m 2 / g or less (specific surface area 4.4 m 2 / g).
  • specific surface area of the raw material powder of In 2 O 3 is 10 m 2 / g or less (specific surface area 4.4 m 2 / g).
  • In 2 O 3 permeates between other oxides and other oxides. It is considered that the sufficient mixing and pulverization can be achieved, and the generation of the spinel phase of ZnGa 2 O 4 can be effectively prevented.
  • the specific surface area of the raw material powder of In 2 O 3 serves as an index for producing an IGZO target that can suppress the generation of nodules. The above results are similarly shown in Table 3.
  • Example 4 Sintering was performed at 1450 ° C.
  • the maximum size of the spinel phase of ZnGa 2 O 4 existing in the area of 90 ⁇ m ⁇ 90 ⁇ m is less than 3 ⁇ m, and the average particle size is 3 ⁇ m or more.
  • the number of spinel phases was zero. These met the conditions of the present invention.
  • the density was as high as 6.29 g / cm 3 , the bulk resistance value was 4.4 m ⁇ ⁇ cm, and it had a low bulk resistance value sufficient for DC sputtering.
  • Example 3 As a result of performing DC sputtering under the above conditions, the number of nodules was 189, which was further reduced as compared with Example 1 and became about 1/3 as compared with Comparative Example. Along with this, almost no abnormal discharge was observed during sputtering. The difference from Example 3 was that the calcination temperature was carried out at a higher temperature, but it was found to be effective by improving the density and reducing the bulk resistance value. Even if a ZnGa 2 O 4 spinel phase is present, the fact that it is finely dispersed is considered to be largely due to the suppression of nodule generation. A micrograph of the tissue is shown in FIG.
  • the effect of preventing the formation of the spinel phase of ZnGa 2 O 4 in the target uses a powder whose specific surface area of the raw material powder of In 2 O 3 is 10 m 2 / g or less (specific surface area 4.4 m 2 / g).
  • specific surface area of the raw material powder of In 2 O 3 is 10 m 2 / g or less (specific surface area 4.4 m 2 / g).
  • In 2 O 3 permeates between other oxides and other oxides. It is considered that the sufficient mixing and pulverization can be achieved, and the generation of the spinel phase of ZnGa 2 O 4 can be effectively prevented.
  • the specific surface area of the raw material powder of In 2 O 3 serves as an index for producing an IGZO target that can suppress the generation of nodules. The above results are similarly shown in Table 3.
  • Example 5 In Example 5, as the In 2 O 3 raw material, the above (1) In 2 O 3 powder having a particle size of 10.7 ⁇ m and a specific surface area of 4.4 m 2 / g was used.
  • Example 5 the maximum size of the spinel phase of ZnGa 2 O 4 existing in the area of 90 ⁇ m ⁇ 90 ⁇ m (maximum particle size of the spinel phase) is 3.71 ⁇ m, and the average particle size is 3 ⁇ m or more.
  • the number of the spinel phases of was 7. These met the conditions of the present invention.
  • the density was as high as 6.20 g / cm 3 , the bulk resistance value was 2.97 m ⁇ ⁇ cm, and the bulk resistance value was low enough to allow DC sputtering.
  • a micrograph of the tissue is shown in FIG.
  • the number of nodules was 390, which was slightly higher than that of Example 1, but was still about half that of the comparative example described later. Along with this, almost no abnormal discharge was observed during sputtering. Even if a ZnGa 2 O 4 spinel phase is present, the fact that it is finely dispersed is considered to be largely due to the suppression of nodule generation.
  • the effect of preventing the formation of the spinel phase of ZnGa 2 O 4 in the target uses a powder whose specific surface area of the raw material powder of In 2 O 3 is 10 m 2 / g or less (specific surface area 4.4 m 2 / g).
  • specific surface area of the raw material powder of In 2 O 3 is 10 m 2 / g or less (specific surface area 4.4 m 2 / g).
  • In 2 O 3 permeates between other oxides and other oxides. It is considered that the sufficient mixing and pulverization can be achieved, and the generation of the spinel phase of ZnGa 2 O 4 can be effectively prevented.
  • the specific surface area of the raw material powder of In 2 O 3 serves as an index for producing an IGZO target that can suppress the generation of nodules. The above results are similarly shown in Table 3.
  • Example 6 In Example 6, as the In 2 O 3 raw material, the above (1) In 2 O 3 powder having a particle size of 10.7 ⁇ m and a specific surface area of 4.4 m 2 / g was used, and as the Ga 2 O 3 raw material, the above (2 ) Using a Ga 2 O 3 powder with a particle size of 4.6 ⁇ m and a specific surface area of 11.9 m 2 / g, as a ZnO raw material, the above (1) ZnO powder with a particle size of 1.07 ⁇ m and a specific surface area of 3.8 m 2 / g Using.
  • Example 6 the maximum size of the spinel phase of ZnGa 2 O 4 existing in the area of 90 ⁇ m ⁇ 90 ⁇ m (maximum particle size of the spinel phase) is less than 3 ⁇ m, and the average particle size is 3 ⁇ m or more.
  • the number of spinel phases was zero. These met the conditions of the present invention.
  • the density was as high as 6.14 g / cm 3 and the bulk resistance value was slightly high at 29.7 m ⁇ ⁇ cm, but it had a bulk resistance value capable of DC sputtering.
  • a micrograph of the tissue is shown in FIG.
  • the number of nodules was 170, which was smaller than that in Example 1. Accordingly, almost no abnormal discharge was observed during sputtering. Even if there is little ZnGa 2 O 4 spinel phase and it exists, it is considered that the fact that it is finely dispersed suppresses the generation of nodules.
  • the effect of preventing the formation of the spinel phase of ZnGa 2 O 4 in the target uses a powder whose specific surface area of the raw material powder of In 2 O 3 is 10 m 2 / g or less (specific surface area 4.4 m 2 / g).
  • specific surface area of the raw material powder of In 2 O 3 is 10 m 2 / g or less (specific surface area 4.4 m 2 / g).
  • In 2 O 3 permeates between other oxides and other oxides. It is considered that the sufficient mixing and pulverization can be achieved, and the generation of the spinel phase of ZnGa 2 O 4 can be effectively prevented.
  • the specific surface area of the raw material powder of In 2 O 3 serves as an index for producing an IGZO target that can suppress the generation of nodules. The above results are similarly shown in Table 3.
  • Example 7 Sintering was performed at 1490 ° C.
  • the maximum size of the spinel phase of ZnGa 2 O 4 existing in the area of 90 ⁇ m ⁇ 90 ⁇ m (maximum particle size of the spinel phase) is less than 3 ⁇ m, and the average particle size is 3 ⁇ m or more.
  • the number of spinel phases was zero. These met the conditions of the present invention.
  • the density was as high as 6.34 g / cm 3 and the bulk resistance value was slightly high at 18.0 m ⁇ ⁇ cm, but it had a bulk resistance value capable of DC sputtering.
  • a micrograph of the tissue is shown in FIG.
  • the number of nodules was 154, which was smaller than that in Example 1. Accordingly, almost no abnormal discharge was observed during sputtering. Even if there is little ZnGa 2 O 4 spinel phase and it exists, it is considered that the fact that it is finely dispersed suppresses the generation of nodules.
  • the effect of preventing the formation of the spinel phase of ZnGa 2 O 4 in the target uses a powder whose specific surface area of the raw material powder of In 2 O 3 is 10 m 2 / g or less (specific surface area 4.4 m 2 / g).
  • specific surface area of the raw material powder of In 2 O 3 is 10 m 2 / g or less (specific surface area 4.4 m 2 / g).
  • In 2 O 3 permeates between other oxides and other oxides. It is considered that the sufficient mixing and pulverization can be achieved, and the generation of the spinel phase of ZnGa 2 O 4 can be effectively prevented.
  • the specific surface area of the raw material powder of In 2 O 3 serves as an index for producing an IGZO target that can suppress the generation of nodules. The above results are similarly shown in Table 3.
  • the reason why a large amount of the ZnGa 2 O 4 spinel phase in the target is generated is that the specific surface area of the raw material powder of In 2 O 3 is 10 m 2 / g or less (specific surface area 4.4 m 2 / g). It was considered that the pulverization was insufficient without using.
  • the specific surface area of the In 2 O 3 raw material powder but is an index in producing an IGZO target capable of inhibiting the generation of nodules, a relatively small In 2 O 3 raw material powder having a large specific surface area particle size, It is considered that in the pulverization process, sufficient mixing and pulverization with other oxides could not be achieved, and the generation of ZnGa 2 O 4 spinel phase could not be effectively prevented.
  • Table 4 The results are shown in Table 4.
  • the reason why a large amount of the ZnGa 2 O 4 spinel phase in the target is generated is that the specific surface area of the raw material powder of In 2 O 3 is 10 m 2 / g or less (specific surface area 4.4 m 2 / g). It was considered that the pulverization was insufficient without using.
  • the specific surface area of the In 2 O 3 raw material powder but is an index in producing an IGZO target capable of inhibiting the generation of nodules, a relatively small In 2 O 3 raw material powder having a large specific surface area particle size, It is considered that in the pulverization process, sufficient mixing and pulverization with other oxides could not be achieved, and the generation of ZnGa 2 O 4 spinel phase could not be effectively prevented.
  • Table 4 The above results are similarly shown in Table 4.
  • Comparative Example 3 In Comparative Example 3, the foregoing In 2 O 3 powder (2) having a grain size of 0.65 .mu.m, using In 2 O 3 powder having a specific surface area of 13.7 m 2 / g, as Ga 2 O 3 raw material, the (2) A Ga 2 O 3 powder having a particle size of 4.6 ⁇ m and a specific surface area of 11.1 m 2 / g is used. As a ZnO raw material, the ZnO powder having the above (1) particle size of 1.07 ⁇ m and a specific surface area of 3.8 m 2 / g is used. It was.
  • the reason why a large amount of the ZnGa 2 O 4 spinel phase in the target is generated is that the specific surface area of the raw material powder of In 2 O 3 is 10 m 2 / g or less (specific surface area 4.4 m 2 / g). It was considered that the pulverization was insufficient without using.
  • the specific surface area of the In 2 O 3 raw material powder but is an index in producing an IGZO target capable of inhibiting the generation of nodules, a relatively small In 2 O 3 raw material powder having a large specific surface area particle size, It is considered that in the pulverization process, sufficient mixing and pulverization with other oxides could not be achieved, and the generation of ZnGa 2 O 4 spinel phase could not be effectively prevented.
  • Table 4 The above results are similarly shown in Table 4.
  • Comparative Example 4 In Comparative Example 4, the foregoing In 2 O 3 powder (2) having a grain size of 0.65 .mu.m, using In 2 O 3 powder having a specific surface area of 13.7 m 2 / g, as Ga 2 O 3 raw material, the (2) A Ga 2 O 3 powder having a particle size of 4.6 ⁇ m and a specific surface area of 11.1 m 2 / g is used. As a ZnO raw material, the ZnO powder having the above (1) particle size of 1.07 ⁇ m and a specific surface area of 3.8 m 2 / g is used. It was.
  • the reason why a large amount of the ZnGa 2 O 4 spinel phase in the target is generated is that the specific surface area of the raw material powder of In 2 O 3 is 10 m 2 / g or less (specific surface area 4.4 m 2 / g). It was considered that the pulverization was insufficient without using.
  • the specific surface area of the In 2 O 3 raw material powder but is an index in producing an IGZO target capable of inhibiting the generation of nodules, a relatively small In 2 O 3 raw material powder having a large specific surface area particle size, It is considered that in the pulverization process, sufficient mixing and pulverization with other oxides could not be achieved, and the generation of ZnGa 2 O 4 spinel phase could not be effectively prevented.
  • Table 4 The above results are similarly shown in Table 4.
  • the reason why a large amount of the ZnGa 2 O 4 spinel phase in the target is generated is that the specific surface area of the raw material powder of In 2 O 3 is 10 m 2 / g or less (specific surface area 4.4 m 2 / g). It was considered that the pulverization was insufficient without using.
  • the specific surface area of the In 2 O 3 raw material powder but is an index in producing an IGZO target capable of inhibiting the generation of nodules, a relatively small In 2 O 3 raw material powder having a large specific surface area particle size, It is considered that in the pulverization process, sufficient mixing and pulverization with other oxides could not be achieved, and the generation of ZnGa 2 O 4 spinel phase could not be effectively prevented.
  • Table 4 The above results are similarly shown in Table 4.
  • the cause of the spinel phase is large amount occurred ZnGa 2 O 4 in the target, the specific surface area before milling (BET) specific surface area after pulverization and 7.3 m 2 / g (BET) is 9.2 m 2 /
  • the difference in g is 1.9 m 2 / g, which is considered to be insufficient mixing and pulverization. This is considered to be because the pulverization was not sufficient because the mixed powder was not calcined.
  • the present invention reduces the ZnGa 2 O 4 (spinel) phase in the target structure by optimizing the raw material properties and the manufacturing method, and by using In 2 O 3 having a specific surface area of less than 10 m 2 / g, in x Ga y Zn z O a phase and there coarsening and a large amount of different characteristics ZnGa 2 O 4 (spinel) phases phases becomes a cause of generation of nodules, suppress the ZnGa 2 O 4 (spinel) phases It becomes possible. Reducing the amount of nodule generation can suppress abnormal discharge during sputtering. Furthermore, according to the present invention, the density can be improved by finely pulverizing the raw material, a target having a stable property and structure can be obtained, and conductivity that enables DC sputtering can be obtained.
  • This In—Ga—Zn—O-based (IGZO) material is useful for a field effect transistor because an amorphous oxide having an electron carrier concentration of less than 10 18 / cm 3 can be obtained. Moreover, since it can be used as an IGZO target without hindrance for a wide range of applications, its industrial utility value is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、酸素(O)及び不可避的不純物からなるスパッタリング用酸化物焼結体ターゲットにおいて、各元素の構成比は、式:InGaZn{式中、0.2≦x/(x+y)≦0.8、0.1≦z/(x+y+z)≦0.5、a=(3/2)x+(3/2)y+z}であり、当該酸化物焼結体ターゲットの90μm×90μmの面積の範囲に存在する平均粒径が3μm以上のZnGaのスピネル相の個数が10個以下であることを特徴とするスパッタリング用酸化物焼結体ターゲット。In、Ga、Zn、O及び不可避的不純物からなるスパッタリング用酸化物焼結体ターゲットにおいて、焼結体ターゲットの組織を改良し、ノジュールの発生源となる相の形成を、最小限に押さえると共に、バルク抵抗値を下げ、高密度で、異常放電を抑制でき、かつDCスパッタリングが可能であるIGZOターゲットを提供することを課題とする。

Description

スパッタリング用酸化物焼結体ターゲット及びその製造方法
 本発明は、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、酸素(O)及び不可避的不純物からなるスパッタリング用酸化物焼結体ターゲット(「IGZO」と一般的に呼称されている。必要に応じて、この「IGZO」を用いて説明する。)及びその製造方法に関する。
 一般に、TFT(Thin Film Transistor)と言われている薄膜トランジスタは、ゲート端子、ソース端子、ドレイン端子を有する三端子素子からなる。これらの素子において、基板上に形成した半導体薄膜を、電子又はホールが移動するチャンネル層として用い、ゲート端子に電圧を印加してチャンネル層に流れる電流を制御し、ソース端子とドレイン端子間に流れる電流をスイッチングする機能を持たせたものである。現在、最も広く使用されているのは、多結晶シリコン膜又はアモルファスシリコン膜をチャンネル層とした素子である。
 しかしながら、シリコン系材料(多結晶シリコン又はアモルファスシリコン)は可視光領域で吸収を起こすため、光入射によるキャリアの発生で薄膜トランジスタが誤動作を起こすという問題がある。その防止策として、金属等の光遮断層を設けているが、開口率が減少してしまうという問題がある。また、画面輝度を保つためにバックライトの高輝度化が必要となり、消費電力が増大してしまう等の欠点があった。
 更に、これらのシリコン系材料の作製に際して、多結晶シリコンより低温作製が可能とされているアモルファスシリコンの成膜においても、約200°C以上の高温を必要とする、したがって、このような温度では、安価、軽量、フレキシブルという利点を有するポリマーフィルムを基材とすることはできないため、基板材料の選択の範囲が狭いという問題がある。更に、高温でのデバイス作製プロセスは、エネルギーコストがかかり、加熱のための所要時間を要する等、生産上の欠点もあった。
 このようにことから、近年、シリコン系材料に代えて、透明酸化物半導体を用いた薄膜トランジスタの開発が行われている。その代表的なものが、In-Ga-Zn-O系(IGZO)材料である。この材料は、電子キャリア濃度が1018/cm未満であるアモルファス酸化物が得られるということで、電界効果型トランジスタに利用する提案がなされた(特許文献1参照)。
 この他、この系の酸化物を電界効果型トランジスタ利用した提案がいくつか存在する(特許文献2、特許文献3、特許文献4、特許文献5、特許文献6、特許文献7、特許文献8及び特許文献9参照)。
 上記特許文献1では、アモルファス酸化物の成膜に際しては、スパッタリング法が最も適しているという示唆はあるが、1~12個存在するでは実施例ではパルスレーザー蒸着法(PLD法)で成膜した例を示すだけで、1例のみが高周波(RF)スパッタリングを実施した例である。前記特許文献2~9についても、単に電界効果型トランジスタの特性を開示するか、または成膜法として反応性エピタキシャル法あるいはパルスレーザー蒸着法を示すのみで、スパッタリング法の中で、特に成膜速度が高い、直流(DC)スパッタリングを提起しているものは存在しない。
 この直流(DC)スパッタリングにはターゲットが必要とされるが、In-Ga-Zn-O系(IGZO)の酸化物ターゲットは、製造が容易ではない。
 それは成分が多成分系であること、それぞれの酸化物粉末を混合して製造されるために粉末の性質・状態の影響を受けること、焼結条件によって焼結体の性質がことなること、焼結条件や成分の配合によって導電性を失うこと、さらにターゲットの性質・状態によって、スパッタリング時に、ノジュールや異常放電の発生が生ずることなど、多くの問題を有するからである。
 このようなことから、本出願人は、スパッタリング時のノジュールや異常放電の発生を抑制する発明を提案した。本願発明は、これをさらに改良するものである。
WO2005/088726A1号公報 特開2004-103957号公報 特開2006-165527号公報 特開2006-165528号公報 特開2006-165529号公報 特開2006-165530号公報 特開2006-165532号公報 特開2006-173580号公報 特開2006-186319号公報 特願2007-336398号
 本発明は、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、酸素(O)及び不可避的不純物からなるスパッタリング用酸化物焼結体ターゲットにおいて、焼結体ターゲットの組織を改良し、ノジュールの発生源となる相の形成を、最小限に押さえると共に、バルク抵抗値を下げ、高密度で、異常放電を抑制でき、かつDCスパッタリングが可能であるIGZOターゲットを提供することを課題とする。
 上記の課題を解決するために、本発明者らは鋭意研究を行った結果、IGZOターゲットにおいて、ターゲット組織中のスピネル相を低減することが、極めて有効であるとの知見を得た。
 本発明はこの知見に基づき、本発明は、
1)インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、酸素(O)及び不可避的不純物からなるスパッタリング用酸化物焼結体ターゲットにおいて、各元素の構成比は、式:InGaZn{式中、0.2≦x/(x+y)≦0.8、0.1≦z/(x+y+z)≦0.5、a=(3/2)x+(3/2)y+z}であり、当該酸化物焼結体ターゲットの90μm×90μmの面積の範囲に存在する平均粒径が3μm以上のZnGaのスピネル相の個数が10個以下であることを特徴とするスパッタリング用酸化物焼結体ターゲット
2)酸化物焼結体ターゲットの90μm×90μmの面積の範囲に存在するZnGaのスピネル相の最大粒径が5μm以下であることを特徴とする上記1)記載のスパッタリング用酸化物焼結体ターゲット。
3)ターゲットの密度が6.0g/cm以上であり、バルク抵抗値が5.0×10-2Ω・cm以下であることを特徴とする上記1)又は2)記載のスパッタリング用酸化物焼結体ターゲット、を提供する。
 また、本発明は、
4)インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、酸素(O)及び不可避的不純物からなるスパッタリング用酸化物焼結体ターゲットの製造方法において、各元素の構成比が、式:InGaZn{式中、0.2≦x/(x+y)≦0.8、0.1≦z/(x+y+z)≦0.5、a=(3/2)x+(3/2)y+z}となるように、酸化インジウム(In)、酸化ガリウム(Ga)、及び酸化亜鉛(ZnO)の原料粉末を調整すると共に、Inの原料粉末の比表面積を10m/g以下とし、これらの粉末を混合し、さらに粉砕した後、1400~1490°Cの温度範囲で焼結することを特徴とするスパッタリング用酸化物焼結体ターゲットの製造方法。
5)前記In、Ga及びZnOの原料粉末を混合し、粉砕する工程において、粉砕前後の比表面積差が2.0m/g以上となるまで、粉砕することを特徴とする上記4)記載のスパッタリング用酸化物焼結体ターゲットの製造方法、を提供する。
 上記によって、In-Ga-Zn-O系スパッタリング焼結体ターゲットにおいて、焼結体ターゲットの組織に存在する平均粒径が3μm以上のZnGaのスピネル相の個数を10個以下とすることにより、ノジュールの発生を低減することが可能となり、ノジュールに起因する異常放電を著しく低減させることが可能となった。また、バルク抵抗値を下げることができるので、DCスパッタリングが容易であり、また高密度で安定した成膜が可能であるという優れた効果を有する。
実施例1に示すターゲット試験片の顕微鏡組織写真である。 実施例2に示すターゲット試験片の顕微鏡組織写真である。 実施例3に示すターゲット試験片の顕微鏡組織写真である。 実施例4に示すターゲット試験片の顕微鏡組織写真である。 実施例5に示すターゲット試験片の顕微鏡組織写真である。 実施例6に示すターゲット試験片の顕微鏡組織写真である。 実施例7に示すターゲット試験片の顕微鏡組織写真である。 比較例1に示すターゲット試験片の顕微鏡組織写真である。 比較例2に示すターゲット試験片の顕微鏡組織写真である。 比較例3に示すターゲット試験片の顕微鏡組織写真である。 比較例4に示すターゲット試験片の顕微鏡組織写真である。 比較例5に示すターゲット試験片の顕微鏡組織写真である。 比較例6に示すターゲット試験片の顕微鏡組織写真である。 比較例8に示すターゲット試験片の顕微鏡組織写真である。
 本発明のスパッタリングターゲットは、In、Ga、Zn、O及び不可避的不純物からなる用酸化物焼結体であるが、各元素の構成比は、式:InGaZn{式中、0.2≦x/(x+y)≦0.8、0.1≦z/(x+y+z)≦0.5、a=(3/2)x+(3/2)y+z}である。Inの比率を高めると、スパッタ膜のキャリア濃度は上昇する傾向にあるが、高すぎると素子特性(on/off比)が悪くなる。また、下限値よりも低い場合には、膜の移動度が低下し、素子の特性を悪くするので、好ましくない。Gaの比率を上げると、膜のキャリア濃度は低下する傾向にある。InとGaは、相互に増減が逆の効果になるので、上記の範囲に収めるのが最適である。
 ターゲットの組成比は、スパッタ成膜に直接反映されるので、膜の特性を維持するためには、ターゲットの組成比の調整は不可欠である。
 次に、Znの比率であるが、Znが上記の数値よりも大きくなると、膜の安定性、耐湿性が劣化するので好ましくない。また、Znの量が上記の数値よりも小さくなると、スパッタ膜の非晶質性が悪くなり、結晶化するので、好ましくない。したがって、上記の範囲とする。また、酸素量は、In、Ga、Znのバランスの上で、決定されるが、a=(3/2)x+(3/2)y+z}とすることにより、アモルファス状態が安定して得られる。
 上記のIGZO薄膜の要求される成分組成は、主に透明酸化物半導体を用いた薄膜トランジスタとして利用するために必要とされる組成であり、既に公知の成分組成であるということができる。
 問題は、このような成分組成を有するスパッタリングターゲットにおいて、異常放電の原因となるノジュールが発生することである。この異常放電は、スパッタ膜における異物発生の原因となり、膜特性を低下させる原因となる。したがって、IGZOターゲットでのこのノジュールの発生原因を究明することが必要であった。
 本願発明は、IGZO焼結体ターゲットであるが、後述する実施例及び比較例に示すように、均一な組織の中に、粒状の微小な組織が見られる。これはZnGaのスピネル相であることが分かった。これが細かく分散している状態では、特に問題とはならないが、その大きさがある程度大きくなると、その粒子を基点として、ノジュールの発生原因となることが分かった。
 また、ノジュールの発生は、それを起点として、異常放電が起こり易くなる。このことから、ZnGaのスピネル相を細かく分散させることが必要であり、その量的な規制が、ノジュールを効果的に抑制できるとの確証を得た。
 本願発明は、この知見に基づくものであり、当該酸化物焼結体ターゲットの90μm×90μmの面積の範囲に存在する平均粒径が3μm以上のZnGaのスピネル相の個数を10個以下とするものである。このように、調節したスパッタリング用酸化物焼結体ターゲットは、ノジュールの発生を抑制し、ノジュールを起点とする異常放電を減少させることが可能となった。これは、最も効果的なノジュール抑制手段である。10個を超えると、ノジュールの発生が大きくなり、それに伴って比例的に異常放電が増加し、膜の品質を劣化させる原因となる。
 さらに、酸化物焼結体ターゲットの90μm×90μmの面積の範囲に存在するZnGaのスピネル相の最大粒径が5μm以下とすることも、さらに有効であり、本願発明は、このようなスパッタリング用酸化物焼結体ターゲットをも提供するものである。
 本願発明は、導電性ターゲットを得ることを一つの目標にしており、そのためにはバルク抵抗値を下げる必要がある。前記ZnGaのスピネル相が多くなるとバルク抵抗値の増加する傾向にある。本願発明においては、バルク抵抗値が5.0×10-2Ω・cm以下が達成できる。これはDCスパッタリングが容易にできる条件でもあり、本願発明の有用性の、大きな特徴の一つである。さらに、安定なスパッタリングを可能とするためには、ターゲットの密度が高い方が望ましく、本願発明においては、6.0g/cm以上を達成することが可能である。
 また、本発明スパッタリング用酸化物焼結体ターゲットは、各元素の構成比が、式:InGaZn{式中、0.2≦x/(x+y)≦0.8、0.1≦z/(x+y+z)≦0.5、a=(3/2)x+(3/2)y+z}となるように、酸化インジウム(In)、酸化ガリウム(Ga)、及び酸化亜鉛(ZnO)の原料粉末を調整すると共に、Inの原料粉末の比表面積を10m/g以下とし、次にこれらの粉末を混合して、さらに粉砕した後、1400~1490°Cの温度範囲で焼結して製造するものである。
 酸化物焼結体ターゲットの90μm×90μmの面積の範囲に存在する平均粒径が3μm以上のZnGaのスピネル相の個数を10個以下とする際には、比表面積10m/g以下のInの原料粉末を使用する。酸化インジウム(In)、酸化ガリウム(Ga)、及び酸化亜鉛(ZnO)の原料粉末は、いずれも一つに混合して、これを再度粉砕するのであるが、この粉砕に際して、混合前のInの原料粉末だけが、注意を要するもので、原料段階で比表面積10m/g以下であることが必要となる。
 粉末の混合と粉砕に際し、Inの原料粉末の粒径と比表面積が指標となるものであり、比較的大きな粒径と小さな比表面積を持つInの原料粉末が粉砕されていく過程で、Inが他の酸化物の間に浸透し、他の酸化物との十分な混合と粉砕が達せられるため、ZnGaのスピネル相の発生を効果的に防止できるためと考えられる。
 さらに、In、Ga及びZnOの原料粉末を混合し、粉砕する工程において、粉砕前後の比表面積差が2.0m/g以上となるまで粉砕することが、さらに有効である。これは、3種の原料粉末が十分に、粉砕・混合されることを意味するものである。
 さらに、焼結温度については、1400~1490°Cの温度範囲で焼結することが望ましい。1400°C未満では、焼結は十分でなく、焼結密度は向上しない。また、1490°Cを超える温度では、組織の中にZnOが形成され、同様に密度が低下する。したがって、上記の温度範囲が好適な温度範囲である。
 上記の本発明に係る酸化物焼結体の製造工程の代表例を示すと、次のようになる。
 原料としては、酸化インジウム(In)、酸化ガリウム(Ga)、及び酸化亜鉛(ZnO)を使用することができる。不純物による電気特性への悪影響を避けるために、純度4N以上の原料を用いることが望ましい。各々の原料粉を所望の組成比となるように秤量する。なお、上記の通り、これらに不可避的に含有される不純物は含まれるものである。
 この場合、酸化インジウム(In)の原料粉については、原料段階で比表面積を選択した原料粉末を使用する。
 次に、混合と粉砕を行う。粉砕が不充分であると、製造したターゲット中に各成分が偏析して、高抵抗率領域と低抵抗率領域が存在することになり、スパッタ成膜時に高抵抗率領域での帯電等によるアーキングなどの異常放電の原因となってしまうので、充分な混合と粉砕が必要である。
 スーパーミキサーにて各原料を混合した後、これらをアルミナ製匣鉢に詰め、温度950~1350°Cの範囲で仮焼する。保持時間2~10hr、大気雰囲気で行う。
 次に、これらの原料を、例えば1バッチ1000g単位でアトライター(φ3mmジルコニアビーズ、アジテータ回転数300rpm)にて2~5hr程度、微粉砕する。この粉砕の程度は、各実施例、比較例で異なる。例えば、比較例6と比較例8では1hr、比較例7は粉砕無しである。
 次に、微粉砕後のスラリーを熱風乾燥機で、100~150°C×5~48hr乾燥して、目開き250μm篩で篩別して粉を回収する。なお、微粉砕の前後で、それぞれの粉末の比表面積を測定する。1000gのIGZO粉にPVA水溶液(PVA固形分3%)を20cc混合し、目開き500μm篩で篩別する。
 次に、φ210mmの金型に、粉末1000gを充填し、面圧400~1000kgf・cmでプレスして成型体を得る。この成型体をビニールで2重に真空パックし、1500~4000kgf/cmでCIPする。そして、所定の温度で焼結を行ない(保持時間5~24hr、酸素雰囲気中)、焼結体を得る。
 ターゲットの製作に際しては、上記によって得られた酸化物焼結体の外周の円筒研削、面側の平面研削をすることによって、例えば152.4φ×5tmmのターゲットに加工する。これをさらに、例えば銅製のバッキングプレートに、インジウム系合金などをボンディングメタルとして、貼り合わせることでスパッタリングターゲットとする。
 以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。
 実施例及び比較例に使用した原料粉の性状は、次の通りである。
  In原料(1):粒径10.7μm、比表面積4.4m/g
  In原料(2):粒径0.65μm、比表面積13.7m/g
  In原料(3):粒径1.6μm、 比表面積5.8m/g
  Ga原料(1):粒径5.6μm、 比表面積9.1m/g
  Ga原料(2):粒径4.6μm、 比表面積11.9m/g
  ZnO原料 (1):粒径1.07μm、比表面積3.8m/g
 これらの原料について、IGZOをモル比で、In:Ga:ZnO=1:1:1となるよう原料を調合し、これらの原料組合せと製造条件(微粉砕、仮焼温度、焼結温度)を変えて、ターゲットを作製し、各種の試験を行った。これらの詳細を、実施例及び比較例に示す。
 なお、上記配合比(1:1:1)は、IGZOターゲットの代表的なものである。本発明の目的とするターゲットのノジュール発生を防止するためには、IGZOの配合比は特に問題とはならないが、実施例6と実施例7については、In:Ga:ZnO=1:1:2となるよう原料を調合して実施した。
 下記に示す実施例及び比較例において、各種の測定や評価が必要となるが、その条件を以下に示す。
(粒径の測定)
 粒径の測定は、粒度分布測定装置(日機装株式会社製、Microtrac MT3000)を用いて行った。
(比表面積の測定)
 比表面積(BET)の測定は、自動表面積計ベータソープ(日機装株式会社製、MODEL-4200)で行なった。
(画像解析と組織評価)
 作製したターゲットの試験片については、研磨機により鏡面まで研磨した。そして、この試験片について、FE-EPMA(日本電子株式会社製、JXA-8500F電子プローブマイクロアナライザー)にて、電子銃の加速電圧15(kV)、照射電流約2.0×10-7(A)の条件で面分析した。これにより、In、Zn、Ga、Oの各元素を、下記表1の条件で検出しマッピングを実施した。
 面分析のマッピング画像(RGBカラー画像)は、256×256ピクセルとし、各ピクセルの測定時間は10μsで測定した。例えば、得られたGaのマッピング画像から赤成分を分離(しきい値100で設定)し、粒径(粒子の平行接線間の最大距離)及び個数(3μm以上の粒子を対象)をカウントした。画像処理ソフトはanalySIS ver.5 (Soft Imaging System GmbH製)を使用した。
(スパッタリング条件)
 作製したターゲットの試験片については、表2に示すスパッタリング条件でスパッタリングし、ノジュールの発生を目視観察した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(実施例1)
 本実施例1では、In原料として、上記(1)粒径10.7μm、比表面積4.4m/gのIn粉末を用い、Ga原料として、上記(2)粒径4.6μm、比表面積11.9m/gのGa粉末を用い、ZnO原料として、上記(1)粒径1.07μm、比表面積3.8m/gのZnO粉末を用いた。これらの粉末を、モル比で、In:Ga:ZnO=1:1:1となるよう原料を調合した。
 次に、これらの粉末を混合し、さらに大気中で950°Cで5時間、仮焼を行った。粉砕前の比表面積(BET)は3.1m/gであった。また、粉砕後の比表面積(BET)は14.7m/gであった。この差は、11.6m/gであった。
 以上について、表3にまとめて示す。その他、粉末の混合、粉砕、仮焼、焼結、ターゲット製造は、上記段落[0021]、段落[0022]に示す条件で実施した。ここでは、条件の主なものを記載する。また、各種の測定や評価は、上記段落[0026]~[0029]に記載する方法により実施した。 
 焼結は1450°Cで実施した。以上の結果、実施例1では、90μm×90μmの面積の範囲に存在するZnGaのスピネル相の最大サイズ(スピネル相の最大粒径)が3μm未満であり、平均粒径が3μm以上の同スピネル相の個数は0であった。これらは、本発明の条件を満たしていた。そして密度は6.26g/cmと高密度であり、バルク抵抗値は6.0mΩ・cmで、DCスパッタリングが十分可能である低バルク抵抗値を有していた。
 DCスパッタリングを上記条件で行った結果、ノジュール数は222個であり、後述する比較例に比べ、半分以下であった。これに伴いスパッタリング中の異常放電が殆ど認められなかった。ZnGaのスピネル相が存在していても、それが微細に分散していることが、ノジュール発生を抑制していることが大きな原因と考えられる。組織の顕微鏡写真を図1に示す。
 また、ターゲット中のZnGaのスピネル相の形成の防止効果は、Inの原料粉末の比表面積が10m/g以下(比表面積4.4m/g)である粉末を用いた結果である。また、この場合In、Ga及びZnOの原料粉末を混合し、粉砕する工程において、粉砕前後の比表面積差が2.0m/g以上となるまで粉砕するという条件も満たしていた。
 比較的大きな粒径と小さな比表面積を持つInの原料粉末が粉砕されていく過程で、Inが他の酸化物の間に浸透し、他の酸化物との十分な混合と粉砕が達せられるため、ZnGaのスピネル相の発生を効果的に防止できるためと考えられる。Inの原料粉末の比表面積が、ノジュール発生を抑制し得るIGZOターゲット製造の指標となるものである。以上の結果を、表3に示す。
Figure JPOXMLDOC01-appb-T000003
(実施例2)
 本実施例2では、In原料として、上記(1)粒径10.7μm、比表面積4.4m/gのIn粉末を用い、Ga原料として、上記(1)粒径5.6μm、比表面積9.1m/gのGa粉末を用い、ZnO原料として、上記(1)粒径1.07μm、比表面積3.8m/gのZnO粉末を用いた。これらの粉末を、モル比で、In:Ga:ZnO=1:1:1となるよう原料を調合した。
 次に、これらの粉末を混合し、さらに大気中で950°Cで5時間、仮焼を行った。粉砕前の比表面積(BET)は2.6m/gであった。また、粉砕後の比表面積(BET)は17.0m/gであった。この差は、14.4m/gであった。
 以上について、表3に、まとめて示す。その他、粉末の混合、粉砕、仮焼、焼結、ターゲット製造、また、各種の測定や評価は、実施例1と同様の方法により実施した。 
 焼結は1450°Cで実施した。以上の結果、実施例2では、90μm×90μmの面積の範囲に存在するZnGaのスピネル相の最大サイズ(スピネル相の最大粒径)が4.53μmであり、平均粒径が3μm以上の同スピネル相の個数は5であった。これらは、本発明の条件を満たしていた。そして密度は6.26g/cmと高密度であり、バルク抵抗値は6.0mΩ・cmで、DCスパッタリングが十分可能である低バルク抵抗値を有していた。
 DCスパッタリングを上記条件で行った結果、ノジュール数は359個であり、実施例1に比べ、やや高くなったが、それでも後述する比較例に比べて、ほぼ半分程度であった。これに伴いスパッタリング中の異常放電が殆ど認められなかった。
 ZnGaのスピネル相が存在していても、それが微細に分散していることが、ノジュール発生を抑制していることが大きな原因と考えられる。組織の顕微鏡写真を図2に示す。
 また、ターゲット中のZnGaのスピネル相の形成の防止効果は、Inの原料粉末の比表面積が10m/g以下(比表面積4.4m/g)である粉末を用いた結果であり、比較的大きな粒径と小さな比表面積を持つInの原料粉末が粉砕されていく過程で、Inが他の酸化物の間に浸透し、他の酸化物との十分な混合と粉砕が達せられるため、ZnGaのスピネル相の発生を効果的に防止できるためと考えられる。Inの原料粉末の比表面積が、ノジュール発生を抑制し得るIGZOターゲット製造の指標となるものである。以上の結果を、同様に表3に示す。
(実施例3)
 本実施例3では、In原料として、上記(3)粒径1.6μm、比表面積5.8m/gのIn粉末を用い、Ga原料として、上記(2)粒径5.6μm、比表面積9.1m/gのGa粉末を用い、ZnO原料として、上記(1)粒径1.07μm、比表面積3.8m/gのZnO粉末を用いた。これらの粉末を、モル比で、In:Ga:ZnO=1:1:1となるよう原料を調合した。
 次に、これらの粉末を混合し、さらに大気中で1350°Cで5時間、仮焼を行った。粉砕前の比表面積(BET)は6.9m/gであった。また、粉砕後の比表面積(BET)は17.1m/gであった。この差は、10.2m/gであった。
 以上について、表3に、まとめて示す。その他、粉末の混合、粉砕、仮焼、焼結、ターゲット製造、また、各種の測定や評価は、実施例1と同様の方法により実施した。 
 焼結は1400°Cで実施した。以上の結果、実施例3では、90μm×90μmの面積の範囲に存在するZnGaのスピネル相の最大サイズ(スピネル相の最大粒径)が3μm未満であり、平均粒径が3μm以上の同スピネル相の個数は0であった。これらは、本発明の条件を満たしていた。そして密度は6.29g/cmと高密度であり、バルク抵抗値は12.0mΩ・cmで、DCスパッタリングが十分可能である低バルク抵抗値を有していた。
 DCスパッタリングを上記条件で行った結果、ノジュール数は251個であり、実施例1に比べ、やや高くなったが、それでも後述する比較例に比べて、ほぼ半分程度であった。これに伴いスパッタリング中の異常放電が殆ど認められなかった。
 ZnGaのスピネル相が存在していても、それが微細に分散していることが、ノジュール発生を抑制していることが大きな原因と考えられる。組織の顕微鏡写真を図3に示す。
 また、ターゲット中のZnGaのスピネル相の形成の防止効果は、Inの原料粉末の比表面積が10m/g以下(比表面積4.4m/g)である粉末を用いた結果であり、比較的大きな粒径と小さな比表面積を持つInの原料粉末が粉砕されていく過程で、Inが他の酸化物の間に浸透し、他の酸化物との十分な混合と粉砕が達せられるため、ZnGaのスピネル相の発生を効果的に防止できるためと考えられる。Inの原料粉末の比表面積が、ノジュール発生を抑制し得るIGZOターゲット製造の指標となるものである。以上の結果を、同様に表3に示す。
(実施例4)
 本実施例4では、In原料として、上記(3)粒径1.6μm、比表面積5.8m/gのIn粉末を用い、Ga原料として、上記(2)粒径5.6μm、比表面積9.1m/gのGa粉末を用い、ZnO原料として、上記(1)粒径1.07μm、比表面積3.8m/gのZnO粉末を用いた。これらの粉末を、モル比で、In:Ga:ZnO=1:1:1となるよう原料を調合した。
 次に、これらの粉末を混合し、さらに大気中で1350°Cで5時間、仮焼を行った。粉砕前の比表面積(BET)は6.9m/gであった。また、粉砕後の比表面積(BET)は17.1m/gであった。この差は、10.2m/gであった。
 以上について、表3に、まとめて示す。その他、粉末の混合、粉砕、仮焼、焼結、ターゲット製造、また、各種の測定や評価は、実施例1と同様の方法により実施した。 
 焼結は1450°Cで実施した。以上の結果、実施例4では、90μm×90μmの面積の範囲に存在するZnGaのスピネル相の最大サイズ(スピネル相の最大粒径)が3μm未満であり、平均粒径が3μm以上の同スピネル相の個数は0であった。これらは、本発明の条件を満たしていた。そして密度は6.29g/cmと高密度であり、バルク抵抗値は4.4mΩ・cmで、DCスパッタリングが十分可能である低バルク抵抗値を有していた。
 DCスパッタリングを上記条件で行った結果、ノジュール数は189個であり、実施例1に比べ、さらに低減し、比較例に比べ1/3程度となった。これに伴いスパッタリング中の異常放電が殆ど認められなかった。実施例3との差異は仮焼温度をより高温で実施したことであるが、密度向上、バルク抵抗値の低減により有効であることが分かった。ZnGaのスピネル相が存在していても、それが微細に分散していることが、ノジュール発生を抑制していることが大きな原因と考えられる。組織の顕微鏡写真を図4に示す。
 また、ターゲット中のZnGaのスピネル相の形成の防止効果は、Inの原料粉末の比表面積が10m/g以下(比表面積4.4m/g)である粉末を用いた結果であり、比較的大きな粒径と小さな比表面積を持つInの原料粉末が粉砕されていく過程で、Inが他の酸化物の間に浸透し、他の酸化物との十分な混合と粉砕が達せられるため、ZnGaのスピネル相の発生を効果的に防止できるためと考えられる。Inの原料粉末の比表面積が、ノジュール発生を抑制し得るIGZOターゲット製造の指標となるものである。以上の結果を、同様に表3に示す。
(実施例5)
 本実施例5では、In原料として、上記(1)粒径10.7μm、比表面積4.4m/gのIn粉末を用い、Ga原料として、上記(1)粒径5.6μm、比表面積9.1m/gのGa粉末を用い、ZnO原料として、上記(1)粒径1.07μm、比表面積3.8m/gのZnO粉末を用いた。これらの粉末を、モル比で、In:Ga:ZnO=1:1:1となるよう原料を調合した。
 次に、これらの粉末を混合した。仮焼は実施しなかった。粉砕前の比表面積(BET)は6.0m/gであった。また、粉砕後の比表面積(BET)は17.8m/gであった。この差は、11.8m/gであった。
 以上について、表3に、まとめて示す。その他、粉末の混合、粉砕、焼結、ターゲット製造、また、各種の測定や評価は、実施例1と同様の方法により実施した。 
 焼結は1450°Cで実施した。以上の結果、実施例5では、90μm×90μmの面積の範囲に存在するZnGaのスピネル相の最大サイズ(スピネル相の最大粒径)が3.71μmであり、平均粒径が3μm以上の同スピネル相の個数は7であった。これらは、本発明の条件を満たしていた。そして密度は6.20g/cmと高密度であり、バルク抵抗値は2.97mΩ・cmで、DCスパッタリングが十分可能である低バルク抵抗値を有していた。組織の顕微鏡写真を図5に示す。
 DCスパッタリングを上記条件で行った結果、ノジュール数は390個であり、実施例1に比べ、やや高くなったが、それでも後述する比較例に比べて、ほぼ半分程度であった。これに伴いスパッタリング中の異常放電が殆ど認められなかった。
 ZnGaのスピネル相が存在していても、それが微細に分散していることが、ノジュール発生を抑制していることが大きな原因と考えられる。
 また、ターゲット中のZnGaのスピネル相の形成の防止効果は、Inの原料粉末の比表面積が10m/g以下(比表面積4.4m/g)である粉末を用いた結果であり、比較的大きな粒径と小さな比表面積を持つInの原料粉末が粉砕されていく過程で、Inが他の酸化物の間に浸透し、他の酸化物との十分な混合と粉砕が達せられるため、ZnGaのスピネル相の発生を効果的に防止できるためと考えられる。Inの原料粉末の比表面積が、ノジュール発生を抑制し得るIGZOターゲット製造の指標となるものである。以上の結果を、同様に表3に示す。
(実施例6)
 本実施例6では、In原料として、上記(1)粒径10.7μm、比表面積4.4m/gのIn粉末を用い、Ga原料として、上記(2)粒径4.6μm、比表面積11.9m/gのGa粉末を用い、ZnO原料として、上記(1)粒径1.07μm、比表面積3.8m/gのZnO粉末を用いた。これらの粉末を、モル比で、In:Ga:ZnO=1:1:2となるよう原料を調合した。
 次に、これらの粉末を混合した。仮焼を950°C実施した。粉砕前の比表面積(BET)は3.1m/gであった。また、粉砕後の比表面積(BET)は14.7m/gであった。この差は、11.6m/gであった。
 以上について、表3に、まとめて示す。その他、粉末の混合、粉砕、焼結、ターゲット製造、また、各種の測定や評価は、実施例1と同様の方法により実施した。 
 焼結は1450°Cで実施した。以上の結果、実施例6では、90μm×90μmの面積の範囲に存在するZnGaのスピネル相の最大サイズ(スピネル相の最大粒径)は3μm未満であり、平均粒径が3μm以上の同スピネル相の個数は0であった。これらは、本発明の条件を満たしていた。そして密度は6.14g/cmと高密度であり、バルク抵抗値は29.7mΩ・cmとやや高めであったが、DCスパッタリングが可能であるバルク抵抗値を有していた。組織の顕微鏡写真を図6に示す。
 DCスパッタリングを上記条件で行った結果、ノジュール数は170個であり、実施例1よりも少なかった。これに伴い、スパッタリング中の異常放電が殆ど認められなかった。ZnGaのスピネル相が少なく、また存在していても、それが微細に分散していることが、ノジュール発生を抑制していることが大きな原因と考えられる。
 また、ターゲット中のZnGaのスピネル相の形成の防止効果は、Inの原料粉末の比表面積が10m/g以下(比表面積4.4m/g)である粉末を用いた結果であり、比較的大きな粒径と小さな比表面積を持つInの原料粉末が粉砕されていく過程で、Inが他の酸化物の間に浸透し、他の酸化物との十分な混合と粉砕が達せられるため、ZnGaのスピネル相の発生を効果的に防止できるためと考えられる。Inの原料粉末の比表面積が、ノジュール発生を抑制し得るIGZOターゲット製造の指標となるものである。以上の結果を、同様に表3に示す。
 なお、本実施例6の粉末の配合比はIn:Ga:ZnO=1:1:2であり、実施例1の粉末の配合比であるIn:Ga:ZnO=1:1:1と、に差異があるが、これらは、ZnGaのスピネル相の発生やノジュール発生に殆ど影響していないことが分かる。
 各元素の構成比である、式:InGaZn{式中、0.2≦x/(x+y)≦0.8、0.1≦z/(x+y+z)≦0.5、a=(3/2)x+(3/2)y+z}とすることは、In-Ga-Zn-O系(IGZO)材料としての特性、すなわち電子キャリア濃度が1018/cm未満であるアモルファス酸化物を用いた電界効果型トランジスタに利用する材料の特性から要求されるものであり、この組成範囲のものであれば、本願発明の条件において、ZnGaのスピネル相の発生やノジュール発生を抑制するという目的を達成することが可能である。
(実施例7)
 本実施例7では、In原料として、上記(1)粒径10.7μm、比表面積4.4m/gのIn粉末を用い、Ga原料として、上記(1)粒径5.6μm、比表面積9.1m/gのGa粉末を用い、ZnO原料として、上記(1)粒径1.07μm、比表面積3.8m/gのZnO粉末を用いた。これらの粉末を、モル比で、In:Ga:ZnO=1:1:2となるよう原料を調合した。
 次に、これらの粉末を混合した。仮焼を1050°C実施した。粉砕前の比表面積(BET)は1.8m/gであった。また、粉砕後の比表面積(BET)は11.5m/gであった。この差は、9.7m/gであった。
 以上について、表3に、まとめて示す。その他、粉末の混合、粉砕、焼結、ターゲット製造、また、各種の測定や評価は、実施例1と同様の方法により実施した。 
 焼結は1490°Cで実施した。以上の結果、実施例7では、90μm×90μmの面積の範囲に存在するZnGaのスピネル相の最大サイズ(スピネル相の最大粒径)は3μm未満であり、平均粒径が3μm以上の同スピネル相の個数は0であった。これらは、本発明の条件を満たしていた。そして密度は6.34g/cmと高密度であり、バルク抵抗値は18.0mΩ・cmとやや高めであったが、DCスパッタリングが可能であるバルク抵抗値を有していた。組織の顕微鏡写真を図7に示す。
 DCスパッタリングを上記条件で行った結果、ノジュール数は154個であり、実施例1よりも少なかった。これに伴い、スパッタリング中の異常放電が殆ど認められなかった。ZnGaのスピネル相が少なく、また存在していても、それが微細に分散していることが、ノジュール発生を抑制していることが大きな原因と考えられる。
 また、ターゲット中のZnGaのスピネル相の形成の防止効果は、Inの原料粉末の比表面積が10m/g以下(比表面積4.4m/g)である粉末を用いた結果であり、比較的大きな粒径と小さな比表面積を持つInの原料粉末が粉砕されていく過程で、Inが他の酸化物の間に浸透し、他の酸化物との十分な混合と粉砕が達せられるため、ZnGaのスピネル相の発生を効果的に防止できるためと考えられる。Inの原料粉末の比表面積が、ノジュール発生を抑制し得るIGZOターゲット製造の指標となるものである。以上の結果を、同様に表3に示す。
 本実施例7の粉末の配合比はIn:Ga:ZnO=1:1:2であり、実施例1の粉末の配合比であるIn:Ga:ZnO=1:1:1、とに差異があるが、実施例6と同様に、これらは、ZnGaのスピネル相の発生やノジュール発生に殆ど影響していないことが分かる。
 各元素の構成比である、式:InGaZn{式中、0.2≦x/(x+y)≦0.8、0.1≦z/(x+y+z)≦0.5、a=(3/2)x+(3/2)y+z}とすることは、In-Ga-Zn-O系(IGZO)材料としての特性、すなわち電子キャリア濃度が1018/cm未満であるアモルファス酸化物を用いた電界効果型トランジスタに利用する材料の特性から要求されるものであり、この組成範囲のものであれば、本願発明の条件において、ZnGaのスピネル相の発生やノジュール発生を抑制するという目的を達成することが可能である。
(比較例1)
 比較例1では、In原料として、上記(2)粒径0.65μm、比表面積13.7m/gのIn粉末を用い、Ga原料として、上記(2)粒径4.6μm、比表面積11.1m/gのGa粉末を用い、ZnO原料として、上記(1)粒径1.07μm、比表面積3.8m/gのZnO粉末を用いた。これらの粉末を、モル比で、In:Ga:ZnO=1:1:1となるよう原料を調合した。
 次に、これらの粉末を混合した。仮焼は実施しなかった。粉砕前の比表面積(BET)は13.8m/gであった。また、粉砕後の比表面積(BET)は22.1m/gであった。この差は、約8.3m/gであった。
 以上について、表4に、まとめて示す。その他、粉末の混合、粉砕、焼結、ターゲット製造、また、各種の測定や評価は、実施例1と同様の方法により実施した。 
 焼結は1400°Cで実施した。以上の結果、比較例1では、90μm×90μmの面積の範囲に存在するZnGaのスピネル相の最大サイズ(スピネル相の最大粒径)が3.55μmであり、平均粒径が3μm以上の同スピネル相の個数は15であった。これらは、本発明の条件を満たしていなかった。そして密度は6.48g/cmと高密度であり、バルク抵抗値は4.0mΩ・cmで、DCスパッタリングが十分可能である低バルク抵抗値を有していた。組織の顕微鏡写真を図8に示す。
 しかしながら、DCスパッタリングを上記条件で行った結果、ノジュール数は531個であり、実施例1に比べ、2倍以上に増加した。これに伴いスパッタリング中の異常放電が増加した。ZnGaのスピネル相の多量の存在は、ノジュール発生を抑制できない原因となることが分かった。
 また、ターゲット中のZnGaのスピネル相が多量に発生した原因は、Inの原料粉末の比表面積が10m/g以下(比表面積4.4m/g)である粉末を用いず、粉砕が不十分であったと考えられる。Inの原料粉末の比表面積が、ノジュール発生を抑制し得るIGZOターゲット製造の指標となるものであるが、比較的小さい粒径で大きな比表面積を持つInの原料粉末では、粉砕過程において、他の酸化物との十分な混合と粉砕が達せられず、ZnGaのスピネル相の発生を効果的に防止できなかったと考えられる。以上の結果を、表4に示す。
Figure JPOXMLDOC01-appb-T000004
(比較例2)
 比較例2では、In原料として、上記(2)粒径0.65μm、比表面積13.7m/gのIn粉末を用い、Ga原料として、上記(2)粒径4.6μm、比表面積11.1m/gのGa粉末を用い、ZnO原料として、上記(1)粒径1.07μm、比表面積3.8m/gのZnO粉末を用いた。これらの粉末を、モル比で、In:Ga:ZnO=1:1:1となるよう原料を調合した。
 次に、これらの粉末を混合した。仮焼は実施しなかった。粉砕前の比表面積(BET)は13.8m/gであった。また、粉砕後の比表面積(BET)は22.1m/gであった。この差は、8.3m/gであった。
 以上について、表4に、まとめて示す。その他、粉末の混合、粉砕、焼結、ターゲット製造、また、各種の測定や評価は、実施例1と同様の方法により実施した。 
 焼結は1450°Cで実施した。以上の結果、比較例2では、90μm×90μmの面積の範囲に存在するZnGaのスピネル相の最大サイズ(スピネル相の最大粒径)が4.10μmであり、平均粒径が3μm以上の同スピネル相の個数は42と増加した。これらは、本発明の条件を満たしていなかった。そして密度は6.44g/cmと高密度であり、バルク抵抗値は2.6mΩ・cmで、DCスパッタリングが十分可能である低バルク抵抗値を有していた。組織の顕微鏡写真を図9に示す。
 しかしながら、DCスパッタリングを上記条件で行った結果、ノジュール数は694個であり、実施例1に比べ、3倍以上に増加した。これに伴いスパッタリング中の異常放電が増加した。ZnGaのスピネル相の多量の存在は、ノジュール発生を抑制できない原因となることが分かった。
 また、ターゲット中のZnGaのスピネル相が多量に発生した原因は、Inの原料粉末の比表面積が10m/g以下(比表面積4.4m/g)である粉末を用いず、粉砕が不十分であったと考えられる。Inの原料粉末の比表面積が、ノジュール発生を抑制し得るIGZOターゲット製造の指標となるものであるが、比較的小さい粒径で大きな比表面積を持つInの原料粉末では、粉砕過程において、他の酸化物との十分な混合と粉砕が達せられず、ZnGaのスピネル相の発生を効果的に防止できなかったと考えられる。以上の結果を、同様に表4に示す。
(比較例3)
 比較例3では、In原料として、上記(2)粒径0.65μm、比表面積13.7m/gのIn粉末を用い、Ga原料として、上記(2)粒径4.6μm、比表面積11.1m/gのGa粉末を用い、ZnO原料として、上記(1)粒径1.07μm、比表面積3.8m/gのZnO粉末を用いた。これらの粉末を、モル比で、In:Ga:ZnO=1:1:1となるよう原料を調合した。
 次に、これらの粉末を混合した。仮焼は、温度950°Cで実施した。粉砕前の比表面積(BET)は7.0m/gであった。また、粉砕後の比表面積(BET)は18.1m/gであった。この差は、11.1m/gであった。
 以上について、表4に、まとめて示す。その他、粉末の混合、粉砕、仮焼、焼結、ターゲット製造、また、各種の測定や評価は、実施例1と同様の方法により実施した。 
 焼結は1400°Cで実施した。以上の結果、比較例3では、90μm×90μmの面積の範囲に存在するZnGaのスピネル相の最大サイズ(スピネル相の最大粒径)が3.81μmであり、平均粒径が3μm以上の同スピネル相の個数は16と増加した。これらは、本発明の条件を満たしていなかった。そして密度は6.28g/cmと高密度であり、バルク抵抗値は4.0mΩ・cmで、DCスパッタリングが十分可能である低バルク抵抗値を有していた。組織の顕微鏡写真を図10に示す。
 しかしながら、DCスパッタリングを上記条件で行った結果、ノジュール数は592個であり、実施例1に比べ、2.5倍程度に増加した。これに伴いスパッタリング中の異常放電が増加した。ZnGaのスピネル相の多量の存在は、ノジュール発生を抑制できない原因となることが分かった。
 また、ターゲット中のZnGaのスピネル相が多量に発生した原因は、Inの原料粉末の比表面積が10m/g以下(比表面積4.4m/g)である粉末を用いず、粉砕が不十分であったと考えられる。Inの原料粉末の比表面積が、ノジュール発生を抑制し得るIGZOターゲット製造の指標となるものであるが、比較的小さい粒径で大きな比表面積を持つInの原料粉末では、粉砕過程において、他の酸化物との十分な混合と粉砕が達せられず、ZnGaのスピネル相の発生を効果的に防止できなかったと考えられる。以上の結果を、同様に表4に示す。
(比較例4)
 比較例4では、In原料として、上記(2)粒径0.65μm、比表面積13.7m/gのIn粉末を用い、Ga原料として、上記(2)粒径4.6μm、比表面積11.1m/gのGa粉末を用い、ZnO原料として、上記(1)粒径1.07μm、比表面積3.8m/gのZnO粉末を用いた。これらの粉末を、モル比で、In:Ga:ZnO=1:1:1となるよう原料を調合した。
 次に、これらの粉末を混合した。仮焼は、温度950°Cで実施した。粉砕前の比表面積(BET)は7.0m/gであった。また、粉砕後の比表面積(BET)は18.1m/gであった。この差は、11.1m/gであった。
 以上について、表4に、まとめて示す。その他、粉末の混合、粉砕、仮焼、焼結、ターゲット製造、また、各種の測定や評価は、実施例1と同様の方法により実施した。 
 焼結は1450°Cで実施した。以上の結果、比較例4では、90μm×90μmの面積の範囲に存在するZnGaのスピネル相の最大サイズ(スピネル相の最大粒径)が4.67μmであり、平均粒径が3μm以上の同スピネル相の個数は33と著しく増加した。これらは、本発明の条件を満たしていなかった。そして密度は6.51g/cmと高密度であり、バルク抵抗値は2.9mΩ・cmで、DCスパッタリングが十分可能である低バルク抵抗値を有していた。組織の顕微鏡写真を図11に示す。
 しかしながら、DCスパッタリングを上記条件で行った結果、ノジュール数は660個であり、実施例1に比べ、3倍程度に増加した。これに伴いスパッタリング中の異常放電が増加した。ZnGaのスピネル相の多量の存在は、ノジュール発生を抑制できない原因となることが分かった。
 また、ターゲット中のZnGaのスピネル相が多量に発生した原因は、Inの原料粉末の比表面積が10m/g以下(比表面積4.4m/g)である粉末を用いず、粉砕が不十分であったと考えられる。Inの原料粉末の比表面積が、ノジュール発生を抑制し得るIGZOターゲット製造の指標となるものであるが、比較的小さい粒径で大きな比表面積を持つInの原料粉末では、粉砕過程において、他の酸化物との十分な混合と粉砕が達せられず、ZnGaのスピネル相の発生を効果的に防止できなかったと考えられる。以上の結果を、同様に表4に示す。
(比較例5)
 比較例5では、In原料として、上記(1)粒径10.7μm、比表面積4.4m/gのIn粉末を用い、Ga原料として、上記(1)粒径5.6μm、比表面積9.1m/gのGa粉末を用い、ZnO原料として、上記(1)粒径1.07μm、比表面積3.8m/gのZnO粉末を用いた。これらの粉末を、モル比で、In:Ga:ZnO=1:1:1となるよう原料を調合した。
 次に、これらの粉末を混合した。仮焼は、温度950°Cで実施した。粉砕前の比表面積(BET)は2.6m/gであった。また、粉砕後の比表面積(BET)は17.0m/gであった。この差は、14.4m/gであった。
 以上について、表4に、まとめて示す。その他、粉末の混合、粉砕、仮焼、焼結、ターゲット製造、また、各種の測定や評価は、実施例1と同様の方法により実施した。 
 焼結は1350°Cで実施した。以上の結果、比較例5では、90μm×90μmの面積の範囲に存在するZnGaのスピネル相の最大サイズ(スピネル相の最大粒径)が4.03μmであり、平均粒径が3μm以上の同スピネル相の個数は4であった。これらのスピネル相の存在についは、本発明の条件を満たしていたが、焼結温度が低いために、密度は5.72g/cmと著しく低下し、バルク抵抗値も7.7mΩ・cmと増加した。なお、DCスパッタリングは可能であった。組織の顕微鏡写真を図12に示す。
 しかしながら、DCスパッタリングを上記条件で行った結果、ノジュール数は561個であり、実施例1に比べ、2.5倍程度に増加した。これに伴いスパッタリング中の異常放電が増加した。ZnGaのスピネル相の多量の存在は、ノジュール発生を抑制できない原因となることが分かった。
 また、ターゲット中のZnGaのスピネル相が多量に発生した原因は、Inの原料粉末の比表面積が10m/g以下(比表面積4.4m/g)である粉末を用いず、粉砕が不十分であったと考えられる。Inの原料粉末の比表面積が、ノジュール発生を抑制し得るIGZOターゲット製造の指標となるものであるが、比較的小さい粒径で大きな比表面積を持つInの原料粉末では、粉砕過程において、他の酸化物との十分な混合と粉砕が達せられず、ZnGaのスピネル相の発生を効果的に防止できなかったと考えられる。以上の結果を、同様に表4に示す。
(比較例6)
 比較例6では、In原料として、上記(1)粒径10.7μm、比表面積4.4m/gのIn粉末を用い、Ga原料として、上記(1)粒径5.6μm、比表面積9.1m/gのGa粉末を用い、ZnO原料として、上記(1)粒径1.07μm、比表面積3.8m/gのZnO粉末を用いた。これらの粉末を、モル比で、In:Ga:ZnO=1:1:1となるよう原料を調合した。
 次に、これらの粉末を混合した。仮焼は、実施しなかった。粉砕前の比表面積(BET)は7.3m/gであった。また、粉砕後の比表面積(BET)は9.2m/gであった。この差は、1.9m/gであった。
 以上について、表4に、まとめて示す。その他、粉末の混合、粉砕、焼結、ターゲット製造、また、各種の測定や評価は、実施例1と同様の方法により実施した。 
 焼結は1450°Cで実施した。以上の結果、比較例6では、90μm×90μmの面積の範囲に存在するZnGaのスピネル相の最大サイズ(スピネル相の最大粒径)が4.36μmであり、平均粒径が3μm以上の同スピネル相の個数は11であった。
 これらのスピネル相の存在個数は、本発明の条件を満たしていなかった。密度は5.92g/cmと低下した。バルク抵抗値は6.2mΩ・cmと低いので、DCスパッタリングは可能であった。組織の顕微鏡写真を図13に示す。
 しかしながら、DCスパッタリングを上記条件で行った結果、ノジュール数は677個であり、実施例1に比べ、3倍強に程度に増加した。これに伴いスパッタリング中の異常放電が増加した。ZnGaのスピネル相の多量の存在は、ノジュール発生を抑制できない原因となることが分かった。
 また、ターゲット中のZnGaのスピネル相が多量に発生した原因は、粉砕前の比表面積(BET)は7.3m/gと粉砕後の比表面積(BET)は9.2m/gの差が、1.9m/gであり、混合・粉砕が十分でなかったと考えられる。これは、混合粉末を仮焼していなために、粉砕が十分でなかったことが原因と考えられる。
 Inの原料粉末の比表面積が、ノジュール発生を抑制し得るIGZOターゲット製造の指標となるものであるが、比較的大きい粒径で小さい比表面積を持つInの原料粉末を用いた場合でも、粉末の十分な粉砕が行わなければ、他の酸化物との十分な混合と粉砕が達せられず、ZnGaのスピネル相の発生を効果的に防止できなかったと考えられる。以上の結果を、同様に表4に示す。
(比較例7)
 比較例7では、In原料として、上記(1)粒径10.7μm、比表面積4.4m/gのIn粉末を用い、Ga原料として、上記(1)粒径5.6μm、比表面積9.1m/gのGa粉末を用い、ZnO原料として、上記(1)粒径1.07μm、比表面積3.8m/gのZnO粉末を用いた。これらの粉末を、モル比で、In:Ga:ZnO=1:1:1となるよう原料を調合した。
 次に、これらの粉末を混合した。仮焼は、温度950°Cで実施した。混合しただけで粉砕は行わなかった。したがって、粉末の比表面積(BET)は、2.7m/gと変わらず、その差は0である。以上について、表4に、まとめて示す。その他、粉末の混合、仮焼、焼結、ターゲット製造、また、各種の測定や評価は、実施例1と同様の方法により実施した。 
 焼結は950°Cで実施した。しかし、焼結が十分起こらず、密度は5.20g/cmと著しく低下した。このため、組織観察やその他の評価は、意味がないので実施しなかった。以上の結果を、同様に表4に示す。
(比較例8)
 比較例8では、In原料として、上記(1)粒径10.7μm、比表面積4.4m/gのIn粉末を用い、Ga原料として、上記(1)粒径5.6μm、比表面積9.1m/gのGa粉末を用い、ZnO原料として、上記(1)粒径1.07μm、比表面積3.8m/gのZnO粉末を用いた。これらの粉末を、モル比で、In:Ga:ZnO=1:1:1となるよう原料を調合した。
 次に、これらの粉末を混合した。仮焼は、温度950°Cで実施した。粉砕前の比表面積(BET)は2.8m/gであった。また、粉砕後の比表面積(BET)は4.1m/gであった。この差は、1.3m/gであった。
 以上について、表4に、まとめて示す。その他、粉末の混合、粉砕、仮焼、焼結、ターゲット製造、また、各種の測定や評価は、実施例1と同様の方法により実施した。 
 焼結は1450°Cで実施した。以上の結果、比較例5では、90μm×90μmの面積の範囲に存在するZnGaのスピネル相の最大サイズ(スピネル相の最大粒径)が11.6μmであり、極めて大きなサイズの相が確認できた。平均粒径が3μm以上の同スピネル相の個数は1であった。これらのスピネル相の存在についは、本発明の条件を満たしていなかった。密度も5.66g/cmと著しく低下した。バルク抵抗値は3.2mΩ・cmであり、DCスパッタリングは可能であった。組織の顕微鏡写真を図14に示す。
 しかしながら、DCスパッタリングを上記条件で行った結果、ノジュール数は723個であり、実施例1に比べ、3.5倍程度に増加した。これに伴いスパッタリング中の異常放電が増加した。特大ZnGaのスピネル相の存在は、ノジュール発生を抑制できない原因となることが分かった。
 また、ターゲット中のZnGaのスピネル相が多量に発生した原因は、粉砕が不十分であり、粉砕前の比表面積(BET)は2.8m/gと粉砕後の比表面積(BET)は4.1m/gで、この差が1.3m/gで、小さいことが原因と考えられる。
 Inの原料粉末の比表面積が重要ではあるが、さらに、粉砕前の比表面積(BET)と粉砕後の比表面積(BET)の差異も、ノジュール発生を抑制し得るIGZOターゲット製造の指標となることが分かった。これは、粉砕過程において、他の酸化物との十分な混合と粉砕が達せられず、ZnGaのスピネル相の発生を効果的に防止できなかったと考えられる。以上の結果を、同様に表4に示す。
 本発明は、原料特性及び製法の最適化によりターゲット組織中ZnGa(スピネル)相を低減させるものであり、比表面積が10m/gより小さいInを使用することにより、主相のInGaZn相と特性の異なるZnGa (スピネル)相の粗大化と多量の存在はノジュール発生の原因となるが、このZnGa(スピネル)相を抑えることが可能となる。ノジュール発生の量を減らすことは、スパッタリング中の異常放電を抑制できる。さらに、本願発明は、原料の微粉砕により、密度を向上させることができ、さらに安定した性状及び組織を持つターゲットが得られ、DCスパッタリングが可能である導電性を得ることができる。
 以上によって、スパッタリング時のパーティクルやノジュールを低減させ、さらにターゲットライフも長くすることができるという著しい効果を有し、品質のばらつきが少なく量産性を向上させることができる。層を形成するスパッタリングターゲットとして利用できる。このIn-Ga-Zn-O系(IGZO)材料は、電子キャリア濃度が1018/cm未満であるアモルファス酸化物が得られるので、電界効果型トランジスタに有用である。また、IGZOターゲットとして、広範囲な用途に支障なく使用できるので、産業上の利用価値は高い。

Claims (5)

  1.  インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、酸素(O)及び不可避的不純物からなるスパッタリング用酸化物焼結体ターゲットにおいて、各元素の構成比は、式:InGaZn{式中、0.2≦x/(x+y)≦0.8、0.1≦z/(x+y+z)≦0.5、a=(3/2)x+(3/2)y+z}であり、当該酸化物焼結体ターゲットの90μm×90μmの面積の範囲に存在する平均粒径が3μm以上のZnGaのスピネル相の個数が10個以下であることを特徴とするスパッタリング用酸化物焼結体ターゲット。
  2.  酸化物焼結体ターゲットの90μm×90μmの面積の範囲に存在するZnGaのスピネル相の最大粒径が5μm以下であることを特徴とする請求項1記載のスパッタリング用酸化物焼結体ターゲット。
  3.  ターゲットの密度が6.0g/cm以上であり、バルク抵抗値が5.0×10-2Ω・cm以下であることを特徴とする請求項1又は2記載のスパッタリング用酸化物焼結体ターゲット。
  4.  インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、酸素(O)及び不可避的不純物からなるスパッタリング用酸化物焼結体ターゲットの製造方法において、各元素の構成比が、式:InGaZn{式中、0.2≦x/(x+y)≦0.8、0.1≦z/(x+y+z)≦0.5、a=(3/2)x+(3/2)y+z}となるように、酸化インジウム(In)、酸化ガリウム(Ga)、及び酸化亜鉛(ZnO)の原料粉末を調整すると共に、Inの原料粉末の比表面積を10m/g以下とし、これらの粉末を混合し、さらに粉砕した後、1400~14801490°Cの温度範囲で焼結することを特徴とするスパッタリング用酸化物焼結体ターゲットの製造方法。
  5.  前記In、Ga及びZnOの原料粉末を混合し、粉砕する工程において、粉砕前後の比表面積差が2.0m/g以上となるまで、粉砕することを特徴とする請求項4記載のスパッタリング用酸化物焼結体ターゲットの製造方法。
PCT/JP2009/060324 2008-06-10 2009-06-05 スパッタリング用酸化物焼結体ターゲット及びその製造方法 WO2009151003A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/864,553 US9045823B2 (en) 2008-06-10 2009-06-05 Sintered oxide compact target for sputtering and process for producing the same
CN200980115641.9A CN102016112B (zh) 2008-06-10 2009-06-05 溅射用氧化物烧结体靶及其制造方法
EP09762433.2A EP2284293B1 (en) 2008-06-10 2009-06-05 Sintered-oxide target for sputtering and process for producing the same
KR1020107015038A KR101224769B1 (ko) 2008-06-10 2009-06-05 스퍼터링용 산화물 소결체 타겟 및 그 제조 방법
JP2010516833A JP5202630B2 (ja) 2008-06-10 2009-06-05 スパッタリング用酸化物焼結体ターゲット及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008152103 2008-06-10
JP2008-152103 2008-06-10

Publications (1)

Publication Number Publication Date
WO2009151003A1 true WO2009151003A1 (ja) 2009-12-17

Family

ID=41416709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060324 WO2009151003A1 (ja) 2008-06-10 2009-06-05 スパッタリング用酸化物焼結体ターゲット及びその製造方法

Country Status (7)

Country Link
US (1) US9045823B2 (ja)
EP (1) EP2284293B1 (ja)
JP (1) JP5202630B2 (ja)
KR (1) KR101224769B1 (ja)
CN (1) CN102016112B (ja)
TW (1) TWI471441B (ja)
WO (1) WO2009151003A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017659A1 (ja) * 2010-08-05 2012-02-09 三菱マテリアル株式会社 スパッタリングターゲットの製造方法およびスパッタリングターゲット
CN102351528A (zh) * 2011-09-28 2012-02-15 华南理工大学 硼化镧掺杂的氧化物半导体材料及其应用
WO2012153491A1 (ja) * 2011-05-10 2012-11-15 出光興産株式会社 In-Ga-Zn系酸化物スパッタリングターゲット及びその製造方法
JP2014125648A (ja) * 2012-12-25 2014-07-07 Tosoh Corp Igzo焼結体およびスパッタリングターゲット
WO2014155883A1 (ja) * 2013-03-25 2014-10-02 日本碍子株式会社 酸化亜鉛系スパッタリングターゲット
JP2018021254A (ja) * 2016-07-11 2018-02-08 株式会社半導体エネルギー研究所 スパッタリングターゲット、およびスパッタリングターゲットの作製方法
WO2018179556A1 (ja) * 2017-03-31 2018-10-04 Jx金属株式会社 スパッタリングターゲット及びその製造方法
US10341579B2 (en) 2017-03-20 2019-07-02 Google Llc Camera system including lens with magnification gradient

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759598B2 (ja) * 2007-09-28 2011-08-31 キヤノン株式会社 薄膜トランジスタ、その製造方法及びそれを用いた表示装置
JP2010010926A (ja) * 2008-06-25 2010-01-14 Toshiba Corp 映像投射装置および映像投射装置の制御方法
CN102459122B (zh) 2009-06-05 2014-02-05 吉坤日矿日石金属株式会社 氧化物烧结体、其制造方法以及氧化物烧结体制造用原料粉末
KR101446615B1 (ko) * 2011-08-23 2014-10-06 코닝정밀소재 주식회사 Igzo 타겟 제조방법 및 이에 의해 제조된 igzo 타겟
TWI447073B (zh) * 2011-11-23 2014-08-01 Ind Tech Res Inst 銦鎵鋅氧化物(igzo)奈米粉體及其製備方法與濺鍍用靶材
CN103373845B (zh) * 2012-04-13 2015-03-04 光洋应用材料科技股份有限公司 铟镓锌氧化物及其制法与应用
CN102618927B (zh) * 2012-04-17 2014-12-24 陕西科技大学 一种微波水热制备ZnGa2O4单晶的方法
CN102676994B (zh) * 2012-06-07 2014-07-16 上海硅酸盐研究所中试基地 具有内禀铁磁性的ZnO基稀磁半导体薄膜及其制备方法
JP6141777B2 (ja) 2013-02-28 2017-06-07 株式会社半導体エネルギー研究所 半導体装置の作製方法
TWI566413B (zh) * 2013-09-09 2017-01-11 元太科技工業股份有限公司 薄膜電晶體
JP5786994B1 (ja) * 2014-03-11 2015-09-30 住友金属鉱山株式会社 水酸化インジウム粉および酸化インジウム粉
KR101932369B1 (ko) 2015-02-27 2018-12-24 제이엑스금속주식회사 산화물 소결체 및 그 산화물 소결체로 이루어지는 스퍼터링 타깃
CN107207356B (zh) 2015-02-27 2020-12-08 捷客斯金属株式会社 氧化物烧结体、氧化物溅射靶和氧化物薄膜
US10047012B2 (en) 2015-03-23 2018-08-14 Jx Nippon Mining & Metals Corporation Oxide sintered compact and sputtering target formed from said oxide sintered compact
US10096715B2 (en) 2015-03-26 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, and electronic device
CN105906338A (zh) * 2016-04-19 2016-08-31 北京冶科纳米科技有限公司 一种高密度igzo旋转靶材的制造方法
CN107628811A (zh) * 2017-08-11 2018-01-26 东台市超品光电材料有限公司 大尺寸绑定式镓和钇共掺杂氧化锌旋转陶瓷管靶材
WO2019202753A1 (ja) * 2018-04-18 2019-10-24 三井金属鉱業株式会社 酸化物焼結体、スパッタリングターゲットおよび酸化物薄膜の製造方法
EP3828303A1 (en) 2019-11-28 2021-06-02 Imec VZW Method for forming a film of an oxide of in, ga, and zn
CN112537954B (zh) * 2020-12-17 2022-04-15 中山智隆新材料科技有限公司 一种igzo靶材的制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014409A1 (fr) * 2001-08-02 2003-02-20 Idemitsu Kosan Co., Ltd. Cible de pulverisation, film conducteur transparent et leur procede de fabrication
JP2004103957A (ja) 2002-09-11 2004-04-02 Japan Science & Technology Corp ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
WO2005088726A1 (ja) 2004-03-12 2005-09-22 Japan Science And Technology Agency アモルファス酸化物及び薄膜トランジスタ
JP2006165527A (ja) 2004-11-10 2006-06-22 Canon Inc 電界効果型トランジスタ
JP2006165530A (ja) 2004-11-10 2006-06-22 Canon Inc センサ及び非平面撮像装置
JP2006165529A (ja) 2004-11-10 2006-06-22 Canon Inc 非晶質酸化物、及び電界効果型トランジスタ
JP2006165532A (ja) 2004-11-10 2006-06-22 Canon Inc 非晶質酸化物を利用した半導体デバイス
JP2006165528A (ja) 2004-11-10 2006-06-22 Canon Inc 画像表示装置
JP2006173580A (ja) 2004-11-10 2006-06-29 Canon Inc 電界効果型トランジスタ
JP2006186319A (ja) 2004-11-10 2006-07-13 Canon Inc 発光装置及び表示装置
JP2007223849A (ja) * 2006-02-24 2007-09-06 Sumitomo Metal Mining Co Ltd 酸化ガリウム系焼結体およびその製造方法
JP2008144246A (ja) * 2006-12-13 2008-06-26 Idemitsu Kosan Co Ltd スパッタリングターゲットの製造方法
WO2009084537A1 (ja) * 2007-12-27 2009-07-09 Nippon Mining & Metals Co., Ltd. a-IGZO酸化物薄膜の製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3947575B2 (ja) * 1994-06-10 2007-07-25 Hoya株式会社 導電性酸化物およびそれを用いた電極
WO1996032685A1 (en) * 1995-04-11 1996-10-17 Kinetech, Inc. Identifying data in a data processing system
JP3576364B2 (ja) * 1997-10-13 2004-10-13 株式会社日鉱マテリアルズ Itoスパッタリングターゲットのクリーニング方法
JP3636914B2 (ja) 1998-02-16 2005-04-06 株式会社日鉱マテリアルズ 高抵抗透明導電膜及び高抵抗透明導電膜の製造方法並びに高抵抗透明導電膜形成用スパッタリングターゲット
US6669830B1 (en) * 1999-11-25 2003-12-30 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive oxide, and process for producing the sputtering target
US6929772B2 (en) * 2001-03-28 2005-08-16 Nikko Materials Co., Ltd. Manufacturing method of ito powder with tin dissolved in indium oxide, and manufacturing method of ito target
CN1558962A (zh) * 2001-09-27 2004-12-29 出光兴产株式会社 溅射靶材和透明导电薄膜
US20040222089A1 (en) * 2001-09-27 2004-11-11 Kazuyoshi Inoue Sputtering target and transparent electroconductive film
US7061014B2 (en) * 2001-11-05 2006-06-13 Japan Science And Technology Agency Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP2004149883A (ja) * 2002-10-31 2004-05-27 Mitsui Mining & Smelting Co Ltd 高抵抗透明導電膜用スパッタリングターゲット及び高抵抗透明導電膜の製造方法
CN100489150C (zh) * 2003-08-20 2009-05-20 日矿金属株式会社 Ito溅射靶
EP1812969B1 (en) * 2004-11-10 2015-05-06 Canon Kabushiki Kaisha Field effect transistor comprising an amorphous oxide
US7791072B2 (en) * 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7863611B2 (en) * 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7453065B2 (en) * 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
KR101004981B1 (ko) * 2005-06-28 2011-01-04 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 산화갈륨-산화아연계 스퍼터링 타겟, 투명 도전막의 형성방법 및 투명 도전막
KR100957733B1 (ko) * 2005-06-28 2010-05-12 닛코 킨조쿠 가부시키가이샤 산화갈륨-산화아연계 스퍼터링 타겟, 투명 도전막의 형성방법 및 투명 도전막
JP5058469B2 (ja) * 2005-09-06 2012-10-24 キヤノン株式会社 スパッタリングターゲットおよび該ターゲットを用いた薄膜の形成方法
JP4926977B2 (ja) * 2005-12-08 2012-05-09 Jx日鉱日石金属株式会社 酸化ガリウム−酸化亜鉛系焼結体スパッタリングターゲット
JP4850901B2 (ja) * 2006-03-17 2012-01-11 Jx日鉱日石金属株式会社 酸化亜鉛系透明導電体及び同透明導電体形成用スパッタリングターゲット
EP2056304A4 (en) * 2006-08-24 2010-06-16 Nippon Mining Co ZINKOXIDE-BASED TRANSPARENT ELECTRICAL LADDER, SPUTTER TARGET FOR FORMING THE LADDER AND PROCESS FOR PRODUCING THE TARGET
EP2471972B1 (en) * 2006-12-13 2014-01-29 Idemitsu Kosan Co., Ltd. Sputtering target
KR101155358B1 (ko) * 2007-07-13 2012-06-19 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 복합 산화물 소결체, 아모르퍼스 복합 산화막의 제조 방법, 아모르퍼스 복합 산화막, 결정질 복합 산화막의 제조 방법 및 결정질 복합 산화막
CN102459122B (zh) * 2009-06-05 2014-02-05 吉坤日矿日石金属株式会社 氧化物烧结体、其制造方法以及氧化物烧结体制造用原料粉末

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014409A1 (fr) * 2001-08-02 2003-02-20 Idemitsu Kosan Co., Ltd. Cible de pulverisation, film conducteur transparent et leur procede de fabrication
JP2004103957A (ja) 2002-09-11 2004-04-02 Japan Science & Technology Corp ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
WO2005088726A1 (ja) 2004-03-12 2005-09-22 Japan Science And Technology Agency アモルファス酸化物及び薄膜トランジスタ
JP2006165527A (ja) 2004-11-10 2006-06-22 Canon Inc 電界効果型トランジスタ
JP2006165530A (ja) 2004-11-10 2006-06-22 Canon Inc センサ及び非平面撮像装置
JP2006165529A (ja) 2004-11-10 2006-06-22 Canon Inc 非晶質酸化物、及び電界効果型トランジスタ
JP2006165532A (ja) 2004-11-10 2006-06-22 Canon Inc 非晶質酸化物を利用した半導体デバイス
JP2006165528A (ja) 2004-11-10 2006-06-22 Canon Inc 画像表示装置
JP2006173580A (ja) 2004-11-10 2006-06-29 Canon Inc 電界効果型トランジスタ
JP2006186319A (ja) 2004-11-10 2006-07-13 Canon Inc 発光装置及び表示装置
JP2007223849A (ja) * 2006-02-24 2007-09-06 Sumitomo Metal Mining Co Ltd 酸化ガリウム系焼結体およびその製造方法
JP2008144246A (ja) * 2006-12-13 2008-06-26 Idemitsu Kosan Co Ltd スパッタリングターゲットの製造方法
WO2009084537A1 (ja) * 2007-12-27 2009-07-09 Nippon Mining & Metals Co., Ltd. a-IGZO酸化物薄膜の製造方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102959122A (zh) * 2010-08-05 2013-03-06 三菱综合材料株式会社 溅射靶制造方法及溅射靶
WO2012017659A1 (ja) * 2010-08-05 2012-02-09 三菱マテリアル株式会社 スパッタリングターゲットの製造方法およびスパッタリングターゲット
US9206502B2 (en) 2011-05-10 2015-12-08 Idemitsu Kosan Co., Ltd. In—Ga—Zn oxide sputtering target and method for producing same
WO2012153491A1 (ja) * 2011-05-10 2012-11-15 出光興産株式会社 In-Ga-Zn系酸化物スパッタリングターゲット及びその製造方法
JP2012237031A (ja) * 2011-05-10 2012-12-06 Idemitsu Kosan Co Ltd In−Ga−Zn系酸化物スパッタリングターゲット及びその製造方法
CN103518004A (zh) * 2011-05-10 2014-01-15 出光兴产株式会社 In-Ga-Zn系氧化物溅射靶及其制造方法
CN102351528A (zh) * 2011-09-28 2012-02-15 华南理工大学 硼化镧掺杂的氧化物半导体材料及其应用
CN102351528B (zh) * 2011-09-28 2013-07-10 华南理工大学 硼化镧掺杂的氧化物半导体材料及其应用
JP2014125648A (ja) * 2012-12-25 2014-07-07 Tosoh Corp Igzo焼結体およびスパッタリングターゲット
JP6080945B2 (ja) * 2013-03-25 2017-02-15 日本碍子株式会社 酸化亜鉛系スパッタリングターゲット
WO2014155883A1 (ja) * 2013-03-25 2014-10-02 日本碍子株式会社 酸化亜鉛系スパッタリングターゲット
JPWO2014155883A1 (ja) * 2013-03-25 2017-02-16 日本碍子株式会社 酸化亜鉛系スパッタリングターゲット
US9824869B2 (en) 2013-03-25 2017-11-21 Ngk Insulators, Ltd. Zinc oxide sputtering target
JP2018021254A (ja) * 2016-07-11 2018-02-08 株式会社半導体エネルギー研究所 スパッタリングターゲット、およびスパッタリングターゲットの作製方法
JP2021105217A (ja) * 2016-07-11 2021-07-26 株式会社半導体エネルギー研究所 スパッタリングターゲット
US11081326B2 (en) 2016-07-11 2021-08-03 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and method for manufacturing the same
US11735403B2 (en) 2016-07-11 2023-08-22 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and method for manufacturing the same
JP7512346B2 (ja) 2016-07-11 2024-07-08 株式会社半導体エネルギー研究所 金属酸化物膜の作製方法
US10341579B2 (en) 2017-03-20 2019-07-02 Google Llc Camera system including lens with magnification gradient
WO2018179556A1 (ja) * 2017-03-31 2018-10-04 Jx金属株式会社 スパッタリングターゲット及びその製造方法
JPWO2018179556A1 (ja) * 2017-03-31 2019-04-04 Jx金属株式会社 スパッタリングターゲット及びその製造方法

Also Published As

Publication number Publication date
KR101224769B1 (ko) 2013-01-21
EP2284293B1 (en) 2019-08-14
CN102016112A (zh) 2011-04-13
US20100300878A1 (en) 2010-12-02
TWI471441B (zh) 2015-02-01
EP2284293A1 (en) 2011-02-16
CN102016112B (zh) 2012-08-08
JPWO2009151003A1 (ja) 2011-11-17
JP5202630B2 (ja) 2013-06-05
US9045823B2 (en) 2015-06-02
TW201005114A (en) 2010-02-01
EP2284293A4 (en) 2014-04-09
KR20100086516A (ko) 2010-07-30

Similar Documents

Publication Publication Date Title
JP5202630B2 (ja) スパッタリング用酸化物焼結体ターゲット及びその製造方法
KR101228160B1 (ko) a-IGZO 산화물 박막의 제조 방법
KR101349676B1 (ko) 산화인듐아연계 스퍼터링 타겟 및 그 제조 방법
JP5438011B2 (ja) スパッタリングターゲット及びそれからなる酸化物半導体薄膜
TW201300548A (zh) In2O3-SnO2-ZnO系濺鍍靶材
KR20090094181A (ko) 스퍼터링 타겟, 투명 전도막 및 이들의 제조방법
EP2495224A1 (en) Indium oxide sintered body and indium oxide transparent conductive film
KR101430804B1 (ko) 스퍼터링용 산화물 소결체 타깃 및 그 제조 방법 그리고 상기 타깃을 사용한 박막의 형성 방법 및 박막
WO2012029455A1 (ja) 酸化物焼結体及び酸化物半導体薄膜
KR20130021621A (ko) Igzo 타겟 제조방법 및 이에 의해 제조된 igzo 타겟
JP5883990B2 (ja) Igzoスパッタリングターゲット
WO2010021274A1 (ja) 複合酸化物焼結体、複合酸化物焼結体の製造方法、スパッタリングターゲット、及び薄膜の製造方法
WO2012029454A1 (ja) 酸化物焼結体及び酸化物半導体薄膜
KR101349675B1 (ko) 산화아연계 스퍼터링 타겟
WO2014156235A1 (ja) Igzoスパッタリングターゲット及びigzo膜並びにigzoターゲットの製造方法
JP2019094550A (ja) Izoターゲット及びその製造方法
WO2020241227A1 (ja) 酸化物焼結体及びスパッタリングターゲット
WO2023074118A1 (ja) Igzoスパッタリングターゲット
JP2020196660A (ja) 酸化物焼結体及びスパッタリングターゲット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980115641.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762433

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010516833

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009762433

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107015038

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12864553

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: A20101697

Country of ref document: BY