WO2009148030A9 - 高周波スイッチ - Google Patents

高周波スイッチ Download PDF

Info

Publication number
WO2009148030A9
WO2009148030A9 PCT/JP2009/060012 JP2009060012W WO2009148030A9 WO 2009148030 A9 WO2009148030 A9 WO 2009148030A9 JP 2009060012 W JP2009060012 W JP 2009060012W WO 2009148030 A9 WO2009148030 A9 WO 2009148030A9
Authority
WO
WIPO (PCT)
Prior art keywords
line
signal
transmission
circuit
frequency switch
Prior art date
Application number
PCT/JP2009/060012
Other languages
English (en)
French (fr)
Other versions
WO2009148030A1 (ja
Inventor
安藤朗
Original Assignee
双信電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 双信電機株式会社 filed Critical 双信電機株式会社
Priority to CN200980121106.4A priority Critical patent/CN102057583B/zh
Priority to US12/992,716 priority patent/US8421552B2/en
Publication of WO2009148030A1 publication Critical patent/WO2009148030A1/ja
Publication of WO2009148030A9 publication Critical patent/WO2009148030A9/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/10Auxiliary devices for switching or interrupting
    • H01P1/15Auxiliary devices for switching or interrupting by semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • H01P1/2135Frequency-selective devices, e.g. filters combining or separating two or more different frequencies using strip line filters

Definitions

  • the present invention relates to a high-frequency switch for switching a high-frequency signal, and more particularly to a high-frequency switch suitable for use in an antenna switch connected to an antenna, for example, a TDD (Time Division Duplex) switch.
  • a TDD Time Division Duplex
  • a conventional high frequency switch such as an antenna switch, for example, a microwave switch described in Japanese Patent No. 2532122 and a transmission / reception switching device described in Japanese Patent No. 2830319 are known.
  • a PIN diode is inserted in series and in parallel with a signal line, a forward current is passed through the PIN diode to turn on the PIN diode, and the PIN diode is reverse-biased to generate a PIN.
  • the high-frequency signal is switched by turning off the diode.
  • the transmission / reception switching device described in Japanese Patent No. 2830319 employs a circuit system in which a switch is configured by inserting a transmission line and a PIN diode or the like arranged in series in the signal transmission line in parallel.
  • a transmission amplifier 108 and an isolator 111 are connected to a transmission line 106 between the transceiver 100 and the transmission / reception antenna 102 (or via the bandpass filter 104).
  • a reception amplifier 112 is connected to the reception line 110 between the transceiver 100 and the transmission / reception antenna 102 (or via the bandpass filter 104), and a high-frequency switch 114 is connected to the coupling point between the transmission line 106 and the reception line 110. It is a method.
  • a transmission amplifier 108 is connected to the transmission line 106, a reception amplifier 112 and a high frequency switch 114 are connected to the reception line 110, and the transmission line 106 and the reception line 110 are coupled.
  • This is a system in which a circulator 116 is connected to a point.
  • a feeder line such as a coaxial line is connected between the transceiver 100 and the antenna 102, but the transmission signal output from the transceiver 100 is carried to the antenna 102 by a traveling wave. After that, it is radiated from the antenna 102 to the space.
  • the antenna 102 and the feeder line are not matched for some reason, reflection occurs in the antenna 102 and returns to the transceiver 100 as a reflected wave. In this case, not only communication is not normally performed, but there is a possibility that the transceiver 100 may be broken or destroyed. Therefore, it is desirable to always monitor the reflected wave. It is also desirable to monitor the level of the traveling wave of the transmission signal and control it to an appropriate value.
  • a first directional coupler 120 for detecting a reflected wave is inserted and connected between the high frequency switch 114 and the band pass filter 104, and the transmission amplifier 108 and the isolator 111 are connected.
  • the second directional coupler 122 for detecting the traveling wave is inserted and connected between the two.
  • a first directional coupler 120 for detecting a reflected wave is inserted and connected between the high frequency switch 114 and the terminating resistor 124, and between the transmission amplifier 108 and the circulator 116.
  • the second directional coupler 122 for detecting traveling waves is inserted and connected.
  • Patent Nos. 2532122 and 2830319 do not have the idea of detecting reflected waves (and traveling waves), and are an alternative to the high-frequency switch 114 of the first transmission / reception switching method and the second transmission / reception switching method. It can only be used as a product.
  • the present invention has been made in consideration of such problems, and even a single high-frequency switch can detect at least a reflected wave of a transmission signal, and a transmission system or a transmission / reception system with a reflected wave detection function.
  • An object of the present invention is to provide a high-frequency switch that can further reduce the number of components and reduce the size, reduce the manufacturing cost, and reduce transmission loss.
  • the first switch circuit is connected in parallel to the first signal transmission path for transmitting the transmission signal from the transmission terminal, and the second signal transmission path for transmitting the reception signal to the reception terminal.
  • a high-frequency switch in which a second switch circuit is connected in parallel includes the first signal transmission path as a component, and includes a directional coupler that detects at least a reflected wave of the transmission signal. .
  • the directional coupler is connected to a line disposed opposite to the first signal transmission line, a reflected wave output terminal connected to one end of the line, and the other end of the line. You may make it have the terminal resistance made.
  • a third switch circuit is connected in parallel to a third signal transmission path connected between the transmission terminal and the first signal transmission path, and the third signal transmission path is configured as a component.
  • a second directional coupler that detects at least a traveling wave of the transmission signal.
  • the directional coupler includes a first line disposed to face the first signal transmission line, a reflected wave output terminal connected to one end of the first line, and the other of the first line.
  • the second directional coupler is connected to one end of the second line, and the second line is disposed opposite to the third signal transmission path. You may make it have a wave output terminal and the 2nd termination
  • the directional coupler may detect a reflected wave and a traveling wave of the transmission signal.
  • the directional coupler includes a line disposed opposite to the first signal transmission line, a reflected wave output terminal connected to one end of the line, and a travel connected to the other end of the line. And a wave output terminal.
  • the first switch circuit includes a first transmission line and a circuit including one or more first PIN diodes connected in series
  • the second switch circuit includes the second transmission line and one or more first pins.
  • a circuit including a 2PIN diode may be connected in series.
  • a third transmission line and a circuit including one or more third PIN diodes may be connected in series.
  • the signal transmission path described above is not limited in electrical length, such as a 3 ⁇ / 4 signal transmission path or a ⁇ / 4 signal transmission path, but the ⁇ / 4 signal transmission path is preferable in terms of miniaturization and the like.
  • the above-described line may be any of a 3 ⁇ / 4 line, a ⁇ / 4 line, etc., but a ⁇ / 4 line is preferable.
  • the transmission line described above may be any of 3 ⁇ / 4 transmission line, ⁇ / 4 transmission line, etc., but ⁇ / 4 transmission line is preferable in terms of downsizing.
  • the high frequency switch of the present invention even a single high frequency switch can detect at least the reflected wave of the transmission signal, and the transmission system or the transmission / reception system with the reflected wave detection function Reduction of the number of parts and size reduction can be further promoted, and the manufacturing cost can be reduced and the transmission loss can be reduced.
  • FIG. 3A is a diagram showing an equivalent circuit of the first switch circuit when the first PIN diode is turned on in the first antenna switch
  • FIG. 3B is an equivalent circuit of the first switch circuit when the first PIN diode is turned off.
  • FIG. 4A is a diagram showing an equivalent circuit of the first switch circuit near the center frequency when the first PIN diode is on
  • FIG. 4B is an equivalent circuit of the first switch circuit near the center frequency when the first PIN diode is off.
  • FIG. 6 is a diagram showing an equivalent circuit when the first switch circuit is turned on and the second switch circuit is turned off in the first antenna switch.
  • FIG. 3 is a diagram showing an equivalent circuit when a first switch circuit is turned off and a second switch circuit is turned on in the first antenna switch. It is a circuit diagram which shows the structure of a 2nd antenna switch. It is a circuit diagram which shows the structure of a 3rd antenna switch. It is a circuit diagram which shows the structure of a 4th antenna switch.
  • FIG. 11A is a diagram showing an equivalent circuit of the fourth switch circuit when the fourth PIN diode is turned on in the fourth antenna switch
  • FIG. 11B is an equivalent circuit of the fourth switch circuit when the fourth PIN diode is turned off.
  • FIG. 6 is a diagram showing an equivalent circuit when a first switch circuit is turned on and a second switch circuit and a fourth switch circuit are turned off in a fourth antenna switch. It is a circuit diagram which shows the structure of a 5th antenna switch.
  • FIG. 10 is a diagram showing an equivalent circuit when a first switch circuit and a third switch circuit are turned off and a second switch circuit and a fourth switch circuit are turned on in a fifth antenna switch. It is a circuit diagram which shows the structure of a 6th antenna switch. It is a circuit diagram which shows the structure of a 7th antenna switch. It is explanatory drawing which shows the 1st transmission / reception switching system using a high frequency switch. It is explanatory drawing which shows the 2nd transmission / reception switching system using a high frequency switch.
  • is a wavelength corresponding to the center frequency of the operating frequency band of the switch, and represents a wavelength in the following transmission path.
  • the antenna switch according to the first embodiment has one first ⁇ // connected between the antenna connection terminal 14 and the transmission terminal 16.
  • 4 signal transmission paths 18a, one second ⁇ / 4 signal transmission path 18b connected between the antenna connection terminal 14 and the reception terminal 20, and the first ⁇ / 4 signal transmission path 18a are connected in parallel.
  • the first switch circuit 22a and the second switch circuit 22b connected in parallel to the second ⁇ / 4 signal transmission line 18b are included.
  • the transmission terminal 16 and the first ⁇ / 4 signal transmission path 18a between the first ⁇ / 4 signal transmission path 18a and the antenna connection terminal 14, and between the antenna connection terminal 14 and the second ⁇ / 4 signal transmission path 18b.
  • capacitors C1 to C4 are connected in series.
  • the capacitors C1 to C4 are capacitors for preventing a current for turning on / off a PIN diode, which will be described later, and function as a short in terms of high frequency.
  • the first switch circuit 22a is connected between a signal line between the capacitor C1 and the first ⁇ / 4 signal transmission path 18a and GND (ground), and is connected to one first ⁇ / 4 transmission path 24a and a first parallel resonant circuit 26a. Have a series circuit connected in series by the first contact a1.
  • the first parallel resonant circuit 26a includes a first PIN diode 28a connected between the first contact a1 and GND, a first inductor 30a connected between the first contact a1 and the first control terminal Tc1, and a first The first capacitor Ca is connected between the control terminal Tc1 and GND.
  • the first capacitor Ca functions as a capacitor for blocking a current for turning on / off the first PIN diode 28a.
  • the first control terminal Tc1 has a forward bias voltage Vc1 for applying a forward current to the first PIN diode 28a to turn on the first PIN diode 28a, and a reverse bias of the first PIN diode 28a to turn off the first PIN diode 28a.
  • a reverse bias voltage Vc2 is applied to achieve the above.
  • the second switch circuit 22b is connected between the signal line between the second ⁇ / 4 signal transmission path 18b and the capacitor C4 and GND (ground), and is connected to one second ⁇ /
  • the four transmission lines 24b and the second parallel resonant circuit 26b have a series circuit connected in series at the second contact a2.
  • the second parallel resonant circuit 26b includes one second PIN diode 28b connected between the second contact a2 and GND, a second inductor 30b connected between the second contact a2 and the second control terminal Tc2, and a second The second capacitor Cb is connected between the control terminal Tc2 and GND.
  • the second capacitor Cb functions as a capacitor for blocking a current for turning on / off the second PIN diode 28b.
  • the second control terminal Tc2 has a forward bias voltage Vc1 for applying a forward current to the second PIN diode 28b to turn on the second PIN diode 28b, and a reverse bias of the second PIN diode 28b to turn off the second PIN diode 28b.
  • a reverse bias voltage Vc2 is applied to achieve the above.
  • the reverse bias voltage Vc2 When the forward bias voltage Vc1 is applied to the first control terminal Tc1, the reverse bias voltage Vc2 is applied to the second control terminal Tc2, and when the reverse bias voltage Vc2 is applied to the first control terminal Tc1, the second bias voltage Vc2 is applied.
  • a forward bias voltage Vc1 is applied to the control terminal Tc2.
  • the reverse bias voltage Vc2 of the first control terminal Tc1 and the reverse bias voltage Vc2 of the second control terminal Tc2 may be different.
  • the first antenna switch 10A includes the first ⁇ / 4 signal transmission path 18a as one of the constituent elements and includes a directional coupler 36 that detects a reflected wave of the transmission signal.
  • the directional coupler 36 includes the first ⁇ / 4 signal transmission line 18 a described above, a ⁇ / 4 line 38 disposed to face the first ⁇ / 4 signal transmission line 18 a, and the ⁇ / 4 line 38. It has a reflected wave output terminal 40 connected to one end, and a termination resistor 42 connected to the other end of the ⁇ / 4 line 38. The other end of the termination resistor 42 is grounded.
  • the first end ⁇ 1 to the fourth end ⁇ 4 of the directional coupler 36 are defined as follows. That is, the end of the first ⁇ / 4 signal transmission line 18a on the transmission terminal 16 side is the first end ⁇ 1, the end of the first ⁇ / 4 signal transmission line 18a on the antenna connection terminal 14 side is the second end ⁇ 2, and ⁇ / 4.
  • the end on the transmission terminal 16 side of the line 38 is a third end ⁇ 3, and the end on the antenna connection terminal 14 side of the ⁇ / 4 line 38 is a fourth end ⁇ 4.
  • traveling wave power Pa due to the transmission signal from the transmission terminal 16 is applied to the first end ⁇ 1 of the directional coupler 36, a traveling wave appears at the second end ⁇ 2 and the traveling wave power at the third end ⁇ 3.
  • a radio wave (signal) with a power dPa proportional to Pa appears.
  • a reflected wave appears at the first end ⁇ 1 and is proportional to the reflected wave power Pb at the fourth end ⁇ 4.
  • a radio wave (signal) of the power dPb appears. That is, a signal proportional to the reflected wave power Pb is output from the reflected wave output terminal 40 connected to the fourth end ⁇ 4 of the directional coupler 36, and the reflected wave can be detected.
  • the first switch circuit 22a when the forward bias voltage Vc1 is applied to the first control terminal Tc1, the first PIN diode 28a is turned on, and the equivalent circuit of the first switch circuit 22a at that time is as follows. As shown in FIG. 3A. That is, a circuit in which the inductance La and the on-resistance Ro of the first PIN diode 28a are equivalently connected in parallel is connected in series between the first ⁇ / 4 transmission line 24a and the GND.
  • the value of the inductance La is set so that the center frequency fo of the first antenna switch 10A matches the resonance frequency of the parallel resonance circuit including the parasitic capacitance Cf, the off-resistance Rf, and the inductance La. It is set.
  • the on-resistance Ro is generally about 1 ohm or less and can be set to Ro ⁇ 2 ⁇ foLa
  • an equivalent circuit near the center frequency fo when the first PIN diode 28a is on can be expressed as shown in FIG. 4A.
  • An equivalent circuit around the center frequency fo when the first PIN diode 28a is off can be expressed as shown in FIG. 4B.
  • reflection coefficient ⁇ (L) has a relationship represented by the following equation (a).
  • FIG. 1 An equivalent circuit as shown in the figure is obtained, and only the transmission terminal 16 is connected to the antenna connection terminal 14 in terms of high frequency.
  • the transmission signal Sa supplied to the transmission terminal 16 is transmitted through the antenna connection terminal 14. That is, the first signal line 34a from the transmission terminal 16 to the antenna connection terminal 14 is the signal transmission side, and the second signal line 34b from the reception terminal 20 to the antenna connection terminal 14 is the signal cutoff side.
  • the reverse bias voltage Vc2 when the reverse bias voltage Vc2 is applied to the first control terminal Tc1, the first PIN diode 28a is turned off, the forward bias voltage Vc1 is applied to the second control terminal Tc2, and the second PIN diode 28b is turned on.
  • the equivalent circuit shown in FIG. 7 is obtained, and only the reception terminal 20 is connected to the antenna connection terminal 14 in terms of high frequency.
  • the reception signal Sb received by the antenna is supplied to the antenna connection terminal 14 and output from the reception terminal 20. That is, the first signal line 34a from the transmission terminal 16 to the antenna connection terminal 14 is a signal cutoff side, and the second signal line 34b from the reception terminal 20 to the antenna connection terminal 14 is a signal transmission side.
  • the constant of the first inductor 30a of the first parallel resonance circuit 26a is adjusted, and the resonance frequency of the first parallel resonance circuit 26a when the first PIN diode 28a is off and the first antenna switch 10A. Is set to have the same center frequency fo.
  • the constant of the second inductor 30b of the second parallel resonance circuit 26b is adjusted so that the resonance frequency of the second parallel resonance circuit 26b and the center frequency fo of the first antenna switch 10A when the second PIN diode 28b is off. I try to be the same.
  • the resistance Ro when the PIN diode is on is Ro ⁇ 2 ⁇ foLa. Accordingly, as shown in FIGS. 4A and 4B, for example, when the first PIN diode 28a is on, the first ⁇ / 4 transmission line 24a Only the on-resistance Ro is connected to the GND side of the first PIN diode 28a. When the first PIN diode 28a is off, only the off-resistance Rf is connected to the GND side of the first ⁇ / 4 transmission line 24a. The resonance frequency of the first ⁇ / 4 transmission line 24a at the time of on and off does not deviate.
  • the first antenna switch 10A no error occurs in the phase characteristics of the first ⁇ / 4 transmission path 24a and the second ⁇ / 4 transmission path 24b, and the switching band when the switch circuit is on and the isolating characteristic when the switch circuit is off.
  • Bandwidth can be matched. That is, in the band used as the antenna switch, it is possible to appropriately set the passage loss when on and the isolation when off. As a result, it is possible to reduce the loss with respect to the transmission signal accompanying the switch circuit and to appropriately secure the attenuation amount when the switch circuit is off.
  • the first antenna switch 10A since the first antenna switch 10A includes the directional coupler 36 having the first ⁇ / 4 signal transmission line 18a as one of the constituent elements, when reflection occurs at the antenna when the transmission signal is output, A signal proportional to the reflected wave can be extracted from the reflected wave output terminal 40 of the sexual coupler 36, and the reflected wave can be detected. In this case, since it is only necessary to arrange the ⁇ / 4 line 38 to face the first ⁇ / 4 signal transmission line 18a, the reflected wave of the transmission signal can be detected without increasing the number of components.
  • the first antenna switch 10A can detect the reflected wave of the transmission signal even with one antenna switch, the number of parts of the transmission system or the transmission / reception system with the reflected wave detection function can be reduced. Further, the size reduction can be further promoted, the manufacturing cost can be reduced, and the transmission loss can be reduced.
  • a second antenna switch 10B an antenna switch according to a second embodiment (hereinafter referred to as a second antenna switch 10B) will be described with reference to FIG.
  • the second antenna switch 10B has substantially the same configuration as the first antenna switch 10A described above, but differs in that the directional coupler 36 is configured as follows.
  • the directional coupler 36 includes a first ⁇ / 4 signal transmission line 18a and a ⁇ / 4 line 38 disposed to face the first ⁇ / 4 signal transmission line 18a, and has a third end ⁇ 3 (
  • the traveling wave output terminal 44 is connected to the transmission terminal 16 side end of the ⁇ / 4 line 38, and the reflected wave output terminal 40 is connected to the fourth end ⁇ 4 (end of the ⁇ / 4 line 38 on the antenna connection terminal 14 side).
  • a signal proportional to the traveling wave power Pa (see FIG. 2) is output from the traveling wave output terminal 44 connected to the third end ⁇ 3 of the directional coupler 36, and is connected to the fourth end ⁇ 4 of the directional coupler 36.
  • a signal proportional to the reflected wave power Pb is output from the reflected wave output terminal 40, and a reflected wave and a traveling wave of the transmission signal can be detected.
  • a third antenna switch 10C an antenna switch according to a third embodiment (hereinafter referred to as a third antenna switch 10C) will be described with reference to FIG.
  • the third antenna switch 10C has substantially the same configuration as the first antenna switch 10A described above, but differs in the following points.
  • the third ⁇ / 4 signal transmission path 18c is connected between the transmission terminal 16 and the first ⁇ / 4 signal transmission path 18a, and the fourth ⁇ / 4 signal transmission is performed between the reception terminal 20 and the second ⁇ / 4 signal transmission path 18b.
  • the road is connected.
  • a third switch circuit 22c is connected corresponding to the third ⁇ / 4 signal transmission path 18c, and a fourth switch circuit 22d is connected corresponding to the fourth ⁇ / 4 signal transmission path 18d.
  • a plurality of first PIN diodes 28a are connected in parallel to the first parallel resonant circuit 26a of the first switch circuit 22a, and a plurality of second PIN diodes 28b are connected in parallel to the second parallel resonant circuit 26b of the second switch circuit 22b.
  • a plurality of third PIN diodes 28c are connected in parallel to the third parallel resonant circuit 26c of the third switch circuit 22c, and a plurality of fourth PIN diodes 28d are connected in parallel to the fourth parallel resonant circuit 26d of the fourth switch circuit 22d. It is connected.
  • the constants of the first inductor 30a of the first parallel resonant circuit 26a and the third inductor 30c of the third parallel resonant circuit 26c are adjusted so that the first parallel resonant circuit 26a is turned off when the first PIN diode 28a is off.
  • the resonance frequency, the resonance frequency of the third parallel resonance circuit 26c when the third PIN diode 28c is off, and the center frequency of the third antenna switch 10C are made the same.
  • the respective constants of the second inductor 30b of the second parallel resonant circuit 26b and the fourth inductor 30d of the fourth parallel resonant circuit 26d are adjusted so that the resonance of the first parallel resonant circuit 26a when the second PIN diode 28b is off.
  • the frequency, the resonance frequency of the fourth parallel resonance circuit 26d when the fourth PIN diode 28d is off, and the center frequency of the third antenna switch 10C are made the same.
  • the resistance between the first contact a1 and the GND and the third The resistance between the contact point a3 and GND is a form in which a resistance lower than one on-resistance is connected. Therefore, as can be seen from the above-described equation (e), the impedance of the end on the first signal line 34a side in the first ⁇ / 4 transmission path 24a and the end on the first signal line 34a side in the third ⁇ / 4 transmission path 24c.
  • the impedance of the part is higher than in the case of one on-resistance. That is, it approaches an ideal open state.
  • the first switch circuit 22a and the third switch circuit 22c are turned off, that is, when the plurality of first PIN diodes 28a and the plurality of third PIN diodes 28c are all turned off, the first contact circuit a1 and the GND are connected as a result. Only the off-resistance, which is a high resistance, is connected between the three contacts a3 and GND. Therefore, the impedance of the end on the first signal line 34a side in the first ⁇ / 4 transmission line 24a and the impedance of the end on the first signal line 34a side in the third ⁇ / 4 transmission line 24c are obtained from the above-described equation (e). As can be seen, the impedance becomes low according to the high resistance. That is, the passage loss of the switch circuit during signal transmission can be further reduced.
  • the third antenna switch 10C includes the first ⁇ / 4 signal transmission path 18a as one of the constituent elements, the first directional coupler 36a that detects the reflected wave of the transmission signal, and the third ⁇ / 4 signal transmission path.
  • 18c is one of the constituent elements and includes a second directional coupler 36b that detects a traveling wave of the transmission signal.
  • the first directional coupler 36a includes the first ⁇ / 4 signal transmission line 18a, the first ⁇ / 4 line 38a arranged to face the first ⁇ / 4 signal transmission line 18a, and the first ⁇ / 4. It has a reflected wave output terminal 40 connected to one end (fourth end ⁇ 4) of the line 38a, and a first termination resistor 42a connected to the other end (third end ⁇ 3) of the first ⁇ / 4 line 38.
  • the second directional coupler 36b includes the above-mentioned third ⁇ / 4 signal transmission line 18c, the second ⁇ / 4 line 38b arranged to face the third ⁇ / 4 signal transmission line 18c, and the second ⁇ / 4.
  • the traveling wave output terminal 44 is connected to one end (third end ⁇ 3) of the line 38b, and the second termination resistor 42b is connected to the other end (fourth end ⁇ 4) of the second ⁇ / 4 line 38b. Note that the other ends of the first termination resistor 42a and the second termination resistor 42b are grounded.
  • a signal proportional to the traveling wave power Pa (see FIG. 2) is output from the traveling wave output terminal 44 connected to the third end ⁇ 3 of the second directional coupler 36b, and the fourth of the first directional coupler 36a. Since a signal proportional to the reflected wave power Pb is output from the reflected wave output terminal 40 connected to the end ⁇ 4, it is possible to detect the reflected wave and the traveling wave of the transmission signal.
  • each monitor Since the output characteristics of the first directional coupler 36a and the second directional coupler 36b can be set independently of the circuit characteristics, the degree of freedom in designing the directional coupler can be increased.
  • a fourth antenna switch 10D an antenna switch according to a fourth embodiment (hereinafter referred to as a fourth antenna switch 10D) will be described with reference to FIG.
  • the fourth antenna switch 10D has substantially the same configuration as the first antenna switch 10A described above, but differs in that it is configured as follows.
  • the fourth ⁇ / 4 signal transmission path 18d is connected between the receiving terminal 20 and the second ⁇ / 4 signal transmission path 18b, and the fourth switch circuit 22d is connected corresponding to the fourth ⁇ / 4 signal transmission path 18d. Yes.
  • the fourth switch circuit 22d is connected between the signal line between the fourth ⁇ / 4 signal transmission path 18d and the capacitor C5 and GND (ground), and is connected to one fourth ⁇ /
  • the four transmission lines 24d and the fourth parallel resonant circuit 26d have a series circuit connected in series by a fourth contact a4.
  • the fourth parallel resonant circuit 26d includes one fourth PIN diode 28d connected between the fourth contact a4 and GND, a fourth inductor 30d connected between the fourth contact a4 and the second control terminal Tc2, and a second A fourth capacitor Cd connected between the control terminal Tc2 and GND is included.
  • the fourth capacitor Cd functions as a capacitor for blocking a current for turning on / off the fourth PIN diode 28d.
  • a series circuit of a receiving-side termination forming resistor Rr and a capacitor Cr is connected in parallel to the fourth PIN diode 28d.
  • the capacitor Cr functions as a capacitor for blocking a current for turning on / off the fourth PIN diode 28d.
  • the fourth switch circuit 22d when the forward bias voltage Vc1 is applied to the second control terminal Tc2, the fourth PIN diode 28d is turned on.
  • An equivalent circuit of the fourth switch circuit 22d is as shown in FIG. 11A.
  • a circuit in which the inductance La, the on-resistance Ro of the fourth PIN diode 28d and the receiving-side termination forming resistor Rr are connected in parallel is connected in series between the fourth ⁇ / 4 transmission line 24d and the GND. It becomes.
  • the fourth PIN diode 28d is turned off, and the equivalent circuit of the fourth switch circuit 22d at that time is as shown in FIG. 11B. That is, a parallel resonant circuit is formed between the fourth ⁇ / 4 transmission line 24d and the GND by the inductance La, the parasitic capacitance Cf due to the depletion layer of the fourth PIN diode 28d, the off-resistance Rf of the fourth PIN diode 28d, and the reception-side termination forming resistor Rr. It becomes the form connected in series.
  • the value of the inductance La is set so that the center frequency fo of the fourth antenna switch 10D matches the resonance frequency of the parallel resonance circuit including the parasitic capacitance Cf, the off-resistance Rf, and the inductance La.
  • the fourth switch circuit 22d has a configuration in which the receiving-side termination forming resistor Rr is connected in parallel.
  • the magnitude relationship between the on-resistance Ro and the receiving-side termination forming resistor Rr is Ro ⁇ Rr. Therefore, it does not affect the on operation.
  • the magnitude relationship between the off-resistance Rf and the reception-side termination forming resistor Rr is Rf >> Rr, the impedance on the signal line side is determined by the reception-side termination forming resistor Rr.
  • the characteristic impedance of the fourth ⁇ / 4 transmission line 24d is 50 ohms and the reception-side termination forming resistance Rr is 50 ohms
  • the off-resistance Rf for example, 10k ohms
  • the value of the reception-side termination forming resistor Rr is determined so that the termination resistance is, for example, 50 ohms.
  • the on-resistance Ro When the on-resistance Ro is set to 1 ohm at the time of on, the combined resistance (Ro // Rr) of the on-resistance Ro and the receiving-side termination forming resistor Rr is 0.9804 ohm, so that the fourth ⁇ / 4 transmission line
  • the forward bias voltage Vc1 is applied to the first control terminal Tc1 to turn on the first PIN diode 28a
  • the reverse bias voltage Vc2 is applied to the second control terminal Tc2 to turn off the second PIN diode 28b and the fourth PIN diode 28d.
  • an equivalent circuit as shown in FIG. 12 is obtained, and only the transmission terminal 16 is connected to the antenna connection terminal 14 in terms of high frequency, and a termination resistor Re of, for example, 50 ohms is connected to the reception terminal 20.
  • the transmission signal Sa supplied to the transmission terminal 16 is transmitted through the antenna connection terminal 14. That is, the first signal line 34a from the transmission terminal 16 to the antenna connection terminal 14 is the signal transmission side, and the second signal line 34b from the reception terminal 20 to the antenna connection terminal 14 is the signal cutoff side.
  • the impedance on the signal line side of the second ⁇ / 4 transmission line 24b becomes a small value and ideally becomes a short circuit state. That is, since the impedance on the receiving side at the time of OFF becomes 0 ohms and total reflection occurs, the operation of the receiving amplifier connected to the receiving terminal 20 may become unstable.
  • the impedance on the receiving side at the time of OFF becomes the value of the termination resistor Re, for example, 50 ohms.
  • impedance matching can be achieved with this circuit, and the operation of the receiving amplifier connected to the receiving terminal 20 can be stabilized.
  • the reverse bias voltage Vc2 is applied to the first control terminal Tc1 to turn off the first PIN diode 28a
  • the forward bias voltage Vc1 is applied to the second control terminal Tc2
  • the second PIN diode 28b and the fourth PIN diode 28d When is turned on, an equivalent circuit as shown in FIG. 7 is obtained, and only the reception terminal 20 is connected to the antenna connection terminal 14 in terms of high frequency. As a result, the reception signal Sb received by the antenna is supplied to the antenna connection terminal 14 and output from the reception terminal 20.
  • the first signal line 34a from the transmission terminal 16 to the antenna connection terminal 14 is a signal cutoff side
  • the second signal line 34b from the reception terminal 20 to the antenna connection terminal 14 is a signal transmission side.
  • the fourth antenna switch 10D also includes the directional coupler 36 having the first ⁇ / 4 signal transmission line 18a as one of the components, similarly to the first antenna switch 10A.
  • a signal proportional to the reflected wave power Pb is output from the reflected wave output terminal 40 connected to the fourth end ⁇ 4, and the reflected wave can be detected.
  • a fifth antenna switch 10E an antenna switch according to a fifth embodiment (hereinafter referred to as a fifth antenna switch 10E) will be described with reference to FIG.
  • the fifth antenna switch 10E has substantially the same configuration as the fourth antenna switch 10D described above, but differs in the following points.
  • the third switch circuit 22c is connected between a signal line between the third ⁇ / 4 signal transmission line 18c and the capacitor C1 and GND (ground), and one third ⁇ / 4 transmission line 24c and a third parallel resonance circuit 26c. Have a series circuit connected in series by a third contact a3.
  • the third parallel resonant circuit 26c includes one third PIN diode 28c connected between the third contact a3 and GND, a third inductor 30c connected between the third contact a3 and the first control terminal Tc1, and a first A third capacitor Cc connected between the control terminal Tc1 and GND is included.
  • the third capacitor Cc functions as a capacitor for blocking a current for turning on / off the third PIN diode 28c.
  • a series circuit of a transmission termination forming resistor Rt and a capacitor Ct is connected in parallel to the third PIN diode 28c.
  • the third switch circuit 22c has the same configuration as the fourth switch circuit 22d on the reception side.
  • the forward bias voltage Vc1 is applied to the first control terminal Tc1 to turn on the first PIN diode 28a and the third PIN diode 28c
  • the reverse bias voltage Vc2 is applied to the second control terminal Tc2 to apply the second PIN diode 28b and the fourth PIN.
  • the diode 28d is turned off, an equivalent circuit as shown in FIG. 12 is obtained, and only the transmission terminal 16 is connected to the antenna connection terminal 14 at a high frequency, and a termination resistor of 50 ohms is connected to the reception terminal 20, for example. Become.
  • the impedance on the receiving side when off is the value of the termination resistor Re, for example, 50 ohms, and impedance matching with other circuits can be achieved, and the operation of the receiving amplifier connected to the receiving terminal 20 is stabilized. Can be made.
  • the reverse bias voltage Vc2 is applied to the first control terminal Tc1, the first PIN diode 28a and the third PIN diode 28c are turned off, the forward bias voltage Vc1 is applied to the second control terminal Tc2, and the second PIN diode 28b is applied.
  • the fourth PIN diode 28d is turned on, an equivalent circuit as shown in FIG. 14 is obtained. Only the reception terminal 20 is connected to the antenna connection terminal 14 at a high frequency, and a termination resistor Re of, for example, 50 ohm is connected to the transmission terminal 16. Will be. In this case, the impedance on the transmission side at the time of OFF becomes the value of the termination resistor Re, for example, 50 ohms, and impedance matching with other circuits can be achieved.
  • the fifth antenna switch 10E has the first ⁇ / 4 signal transmission line 18a as one of the constituent elements as in the third antenna switch 10C described above, and reflects the reflected wave of the transmission signal.
  • the first directional coupler 36a for detection and the second directional coupler 36b for detecting the traveling wave of the transmission signal are provided with the third ⁇ / 4 signal transmission line 18c as one of the components.
  • a signal proportional to the traveling wave power Pa is output from the traveling wave output terminal 44 connected to the third end ⁇ 3 of the second directional coupler 36b, and the reflected wave connected to the fourth end ⁇ 4 of the first directional coupler 36a. Since a signal proportional to the reflected wave power Pb is output from the output terminal 40, the reflected wave and traveling wave of the transmission signal can be detected.
  • the center frequency fo of the operating frequency band has been mainly described.
  • the above-described effects are obtained at each frequency included in the operating frequency band. Of course.
  • a sixth antenna switch 10F an antenna switch according to a sixth embodiment (hereinafter referred to as a sixth antenna switch 10F) will be described with reference to FIG.
  • the sixth antenna switch 10F has substantially the same configuration as the above-described fourth antenna switch 10D, but the configurations of the first switch circuit 22a, the second switch circuit 22b, and the fourth switch circuit 22d are different in the following points.
  • a series circuit of a first PIN diode 28a and a first capacitor Ca is connected between the first ⁇ / 4 transmission line 24a and GND, and a contact point between the first PIN diode 28a and the first capacitor Ca.
  • the first control terminal Tc1 is connected.
  • a series circuit of a second PIN diode 28b and a second capacitor Cb is connected between the second ⁇ / 4 transmission line 24b and the GND, and a second circuit is connected to the contact point between the second PIN diode 28b and the second capacitor Cb.
  • the control terminal Tc2 is connected.
  • a series circuit of a fourth PIN diode 28d and a fourth capacitor Cd is connected between the fourth ⁇ / 4 transmission line 24d and GND, and the second switch circuit 22d is connected to the contact point between the fourth PIN diode 28d and the fourth capacitor Cd.
  • the control terminal Tc2 is connected, and further, a reception-side termination forming resistor Rr is connected between the cathode of the fourth PIN diode 28d and GND.
  • the forward bias voltage Vc1 is applied to the first control terminal Tc1 to turn on the first PIN diode 28a
  • the reverse bias voltage Vc2 is applied to the second control terminal Tc2 to turn off the second PIN diode 28b and the fourth PIN diode 28d.
  • an equivalent circuit as shown in FIG. 12 is obtained, and only the transmission terminal 16 is connected to the antenna connection terminal 14 in a high frequency manner, and the terminal terminal Re is connected to the reception terminal 20, for example, 50 ohms.
  • the impedance on the receiving side when off is the value of the termination resistor Re, for example, 50 ohms, and impedance matching with other circuits can be achieved, and the operation of the receiving amplifier connected to the receiving terminal 20 is stabilized. Can be made.
  • the reverse bias voltage Vc2 is applied to the first control terminal Tc1 to turn off the first PIN diode 28a
  • the forward bias voltage Vc1 is applied to the second control terminal Tc2
  • the second PIN diode 28b and the fourth PIN diode 28d When is turned on, an equivalent circuit as shown in FIG. 7 is obtained, and only the reception terminal 20 is connected to the antenna connection terminal 14 in terms of high frequency.
  • the sixth antenna switch also includes the directional coupler 36 having the first ⁇ / 4 signal transmission line 18a as one of the constituent elements, similarly to the fourth antenna switch 10D.
  • a signal proportional to the reflected wave power Pb is output from the reflected wave output terminal 40 connected to the fourth end ⁇ 4, and the reflected wave can be detected.
  • the equivalent circuit in the vicinity of the center frequency fo when the first PIN diode 28a is off is not as shown in FIG. 4B, and the parasitic capacitance Cf remains as shown in FIG. 3B.
  • the structure is simple, it is effective when downsizing and low cost are desired rather than the performance. .
  • a seventh antenna switch 10G an antenna switch according to a seventh embodiment (hereinafter referred to as a seventh antenna switch 10G) will be described with reference to FIG.
  • the seventh antenna switch 10G has a configuration in which a first directional coupler 36a and a second directional coupler 36b are connected to a conventionally known antenna switch.
  • the first switch circuit 22a includes a first PIN diode 28a
  • the third switch circuit 22c includes a third PIN diode 28c connected in parallel to the third ⁇ / 4 signal transmission path 18c.
  • the second ⁇ / 4 signal transmission path 18b and the fourth ⁇ / 4 signal transmission path 18d connected between the reception terminal 20 and the antenna connection terminal 14 are connected in parallel to the second ⁇ / 4 signal transmission path 18b.
  • the second switch circuit 22b includes a second PIN diode 28b
  • the fourth switch circuit 22d includes a fourth PIN diode 28d connected in parallel to the fourth ⁇ / 4 signal transmission line 18d.
  • the cathode side is grounded.
  • the first control terminal Tc1 is connected to the signal line between the transmission-side capacitor C1 and the third ⁇ / 4 signal transmission line 18c and the inductance element L11, and the capacitor C11 is connected between the first connection terminal Tc1 and GND.
  • the second control terminal Tc2 is connected to the signal line between the receiving-side capacitor C4 and the fourth ⁇ / 4 signal transmission line 18d via the inductance element C12, and the capacitor C12 is connected between the second connection terminal Tc2 and GND.
  • the seventh antenna switch 10G includes the first ⁇ / 4 signal transmission line 18a as one of the constituent elements, the first directional coupler 36a for detecting the reflected wave of the transmission signal, and the third ⁇ / 4 signal transmission line.
  • 18c is one of the constituent elements and includes a second directional coupler 36b that detects a traveling wave of the transmission signal.
  • a signal proportional to the traveling wave power Pa is output from the traveling wave output terminal 44 connected to the third end ⁇ 3 of the second directional coupler 36b, and the reflected wave connected to the fourth end ⁇ 4 of the first directional coupler 36a. Since a signal proportional to the reflected wave power Pb is output from the output terminal 40, the reflected wave and traveling wave of the transmission signal can be detected.
  • An antenna switch can be configured.
  • the first ⁇ / 4 signal transmission path 18a to the fourth ⁇ / 4 signal transmission path 18d which are excellent in terms of downsizing and the like, are used as various signal transmission paths, but a 3 ⁇ / 4 signal transmission path or the like is used. Also good.
  • the example using the ⁇ / 4 line 38, the first ⁇ / 4 line 38a, and the second ⁇ / 4 line 38b is shown as various lines, a 3 ⁇ / 4 line or the like may be used according to the signal transmission line. .
  • the first ⁇ / 4 transmission line 24a to the fourth ⁇ / 4 transmission line 24d which are excellent in terms of downsizing, are used, but a 3 ⁇ / 4 transmission line or the like may be used.
  • the high-frequency switch according to the present invention is not limited to the above-described embodiment, and can adopt various configurations without departing from the gist of the present invention.

Landscapes

  • Transceivers (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Electronic Switches (AREA)

Abstract

 送信端子(16)からの送信信号を伝送させる第1λ/4信号伝送路(18a)に対して、第1スイッチ回路(22a)が並列に接続され、受信信号を受信端子(20)に伝送させる第2λ/4信号伝送路(18b)に対して、第2スイッチ回路(22b)が並列に接続された高周波スイッチ(10A)において、第1λ/4信号伝送路(18a)を構成要素の1つとし、送信信号の反射波を検出する方向性結合器(36)を有する。この方向性結合器(36)は、上述した第1λ/4信号伝送路(18a)と、該第1λ/4信号伝送路(18a)に対向して配置されたλ/4線路(38)と、該λ/4線路(38)の一端に接続された反射波出力端子(40)と、λ/4線路(38)の他端に接続された終端抵抗(42)とを有する。

Description

高周波スイッチ
 本発明は、高周波信号を切り替える高周波スイッチに関し、特に、アンテナに接続されるアンテナスイッチ、例えばTDD(Time Division Duplex)スイッチ等に用いて好適な高周波スイッチに関する。
 従来のアンテナスイッチ等の高周波スイッチとしては、例えば特許第2532122号公報に記載のマイクロ波スイッチや特許第2830319号公報に記載の送受信切り換え装置が知られている。
 特許第2532122号公報に記載のマイクロ波スイッチは、信号ラインに直列及び並列にPINダイオードを挿入し、PINダイオードに順電流を流してPINダイオードをオンとし、また、PINダイオードを逆バイアスしてPINダイオードをオフさせることにより、高周波信号を切り替えるようにしている。
 特許第2830319号公報に記載の送受信切り換え装置は、信号伝送ラインに、伝送ラインとそれに直列に配置されたPINダイオード等を並列に挿入してスイッチを構成した回路方式を採用している。
 ところで、上述のような高周波スイッチを利用した送受信切換え方式としては、以下に示すような2種類の方式(第1送受信切換え方式及び第2送受信切換え方式)が通常使われる。
 第1送受信切換え方式は、図17に示すように、送受信器100と送受信アンテナ102(又はバンドパスフィルタ104を介して)との間における送信ライン106に、送信アンプ108とアイソレータ111を接続し、送受信器100と送受信アンテナ102(又はバンドパスフィルタ104を介して)との間における受信ライン110に受信アンプ112を接続し、送信ライン106と受信ライン110との結合点に高周波スイッチ114を接続した方式である。
 第2送受信切換え方式は、図18に示すように、送信ライン106に送信アンプ108を接続し、受信ライン110に受信アンプ112と高周波スイッチ114を接続し、送信ライン106と受信ライン110との結合点にサーキュレータ116を接続した方式である。
 上述の高周波スイッチにおいては、送受信器100とアンテナ102との間には、同軸線路等の給電線が接続されるが、送受信器100から出力された送信信号は進行波によってアンテナ102に運ばれた後、アンテナ102から空間に放射される。ここで、アンテナ102と給電線とが何らかの理由により整合しなくなったときは、アンテナ102で反射が発生して、反射波として送受信器100に戻ってくる。この場合、通信が正常に行われないだけでなく、送受信器100の故障、破壊につながるおそれがある。そこで、反射波を常に監視することが望ましい。また、送信信号の進行波のレベルを監視し、適正な値に制御することが望ましい。
 そこで、送信信号の反射波及び進行波を検出するために、方向性結合器を挿入接続することが考えられる。
 例えば第1送受信切換え方式では、図17に示すように、高周波スイッチ114とバンドパスフィルタ104の間に反射波検出のための第1方向性結合器120を挿入接続し、送信アンプ108とアイソレータ111の間に進行波検出のための第2方向性結合器122を挿入接続する。
 第2送受信切換え方式では、図18に示すように、高周波スイッチ114と終端抵抗124の間に反射波検出のための第1方向性結合器120を挿入接続し、送信アンプ108とサーキュレータ116の間に進行波検出のための第2方向性結合器122を挿入接続する。
 しかし、第1送受信切換え方式及び第2送受信切換え方式共に、第1方向性結合器120及び第2方向性結合器122という新たな2つの電子部品を挿入接続する必要があることから、システム全体の部品点数が多くなり、しかも、サイズも大きくなるという問題がある。これは、製造コストの高価格化にもつながる。また、伝送ロスの増大の問題もある。
 なお、上述した特許第2532122号公報及び特許第2830319号公報には、反射波(及び進行波)を検出するという考えがなく、第1送受信切換え方式及び第2送受信切換え方式の高周波スイッチ114の代替品として使用できるに過ぎない。
 本発明はこのような課題を考慮してなされたものであり、1つの高周波スイッチであっても、少なくとも送信信号の反射波を検出することができ、反射波検出機能付きの送信システムあるいは送受信システムの部品点数の低減、サイズの小型化をより促進することができ、製造コストの低廉化、伝送ロスの低減化も図ることができる高周波スイッチを提供することを目的とする。
 本発明に係る高周波スイッチは、送信端子からの送信信号を伝送させる第1信号伝送路に対して、第1スイッチ回路が並列に接続され、受信信号を受信端子に伝送させる第2信号伝送路に対して、第2スイッチ回路が並列に接続された高周波スイッチにおいて、前記第1信号伝送路を構成要素として含み、少なくとも前記送信信号の反射波を検出する方向性結合器を有することを特徴とする。
 これにより、1つの高周波スイッチであっても、少なくとも送信信号の反射波を検出することができ、反射波検出機能付きの送信システムあるいは送受信システムの部品点数の低減、サイズの小型化をより促進することができ、製造コストの低廉化も図ることができる。また、伝送ロスの低減化も図ることができる。
 そして、本発明において、前記方向性結合器は、前記第1信号伝送路に対向して配置された線路と、前記線路の一端に接続された反射波出力端子と、前記線路の他端に接続された終端抵抗とを有するようにしてもよい。
 また、本発明において、前記送信端子と前記第1信号伝送路との間に接続された第3信号伝送路に対して第3スイッチ回路が並列に接続され、前記第3信号伝送路を構成要素として含み、少なくとも前記送信信号の進行波を検出する第2方向性結合器を有するようにしてもよい。この場合、前記方向性結合器は、前記第1信号伝送路に対向して配置された第1線路と、前記第1線路の一端に接続された反射波出力端子と、前記第1線路の他端に接続された終端抵抗とを有し、前記第2方向性結合器は、前記第3信号伝送路に対向して配置された第2線路と、前記第2線路の一端に接続された進行波出力端子と、前記第2線路の他端に接続された第2終端抵抗とを有するようにしてもよい。
 また、本発明において、前記方向性結合器は、前記送信信号の反射波及び進行波を検出するようにしてもよい。この場合、前記方向性結合器は、前記第1信号伝送路に対向して配置された線路と、前記線路の一端に接続された反射波出力端子と、前記線路の他端に接続された進行波出力端子とを有するようにしてもよい。
 また、本発明において、前記第1スイッチ回路は、第1伝送路と1以上の第1PINダイオードを含む回路とが直列に接続され、前記第2スイッチ回路は、第2伝送路と1以上の第2PINダイオードを含む回路とが直列に接続されていてもよい。
 また、前記第3スイッチ回路は、第3伝送路と1以上の第3PINダイオードを含む回路とが直列に接続されていてもよい。
 なお、上述した信号伝送路は、3λ/4信号伝送路、λ/4信号伝送路等、電気長を限定しないが、λ/4信号伝送路が小型化等の点で好ましい。また、上述した前記線路は、3λ/4線路、λ/4線路等のいずれを使用してもよいが、λ/4線路が好ましい。また、上述した前記伝送路は、3λ/4伝送路、λ/4伝送路等のいずれを使用してもよいが、λ/4伝送路が小型化等の点で好ましい。
 以上説明したように、本発明に係る高周波スイッチによれば、1つの高周波スイッチであっても、少なくとも送信信号の反射波を検出することができ、反射波検出機能付きの送信システムあるいは送受信システムの部品点数の低減、サイズの小型化をより促進することができ、製造コストの低廉化、伝送ロスの低減化も図ることができる。
第1アンテナスイッチの構成を示す回路図である。 方向性結合器の動作を示す説明図である。 図3Aは第1アンテナスイッチにおいて、第1PINダイオードをオンにしたときの第1スイッチ回路の等価回路を示す図であり、図3Bは第1PINダイオードをオフにしたときの第1スイッチ回路の等価回路を示す図である。 図4Aは第1PINダイオードのオン時における中心周波数付近の第1スイッチ回路の等価回路を示す図であり、図4Bは第1PINダイオードのオフ時における中心周波数付近の第1スイッチ回路の等価回路を示す図である。 伝送線路の入力側と出力側のインピーダンスの関係を説明するための図である。 第1アンテナスイッチにおいて、第1スイッチ回路をオン、第2スイッチ回路をオフにしたときの等価回路を示す図である。 第1アンテナスイッチにおいて、第1スイッチ回路をオフ、第2スイッチ回路をオンにしたときの等価回路を示す図である。 第2アンテナスイッチの構成を示す回路図である。 第3アンテナスイッチの構成を示す回路図である。 第4アンテナスイッチの構成を示す回路図である。 図11Aは第4アンテナスイッチにおいて、第4PINダイオードをオンにしたときの第4スイッチ回路の等価回路を示す図であり、図11Bは第4PINダイオードをオフにしたときの第4スイッチ回路の等価回路を示す図である。 第4アンテナスイッチにおいて、第1スイッチ回路をオン、第2スイッチ回路及び第4スイッチ回路をオフにしたときの等価回路を示す図である。 第5アンテナスイッチの構成を示す回路図である。 第5アンテナスイッチにおいて、第1スイッチ回路及び第3スイッチ回路をオフ、第2スイッチ回路及び第4スイッチ回路をオンにしたときの等価回路を示す図である。 第6アンテナスイッチの構成を示す回路図である。 第7アンテナスイッチの構成を示す回路図である。 高周波スイッチを利用した第1送受信切換え方式を示す説明図である。 高周波スイッチを利用した第2送受信切換え方式を示す説明図である。
 以下、本発明に係る高周波スイッチを、例えばアンテナスイッチに適用した実施の形態例を図1~図16を参照しながら説明する。なお、λは、スイッチの動作周波数帯の中心周波数に対応する波長で、以下の伝送路での波長を表すものとする。
 第1の実施の形態に係るアンテナスイッチ(以下、第1アンテナスイッチ10Aと記す)は、図1に示すように、アンテナ接続端子14と送信端子16との間に接続された1つの第1λ/4信号伝送路18aと、アンテナ接続端子14と受信端子20との間に接続された1つの第2λ/4信号伝送路18bと、第1λ/4信号伝送路18aに対して並列に接続された第1スイッチ回路22aと、第2λ/4信号伝送路18bに対して並列に接続された第2スイッチ回路22bとを有する。なお、送信端子16と第1λ/4信号伝送路18aとの間、第1λ/4信号伝送路18aとアンテナ接続端子14との間、アンテナ接続端子14と第2λ/4信号伝送路18bとの間、第2λ/4信号伝送路18bと受信端子20との間にそれぞれキャパシタC1~C4が直列に接続されている。このキャパシタC1~C4は、後述するPINダイオードをオン/オフする電流を阻止するためのコンデンサで、高周波的にはショートとして働く。
 第1スイッチ回路22aは、キャパシタC1と第1λ/4信号伝送路18aとの間の信号ラインとGND(グランド)間に接続され、1つの第1λ/4伝送路24aと第1並列共振回路26aとが第1接点a1で直列に接続された直列回路を有する。
 第1並列共振回路26aは、第1接点a1とGND間に接続された1つの第1PINダイオード28aと、第1接点a1と第1制御端子Tc1間に接続された第1インダクタ30aと、第1制御端子Tc1とGND間に接続された第1キャパシタCaとを有する。この第1キャパシタCaは、第1PINダイオード28aをオン/オフする電流を阻止するためのコンデンサとして働く。
 第1制御端子Tc1には、第1PINダイオード28aに順電流を流して該第1PINダイオード28aをオンにするための順バイアス電圧Vc1と、第1PINダイオード28aを逆バイアスして第1PINダイオード28aをオフにするための逆バイアス電圧Vc2が印加されるようになっている。
 第2スイッチ回路22bは、上述した第1スイッチ回路22aと同様に、第2λ/4信号伝送路18bとキャパシタC4との間の信号ラインとGND(グランド)間に接続され、1つの第2λ/4伝送路24bと第2並列共振回路26bとが第2接点a2で直列に接続された直列回路を有する。
 第2並列共振回路26bは、第2接点a2とGND間に接続された1つの第2PINダイオード28bと、第2接点a2と第2制御端子Tc2間に接続された第2インダクタ30bと、第2制御端子Tc2とGND間に接続された第2キャパシタCbとを有する。この第2キャパシタCbは、第2PINダイオード28bをオン/オフする電流を阻止するためのコンデンサとして働く。
 第2制御端子Tc2には、第2PINダイオード28bに順電流を流して該第2PINダイオード28bをオンにするための順バイアス電圧Vc1と、第2PINダイオード28bを逆バイアスして第2PINダイオード28bをオフにするための逆バイアス電圧Vc2が印加されるようになっている。
 なお、第1制御端子Tc1に順バイアス電圧Vc1が印加される時には、第2制御端子Tc2に逆バイアス電圧Vc2が印加され、第1制御端子Tc1に逆バイアス電圧Vc2が印加される時には、第2制御端子Tc2に順バイアス電圧Vc1が印加される。第1制御端子Tc1の逆バイアス電圧Vc2と第2制御端子Tc2の逆バイアス電圧Vc2の電圧は、異なってもよい。
 そして、この第1アンテナスイッチ10Aは、第1λ/4信号伝送路18aを構成要素の1つとし、送信信号の反射波を検出する方向性結合器36を有する。
 この方向性結合器36は、上述した第1λ/4信号伝送路18aと、該第1λ/4信号伝送路18aに対向して配置されたλ/4線路38と、該λ/4線路38の一端に接続された反射波出力端子40と、λ/4線路38の他端に接続された終端抵抗42とを有する。なお、終端抵抗42の他端は接地とされている。
 ここで、方向性結合器36の動作原理について図2を参照しながら説明する。先ず、方向性結合器36の第1端φ1~第4端φ4について以下のように定義する。すなわち、第1λ/4信号伝送路18aの送信端子16側の端部を第1端φ1、第1λ/4信号伝送路18aのアンテナ接続端子14側の端部を第2端φ2、λ/4線路38の送信端子16側の端部を第3端φ3、λ/4線路38のアンテナ接続端子14側の端部を第4端φ4とする。
 このとき、方向性結合器36の第1端φ1に、送信端子16からの送信信号による進行波電力Paが加えられると、第2端φ2に進行波が現れ、第3端φ3に進行波電力Paに比例した電力dPaの電波(信号)が現れる。そして、アンテナで反射が発生して、方向性結合器36の第2端φ2に反射波電力Pbが加わると、第1端φ1に反射波が現れ、第4端φ4に反射波電力Pbに比例した電力dPbの電波(信号)が現れる。つまり、方向性結合器36の第4端φ4につながる反射波出力端子40から反射波電力Pbに比例した信号が出力されることになり、反射波を検出することが可能となる。
 次に、第1アンテナスイッチ10Aの回路動作について図3~図7を参照しながら説明する。
 第1スイッチ回路22aを主体に説明すると、先ず、第1制御端子Tc1に順バイアス電圧Vc1が印加されることで、第1PINダイオード28aがオンとなり、そのときの第1スイッチ回路22aの等価回路は図3Aに示すようになる。すなわち、第1λ/4伝送路24aとGND間に、等価的にインダクタンスLaと第1PINダイオード28aのオン抵抗Roが並列に接続された回路が直列に接続された形態となる。
 反対に、第1制御端子Tc1に逆バイアス電圧Vc2が印加されることで、第1PINダイオード28aがオフとなり、そのときの第1スイッチ回路22aの等価回路は図3Bに示すようになる。すなわち、第1λ/4伝送路24aとGND間に、インダクタンスLaと第1PINダイオード28aの空乏層による寄生容量Cfと第1PINダイオード28aのオフ抵抗Rfによる並列共振回路が直列に接続された形態となる。
 そして、この第1アンテナスイッチ10Aでは、該第1アンテナスイッチ10Aの中心周波数foと、寄生容量Cf、オフ抵抗Rf及びインダクタンスLaからなる並列共振回路の共振周波数を一致させるようにインダクタンスLaの値を設定してある。
 ここで、オン抵抗Roは、一般に1オーム程度あるいはそれ以下であり、Ro<<2πfoLaとできるため、第1PINダイオード28aのオン時における中心周波数fo付近の等価回路は図4Aのように表すことができ、第1PINダイオード28aのオフ時における中心周波数fo付近の等価回路は図4Bのように表すことができる。
 いま、図5に示すように、伝送線路z=LにおいてインピーダンスZ(L)の負荷で終端した場合を考える。
[規則91に基づく訂正 24.05.2010] 
 伝送線路の特性インピーダンスをZoとし、進行波をAe-γz、反射波をBe-γz(γは伝搬定数)とすれば、基準点zにおける電圧V(z)及び電流I(z)は以下の式で表される。
[規則91に基づく訂正 24.05.2010] 
   V(z)=Ae-γz+Beγz
   I(z)=(A/Zo)e-γz-(B/Zo)eγz
 従って、z=LにおけるインピーダンスZ(L)は以下の式で表される。
[規則91に基づく訂正 24.05.2010] 
   Z(L)=V(L)/I(L)
       =Zo{(Ae-γL+BeγL)/(Ae-γL-BeγL)}
 また、反射係数Γ(L)は以下の式(a)で示す関係がある。
[規則91に基づく訂正 24.05.2010] 
   Γ(L)=(BeγL)/(Ae-γL
       =(B/A)e2γL
       ={Z(L)-Zo}/{Z(L)+Zo} ……(a)
 さらに、z=0において負荷側を見たインピーダンスZ(0)は、以下の式(b)で表される。
   Z(0)=Zo{(A+B)/(A-B)}     ……(b)
[規則91に基づく訂正 24.05.2010] 
 式(a)より、
   B/A=[{Z(L)-Zo}/{Z(L)+Zo}]e-2γL
であるから、この式を式(b)に代入すれば、以下の式(c)になる。
   Z(0)/Zo = [Z(L) + ZotanhγL]/[Zo + Z(L)tanhγL]  ……(c)
 ここで、γ=α+jβ(αは減衰定数、βはβ=2π/λで位相定数)である。
 無損失線路は、α=0であり、γ=jβとなるから、式(c)は以下の式(d)に変形できる。
   Z(0)/Zo = [Z(L) + jZotanβL]/[Zo + jZ(L)tanβL]  ……(d)
 そして、式(d)にL=λ/4を代入すると、以下の式(e)が求まる。
   Z(0)/Zo=Zo/Z(L)
   Z(0)=Zo2/Z(L)             ……(e)
 このことから、第1PINダイオード28aがオンのとき、Z(L)が1オーム程度あるいはそれ以下の低抵抗であることから、式(e)からもわかるように、第1λ/4伝送路24aの信号ライン側のインピーダンス(この場合、Z(0))は大きな値となり、理想的には開放状態となる。反対に、第1PINダイオード28aがオフのとき、Z(L)が10kオーム以上の高抵抗であることから、式(e)からもわかるように、第1λ/4伝送路24aの信号ライン側のインピーダンス(この場合、Z(0))は小さな値となり、理想的には短絡状態となる。
 従って、例えば第1制御端子Tc1に順バイアス電圧Vc1が印加されて第1PINダイオード28aがオン、第2制御端子Tc2に逆バイアス電圧Vc2が印加されて第2PINダイオード28bがオフになると、図6に示すような等価回路となり、送信端子16のみがアンテナ接続端子14に高周波的には接続されることになる。これによって、送信端子16に供給された送信信号Saがアンテナ接続端子14を通じて送信されることになる。つまり、送信端子16からアンテナ接続端子14にかけての第1信号ライン34aが信号伝送側となり、受信端子20からアンテナ接続端子14にかけての第2信号ライン34bが信号遮断側となる。
 上述とは反対に、第1制御端子Tc1に逆バイアス電圧Vc2が印加されて第1PINダイオード28aがオフ、第2制御端子Tc2に順バイアス電圧Vc1が印加されて第2PINダイオード28bがオンになると、図7に示すような等価回路となり、受信端子20のみがアンテナ接続端子14に高周波的には接続されることになる。これによって、アンテナにて受信した受信信号Sbがアンテナ接続端子14に供給され、該受信端子20から出力されることになる。つまり、送信端子16からアンテナ接続端子14にかけての第1信号ライン34aが信号遮断側となり、受信端子20からアンテナ接続端子14にかけての第2信号ライン34bが信号伝送側となる。
 ところで、上述したように、例えば第1並列共振回路26aを設けず、第1PINダイオード28aのみを接続した場合、第1PINダイオード28aのオフ時における中心周波数fo付近の等価回路は、図4Bのようにはならず、図3Bのように、寄生容量Cfが残り、共振周波数は低域側にずれることになる。その結果、第1λ/4伝送路24aの位相特性に誤差が生じ、損失につながるという問題がある。
 そこで、第1アンテナスイッチ10Aでは、第1並列共振回路26aの第1インダクタ30aの定数を調整して、第1PINダイオード28aのオフ時の第1並列共振回路26aの共振周波数と第1アンテナスイッチ10Aの中心周波数foとが同じになるようにしている。同様に、第2並列共振回路26bの第2インダクタ30bの定数を調整して、第2PINダイオード28bのオフ時の第2並列共振回路26bの共振周波数と第1アンテナスイッチ10Aの中心周波数foとが同じになるようにしている。
 一方、PINダイオードのオン時の抵抗Roは、Ro<<2πfoLaであるので、これにより、図4A及び図4Bに示すように、例えば第1PINダイオード28aのオン時において、第1λ/4伝送路24aのGND側にオン抵抗Roのみが接続され、第1PINダイオード28aのオフ時において、第1λ/4伝送路24aのGND側にオフ抵抗Rfのみが接続された形態となるため、第1PINダイオード28aのオン時とオフ時の第1λ/4伝送路24aの共振周波数はずれることがない。
 従って、この第1アンテナスイッチ10Aにおいては、第1λ/4伝送路24a及び第2λ/4伝送路24bの各位相特性に誤差は発生せず、スイッチ回路のオン時の通過帯域とオフ時のアイソレーション帯域を一致させることができる。つまり、アンテナスイッチとして使用する帯域において、オン時の通過損失の最小化、オフ時のアイソレーションの最大化を適切に設定することができる。結果的に、スイッチ回路に伴う伝送信号に対する損失を低減することができると共に、スイッチ回路のオフ時の減衰量を適切に確保することができる。
 特に、この第1アンテナスイッチ10Aは、第1λ/4信号伝送路18aを構成要素の1つとした方向性結合器36を有することから、送信信号の出力時に、アンテナで反射が生じた場合、方向性結合器36の反射波出力端子40から反射波に比例した信号を取り出すことができ、反射波を検出することが可能となる。この場合、第1λ/4信号伝送路18aにλ/4線路38を対向して配置するだけでよいため、部品点数を増加させることなく、送信信号の反射波を検出することができる。
 このように、第1アンテナスイッチ10Aにおいては、1つのアンテナスイッチであっても、送信信号の反射波を検出することができることから、反射波検出機能付きの送信システムあるいは送受信システムの部品点数の低減、サイズの小型化をより促進することができ、製造コストの低廉化、伝送ロスの低減化も図ることができる。
 次に、第2の実施の形態に係るアンテナスイッチ(以下、第2アンテナスイッチ10Bと記す)について、図8を参照しながら説明する。
 この第2アンテナスイッチ10Bは、図8に示すように、上述した第1アンテナスイッチ10Aとほぼ同様の構成を有するが、方向性結合器36が以下のように構成されている点で異なる。
 すなわち、方向性結合器36は、第1λ/4信号伝送路18aと、該第1λ/4信号伝送路18aに対向して配置されたλ/4線路38とを有し、第3端φ3(λ/4線路38の送信端子16側端部)に進行波出力端子44が接続され、第4端φ4(λ/4線路38のアンテナ接続端子14側端部)に反射波出力端子40が接続されている。
 これにより、方向性結合器36の第3端φ3につながる進行波出力端子44から進行波電力Pa(図2参照)に比例した信号が出力され、方向性結合器36の第4端φ4につながる反射波出力端子40から反射波電力Pbに比例した信号が出力されることになり、送信信号の反射波及び進行波を検出することができる。
 次に、第3の実施の形態に係るアンテナスイッチ(以下、第3アンテナスイッチ10Cと記す)について図9を参照しながら説明する。
 この第3アンテナスイッチ10Cは、図9に示すように、上述した第1アンテナスイッチ10Aとほぼ同様の構成を有するが、以下の点で異なる。
 すなわち、送信端子16と第1λ/4信号伝送路18aの間に第3λ/4信号伝送路18cが接続され、受信端子20と第2λ/4信号伝送路18bの間に第4λ/4信号伝送路が接続されている。
 第3λ/4信号伝送路18cに対応して第3スイッチ回路22cが接続され、第4λ/4信号伝送路18dに対応して第4スイッチ回路22dが接続されている。
 さらに、第1スイッチ回路22aの第1並列共振回路26aに複数の第1PINダイオード28aが並列に接続され、第2スイッチ回路22bの第2並列共振回路26bに複数の第2PINダイオード28bが並列に接続されている。同様に、第3スイッチ回路22cの第3並列共振回路26cに複数の第3PINダイオード28cが並列に接続され、第4スイッチ回路22dの第4並列共振回路26dに複数の第4PINダイオード28dが並列に接続されている。
 この場合も、第1並列共振回路26aの第1インダクタ30a及び第3並列共振回路26cの第3インダクタ30cの各定数を調整して、第1PINダイオード28aのオフ時の第1並列共振回路26aの共振周波数と、第3PINダイオード28cのオフ時の第3並列共振回路26cの共振周波数と、第3アンテナスイッチ10Cの中心周波数とが同じになるようにしている。
 同様に、第2並列共振回路26bの第2インダクタ30b及び第4並列共振回路26dの第4インダクタ30dの各定数を調整して、第2PINダイオード28bのオフ時の第1並列共振回路26aの共振周波数と、第4PINダイオード28dのオフ時の第4並列共振回路26dの共振周波数と、第3アンテナスイッチ10Cの中心周波数とが同じになるようにしている。
 従って、例えば第1スイッチ回路22a及び第3スイッチ回路22cがオン、すなわち、複数の第1PINダイオード28a及び複数の第3PINダイオード28cがすべてオンになると、第1接点a1とGND間の抵抗並びに第3接点a3とGND間の抵抗は、1つのオン抵抗よりも低い抵抗が接続された形となる。従って、上述した式(e)からもわかるように、第1λ/4伝送路24aにおける第1信号ライン34a側の端部のインピーダンス並びに第3λ/4伝送路24cにおける第1信号ライン34a側の端部のインピーダンスは、1つのオン抵抗の場合よりも高いインピーダンスとなる。すなわち、理想的な開放状態に近づくことになる。
 逆に、第1スイッチ回路22a及び第3スイッチ回路22cがオフ、すなわち、複数の第1PINダイオード28a及び複数の第3PINダイオード28cがすべてオフになると、結果的に第1接点a1とGND間並びに第3接点a3とGND間にはそれぞれ高抵抗であるオフ抵抗のみが接続された形となる。従って、第1λ/4伝送路24aにおける第1信号ライン34a側の端部のインピーダンス並びに第3λ/4伝送路24cにおける第1信号ライン34a側の端部のインピーダンスは、上述した(e)式からもわかるように、高抵抗に応じた低いインピーダンスになる。つまり、信号伝送時のスイッチ回路の通過損失をより低減することができる。
 そして、この第3アンテナスイッチ10Cは、第1λ/4信号伝送路18aを構成要素の1つとし、送信信号の反射波を検出する第1方向性結合器36aと、第3λ/4信号伝送路18cを構成要素の1つとし、送信信号の進行波を検出する第2方向性結合器36bとを有する。
 第1方向性結合器36aは、上述した第1λ/4信号伝送路18aと、該第1λ/4信号伝送路18aに対向して配置された第1λ/4線路38aと、該第1λ/4線路38aの一端(第4端φ4)に接続された反射波出力端子40と、第1λ/4線路38の他端(第3端φ3)に接続された第1終端抵抗42aとを有する。
 第2方向性結合器36bは、上述した第3λ/4信号伝送路18cと、該第3λ/4信号伝送路18cに対向して配置された第2λ/4線路38bと、該第2λ/4線路38bの一端(第3端φ3)に接続された進行波出力端子44と、第2λ/4線路38bの他端(第4端φ4)に接続された第2終端抵抗42bとを有する。なお、第1終端抵抗42a及び第2終端抵抗42bの各他端は接地とされている。
 この場合、第2方向性結合器36bの第3端φ3につながる進行波出力端子44から進行波電力Pa(図2参照)に比例した信号が出力され、第1方向性結合器36aの第4端φ4につながる反射波出力端子40から反射波電力Pbに比例した信号が出力されることになるため、送信信号の反射波及び進行波を検出することができる。
 しかも、反射波出力端子40に接続されるモニタ回路(反射波検出回路)の特性と、進行波出力端子44に接続されるモニタ回路(進行波検出回路)の特性が異なっていても、各モニタ回路の特性に、第1方向性結合器36a及び第2方向性結合器36bの出力特性をそれぞれ独立に設定することができるため、方向性結合器の設計の自由度を上げることができる。
 次に、第4の実施の形態に係るアンテナスイッチ(以下、第4のアンテナスイッチ10Dと記す)について図10を参照しながら説明する。
 この第4アンテナスイッチ10Dは、図10に示すように、上述した第1アンテナスイッチ10Aとほぼ同様の構成を有するが、以下のように構成されている点で異なる。
 すなわち、受信端子20と第2λ/4信号伝送路18bの間に第4λ/4信号伝送路18dが接続され、第4λ/4信号伝送路18dに対応して第4スイッチ回路22dが接続されている。
 第4スイッチ回路22dは、上述した第2スイッチ回路22bと同様に、第4λ/4信号伝送路18dとキャパシタC5との間の信号ラインとGND(グランド)間に接続され、1つの第4λ/4伝送路24dと第4並列共振回路26dとが第4接点a4で直列に接続された直列回路を有する。
 第4並列共振回路26dは、第4接点a4とGND間に接続された1つの第4PINダイオード28dと、第4接点a4と第2制御端子Tc2間に接続された第4インダクタ30dと、第2制御端子Tc2とGND間に接続された第4キャパシタCdとを有する。この第4キャパシタCdは、第4PINダイオード28dをオン/オフする電流を阻止するためのコンデンサとして働く。
 さらに、第4スイッチ回路22dは、第4PINダイオード28dに対して、受信側終端形成用抵抗RrとコンデンサCrの直列回路が並列に接続されている。このコンデンサCrは、第4PINダイオード28dをオン/オフする電流を阻止するためのコンデンサとして働く。
 ここで、第4スイッチ回路22dの動作を主体に説明すると、第4スイッチ回路22dは、第2制御端子Tc2に順バイアス電圧Vc1が印加されることで、第4PINダイオード28dがオンとなり、そのときの第4スイッチ回路22dの等価回路は図11Aに示すようになる。すなわち、第4λ/4伝送路24dとGND間に、等価的にインダクタンスLaと第4PINダイオード28dのオン抵抗Roと受信側終端形成用抵抗Rrが並列に接続された回路が直列に接続された形態となる。
 反対に、第2制御端子Tc2に逆バイアス電圧Vc2が印加されることで、第4PINダイオード28dがオフとなり、そのときの第4スイッチ回路22dの等価回路は図11Bに示すようになる。すなわち、第4λ/4伝送路24dとGND間に、インダクタンスLaと第4PINダイオード28dの空乏層による寄生容量Cfと第4PINダイオード28dのオフ抵抗Rfと受信側終端形成用抵抗Rrによる並列共振回路が直列に接続された形態となる。
 この場合も、第4アンテナスイッチ10Dの中心周波数foと、寄生容量Cf、オフ抵抗Rf及びインダクタンスLaからなる並列共振回路の共振周波数を一致させるようにインダクタンスLaの値を設定してある。
 第4スイッチ回路22dは、上述したように、受信側終端形成用抵抗Rrが並列に接続された形態となるが、オン抵抗Roと受信側終端形成用抵抗Rrの大小関係が、Ro<<Rrであるため、オン動作時には影響を与えない。また、オフ抵抗Rfと受信側終端形成用抵抗Rrの大小関係が、Rf>>Rrであるため、信号ライン側のインピーダンスは受信側終端形成用抵抗Rrで決定される。
 具体的に説明すると、例えば第4λ/4伝送路24dの特性インピーダンスを50オームとし、受信側終端形成用抵抗Rrを50オームとしたとき、オフ抵抗Rf(例えば10kオーム)と受信側終端形成用抵抗Rrとの合成抵抗(Rf//Rr)は、49.751オームとなるから、第4λ/4伝送路24cの信号ライン側のインピーダンスは、上述の式(e)から、50×50/49.751=50.250オームで終端されることになる(終端抵抗が50.250オームとなる)。実際には、終端抵抗が例えば50オームとなるように、受信側終端形成用抵抗Rrの値を決定する。
 オン時は、オン抵抗Ro=1オームとすると、オン抵抗Roと受信側終端形成用抵抗Rrとの合成抵抗(Ro//Rr)は、0.9804オームとなるから、第4λ/4伝送路24dの信号ライン側のインピーダンスは、上述の式(e)から、50×50/0.9804=2550オームとなる。
 従って、例えば第1制御端子Tc1に順バイアス電圧Vc1が印加されて第1PINダイオード28aがオン、第2制御端子Tc2に逆バイアス電圧Vc2が印加されて第2PINダイオード28b及び第4PINダイオード28dがオフになると、図12に示すような等価回路となり、送信端子16のみがアンテナ接続端子14に高周波的には接続され、受信端子20には例えば50オームの終端抵抗Reが接続されることになる。これによって、送信端子16に供給された送信信号Saがアンテナ接続端子14を通じて送信されることになる。つまり、送信端子16からアンテナ接続端子14にかけての第1信号ライン34aが信号伝送側となり、受信端子20からアンテナ接続端子14にかけての第2信号ライン34bが信号遮断側となる。
 仮に、第4スイッチ回路22dが存在しないとすると、上述したように、第2λ/4伝送路24bの信号ライン側のインピーダンスは小さな値となり、理想的には短絡状態となる。つまり、オフ時の受信側のインピーダンスが0オームとなり、全反射となるため、受信端子20に接続される受信アンプの動作が不安定になる場合がある。
 しかし、この第4アンテナスイッチ10Dでは、第4スイッチ回路22dを接続するようにしたので、上述したように、オフ時の受信側のインピーダンスが終端抵抗Reの値、例えば50オームとなって、他の回路とインピーダンスの整合をとることができ、受信端子20に接続される受信アンプの動作を安定にさせることができる。
 上述とは反対に、第1制御端子Tc1に逆バイアス電圧Vc2が印加されて第1PINダイオード28aがオフ、第2制御端子Tc2に順バイアス電圧Vc1が印加されて第2PINダイオード28b及び第4PINダイオード28dがオンになると、図7に示すような等価回路となり、受信端子20のみがアンテナ接続端子14に高周波的には接続されることになる。これによって、アンテナにて受信した受信信号Sbがアンテナ接続端子14に供給され、該受信端子20から出力されることになる。つまり、送信端子16からアンテナ接続端子14にかけての第1信号ライン34aが信号遮断側となり、受信端子20からアンテナ接続端子14にかけての第2信号ライン34bが信号伝送側となる。このため、受信時において、受信側終端形成用抵抗Rrによる影響はない。
 そして、この第4アンテナスイッチ10Dにおいても、第1アンテナスイッチ10Aと同様に、第1λ/4信号伝送路18aを構成要素の1つとする方向性結合器36を有することから、方向性結合器36の第4端φ4につながる反射波出力端子40から反射波電力Pbに比例した信号が出力されることになり、反射波を検出することが可能となる。
 次に、第5の実施の形態に係るアンテナスイッチ(以下、第5アンテナスイッチ10Eと記す)について図13を参照しながら説明する。
 この第5アンテナスイッチ10Eは、上述した第4アンテナスイッチ10Dとほぼ同様の構成を有するが、以下の点で異なる。
 すなわち、第1λ/4信号伝送路18aと送信端子16との間に接続された1つの第3λ/4信号伝送路18cと、該第3λ/4信号伝送路18cに対して並列に接続された第3スイッチ回路22cとを有する。
 第3スイッチ回路22cは、第3λ/4信号伝送路18cとキャパシタC1との間の信号ラインとGND(グランド)間に接続され、1つの第3λ/4伝送路24cと第3並列共振回路26cとが第3接点a3で直列に接続された直列回路を有する。
 第3並列共振回路26cは、第3接点a3とGND間に接続された1つの第3PINダイオード28cと、第3接点a3と第1制御端子Tc1間に接続された第3インダクタ30cと、第1制御端子Tc1とGND間に接続された第3キャパシタCcとを有する。この第3キャパシタCcは、第3PINダイオード28cをオン/オフする電流を阻止するためのコンデンサとして働く。
 さらに、第3スイッチ回路22cは、第3PINダイオード28cに対して、送信用終端形成用抵抗RtとコンデンサCtの直列回路が並列に接続されている。
 つまり、この第3スイッチ回路22cは、受信側の第4スイッチ回路22dと同様の構成を有する。
 従って、例えば第1制御端子Tc1に順バイアス電圧Vc1が印加されて第1PINダイオード28a及び第3PINダイオード28cがオン、第2制御端子Tc2に逆バイアス電圧Vc2が印加されて第2PINダイオード28b及び第4PINダイオード28dがオフになると、図12に示すような等価回路となり、送信端子16のみがアンテナ接続端子14に高周波的に接続され、受信端子20には例えば50オームの終端抵抗が接続されることになる。この場合、オフ時の受信側のインピーダンスが終端抵抗Reの値、例えば50オームとなって、他の回路とインピーダンスの整合をとることができ、受信端子20に接続される受信アンプの動作を安定にさせることができる。
 上述とは反対に、第1制御端子Tc1に逆バイアス電圧Vc2が印加されて第1PINダイオード28a及び第3PINダイオード28cがオフ、第2制御端子Tc2に順バイアス電圧Vc1が印加されて第2PINダイオード28b及び第4PINダイオード28dがオンになると、図14に示すような等価回路となり、受信端子20のみがアンテナ接続端子14に高周波的に接続され、送信端子16には例えば50オームの終端抵抗Reが接続されることになる。この場合、オフ時の送信側のインピーダンスが終端抵抗Reの値、例えば50オームとなって、他の回路とインピーダンスの整合をとることができる。
 そして、この第5アンテナスイッチ10Eは、図13に示すように、上述した第3アンテナスイッチ10Cと同様に、第1λ/4信号伝送路18aを構成要素の1つとし、送信信号の反射波を検出する第1方向性結合器36aと、第3λ/4信号伝送路18cを構成要素の1つとし、送信信号の進行波を検出する第2方向性結合器36bとを有する。
 従って、第2方向性結合器36bの第3端φ3につながる進行波出力端子44から進行波電力Paに比例した信号が出力され、第1方向性結合器36aの第4端φ4につながる反射波出力端子40から反射波電力Pbに比例した信号が出力されることになるため、送信信号の反射波及び進行波を検出することができる。
 上述した第1アンテナスイッチ10A~第5アンテナスイッチ10Eにおいては、動作周波数帯の中心周波数foを主体に説明したが、実際には、動作周波数帯域に含まれる各周波数で、上述した効果があることはもちろんである。
 次に、第6の実施の形態に係るアンテナスイッチ(以下、第6アンテナスイッチ10Fと記す)について図15を参照しながら説明する。
 この第6アンテナスイッチ10Fは、上述した第4アンテナスイッチ10Dとほぼ同様の構成を有するが、第1スイッチ回路22a、第2スイッチ回路22b及び第4スイッチ回路22dの構成が以下の点で異なる。
 すなわち、第1スイッチ回路22aは、第1λ/4伝送路24aとGND間に第1PINダイオード28aと第1キャパシタCaとの直列回路が接続され、第1PINダイオード28aと第1キャパシタCaとの接点に第1制御端子Tc1が接続されて構成されている。
 第2スイッチ回路22bは、第2λ/4伝送路24bとGND間に第2PINダイオード28bと第2キャパシタCbとの直列回路が接続され、第2PINダイオード28bと第2キャパシタCbとの接点に第2制御端子Tc2が接続されて構成されている。
 第4スイッチ回路22dは、第4λ/4伝送路24dとGND間に第4PINダイオード28dと第4キャパシタCdとの直列回路が接続され、第4PINダイオード28dと第4キャパシタCdとの接点に第2制御端子Tc2が接続され、さらに、第4PINダイオード28dのカソードとGND間に受信側終端形成用抵抗Rrが接続されて構成されている。
 従って、例えば第1制御端子Tc1に順バイアス電圧Vc1が印加されて第1PINダイオード28aがオン、第2制御端子Tc2に逆バイアス電圧Vc2が印加されて第2PINダイオード28b及び第4PINダイオード28dがオフになると、図12に示すような等価回路となり、送信端子16のみがアンテナ接続端子14に高周波的に接続され、受信端子20には例えば50オームの終端抵抗Reが接続されることになる。この場合、オフ時の受信側のインピーダンスが終端抵抗Reの値、例えば50オームとなって、他の回路とインピーダンスの整合をとることができ、受信端子20に接続される受信アンプの動作を安定にさせることができる。
 上述とは反対に、第1制御端子Tc1に逆バイアス電圧Vc2が印加されて第1PINダイオード28aがオフ、第2制御端子Tc2に順バイアス電圧Vc1が印加されて第2PINダイオード28b及び第4PINダイオード28dがオンになると、図7に示すような等価回路となり、受信端子20のみがアンテナ接続端子14に高周波的には接続されることになる。
 そして、この第6アンテナスイッチにおいても、第4アンテナスイッチ10Dと同様に、第1λ/4信号伝送路18aを構成要素の1つとする方向性結合器36を有することから、方向性結合器36の第4端φ4につながる反射波出力端子40から反射波電力Pbに比例した信号が出力されることになり、反射波を検出することが可能となる。
 この第6アンテナスイッチ10Fでは、第1PINダイオード28aのオフ時における中心周波数fo付近の等価回路は、図4Bのようにはならず、図3Bのように、寄生容量Cfが残り、これにより、共振周波数が低域側にずれてしまい、性能的には第4アンテナスイッチ10Dよりも劣ることになるが、構造が簡単であることから、性能よりも小型化、低コストを望む場合に有効である。
 次に、第7の実施の形態に係るアンテナスイッチ(以下、第7アンテナスイッチ10Gと記す)について図16を参照しながら説明する。
 この第7アンテナスイッチ10Gは、従来から知られているアンテナスイッチに第1方向性結合器36a及び第2方向性結合器36bを接続した構成を有する。
 すなわち、送信端子16とアンテナ接続端子14間に接続された第1λ/4信号伝送路18a及び第3λ/4信号伝送路18cと、第1λ/4信号伝送路18aに対して並列に接続された第1PINダイオード28aによる第1スイッチ回路22aと、第3λ/4信号伝送路18cに対して並列に接続された第3PINダイオード28cによる第3スイッチ回路22cとを有する。
 同様に、受信端子20とアンテナ接続端子14間に接続された第2λ/4信号伝送路18b及び第4λ/4信号伝送路18dと、第2λ/4信号伝送路18bに対して並列に接続された第2PINダイオード28bによる第2スイッチ回路22bと、第4λ/4信号伝送路18dに対して並列に接続された第4PINダイオード28dによる第4スイッチ回路22dとを有する。
 第1PINダイオード28a~第4PINダイオード28dは共にカソード側が接地とされている。
 また、送信側のキャパシタC1と第3λ/4信号伝送路18c間の信号ラインとインダクタンス素子L11を介して第1制御端子Tc1が接続され、第1接続端子Tc1とGND間にキャパシタC11が接続されている。同様に、受信側のキャパシタC4と第4λ/4信号伝送路18d間の信号ラインとインダクタンス素子C12を介して第2制御端子Tc2が接続され、第2接続端子Tc2とGND間にキャパシタC12が接続されている。
 そして、この第7アンテナスイッチ10Gは、第1λ/4信号伝送路18aを構成要素の1つとし、送信信号の反射波を検出する第1方向性結合器36aと、第3λ/4信号伝送路18cを構成要素の1つとし、送信信号の進行波を検出する第2方向性結合器36bとを有する。
 従って、第2方向性結合器36bの第3端φ3につながる進行波出力端子44から進行波電力Paに比例した信号が出力され、第1方向性結合器36aの第4端φ4につながる反射波出力端子40から反射波電力Pbに比例した信号が出力されることになるため、送信信号の反射波及び進行波を検出することができる。
 このように、従来のアンテナスイッチのλ/4信号伝送路にλ/4線路を対向して配置するだけでよいため、部品点数を増加させることなく、送信信号の反射波及び進行波を検出することができるアンテナスイッチを構成することができる。
 上述の例では、各種信号伝送路として、小型化等の点で優れる第1λ/4信号伝送路18a~第4λ/4信号伝送路18dを用いたが、3λ/4信号伝送路等を用いてもよい。また、各種線路として、λ/4線路38、第1λ/4線路38a、第2λ/4線路38bを用いた例を示したが、信号伝送路に合わせて3λ/4線路等を用いてもよい。また、各種伝送路として、小型化等の点で優れる第1λ/4伝送路24a~第4λ/4伝送路24dを用いたが、3λ/4伝送路等を用いてもよい。
 なお、本発明に係る高周波スイッチは、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得る。

Claims (15)

  1.  送信端子(16)からの送信信号を伝送させる第1信号伝送路(18a)に対して、第1スイッチ回路(22a)が並列に接続され、受信信号を受信端子(20)に伝送させる第2信号伝送路(18b)に対して、第2スイッチ回路(22b)が並列に接続された高周波スイッチにおいて、
     前記第1信号伝送路(18a)を構成要素として含み、少なくとも前記送信信号の反射波を検出する方向性結合器(36)を有することを特徴とする高周波スイッチ。
  2.  請求項1記載の高周波スイッチにおいて、
     前記方向性結合器(36)は、
     前記第1信号伝送路(18a)に対向して配置された線路(38)と、
     前記線路(38)の一端に接続された反射波出力端子(40)と、
     前記線路(38)の他端に接続された終端抵抗(42)とを有することを特徴とする高周波スイッチ。
  3.  請求項2記載の高周波スイッチにおいて、
     前記線路はλ/4線路であることを特徴とする高周波スイッチ。
  4.  請求項1記載の高周波スイッチにおいて、
     前記送信端子(16)と前記第1信号伝送路(18a)との間に接続された第3信号伝送路(18c)に対して第3スイッチ回路(22c)が並列に接続され、
     前記第3信号伝送路(18c)を構成要素として含み、少なくとも前記送信信号の進行波を検出する第2方向性結合器(36b)を有することを特徴とする高周波スイッチ。
  5.  請求項4記載の高周波スイッチにおいて、
     前記方向性結合器(36a)は、
     前記第1信号伝送路(18a)に対向して配置された第1線路(38a)と、
     前記第1線路(38a)の一端に接続された反射波出力端子(40)と、
     前記第1線路(38a)の他端に接続された終端抵抗(42a)とを有し、
     前記第2方向性結合器(36b)は、
     前記第3信号伝送路(18c)に対向して配置された第2線路(38b)と、
     前記第2線路(38b)の一端に接続された進行波出力端子(44)と、
     前記第2線路(38b)の他端に接続された第2終端抵抗(42b)とを有することを特徴とする高周波スイッチ。
  6.  請求項5記載の高周波スイッチにおいて、
     前記第1線路(36a)及び前記第2線路(36b)はそれぞれλ/4線路であることを特徴とする高周波スイッチ。
  7.  請求項4記載の高周波スイッチにおいて、
     前記第3スイッチ回路(22c)は、第3伝送路(24c)と1以上の第3PINダイオード(28c)を含む回路とが直列に接続されていることを特徴とする高周波スイッチ。
  8.  請求項7記載の高周波スイッチにおいて、
     前記第3伝送路(24c)はλ/4伝送路であることを特徴とする高周波スイッチ。
  9.  請求項4記載の高周波スイッチにおいて、
     前記第1信号伝送路(18a)、前記第2信号伝送路(18b)及び前記第3信号伝送路(18c)はそれぞれλ/4信号伝送路であることを特徴とする高周波スイッチ。
  10.  請求項1記載の高周波スイッチにおいて、
     前記方向性結合器(36)は、前記送信信号の反射波及び進行波を検出することを特徴とする高周波スイッチ。
  11.  請求項10記載の高周波スイッチにおいて、
     前記方向性結合器(36)は、
     前記第1信号伝送路(18a)に対向して配置された線路(38)と、
     前記線路(38)の一端に接続された反射波出力端子(40)と、
     前記線路(38)の他端に接続された進行波出力端子(44)とを有することを特徴とする高周波スイッチ。
  12.  請求項11記載の高周波スイッチにおいて、
     前記線路(38)はλ/4線路であることを特徴とする高周波スイッチ。
  13.  請求項1記載の高周波スイッチにおいて、
     前記第1スイッチ回路(22a)は、第1伝送路(24a)と1以上の第1PINダイオード(28a)を含む回路とが直列に接続され、
     前記第2スイッチ回路(22b)は、第2伝送路(24b)と1以上の第2PINダイオード(28b)を含む回路とが直列に接続されていることを特徴とする高周波スイッチ。
  14.  請求項13記載の高周波スイッチにおいて、
     前記第1伝送路(24a)及び前記第2伝送路(24b)はそれぞれλ/4伝送路であることを特徴とする高周波スイッチ。
  15.  請求項1記載の高周波スイッチにおいて、
     前記第1信号伝送路(18a)及び前記第2信号伝送路(18b)はそれぞれλ/4信号伝送路であることを特徴とする高周波スイッチ。
PCT/JP2009/060012 2008-06-06 2009-06-02 高周波スイッチ WO2009148030A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980121106.4A CN102057583B (zh) 2008-06-06 2009-06-02 高频开关
US12/992,716 US8421552B2 (en) 2008-06-06 2009-06-02 High-frequency switch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-149210 2008-06-06
JP2008149210A JP5049886B2 (ja) 2008-06-06 2008-06-06 高周波スイッチ

Publications (2)

Publication Number Publication Date
WO2009148030A1 WO2009148030A1 (ja) 2009-12-10
WO2009148030A9 true WO2009148030A9 (ja) 2010-09-02

Family

ID=41398107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060012 WO2009148030A1 (ja) 2008-06-06 2009-06-02 高周波スイッチ

Country Status (4)

Country Link
US (1) US8421552B2 (ja)
JP (1) JP5049886B2 (ja)
CN (1) CN102057583B (ja)
WO (1) WO2009148030A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2224602B1 (en) * 2007-12-19 2015-05-06 Soshin Electric Co. Ltd. High frequency switch
JP5261119B2 (ja) * 2008-09-30 2013-08-14 双信電機株式会社 高周波スイッチ
JP5609574B2 (ja) * 2010-11-12 2014-10-22 三菱電機株式会社 方向性結合器
KR101247048B1 (ko) 2011-07-27 2013-03-25 서강대학교산학협력단 결합선로를 이용한 고격리도 rf 스위치
US9024836B2 (en) * 2011-10-21 2015-05-05 Htc Corporation Electronic device for processing radio frequency signals and matching circuit for providing variable impedance
JP5622781B2 (ja) * 2012-03-31 2014-11-12 Tdk株式会社 方向性結合器および無線通信装置
JP6194897B2 (ja) * 2013-01-11 2017-09-13 株式会社村田製作所 高周波スイッチモジュール
US9660689B2 (en) * 2014-11-13 2017-05-23 Honeywell International Inc. Multiple radio frequency (RF) systems using a common radio frequency port without an RF switch
KR101823270B1 (ko) 2016-07-07 2018-01-29 삼성전기주식회사 커플러 내장형 고주파 스위치 회로 및 장치
CN106255251B (zh) * 2016-08-31 2022-11-18 广东美的厨房电器制造有限公司 微波检测电路及包含该微波检测电路的微波炉
TWI639308B (zh) * 2017-11-08 2018-10-21 和碩聯合科技股份有限公司 射頻開關電路
JP7091862B2 (ja) * 2018-06-14 2022-06-28 住友電工デバイス・イノベーション株式会社 可変減衰器

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173901A (ja) 1984-02-20 1985-09-07 Nec Corp ダイオ−ド回線切替器
JPS60174534A (ja) 1984-02-20 1985-09-07 Toyo Commun Equip Co Ltd アンテナ・スイツチ回路
JP2962418B2 (ja) 1988-03-14 1999-10-12 株式会社トキメック マイクロ波スイッチ
JP2532122B2 (ja) 1988-03-14 1996-09-11 株式会社トキメック マイクロ波スイッチ
US5023935A (en) * 1989-11-17 1991-06-11 Nynex Corporation Combined multi-port transmit/receive switch and filter
JP2830319B2 (ja) * 1990-03-08 1998-12-02 ソニー株式会社 送受信切り換え装置
JPH0658628U (ja) 1993-01-22 1994-08-12 日本無線株式会社 空中線自動切り替え回路
JP3139351B2 (ja) 1995-07-11 2001-02-26 株式会社村田製作所 高周波スイッチ
US6070059A (en) * 1995-12-05 2000-05-30 Murata Manufacturing Co., Ltd. High-frequency switch
JP3147819B2 (ja) 1997-05-27 2001-03-19 日本電気株式会社 高周波スイッチ回路
JP2000286601A (ja) * 1999-03-30 2000-10-13 Matsushita Electric Ind Co Ltd 高周波切替装置
WO2001022523A1 (fr) * 1999-09-21 2001-03-29 Kabushiki Kaisha Toyota Chuo Kenkyusho Circuit de commutation haute frequence
JP3772771B2 (ja) * 2001-05-18 2006-05-10 松下電器産業株式会社 マルチバンド高周波スイッチ
JP3823843B2 (ja) 2001-10-05 2006-09-20 三菱電機株式会社 広帯域高周波スイッチ
WO2003081275A1 (en) * 2002-03-22 2003-10-02 Telefonaktiebolaget Lm Ericsson (Publ) Transmit receive switch with high power protection
ATE370553T1 (de) * 2003-08-15 2007-09-15 Tdk Corp Antennenumschaltungsvorrichtung
US20050221767A1 (en) * 2004-04-05 2005-10-06 Satoshi Suga High frequency module and high frequency circuit for mobile communications device
US7546089B2 (en) * 2004-12-23 2009-06-09 Triquint Semiconductor, Inc. Switchable directional coupler for use with RF devices
JP4735164B2 (ja) * 2005-09-28 2011-07-27 日本電気株式会社 無線送信回路、無線送信機、無線通信回路及び無線通信機
EP2224602B1 (en) * 2007-12-19 2015-05-06 Soshin Electric Co. Ltd. High frequency switch
JP2009152749A (ja) * 2007-12-19 2009-07-09 Soshin Electric Co Ltd 信号切替スイッチ
JP5261119B2 (ja) 2008-09-30 2013-08-14 双信電機株式会社 高周波スイッチ
JP5279551B2 (ja) * 2009-03-03 2013-09-04 三菱電機株式会社 半導体スイッチ、半導体スイッチmmic、切り替えスイッチrfモジュール、耐電力スイッチrfモジュールおよび送受信モジュール

Also Published As

Publication number Publication date
US20110057745A1 (en) 2011-03-10
WO2009148030A1 (ja) 2009-12-10
CN102057583A (zh) 2011-05-11
US8421552B2 (en) 2013-04-16
JP2009296429A (ja) 2009-12-17
CN102057583B (zh) 2014-07-02
JP5049886B2 (ja) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5049886B2 (ja) 高周波スイッチ
JP5261119B2 (ja) 高周波スイッチ
CN1945987B (zh) 用于连接天线的双工器
KR100883529B1 (ko) 이중대역-crlh 전송 선로를 이용한 전력 분배기 및전력 합성기
KR101892166B1 (ko) 회로 장치
EP2224602B1 (en) High frequency switch
US8570119B2 (en) Ultra wide pass-band, absorptive band-reject filter
US8810338B2 (en) Signal transmission device, filter, and inter-substrate communication device
JP2010521830A (ja) Rfスイッチ及びrfスイッチを備える装置
JP5002509B2 (ja) 高周波スイッチ
US7956702B2 (en) Balun
US8723615B2 (en) Non-reciprocal circuit device and radio communication terminal device
JP5405919B2 (ja) 高周波スイッチ
US11011818B1 (en) Transformer having series and parallel connected transmission lines
JP2009152749A (ja) 信号切替スイッチ
JP5405920B2 (ja) 高周波スイッチ
JP2007318264A (ja) リミッタ回路
US20100265013A1 (en) Miniaturized Band-Pass Filter

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980121106.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758297

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12992716

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09758297

Country of ref document: EP

Kind code of ref document: A1