WO2009147886A1 - 光スキャナ - Google Patents
光スキャナ Download PDFInfo
- Publication number
- WO2009147886A1 WO2009147886A1 PCT/JP2009/055105 JP2009055105W WO2009147886A1 WO 2009147886 A1 WO2009147886 A1 WO 2009147886A1 JP 2009055105 W JP2009055105 W JP 2009055105W WO 2009147886 A1 WO2009147886 A1 WO 2009147886A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pair
- beam portions
- portions
- mirror portion
- swing
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/0816—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
- G02B26/0833—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
- G02B26/0858—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by piezoelectric means
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/105—Scanning systems with one or more pivoting mirrors or galvano-mirrors
Definitions
- the present invention relates to an optical scanner.
- FIG. 20 is a plan view showing an example of a conventional optical scanner.
- a frame-like movable part 102 is arranged so as to surround the periphery of the mirror part 101. Further, the mirror part 101 and the movable part 102 are formed on the beam 104A, 104B formed on the swinging shaft 103 and the center line in the width direction of the mirror 101 perpendicular to the swinging shaft 103. The beams 104C and 104D are connected to each other. The movable portion 102 is pivotally supported by each torsion bar 105 formed on the swing shaft 103 so as to be swingable. Then, the movable part 102 is driven to swing.
- a pair of permanent magnets that generate a static magnetic field are on both outer sides of the movable portion 102 on the center line in the width direction of the mirror 101 perpendicular to the swing shaft 103.
- a coil not shown
- the mirror part 101 and the movable part 102 are induced torsional vibration around the torsion bar 105 in a resonance state (for example, patents).
- dynamic mirror distortion occurs in the central portion of the mirror unit 101 in the resonance state.
- the dynamic mirror distortion has a degree of influence on the optical characteristics of the reflected light reflected by the reflecting surface due to the moment of inertia and air resistance of the mirror unit 101 and the movable unit 102 (for example, the amount of deflection is 1 ⁇ m or more). )).
- the dynamic mirror distortion refers to a distortion that occurs on the reflecting surface of the mirror part due to moment of inertia, air resistance, or the like when the mirror part swings.
- FIG. 21 is an enlarged perspective view schematically showing an example of dynamic mirror distortion of the mirror unit 101 when the optical scanner 100 of FIG. 20 is driven in a resonance state.
- dynamic mirror distortion when the mirror unit 101 is rotated to the maximum swing angle is shown by rotating around the swing shaft 103 until the mirror unit 101 is substantially horizontal.
- the mirror portion 101 of the optical scanner 100 has a sine centered on the oscillating shaft 103 in the direction perpendicular to the oscillating shaft 103 on the reflecting surface due to moment of inertia, air resistance, and the like. Wave deformation occurs. The deformation is transmitted to the movable frame 102 via the beams 104A to 104D, and the movable frame 102 is also deformed in a sine wave centered on the swing shaft 103. That is, since the dynamic mirror distortion generated in the mirror unit 101 is not absorbed by the movable frame 102 via the beams 104A to 104D, a deflection amount that reaches 1 ⁇ m or more occurs in the central portion of the mirror unit 101. Therefore, there is a problem that the optical characteristics of the reflected light reflected by the reflecting surface in the central part of the mirror part 101 are deteriorated.
- the present invention has been made to solve the above-described problems, and effectively suppresses dynamic mirror distortion of the mirror portion that adversely affects the optical characteristics of reflected light when the mirror portion is swung.
- An object of the present invention is to provide an optical scanner that can perform the above-described operation.
- an optical scanner is an optical scanner that scans light in a predetermined direction by swinging a mirror unit around a swing axis, and one end is supported along the swing axis of the mirror unit.
- a pair of torsional beam portions that are torsionally vibrated around the oscillation axis, and symmetrical with respect to the oscillation axis on both sides in a direction perpendicular to the oscillation axis from the other ends of the pair of torsion beam portions
- a pair of holding beam portions extending opposite to each other in the swing axis direction of the mirror portion, and the mirror portions extending from both ends of the pair of holding beam portions and facing each other.
- a pair of connecting beam portions connected to a predetermined position symmetrical to the swing axis, and a vibration inducing portion for inducing torsional vibration around the swing axis in the pair of torsion beam portions.
- the dynamic mirror distortion of the mirror part is transmitted and absorbed through a pair of connecting beam parts to a pair of holding beam parts connected to both ends. It becomes possible to do. For this reason, when the mirror portion swings, the dynamic mirror distortion of the central portion including the swing shaft sandwiched between each pair of connecting beam portions perpendicular to the swing shaft of the mirror portion can be reduced. . As a result, it is possible to effectively suppress the dynamic mirror distortion of the mirror part that adversely affects the optical characteristics of the reflected light.
- each holding beam portion extends symmetrically with respect to the swinging shaft from both ends of the pair of torsion beam portions on both sides in a direction perpendicular to the swinging shaft. For this reason, it becomes possible to oscillate the mirror part without displacing the oscillating axis of the mirror part generated by the torsional vibration around the oscillating axis of each torsion beam part in any direction.
- the mirror portion may be formed symmetrically in a direction perpendicular to the swing axis, and the pair of connecting beam portions may be swung from both ends of the pair of holding beam portions. You may make it connect to the both ends of the rocking
- the movement generated on the reflection surface of the reflection part of the mirror part is formed on the reflection surface in the inner side, that is, the center side part corresponding to the width dimension of each connecting beam part. It is possible to reduce the effective mirror distortion and improve the effective efficiency of the reflected light. Further, since the mirror part is formed symmetrically in the direction perpendicular to the swing axis, the swing axis of the mirror part generated by the torsional vibration around the swing axis of each torsion beam part is displaced in any direction. It is possible to oscillate the mirror part without any problems.
- each of the pair of connecting beam portions may be connected to opposite corner portions of both end portions in the swing axis direction of the mirror portion.
- the mirror portion may be symmetrically formed in a direction perpendicular to the swing axis, and the holding beam portion may be formed from both ends of the mirror portion facing each other in the swing axis direction.
- the pair of connecting beam portions extend from the both ends of the pair of holding beam portions by a predetermined length in the swing axis direction, and further extend to the mirror portion side. Then, it may be connected to opposite corners at both ends in a direction perpendicular to the swing axis of the mirror part.
- the dynamic mirror distortion generated on the inner side from both ends in the direction perpendicular to the swing axis of the mirror portion, that is, substantially on the total reflection surface is reduced. It is possible to improve the effective efficiency of the reflected light. Further, since the mirror part is formed symmetrically in the direction perpendicular to the swing axis, the swing axis of the mirror part generated by the torsional vibration around the swing axis of each torsion beam part is displaced in any direction. It is possible to oscillate the mirror part without any problems.
- each pair of connecting beam portions is connected to opposite corners at both ends in a direction perpendicular to the swing axis of the mirror portion, the positional accuracy of connecting each pair of connecting beam portions to the mirror portion is reduced. Product yield can be improved.
- both end portions in the swing axis direction of the mirror portion may be formed to be parallel to the opposing holding beam portions.
- both end portions of the mirror portion in the swing axis direction are formed so as to be parallel to the opposing holding beam portions, so that the reflecting surface can be enlarged.
- the mirror portion is formed in a rectangular shape in a plan view and swings outward from both side edge portions in a direction perpendicular to the swing axis of the center portion.
- the holding beam portion is a swing shaft at the center portion of the mirror portion facing each other.
- Each of the pair of connecting beam portions has a width that gradually decreases from both ends of the pair of holding beam portions from the center portion of the mirror portion.
- They may be connected to opposite corners at both ends in the perpendicular direction.
- the dynamic mirror distortion generated on the inner side from both ends in the direction perpendicular to the swing axis of the mirror portion, that is, substantially on the total reflection surface is reduced. It is possible to improve the effective efficiency of the reflected light.
- the mirror portion is formed so that the width in the swing axis direction is gradually narrowed outward from both side edge portions in the direction perpendicular to the swing shaft of the central portion. It is possible to reduce the moment of inertia acting on both end edges in the perpendicular direction. As a result, it is possible to further reduce dynamic mirror distortion generated in the mirror section.
- each pair of connecting beam portions is connected to opposite corners at both ends in a direction perpendicular to the swing axis of the mirror portion, the positional accuracy of connecting each pair of connecting beam portions to the mirror portion is reduced. Product yield can be improved.
- the vibration inducing portion includes a pair of support beam portions formed so that the one ends of the pair of torsion beam portions are connected to a central portion in the longitudinal direction and face each other.
- a pair of flat bases that are arranged symmetrically in a direction perpendicular to the swing axis, with inner end edges connected to the longitudinal ends of the pair of support beam portions across the mirror portion.
- the inner edge portions of the pair of base portions are connected by a pair of support beam portions, and the outer end edges of the pair of base portions are fixed to a fixing member. Accordingly, it is possible to generate a standing wave having the swing axis as a node by the excitation means in each base portion and each support beam portion.
- the mirror portion is supported by a pair of torsion beam portions formed on the swing shaft via each pair of connecting beam portions and a pair of holding beam portions. Thereby, the mirror part can be swung without displacing the swing axis of the mirror part in any direction.
- FIG. 1 is an exploded perspective view schematically showing a schematic configuration of an optical scanner according to Embodiment 1.
- FIG. It is a top view of an optical scanner.
- FIG. 3 is a cross-sectional view taken along arrow X1-X1 in FIG. 2. It is a figure which shows an example of the rocking drive of a reflective mirror part. It is a figure which shows the 1st resonance state to which each support beam part and a reflective mirror part rock
- FIG. 3 is an enlarged perspective view schematically illustrating an example of dynamic mirror distortion of a reflection mirror unit when the optical scanner according to the first embodiment is driven to swing.
- FIG. 6 is a plan view illustrating a schematic configuration of an optical scanner according to Embodiment 2.
- FIG. 9 is a cross-sectional view taken along arrow X2-X2 in FIG. 8. It is a figure which shows an example of the rocking drive of a reflective mirror part.
- FIG. 10 is an enlarged perspective view schematically illustrating an example of dynamic mirror distortion of a reflection mirror unit when the optical scanner according to Example 2 is driven to swing.
- FIG. 10 is a plan view illustrating a schematic configuration of an optical scanner according to a third embodiment.
- FIG. 13 is a cross-sectional view taken along arrow X3-X3 in FIG. 12. It is a figure which shows an example of the rocking drive of a reflective mirror part.
- FIG. 10 is an enlarged perspective view schematically illustrating an example of dynamic mirror distortion of a reflection mirror unit when the optical scanner according to Example 3 is driven to swing.
- FIG. 10 is a plan view illustrating a schematic configuration of an optical scanner according to a fourth embodiment. It is X4-X4 arrow sectional drawing of FIG. It is a figure which shows an example of the rocking drive of a reflective mirror part.
- FIG. 10 is an enlarged perspective view schematically illustrating an example of dynamic mirror distortion of a reflection mirror unit when an optical scanner according to Example 4 is driven to swing. It is a top view which shows an example of the conventional optical scanner.
- FIG. 21 is an enlarged perspective view schematically illustrating an example of dynamic mirror distortion of a mirror unit when the optical scanner of FIG. 20 is driven in a resonance state.
- FIG. 1 is an exploded perspective view schematically showing a schematic configuration of the optical scanner 1.
- FIG. 2 is a plan view of the optical scanner 1.
- FIG. 3 is a cross-sectional view taken along arrow X1-X1 in FIG.
- the optical scanner 1 is configured by mounting a main body 2 on a base 3.
- the main body 2 is formed by pressing or etching using a conductive material having elasticity such as stainless steel (for example, SUS304, SUS430, etc.), titanium, iron, or the like.
- the thickness of the main body 2 is about 30 ⁇ m to 100 ⁇ m.
- the main body 2 has a thin plate rectangular shape as shown in the upper part of FIG. 1 and FIGS. 2 and 3.
- the main body 2 includes a fixed frame 5 on the outside, and a pair of slit-shaped through holes 6 are formed on the inner side of the fixed frame 5 along both side edges in the longitudinal direction so as to face each other.
- a vibrating body 8 having a rectangular shape in plan view is provided.
- the vibrating body 8 is formed with a through hole 10 having a rectangular shape in plan view through which light can pass at the center position in the longitudinal direction.
- a reflection mirror portion 12 having a substantially rectangular shape in plan view formed with a reflection surface 11 is formed at a central portion of the through hole 10 in a direction perpendicular to the swing shaft 15, that is, a longitudinal direction of the reflection mirror portion 12. It is provided to be symmetrical. Then, the reflecting surface 11 of the reflecting mirror portion 12 is swung around a swinging shaft 15 that is also a symmetrical centerline in the longitudinal direction.
- the reflection mirror unit 12 is not limited to a rectangle, but may be a square, a substantially square, a diamond, a polygon, a circle, an ellipse, or the like.
- the base 3 is a support portion on which the fixed frame 5 is to be mounted in the mounted state with the main body 2 as shown in the lower part of FIG. 1 and FIGS. 18.
- the base 3 is configured to have a recess 19 that faces the vibrating body 8.
- the recess 19 is formed so as to have a shape that does not interfere with the base 3 even when the vibrating body 8 is displaced by vibration in a state where the main body 2 is mounted on the base 3.
- the vibrating body 8 is formed with a pair of support beam portions 21A and 21B that constitute opposite side edges of the through hole 10.
- the pair of support beam portions 21 ⁇ / b> A and 21 ⁇ / b> B are formed symmetrically in the longitudinal direction with respect to the swing shaft 15.
- the longitudinal ends of the pair of support beam portions 21A and 21B have a pair of flat base portions 25A disposed symmetrically in a direction perpendicular to the swing axis 15 with the reflection mirror portion 12 in between. 25B is connected to both ends of the edge portion on the reflection mirror portion 12 side.
- the outer edge portions of the pair of base portions 25 ⁇ / b> A and 25 ⁇ / b> B are fixed to the base 3 via the fixed frame 5.
- a pair of torsion beam portions 22A and 22B are formed along the swing shaft 15 from the side surface portion on the through hole 10 side of the pair of support beam portions 21A and 21B.
- the pair of torsion beam portions 22A and 22B are arranged inside the through hole 10 up to a substantially central position between both side surface portions in the direction of the swing axis 15 of the reflection mirror portion 12 and the side surface portions of the support beam portions 21A and 21B. It is extended to be the same length in the direction.
- a pair of holding beam portions 23A and 23B are formed from the other ends of the pair of twisted beam portions 22A and 22B on the reflection mirror portion 12 side.
- the pair of holding beam portions 23 ⁇ / b> A and 23 ⁇ / b> B extend symmetrically with respect to the swing shaft 15 on both sides in the direction perpendicular to the swing shaft 15.
- the pair of holding beam portions 23A and 23B extend outward from both side surface portions in the direction of the swing axis 15 of the reflecting mirror portion 12 facing each other.
- a pair of connecting beam portions 24A to 24D having an L shape in plan view are formed from both ends of the pair of holding beam portions 23A and 23B in a direction perpendicular to the swing shaft 15 of each.
- Each of the pair of connecting beam portions 24A to 24D extends in the direction of the oscillating shaft 15 until it faces opposite corners at both ends in the direction perpendicular to the oscillating shaft 15 of the reflection mirror portion 12. . Thereafter, each of the pair of connecting beam portions 24A to 24D is further extended toward the reflection mirror portion 12 in the direction perpendicular to the swing shaft 15, and is perpendicular to the swing shaft 15 of the reflection mirror portion 12. They are connected to opposite corners at both ends in the direction.
- the pair of holding beam portions 23A and 23B are formed so as to be positioned at substantially the center positions between both side surface portions on the swing shaft 15 of the reflection mirror portion 12 and the side surface portions of the support beam portions 21A and 21B, respectively.
- a pair of slit-shaped through holes 20 ⁇ / b> A and 20 ⁇ / b> B are formed between the holding beam portions 23 ⁇ / b> A and 23 ⁇ / b> B and the reflection mirror portion 12 along both side edges of the reflection mirror portion 12.
- the pair of through-holes 20A and 20B includes side surfaces on the reflecting mirror portion 12 side of the holding beam portions 23A and 23B, side surfaces on the swing shaft 15 side of the pair of connecting beam portions 24A to 24D, and
- the reflection mirror portion 12 is formed by both side portions in the direction of the swing axis 15.
- the reflection mirror part 12 the pair of support beam parts 21A and 21B, the pair of base parts 25A and 25B, the pair of twisted beam parts 22A and 22B, the pair of holding beam parts 23A and 23B, and the pair of connecting beam parts 24A. ⁇ 24D are provided so as to be symmetric with respect to the swing axis 15 in the direction perpendicular thereto. Further, the reflection mirror part 12, the pair of support beam parts 21A and 21B, the pair of base parts 25A and 25B, the pair of twisted beam parts 22A and 22B, the pair of holding beam parts 23A and 23B, and the pair of connecting beam parts 24A.
- ⁇ 24D pass through the center position of the reflecting mirror portion 12 on the swing axis 15 on the swing axis 15 and are symmetrical with respect to the axis 27 perpendicular to the swing axis 15 in the direction of the swing axis 15. It is provided as follows.
- the reflection mirror section 12 is formed so that the longitudinal direction in the plan view is about 800 ⁇ m to 1200 ⁇ m, and the short side direction in the plan view (width direction) is about 100 ⁇ m to 500 ⁇ m.
- the pair of torsion beam portions 22A and 22B is formed so that a short side direction (width direction) in a plane view orthogonal to the swing shaft 15 is about 80 ⁇ m to 150 ⁇ m.
- the pair of torsion beam portions 22A and 22B is formed so that the longitudinal direction along the swing shaft 15 is about 250 ⁇ m to 1500 ⁇ m.
- a pair of piezoelectric elements 26A and 26B are formed on the respective surface portions of the pair of base portions 25A and 25B and are stacked in a substantially square shape with a thickness of about 1 ⁇ m to 10 ⁇ m and a square of about 500 ⁇ m to 1500 ⁇ m in plan view. Yes.
- Each of the piezoelectric elements 26A and 26B is not limited to a square in plan view, but may be a rectangle in plan view, a substantially square shape, a rhombus, a polygon, a circle, an ellipse, or the like.
- the pair of piezoelectric elements 26 ⁇ / b> A and 26 ⁇ / b> B is formed so that the center position is located on the axis 27 and is symmetric with respect to the swing shaft 15 with the reflection mirror portion 12 interposed therebetween.
- the axis 27 passes through the center position of the reflecting mirror portion 12 on the swing shaft 15 in the swing axis direction and is orthogonal to the swing shaft 15.
- the outer edge portions of the piezoelectric elements 26A, 26B on the outer side in the direction perpendicular to the swing shaft 15 are formed so as to be separated from the outer edge portions of the base portions 25A, 25B by a predetermined distance in the direction of the reflection mirror portion 12.
- the outer edge portions of the piezoelectric elements 26A, 26B on the outer side in the direction perpendicular to the swing axis 15 are separated from the connecting portions of the base portions 25A, 25B with the fixed frame 5 in the direction of the reflection mirror portion 12 by a predetermined distance. It is formed as follows.
- each piezoelectric element 26A, 26B on the outer side in the direction perpendicular to the swing shaft 15 is formed at a position away from the inner surface of the support portion 18 of the base 3 by a predetermined distance. Therefore, as will be described later, a standing wave having the swing shaft 15 as a node can be generated in each of the base portions 25A and 25B and the support beam portions 21A and 21B (see FIGS. 5 and 6).
- a resist film is formed and masked on the surface portion of the fixed frame 5 and the vibrating body 8 except for the piezoelectric elements 26A and 26B.
- masking is performed on the surface portions of the fixed frame 5 and the vibrating body 8 by using a metal piece in which the shape portions forming the piezoelectric elements 26A and 26B prepared separately are cut out.
- piezoelectric elements such as PZT are stacked by about 1 ⁇ m to 10 ⁇ m by an aerosol deposition method (AD method) in which film formation is performed by spraying nano-sized fine particles of piezoelectric elements such as PZT. Form.
- AD method aerosol deposition method
- each piezoelectric element 26A, 26B a pair of upper electrodes laminated with a thickness of about 0.2 ⁇ m to 0.6 ⁇ m is formed above each piezoelectric element 26A, 26B so as to form a predetermined gap with the peripheral edge of each piezoelectric element 26A, 26B. 28A and 28B are formed.
- the upper electrodes 28A and 28B are formed on the piezoelectric elements 26A and 26B on the surface portions of the fixed frame 5 and the vibrating body 8, respectively.
- a resist film is formed on the portion excluding the surface portion where the electrodes 28A and 28B are formed and masked.
- masking is performed on the surface portions of the fixed frame 5 and the vibrating body 8 using a metal piece from which the shape portions forming the upper electrodes 28A and 28B prepared separately are cut out. After that, platinum (Pt), gold (Au), etc.
- the resist film or the metal piece is removed.
- 0.05 ⁇ m of titanium (Ti) is laminated on each upper electrode 28A, 28B, and then 0.5 ⁇ m of platinum (Pt) is laminated thereon, and then the resist film or metal piece is removed. It may be.
- the portions on the fixed frame 5 facing the outer edge portions of the base portions 25A and 25B and the upper electrodes 28A and 28B are wire-bonded and formed on the base portions 25A and 25B.
- a drive voltage can be applied to each of the piezoelectric elements 26A and 26B (see FIG. 4). That is, a drive voltage is applied without applying a load to the reflecting mirror unit 12, the torsion beam portions 22A and 22B, the holding beam portions 23A and 23B, the connection beam portions 24A to 24D, and the support beam portions 21A and 21B. It becomes possible.
- the piezoelectric elements 26A and 26B are formed by the AD method as the piezoelectric element layer, and the upper electrodes 28A and 28B are formed by the physical vapor deposition method or the vacuum deposition method as the upper electrode layer. did.
- the piezoelectric elements 26A and 26B may also be formed by physical vapor deposition or vacuum deposition.
- the upper electrodes 28A and 28B may be formed by the AD method. In this physical vapor deposition method, for example, a DC voltage or an AC voltage was applied between the substrate and the target while introducing an inert gas into the vacuum, and the ionized inert gas was made to collide with the target and repelled.
- the present invention is not limited to this, and at least one of the piezoelectric element layer and the upper electrode layer may be formed by a chemical vapor deposition method (CVD: Chemical Vapor Deposition).
- CVD Chemical Vapor Deposition
- FIG. 4 is a diagram illustrating an example of the swing drive of the reflection mirror unit 12.
- FIG. 5 is a diagram showing a first resonance state in which the support beam portions 21A and 21B and the reflection mirror portion 12 swing in the same phase.
- FIG. 6 is a view showing a swing state in which the phase is shifted by 180 degrees from the swing state of FIG.
- a predetermined drive voltage for example, an alternating voltage with an amplitude of about 30 V
- a drive circuit 31 This is a voltage with a bias voltage of 30 V added).
- the piezoelectric element 26A formed on the base portion 25A is displaced in the direction perpendicular to the direction of application, that is, in the direction of the axis 27 perpendicular to the swing shaft 15.
- a drive voltage having the same voltage as that of the output voltage of the drive circuit 31 is applied to the fixed frame 5 of the main body 2 and the upper electrode 28B formed on the base body 25B via the drive circuit 32.
- the base portions 25A and 25B use the fixed frame 5 side end as the fixed end, and the support beam portions 21A and 21B side ends. Displace the part as a free end.
- the free ends are displaced upward or downward in the same direction as the piezoelectric elements 26A and 26B depending on whether the displacement of the piezoelectric elements 26A and 26B is upward or downward. That is, the free ends are displaced in opposite directions. Thereby, a standing wave having the swing shaft 15 as a node can be generated in each of the base portions 25A and 25B and the support beam portions 21A and 21B.
- the standing wave having the swing shaft 15 as a node is generated by holding the holding beam portions 23A and 23B in a horizontal state supported by the torsion beam portions 22A and 22B and the pair of connecting beam portions 24A to 24D.
- the holding beam portions 23A and 23B, the pair of connecting beam portions 24A to 24D, and the reflection mirror portion 12 are integrated around the swing shaft 15 that is the axis of the torsion beam portions 22A and 22B. Is swung. Further, since the oscillating shaft 15 is located at this standing wave node, it does not move in any direction.
- FIG. 7 is an enlarged perspective view schematically showing an example of dynamic mirror distortion of the reflection mirror unit 12 when the optical scanner 1 is driven in the first resonance state.
- FIG. 7 the dynamic mirror distortion when the reflecting mirror unit 12 shown in FIG. 5 is rotated to the maximum swing angle is rotated about the swinging shaft 15 until the reflecting mirror unit 12 is substantially horizontal. It is shown.
- the holding beam portions 23A and 23B, the pair of connecting beam portions 24A to 24D, and the reflection mirror portion 12 are set to the second resonance state in which the holding beam portions 21A and 21B swing in the opposite phase. Is possible. Also in this case, the dynamic mirror distortion in the Z-axis direction generated in the reflecting mirror portion 12 is absorbed by the holding beam portions 23A and 23B via the connecting beam portions 24A to 24D. As a result, the dynamic mirror distortion in the Z-axis direction generated in the reflection mirror unit 12 is reduced over almost the entire reflection surface 11. On the other hand, in each of the connecting beam portions 24A to 24D and the holding beam portions 23A and 23B that absorb the dynamic mirror distortion of the reflecting mirror portion 12, a large dynamic deflection with the swing shaft 15 as a node occurs.
- the pair of connecting beam portions 24A to 24D are provided at the opposite corners at both ends in the direction perpendicular to the swing shaft 15 of the reflection mirror portion 12. It is connected.
- the pair of connecting beam portions 24A to 24D are connected to both ends of the pair of holding beam portions 23A and 23B. Then, dynamic mirror distortion generated in the reflection mirror unit 12 due to the moment of inertia, air resistance, etc. of the reflection mirror unit 12 is applied to the pair of holding beam units 23A and 23B via the pair of connection beam units 24A to 24D. It can be transmitted and absorbed.
- each pair of connecting beam portions 24A to 24D is reflected.
- the positional accuracy connected to the mirror unit 12 can be reduced, and the product yield can be improved.
- both ends of the reflection mirror portion 12 in the direction of the swing axis 15 are formed so as to be parallel to the opposing holding beam portions 23A and 23B, that is, the reflection mirror portion 12 is viewed in plan view. Since it is formed in a rectangular shape, the reflecting surface 11 can be enlarged.
- the inner edge portions of the pair of base portions 25A and 25B are connected by a pair of support beam portions 21A and 21B, and the outer end edge portions of the pair of base portions 25A and 25B are fixed to the fixing member 5.
- the piezoelectric elements 26A and 26B it is possible to generate a standing wave having the swing shaft 15 as a node by the piezoelectric elements 26A and 26B in the base portions 25A and 25B and the support beam portions 21A and 21B.
- the reflection mirror portion 12 is supported by a pair of torsion beam portions 22A and 22B formed on the swing shaft 15 via each pair of connecting beam portions 24A to 24D and a pair of holding beam portions 23A and 23B.
- the reflection mirror portion 12 can be moved without displacing the swing shaft 15 of the reflection mirror portion 12 in any direction. It can be swung. Accordingly, since the swing shaft 15 of the reflection mirror unit 12 is not displaced in any direction, it is possible to further improve the effective efficiency of the reflected light of the reflection mirror unit 12.
- the main body 2 by forming the main body 2 from a conductive material having elasticity, such as stainless steel, titanium, or iron, it is not necessary to form the lower electrodes of the piezoelectric elements 26A and 26B, and the structure can be simplified. It becomes.
- a conductive material having elasticity such as stainless steel, titanium, or iron
- FIG. 8 is a plan view of the optical scanner 41 according to the second embodiment.
- 9 is a cross-sectional view taken along arrow X2-X2 in FIG.
- the overall configuration of the optical scanner 41 according to the second embodiment is substantially the same as that of the optical scanner 1 according to the first embodiment.
- the optical scanner 41 according to the second embodiment replaces the holding beam portions 23A and 23B and the pair of connecting beam portions 24A to 24D of the optical scanner 1 according to the first embodiment with the holding beam portions 42A and 42B and The difference is that each pair of connecting beam portions 43A to 43D is provided.
- the pair of torsion beam portions 22A and 22B extends symmetrically with respect to the swing shaft 15 on both sides in the direction perpendicular to the swing shaft 15 from the other end on the reflection mirror portion 12 side.
- a pair of holding beam portions 42A and 42B are formed.
- the pair of holding beam portions 42A and 42B have the same length as the opposite side surface portions of the reflecting mirror portion 12 in the direction of the swing shaft 15, that is, the length in the direction perpendicular to the swing shaft 15 of the reflecting mirror portion 12. It is extended to be the same length.
- pair of holding beam portions 42A and 42B are extended from both ends in the direction perpendicular to the respective swing shafts 15 in the swing shaft 15 direction, and each of the reflection mirror portions 12 in the swing shaft 15 direction.
- a pair of connecting beam portions 43A to 43D connected to opposite corners of both ends are formed.
- the pair of holding beam portions 42A and 42B are formed so as to be positioned at substantially the center positions between both side surface portions on the swing shaft 15 of the reflection mirror portion 12 and the side surface portions of the support beam portions 21A and 21B, respectively.
- a pair of slit-shaped through holes 45 ⁇ / b> A and 45 ⁇ / b> B are formed between the holding beam portions 42 ⁇ / b> A and 42 ⁇ / b> B and the reflection mirror portion 12 along both side edges of the reflection mirror portion 12.
- the pair of through-holes 45A and 45B includes side surfaces of the holding beam portions 42A and 42B on the reflection mirror portion 12 side, side surfaces of the pair of connecting beam portions 43A to 43D on the swing shaft 15 side,
- the reflection mirror portion 12 is formed by both side portions in the direction of the swing axis 15.
- the reflection mirror part 12, the pair of support beam parts 21A and 21B, the pair of base parts 25A and 25B, the pair of twisted beam parts 22A and 22B, the pair of holding beam parts 42A and 42B, and the pair of connecting beam parts 43A. ... To 43D are provided so as to be symmetrical with respect to the swing shaft 15 in the direction perpendicular thereto. Further, the reflection mirror part 12, the pair of support beam parts 21A and 21B, the pair of base parts 25A and 25B, the pair of twisted beam parts 22A and 22B, the pair of holding beam parts 42A and 42B, and the pair of connecting beam parts 43A.
- FIG. 10 is a diagram illustrating an example of the swing drive of the reflection mirror unit 12.
- the fixed frame 5 of the main body 2 of the optical scanner 41 and the upper electrodes 28A and 28B are reversed via the drive circuits 31 and 32, respectively.
- a drive voltage of the same voltage is applied in phase.
- a standing wave having the swing shaft 15 as a node can be generated in each of the base portions 25A and 25B and the support beam portions 21A and 21B.
- the standing wave having the swing shaft 15 as a node is supported by each holding beam portion in the horizontal state supported by the torsion beam portions 22A and 22B.
- a force giving a rotational moment can be applied to 42A, 42B, each pair of connecting beam portions 43A to 43D, and the reflecting mirror portion 12 to induce torsional vibration.
- the holding beam portions 42A and 42B, the pair of connecting beam portions 43A to 43D, and the reflection mirror portion 12 are integrated around the swing shaft 15 that is the axis of the torsion beam portions 22A and 22B. Is swung. Further, since the oscillating shaft 15 is located at this standing wave node, it does not move in any direction.
- FIG. 11 is an enlarged perspective view schematically showing an example of dynamic mirror distortion of the reflection mirror unit 12 when the optical scanner 41 is driven in the first resonance state.
- FIG. 11 shows the dynamic mirror distortion when the reflecting mirror unit 12 is rotated to the maximum swinging angle by rotating it around the swinging shaft 15 until the reflecting mirror unit 12 becomes almost horizontal. .
- the dynamic mirror distortion in the Z-axis direction generated in the reflecting mirror unit 12 due to the moment of inertia, the air resistance, etc. when the reflecting mirror unit 12 swings around the swinging shaft 15 It is absorbed by the holding beam portions 42A and 42B through 43A to 43D. For this reason, the connection point between the connecting beam portions 43A and 43D of the reflection mirror portion 12 and the side edge portion on the swing shaft 15 side, and the side edge portion of the connecting beam portions 43B and 43C on the swing shaft 15 side. In the region 47 of the reflection surface 11 sandwiched between the coupling points, the dynamic mirror distortion in the Z-axis direction generated in the reflection mirror unit 12 is reduced and reduced.
- the holding beam portions 42A and 42B, the pair of connecting beam portions 43A to 43D, and the reflection mirror portion 12 are set in a second resonance state in which the holding beam portions 21A and 21B swing in the opposite phase. Is possible. Also in this case, the dynamic mirror distortion in the Z-axis direction generated in the reflecting mirror portion 12 is absorbed by the holding beam portions 42A and 42B via the connecting beam portions 43A to 43D, and in the region 47 of the reflecting surface 11 The dynamic mirror distortion in the Z-axis direction generated in the reflection mirror unit 12 is reduced and reduced. On the other hand, in each of the connecting beam portions 43A to 43D and the holding beam portions 42A and 42B that absorb the dynamic mirror distortion of the reflecting mirror portion 12, a large dynamic deflection with the swing shaft 15 as a node occurs.
- the pair of connecting beam portions 43A to 43D are connected to opposite corner portions of both ends of the reflection mirror portion 12 in the direction of the swing axis 15. Yes.
- the pair of connecting beam portions 43A to 43D are connected to both ends of the pair of holding beam portions 42A and 42B.
- the dynamic mirror distortion generated in the reflecting mirror 12 due to the moment of inertia, air resistance, etc. of the reflecting mirror 12 is applied to the pair of holding beams 42A and 42B via the pair of connecting beams 43A to 43D. It can be transmitted and absorbed.
- the reflecting surface 11 of the reflecting mirror unit 12 is located on the inner side from both end portions corresponding to the width dimension of each pair of connecting beam portions 43A to 43D, that is, a portion having a wide region 47. Therefore, it is possible to improve the effective efficiency of reflected light.
- each pair of connecting beam portions 43A to 43D is connected to the reflecting mirror portion 12. It is possible to reduce the positional accuracy of connecting to the product, and to improve the product yield.
- both end portions of the reflection mirror portion 12 in the direction of the swing axis 15 are formed so as to be parallel to the opposing holding beam portions 42A and 42B, that is, the reflection mirror portion 12 is viewed in plan view. Since it is formed in a rectangular shape, the reflecting surface 11 can be enlarged.
- the inner edge portions of the pair of base portions 25A and 25B are connected by a pair of support beam portions 21A and 21B, and the outer end edge portions of the pair of base portions 25A and 25B are fixed to the fixing member 5.
- the piezoelectric elements 26A and 26B it is possible to generate a standing wave having the swing shaft 15 as a node by the piezoelectric elements 26A and 26B in the base portions 25A and 25B and the support beam portions 21A and 21B.
- the reflection mirror portion 12 is supported by a pair of torsion beam portions 22A and 22B formed on the swing shaft 15 via each pair of connecting beam portions 43A to 43D and a pair of holding beam portions 42A and 42B.
- the reflection mirror portion 12 can be moved without displacing the swing shaft 15 of the reflection mirror portion 12 in any direction. It can be swung. Accordingly, since the swing shaft 15 of the reflection mirror unit 12 is not displaced in any direction, it is possible to further improve the effective efficiency of the reflected light of the reflection mirror unit 12.
- the main body 2 by forming the main body 2 from a conductive material having elasticity, such as stainless steel, titanium, or iron, it is not necessary to form the lower electrodes of the piezoelectric elements 26A and 26B, and the structure can be simplified. It becomes.
- a conductive material having elasticity such as stainless steel, titanium, or iron
- FIG. 12 is a plan view of the optical scanner 61 according to the third embodiment.
- 13 is a cross-sectional view taken along arrow X3-X3 in FIG.
- the overall configuration of the optical scanner 61 according to the third embodiment is substantially the same as that of the optical scanner 1 according to the first embodiment.
- the optical scanner 61 according to the third embodiment replaces the holding beam portions 23A and 23B and the pair of connecting beam portions 24A to 24D of the optical scanner 1 according to the first embodiment with each of the holding beam portions 62A and 62B and The difference is that each pair of connecting beam portions 63A to 63D is provided.
- the pair of holding beam portions 62A and 62B are provided on both sides of the pair of torsion beam portions 22A and 22B in the direction perpendicular to the swinging shaft 15 from the other ends of the reflecting mirror portion 12 side. It extends symmetrically with respect to the swing shaft 15. Further, the pair of holding beam portions 62A and 62B are shorter in length than both side surface portions in the direction of the swing axis 15 of the reflecting mirror portion 12 facing each other, that is, perpendicular to the swing shaft 15 of the reflection mirror portion 12. It is extended to be shorter than the length.
- each pair of connecting beam portions 63A to 63D extends in the direction of the oscillating shaft 15 from both ends perpendicular to the respective oscillating shafts 15 of the pair of holding beam portions 62A and 62B.
- the reflecting mirror unit 12 is connected to both end portions in the direction of the swing axis 15.
- the pair of holding beam portions 62A and 62B are formed so as to be positioned at substantially the center positions between both side surface portions on the swing shaft 15 of the reflection mirror portion 12 and the side surface portions of the support beam portions 21A and 21B, respectively.
- a pair of slit-like through holes 65 ⁇ / b> A and 65 ⁇ / b> B are formed between the holding beam portions 62 ⁇ / b> A and 62 ⁇ / b> B and the reflection mirror portion 12 along both side edges of the reflection mirror portion 12.
- the pair of through-holes 65A and 65B includes side surfaces of the holding beam portions 62A and 62B on the reflection mirror portion 12 side, side surfaces of the pair of connecting beam portions 63A to 63D on the swing shaft 15 side,
- the reflection mirror portion 12 is formed by both side portions in the direction of the swing axis 15.
- ⁇ 63D are provided so as to be symmetrical with respect to the swing axis 15 in a direction perpendicular thereto.
- ⁇ 63D pass through the center position in the swing axis direction on the swing shaft 15 of the reflection mirror portion 12 and are symmetrical in the swing shaft 15 direction with respect to the axis 27 orthogonal to the swing shaft 15. It is provided as follows.
- FIG. 14 is a diagram illustrating an example of the swing drive of the reflection mirror unit 12.
- the fixed frame 5 of the main body 2 of the optical scanner 61 and the upper electrodes 28A and 28B are reversed via the drive circuits 31 and 32, respectively.
- a drive voltage of the same voltage is applied in phase.
- a standing wave having the swing shaft 15 as a node can be generated in each of the base portions 25A and 25B and the support beam portions 21A and 21B.
- the standing wave having the swing shaft 15 as a node is supported by each holding beam portion in the horizontal state supported by the torsion beam portions 22A and 22B.
- a force giving a rotational moment can be applied to 62A, 62B, each pair of connecting beam portions 63A to 63D, and the reflecting mirror portion 12 to induce torsional vibration.
- the holding beam portions 62A and 62B, the pair of connecting beam portions 63A to 63D, and the reflection mirror portion 12 are integrated around the swing shaft 15 that is the axis of the torsion beam portions 22A and 22B. Is swung. Further, since the oscillating shaft 15 is located at this standing wave node, it does not move in any direction.
- FIG. 15 is an enlarged perspective view schematically showing an example of dynamic mirror distortion of the reflection mirror unit 12 when the optical scanner 61 is driven in the first resonance state.
- FIG. 15 shows the dynamic mirror distortion when the reflecting mirror unit 12 is rotated to the maximum swinging angle by rotating it around the swinging shaft 15 until the reflecting mirror unit 12 becomes almost horizontal. .
- the dynamic mirror distortion in the Z-axis direction generated in the reflecting mirror portion 12 due to the moment of inertia, air resistance, etc. when the reflecting mirror portion 12 swings around the swinging shaft 15 It is absorbed by the holding beam portions 62A and 62B through 63A to 63D. For this reason, the connection point between the connecting beam portions 63A and 63D of the reflection mirror portion 12 and the side edge portion on the swing shaft 15 side, and the side edge portion on the swing shaft 15 side of each connection beam portion 63B and 63C. In the region 67 of the central portion of the reflecting surface 11 between the coupling points, the dynamic mirror distortion in the Z-axis direction generated in the reflecting mirror unit 12 is reduced and reduced.
- the holding beam portions 62A and 62B, the pair of connecting beam portions 63A to 63D, and the reflection mirror portion 12 are set in a second resonance state in which the holding beam portions 21A and 21B swing in the opposite phase. Is possible. Also in this case, the dynamic mirror distortion in the Z-axis direction generated in the reflecting mirror portion 12 is absorbed by the holding beam portions 62A and 62B via the connecting beam portions 63A to 63D, and in the region 67 of the reflecting surface 11 The dynamic mirror distortion in the Z-axis direction generated in the reflection mirror unit 12 is reduced and reduced.
- the pair of connecting beam portions 63A to 63D are connected to both end portions of the reflection mirror portion 12 in the direction of the swing axis 15.
- the pair of connecting beam portions 63A to 63D are connected to both ends of the pair of holding beam portions 62A and 62B. Then, dynamic mirror distortion generated in the reflection mirror unit 12 due to the moment of inertia, air resistance, and the like of the reflection mirror unit 12 is applied to the pair of holding beam units 62A and 62B via the pair of connection beam units 63A to 63D. It can be transmitted and absorbed.
- each pair of connecting beam portions 63A to 63D is connected to both ends of the reflecting mirror portion 12 in the direction of the swing axis 15, the pair of connecting beam portions 63A to 63D are connected to the reflecting mirror portion 12 with high positional accuracy. Reduction can be achieved and the product yield can be improved.
- both end portions of the reflection mirror portion 12 in the direction of the swing axis 15 are formed so as to be parallel to the opposing holding beam portions 62A and 62B, that is, the reflection mirror portion 12 is viewed in plan view. Since it is formed in a rectangular shape, the reflecting surface 11 can be enlarged.
- the inner edge portions of the pair of base portions 25A and 25B are connected by a pair of support beam portions 21A and 21B, and the outer end edge portions of the pair of base portions 25A and 25B are fixed to the fixing member 5.
- the piezoelectric elements 26A and 26B it is possible to generate a standing wave having the swing shaft 15 as a node by the piezoelectric elements 26A and 26B in the base portions 25A and 25B and the support beam portions 21A and 21B.
- the reflection mirror portion 12 is supported by a pair of torsion beam portions 22A and 22B formed on the swing shaft 15 via each pair of connecting beam portions 63A to 63D and a pair of holding beam portions 62A and 62B.
- the reflection mirror portion 12 can be moved without displacing the swing shaft 15 of the reflection mirror portion 12 in any direction. It can be swung. Accordingly, since the swing shaft 15 of the reflection mirror unit 12 is not displaced in any direction, it is possible to further improve the effective efficiency of the reflected light of the reflection mirror unit 12.
- the main body 2 by forming the main body 2 from a conductive material having elasticity, such as stainless steel, titanium, or iron, it is not necessary to form the lower electrodes of the piezoelectric elements 26A and 26B, and the structure can be simplified. It becomes.
- a conductive material having elasticity such as stainless steel, titanium, or iron
- FIG. 16 is a plan view of an optical scanner 81 according to the fourth embodiment.
- 17 is a cross-sectional view taken along arrow X4-X4 in FIG.
- the overall configuration of the optical scanner 81 according to the fourth embodiment is substantially the same as that of the optical scanner 1 according to the first embodiment.
- the optical scanner 81 according to the fourth embodiment is different from the reflecting mirror portion 12, the holding beam portions 23A and 23B, and the pair of connecting beam portions 24A to 24D of the optical scanner 1 according to the first embodiment.
- 82, the holding beam portions 83A and 83B, and the pair of connecting beam portions 84A to 84D are different from the reflecting mirror portion 12, the holding beam portions 23A and 23B, and the pair of connecting beam portions 24A to 24D of the optical scanner 1 according to the first embodiment.
- a reflection mirror portion 82 having a reflection surface 11 having a substantially horizontally long octagonal shape in a plan view is provided at the center of the through hole 10.
- the reflection mirror portion 82 has a central portion including the swing shaft 15 formed in a rectangular shape in a plan view that is long in a direction perpendicular to the swing shaft 15, and with respect to the swing shaft 15 at the center portion.
- the width in the direction of the oscillating shaft 15 is extended outwardly from both side edge portions in the perpendicular direction so as to gradually narrow.
- the reflection mirror portion 82 is formed in a direction perpendicular to the swing shaft 15, that is, symmetrical to the longitudinal direction of the reflection mirror portion 82.
- shaft 15 of the reflective mirror part 82 is not restricted to a planar view rectangle, A square, substantially square shape, etc. may be sufficient.
- the reflection mirror portion 82 is not limited to a substantially horizontally long octagonal shape in plan view, and may be elliptical in plan view.
- a pair of twisted beam portions 22A and 22B that extend symmetrically with respect to the swing shaft 15 on both sides in the direction perpendicular to the swing shaft 15 from the other ends of the pair of torsion beam portions 22A and 22B on the reflection mirror portion 82 side.
- Holding beam portions 83A and 83B are formed.
- the pair of holding beam portions 83A and 83B extend so as to have substantially the same length as the center portions of the opposing reflecting mirror portions 82, that is, both side surface portions in the direction of the swing axis 15 of the rectangular portion in plan view. .
- both side surfaces of the pair of holding beam portions 83A and 83B in the direction of the oscillating shaft 15 whose width gradually decreases from both ends in the direction perpendicular to the oscillating shaft 15 of the pair of holding beam portions 83A and 83B.
- a pair of connecting beam portions 84A to 84D are formed along the line.
- Each of the pair of connecting beam portions 84A to 84D extends outward from both side surface portions of the reflecting mirror portion 82 facing each other in the direction of the swing shaft 15, and thereafter, is perpendicular to the swing shaft 15 of the reflection mirror portion 82. It extends in the direction of the swing shaft 15 until it faces opposite corners at both ends in the direction.
- Each of the pair of connecting beam portions 84A to 84D is further extended toward the reflection mirror portion 82 at the right angle direction with respect to the swing shaft 15, and both ends in the direction perpendicular to the swing shaft 15 of the reflection mirror portion 82 are extended. Connected to opposite corners of the part.
- the pair of holding beam portions 83A and 83B are formed so as to be positioned at substantially central positions between both side surface portions on the swing shaft 15 of the reflection mirror portion 82 and the side surface portions of the support beam portions 21A and 21B, respectively.
- a pair of through-holes 85A and 85B having a generally arcuate shape in plan view are formed between the holding beam portions 83A and 83B and the reflection mirror portion 82 along both side edges of the reflection mirror portion 82.
- the pair of through-holes 85A and 85B includes side surfaces of the holding beam portions 83A and 83B on the reflecting mirror portion 82 side, side surfaces of the pair of connecting beam portions 84A to 84D on the swing shaft 15 side,
- the reflection mirror portion 82 is formed by both side portions in the direction of the swing axis 15.
- ⁇ 84D are provided so as to be symmetrical with respect to the swing axis 15 in a direction perpendicular thereto.
- the reflection mirror 82 is formed so that the longitudinal direction in the plan view is about 800 ⁇ m to 1200 ⁇ m, and the short side direction (width direction) in the center portion is about 100 ⁇ m to 500 ⁇ m.
- the pair of torsion beam portions 22A and 22B are formed so that a short side direction (width direction) in a plane view orthogonal to the swing shaft 15 is about 80 ⁇ m to 150 ⁇ m, and a longitudinal direction along the swing shaft 15 Is formed to be about 250 ⁇ m to 1500 ⁇ m.
- FIG. 18 is a diagram illustrating an example of the swing drive of the reflection mirror unit 82.
- the fixing frame 5 of the main body 2 of the optical scanner 81 and the upper electrodes 28A and 28B are reversed via the drive circuits 31 and 32, respectively.
- a drive voltage of the same voltage is applied in phase. Thereby, a standing wave having the swing shaft 15 as a node can be generated in each of the base portions 25A and 25B and the support beam portions 21A and 21B.
- the standing wave having the swing shaft 15 as a node is supported by each holding beam portion in the horizontal state supported by the torsion beam portions 22A and 22B.
- 83A, 83B, a pair of connecting beam portions 84A to 84D, and a reflection mirror portion 82 can be subjected to a force giving a rotational moment, and torsional vibration is induced.
- the holding beam portions 83A and 83B, the pair of connecting beam portions 84A to 84D, and the reflection mirror portion 82 are integrated around the swing shaft 15 that is the axis of the torsion beam portions 22A and 22B. Is swung. Further, since the oscillating shaft 15 is located at this standing wave node, it does not move in any direction.
- FIG. 19 is an enlarged perspective view schematically showing an example of dynamic mirror distortion of the reflection mirror unit 82 when the optical scanner 81 is driven in the first resonance state.
- FIG. 19 shows the dynamic mirror distortion when the reflecting mirror unit 82 is rotated to the maximum swinging angle by rotating it around the swinging shaft 15 until the reflecting mirror unit 82 becomes almost horizontal. .
- the dynamic mirror distortion in the Z-axis direction generated in the reflecting mirror portion 82 due to the moment of inertia, air resistance, etc. when the reflecting mirror portion 82 swings around the swing shaft 15 It is absorbed by the holding beam portions 83A and 83B via 84A to 84D.
- the dynamic mirror distortion in the Z-axis direction generated in the reflection mirror portion 82 is reduced over almost the entire reflection surface 11.
- a large dynamic deflection with the swing shaft 15 as a node occurs in each of the connecting beam portions 84A to 84D and the holding beam portions 83A and 83B that absorb the dynamic mirror distortion of the reflecting mirror portion 82.
- the holding beam portions 83A and 83B, the pair of connecting beam portions 84A to 84D, and the reflection mirror portion 82 are set to a second resonance state in which the holding beam portions 21A and 21B swing in the opposite phase. Is possible. Even in this case, the dynamic mirror distortion in the Z-axis direction generated in the reflecting mirror portion 82 is applied to the connecting beam portions 84A to 84D and the holding beam portions 83A and 83B via the connecting beam portions 84A to 84D. Absorbed and reduced over almost the entire reflective surface 11. On the other hand, a large dynamic deflection with the swing shaft 15 as a node occurs in each of the connecting beam portions 84A to 84D and the holding beam portions 83A and 83B that absorb the dynamic mirror distortion of the reflecting mirror portion 82.
- the pair of connecting beam portions 84A to 84D and the pair of connecting beam portions 84A to 84D and the opposite corner portions at both ends in the direction perpendicular to the swing shaft 15 of the reflection mirror portion 82 are provided.
- a pair of holding beam portions 83A and 83B are connected. Then, the dynamic mirror distortion generated in the reflecting mirror portion 82 due to the moment of inertia, air resistance, etc. of the reflecting mirror portion 82 is transmitted to each of the pair of connecting beam portions 84A to 84D and the pair of holding beam portions 83A and 83B. It can be absorbed.
- each pair of connecting beam portions 84A to 84D is reflected.
- the positional accuracy connected to the mirror part 82 can be reduced, and the product yield can be improved.
- the reflecting mirror portion 82 is formed in a substantially horizontally long octagonal shape in a plan view that is elongated in a direction perpendicular to the swing shaft 15, an inertia moment acting on both end portions in the direction perpendicular to the swing shaft 15 is generated. It can be made smaller. As a result, it is possible to further reduce dynamic mirror distortion generated in the reflection mirror unit 82.
- the inner edge portions of the pair of base portions 25A and 25B are connected by a pair of support beam portions 21A and 21B, and the outer end edge portions of the pair of base portions 25A and 25B are fixed to the fixing member 5.
- the piezoelectric elements 26A and 26B it is possible to generate a standing wave having the swing shaft 15 as a node by the piezoelectric elements 26A and 26B in the base portions 25A and 25B and the support beam portions 21A and 21B.
- the reflection mirror portion 82 is supported by a pair of torsion beam portions 22A and 22B formed on the swing shaft 15 via each pair of connecting beam portions 84A to 84D and a pair of holding beam portions 83A and 83B.
- the reflecting mirror portion 82 is formed symmetrically in the direction perpendicular to the oscillating shaft 15 so that the reflecting mirror portion 82 can be moved without displacing the oscillating shaft 15 of the reflecting mirror portion 82 in any direction. It can be swung. Accordingly, since the swing shaft 15 of the reflection mirror portion 82 is not displaced in any direction, it is possible to further improve the effective efficiency of the reflected light of the reflection mirror portion 82.
- the main body 2 by forming the main body 2 from a conductive material having elasticity, such as stainless steel, titanium, or iron, it is not necessary to form the lower electrodes of the piezoelectric elements 26A and 26B, and the structure can be simplified. It becomes.
- a conductive material having elasticity such as stainless steel, titanium, or iron
- the present invention is not limited to the first to fourth embodiments, and various improvements and modifications can be made without departing from the gist of the present invention. For example, the following may be used.
- the main body 2 may be formed of a non-conductive material having an elastic thickness of about 30 ⁇ m to 100 ⁇ m, such as silicon or quartz.
- the through holes 6, the through holes 10, and the through holes 20A, 20B, 45A, 45B, 65A, 65B, 85A, and 85B are formed on a thin rectangular silicon substrate having a thickness of about 30 ⁇ m to 100 ⁇ m.
- a resist film is formed on the portion excluding the portion and masked. Thereafter, etching is performed to form the through holes 6 and 10 and the through holes 20A, 20B, 45A, 45B, 65A, 65B, 85A, and 85B, and then the resist film is removed.
- the fixed frame 5 each reflection mirror part 12, 82, each torsion beam part 22A, 22B, each support beam part 21A, 21B, each base part 25A, 25B, each holding beam part 23A, 23B, 42A, 42B, 62A, 62B, 83A, 83B, and connecting beam portions 24A-24D, 43A-43D, 63A-63D, 84A-84D are formed.
- platinum (Pt), gold (Au), etc. are about 0.2 ⁇ m to 0 over the fixed frame 5 from the portions where the piezoelectric elements 26A, 26B are formed on the base portions 25A, 25B.
- a pair of lower electrodes 31A and 31B (not shown) are formed by stacking 6 ⁇ m. Thereafter, the piezoelectric elements 26A and 26B may be formed on the lower electrodes 31A and 31B, and then the upper electrodes 28A and 28B may be formed on the piezoelectric elements 26A and 26B.
- the lower electrodes 31A and 31B and the upper electrodes 28A and 28B on the fixed frame 5 are wire-bonded to the piezoelectric elements 26A and 26B formed on the base portions 25A and 25B.
- a drive voltage can be applied.
- the upper electrodes 28A and 28B, the piezoelectric elements 26A and 26B, and the lower electrodes 31A and 31B can be formed by a thin film technique such as a conventional sputtering method or a CVD method.
- a magnetostrictive film such as a super magnetostrictive material that expands and contracts by an alternating magnetic field from the outside, or a permanent magnet film that is attracted and repelled by an alternating magnetic field from the outside.
- a coil may be provided in the vicinity of each of the base portions 25A and 25B, and an alternating current may be passed through the coil to form an alternating magnetic field.
- standing waves having the swing shaft 15 as a node are generated in the base portions 25A and 25B and the support beam portions 21A and 21B, and the reflection mirror portions 12 and 82 are swung around the swing shaft 15. It can be driven dynamically.
- the main body 2 is preferably formed of a nonmagnetic material.
- the outer edge portions of the base portions 25A and 25B are extended to the support portions 18 of the base 3 to directly support the base portions 25A and 25B. It may be fixed on the portion 18. As a result, the main body 2 can be reduced in size.
- Optical scanner 2 Main body part 3
- Base 5 Fixed frame 6, 10, 20A, 20B, 45A, 45B Through hole 65A, 65B, 85A, 85B Through hole 12, 82 Reflection mirror part 15, 103 Oscillating shaft 21A, 21B Support beam 22A, 22B Torsion beam 23A, 23B, 42A, 42B, 62A, 62B, 83A, 83B Holding beam 24A-24D, 43A-43D, 63A-63D, 84A-84D Connecting beam Part 25A, 25B
- Mirror part 102 Movable part 104A-104D Beam 105 Torsion bar
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Optical Scanning Systems (AREA)
- Facsimile Scanning Arrangements (AREA)
- Micromachines (AREA)
Abstract
各基体部25A、25Bの各反射ミラー部12側の端縁部は、その両端部を各支持梁部21A、21Bによって連結されている。また、この各基体部25A、25Bの外側端縁部は、固定枠5に固定されている。また、一対の捻れ梁部22A、22Bが、一対の支持梁部21A、21Bの貫通孔10側の側面部から揺動軸15に沿って、反射ミラー部12の揺動軸15方向の両側面部と各支持梁部21A、21Bの側面部との略中央位置まで延出されている。また、反射ミラー部12は、各一対の連結梁部24A~24D及び一対の保持梁部23A、23Bを介して、揺動軸15上に形成された一対の捻れ梁部22A、22Bによって支持される。
Description
本発明は、光スキャナに関するものである。
従来より、ミラー部を揺動軸回りに揺動駆動して所定方向に光を走査する光スキャナに関して種々提案されている。
例えば、従来の光スキャナの一例を図20に基づいて説明する。図20は従来の光スキャナの一例を示す平面図である。
例えば、従来の光スキャナの一例を図20に基づいて説明する。図20は従来の光スキャナの一例を示す平面図である。
図20に示すように、光スキャナ100では、枠体状の可動部102が、ミラー部101の周囲を囲むように配置されている。また、このミラー部101と可動部102とは、揺動軸103上に形成された各梁104A、104Bと、揺動軸103に対して直角方向のミラー101の幅方向中心線上に形成された各梁104C、104Dとによって接続されている。また、可動部102は揺動軸103上に形成された各トーションバー105によって揺動可能に軸支されている。そして、当該可動部102が揺動駆動される。
また、このように構成された光スキャナ100において、静磁界を発生させる一対の永久磁石が、揺動軸103に対して直角方向のミラー101の幅方向中心線上で、可動部102の両外側に配置されている。そして、可動部102に設けられた不図示のコイルに交番電圧を印加することにより、ミラー部101及び可動部102は、共振状態でトーションバー105を中心に捻れ振動が誘起される(例えば、特許文献1参照。)。
特開2002-131685号公報(段落(0016)~(0025)、図1~図3)
しかしながら、上述した特許文献1に記載される構成の光スキャナ100では、共振状態において、ミラー部101の中央部には、動的ミラー歪みが生じる。この動的ミラー歪みは、ミラー部101及び可動部102の慣性モーメントや空気抵抗等のために、反射面により反射された反射光の光学特性に影響を与える程度(例えば、撓み量1μm以上である。)になるという問題がある。
尚、動的ミラー歪みとは、ミラー部の揺動時に、慣性モーメントや空気抵抗等によってミラー部の反射面に生じる歪みをいう。
尚、動的ミラー歪みとは、ミラー部の揺動時に、慣性モーメントや空気抵抗等によってミラー部の反射面に生じる歪みをいう。
ここで、光スキャナ100を共振状態で駆動した場合のミラー部101の動的ミラー歪みの一例を図21に基づいて説明する。図21は図20の光スキャナ100を共振状態で駆動した場合のミラー部101の動的ミラー歪みの一例を模式的に示す拡大斜視図である。尚、図21では、ミラー部101が最大揺動角度まで回動したときの動的ミラー歪みを、ミラー部101がほぼ水平になるまで揺動軸103回りに回転させて示すものである。
図21に示すように、光スキャナ100のミラー部101には、慣性モーメントや空気抵抗等のために、反射面に揺動軸103に対して直角方向で該揺動軸103を中心とする正弦波の変形が生じる。そして、その変形が各梁104A~104Dを介して可動枠102に伝達され、当該可動枠102にも揺動軸103を中心とする正弦波の変形が生じている。つまり、ミラー部101に発生する動的ミラー歪みが、各梁104A~104Dを介して可動枠102で吸収されないため、当該ミラー部101の中央部に、1μm以上にも達する撓み量が発生する。そのため、ミラー部101の中央部における反射面で反射された反射光の光学特性が悪化するという問題がある。
そこで、本発明は、上述した問題点を解決するためになされたものであり、ミラー部の揺動時に、反射光の光学特性に悪影響を与えるミラー部の動的ミラー歪みを効果的に抑制することが可能な光スキャナを提供することを目的とする。
前記目的を達成するため本発明の光スキャナは、ミラー部を揺動軸回りに揺動駆動して所定方向に光を走査する光スキャナにおいて、前記ミラー部の揺動軸に沿って一端が支持されて該揺動軸回りに捻れ振動される一対の捻れ梁部と、前記一対の捻れ梁部のそれぞれの他端から前記揺動軸に対して直角方向両側に該揺動軸に対して対称に延出されて前記ミラー部の揺動軸方向の両端部に相対向する一対の保持梁部と、前記一対の保持梁部のそれぞれの両端から延出されて相対向する前記ミラー部の前記揺動軸に対して対称な所定位置に接続される各一対の連結梁部と、前記一対の捻れ梁部に前記揺動軸回りの捻れ振動を誘起する振動誘起部と、を備えたことを特徴とする。
このような光スキャナでは、ミラー部の動的ミラー歪みを、各一対の連結梁部を介して、この各一対の連結梁部が両端部に接続された一対の保持梁部に伝達して吸収することが可能となる。このため、ミラー部の揺動時に、当該ミラー部の揺動軸に対して直角方向の各一対の連結梁部によって挟まれた揺動軸を含む中央側の部分の動的ミラー歪みを低減できる。これにより、反射光の光学特性に悪影響を与えるミラー部の動的ミラー歪みを効果的に抑制することが可能となる。
また、各保持梁部は、一対の捻れ梁部のそれぞれの他端から揺動軸に対して直角方向両側に該揺動軸に対して対称に延出されている。このため、各捻れ梁部の揺動軸回りの捻れ振動により発生するミラー部の揺動軸をどの方向にも変位させることなく、ミラー部を揺動させることが可能となる。
また、本発明の光スキャナにおいて、前記ミラー部は、前記揺動軸に対して直角方向に対称に形成され、前記各一対の連結梁部は、前記一対の保持梁部のそれぞれの両端から揺動軸方向に延出されて相対向する前記ミラー部の揺動軸方向の両端部に接続されるようにしてもよい。
このような光スキャナでは、ミラー部の揺動時に、当該ミラー部の反射面において、各連結梁部の幅寸法に相当する両端部分より内側、つまり、中央側の部分の反射面に発生する動的ミラー歪みを低減して、反射光の実効効率の向上を図ることが可能となる。
また、ミラー部は揺動軸に対して直角方向に対称に形成されているため、各捻れ梁部の揺動軸回りの捻れ振動により発生するミラー部の揺動軸をどの方向にも変位させることなく、ミラー部を揺動させることが可能となる。
また、ミラー部は揺動軸に対して直角方向に対称に形成されているため、各捻れ梁部の揺動軸回りの捻れ振動により発生するミラー部の揺動軸をどの方向にも変位させることなく、ミラー部を揺動させることが可能となる。
また、本発明の光スキャナにおいて、前記各一対の連結梁部は、それぞれ前記ミラー部の揺動軸方向の両端部の相対向する隅部に接続されるようにしてもよい。
このような光スキャナでは、各一対の連結梁部をミラー部の揺動軸方向の両端部の相対向する隅部に接続するため、ミラー部の揺動時に、当該ミラー部の反射面において、各連結梁部の幅寸法に相当する両端部分より内側、つまり、中央側のほぼ全反射面に発生する動的ミラー歪みを低減して、反射光の実効効率の更なる向上を図ることが可能となる。
また、各一対の連結梁部をミラー部の揺動軸方向の両端部の相対向する隅部に接続するため、各一対の連結梁部をミラー部に接続する位置精度の低減化を図ることができ、製品歩留まりの向上を図ることができる。
また、各一対の連結梁部をミラー部の揺動軸方向の両端部の相対向する隅部に接続するため、各一対の連結梁部をミラー部に接続する位置精度の低減化を図ることができ、製品歩留まりの向上を図ることができる。
また、本発明の光スキャナにおいて、前記ミラー部は、前記揺動軸に対して直角方向に対称に形成され、前記保持梁部は、相対向する前記ミラー部の揺動軸方向の両端部よりも外側に延出され、前記各一対の連結梁部は、前記一対の保持梁部のそれぞれの両端から揺動軸方向に所定長さ延出された後、更に、前記ミラー部側に延出されて該ミラー部の揺動軸に対して直角方向両端部の相対向する隅部に接続されるようにしてもよい。
このような光スキャナでは、ミラー部の揺動時に、当該ミラー部の揺動軸に対して直角方向の両端部より内側、つまり、ほぼ全反射面に発生する動的ミラー歪みを低減して、反射光の実効効率の向上を図ることが可能となる。
また、ミラー部は揺動軸に対して直角方向に対称に形成されているため、各捻れ梁部の揺動軸回りの捻れ振動により発生するミラー部の揺動軸をどの方向にも変位させることなく、ミラー部を揺動させることが可能となる。
また、ミラー部は揺動軸に対して直角方向に対称に形成されているため、各捻れ梁部の揺動軸回りの捻れ振動により発生するミラー部の揺動軸をどの方向にも変位させることなく、ミラー部を揺動させることが可能となる。
また、各一対の連結梁部をミラー部の揺動軸に対して直角方向両端部の相対向する隅部に接続するため、各一対の連結梁部をミラー部に接続する位置精度の低減化を図ることができ、製品歩留まりの向上を図ることができる。
また、本発明の光スキャナにおいて、前記ミラー部の揺動軸方向の両端部は、相対向する前記保持梁部に対して平行になるように形成してもよい。
このような光スキャナでは、ミラー部の揺動軸方向の両端部は、相対向する保持梁部に対して平行になるように形成されているため、反射面を大きくすることが可能となる。
また、本発明の光スキャナにおいて、前記ミラー部は、中央部分が平面視矩形状に形成されると共に、その中央部分の前記揺動軸に対して直角方向両側端縁部から外側方向に揺動軸方向の幅が徐々に狭くなるように延出されて、該揺動軸に対して直角方向に対称に形成され、前記保持梁部は、相対向する前記ミラー部の中央部分の揺動軸方向の両端部とほぼ同じ長さに形成され、前記各一対の連結梁部は、前記一対の保持梁部のそれぞれの両端から、前記ミラー部の中央部分から徐々に幅が狭くなる揺動軸方向の両端部に沿って、相対向する該ミラー部の揺動軸方向の両端部より外側に延出された後、更に、該ミラー部側に延出されて該ミラー部の揺動軸に対して直角方向両端部の相対向する隅部に接続されるようにしてもよい。
このような光スキャナでは、ミラー部の揺動時に、当該ミラー部の揺動軸に対して直角方向の両端部より内側、つまり、ほぼ全反射面に発生する動的ミラー歪みを低減して、反射光の実効効率の向上を図ることが可能となる。
また、ミラー部は、中央部分の揺動軸に対して直角方向両側端縁部から外側方向に揺動軸方向の幅が徐々に狭くなるように形成されているため、揺動軸に対して直角方向両端縁部に作用する慣性モーメントを小さくすることが可能となる。これにより、ミラー部に発生する動的ミラー歪みの更なる低減化を図ることが可能となる。
また、ミラー部は、中央部分の揺動軸に対して直角方向両側端縁部から外側方向に揺動軸方向の幅が徐々に狭くなるように形成されているため、揺動軸に対して直角方向両端縁部に作用する慣性モーメントを小さくすることが可能となる。これにより、ミラー部に発生する動的ミラー歪みの更なる低減化を図ることが可能となる。
また、ミラー部は揺動軸に対して直角方向に対称に形成されているため、各捻れ梁部の揺動軸回りの捻れ振動により発生するミラー部の揺動軸をどの方向にも変位させることなく、ミラー部を揺動させることが可能となる。
また、各一対の連結梁部をミラー部の揺動軸に対して直角方向両端部の相対向する隅部に接続するため、各一対の連結梁部をミラー部に接続する位置精度の低減化を図ることができ、製品歩留まりの向上を図ることができる。
また、各一対の連結梁部をミラー部の揺動軸に対して直角方向両端部の相対向する隅部に接続するため、各一対の連結梁部をミラー部に接続する位置精度の低減化を図ることができ、製品歩留まりの向上を図ることができる。
更に、本発明の光スキャナにおいて、前記振動誘起部は、前記一対の捻れ梁部のそれぞれの前記一端が長手方向中央部に連結されて相対向するように形成される一対の支持梁部と、前記ミラー部を挟んで前記一対の支持梁部の各長手方向端部にそれぞれ内側端縁部が連結されて、前記揺動軸に対して直角方向に対称に配置される一対の平板状の基体部と、前記一対の基体部の外側端縁部が連結される固定部材と、前記一対の基体部の少なくとも一方の基体部の表面部に形成された励振手段とを有するようにしてもよい。
このような光スキャナでは、一対の基体部の各内側端縁部は、一対の支持梁部によって連結され、この一対の基体部の各外側端縁部は、固定部材に固定されている。これにより、励振手段によって揺動軸を節とする定在的な波を各基体部及び各支持梁部に発生させることが可能となる。また、ミラー部は、各一対の連結梁部及び一対の保持梁部を介して、揺動軸上に形成された一対の捻れ梁部によって支持される。これにより、このミラー部の揺動軸をどの方向にも変位させることなく、ミラー部を揺動させることが可能となる。
以下、本発明に係る光スキャナについて具体化した実施例1乃至実施例4に基づき図面を参照しつつ詳細に説明する。
[光スキャナ1の概略構成]
先ず、実施例1に係る光スキャナ1の概略構成について図1乃至図3に基づき説明する。図1は光スキャナ1の概略構成を模式的に示す分解斜視図である。図2は光スキャナ1の平面図である。図3は図2のX1-X1矢視断面図である。
図1乃至図3に示すように、光スキャナ1は、本体部2がベース3に装着されて構成されている。この本体部2は、ステンレス(例えば、SUS304やSUS430等である。)、チタン、鉄等、弾性を有する導電性材料を用いて、プレス加工又はエッチングによって形成されている。本体部2の厚さは、約30μm~100μmとされている。
先ず、実施例1に係る光スキャナ1の概略構成について図1乃至図3に基づき説明する。図1は光スキャナ1の概略構成を模式的に示す分解斜視図である。図2は光スキャナ1の平面図である。図3は図2のX1-X1矢視断面図である。
図1乃至図3に示すように、光スキャナ1は、本体部2がベース3に装着されて構成されている。この本体部2は、ステンレス(例えば、SUS304やSUS430等である。)、チタン、鉄等、弾性を有する導電性材料を用いて、プレス加工又はエッチングによって形成されている。本体部2の厚さは、約30μm~100μmとされている。
この本体部2は、図1の上部、図2及び図3に示すように、概略的には薄板長方形状を成している。本体部2は、外側に固定枠5を備え、その固定枠5の内側には、長手方向両側縁部に沿ってスリット状の一対の貫通孔6が、相互に対向するように形成されて、平面視長方形状の振動体8が設けられている。
また、振動体8は、長手方向中央位置に光が通過し得る平面視長方形状の貫通孔10が形成されている。そして、この貫通孔10の中央部には、反射面11が形成された平面視略長方形状の反射ミラー部12が、揺動軸15に対して直角方向、つまり、反射ミラー部12の長手方向対称になるように設けられている。そして、反射ミラー部12の反射面11は、その長手方向の対称中心線でもある揺動軸15を中心として揺動させられる。尚、反射ミラー部12は、長方形に限らず、正方形、略四角形、菱形、多角形、円形、楕円形等であってもよい。
このような本体部2の構成に対応して、ベース3は、図1の下部、図2及び図3に示すように、本体部2との装着状態において固定枠5が装着されるべき支持部18を有している。また、ベース3は、振動体8と対向する凹部19とを有するように構成されている。この凹部19は、本体部2をベース3に装着した状態において、振動体8が振動によって変位してもベース3と干渉しない形状を有するために形成されている。
また、振動体8は、貫通孔10の相対向する両側縁部を構成する一対の支持梁部21A、21Bが形成されている。この一対の支持梁部21A、21Bは、揺動軸15に対して長手方向対称に形成されている。また、この一対の支持梁部21A、21Bの長手方向両端部は、反射ミラー部12を挟んで、揺動軸15に対して直角方向に対称に配置された一対の平板状の基体部25A、25Bの反射ミラー部12側の端縁部の両端にそれぞれ連結されている。また、この一対の基体部25A、25Bの外側端縁部は、固定枠5を介してベース3に固定されている。
また、一対の支持梁部21A、21Bの貫通孔10側の側面部から揺動軸15に沿って、一対の捻れ梁部22A、22Bが形成されている。この一対の捻れ梁部22A、22Bは、反射ミラー部12の揺動軸15方向の両側面部と各支持梁部21A、21Bの側面部との間の略中央位置まで、該貫通孔10の内側方向に同じ長さになるように延出されている。また、一対の捻れ梁部22A、22Bの反射ミラー部12側のそれぞれの他端から、一対の保持梁部23A、23Bが形成されている。この一対の保持梁部23A、23Bは、揺動軸15に対して直角方向両側に該揺動軸15に対して対称に延出されている。また、この一対の保持梁部23A、23Bは、相対向する反射ミラー部12の揺動軸15方向の両側面部より外側に延出されている。
また、この一対の保持梁部23A、23Bのそれぞれの揺動軸15に対して直角方向の両端部から、平面視L字形の各一対の連結梁部24A~24Dが形成されている。この各一対の連結梁部24A~24Dは、反射ミラー部12の揺動軸15に対して直角方向両端部の相対向する隅部に対向するまで、揺動軸15方向に延出されている。その後、更に、各一対の連結梁部24A~24Dは、揺動軸15に対して直角方向の反射ミラー部12側に延出されて、該反射ミラー部12の揺動軸15に対して直角方向両端部の相対向する隅部に接続されている。
また、一対の保持梁部23A、23Bは、それぞれ反射ミラー部12の揺動軸15上の両側面部と各支持梁部21A、21Bの側面部との間の略中央位置に位置するように形成されている。また、各保持梁部23A、23Bと反射ミラー部12との間には、反射ミラー部12の両側縁部に沿ってスリット状の一対の貫通孔20A、20Bが形成されている。この一対の貫通孔20A、20Bは、各保持梁部23A、23Bの反射ミラー部12側の各側面部と、各一対の連結梁部24A~24Dの揺動軸15側の各側面部と、反射ミラー部12の揺動軸15方向の両側面部とによって形成されている。
従って、反射ミラー部12、一対の支持梁部21A、21B、一対の基体部25A、25B、一対の捻れ梁部22A、22B、一対の保持梁部23A、23B、及び各一対の連結梁部24A~24Dは、揺動軸15に対して直角方向に対称になるように設けられている。また、反射ミラー部12、一対の支持梁部21A、21B、一対の基体部25A、25B、一対の捻れ梁部22A、22B、一対の保持梁部23A、23B、及び各一対の連結梁部24A~24Dは、反射ミラー部12の揺動軸15上の揺動軸方向中央位置を通り、この揺動軸15に対して直交している軸線27に対して揺動軸15方向に対称になるように設けられている。
ここで、反射ミラー部12は、平面視長手方向が約800μm~1200μmで、平面視短手方向(幅方向)が約100μm~500μmに形成されている。また、一対の捻れ梁部22A、22Bは、揺動軸15に対して直交している平面視短手方向(幅方向)が約80μm~150μmに形成されている。また、一対の捻れ梁部22A、22Bは、揺動軸15に沿った長手方向が約250μm~1500μmに形成されている。
また、一対の基体部25A、25Bのそれぞれの表面部には、約1μm~10μmの厚さで平面視約500μm~1500μm角の略正方形に積層された一対の圧電素子26A、26Bが形成されている。尚、各圧電素子26A、26Bは、平面視正方形に限らず、平面視長方形、略四角形、菱形、多角形、円形、楕円形等であってもよい。
また、一対の圧電素子26A、26Bは、軸線27上に中心位置が位置し、且つ、反射ミラー部12を挟んで揺動軸15に対して対称になるように形成されている。この軸線27は、反射ミラー部12の揺動軸15上の揺動軸方向中央位置を通り、この揺動軸15に対して直交している。
また、一対の圧電素子26A、26Bは、軸線27上に中心位置が位置し、且つ、反射ミラー部12を挟んで揺動軸15に対して対称になるように形成されている。この軸線27は、反射ミラー部12の揺動軸15上の揺動軸方向中央位置を通り、この揺動軸15に対して直交している。
また、各圧電素子26A、26Bの揺動軸15に対して直角方向外側の端縁部は、各基体部25A、25Bの外側端縁部から反射ミラー部12側方向に所定距離離れるように形成されている。つまり、各圧電素子26A、26Bの揺動軸15に対して直角方向外側の端縁部は、各基体部25A、25Bの固定枠5との連結部から反射ミラー部12側方向に所定距離離れるように形成されている。従って、各圧電素子26A、26Bの揺動軸15に対して直角方向外側の端縁部は、ベース3の支持部18の内側面から所定距離離れた位置に形成されている。これにより、後述のように各基体部25A、25B及び各支持梁部21A、21Bに揺動軸15を節とする定在的な波を発生させることができる(図5、図6参照)。
この一対の圧電素子26A、26Bの作製方法は、先ず、固定枠5と振動体8との表面部において、各圧電素子26A、26Bを除いた部分に、レジスト膜を形成してマスキングする。若しくは、固定枠5と振動体8との表面部において、別途用意した各圧電素子26A、26Bを形成する形状部分が切り抜かれた金属片を用いてマスキングする。その後、PZT等の圧電素子のナノサイズの微粒子を吹付けることによって成膜を行なうエアロゾルデポジション法(AD法)によって、PZT等の圧電素子を約1μm~10μm積層して各圧電素子26A、26Bを形成する。その後、レジスト膜、若しくは、金属片を除去する。
また、各圧電素子26A、26Bの上側には、各圧電素子26A、26Bの周縁部と所定隙間を形成するように、約0.2μm~0.6μmの厚さで積層された一対の上部電極28A、28Bが形成されている。
この一対の上部電極28A、28Bの作製方法は、先ず、固定枠5と振動体8との表面部において、各圧電素子26A、26B上に各上部電極28A、28Bを形成するように、各上部電極28A、28Bを形成する表面部分を除いた部分にレジスト膜を形成してマスキングする。若しくは、固定枠5と振動体8との表面部において、別途用意した各上部電極28A、28Bを形成する形状部分が切り抜かれた金属片を用いてマスキングする。その後、物理気相成長法(PVD:Physical Vapor Deposition)や真空蒸着法によって、白金(Pt)や金(Au)等を約0.2μm~0.6μm積層して各上部電極28A、28Bを形成する。その後、レジスト膜、若しくは、金属片を除去する。例えば、各上部電極28A、28Bの部分にチタン(Ti)を0.05μm積層し、続いて、その上側に白金(Pt)を0.5μm積層後、レジスト膜、若しくは、金属片を除去するようにしてもよい。
従って、後述のように、各基体部25A、25Bの外側端縁部に対向する固定枠5上の部分と各上部電極28A、28Bとにワイヤボンディングして、各基体部25A、25B上に形成された各圧電素子26A、26Bに駆動電圧を印加することが可能となる(図4参照)。つまり、反射ミラー部12、各捻れ梁部22A、22B、各保持梁部23A、23B、各連結梁部24A~24D及び各支持梁部21A、21Bに負荷を与えることなく、駆動電圧を印加することが可能となる。
尚、上述した本体部2の製造方法においては、圧電素子層として各圧電素子26A、26BをAD法で、上部電極層として各上部電極28A、28Bを物理気相成長法や真空蒸着法で形成した。また、各圧電素子26A、26Bも物理気相成長法や真空蒸着法で形成してもよい。また、各上部電極28A、28BをAD法で形成してもよい。この物理気相成長法には、例えば、真空中に不活性ガスを導入しながら基板とターゲット間に直流電圧あるいは交流電圧を印加し、イオン化した不活性ガスをターゲットに衝突させて、はじき飛ばされたターゲット物質を基板に成膜させるスパッタリングがある。但し、これに限らず、化学気相成長法(CVD:Chemical Vapor Deposition)によって、圧電素子層、上部電極層のうち、少なくとも一つの層を形成してもよい。
[揺動駆動]
次に、光スキャナ1の揺動駆動について図4乃至図7に基づいて説明する。
図4は反射ミラー部12の揺動駆動の一例を示す図である。図5は各支持梁部21A、21Bと反射ミラー部12が同位相で揺動する第1共振状態を示す図である。図6は図5の揺動状態から180度位相がずれた揺動状態を示す図である。
次に、光スキャナ1の揺動駆動について図4乃至図7に基づいて説明する。
図4は反射ミラー部12の揺動駆動の一例を示す図である。図5は各支持梁部21A、21Bと反射ミラー部12が同位相で揺動する第1共振状態を示す図である。図6は図5の揺動状態から180度位相がずれた揺動状態を示す図である。
図4に示すように、本体部2の固定枠5と基体部25A上に形成された上部電極28Aとに、駆動回路31を介して所定駆動電圧(例えば、振幅約30Vの交番電圧に、約30Vのバイアス電圧を付加した電圧である。)を印加する。それにより、基体部25A上に形成された圧電素子26Aには、その印加方向と直交する向き、即ち、揺動軸15に直交している軸線27方向の変位が発生される。
また、本体部2の固定枠5と基体部25B上に形成された上部電極28Bとに駆動回路32を介して、駆動回路31の出力電圧と逆位相で同電圧の駆動電圧を印加する。それにより、基体部25B上に形成された圧電素子26Bには、その印加方向と直交する向き、即ち、揺動軸15に直交している軸線27方向の変位が、圧電素子26Aと反対方向に発生される。
そして、図5及び図6に示すように、各圧電素子26A、26Bの変位により、各基体部25A、25Bは、固定枠5側端部を固定端とし、各支持梁部21A、21B側端部を自由端として変位する。この各自由端は、各圧電素子26A、26Bの変位が上向きであるか下向きであるかにより、上向き又は下向きに各圧電素子26A、26Bと同方向に変位する。つまり、各自由端は互いに反対方向に変位する。それにより、各基体部25A、25B及び各支持梁部21A、21Bには、揺動軸15を節とする定在的な波を発生させることができる。
また、この揺動軸15を節とする定在的な波は、各捻れ梁部22A、22Bで支持された水平状態にある各保持梁部23A、23B、各一対の連結梁部24A~24D、及び、反射ミラー部12に回転モーメントを与える力を作用させることができ、捻れ振動を誘起する。その結果、各保持梁部23A、23B、各一対の連結梁部24A~24D、及び、反射ミラー部12は、一体となって各捻れ梁部22A、22Bの軸心である揺動軸15回りに揺動される。また、揺動軸15は、この定在的な波の節に位置するため、どの方向にも変位することがない。
ここで、各保持梁部23A、23B、各一対の連結梁部24A~24D、及び、反射ミラー部12が一体となって揺動軸15回りに揺動されている際の、反射ミラー部12の動的ミラー歪みについて図7に基づいて説明する。
図7は光スキャナ1を第1共振状態で駆動した場合の反射ミラー部12の動的ミラー歪みの一例を模式的に示す拡大斜視図である。尚、図7は、図5に示す反射ミラー部12が最大揺動角度まで回動したときの動的ミラー歪みを、反射ミラー部12がほぼ水平になるまで揺動軸15回りに回転させて示すものである。
図7は光スキャナ1を第1共振状態で駆動した場合の反射ミラー部12の動的ミラー歪みの一例を模式的に示す拡大斜視図である。尚、図7は、図5に示す反射ミラー部12が最大揺動角度まで回動したときの動的ミラー歪みを、反射ミラー部12がほぼ水平になるまで揺動軸15回りに回転させて示すものである。
図7に示すように、反射ミラー部12の揺動軸15回りの揺動時に、慣性モーメントや空気抵抗等によって反射ミラー部12に発生するZ軸方向の動的ミラー歪みは、各連結梁部24A~24Dを介して各保持梁部23A、23Bに吸収されている。これにより、反射ミラー部12に発生するZ軸方向の動的ミラー歪みは、反射面11のほぼ全面に渡って低減されている。一方、反射ミラー部12の動的ミラー歪みを吸収する各連結梁部24A~24D及び各保持梁部23A、23Bには、揺動軸15を節とする大きな動的撓みが生じている。
尚、各保持梁部23A、23B、各一対の連結梁部24A~24D、及び、反射ミラー部12が、各支持梁部21A、21Bと逆位相で揺動する第2共振状態に設定することが可能である。この場合においても、反射ミラー部12に発生するZ軸方向の動的ミラー歪みは、各連結梁部24A~24Dを介して各保持梁部23A、23Bに吸収される。これにより、反射ミラー部12に発生するZ軸方向の動的ミラー歪みは、反射面11のほぼ全面に渡って低減される。一方、反射ミラー部12の動的ミラー歪みを吸収する各連結梁部24A~24D及び各保持梁部23A、23Bには、揺動軸15を節とする大きな動的撓みが生じる。
以上説明した通り、実施例1に係る光スキャナ1では、反射ミラー部12の揺動軸15に対して直角方向両端部の相対向する隅部には、各一対の連結梁部24A~24Dが接続されている。また、この各一対の連結梁部24A~24Dは、一対の保持梁部23A、23Bの両端部に接続されている。そして、反射ミラー部12の慣性モーメントや空気抵抗等によって当該反射ミラー部12に発生する動的ミラー歪みを、各一対の連結梁部24A~24Dを介して、一対の保持梁部23A、23Bに伝達して吸収することが可能となる。
これにより、反射ミラー部12の揺動時に、当該反射ミラー部12の揺動軸15に対して直角方向の両端部より内側、つまり、ほぼ全反射面11に発生する動的ミラー歪みを低減して、反射光の実効効率の向上を図ることが可能となる。
これにより、反射ミラー部12の揺動時に、当該反射ミラー部12の揺動軸15に対して直角方向の両端部より内側、つまり、ほぼ全反射面11に発生する動的ミラー歪みを低減して、反射光の実効効率の向上を図ることが可能となる。
また、各一対の連結梁部24A~24Dを反射ミラー部12の揺動軸15に対して直角方向両端部の相対向する隅部に接続するため、各一対の連結梁部24A~24Dを反射ミラー部12に接続する位置精度の低減化を図ることができ、製品歩留まりの向上を図ることができる。
また、反射ミラー部12の揺動軸15方向の両端部は、相対向する各保持梁部23A、23Bに対して平行になるように形成されているため、つまり、反射ミラー部12は平面視長方形に形成されているため、反射面11を大きくすることが可能となる。
更に、一対の基体部25A、25Bの各内側端縁部は、一対の支持梁部21A、21Bによって連結され、この一対の基体部25A、25Bの各外側端縁部は、固定部材5に固定されている。これにより、各圧電素子26A、26Bによって揺動軸15を節とする定在的な波を各基体部25A、25B及び各支持梁部21A、21Bに発生させることが可能となる。
また、反射ミラー部12は、各一対の連結梁部24A~24D及び一対の保持梁部23A、23Bを介して、揺動軸15上に形成された一対の捻れ梁部22A、22Bによって支持される。これにより、反射ミラー部12を揺動軸15に対して直角方向に対称に形成することによって、この反射ミラー部12の揺動軸15をどの方向にも変位させることなく、反射ミラー部12を揺動させることが可能となる。従って、反射ミラー部12の揺動軸15が、どの方向にも変位しないため、反射ミラー部12の反射光の実効効率の更なる向上を図ることが可能となる。
また、本体部2をステンレス、チタン、鉄等、弾性を有する導電性材料で形成することによって、各圧電素子26A、26Bの下部電極を形成する必要がなくなり、構造の簡素化を図ることが可能となる。
[光スキャナ41の概略構成]
次に、実施例2に係る光スキャナ41について図8乃至図11に基づいて説明する。尚、上記実施例1に係る光スキャナ1と同一符号は、上記実施例1に係る光スキャナ1と同一あるいは相当する部分を示すものである。
図8は実施例2に係る光スキャナ41の平面図である。図9は図8のX2-X2矢視断面図である。
次に、実施例2に係る光スキャナ41について図8乃至図11に基づいて説明する。尚、上記実施例1に係る光スキャナ1と同一符号は、上記実施例1に係る光スキャナ1と同一あるいは相当する部分を示すものである。
図8は実施例2に係る光スキャナ41の平面図である。図9は図8のX2-X2矢視断面図である。
図8及び図9に示すように、この実施例2に係る光スキャナ41の全体構成は、上記実施例1に係る光スキャナ1とほぼ同じ構成である。
但し、実施例2に係る光スキャナ41は、実施例1に係る光スキャナ1の各保持梁部23A、23B及び各一対の連結梁部24A~24Dに替えて、各保持梁部42A、42B及び各一対の連結梁部43A~43Dが設けられている点で異なっている。
但し、実施例2に係る光スキャナ41は、実施例1に係る光スキャナ1の各保持梁部23A、23B及び各一対の連結梁部24A~24Dに替えて、各保持梁部42A、42B及び各一対の連結梁部43A~43Dが設けられている点で異なっている。
図8に示すように、一対の捻れ梁部22A、22Bの反射ミラー部12側のそれぞれの他端から、揺動軸15に対して直角方向両側に該揺動軸15に対して対称に延出された一対の保持梁部42A、42Bが形成されている。また、この一対の保持梁部42A、42Bは、相対向する反射ミラー部12の揺動軸15方向の両側面部と同じ長さ、つまり、反射ミラー部12の揺動軸15に直角方向の長さと同じ長さになるように延出されている。
また、この一対の保持梁部42A、42Bのそれぞれの揺動軸15に対して直角方向の両端部から揺動軸15方向に延出されて、それぞれ反射ミラー部12の揺動軸15方向の両端部の相対向する隅部に接続された各一対の連結梁部43A~43Dが形成されている。
また、一対の保持梁部42A、42Bは、それぞれ反射ミラー部12の揺動軸15上の両側面部と各支持梁部21A、21Bの側面部との間の略中央位置に位置するように形成されている。また、各保持梁部42A、42Bと反射ミラー部12との間には、反射ミラー部12の両側縁部に沿ってスリット状の一対の貫通孔45A、45Bが形成されている。この一対の貫通孔45A、45Bは、各保持梁部42A、42Bの反射ミラー部12側の各側面部と、各一対の連結梁部43A~43Dの揺動軸15側の各側面部と、反射ミラー部12の揺動軸15方向の両側面部とによって形成されている。
従って、反射ミラー部12、一対の支持梁部21A、21B、一対の基体部25A、25B、一対の捻れ梁部22A、22B、一対の保持梁部42A、42B、及び各一対の連結梁部43A~43Dは、揺動軸15に対して直角方向に対称になるように設けられている。また、反射ミラー部12、一対の支持梁部21A、21B、一対の基体部25A、25B、一対の捻れ梁部22A、22B、一対の保持梁部42A、42B、及び各一対の連結梁部43A~43Dは、反射ミラー部12の揺動軸15上の揺動軸方向中央位置を通り、この揺動軸15に対して直交している軸線27に対して揺動軸15方向に対称になるように設けられている。
[揺動駆動]
次に、光スキャナ41の揺動駆動について図10及び図11に基づいて説明する。図10は反射ミラー部12の揺動駆動の一例を示す図である。
図10に示すように、上記実施例1に係る光スキャナ1と同様に、光スキャナ41の本体部2の固定枠5と各上部電極28A、28Bに、各駆動回路31、32を介して逆位相で同電圧の駆動電圧を印加する。それにより、各基体部25A、25B及び各支持梁部21A、21Bには、揺動軸15を節とする定在的な波を発生させることができる。
次に、光スキャナ41の揺動駆動について図10及び図11に基づいて説明する。図10は反射ミラー部12の揺動駆動の一例を示す図である。
図10に示すように、上記実施例1に係る光スキャナ1と同様に、光スキャナ41の本体部2の固定枠5と各上部電極28A、28Bに、各駆動回路31、32を介して逆位相で同電圧の駆動電圧を印加する。それにより、各基体部25A、25B及び各支持梁部21A、21Bには、揺動軸15を節とする定在的な波を発生させることができる。
これにより、上記実施例1に係る光スキャナ1と同様に、揺動軸15を節とする定在的な波は、各捻れ梁部22A、22Bで支持された水平状態にある各保持梁部42A、42B、各一対の連結梁部43A~43D、及び、反射ミラー部12に回転モーメントを与える力を作用させることができ、捻れ振動を誘起する。その結果、各保持梁部42A、42B、各一対の連結梁部43A~43D、及び、反射ミラー部12は、一体となって各捻れ梁部22A、22Bの軸心である揺動軸15回りに揺動される。また、揺動軸15は、この定在的な波の節に位置するため、どの方向にも変位することがない。
ここで、各保持梁部42A、42B、各一対の連結梁部43A~43D、及び、反射ミラー部12が一体となって揺動軸15回りに揺動されている際の、反射ミラー部12の動的ミラー歪みについて図11に基づいて説明する。尚、各支持梁部21A、21Bと反射ミラー部12が同位相で揺動する第1共振状態について説明する。
図11は光スキャナ41を第1共振状態で駆動した場合の反射ミラー部12の動的ミラー歪みの一例を模式的に示す拡大斜視図である。尚、図11は、反射ミラー部12が最大揺動角度まで回動したときの動的ミラー歪みを、反射ミラー部12がほぼ水平になるまで揺動軸15回りに回転させて示すものである。
図11は光スキャナ41を第1共振状態で駆動した場合の反射ミラー部12の動的ミラー歪みの一例を模式的に示す拡大斜視図である。尚、図11は、反射ミラー部12が最大揺動角度まで回動したときの動的ミラー歪みを、反射ミラー部12がほぼ水平になるまで揺動軸15回りに回転させて示すものである。
図11に示すように、反射ミラー部12の揺動軸15回りの揺動時に、慣性モーメントや空気抵抗等によって反射ミラー部12に発生するZ軸方向の動的ミラー歪みは、各連結梁部43A~43Dを介して各保持梁部42A、42Bに吸収されている。このため、反射ミラー部12の各連結梁部43A、43Dの揺動軸15側の側縁部との結合点と、各連結梁部43B、43Cの揺動軸15側の側縁部との結合点とによって挟まれた反射面11の領域47では、反射ミラー部12に発生するZ軸方向の動的ミラー歪みは低減されて小さくなっている。
一方、反射ミラー部12の動的ミラー歪みを吸収する各連結梁部43A~43D及び各保持梁部42A、42Bには、揺動軸15を節とする大きな動的撓みが生じている。このため、反射ミラー部12の反射面11の領域47から揺動軸15に対して直角方向両外側、つまり、反射ミラー部12の揺動軸15に対して直角方向両側端縁部は、Z軸方向の動的ミラー歪みが増大している。
尚、各保持梁部42A、42B、各一対の連結梁部43A~43D、及び、反射ミラー部12が、各支持梁部21A、21Bと逆位相で揺動する第2共振状態に設定することが可能である。この場合においても、反射ミラー部12に発生するZ軸方向の動的ミラー歪みは、各連結梁部43A~43Dを介して各保持梁部42A、42Bに吸収され、反射面11の領域47では、反射ミラー部12に発生するZ軸方向の動的ミラー歪みは低減されて小さくなる。一方、反射ミラー部12の動的ミラー歪みを吸収する各連結梁部43A~43D及び各保持梁部42A、42Bには、揺動軸15を節とする大きな動的撓みが生じる。
以上説明した通り、実施例2に係る光スキャナ41では、反射ミラー部12の揺動軸15方向の両端部の相対向する隅部には、各一対の連結梁部43A~43Dが接続されている。また、この各一対の連結梁部43A~43Dは、一対の保持梁部42A、42Bの両端部に接続されている。そして、反射ミラー部12の慣性モーメントや空気抵抗等によって当該反射ミラー部12に発生する動的ミラー歪みを、各一対の連結梁部43A~43Dを介して、一対の保持梁部42A、42Bに伝達して吸収することが可能となる。
これにより、反射ミラー部12の揺動時に、当該反射ミラー部12の反射面11において、各一対の連結梁部43A~43Dの幅寸法に相当する両端部分より内側、つまり、領域47の広い部分に発生する動的ミラー歪みを低減して、反射光の実効効率の向上を図ることが可能となる。
これにより、反射ミラー部12の揺動時に、当該反射ミラー部12の反射面11において、各一対の連結梁部43A~43Dの幅寸法に相当する両端部分より内側、つまり、領域47の広い部分に発生する動的ミラー歪みを低減して、反射光の実効効率の向上を図ることが可能となる。
また、各一対の連結梁部43A~43Dを反射ミラー部12の揺動軸15方向の両端部の相対向する隅部に接続するため、各一対の連結梁部43A~43Dを反射ミラー部12に接続する位置精度の低減化を図ることができ、製品歩留まりの向上を図ることができる。
また、反射ミラー部12の揺動軸15方向の両端部は、相対向する各保持梁部42A、42Bに対して平行になるように形成されているため、つまり、反射ミラー部12は平面視長方形に形成されているため、反射面11を大きくすることが可能となる。
更に、一対の基体部25A、25Bの各内側端縁部は、一対の支持梁部21A、21Bによって連結され、この一対の基体部25A、25Bの各外側端縁部は、固定部材5に固定されている。これにより、各圧電素子26A、26Bによって揺動軸15を節とする定在的な波を各基体部25A、25B及び各支持梁部21A、21Bに発生させることが可能となる。
また、反射ミラー部12は、各一対の連結梁部43A~43D及び一対の保持梁部42A、42Bを介して、揺動軸15上に形成された一対の捻れ梁部22A、22Bによって支持される。これにより、反射ミラー部12を揺動軸15に対して直角方向に対称に形成することによって、この反射ミラー部12の揺動軸15をどの方向にも変位させることなく、反射ミラー部12を揺動させることが可能となる。従って、反射ミラー部12の揺動軸15が、どの方向にも変位しないため、反射ミラー部12の反射光の実効効率の更なる向上を図ることが可能となる。
また、本体部2をステンレス、チタン、鉄等、弾性を有する導電性材料で形成することによって、各圧電素子26A、26Bの下部電極を形成する必要がなくなり、構造の簡素化を図ることが可能となる。
[光スキャナ61の概略構成]
次に、実施例3に係る光スキャナ61について図12乃至図15に基づいて説明する。尚、上記実施例1に係る光スキャナ1と同一符号は、上記実施例1に係る光スキャナ1と同一あるいは相当する部分を示すものである。
図12は実施例3に係る光スキャナ61の平面図である。図13は図12のX3-X3矢視断面図である。
次に、実施例3に係る光スキャナ61について図12乃至図15に基づいて説明する。尚、上記実施例1に係る光スキャナ1と同一符号は、上記実施例1に係る光スキャナ1と同一あるいは相当する部分を示すものである。
図12は実施例3に係る光スキャナ61の平面図である。図13は図12のX3-X3矢視断面図である。
図12及び図13に示すように、この実施例3に係る光スキャナ61の全体構成は、上記実施例1に係る光スキャナ1とほぼ同じ構成である。
但し、実施例3に係る光スキャナ61は、実施例1に係る光スキャナ1の各保持梁部23A、23B及び各一対の連結梁部24A~24Dに替えて、各保持梁部62A、62B及び各一対の連結梁部63A~63Dが設けられている点で異なっている。
但し、実施例3に係る光スキャナ61は、実施例1に係る光スキャナ1の各保持梁部23A、23B及び各一対の連結梁部24A~24Dに替えて、各保持梁部62A、62B及び各一対の連結梁部63A~63Dが設けられている点で異なっている。
図12に示すように、一対の保持梁部62A、62Bが、一対の捻れ梁部22A、22Bの反射ミラー部12側のそれぞれの他端から、揺動軸15に対して直角方向両側に該揺動軸15に対して対称に延出されている。また、この一対の保持梁部62A、62Bは、相対向する反射ミラー部12の揺動軸15方向の両側面部よりも短い長さ、つまり、反射ミラー部12の揺動軸15に直角方向の長さよりも短い長さになるように延出されている。
また、各一対の連結梁部63A~63Dが、この一対の保持梁部62A、62Bのそれぞれの揺動軸15に対して直角方向の両端部から揺動軸15方向に延出されて、それぞれ反射ミラー部12の揺動軸15方向の両端部に接続されている。
また、一対の保持梁部62A、62Bは、それぞれ反射ミラー部12の揺動軸15上の両側面部と各支持梁部21A、21Bの側面部との間の略中央位置に位置するように形成されている。また、各保持梁部62A、62Bと反射ミラー部12との間には、反射ミラー部12の両側縁部に沿ってスリット状の一対の貫通孔65A、65Bが形成されている。この一対の貫通孔65A、65Bは、各保持梁部62A、62Bの反射ミラー部12側の各側面部と、各一対の連結梁部63A~63Dの揺動軸15側の各側面部と、反射ミラー部12の揺動軸15方向の両側面部とによって形成されている。
従って、反射ミラー部12、一対の支持梁部21A、21B、一対の基体部25A、25B、一対の捻れ梁部22A、22B、一対の保持梁部62A、62B、及び各一対の連結梁部63A~63Dは、揺動軸15に対して直角方向に対称になるように設けられている。また、反射ミラー部12、一対の支持梁部21A、21B、一対の基体部25A、25B、一対の捻れ梁部22A、22B、一対の保持梁部62A、62B、及び各一対の連結梁部63A~63Dは、反射ミラー部12の揺動軸15上の揺動軸方向中央位置を通り、この揺動軸15に対して直交している軸線27に対して揺動軸15方向に対称になるように設けられている。
[揺動駆動]
次に、光スキャナ61の揺動駆動について図14及び図15に基づいて説明する。図14は反射ミラー部12の揺動駆動の一例を示す図である。
図14に示すように、上記実施例1に係る光スキャナ1と同様に、光スキャナ61の本体部2の固定枠5と各上部電極28A、28Bに、各駆動回路31、32を介して逆位相で同電圧の駆動電圧を印加する。それにより、各基体部25A、25B及び各支持梁部21A、21Bには、揺動軸15を節とする定在的な波を発生させることができる。
次に、光スキャナ61の揺動駆動について図14及び図15に基づいて説明する。図14は反射ミラー部12の揺動駆動の一例を示す図である。
図14に示すように、上記実施例1に係る光スキャナ1と同様に、光スキャナ61の本体部2の固定枠5と各上部電極28A、28Bに、各駆動回路31、32を介して逆位相で同電圧の駆動電圧を印加する。それにより、各基体部25A、25B及び各支持梁部21A、21Bには、揺動軸15を節とする定在的な波を発生させることができる。
これにより、上記実施例1に係る光スキャナ1と同様に、揺動軸15を節とする定在的な波は、各捻れ梁部22A、22Bで支持された水平状態にある各保持梁部62A、62B、各一対の連結梁部63A~63D、及び、反射ミラー部12に回転モーメントを与える力を作用させることができ、捻れ振動を誘起する。その結果、各保持梁部62A、62B、各一対の連結梁部63A~63D、及び、反射ミラー部12は、一体となって各捻れ梁部22A、22Bの軸心である揺動軸15回りに揺動される。また、揺動軸15は、この定在的な波の節に位置するため、どの方向にも変位することがない。
ここで、各保持梁部62A、62B、各一対の連結梁部63A~63D、及び、反射ミラー部12が一体となって揺動軸15回りに揺動されている際の、反射ミラー部12の動的ミラー歪みについて図15に基づいて説明する。尚、各支持梁部21A、21Bと反射ミラー部12が同位相で揺動する第1共振状態について説明する。
図15は光スキャナ61を第1共振状態で駆動した場合の反射ミラー部12の動的ミラー歪みの一例を模式的に示す拡大斜視図である。尚、図15は、反射ミラー部12が最大揺動角度まで回動したときの動的ミラー歪みを、反射ミラー部12がほぼ水平になるまで揺動軸15回りに回転させて示すものである。
図15は光スキャナ61を第1共振状態で駆動した場合の反射ミラー部12の動的ミラー歪みの一例を模式的に示す拡大斜視図である。尚、図15は、反射ミラー部12が最大揺動角度まで回動したときの動的ミラー歪みを、反射ミラー部12がほぼ水平になるまで揺動軸15回りに回転させて示すものである。
図15に示すように、反射ミラー部12の揺動軸15回りの揺動時に、慣性モーメントや空気抵抗等によって反射ミラー部12に発生するZ軸方向の動的ミラー歪みは、各連結梁部63A~63Dを介して各保持梁部62A、62Bに吸収されている。このため、反射ミラー部12の各連結梁部63A、63Dの揺動軸15側の側縁部との結合点と、各連結梁部63B、63Cの揺動軸15側の側縁部との結合点とによって挟まれた間の反射面11の中央部分の領域67では、反射ミラー部12に発生するZ軸方向の動的ミラー歪みは低減されて小さくなっている。
一方、反射ミラー部12の動的ミラー歪みを吸収する各連結梁部63A~63D及び各保持梁部62A、62Bには、揺動軸15を節とする大きな動的撓みが生じている。
また、反射ミラー部12の反射面11の領域67の揺動軸15に対して直角方向両外側部分の動的ミラー歪みは、各連結梁部63A~63Dを介して各保持梁部62A、62Bに吸収されないため、Z軸方向の動的ミラー歪みが低減されていない。
また、反射ミラー部12の反射面11の領域67の揺動軸15に対して直角方向両外側部分の動的ミラー歪みは、各連結梁部63A~63Dを介して各保持梁部62A、62Bに吸収されないため、Z軸方向の動的ミラー歪みが低減されていない。
尚、各保持梁部62A、62B、各一対の連結梁部63A~63D、及び、反射ミラー部12が、各支持梁部21A、21Bと逆位相で揺動する第2共振状態に設定することが可能である。この場合においても、反射ミラー部12に発生するZ軸方向の動的ミラー歪みは、各連結梁部63A~63Dを介して各保持梁部62A、62Bに吸収され、反射面11の領域67では、反射ミラー部12に発生するZ軸方向の動的ミラー歪みは低減されて小さくなる。
一方、反射ミラー部12の動的ミラー歪みを吸収する各連結梁部63A~63D及び各保持梁部62A、62Bには、揺動軸15を節とする大きな動的撓みが生じる。また、反射ミラー部12の反射面11の領域67から揺動軸15に対して直角方向両外側部分の動的ミラー歪みは、各連結梁部63A~63Dを介して各保持梁部62A、62Bに吸収されないため、Z軸方向の動的ミラー歪みが低減されていない。
以上説明した通り、実施例3に係る光スキャナ61では、反射ミラー部12の揺動軸15方向の両端部には、各一対の連結梁部63A~63Dが接続されている。また、この各一対の連結梁部63A~63Dは、一対の保持梁部62A、62Bの両端部に接続されている。そして、反射ミラー部12の慣性モーメントや空気抵抗等によって当該反射ミラー部12に発生する動的ミラー歪みを、各一対の連結梁部63A~63Dを介して、一対の保持梁部62A、62Bに伝達して吸収することが可能となる。
これにより、反射ミラー部12の揺動時に、当該反射ミラー部12の反射面11において、各一対の連結梁部63A~63Dによって挟まれた揺動軸15を含む中央側の領域67の部分の動的ミラー歪みを低減して、反射光の実効効率の向上を図ることが可能となる。
これにより、反射ミラー部12の揺動時に、当該反射ミラー部12の反射面11において、各一対の連結梁部63A~63Dによって挟まれた揺動軸15を含む中央側の領域67の部分の動的ミラー歪みを低減して、反射光の実効効率の向上を図ることが可能となる。
また、各一対の連結梁部63A~63Dを反射ミラー部12の揺動軸15方向の両端部に接続するため、各一対の連結梁部63A~63Dを反射ミラー部12に接続する位置精度の低減化を図ることができ、製品歩留まりの向上を図ることができる。
また、反射ミラー部12の揺動軸15方向の両端部は、相対向する各保持梁部62A、62Bに対して平行になるように形成されているため、つまり、反射ミラー部12は平面視長方形に形成されているため、反射面11を大きくすることが可能となる。
更に、一対の基体部25A、25Bの各内側端縁部は、一対の支持梁部21A、21Bによって連結され、この一対の基体部25A、25Bの各外側端縁部は、固定部材5に固定されている。これにより、各圧電素子26A、26Bによって揺動軸15を節とする定在的な波を各基体部25A、25B及び各支持梁部21A、21Bに発生させることが可能となる。
また、反射ミラー部12は、各一対の連結梁部63A~63D及び一対の保持梁部62A、62Bを介して、揺動軸15上に形成された一対の捻れ梁部22A、22Bによって支持される。これにより、反射ミラー部12を揺動軸15に対して直角方向に対称に形成することによって、この反射ミラー部12の揺動軸15をどの方向にも変位させることなく、反射ミラー部12を揺動させることが可能となる。従って、反射ミラー部12の揺動軸15が、どの方向にも変位しないため、反射ミラー部12の反射光の実効効率の更なる向上を図ることが可能となる。
また、本体部2をステンレス、チタン、鉄等、弾性を有する導電性材料で形成することによって、各圧電素子26A、26Bの下部電極を形成する必要がなくなり、構造の簡素化を図ることが可能となる。
[光スキャナ81の概略構成]
次に、実施例4に係る光スキャナ81について図16乃至図19に基づいて説明する。尚、上記実施例1に係る光スキャナ1と同一符号は、上記実施例1に係る光スキャナ1と同一あるいは相当する部分を示すものである。
図16は実施例4に係る光スキャナ81の平面図である。図17は図16のX4-X4矢視断面図である。
次に、実施例4に係る光スキャナ81について図16乃至図19に基づいて説明する。尚、上記実施例1に係る光スキャナ1と同一符号は、上記実施例1に係る光スキャナ1と同一あるいは相当する部分を示すものである。
図16は実施例4に係る光スキャナ81の平面図である。図17は図16のX4-X4矢視断面図である。
図16及び図17に示すように、この実施例4に係る光スキャナ81の全体構成は、上記実施例1に係る光スキャナ1とほぼ同じ構成である。
但し、実施例4に係る光スキャナ81は、実施例1に係る光スキャナ1の反射ミラー部12、各保持梁部23A、23B及び各一対の連結梁部24A~24Dに替えて、反射ミラー部82、各保持梁部83A、83B及び各一対の連結梁部84A~84Dが設けられている点で異なっている。
但し、実施例4に係る光スキャナ81は、実施例1に係る光スキャナ1の反射ミラー部12、各保持梁部23A、23B及び各一対の連結梁部24A~24Dに替えて、反射ミラー部82、各保持梁部83A、83B及び各一対の連結梁部84A~84Dが設けられている点で異なっている。
図16に示すように、貫通孔10の中央部には、平面視略横長八角形状の反射面11が形成された反射ミラー部82が設けられている。この反射ミラー部82は、揺動軸15を含む中央部分が、この揺動軸15に対して直角方向に長い平面視長方形状に形成されると共に、その中央部分の揺動軸15に対して直角方向両側端縁部から外側方向に揺動軸15方向の幅が徐々に狭くなるように延出されている。
また、この反射ミラー部82は、揺動軸15に対して直角方向、つまり、反射ミラー部82の長手方向対称になるように形成されている。尚、反射ミラー部82の揺動軸15を含む中央部分は、平面視長方形に限らず、正方形、略四角形等であってもよい。また、反射ミラー部82は、平面視略横長八角形状に限らず、平面視楕円形等であってもよい。
また、一対の捻れ梁部22A、22Bの反射ミラー部82側のそれぞれの他端から、揺動軸15に対して直角方向両側に該揺動軸15に対して対称に延出された一対の保持梁部83A、83Bが形成されている。この一対の保持梁部83A、83Bは、相対向する反射ミラー部82の中央部分、つまり平面視長方形部分の揺動軸15方向の両側面部とほぼ同じ長さになるように延出されている。
また、この一対の保持梁部83A、83Bのそれぞれの揺動軸15に対して直角方向の両端部から、反射ミラー部82の中央部分から徐々に幅が狭くなる揺動軸15方向の両側面部に沿って、各一対の連結梁部84A~84Dが形成されている。この各一対の連結梁部84A~84Dは、相対向する反射ミラー部82の揺動軸15方向の両側面部より外側に延出され、その後、反射ミラー部82の揺動軸15に対して直角方向両端部の相対向する隅部に対向するまで、揺動軸15方向に延出される。この各一対の連結梁部84A~84Dは、更に、揺動軸15に対して直角方向反射ミラー部82側に延出されて、該反射ミラー部82の揺動軸15に対して直角方向両端部の相対向する隅部に接続されている。
また、一対の保持梁部83A、83Bは、それぞれ反射ミラー部82の揺動軸15上の両側面部と各支持梁部21A、21Bの側面部との間の略中央位置に位置するように形成されている。また、各保持梁部83A、83Bと反射ミラー部82との間には、反射ミラー部82の両側縁部に沿って平面視略弓形の一対の貫通孔85A、85Bが形成されている。この一対の貫通孔85A、85Bは、各保持梁部83A、83Bの反射ミラー部82側の各側面部と、各一対の連結梁部84A~84Dの揺動軸15側の各側面部と、反射ミラー部82の揺動軸15方向の両側面部とによって形成されている。
従って、反射ミラー部82、一対の支持梁部21A、21B、一対の基体部25A、25B、一対の捻れ梁部22A、22B、一対の保持梁部83A、83B、及び各一対の連結梁部84A~84Dは、揺動軸15に対して直角方向に対称になるように設けられている。また、反射ミラー部82、一対の支持梁部21A、21B、一対の基体部25A、25B、一対の捻れ梁部22A、22B、一対の保持梁部83A、83B、及び各一対の連結梁部84A~84Dは、反射ミラー部82の揺動軸15上の揺動軸方向中央位置を通り、この揺動軸15に対して直交している軸線27に対して揺動軸15方向に対称になるように設けられている。
ここで、反射ミラー部82は、平面視長手方向が約800μm~1200μmで、中央部分の平面視短手方向(幅方向)が約100μm~500μmに形成されている。また、一対の捻れ梁部22A、22Bは、揺動軸15に対して直交している平面視短手方向(幅方向)が約80μm~150μmに形成され、揺動軸15に沿った長手方向が約250μm~1500μmに形成されている。
[揺動駆動]
次に、光スキャナ81の揺動駆動について図18及び図19に基づいて説明する。図18は反射ミラー部82の揺動駆動の一例を示す図である。
図18に示すように、上記実施例1に係る光スキャナ1と同様に、光スキャナ81の本体部2の固定枠5と各上部電極28A、28Bに、各駆動回路31、32を介して逆位相で同電圧の駆動電圧を印加する。それにより、各基体部25A、25B及び各支持梁部21A、21Bには、揺動軸15を節とする定在的な波を発生させることができる。
次に、光スキャナ81の揺動駆動について図18及び図19に基づいて説明する。図18は反射ミラー部82の揺動駆動の一例を示す図である。
図18に示すように、上記実施例1に係る光スキャナ1と同様に、光スキャナ81の本体部2の固定枠5と各上部電極28A、28Bに、各駆動回路31、32を介して逆位相で同電圧の駆動電圧を印加する。それにより、各基体部25A、25B及び各支持梁部21A、21Bには、揺動軸15を節とする定在的な波を発生させることができる。
これにより、上記実施例1に係る光スキャナ1と同様に、揺動軸15を節とする定在的な波は、各捻れ梁部22A、22Bで支持された水平状態にある各保持梁部83A、83B、各一対の連結梁部84A~84D、及び、反射ミラー部82に回転モーメントを与える力を作用させることができ、捻れ振動を誘起する。その結果、各保持梁部83A、83B、各一対の連結梁部84A~84D、及び、反射ミラー部82は、一体となって各捻れ梁部22A、22Bの軸心である揺動軸15回りに揺動される。また、揺動軸15は、この定在的な波の節に位置するため、どの方向にも変位することがない。
ここで、各保持梁部83A、83B、各一対の連結梁部84A~84D、及び、反射ミラー部82が一体となって揺動軸15回りに揺動されている際の、反射ミラー部82の動的ミラー歪みについて図19に基づいて説明する。尚、各支持梁部21A、21Bと反射ミラー部82が同位相で揺動する第1共振状態について説明する。
図19は光スキャナ81を第1共振状態で駆動した場合の反射ミラー部82の動的ミラー歪みの一例を模式的に示す拡大斜視図である。尚、図19は、反射ミラー部82が最大揺動角度まで回動したときの動的ミラー歪みを、反射ミラー部82がほぼ水平になるまで揺動軸15回りに回転させて示すものである。
図19は光スキャナ81を第1共振状態で駆動した場合の反射ミラー部82の動的ミラー歪みの一例を模式的に示す拡大斜視図である。尚、図19は、反射ミラー部82が最大揺動角度まで回動したときの動的ミラー歪みを、反射ミラー部82がほぼ水平になるまで揺動軸15回りに回転させて示すものである。
図19に示すように、反射ミラー部82の揺動軸15回りの揺動時に、慣性モーメントや空気抵抗等によって反射ミラー部82に発生するZ軸方向の動的ミラー歪みは、各連結梁部84A~84Dを介して各保持梁部83A、83Bに吸収される。これにより、反射ミラー部82に発生するZ軸方向の動的ミラー歪みは、反射面11のほぼ全面に渡って低減されている。一方、反射ミラー部82の動的ミラー歪みを吸収する各連結梁部84A~84D及び各保持梁部83A、83Bには、揺動軸15を節とする大きな動的撓みが生じている。
尚、各保持梁部83A、83B、各一対の連結梁部84A~84D、及び、反射ミラー部82が、各支持梁部21A、21Bと逆位相で揺動する第2共振状態に設定することが可能である。この場合においても、反射ミラー部82に発生するZ軸方向の動的ミラー歪みは、各連結梁部84A~84Dを介して、この各連結梁部84A~84D及び各保持梁部83A、83Bに吸収され、反射面11のほぼ全面に渡って低減される。一方、反射ミラー部82の動的ミラー歪みを吸収する各連結梁部84A~84D及び各保持梁部83A、83Bには、揺動軸15を節とする大きな動的撓みが生じる。
以上説明した通り、実施例4に係る光スキャナ81では、反射ミラー部82の揺動軸15に対して直角方向両端部の相対向する隅部には、各一対の連結梁部84A~84D及び一対の保持梁部83A、83Bが接続されている。そして、反射ミラー部82の慣性モーメントや空気抵抗等によって当該反射ミラー部82に発生する動的ミラー歪みを、各一対の連結梁部84A~84D及び一対の保持梁部83A、83Bに伝達して吸収することが可能となる。
これにより、反射ミラー部82の揺動時に、当該反射ミラー部82の揺動軸15に対して直角方向の両端部より内側、つまり、ほぼ全反射面11に発生する動的ミラー歪みを低減して、反射光の実効効率の向上を図ることが可能となる。
これにより、反射ミラー部82の揺動時に、当該反射ミラー部82の揺動軸15に対して直角方向の両端部より内側、つまり、ほぼ全反射面11に発生する動的ミラー歪みを低減して、反射光の実効効率の向上を図ることが可能となる。
また、各一対の連結梁部84A~84Dを反射ミラー部82の揺動軸15に対して直角方向両端部の相対向する隅部に接続するため、各一対の連結梁部84A~84Dを反射ミラー部82に接続する位置精度の低減化を図ることができ、製品歩留まりの向上を図ることができる。
また、反射ミラー部82は、揺動軸15に対して直角方向に細長い平面視略横長八角形状に形成されているため、揺動軸15に対して直角方向両端縁部に作用する慣性モーメントを小さくすることが可能となる。これにより、反射ミラー部82に発生する動的ミラー歪みの更なる低減化を図ることが可能となる。
更に、一対の基体部25A、25Bの各内側端縁部は、一対の支持梁部21A、21Bによって連結され、この一対の基体部25A、25Bの各外側端縁部は、固定部材5に固定されている。これにより、各圧電素子26A、26Bによって揺動軸15を節とする定在的な波を各基体部25A、25B及び各支持梁部21A、21Bに発生させることが可能となる。
また、反射ミラー部82は、各一対の連結梁部84A~84D及び一対の保持梁部83A、83Bを介して、揺動軸15上に形成された一対の捻れ梁部22A、22Bによって支持される。これにより、反射ミラー部82を揺動軸15に対して直角方向に対称に形成することによって、この反射ミラー部82の揺動軸15をどの方向にも変位させることなく、反射ミラー部82を揺動させることが可能となる。従って、反射ミラー部82の揺動軸15が、どの方向にも変位しないため、反射ミラー部82の反射光の実効効率の更なる向上を図ることが可能となる。
また、本体部2をステンレス、チタン、鉄等、弾性を有する導電性材料で形成することによって、各圧電素子26A、26Bの下部電極を形成する必要がなくなり、構造の簡素化を図ることが可能となる。
尚、本発明は前記実施例1乃至実施例4に限定されることはなく、本発明の要旨を逸脱しない範囲内で種々の改良、変形が可能であることは勿論である。例えば、以下のようにしてもよい。
(A)本体部2をシリコン、石英等、弾性を有する厚さ約30μm~100μmの非導電性材料で形成してもよい。この場合には、厚さ約30μm~100μmの薄長四角形のシリコン基材上等に各貫通孔6、貫通孔10、各貫通孔20A、20B、45A、45B、65A、65B、85A、85Bの部分を除いた部分にレジスト膜を形成してマスキングする。その後、エッチングして、各貫通孔6及び貫通孔10、各貫通孔20A、20B、45A、45B、65A、65B、85A、85Bを形成した後、レジスト膜を除去する。これにより、固定枠5、各反射ミラー部12、82、各捻れ梁部22A、22B、各支持梁部21A、21B、各基体部25A、25B、各保持梁部23A、23B、42A、42B、62A、62B、83A、83B、及び、各連結梁部24A~24D、43A~43D、63A~63D、84A~84Dが形成される。
また、この場合には、各基体部25A、25B上に各圧電素子26A、26Bを形成する部分から固定枠5に渡って、白金(Pt)や金(Au)等を約0.2μm~0.6μm積層して一対の下部電極31A、31B(不図示)を形成する。その後、各下部電極31A、31B上に各圧電素子26A、26Bを形成後、この各圧電素子26A、26B上に各上部電極28A、28Bを形成するようにしてもよい。
これにより、固定枠5上の各下部電極31A、31Bと各上部電極28A、28Bとにワイヤボンディングして、各基体部25A、25B上に形成された各圧電素子26A、26Bに互いに逆位相の駆動電圧を印加することが可能となる。また、各上部電極28A、28B、各圧電素子26A、26B及び各下部電極31A、31Bを従来のスパッター法やCVD法等の薄膜技術で形成することが可能となる。
(B)また、例えば、各圧電素子26A、26Bに替えて、外部からの交番磁界により延び縮みする超磁歪材料等の磁歪膜や、外部からの交番磁界によって吸引・反発される永久磁石膜をAD法等で形成してもよい。そして、各基体部25A、25Bの近傍位置にコイルを設け、このコイルに交流電流を流して交番磁界を形成するようにしてもよい。これによって、揺動軸15を節とする定在的な波を各基体部25A、25B及び各支持梁部21A、21Bに発生させ、各反射ミラー部12、82を揺動軸15回りに揺動駆動することが可能となる。尚、この場合には、本体部2は、非磁性材料で形成することが望ましい。
(C)また、例えば、固定枠5を形成することなく、各基体部25A、25Bの外側端縁部をそれぞれベース3の支持部18上まで延出して、各基体部25A、25Bを直接支持部18上に固着するようにしてもよい。これにより、本体部2を小型化することが可能となる。
1、41、61、81、100 光スキャナ
2 本体部
3 ベース
5 固定枠
6、10、20A、20B、45A、45B 貫通孔
65A、65B、85A、85B 貫通孔
12、82 反射ミラー部
15、103 揺動軸
21A、21B 支持梁部
22A、22B 捻れ梁部
23A、23B、42A、42B、62A、62B、83A、83B 保持梁部
24A~24D、43A~43D、63A~63D、84A~84D 連結梁部
25A、25B 基体部
26A、26B 圧電素子
27 軸線
28A、28B 上部電極
31、32 駆動回路
101 ミラー部
102 可動部
104A~104D 梁
105 トーションバー
2 本体部
3 ベース
5 固定枠
6、10、20A、20B、45A、45B 貫通孔
65A、65B、85A、85B 貫通孔
12、82 反射ミラー部
15、103 揺動軸
21A、21B 支持梁部
22A、22B 捻れ梁部
23A、23B、42A、42B、62A、62B、83A、83B 保持梁部
24A~24D、43A~43D、63A~63D、84A~84D 連結梁部
25A、25B 基体部
26A、26B 圧電素子
27 軸線
28A、28B 上部電極
31、32 駆動回路
101 ミラー部
102 可動部
104A~104D 梁
105 トーションバー
Claims (7)
- ミラー部を揺動軸回りに揺動駆動して所定方向に光を走査する光スキャナにおいて、
前記ミラー部の揺動軸に沿って一端が支持されて該揺動軸回りに捻れ振動される一対の捻れ梁部と、
前記一対の捻れ梁部のそれぞれの他端から前記揺動軸に対して直角方向両側に該揺動軸に対して対称に延出されて前記ミラー部の揺動軸方向の両端部に相対向する一対の保持梁部と、
前記一対の保持梁部のそれぞれの両端から延出されて相対向する前記ミラー部の前記揺動軸に対して対称な所定位置に接続される各一対の連結梁部と、
前記一対の捻れ梁部に前記揺動軸回りの捻れ振動を誘起する振動誘起部と、
を備えたことを特徴とする光スキャナ。 - 前記ミラー部は、前記揺動軸に対して直角方向に対称に形成され、
前記各一対の連結梁部は、前記一対の保持梁部のそれぞれの両端から揺動軸方向に延出されて相対向する前記ミラー部の揺動軸方向の両端部に接続されていることを特徴とする請求項1に記載の光スキャナ。 - 前記各一対の連結梁部は、それぞれ前記ミラー部の揺動軸方向の両端部の相対向する隅部に接続されていることを特徴とする請求項2に記載の光スキャナ。
- 前記ミラー部は、前記揺動軸に対して直角方向に対称に形成され、
前記保持梁部は、相対向する前記ミラー部の揺動軸方向の両端部よりも外側に延出され、
前記各一対の連結梁部は、前記一対の保持梁部のそれぞれの両端から揺動軸方向に所定長さ延出された後、更に、前記ミラー部側に延出されて該ミラー部の揺動軸に対して直角方向両端部の相対向する隅部に接続されていることを特徴とする請求項1に記載の光スキャナ。 - 前記ミラー部の揺動軸方向の両端部は、相対向する前記保持梁部に対して平行になるように形成されていることを特徴とする請求項1乃至請求項4のいずれかに記載の光スキャナ。
- 前記ミラー部は、中央部分が平面視矩形状に形成されると共に、その中央部分の前記揺動軸に対して直角方向両側端縁部から外側方向に揺動軸方向の幅が徐々に狭くなるように延出されて、該揺動軸に対して直角方向に対称に形成され、
前記保持梁部は、相対向する前記ミラー部の中央部分の揺動軸方向の両端部とほぼ同じ長さに形成され、
前記各一対の連結梁部は、前記一対の保持梁部のそれぞれの両端から、前記ミラー部の中央部分から徐々に幅が狭くなる揺動軸方向の両端部に沿って、相対向する該ミラー部の揺動軸方向の両端部より外側に延出された後、更に、該ミラー部側に延出されて該ミラー部の揺動軸に対して直角方向両端部の相対向する隅部に接続されていることを特徴とする請求項1に記載の光スキャナ。 - 前記振動誘起部は、
前記一対の捻れ梁部のそれぞれの前記一端が長手方向中央部に連結されて相対向するように形成される一対の支持梁部と、
前記ミラー部を挟んで前記一対の支持梁部の各長手方向端部にそれぞれ内側端縁部が連結されて、前記揺動軸に対して直角方向に対称に配置される一対の平板状の基体部と、
前記一対の基体部の外側端縁部が連結される固定部材と、
前記一対の基体部の少なくとも一方の基体部の表面部に形成された励振手段と、
を有することを特徴とする請求項1乃至請求項6のいずれかに記載の光スキャナ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-148289 | 2008-06-05 | ||
JP2008148289A JP2009294458A (ja) | 2008-06-05 | 2008-06-05 | 光スキャナ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009147886A1 true WO2009147886A1 (ja) | 2009-12-10 |
Family
ID=41397965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/055105 WO2009147886A1 (ja) | 2008-06-05 | 2009-03-17 | 光スキャナ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2009294458A (ja) |
WO (1) | WO2009147886A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103033931A (zh) * | 2011-10-03 | 2013-04-10 | 三美电机株式会社 | 光学扫描装置 |
RU2566738C2 (ru) * | 2011-03-24 | 2015-10-27 | Сейко Эпсон Корпорейшн | Исполнительный механизм, оптический сканер и устройство формирования изображения |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5296428B2 (ja) * | 2008-06-20 | 2013-09-25 | キヤノン電子株式会社 | 光走査装置及び該光走査装置を用いた画像形成装置、及び画像読み取り装置とディスプレイ |
JP5296426B2 (ja) * | 2008-06-20 | 2013-09-25 | キヤノン電子株式会社 | 光走査装置及びその制御方法、並びに、画像読取装置及びディスプレイ装置 |
JP5381751B2 (ja) * | 2010-01-29 | 2014-01-08 | ブラザー工業株式会社 | 光スキャナ、及び光スキャナを用いた画像表示装置 |
JP5506485B2 (ja) * | 2010-03-24 | 2014-05-28 | スタンレー電気株式会社 | 2次元光スキャナ |
JP5909862B2 (ja) * | 2011-04-06 | 2016-04-27 | セイコーエプソン株式会社 | アクチュエーター、光スキャナーおよび画像形成装置 |
JP5842837B2 (ja) * | 2013-01-30 | 2016-01-13 | セイコーエプソン株式会社 | アクチュエーター、光スキャナーおよび画像形成装置 |
JP6455547B2 (ja) * | 2017-05-24 | 2019-01-23 | ミツミ電機株式会社 | 光走査装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002131685A (ja) * | 2000-10-25 | 2002-05-09 | Nippon Signal Co Ltd:The | アクチュエ−タ |
JP2005308863A (ja) * | 2004-04-19 | 2005-11-04 | Ricoh Co Ltd | 偏向ミラー、光走査装置及び画像形成装置 |
JP2007312465A (ja) * | 2006-05-16 | 2007-11-29 | Omron Corp | 駆動装置、光走査型装置及び物体情報検知装置 |
-
2008
- 2008-06-05 JP JP2008148289A patent/JP2009294458A/ja active Pending
-
2009
- 2009-03-17 WO PCT/JP2009/055105 patent/WO2009147886A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002131685A (ja) * | 2000-10-25 | 2002-05-09 | Nippon Signal Co Ltd:The | アクチュエ−タ |
JP2005308863A (ja) * | 2004-04-19 | 2005-11-04 | Ricoh Co Ltd | 偏向ミラー、光走査装置及び画像形成装置 |
JP2007312465A (ja) * | 2006-05-16 | 2007-11-29 | Omron Corp | 駆動装置、光走査型装置及び物体情報検知装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2566738C2 (ru) * | 2011-03-24 | 2015-10-27 | Сейко Эпсон Корпорейшн | Исполнительный механизм, оптический сканер и устройство формирования изображения |
EP2690764A4 (en) * | 2011-03-24 | 2016-03-02 | Seiko Epson Corp | ACTUATOR, OPTICAL SCANNER, AND IMAGE GENERATOR |
CN103033931A (zh) * | 2011-10-03 | 2013-04-10 | 三美电机株式会社 | 光学扫描装置 |
CN103033931B (zh) * | 2011-10-03 | 2016-12-21 | 三美电机株式会社 | 光学扫描装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2009294458A (ja) | 2009-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009147886A1 (ja) | 光スキャナ | |
JP5157499B2 (ja) | 光スキャナ | |
KR101500794B1 (ko) | 광학 반사 소자 | |
JP5229704B2 (ja) | 光走査装置 | |
KR101264136B1 (ko) | 가동 구조체을 사용한 마이크로 미러 소자 | |
JP3733383B2 (ja) | 2次元光スキャナ | |
JP4982814B2 (ja) | 光ビーム走査装置 | |
JP5240953B2 (ja) | 光ビーム走査装置 | |
JP4766353B2 (ja) | 光ビーム走査装置 | |
KR100939499B1 (ko) | 요동체 장치, 광 편향기, 및 광 편향기를 이용한화상형성장치 | |
JP5554895B2 (ja) | 揺動構造体、及び揺動構造体を用いた揺動体装置 | |
JPH10123449A (ja) | 光スキャナ | |
JP2009210955A (ja) | 光スキャナ | |
JP5157459B2 (ja) | 光スキャナ | |
WO2019239478A1 (ja) | 光偏向器 | |
JP2001264676A (ja) | 光スキャナ | |
JP5239382B2 (ja) | 光学反射素子 | |
JP2001272626A (ja) | 光スキャナ | |
WO2009088058A1 (ja) | 光スキャナ及び光スキャナの製造方法 | |
WO2023281993A1 (ja) | 光偏向器 | |
JP2009169195A (ja) | 光スキャナ及び光スキャナの製造方法 | |
JP4446345B2 (ja) | 光偏向素子と光偏向器と光走査装置及び画像形成装置 | |
JPH1090625A (ja) | 光スキャナ | |
JP2010060688A (ja) | 光学反射素子 | |
JP2013114015A (ja) | 光スキャナ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09758153 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09758153 Country of ref document: EP Kind code of ref document: A1 |