WO2009147862A1 - 撮像装置 - Google Patents
撮像装置 Download PDFInfo
- Publication number
- WO2009147862A1 WO2009147862A1 PCT/JP2009/002537 JP2009002537W WO2009147862A1 WO 2009147862 A1 WO2009147862 A1 WO 2009147862A1 JP 2009002537 W JP2009002537 W JP 2009002537W WO 2009147862 A1 WO2009147862 A1 WO 2009147862A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- charge
- photoelectric conversion
- region
- light
- gate
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 33
- 238000006243 chemical reaction Methods 0.000 claims abstract description 84
- 238000003860 storage Methods 0.000 claims abstract description 52
- 238000009825 accumulation Methods 0.000 claims abstract description 46
- 239000004065 semiconductor Substances 0.000 claims abstract description 5
- 230000001360 synchronised effect Effects 0.000 claims abstract description 5
- 238000012546 transfer Methods 0.000 claims description 87
- 239000003990 capacitor Substances 0.000 claims description 33
- 238000009826 distribution Methods 0.000 claims description 17
- 230000000630 rising effect Effects 0.000 claims description 4
- 230000000007 visual effect Effects 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 8
- 230000007613 environmental effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 230000009471 action Effects 0.000 description 5
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14603—Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
- H04N23/74—Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/77—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
- H04N25/771—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion
Definitions
- the present invention relates to an imaging apparatus that forms an image from which the influence of ambient light is removed.
- Japanese Patent Laid-Open No. 2006-155422 discloses a difference between an output of a light detection unit when light is not emitted from a light source to a target space and an output of a light detection unit when light is emitted from a light source to the target space. Is described as a pixel value to recognize an object.
- the pixel value is sampled at a high rate, and the number of charges handled in one sampling is very small.
- the charge generated in a pixel is distributed to multiple capacitors, if the incident light has a non-uniform peak in the pixel, especially if it has a peak near the distribution gate, it is distributed to which capacitor. Depending on whether the charge is accumulated, a difference occurs in the accumulated charge, and the reliability of signal processing is lowered.
- Japanese Patent Application Laid-Open No. 2-304974 describes a structure and manufacturing method of an embedded photodiode.
- a P-type region 13 is formed on the N-type region 6 (FIG. 1 (e)) of the photodiode formed on the semiconductor substrate, and the N-type photodiode region 6 is embedded (FIG. 1 (f)).
- the charges generated in the photodiode region 6 are transferred to the N-type region 7 serving as a charge transfer portion by the action of the silicon electrode serving as a transfer gate.
- the image pickup device of the present invention is configured by a semiconductor in which a charge transfer unit is connected to a light receiving unit by one or a plurality of embedded photodiodes, and the charges are distributed by a plurality of gates to accumulate charges. Is done.
- the image pickup apparatus of the present invention includes a light source that emits light at a predetermined cycle, and a light receiving portion of a pixel unit array for photoelectrically converting light received from the field of view.
- the imaging apparatus includes a control device that controls to accumulate charges generated by the photoelectric conversion at an exposure period synchronized with light emission of the light source.
- One of the exposure cycles is to receive light from a subject irradiated with ambient light that does not include light from the light source and a first period for receiving reflected light from the subject irradiated with light from the light source. Of the second period.
- the imaging apparatus includes a charge transfer region connected to each photoelectric conversion region of the light receiving unit, and a first charge accumulation that receives the charge generated in the photoelectric conversion region in the first period via the charge transfer unit. And a second charge accumulation region that receives charges generated in the photoelectric conversion region during the second period via the charge transfer unit.
- the first and second charge accumulation regions are configured to integrate charges generated in each photoelectric conversion region of the light receiving unit over n exposures.
- the imaging device includes a difference circuit that takes out the charges in the first and second charge accumulation regions when n exposures are completed and calculates the difference between them.
- the imaging device forms an image from which the influence of ambient light is removed by taking the difference.
- the imaging apparatus calculates the distance to the subject based on the phase difference between the signal obtained by taking the difference and the light of the light source.
- each pixel unit of the light receiving unit has a comb-shaped photoelectric conversion region and is connected to the charge transfer unit.
- each pixel unit of the light receiving unit is divided into a plurality of small photoelectric conversion regions, and the plurality of small photoelectric conversion regions of each pixel unit are connected to the common charge transfer unit. ing.
- first and second charge accumulation regions are common to the plurality of small photoelectric conversion regions for each pixel unit.
- the charge transfer portion is connected to the drain electrode via the drain gate.
- the drain gate is opened during the rise and fall periods of the light source to charge the charge transfer portion.
- the light receiving portion is formed of a buried photodiode, and each photoelectric conversion region is connected to the charge transfer portion via a transfer gate.
- a microlens can be provided in front of the light receiving surface of the photoelectric conversion region.
- the charge storage region can be formed with a MOS capacitor.
- the charge storage region is connected to the read charge storage region via the read transfer gate.
- the charge transfer part is connected to the drain electrode via the drain gate.
- the imaging device is configured to open the drain gate and drain the charge transfer unit during the rise and fall of the light source.
- FIG. 1 is a block diagram showing a basic configuration of an imaging apparatus targeted by the present invention.
- the figure which shows the equivalent circuit of the pixel unit of FIG. The figure which shows the state of the potential in the pixel unit of FIG.
- the figure which shows the equivalent circuit of the pixel unit of FIG. The figure which shows the advantage of the pixel unit of FIG.
- the figure which shows the equivalent circuit of the pixel unit of FIG. The figure which shows the timing in the pixel unit of FIG.
- the figure which shows the equivalent circuit of the pixel unit of FIG. The figure which shows the state of the potential in the pixel unit of FIG.
- the figure which shows the timing in the pixel unit of FIG. The figure which shows the structure of another Example of this invention.
- the figure which shows the equivalent circuit of the pixel unit of FIG. The figure which shows the timing in the pixel unit of FIG.
- FIG. 27 The figure which shows the state of the potential in the Example of FIG.
- the figure which shows the structure of the Example provided with the short circuit gate which connects the 1st and 2nd charge storage area
- the figure which shows the structure of the Example which connects the 1st and 2nd electric charge accumulation area
- the figure which shows the structure of the Example provided with the common reading part 41.
- FIG. 1 shows a general configuration of a system for generating a difference image which is the basis of the present invention.
- the camera 11 includes a light receiving unit 13 that receives light from a target space via a lens 12, and a difference circuit 15 that generates a difference image output.
- the timing controller 17 controls the light irradiation by the projector 19 and the timing of taking out the charge from the light receiving unit 13.
- FIG. 2 shows an arrangement of the pixel units 25 in the light receiving unit 13 in one embodiment of the present invention.
- each pixel unit 25 receives a first period for receiving reflected light from a subject irradiated on the projector and ambient light without light from the projector for each exposure synchronized with light irradiation by the projector.
- Each pixel unit stores a first accumulation region that accumulates charges generated in the photoelectric conversion region of the pixel unit in the first period, and a first accumulation region that accumulates charges generated in the photoelectric conversion region of the pixel unit in the second period. 2 storage areas.
- the difference circuit 15 is controlled by the vertical scanning circuit 23 and the horizontal scanning circuit 27 to read out charges from the first and second accumulation regions of each pixel unit, take the difference between the output values, and output the difference image output.
- FIG. 3 schematically shows the structure of the pixel unit 25 of the light receiving section as shown in Patent Document 2, for example.
- the photoelectric conversion unit 25a of the pixel unit 25 is a buried photodiode, and is connected to the charge storage region 27a via the distribution gate Tx1 and to the charge storage region 27b via the distribution gate Tx2.
- the charge storage regions 27a and 27b are connected to the reset electrodes 29a and 29b via the reset gates Ra and Rb.
- the cross-sectional view shown in the lower part of FIG. 3 shows that the photoelectric conversion part 25a is formed by embedding an N-type region in a P-type well of a semiconductor substrate. The edge of the N-type region is drawn up on the surface of the substrate.
- the N-type is shown in FIGS.
- Patent Document 3 This is to represent the same structure as the edge of the region 6 and represents a known structure.
- the charge moves from the photoelectric conversion region 25a to the N + region of the charge storage region 27a.
- FIG. 4 is a circuit diagram of the pixel unit of FIG. 3, and FIG. 5 shows changes in the potential well in this circuit.
- the light receiving region 25a that is, the photoelectric conversion unit 25a is indicated by a diode having a photoelectric conversion action and a capacitor C0.
- (A) shows a potential well in a state where no operation is applied to the circuit.
- (B) the distribution gates Tx1 and Tx2 and the reset gates R1 and R2 are opened and a voltage V is applied to eliminate charges in the photoelectric conversion unit and the charge storage region.
- C shows a state in which charges are generated in the photoelectric conversion unit 25a during the first period of the first exposure.
- (D) shows a state in which the distribution gate Tx1 is opened and charges accumulated in the photoelectric conversion unit 25a are transferred to the charge accumulation region 27a (represented by the capacitor C1).
- (E) shows how charges are generated in the photoelectric conversion unit 25a during the second period of the first exposure.
- (F) shows how the distribution gate Tx2 is opened to transfer charges to the charge storage region 27b (represented by the capacitor C2).
- (G) shows a state in which the first period of the second exposure has started, and (H) shows a state in which the charges accumulated in the photoelectric conversion unit in (G) are transferred to the capacitor C1 in the charge storage region 27a.
- the exposure cycle is repeated n times, and the charges accumulated in the charge accumulation region 27a (capacitor C1) and region 27b (capacitor C2) during this time are read by opening the output gate T.
- the L1 and L2 FET transistors are level shift transistors, and when the output gate T is opened, a current corresponding to the potential of the capacitor C1 or C2 is sent to a downstream processing circuit.
- FIG. 6 schematically illustrates a problem that occurs in the photoelectric conversion unit 25a of the conventional pixel unit 25.
- the light emitting diode LED is used as the light source of the projector 19 to increase the light emission rate (repetition frequency), and in synchronization with this, the electrons generated by the photoelectric conversion unit 25a are distributed, and the charge storage regions 27a and 27b are passed through the gates Tx1 and Tx2. Think about allocating.
- the first period for receiving the light irradiated by the LED and reflected by the subject and the second period for receiving the ambient light are on the order of 1/10 milliseconds or less, from nanoseconds to microseconds. It may be an order. Therefore, the number of electrons generated in a fine photoelectric conversion region is very small and may be on the order of several to several tens.
- FIG. 7 shows an embodiment of a pixel unit 25 according to the present invention that solves this problem.
- a charge transfer unit 31 is provided adjacent to the photoelectric conversion unit 25a.
- the photoelectric conversion unit 25a has a structure in which a P region is provided on the surface portion and an N region is provided below the P region, and the charge transfer unit 31 includes the region of the photoelectric conversion unit 25a below the light-shielding curtain 24. It is formed to extend.
- FIG. 7 shows an A-A ′ cross section of the pixel unit 25.
- An N-type layer 63 is buried in a P-type well (P-well) 61, and a photodiode is formed by a PN junction with a P + region 65 formed thereon.
- This PN junction functions as the charge transfer unit 31 in portions other than the photoelectric conversion unit 25a.
- the charge generated by the photoelectric conversion unit 25a moves to the charge transfer unit 31 having a lower potential.
- the doping level of the charge transfer unit 31 can be made different from that of the photoelectric conversion unit 25a to form a potential gradient.
- a charge storage region 27a is formed next to the MOS structure transfer gate Tx1.
- the charge storage region 27a is composed of an N region 67 embedded in a P-type well region 61.
- the N + region 69 forms a reset electrode 29a and is connected to the wiring of the voltage V.
- the N + region 67 and the N + region 69 are electrically connected by applying a signal to the gate R1 of the MOS structure.
- a potential step is formed between the photoelectric conversion unit 25a and the charge transfer unit 31.
- This step can be realized by changing the doping level of the P + region 65 or the N region 63. Alternatively, it can be realized by providing an electrode partially above the P + region 65 and applying a potential to the charge transfer unit 31 without changing the doping level.
- FIG. 8 is a circuit diagram of the pixel unit 25 of FIG. The difference from the circuit diagram of the conventional structure shown in FIG. 4 is that a capacitor C3 is included in the circuit corresponding to the charge transfer unit 31.
- FIG. 9 is a diagram for explaining the advantages of the embodiment of the present invention shown in FIG.
- the charge generated in the photoelectric conversion unit 25a is first moved to the common charge transfer unit 31 and transferred to the charge transfer region 31b, regardless of whether the charge is distributed to the first charge storage region 27a or the second charge storage region 27b.
- the portion 31 is distributed to the first or second charge accumulation region. Therefore, even when light strikes the biased position of the photoelectric conversion unit 25a and the charge generation position is biased, the bias when sorting is small. Therefore, the reliability of the differential signal can be improved.
- step 101 reset processing is performed.
- the distribution gates Tx1 and Tx2 and the reset gates R1 and R2 are opened, and the voltage V is applied to the reset electrodes 29a and 29b to charge the charge storage regions 27a and 27b, that is, the capacitors C1 and C2.
- the signal waveform diagram of FIG. 11 and (B) of FIG. 12 show this state.
- a charge known as reset noise enters the capacitor together with the reset process.
- the charge of the capacitor is read in a state where the reset noise is generated, and the charge of the capacitor is read after the charge generated by the exposure is accumulated, and the charge generated by the exposure is determined based on the difference. As a result, reading with canceling reset noise can be performed. This process is called double sampling. Also in the present invention, double sampling is performed in an embodiment described later.
- the exposure cycle counter is set to zero.
- the exposure cycle is synchronized with the light emission cycle of the light source of the projector.
- One exposure cycle includes a first exposure period (corresponding to step 105) corresponding to light emission of the light source and a second exposure period (corresponding to step 107) corresponding to a period during which the light source does not emit light.
- the number n of exposure cycles can be a value from several tens to 1000 depending on the imaging environment.
- the counter value is incremented by 1 for each exposure cycle (step 109). When the counter value reaches n (step 111), output processing is performed (step 113).
- electrons generated in the photoelectric conversion unit in the first exposure period are accumulated in the first charge accumulation region 27a, that is, the capacitor C1 through the Tx1 gate. Since the capacitor C1 is charged with a positive charge by the reset process, the charge of the capacitor C1 is thereby reduced. Electrons generated in the photoelectric conversion unit during the second exposure period are accumulated in the second charge accumulation region 27b, that is, the capacitor C2, via the Tx2 gate. After repeating the exposure cycle n times, the charge accumulated in the capacitor C1 and the charge accumulated in the capacitor C2 are read by the difference circuit 15 via the gate T.
- (C) shows that the sorting gate Tx1 is opened at the start of the first exposure period.
- (D) shows a state in which the charge generated by the photoelectric conversion unit 25a moves to the first charge accumulation region 27a through the charge transfer unit 31.
- (E) indicates that the sorting gate Tx2 is opened at the start of the second exposure period.
- (F) shows how charges generated by the photoelectric conversion unit 25a move from the charge transfer unit 31 to the second charge storage region 27b.
- FIG. 12 shows that the sorting gate Tx1 is opened at the start of the first exposure period of the second exposure cycle.
- (H) shows a state in which the charges generated by the photoelectric conversion unit 25a move to the first charge accumulation region 27a. In this way, the charges generated in each exposure cycle are accumulated in the first and second charge accumulation regions 27a and 27b until n exposure cycles are completed.
- FIG. 13 is a layout diagram of the pixel unit 25 corresponding to FIG. 7, and the same elements are denoted by the same reference numerals. The difference from the structure of FIG. 7 is that the charge transfer section 31 is connected to the drain electrode 33 via the drain gate D.
- FIG. 14 is a circuit diagram corresponding to FIG. 13 with a drain gate D added.
- FIG. 15 shows the operation in the exposure cycle of the pixel unit 25 of FIG.
- the description of the reset signal shown in FIG. 11 is omitted, but the reset process is also performed in the pixel unit 25 of FIG. 13 as in the case of FIG.
- the reset signal is applied to the reset gates R1 and R2 at the same timing as the first drain gate signal, and at the same time, the distribution gates Tx1 and Tx2 are opened.
- the drain gate and the drain electrode act to take out a stable charge by cutting off the rising and falling portions of charge generation in the photoelectric conversion portion when it takes time to rise and fall the light source.
- the drain gate D opens at the rising edge of the incident light to the photoelectric conversion unit 25a in synchronization with the light emission timing of the light source, and discards the charge to the drain electrode. Charge accumulation region In the timing chart of FIG. 15, the drain gate D is opened even at the falling edge of the incident light, and the charge is thrown away to the drain.
- the charge transfer section 31 is connected to the photoelectric conversion unit 25a via the transfer gate Tx0, illustrating an embodiment of the present invention.
- the structure of the pixel unit shown in FIG. 16 is different from the structure of the pixel unit shown in FIG. 7 in that the transfer gate Tx0 exists between the photoelectric conversion region 25a and the charge transfer unit 31. 16, the same components as those in FIG. 7 are denoted by the same reference numerals as those in FIG.
- FIG. 17 is a circuit diagram of the pixel unit of FIG. 16, in which a transfer gate Tx0 exists between the equivalent capacitor C0 of the photoelectric conversion unit and the equivalent capacitor C3 of the charge transfer unit 31.
- FIG. 18 is a potential diagram corresponding to FIG. 12, and the state diagrams (A) to (H) correspond to (A) to (H) in FIG.
- (A) shows potential when no operation is performed.
- (B) shows the potential when all the gates are opened and the above-described reset processing is performed.
- (C) shows a state in which charges are generated in the photoelectric conversion unit 25a by exposure.
- (D) shows a state in which the transfer gate Tx0 is opened and the charge is transferred to the charge transfer unit 31.
- (E) shows a state where the sorting gate Tx1 is opened and the charge is transferred to the first charge storage region 27a.
- (F) shows how charges are generated in the photoelectric conversion unit 25a in the second exposure period.
- (G) shows how the transfer gate Tx0 is opened and the charge is transferred to the charge transfer unit 31.
- (H) shows how the sorting gate Tx2 is opened and the charge is transferred to the second charge storage region 27b.
- Transfer gate Tx0 acts to make charge distribution uniform. Since the transfer gate is opened for a longer time than the distribution gate and the charge transfer time to the charge transfer unit is determined by the transfer gate, the result is hardly affected even if the timing of the distribution gate is slightly changed.
- FIG. 19 is a timing chart of the pixel unit 25 of FIG. 11 is different from the timing chart of FIG. 11 in that there is a transfer gate Tx0. Tx0 is opened near the end of the exposure period and acts to transfer the charge to the charge transfer unit 31.
- FIG. 20 is a layout diagram of the pixel unit 25 of this embodiment corresponding to FIG. A difference from FIG. 13 is that a transfer gate Tx0 is provided between the photoelectric conversion unit 25a and the charge transfer unit 31.
- FIG. 21 is an equivalent circuit diagram of this embodiment.
- FIG. 22 is a timing chart of this embodiment.
- the interval between the first exposure and the second exposure in the exposure cycle is set to be long.
- the drain gate D is opened at the rising edge of exposure to discard the charge in the charge transfer unit 31.
- the transfer gate Tx0 is opened, and the charge generated by the photoelectric conversion unit 25a is transferred to the charge transfer unit 31.
- the transfer gate Tx0 is opened and at the same time the sorting gate Tx1 is opened, and the charge is transferred to the charge storage region 27a.
- the distribution gate Tx1 continues to open even after the transfer gate Tx0 is closed.
- the distribution gate Tx1 can be opened until just before entering the process for the second exposure period. In this way, the charge in the charge transfer unit 31 can be completely transferred to the charge accumulation region 27a.
- This embodiment is more effective when the charge transfer time from the photoelectric conversion unit 25a to the charge transfer unit 31 is short.
- Fig. 23 shows the shape of the photoelectric conversion unit 25a .
- Fig. 23 shows an example in which the shape of the photoelectric conversion unit 25a in the embodiment of Fig. 20 is a comb shape.
- the potential can be increased without changing the ion concentration (doping level).
- charge movement due to drift can be accelerated.
- the photoelectric conversion unit 25a is divided into four fine photoelectric conversion units 25a-1, 25a-2, 25a-3, and 25a-4. It is configured. These four fine photoelectric conversion units are connected to a common charge transfer unit 31 via transfer gates Tx0-1, Tx0-2, Tx0-3, and Tx0-4. Since each of the four photoelectric conversion units is fine, a potential gradient is formed, and the movement of charges to the charge transfer unit 31 due to drift can be accelerated. By dividing the photoelectric conversion unit 25a in this way, the charge transfer time can be shortened.
- the charge storage regions 27a and 27b can be composed of a capacitor having a MOS (Metal-Oxide-Silicon) structure.
- MOS capacitors are generally known.
- FIG. 25 shows an example in which the charge storage regions 27a and 27b are divided in the pixel unit 25 of FIG. 7 and the main part of the charge storage region is configured by a MOS capacitor.
- the charge storage region of the embodiment can be configured with a MOS capacitor.
- FIG. 26 shows an embodiment in which the photoelectric conversion unit 25a is composed of four fine photoelectric conversion units 25a-1, 25a-2, 25a-3, and 25a-4, in front of each fine photoelectric conversion unit.
- An embodiment in which the microlens 51 is arranged is shown.
- FIG. 27 shows an embodiment in which read charge accumulation regions 41a and 41b are provided via gates RT1 and RT2 next to the charge accumulation regions 27a and 27b in the embodiment of FIG.
- FIG. 28 is an equivalent circuit showing a capacitor C4 corresponding to the read charge storage region 41a and a capacitor C5 corresponding to the read charge storage region 41b via the gate RT.
- FIG. 29 shows the potential state (left side of the figure) in the pixel unit of FIG. 27 provided with the readout charge accumulation regions 41a and 41b, and the potential state in the pixel unit of FIG. 23 without such a charge accumulation region ( The right side of the figure) is shown in comparison.
- (A) shows the state of the potential well when no operation is performed.
- (B) shows the potential state in the reset process before the exposure cycle described above.
- (C) shows a state in which charges are accumulated in the charge storage region 27a after n times of exposure and charge transfer. In the potential diagram on the left side, the remaining charge and noise in the previous exposure cycle are accumulated in the readout charge accumulation region 41a. In the potential diagram on the right side, there is no readout charge storage region, so the charge in the charge storage region 27a is read out.
- the charge is reset by opening the reset gate R1 in (D).
- noise remains in the read charge accumulation region 41a.
- the potential is read and stored.
- the read transfer gate is opened, and the charge in the charge accumulation region 27a is transferred to the read charge accumulation region 41a.
- the potential of the readout charge accumulation region 41a is read out, and the difference from the potential stored in (E) is taken. In this way, it is possible to read the potential based on the charge accumulated by exposure without being affected by noise.
- the above-described double sampling can be executed also in the present invention.
- FIG. 30 shows another embodiment of the present invention.
- the charge storage regions 27a and 27b are extended to the short-circuit gate S and can be electrically connected via the short-circuit gate.
- the short-circuit gate is a gate having a MOS structure like the reset gates R1 and R2.
- the reset gates R1 and R2 are opened to reset the charge storage regions 27a and 27b
- the short-circuit gate S is opened and the charge storage regions 27a and 27b are electrically connected in synchronization with this.
- the charge accumulation regions 27a and 27b can be reset to a uniform potential by the reset process. Even if there is a potential difference between the reset electrodes 29a and 29b, the charge accumulation regions 27a and 27b can be reset to the same potential by the action of the short-circuit gate S.
- FIG. 31 shows still another embodiment of the present invention.
- Components corresponding to the embodiment of FIG. 30 are given the same reference numerals as in FIG.
- the end portions extending from the charge storage regions 27a and 27b are connected to the reset electrode 29 via one gate R / S that has both a reset action and a short-circuit action. Since the charge accumulation regions 27a and 27b are reset by one reset electrode 29, the charge accumulation regions 27a and 27b can be reset to the same potential.
- FIG. 32 is a modification of the embodiment of FIG. 31 and includes a common reading unit 41.
- a common readout unit 41 By using a common readout unit, correction due to differences in amplifier performance to obtain an accurate difference becomes unnecessary.
- the above-described transfer gate and drain gate can be added to the embodiments of FIGS.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
25a 光電変換部
27a、27b 電荷蓄積領域
29、29a、29b リセット電極
31 電荷転送部
Tx1、Tx2 振り分けゲート
R1、R2 リセットゲート
S 短絡ゲート
次に図13から15を参照して、ドレインゲートDおよびドレイン電極33を設けたこの発明の実施形態を説明する。図13は、図7に対応する画素ユニット25のレイアウト図で、同じ要素は同じ参照番号で示されている。図7の構造との相違は、電荷転送部31がドレインゲートDを介してドレイン電極33に接続されていることである。図14は、図13に対応する回路図であり、ドレインゲートDが加えられている。
次に図16から19を参照して電荷転送部31が転送ゲートTx0を介して光電変換部25aに接続された、この発明の一実施形態を説明する。図16に示す画素ユニットの構造は、転送ゲートTx0が光電変換領域25aと電荷転送部31との間に存在する点で、図7に示す画素ユニットの構造と相違する。図16において図7と同じ構成要素には図7と同じ参照番号が付されている。
図20から図22を参照して、ドレインゲートおよび転送ゲートの両方を備えた、この発明の実施形態を説明する。図20は図13に対応するこの実施形態の画素ユニット25のレイアウト図である。図13との相違は、転送ゲートTx0が光電変換部25aと電荷転送部31との間に設けられている点である。図21は、この実施形態の等価回路図である。
図23は、図20の実施形態における光電変換部25aの形状を櫛形にした例である。このような櫛形の形状にすることにより、光電変換部25aの各点の最小幅は電荷転送部31の最小幅より狭いので、イオン濃度(ドーピングレベル)を変えることなく、ポテンシャルを高くすることができ、ドリフトによる電荷の移動を早くすることができる。
図24は、図20に示す画素ユニット25の変形で、光電変換部25aは、微細な4つの光電変換部25a-1、25a-2、25a-3、25a-4から構成されている。これら4つの微細な光電変換部は、転送ゲートTx0-1、Tx0-2、Tx0-3、Tx0-4を介して共通の電荷転送部31に接続されている。4つの光電変換部のそれぞれが微細であるのでポテンシャルの傾斜が形成され、ドリフトによる電荷転送部31への電荷の移動を早くすることができる。このように光電変換部25aを分割することにより、電荷の転送時間を短縮することができる。
これまでの実施形態において電荷蓄積領域27a、27bはMOS(Metal-Oxide-Silicon)構造のコンデンサで構成することができる。MOSコンデンサは一般に知られている。図25は、図7の画素ユニット25において電荷蓄積領域27aおよび27bを分割して電荷蓄積領域の主要部をMOSコンデンサで構成した例を示す。同様にそのたの実施形態の電荷蓄積領域をMOSコンデンサで構成することができる。
この発明の実施形態における画素ユニット25の光電変換部25aの光入射方向前方にマイクロレンズを配置して、集光率を向上させることができる。図26は、光電変換部25aが、4つの微細な光電変換部25a-1、25a-2、25a-3、25a-4で構成される実施形態において、それぞれの微細な光電変換部の前方にマイクロレンズ51を配置した実施例を示す。レンズをそれぞれの光電変換部25a-1、25a-2、25a-3、25a-4に合わせた数だけ設け位置合わせすることにより、光の無駄がなくなり、感度を向上させることができる。
図27は、図23の実施形態において、電荷蓄積領域27a、27bの隣にゲートRT1、RT2を介して読み出し電荷蓄積領域41a、41bを設けた実施形態を示す。図28は、この等価回路であり、ゲートRTを介して読み出し電荷蓄積領域41aに対応するコンデンサC4、読み出し電荷蓄積領域41bに対応するコンデンサC5が示されている。
Claims (20)
- 所定の周期で光を出す光源、および視野から受け取る光を光電変換するための画素ユニット配列の受光部を備えた撮像装置であって、
前記光源の発光と同期した露光周期で前記光電変換により生成した電荷を蓄積させるよう制御する制御装置を備え、
一つの前記露光周期は、光源からの光で照射された被写体からの反射光を受け取るための第1期間、および前記光源からの光を含まない環境光で照射された被写体からの光を受け取るための第2期間を含み、
前記受光部の各光電変換領域に接続された電荷転送部、前記第1期間に前記光電変換領域に生じた電荷を前記電荷転送部を介して受け取る第1の電荷蓄積領域、および前記第2期間に前記光電変換領域に生じた電荷を前記電荷転送部を介して受け取る第2の電荷蓄積領域を備える、
撮像装置。 - 前記第1および第2の電荷蓄積領域は、n回の露光にわたって前記光電変換領域で生成される電荷を積分するよう構成されており、
前記n回の露光が終わったとき、前記第1および第2の電荷蓄積領域の電荷を取り出し、その差分をとる差分回路を備える、請求項1に記載の撮像装置。 - 前記差分をとることにより、環境光による影響を取り除いた画像を形成する手段を備える、請求項2に記載の撮像装置。
- 前記差分をとることにより得られた信号と前記光源の光との位相の差により被写体までの距離を算出する手段を備える、請求項2に記載の撮像装置。
- 前記受光部のそれぞれの画素ユニットは櫛型の光電変換領域を有し、前記電荷転送領域に接続されている、請求項1に記載の撮像装置。
- 前記受光部のそれぞれの画素ユニットは複数個の小さな光電変換領域に分割されており、各画素ユニットの前記複数個の小さな光電変換領域は共通の前記電荷転送部に接続されている、請求項1に記載の撮像装置。
- 前記第1および第2の電荷蓄積領域は、画素ユニットごとに前記複数の小さな光電変換領域に共通である、請求項6に記載の撮像装置。
- 前記電荷転送部はドレインゲートを介してドレイン電極に接続される、請求項1に記載の撮像装置。
- 前記光源の立ち上がり、立ち下がりの期間、前記ドレインゲートを開いて前記電荷転送部の電荷をすてるよう構成された、請求項8に記載の撮像装置。
- 前記光電変換領域および前記電荷転送部は埋め込みフォトダイオード構造で形成されており、各光電変換領域は転送ゲートを介して前記電荷転送部に接続されている、請求項1に記載の撮像装置。
- 前記光電変換領域、前記電荷転送部、および前記第1および第2の電荷蓄積領域が埋め込みフォトダイオード構造で形成されている、請求項10に記載の撮像装置。
- 前記受光部の受光面の前にマイクロレンズを備えた、請求項1に記載の撮像装置。
- 前記電荷蓄積領域は、MOSキャパシタで形成されており、振り分けゲートを介して前記電荷転送部に接続されている、請求項1に記載の撮像装置。
- 前記電荷蓄積領域は、読み出し転送ゲートを介して読み出し電荷蓄積領域に接続されている、請求項1に記載の撮像装置。
- ゲートを介して前記電荷蓄積領域に隣接して設けられた読み出し電荷蓄積領域を備える、請求項1に記載の撮像装置。
- 露光サイクルの終わりに前記読み出し電荷蓄積領域をリセットした後該電荷蓄積領域の電位を読み出して記憶しておき、続いて、前記電荷蓄積領域の電荷を該読み出し電荷蓄積領域に移し、該読み出し電荷蓄積領域の電位を読み出して、先に記憶した電位との差をとることにより、光電変換により生じた電荷を検出する、請求項14に記載の撮像装置。
- 前記第1および第2の電荷蓄積領域をそれぞれリセット電位に接続する第1および第2のリセットゲートと、前記第1および第2の電荷蓄積領域を電気的に接続することができる短絡ゲートとを備え、該短絡ゲートは、前記リセットゲートがオンにされるときオンにされ、前記第1および第2の電荷蓄積領域を同電位にする、請求項1に記載の撮像装置。
- 前記第1および第2の電荷蓄積領域をリセット電位に接続する共通のリセットゲートを備える、請求項1に記載の撮像装置。
- 1つまたは複数の埋め込みフォトダイオードによる光電変換領域に電荷転送部がつながり、そこから複数の振り分けゲートにより電荷を振り分けて電荷を蓄積する半導体撮像素子。
- 前記光電変換領域と電荷転送部との間に転送ゲートを設けた請求項19に記載の撮像素子。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09758129.2A EP2296368B1 (en) | 2008-06-04 | 2009-06-04 | Imaging device |
US12/995,913 US8730382B2 (en) | 2008-06-04 | 2009-06-04 | Charge accumulating and splitting imaging device |
JP2010515783A JP5333869B2 (ja) | 2008-06-04 | 2009-06-04 | 撮像装置 |
KR1020107026972A KR101436673B1 (ko) | 2008-06-04 | 2009-06-04 | 촬상 장치 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008147308 | 2008-06-04 | ||
JP2008-147308 | 2008-06-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009147862A1 true WO2009147862A1 (ja) | 2009-12-10 |
Family
ID=41397942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/002537 WO2009147862A1 (ja) | 2008-06-04 | 2009-06-04 | 撮像装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8730382B2 (ja) |
EP (1) | EP2296368B1 (ja) |
JP (1) | JP5333869B2 (ja) |
KR (1) | KR101436673B1 (ja) |
WO (1) | WO2009147862A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011119837A (ja) * | 2009-12-01 | 2011-06-16 | Hirotsu Kazuko | 固体撮像素子 |
EP2346079A1 (en) * | 2010-01-13 | 2011-07-20 | CMOSIS nv | Pixel structure with multiple transfer gates |
JP2011217206A (ja) * | 2010-03-31 | 2011-10-27 | Honda Motor Co Ltd | 固体撮像装置 |
JP2012060597A (ja) * | 2010-09-13 | 2012-03-22 | Honda Motor Co Ltd | 撮像装置および撮像方法 |
JP2013157932A (ja) * | 2012-01-31 | 2013-08-15 | Hamamatsu Photonics Kk | 撮像装置 |
WO2016157910A1 (ja) * | 2015-03-31 | 2016-10-06 | 国立大学法人静岡大学 | 測長素子及び固体撮像装置 |
JP2017527222A (ja) * | 2014-09-08 | 2017-09-14 | マイクロソフト テクノロジー ライセンシング,エルエルシー | 可変解像度ピクセル |
JP2017223697A (ja) * | 2012-03-21 | 2017-12-21 | 株式会社半導体エネルギー研究所 | 距離測定装置、距離測定システム |
JP2018032749A (ja) * | 2016-08-24 | 2018-03-01 | 国立大学法人静岡大学 | 電荷蓄積素子 |
WO2018038230A1 (ja) * | 2016-08-24 | 2018-03-01 | 国立大学法人静岡大学 | 光電変換素子及び固体撮像装置 |
WO2020008962A1 (ja) * | 2018-07-02 | 2020-01-09 | 株式会社ブルックマンテクノロジ | 測距装置、カメラ、検査調整装置、測距装置の駆動調整方法及び検査調整方法 |
WO2021166514A1 (ja) * | 2020-02-19 | 2021-08-26 | ソニーセミコンダクタソリューションズ株式会社 | センサ装置、測距装置、センシング方法 |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5506683B2 (ja) | 2008-08-11 | 2014-05-28 | 本田技研工業株式会社 | 画素、画素の製造方法、撮像装置および画像形成方法 |
JP4988075B1 (ja) * | 2010-12-16 | 2012-08-01 | パナソニック株式会社 | 撮像装置及び画像処理装置 |
US9052497B2 (en) | 2011-03-10 | 2015-06-09 | King Abdulaziz City For Science And Technology | Computing imaging data using intensity correlation interferometry |
KR101294445B1 (ko) * | 2011-04-13 | 2013-08-07 | 엘지이노텍 주식회사 | 픽셀, 픽셀 어레이, 픽셀 어레이를 포함하는 이미지센서 및 픽셀 어레이의 구동방법 |
US9099214B2 (en) | 2011-04-19 | 2015-08-04 | King Abdulaziz City For Science And Technology | Controlling microparticles through a light field having controllable intensity and periodicity of maxima thereof |
US9083905B2 (en) * | 2011-04-26 | 2015-07-14 | Semiconductor Components Industries, Llc | Structured light imaging system |
US9118883B2 (en) * | 2011-11-28 | 2015-08-25 | Semiconductor Components Industries, Llc | High dynamic range imaging with multi-storage pixels |
US9167174B1 (en) | 2014-11-05 | 2015-10-20 | Duelight Llc | Systems and methods for high-dynamic range images |
US9179062B1 (en) | 2014-11-06 | 2015-11-03 | Duelight Llc | Systems and methods for performing operations on pixel data |
US9179085B1 (en) | 2014-11-06 | 2015-11-03 | Duelight Llc | Image sensor apparatus and method for obtaining low-noise, high-speed captures of a photographic scene |
US9160936B1 (en) | 2014-11-07 | 2015-10-13 | Duelight Llc | Systems and methods for generating a high-dynamic range (HDR) pixel stream |
US9167169B1 (en) | 2014-11-05 | 2015-10-20 | Duelight Llc | Image sensor apparatus and method for simultaneously capturing multiple images |
US9531961B2 (en) | 2015-05-01 | 2016-12-27 | Duelight Llc | Systems and methods for generating a digital image using separate color and intensity data |
US9137455B1 (en) | 2014-11-05 | 2015-09-15 | Duelight Llc | Image sensor apparatus and method for obtaining multiple exposures with zero interframe time |
US9918017B2 (en) | 2012-09-04 | 2018-03-13 | Duelight Llc | Image sensor apparatus and method for obtaining multiple exposures with zero interframe time |
US9154708B1 (en) * | 2014-11-06 | 2015-10-06 | Duelight Llc | Image sensor apparatus and method for simultaneously capturing flash and ambient illuminated images |
US8976264B2 (en) | 2012-09-04 | 2015-03-10 | Duelight Llc | Color balance in digital photography |
US10558848B2 (en) | 2017-10-05 | 2020-02-11 | Duelight Llc | System, method, and computer program for capturing an image with correct skin tone exposure |
US9807322B2 (en) | 2013-03-15 | 2017-10-31 | Duelight Llc | Systems and methods for a digital image sensor |
US9819849B1 (en) | 2016-07-01 | 2017-11-14 | Duelight Llc | Systems and methods for capturing digital images |
US10924688B2 (en) | 2014-11-06 | 2021-02-16 | Duelight Llc | Image sensor apparatus and method for obtaining low-noise, high-speed captures of a photographic scene |
US11463630B2 (en) | 2014-11-07 | 2022-10-04 | Duelight Llc | Systems and methods for generating a high-dynamic range (HDR) pixel stream |
JP6457822B2 (ja) * | 2015-01-21 | 2019-01-23 | キヤノン株式会社 | 光電変換装置及び撮像システム |
US9716850B2 (en) * | 2015-09-08 | 2017-07-25 | Pixart Imaging (Penang) Sdn. Bhd. | BJT pixel circuit capable of cancelling ambient light influence, image system including the same and operating method thereof |
US10313600B2 (en) * | 2015-10-13 | 2019-06-04 | Canon Kabushiki Kaisha | Imaging device capable of simultaneously capturing of a motion image and a static image and imaging method |
US10057526B2 (en) * | 2015-11-13 | 2018-08-21 | Pixart Imaging Inc. | Pixel circuit with low power consumption, image system including the same and operating method thereof |
US9979905B2 (en) * | 2015-11-17 | 2018-05-22 | Microsoft Technology Licensing, Llc. | Multimode photosensor |
JP6727938B2 (ja) * | 2016-06-10 | 2020-07-22 | キヤノン株式会社 | 撮像装置、撮像装置の制御方法、及び撮像システム |
CN114449163A (zh) | 2016-09-01 | 2022-05-06 | 迪尤莱特公司 | 基于焦点目标信息调整焦点的装置和方法 |
WO2019033232A1 (zh) * | 2017-08-14 | 2019-02-21 | 深圳市汇顶科技股份有限公司 | 三维影像系统及电子装置 |
EP3605016B1 (en) | 2018-04-16 | 2022-04-06 | Shenzhen Goodix Technology Co., Ltd. | Image sensing system and electronic device |
US10791286B2 (en) | 2018-12-13 | 2020-09-29 | Facebook Technologies, Llc | Differentiated imaging using camera assembly with augmented pixels |
US10791282B2 (en) * | 2018-12-13 | 2020-09-29 | Fenwick & West LLP | High dynamic range camera assembly with augmented pixels |
US10855896B1 (en) | 2018-12-13 | 2020-12-01 | Facebook Technologies, Llc | Depth determination using time-of-flight and camera assembly with augmented pixels |
US10902623B1 (en) | 2019-11-19 | 2021-01-26 | Facebook Technologies, Llc | Three-dimensional imaging with spatial and temporal coding for depth camera assembly |
US11194160B1 (en) | 2020-01-21 | 2021-12-07 | Facebook Technologies, Llc | High frame rate reconstruction with N-tap camera sensor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02304974A (ja) | 1989-05-19 | 1990-12-18 | Nec Corp | 固体撮像素子の製造方法 |
JPH08122149A (ja) * | 1994-10-24 | 1996-05-17 | Nissan Motor Co Ltd | イメージセンサ |
JPH10322599A (ja) * | 1997-03-18 | 1998-12-04 | Toshiba Corp | 固体撮像装置及びその駆動方法 |
US6239456B1 (en) | 1998-08-19 | 2001-05-29 | Photobit Corporation | Lock in pinned photodiode photodetector |
JP2006155422A (ja) | 2004-11-30 | 2006-06-15 | Matsushita Electric Works Ltd | 画像処理装置 |
JP2008060621A (ja) * | 2006-08-04 | 2008-03-13 | Shinsedai Kk | イメージセンサ及びイメージセンサシステム |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5705807A (en) * | 1994-10-24 | 1998-01-06 | Nissan Motor Co., Ltd. | Photo detecting apparatus for detecting reflected light from an object and excluding an external light componet from the reflected light |
JPH08313215A (ja) * | 1995-05-23 | 1996-11-29 | Olympus Optical Co Ltd | 2次元距離センサ |
JP3832441B2 (ja) * | 2002-04-08 | 2006-10-11 | 松下電工株式会社 | 強度変調光を用いた空間情報の検出装置 |
JP4235729B2 (ja) * | 2003-02-03 | 2009-03-11 | 国立大学法人静岡大学 | 距離画像センサ |
JP3906818B2 (ja) * | 2003-04-07 | 2007-04-18 | 松下電工株式会社 | 受光素子の感度制御方法、強度変調光を用いた空間情報の検出装置 |
JP4280822B2 (ja) * | 2004-02-18 | 2009-06-17 | 国立大学法人静岡大学 | 光飛行時間型距離センサ |
WO2006011674A1 (en) * | 2004-07-30 | 2006-02-02 | Matsushita Electric Works, Ltd. | Image processing device |
US7645975B2 (en) * | 2004-10-25 | 2010-01-12 | Panasonic Electric Works Co., Ltd. | Spatial information detecting device |
DE602005005685T2 (de) | 2005-10-19 | 2009-07-09 | Mesa Imaging Ag | Einrichtung und Verfahren zur Demodulation von modulierten elektromagnetischen Wellenfeldern |
WO2007083704A1 (ja) * | 2006-01-18 | 2007-07-26 | National University Corporation Shizuoka University | 固体撮像装置及びその画素信号の読みだし方法 |
JP5395323B2 (ja) * | 2006-09-29 | 2014-01-22 | ブレインビジョン株式会社 | 固体撮像素子 |
JP5190663B2 (ja) * | 2007-03-27 | 2013-04-24 | スタンレー電気株式会社 | 距離画像生成装置 |
-
2009
- 2009-06-04 WO PCT/JP2009/002537 patent/WO2009147862A1/ja active Application Filing
- 2009-06-04 EP EP09758129.2A patent/EP2296368B1/en active Active
- 2009-06-04 JP JP2010515783A patent/JP5333869B2/ja active Active
- 2009-06-04 US US12/995,913 patent/US8730382B2/en active Active
- 2009-06-04 KR KR1020107026972A patent/KR101436673B1/ko active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02304974A (ja) | 1989-05-19 | 1990-12-18 | Nec Corp | 固体撮像素子の製造方法 |
JPH08122149A (ja) * | 1994-10-24 | 1996-05-17 | Nissan Motor Co Ltd | イメージセンサ |
JPH10322599A (ja) * | 1997-03-18 | 1998-12-04 | Toshiba Corp | 固体撮像装置及びその駆動方法 |
US6239456B1 (en) | 1998-08-19 | 2001-05-29 | Photobit Corporation | Lock in pinned photodiode photodetector |
JP2006155422A (ja) | 2004-11-30 | 2006-06-15 | Matsushita Electric Works Ltd | 画像処理装置 |
JP2008060621A (ja) * | 2006-08-04 | 2008-03-13 | Shinsedai Kk | イメージセンサ及びイメージセンサシステム |
Non-Patent Citations (1)
Title |
---|
See also references of EP2296368A4 |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011119837A (ja) * | 2009-12-01 | 2011-06-16 | Hirotsu Kazuko | 固体撮像素子 |
EP2346079A1 (en) * | 2010-01-13 | 2011-07-20 | CMOSIS nv | Pixel structure with multiple transfer gates |
US20120002089A1 (en) * | 2010-01-13 | 2012-01-05 | Xinyang Wang | Pixel structure with multiple transfer gates |
US9001245B2 (en) | 2010-01-13 | 2015-04-07 | Cmosis Nv | Pixel structure with multiple transfer gates |
JP2011217206A (ja) * | 2010-03-31 | 2011-10-27 | Honda Motor Co Ltd | 固体撮像装置 |
US8872089B2 (en) | 2010-03-31 | 2014-10-28 | Honda Motor Co., Ltd. | Solid-state imaging device |
JP2012060597A (ja) * | 2010-09-13 | 2012-03-22 | Honda Motor Co Ltd | 撮像装置および撮像方法 |
US8670057B2 (en) | 2010-09-13 | 2014-03-11 | Honda Motor Co., Ltd. | Image capturing device and image capturing method |
JP2013157932A (ja) * | 2012-01-31 | 2013-08-15 | Hamamatsu Photonics Kk | 撮像装置 |
JP2020109416A (ja) * | 2012-03-21 | 2020-07-16 | 株式会社半導体エネルギー研究所 | 距離測定装置の距離測定方法 |
JP2022186736A (ja) * | 2012-03-21 | 2022-12-15 | 株式会社半導体エネルギー研究所 | 距離測定装置 |
JP2017223697A (ja) * | 2012-03-21 | 2017-12-21 | 株式会社半導体エネルギー研究所 | 距離測定装置、距離測定システム |
JP7558232B2 (ja) | 2012-03-21 | 2024-09-30 | 株式会社半導体エネルギー研究所 | 装置 |
JP2017527222A (ja) * | 2014-09-08 | 2017-09-14 | マイクロソフト テクノロジー ライセンシング,エルエルシー | 可変解像度ピクセル |
JPWO2016157910A1 (ja) * | 2015-03-31 | 2018-02-15 | 国立大学法人静岡大学 | 測長素子及び固体撮像装置 |
US10325953B2 (en) | 2015-03-31 | 2019-06-18 | National University Corporation Shizuoka University | Range sensor and solid-state imaging device |
WO2016157910A1 (ja) * | 2015-03-31 | 2016-10-06 | 国立大学法人静岡大学 | 測長素子及び固体撮像装置 |
JP2018032749A (ja) * | 2016-08-24 | 2018-03-01 | 国立大学法人静岡大学 | 電荷蓄積素子 |
WO2018038230A1 (ja) * | 2016-08-24 | 2018-03-01 | 国立大学法人静岡大学 | 光電変換素子及び固体撮像装置 |
US10636822B2 (en) | 2016-08-24 | 2020-04-28 | National University Corporation Shizuoka University | Photoelectric conversion element and solid-state image capturing device |
WO2020008962A1 (ja) * | 2018-07-02 | 2020-01-09 | 株式会社ブルックマンテクノロジ | 測距装置、カメラ、検査調整装置、測距装置の駆動調整方法及び検査調整方法 |
JP7363782B2 (ja) | 2018-07-02 | 2023-10-18 | Toppanホールディングス株式会社 | 測距装置、カメラ、検査調整装置、測距装置の駆動調整方法及び検査調整方法 |
JPWO2020008962A1 (ja) * | 2018-07-02 | 2021-08-02 | 株式会社ブルックマンテクノロジ | 測距装置、カメラ、検査調整装置、測距装置の駆動調整方法及び検査調整方法 |
WO2021166514A1 (ja) * | 2020-02-19 | 2021-08-26 | ソニーセミコンダクタソリューションズ株式会社 | センサ装置、測距装置、センシング方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5333869B2 (ja) | 2013-11-06 |
US8730382B2 (en) | 2014-05-20 |
KR101436673B1 (ko) | 2014-09-01 |
EP2296368A4 (en) | 2014-01-08 |
JPWO2009147862A1 (ja) | 2011-10-27 |
US20110090385A1 (en) | 2011-04-21 |
EP2296368A1 (en) | 2011-03-16 |
EP2296368B1 (en) | 2017-01-04 |
KR20110020239A (ko) | 2011-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5333869B2 (ja) | 撮像装置 | |
US10277850B2 (en) | Solid-state imaging device for a distance sensor transferring charges from one pixel while resetting another pixel in a same period | |
KR101508410B1 (ko) | 거리 화상 센서, 및 촬상 신호를 비행시간법에 의해 생성하는 방법 | |
JP5635937B2 (ja) | 固体撮像装置 | |
JP5898692B2 (ja) | 同じフレーム内同じ感光面上におけるゲーテッド光及びアンゲーテッド光の取り込み | |
WO2013129559A1 (ja) | 固体撮像装置 | |
CN104969353B (zh) | 固态图像传感器、制造方法和电子设备 | |
US20210255286A1 (en) | Distance measuring device, camera, and method for adjusting drive of distance measuring device | |
EP3664438B1 (en) | Imaging device | |
WO2016151982A1 (ja) | 固体撮像素子およびこれを備えた撮像装置 | |
CN110729315B (zh) | 像素架构和图像传感器 | |
US11696051B2 (en) | Imaging device | |
JP6643346B2 (ja) | 固体撮像装置 | |
CN109073735B (zh) | 距离传感器 | |
JP6887126B2 (ja) | 3次元モーション取得装置、及び3次元モーション取得方法 | |
US11411042B2 (en) | Image sensor with variant gate dielectric layers | |
WO2022137685A1 (ja) | 測距装置、測距方法および位相検出装置 | |
CN113451338A (zh) | 图像感测装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09758129 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 20107026972 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2009758129 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010515783 Country of ref document: JP Ref document number: 12995913 Country of ref document: US Ref document number: 2009758129 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |