WO2019033232A1 - 三维影像系统及电子装置 - Google Patents

三维影像系统及电子装置 Download PDF

Info

Publication number
WO2019033232A1
WO2019033232A1 PCT/CN2017/097332 CN2017097332W WO2019033232A1 WO 2019033232 A1 WO2019033232 A1 WO 2019033232A1 CN 2017097332 W CN2017097332 W CN 2017097332W WO 2019033232 A1 WO2019033232 A1 WO 2019033232A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
coupled
dimensional image
transistor
image system
Prior art date
Application number
PCT/CN2017/097332
Other languages
English (en)
French (fr)
Inventor
杨孟达
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201780000906.5A priority Critical patent/CN107690565A/zh
Priority to JP2019503439A priority patent/JP6908689B2/ja
Priority to EP17868482.5A priority patent/EP3470773A1/en
Priority to KR1020187014405A priority patent/KR102061182B1/ko
Priority to CN201911128263.XA priority patent/CN110906864B/zh
Priority to KR1020197037244A priority patent/KR102163643B1/ko
Priority to PCT/CN2017/097332 priority patent/WO2019033232A1/zh
Priority to US15/959,272 priority patent/US10659765B2/en
Publication of WO2019033232A1 publication Critical patent/WO2019033232A1/zh
Priority to US16/815,027 priority patent/US20200213577A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2509Color coding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2531Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object using several gratings, projected with variable angle of incidence on the object, and one detection device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2536Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object using several gratings with variable grating pitch, projected on the object with the same angle of incidence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/254Image signal generators using stereoscopic image cameras in combination with electromagnetic radiation sources for illuminating objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/587Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10052Images from lightfield camera

Definitions

  • the present application relates to a three-dimensional image system, and more particularly to a three-dimensional image system and an electronic device that are resistant to background light.
  • the structured light three-dimensional measurement method as a non-contact three-dimensional information acquisition technology, has been widely used due to its advantages of simple implementation, high speed and high precision.
  • the basic idea of structured light 3D measurement is to use the geometric relationship of structured light projection to obtain three-dimensional information of objects. Firstly, the encoded structural optical template is projected onto the object to be tested by the projection device, and the projected image is recorded by the camera, and the captured image is matched with the projected structural optical template. After the matching point is found, the projection point and the matching point are utilized. And the triangular relationship of the object to solve the three-dimensional information of the target object.
  • the conventional structured light has the disadvantage that it is susceptible to interference from background light and reduces the accuracy of its three-dimensional information. Therefore, there is a need for improvement in the prior art.
  • some of the embodiments of the present application aim to provide a three-dimensional image system and an electronic device that are resistant to background light to improve the disadvantages of the prior art.
  • the embodiment of the present application provides a three-dimensional image system, including a structured light module for emitting structured light, the structured light module includes a first light emitting unit, and the first light emitting unit receives a first pulse. Transmitting a first light according to the first pulse signal, wherein a duty ratio of the first pulse signal is less than a specific value, and an emission power of the first illumination unit is greater than a specific power, the first light Having a first wavelength; and a photosensitive pixel array for receiving reflected light corresponding to the structured light.
  • the duty cycle of the first pulse signal is less than 1/50.
  • the first light emitting unit has an emission power greater than 4 watts.
  • the structured light module includes a diffraction unit, wherein the diffraction unit forms a diffraction effect on the first light to generate the structured light.
  • the diffractive unit is a diffractive optical element.
  • the photosensitive pixel array includes a plurality of photosensitive pixel circuits, and one of the plurality of photosensitive pixel circuits includes a photosensitive element, and the first photoelectric reading circuit is coupled to the photosensitive element for outputting the first output signal. And a second photoelectric reading circuit coupled to the photosensitive element for outputting a second output signal; wherein a pixel value corresponding to the photosensitive pixel circuit is the first output signal and the second output signal The result of the subtraction.
  • the first photoelectric reading circuit includes a first transfer gate coupled to the photosensitive element; a first output transistor coupled to the first transfer gate; and a first read transistor coupled to the a first output transistor for outputting the first output signal;
  • the second photoelectric reading circuit includes a second transfer gate coupled to the photosensitive element; and a second output transistor coupled to the second And a second read transistor coupled to the second output transistor for outputting the second output signal.
  • the first transmission gate is turned on when the first light emitting unit emits light
  • the second transmission gate is turned on when the first light emitting unit is not emitting light
  • the first transmission gate is turned on.
  • the interval is longer than the light emission time interval of the first light emitting unit.
  • the photosensitive pixel circuit includes a first reset transistor and a second reset transistor, the first reset transistor is coupled to the first transfer gate, and the second reset transistor is coupled to the first Two transmission gates.
  • the duty cycle of the first pulse signal varies with time.
  • the structured light module includes at least one second light emitting unit, and the at least one second light emitting unit receives at least one second pulse signal and emits at least one second light according to the at least one second pulse signal, wherein The duty ratio of the at least one second pulse signal is less than the specific value, the illumination power of the at least one second illumination unit is greater than the specific power, and the at least one second light has at least one second wavelength.
  • the photosensitive pixel array includes a plurality of photosensitive pixel circuits, and one of the plurality of photosensitive pixel circuits includes a photosensitive element, and the first photoelectric reading circuit is coupled to the photosensitive element for outputting the first output signal.
  • the first photoelectric reading circuit includes a first transfer gate coupled to the photosensitive element; a first output transistor coupled to the first transfer gate; and a first read transistor coupled to the a first output transistor for outputting the first output signal;
  • a second photoelectric reading circuit of the at least one second photoelectric reading circuit includes a second transfer gate coupled to the photosensitive element; An output transistor coupled to the second transfer gate; and a second read transistor coupled to the second output transistor for outputting the second output signal;
  • the third optoelectronic read circuit includes a third transfer gate coupled to the photosensitive element; a third output transistor coupled to the third transfer gate; and a third read transistor coupled to the third output transistor for outputting the Three output signals.
  • the first transmission gate is turned on when the first light emitting unit emits light
  • the second transmission gate of the at least one second photoelectric reading circuit is respectively turned on when the at least one second light emitting unit emits light.
  • the third transmission gate is turned on when the first illumination unit and the at least one second illumination unit are not emitting light, and the on-time interval of the first transmission gate is smaller than that of the first illumination unit.
  • the illumination time interval is long, and the on-time interval of the at least one second transmission gate is longer than the illumination time interval of the at least one second illumination unit.
  • the photosensitive pixel circuit includes a first reset transistor, at least one second reset transistor, and a third reset transistor, the first reset transistor is coupled to the first transfer gate, and the at least one The second reset transistor is coupled to the second transfer gate of the at least one second optoelectronic read circuit, and the third reset transistor is coupled to the third transfer gate.
  • the time when the first transmission gate is turned on is separated from the time when the second transmission gate is turned on by a time interval.
  • the first wavelength is different from the at least one second wavelength.
  • the duty ratios of the first pulse signal and the at least one second pulse signal fluctuate with time.
  • the illumination unit of the structured optical module of the present application receives the pulsed pulse signal to emit an instantaneous strong light such that the structured light emitted by the light is less susceptible to interference from the background light to improve the disadvantages of the prior art.
  • FIG. 1 is a schematic diagram of a three-dimensional image system according to an embodiment of the present application.
  • FIG. 2 is a circuit diagram of a photosensitive pixel circuit according to an embodiment of the present application.
  • FIG. 3 is a timing diagram of the photosensitive pixel circuit of FIG. 2;
  • FIG. 4 is a schematic diagram of a three-dimensional image system according to an embodiment of the present application.
  • FIG. 5 is a circuit diagram of a photosensitive pixel circuit according to an embodiment of the present application.
  • FIG. 6 is a timing diagram of the photosensitive pixel circuit of FIG. 5;
  • FIG. 7 is a schematic diagram of structured light according to Embodiment 1 of the present application.
  • FIG. 8 is a schematic diagram of structured light according to Embodiment 1 of the present application.
  • FIG. 9 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a structured optical module according to an embodiment of the present application.
  • Figure 11 is a schematic diagram of a photosensitive pixel circuit
  • Figure 12 is a schematic diagram of pulse signals and transmission gate signals in different electronic devices. .
  • FIG. 1 is a schematic diagram of a three-dimensional image system 10 according to an embodiment of the present application.
  • the 3D image system 10 includes a structured light module 12_t and a camera module 12_r.
  • the structured light module 12_t is used to generate the structured light SL and project the structured light SL on the target object, wherein the structured light SL may have a stripe pattern (Stripe Pattern) ), as shown in Figure 7.
  • the camera module 12_r can capture the image of the structured light SL projected on the target object, and calculate the depth information of the target object according to the degree of bending of the structured light SL to the target object (by triangulation) to obtain a three-dimensional image about the target object. image.
  • the structured light module 12_t includes a pulse signal generator 120, a light emitting unit 122, and a diffraction unit 124.
  • the light emitting unit 122 may be a light emitting diode (LED) or a laser (Laser) emitting unit
  • the diffraction unit 124 may be a Diffraction Optical Element (DOE).
  • the pulse signal generator 120 is used to generate the pulse signal pm1
  • the light emitting unit 122 is coupled to the pulse signal generator 120 to receive the pulse signal pm1, and generates/transmits the first light L1 to the winding according to the pulse signal pm1.
  • the firing unit 124, the first light L1 is diffracted by the diffraction unit 124 to generate the structured light SL.
  • the pulse signal pm1 is a pulse-modulated signal, that is, the pulse signal pm1 can be regarded as a square wave having a smaller duty ratio (Duty Ratio/Cycle).
  • the duty ratio of the pulse signal pm1 can be generally 1/1000, and is not limited thereto, as long as the duty ratio of the pulse signal pm1 is less than 1/50, which satisfies the requirements of the present application.
  • the light-emitting power of the light-emitting unit 122 can be generally between 4 watts and 5 watts, and the light-emitting power of the light-emitting unit 122 is greater than 4 watts, which satisfies the requirements of the present application.
  • the light-emitting unit 122 can be regarded as emitting a strong light (a flash similar to a general camera) in an instant, that is, the enhanced camera module 12_r receives the light signal intensity with respect to the structured light SL, so that the light signal with respect to the structured light SL is not easily affected by the background. Light interference to improve the shortcomings of the prior art.
  • the camera module 12_r has a photosensitive pixel array 14 and a lens (Lens) 18, and the photosensitive pixel array 14 receives the reflected light corresponding to the structured light SL, and includes a plurality of photosensitive pixel circuits 16, and the output signal of the photosensitive pixel circuit 16 can be Corresponding to the pixel value of the image captured by the camera module 12_r.
  • the specific circuit structure and operation mechanism of the photosensitive pixel circuit 16 are not limited. For example, please refer to FIG. 2 and FIG. 3.
  • FIG. 2 is an equivalent circuit diagram of the photosensitive pixel circuit 16 of the embodiment of the present application, and FIG. Timing Diagram of Pixel Circuit 16.
  • the photosensitive pixel circuit 16 includes a photosensitive element PD and photoelectric reading circuits 16_1 and 16_2.
  • the photoelectric reading circuits 16_1 and 16_2 each have a transfer gate, a reset transistor, an output transistor and a read transistor, and the transfer gates are all coupled to the photosensitive element PD.
  • the gate of the reset transistor receives a reset signal Reset
  • the gate of the read transistor receives a row select (Row Select) signal ROW
  • the transfer gates of the photoelectric read circuits 16_1 and 16_2 respectively receive signals TX1 and TX2, and optically read
  • the transfer gate, reset transistor and output transistor of circuit 16_1 are connected to node FD_1, light
  • the transfer gate, reset transistor, and output transistor of the electrical read circuit 16_2 are connected to the node FD_2.
  • the photosensitive pixel circuit 16 also includes an anti-blooming transistor, and the gate of the anti-smudge transistor receives the signal TX4.
  • the operational mechanism of the photosensitive pixel circuit 16 is briefly described below.
  • the pulse signal pm1 is at a high potential
  • the light emitting unit 122 emits the first light L1.
  • the transfer gate of the photoelectric reading circuit 16_1 is turned on.
  • the on-time interval T1 of the transmission gate of the photoelectric reading circuit 16_1 is wider than the time interval T4 at which the pulse signal pm1 is high, that is, the conduction time interval of the transmission gate of the photoelectric reading circuit 16_1 is smaller than that of the light-emitting unit 122.
  • the illumination time interval is long.
  • the photosensitive element PD When the transmission gate of the photoelectric reading circuit 16_1 is turned on (the signal TX1 is high), that is, in the on-time interval T1, the photosensitive element PD receives the illumination of the first light L1 and the background light, and the transmission of the photoelectric reading circuit 16_1
  • the gate can extract the photoelectrons generated by the photosensitive element PD by receiving the first light L1 and the background light to the node FD_1 for storage.
  • the transmission gate of the photoelectric reading circuit 16_2 can be turned on briefly (the signal TX2 is high), and at this time, the photosensitive element PD receives only The illumination of the background light, the transmission gate of the photoelectric reading circuit 16_2 can extract the photoelectrons generated by the photosensitive element PD by receiving the background light to the node FD_2 for storage.
  • the read transistors of the photo-electric reading circuits 16_1, 16_2 When the read transistors of the photo-electric reading circuits 16_1, 16_2 are turned on, the read transistor of the photo-electric reading circuit 16_1 outputs an output signal Pout1 (related to the first light L1 and the background light), and the read transistor of the photo-electric reading circuit 16_2 Outputting the output signal Pout2 (only related to the background light), the pixel value corresponding to the photosensitive pixel circuit 16 is the subtraction result of the output signal Pout1 and the output signal Pout2 (such as Pout1-Pout2), and thus, the photosensitive pixel circuit 16 The pixel value eliminates the effects of background light.
  • the anti-smear transistor of the photosensitive pixel circuit 16 is turned on (the signal TX4 is high), That is, the photosensitive pixel circuit 16 extracts the photoelectrons generated by the photosensitive element PD by receiving the background light, so as not to affect the normal operation of the circuit.
  • the structured light module may include two light emitting units, and the two light emitting units may alternately emit light to increase the light intensity of the corresponding structured light received by the camera module 12_r. Further, the two light emitting units can emit light of different wavelengths, and the light of different wavelengths has different refractive indexes, and the structured light generated by the diffraction unit can have a dense stripe pattern to further increase the three-dimensional image. Resolution (Resolution).
  • FIG. 4 is a schematic diagram of a three-dimensional image system 40 according to an embodiment of the present application.
  • the three-dimensional imaging system 40 is similar to the three-dimensional imaging system 10, so the same elements follow the same symbols.
  • the structured light module 42_t of the 3D image system 40 includes another light emitting unit 422 in addition to the light emitting unit 122.
  • the light emitting unit 422 receives the pulse signal pm2 to generate the second light L2, and the second light L2. It may have a different wavelength than the first light L1.
  • the duty cycle of the pulse signal pm2 may be 1/1000 (or less than 1/50), and the light-emitting power of the light-emitting unit 422 may be between 4 watts and 5 watts (or more than 4 watts).
  • the first light L1 and the second light L2 are diffracted by the diffraction unit 124 to generate structured light SL'. Since the first light L1 and the second light L2 have different wavelengths, the stripe pattern of the structured light SL' is dense. As shown in FIG. 8, the stripe light sp1 is the structured light corresponding to the first light L1, and the stripe light sp2 is corresponding. Structure light of two light L2.
  • the camera module 42_r of the 3D image system 40 includes a photosensitive pixel array 44, and the photosensitive pixel array 44 includes a plurality of photosensitive pixel circuits 46.
  • the specific circuit structure and operation mechanism of the photosensitive pixel circuit 46 are not limited, for example. 5 and FIG. 6, FIG. 5 is an equivalent circuit diagram of the photosensitive pixel circuit 46 of the embodiment of the present application, and FIG. 6 is a timing diagram of the photosensitive pixel circuit 46.
  • the photosensitive pixel circuit 46 is similar to the photosensitive pixel circuit 16, so that the same elements follow the same symbols.
  • the photosensitive pixel circuit 46 further includes a photoelectric reading circuit 46_3, and the circuit structure of the photoelectric reading circuit 46_3 is the same as that of the photoelectric reading circuits 16_1, 16_2, wherein the transmission gate receiving signal of the photoelectric reading circuit 46_3 TX3.
  • the transmission gate of the photoelectric reading circuit 46_3 is turned on, the photosensitive element PD receives the illumination of the second light L2 and the background light, and the transmission gate of the photoelectric reading circuit 46_3 can be photosensitive.
  • the photoelectron generated by the element PD receiving the second light L2 and the background light is captured and stored in the node FD_3.
  • the transmission gate of the photoelectric reading circuit 16_2 can be turned on briefly (the signal TX2 is high).
  • the photosensitive element PD receives only the illumination of the background light, and the transmission gate of the photoelectric reading circuit 16_2 can extract the photoelectrons generated by the photosensitive element PD by receiving the background light to the node FD_2 for storage.
  • the read transistor of the photo-electrical reading circuit 16_1 When the read transistors of the photo-electrical reading circuits 16_1, 16_2, and 46_3 are turned on, the read transistor of the photo-electrical reading circuit 16_1 outputs an output signal Pout1 (related to the first light L1 and the background light), and the reading of the photoelectric reading circuit 16_2
  • the transistor output output signal Pout2 (only related to the background light) is taken, and the read transistor output output signal Pout3 (related to the second light L2 and the background light) of the photoelectric reading circuit 46_3 corresponds to the pixel value of the photosensitive pixel circuit 16.
  • the output signal Pout1 is added to the output signal Pout3, twice the output signal Pout2 (ie, Pout1+Pout3-2*Pout2) is subtracted to eliminate the influence of the background light.
  • the on-time interval of the transmission gates of the photoelectric reading circuits 16_1 and 16_2 is wider than the pulse width of the pulse signals pm1 and pm2, that is, when the photoelectric reading circuits 16_1 and 16_2 are turned on.
  • the interval between the light-emitting units 122 and 422 is longer than the interval.
  • the time interval T1 between the conduction time interval T1 of the transmission gate of the photoelectric reading circuit 16_1 and the conduction time interval T8 of the transmission gate of the photoelectric reading circuit 46_3 may be separated by an actual time required by a time interval T7. For the rest of the operation mechanism, please refer to the relevant paragraphs mentioned above, so I will not repeat them here.
  • FIG. 9 is a schematic diagram of an electronic device 9 according to an embodiment of the present application.
  • the electronic device 9 includes a three-dimensional imaging system 90 that can be implemented by the three-dimensional imaging system 10 or the three-dimensional imaging system 40.
  • the duty ratios of the pulse signals pm1, pm2 may be randomly changed (ie, the duty ratio of the pulse signals pm1, pm2 varies with time (Time-Variant)).
  • the pulse signal generator 120 generates a pulse. After (N+n) cycles, the next pulse is generated, where N can be a larger integer, and n can be a random number, so that the structural light between the electronic devices can be avoided. interference.
  • FIG. 12 is a schematic diagram of pulse signals pmA, pmB and signals TXA, TXB in the electronic devices A, B.
  • the pulse signal pmA is a pulse signal received by the light emitting unit of the electronic device A
  • the pulse signal pmB is a pulse signal received by the light emitting unit of the electronic device B
  • the signal TXA is the photoelectric reading circuit of the photosensitive pixel circuit in the electronic device A.
  • the signal received by the transmission gate, the signal TXB is a signal received by the transmission gate of the photoelectric reading circuit of the photosensitive pixel circuit in the electronic device B.
  • the duty ratio of the pulse signal is randomly generated, the illumination time of the illumination unit of the electronic device A is shifted from the illumination time of the illumination unit of the electronic device B, and the conduction time of the transmission gate of the electronic device A is also related to the electronic device.
  • the conduction time of the B transmission gate is staggered, therefore, The optical signals of the electronic device A and the electronic device B related to the structured light do not interfere with each other.
  • the structured light module of the present application can include a plurality of light emitting units. Please refer to FIG. 10 and FIG. 11.
  • FIG. 10 is a schematic diagram of a structured optical module c2_t according to an embodiment of the present application
  • FIG. 11 is a schematic diagram of a photosensitive pixel circuit d6 corresponding to the structured optical module c2_t.
  • the structured light module c2_t includes light emitting units 122, 122_1 ⁇ 122_K, which respectively emit light at different times.
  • the photosensitive pixel circuit d6 includes photoelectric reading circuits d6_1 ⁇ d6_K' and d6_B, and the circuit structures of the photoelectric reading circuits d6_1 ⁇ d6_K' and d6_B can be Similarly to the foregoing photoelectric reading circuits 16_1, 16_2, and 46_3, the conduction time intervals of the transmission gates of the photoelectric reading circuits d6_1 to d6_K' correspond to the light-emitting time intervals of the light-emitting units 122, 122_1 to 122_K, respectively (K' can represent K+1.
  • the photoelectric reading circuits d6_1 to d6_K' output the output signals Pout1 to Pout K', and the output signals Pout1 to Pout K' relate to the light emitted by the light-emitting units 122, 122_1 to 122_K and the background light.
  • the transmission gate of the photoelectric reading circuit d6_B is turned on when the light emitting units 122, 122_1 122 122_K are not emitting light, and the photoelectric reading circuit d6_B reads only the photocurrent caused by the background light, that is, the output of the photoelectric reading circuit d6_B
  • the signal PoutB is only relevant to the background light.
  • the pixel value corresponding to the photosensitive pixel circuit d6 may be Pout1 + ... + PoutK' - K' * PoutB.
  • the illumination unit of the structured optical module of the present application receives the pulsed pulse signal to emit an instantaneous strong light, so that the structured light emitted by the light is less susceptible to interference from the background light, thereby improving the disadvantages of the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Studio Devices (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

一种三维影像系统,包括结构光模块(12-t),用来发射结构光,所述结构光模块(12-t)包括第一发光单元(122),所述第一发光单元(122)接收第一脉冲信号(pml)并根据所述第一脉冲信号(pml)发射出第一光(L1),其中所述第一脉冲信号(pml)的占空比小于一特定值,所述第一发光单元(122)的发光功率大于一特定功率,所述第一光(L1)具有第一波长;以及感光像素阵列(14),用来接收对应于所述结构光的反射光。

Description

三维影像系统及电子装置 技术领域
本申请涉及一种三维影像系统,尤其涉及一种可抵抗背景光的三维影像系统及电子装置。
背景技术
随着科学与技术的飞速发展,物体三维信息的获取在很多应用领域都有着广泛的应用前景,如生产自动化、人机交互、医学诊断、逆向工程、数字化建模等。其中,结构光三维测量法作为一种非接触式的三维信息获取技术,因其实现简单、速度快和精度高等优点得到了广泛应用。
结构光三维测量法的基本思想是利用结构光投影的几何关系来获得物体的三维信息。首先通过投影设备将编码的结构光模版投射到待测物体上,并使用摄像机记录下投影图像,将所拍图像与所投影的结构光模版进行匹配,找到匹配点后,利用投影点、匹配点及物体的三角关系求解目标物体的三维信息。
然而,现有结构光的缺点在于其容易受到背景光的干扰,而降低其三维信息的精准度。因此,现有技术实有改进的必要。
发明内容
因此,本申请部分实施例的目的即在于提供一种可抵抗背景光的三维影像系统及电子装置,以改善现有技术的缺点。
为了解决上述技术问题,本申请实施例提供了一种三维影像系统,包括结构光模块,用来发射结构光,所述结构光模块包括第一发光单元,所述第一发光单元接收第一脉冲信号并根据所述第一脉冲信号发射出第一光,其中所述第一脉冲信号的占空比小于一特定值,所述第一发光单元的发光功率大于一特定功率,所述第一光具有第一波长;以及感光像素阵列,用来接收对应于所述结构光的反射光。
例如,所述第一脉冲信号的占空比小于1/50。
例如,所述第一发光单元的发光功率大于4瓦特。
例如,所述结构光模块包括绕射单元,其中所述绕射单元对所述第一光形成绕射作用而产生所述结构光。
例如,所述绕射单元为绕射光学元件。
例如,所述感光像素阵列包括多个感光像素电路,多个感光像素电路中一感光像素电路包括感光元件;第一光电读取电路,耦接于所述感光元件,用来输出第一输出信号;以及第二光电读取电路,耦接于所述感光元件,用来输出第二输出信号;其中,对应所述感光像素电路的像素值为所述第一输出信号与所述第二输出信号的相减结果。
例如,所述第一光电读取电路包括第一传输闸,耦接于所述感光元件;第一输出晶体管,耦接于所述第一传输闸;以及第一读取晶体管,耦接于所述第一输出晶体管,用来输出所述第一输出信号;所述第二光电读取电路包括第二传输闸,耦接于所述感光元件;第二输出晶体管,耦接于所述第二传输闸;以及第二读取晶体管,耦接于所述第二输出晶体管,用来输出所述第二输出信号。
例如,所述第一传输闸于所述第一发光单元发光时导通,所述第二传输闸于所述第一发光单元不发光时导通,且所述第一传输闸的导通时间区间较所述第一发光单元的发光时间区间长。
例如,所述感光像素电路包括第一重置晶体管及第二重置晶体管,所述第一重置晶体管耦接于所述第一传输闸,所述第二重置晶体管耦接于所述第二传输闸。
例如,所述第一脉冲信号的占空比随时间变动。
例如,所述结构光模块包括至少一第二发光单元,所述至少一第二发光单元接收至少一第二脉冲信号并根据所述至少一第二脉冲信号发射出至少一第二光,其中所述至少一第二脉冲信号的占空比小于所述特定值,所述至少一第二发光单元的发光功率大于所述特定功率,所述至少一第二光分别具有至少一第二波长。
例如,所述感光像素阵列包括多个感光像素电路,多个感光像素电路中一感光像素电路包括感光元件;第一光电读取电路,耦接于所述感光元件,用来输出第一输出信号;至少一第二光电读取电路,耦接于所述感光元件,用来输 出至少一第二输出信号;以及第三光电读取电路,耦接于所述感光元件,用来输出第三输出信号;其中,对应所述感光像素电路的像素值为所述第一输出信号与所述至少一第二输出信号相加后,减去所述第三输出信号与所述第一输出信号和所述至少一第二输出信号的个数的乘积。
例如,所述第一光电读取电路包括第一传输闸,耦接于所述感光元件;第一输出晶体管,耦接于所述第一传输闸;以及第一读取晶体管,耦接于所述第一输出晶体管,用来输出所述第一输出信号;所述至少一第二光电读取电路中一第二光电读取电路包括第二传输闸,耦接于所述感光元件;第二输出晶体管,耦接于所述第二传输闸;以及第二读取晶体管,耦接于所述第二输出晶体管,用来输出所述第二输出信号;所述第三光电读取电路包括第三传输闸,耦接于所述感光元件;第三输出晶体管,耦接于所述第三传输闸;以及第三读取晶体管,耦接于所述第三输出晶体管,用来输出所述第三输出信号。
例如,所述第一传输闸于所述第一发光单元发光时导通,所述至少一第二光电读取电路的所述第二传输闸分别于所述至少一第二发光单元发光时导通,所述第三传输闸于所述第一发光单元及所述至少一第二发光单元不发光时导通,且所述第一传输闸的导通时间区间较所述第一发光单元的发光时间区间长,所述至少一第二传输闸的导通时间区间较所述至少一第二发光单元的发光时间区间长。
例如,所述感光像素电路包括第一重置晶体管、至少一第二重置晶体管及第三重置晶体管,所述第一重置晶体管耦接于所述第一传输闸,所述至少一第 二重置晶体管耦接于所述至少一第二光电读取电路的第二传输闸,所述第三重置晶体管耦接于所述第三传输闸。
例如,所述第一传输闸导通的时间与所述第二传输闸导通的时间相隔一时间间隔。
例如,所述第一波长与所述至少一第二波长不同。
例如,所述第一脉冲信号及所述至少一第二脉冲信号的占空比随时间变动。
本申请结构光模块的发光单元接收以脉冲调制的脉冲信号,以发出瞬间强光,使得其所发射的结构光不易受到背景光干扰,以改善现有技术的缺点。
附图说明
图1为本申请实施例一三维影像系统的示意图;
图2为本申请实施例一感光像素电路的电路图;
图3为图2感光像素电路的时序图;
图4为本申请实施例一三维影像系统的示意图;
图5为本申请实施例一感光像素电路的电路图;
图6为图5感光像素电路的时序图;
图7为本申请实施例一结构光的示意图;
图8为本申请实施例一结构光的示意图;
图9为本申请实施例一电子装置的示意图;
图10为本申请实施例一结构光模块的示意图;
图11为一感光像素电路示意图;
图12为不同电子装置中的脉冲信号以及传输闸信号的示意图。。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
为了解决现有技术结构光(Structured Light)容易受到背景光干扰的缺点,本申请利用/根据脉冲调制(Phase Modulated)信号来产生结构光。具体来说,请参考图1,图1为本申请实施例一三维影像系统10的示意图。三维影像系统10包括结构光模块12_t及摄像模块12_r,结构光模块12_t用来产生结构光SL,并将结构光SL投射(Project)在目标物上,其中结构光SL可具有条纹图案(Stripe Pattern),如图7所示。而摄像模块12_r可撷取投射于目标物的结构光SL的影像,并根据结构光SL于目标物的弯曲程度,(利用三角测量法)计算目标物的深度信息,以取得关于目标物的三维影像。
具体来说,结构光模块12_t包括脉冲信号产生器120、发光单元122以及绕射单元124。发光单元122可为发光二极管(LED)或激光(Laser)发射单元,绕射单元124可为绕射光学元件(Diffraction Optical Element,DOE)。脉冲信号产生器120用来产生脉冲信号pm1,发光单元122耦接于脉冲信号产生器120以接收脉冲信号pm1,并根据脉冲信号pm1产生/发射出第一光L1至绕 射单元124,第一光L1于绕射单元124成绕射作用而产生结构光SL。其中,脉冲信号pm1为以脉冲调制的信号,即脉冲信号pm1可视为具有较小占空比(Duty Ratio/Cycle)的方波,另外,当发光单元122发射第一光L1时,发光单元122具有较大的发光功率。具体来说,脉冲信号pm1的占空比一般来说可为1/1000,而不限于此,只要脉冲信号pm1的占空比小于1/50,皆满足本申请的需求。另外,发光单元122的发光功率一般来说可介于4瓦特到5瓦特,而不限于此,发光单元122的发光功率大于4瓦特,皆满足本申请的需求。换句话说,发光单元122可视为在瞬间发出强光(类似一般照相机的闪光灯),即增强摄像模块12_r接收到关于结构光SL的光信号强度,使得关于结构光SL的光信号不易受到背景光干扰,以改善现有技术的缺点。
另一方面,摄像模块12_r具有感光像素阵列14及镜头(Lens)18,感光像素阵列14接收对应于结构光SL的反射光,其包括多个感光像素电路16,感光像素电路16的输出信号可对应摄像模块12_r所撷取影像的像素值。感光像素电路16的具体电路结构及操作机制并未有所限,举例来说,请参考图2及图3,图2为本申请实施例感光像素电路16的等效电路示意图,图3为感光像素电路16的时序图(Timing Diagram)。感光像素电路16包括感光元件PD以及光电读取电路16_1、16_2,光电读取电路16_1、16_2皆具有传输闸、重置晶体管、输出晶体管及读取晶体管,其传输闸皆耦接于感光元件PD,重置晶体管的栅极接收一重置信号Reset,读取晶体管的栅极接收一行选取(Row Select)信号ROW,光电读取电路16_1及16_2的传输闸分别接收信号TX1及TX2,光电读取电路16_1的传输闸、重置晶体管及输出晶体管连接于节点FD_1,光 电读取电路16_2的传输闸、重置晶体管及输出晶体管连接于节点FD_2。另外,感光像素电路16亦包括防晕染(Anti-Blooming)晶体管,防晕染晶体管的栅极接收信号TX4。
感光像素电路16的操作机制简述如下。当脉冲信号pm1为高电位时,发光单元122发射第一光L1。当发光单元122发射第一光L1时,光电读取电路16_1的传输闸导通。于一实施例中,光电读取电路16_1传输闸的导通时间区间T1较脉冲信号pm1为高电位的时间区间T4宽,即光电读取电路16_1传输闸的导通时间区间较发光单元122的发光时间区间长。当光电读取电路16_1的传输闸导通(信号TX1为高电位)时,即于导通时间区间T1中,感光元件PD接收第一光L1以及背景光的光照,光电读取电路16_1的传输闸可将感光元件PD因接收第一光L1以及背景光而产生的光电子汲取至节点FD_1储存。另一方面,当发光单元122不发光(即脉冲信号pm1为低电位时)时,光电读取电路16_2的传输闸可短暂地导通(信号TX2为高电位),此时感光元件PD仅接收背景光的光照,光电读取电路16_2的传输闸可将感光元件PD因接收背景光而产生的光电子汲取至节点FD_2储存。当光电读取电路16_1、16_2的读取晶体管导通时,光电读取电路16_1的读取晶体管输出输出信号Pout1(相关于第一光L1及背景光),光电读取电路16_2的读取晶体管输出输出信号Pout2(仅相关于背景光),对应于感光像素电路16的像素值即为输出信号Pout1与输出信号Pout2的相减结果(如Pout1-Pout2),如此一来,感光像素电路16的像素值即可消除背景光的影响。除此之外,当光电读取电路16_1、16_2的传输闸皆不导通时,感光像素电路16的防晕染晶体管导通(信号TX4为高电位), 即感光像素电路16将感光元件PD因接收背景光而产生的光电子汲取出来,以免影响电路的正常运作。
由于发光单元122发射出瞬间强光后,需要休息一段时间才能再次发光。即脉冲信号pm1的占空比过小可能会导致摄像模块12_r接收对应结构光SL的光强度不足。因此,于一实施例中,结构光模块可包括二个发光单元,该二个发光单元可交替地发光,以增加摄像模块12_r所接收到对应结构光的光强度。更进一步地,该二个发光单元可发出不同波长的光,因不同波长的光具有不同的折射率,通过绕射单元后所产生的结构光可具有较密集的条纹图案,进一步增加三维影像的分辨率(Resolution)。
具体来说,请参考图4,图4为本申请实施例一三维影像系统40的示意图。三维影像系统40与三维影像系统10类似,故相同元件沿用相同符号。与三维影像系统10不同的是,三维影像系统40的结构光模块42_t除了发光单元122之外还包括另一发光单元422,发光单元422接收脉冲信号pm2以产生第二光L2,第二光L2与第一光L1可具有不同的波长。同样地,脉冲信号pm2的占空比可为1/1000(或小于1/50),发光单元422的发光功率可介于4瓦特到5瓦特(或大于4瓦特)。另外,第一光L1与第二光L2于绕射单元124成绕射作用而产生结构光SL’。由于第一光L1与第二光L2具有不同波长,结构光SL’的条纹图案较为密集,如图8所示,条纹光sp1为对应第一光L1的结构光,而条纹光sp2为对应第二光L2的结构光。
除此之外,三维影像系统40的摄像模块42_r包括感光像素阵列44,感光像素阵列44包括多个感光像素电路46,感光像素电路46的具体电路结构及操作机制并未有所限,举例来说,请参考图5及图6,图5为本申请实施例感光像素电路46的等效电路示意图,图6为感光像素电路46的时序图。感光像素电路46与感光像素电路16类似,故相同元件沿用相同符号。与感光像素电路16不同的是,感光像素电路46还包括光电读取电路46_3,光电读取电路46_3的电路结构与光电读取电路16_1、16_2相同,其中光电读取电路46_3的传输闸接收信号TX3。同样地,当发光单元422发射第二光L2时,光电读取电路46_3的传输闸导通,感光元件PD接收第二光L2以及背景光的光照,光电读取电路46_3的传输闸可将感光元件PD因接收第二光L2以及背景光而产生的光电子汲取至节点FD_3储存。类似地,当发光单元122、422皆不发光(即脉冲信号pm1、pm2皆为低电位时)时,光电读取电路16_2的传输闸可短暂地导通(信号TX2为高电位),此时感光元件PD仅接收背景光的光照,光电读取电路16_2的传输闸可将感光元件PD因接收背景光而产生的光电子汲取至节点FD_2储存。当光电读取电路16_1、16_2、46_3的读取晶体管导通时,光电读取电路16_1的读取晶体管输出输出信号Pout1(相关于第一光L1及背景光),光电读取电路16_2的读取晶体管输出输出信号Pout2(仅相关于背景光),而光电读取电路46_3的读取晶体管输出输出信号Pout3(相关于第二光L2及背景光),对应于感光像素电路16的像素值即为输出信号Pout1与输出信号Pout3相加后,减去两倍的输出信号Pout2(即Pout1+Pout3-2*Pout2),以消除背景光的影响。另外,光电读取电路16_1、16_2传输闸的导通时间区间较脉冲信号pm1、pm2的脉冲宽度还要宽,即光电读取电路16_1、16_2传输闸的导通时 间区间较发光单元122、422的发光时间区间长。另外,光电读取电路16_1传输闸的导通时间区间T1与光电读取电路46_3传输闸的导通时间区间T8之间可视实际需要时间相隔一时间间隔T7。其余操作机制请参考前述相关段落,故于此不再赘述。
另外,本申请的三维影像系统可设置于电子装置中。请参考图9,图9为本申请实施例一电子装置9的示意图。电子装置9包括三维影像系统90,三维影像系统90可通过三维影像系统10或三维影像系统40来实现。
需注意的是,前述实施例用以说明本申请的概念,本领域具通常知识者当可据以做不同的修饰,而不限于此。举例来说,脉冲信号pm1、pm2的占空比可随机的变化(即脉冲信号pm1、pm2的占空比随时间变动(Time-Variant)),举例来说,脉冲信号产生器120产生一脉冲后可再过(N+n)个周期后,再产生下一个脉冲,其中N可为较大的整数,而n可为一随机数,如此一来,可避免电子装置之间的结构光相互干扰。请参考图12,图12为电子装置A、B中的脉冲信号pmA、pmB以及信号TXA、TXB的示意图。其中,脉冲信号pmA为电子装置A的发光单元所接收的脉冲信号,脉冲信号pmB为电子装置B的发光单元所接收的脉冲信号,信号TXA为电子装置A中感光像素电路的光电读取电路的传输闸所接收的信号,信号TXB为电子装置B中感光像素电路的光电读取电路的传输闸所接收的信号。如图12所示,当脉冲信号的占空比为随机产生时,电子装置A发光单元的发光时间与电子装置B发光单元的发光时间错开,电子装置A传输闸的导通时间也与电子装置B传输闸的导通时间错开,因此, 电子装置A与电子装置B的相关于结构光的光信号不会互相彼此干扰。
另外,本申请的结构光模块可包含多个发光单元。请参考图10及图11,图10为本申请实施例一结构光模块c2_t的示意图,图11为对应结构光模块c2_t的一感光像素电路d6示意图。结构光模块c2_t包括发光单元122、122_1~122_K,其分别于不同时间发光,感光像素电路d6包括光电读取电路d6_1~d6_K’及d6_B,光电读取电路d6_1~d6_K’及d6_B的电路结构可与前述光电读取电路16_1、16_2、46_3相同,光电读取电路d6_1~d6_K’的传输闸的导通时间区间分别对应发光单元122、122_1~122_K的发光时间区间(K’可代表K+1),光电读取电路d6_1~d6_K’输出输出信号Pout1~Pout K’,输出信号Pout1~Pout K’相关于发光单元122、122_1~122_K所发的光以及背景光。光电读取电路d6_B的传输闸于发光单元122、122_1~122_K皆不发光时导通,光电读取电路d6_B仅读取背景光造成的光电流,也就是说,光电读取电路d6_B输出的输出信号PoutB仅相关于背景光。在此情形下,对应于感光像素电路d6的像素值可为Pout1+…+PoutK’-K’*PoutB。
综上所述,本申请结构光模块的发光单元接收以脉冲调制的脉冲信号,以发出瞬间强光,使得其所发射的结构光不易受到背景光干扰,以改善现有技术的缺点。
以上所述仅为本申请的部分实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请 的保护范围之内。

Claims (19)

  1. 一种三维影像系统,其特征在于,包括:
    结构光模块,用来发射结构光,所述结构光模块包括第一发光单元,所述第一发光单元接收第一脉冲信号并根据所述第一脉冲信号发射出第一光,其中所述第一脉冲信号的占空比小于一特定值,所述第一发光单元的发光功率大于一特定功率,所述第一光具有第一波长;以及
    感光像素阵列,用来接收对应于所述结构光的反射光。
  2. 如权利要求1所述的三维影像系统,其特征在于,所述第一脉冲信号的占空比小于1/50。
  3. 如权利要求1所述的三维影像系统,其特征在于,所述第一发光单元的发光功率大于4瓦特。
  4. 如权利要求1所述的三维影像系统,其特征在于,所述结构光模块包括绕射单元,其中所述绕射单元对所述第一光形成绕射作用而产生所述结构光。
  5. 如权利要求4所述的三维影像系统,其特征在于,所述绕射单元为绕射光学元件。
  6. 如权利要求1所述的三维影像系统,其特征在于,所述感光像素阵列包括多个感光像素电路,多个感光像素电路中一感光像素电路包括:
    感光元件;
    第一光电读取电路,耦接于所述感光元件,用来输出第一输出信号;以及
    第二光电读取电路,耦接于所述感光元件,用来输出第二输出信号;
    其中,对应所述感光像素电路的像素值为所述第一输出信号与所述第二输出信号的相减结果。
  7. 如权利要求6所述的三维影像系统,其特征在于,所述第一光电读取电路包括:
    第一传输闸,耦接于所述感光元件;
    第一输出晶体管,耦接于所述第一传输闸;以及
    第一读取晶体管,耦接于所述第一输出晶体管,用来输出所述第一输出信号;
    所述第二光电读取电路包括:
    第二传输闸,耦接于所述感光元件;
    第二输出晶体管,耦接于所述第二传输闸;以及
    第二读取晶体管,耦接于所述第二输出晶体管,用来输出所述第二输出信号。
  8. 如权利要求7所述的三维影像系统,其特征在于,所述第一传输闸于所述第一发光单元发光时导通,所述第二传输闸于所述第一发光单元不发光时导通,且所述第一传输闸的导通时间区间较所述第一发光单元的发光时间区间长。
  9. 如权利要求7所述的三维影像系统,其特征在于,所述感光像素电路包括第一重置晶体管及第二重置晶体管,所述第一重置晶体管耦接于所述第一传输闸,所述第二重置晶体管耦接于所述第二传输闸。
  10. 如权利要求1所述的三维影像系统,其特征在于,所述结构光模块包括至少一第二发光单元,所述至少一第二发光单元接收至少一第二脉冲信号并根据所述至少一第二脉冲信号发射出至少一第二光,其中所述至少一第二脉冲信号的占空比小于所述特定值,所述至少一第二发光单元的发光功率大于所述特定功率,所述至少一第二光分别具有至少一第二波长。
  11. 如权利要求10所述的三维影像系统,其特征在于,所述感光像素阵列包括多个感光像素电路,多个感光像素电路中一感光像素电路包括:
    感光元件;
    第一光电读取电路,耦接于所述感光元件,用来输出第一输出信号;
    至少一第二光电读取电路,耦接于所述感光元件,用来输出至少一第二输出信号;以及
    第三光电读取电路,耦接于所述感光元件,用来输出第三输出信号;
    其中,对应所述感光像素电路的像素值为所述第一输出信号与所述至少一第二输出信号相加后,减去所述第三输出信号与所述第一输出信号和所述至少一第二输出信号的个数的乘积。
  12. 如权利要求11所述的三维影像系统,其特征在于,所述第一光电读取电路包括:
    第一传输闸,耦接于所述感光元件;
    第一输出晶体管,耦接于所述第一传输闸;以及
    第一读取晶体管,耦接于所述第一输出晶体管,用来输出所述第一输出信号;
    所述至少一第二光电读取电路中一第二光电读取电路包括:
    第二传输闸,耦接于所述感光元件;
    第二输出晶体管,耦接于所述第二传输闸;以及
    第二读取晶体管,耦接于所述第二输出晶体管,用来输出所述第二输出信号;
    所述第三光电读取电路包括:
    第三传输闸,耦接于所述感光元件;
    第三输出晶体管,耦接于所述第三传输闸;以及
    第三读取晶体管,耦接于所述第三输出晶体管,用来输出所述第三输出信号。
  13. 如权利要求12所述的三维影像系统,其特征在于,所述第一传输闸于所述第一发光单元发光时导通,所述至少一第二光电读取电路的所述第二传输闸分别于所述至少一第二发光单元发光时导通,所述第三传输闸于所述第一发光单元及所述至少一第二发光单元不发光时导通,且所述第一传输闸的导通时间区间较所述第一发光单元的发光时间区间长,所述至少一第二传输闸的导通时间区间较所述至少一第二发光单元的发光时间区间长。
  14. 如权利要求12所述的三维影像系统,其特征在于,所述感光像素电路包括第一重置晶体管、至少一第二重置晶体管及第三重置晶体管,所述第一重 置晶体管耦接于所述第一传输闸,所述至少一第二重置晶体管耦接于所述至少一第二光电读取电路的第二传输闸,所述第三重置晶体管耦接于所述第三传输闸。
  15. 如权利要求12所述的三维影像系统,其特征在于,所述第一传输闸导通的时间与所述第二传输闸导通的时间相隔一时间间隔。
  16. 如权利要求10所述的三维影像系统,其特征在于,所述第一波长与所述至少一第二波长不同。
  17. 如权利要求10所述的三维影像系统,其特征在于,所述第一脉冲信号及所述至少一第二脉冲信号的占空比随时间变动。
  18. 如权利要求1所述的三维影像系统,其特征在于,所述第一脉冲信号的占空比随时间变动。
  19. 一种电子装置,其特征在于,包括权利要求1-18中任意一项所述的三维影像系统。
PCT/CN2017/097332 2017-08-14 2017-08-14 三维影像系统及电子装置 WO2019033232A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201780000906.5A CN107690565A (zh) 2017-08-14 2017-08-14 三维影像系统及电子装置
JP2019503439A JP6908689B2 (ja) 2017-08-14 2017-08-14 三次元イメージングシステム及び電子デバイス
EP17868482.5A EP3470773A1 (en) 2017-08-14 2017-08-14 Three-dimensional image system, and electronic device
KR1020187014405A KR102061182B1 (ko) 2017-08-14 2017-08-14 3차원(3d) 이미지 시스템 및 전자 장치
CN201911128263.XA CN110906864B (zh) 2017-08-14 2017-08-14 三维影像系统及电子装置
KR1020197037244A KR102163643B1 (ko) 2017-08-14 2017-08-14 3차원(3d) 이미지 시스템 및 전자 장치
PCT/CN2017/097332 WO2019033232A1 (zh) 2017-08-14 2017-08-14 三维影像系统及电子装置
US15/959,272 US10659765B2 (en) 2017-08-14 2018-04-22 Three-dimensional (3D) image system and electronic device
US16/815,027 US20200213577A1 (en) 2017-08-14 2020-03-11 Three-Dimensional (3D) Image System and Electronic Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/097332 WO2019033232A1 (zh) 2017-08-14 2017-08-14 三维影像系统及电子装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/959,272 Continuation US10659765B2 (en) 2017-08-14 2018-04-22 Three-dimensional (3D) image system and electronic device

Publications (1)

Publication Number Publication Date
WO2019033232A1 true WO2019033232A1 (zh) 2019-02-21

Family

ID=61154840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097332 WO2019033232A1 (zh) 2017-08-14 2017-08-14 三维影像系统及电子装置

Country Status (6)

Country Link
US (2) US10659765B2 (zh)
EP (1) EP3470773A1 (zh)
JP (1) JP6908689B2 (zh)
KR (2) KR102163643B1 (zh)
CN (2) CN110906864B (zh)
WO (1) WO2019033232A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110612429B (zh) * 2018-04-10 2021-03-26 深圳市汇顶科技股份有限公司 三维影像测距系统及方法
CN110603457A (zh) * 2018-04-12 2019-12-20 深圳市汇顶科技股份有限公司 影像传感系统及电子装置
EP3605016B1 (en) * 2018-04-16 2022-04-06 Shenzhen Goodix Technology Co., Ltd. Image sensing system and electronic device
CN109277015A (zh) * 2018-08-30 2019-01-29 东莞市闻誉实业有限公司 原料搅拌照明装置
CN109313264B (zh) * 2018-08-31 2023-09-12 深圳市汇顶科技股份有限公司 基于飞行时间的测距方法和测距系统
US10915003B2 (en) * 2018-09-27 2021-02-09 Himax Technologies Limited Projecting apparatus for 3D sensing system
EP3680810B1 (en) 2018-11-08 2023-06-07 Shenzhen Goodix Technology Co., Ltd. Vertical cavity surface light-emitting laser, structured light module, and light projection method and terminal
KR20220039230A (ko) * 2020-09-22 2022-03-29 삼성전자주식회사 생체 정보 측정 장치 및 이를 포함하는 전자 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050206777A1 (en) * 2002-06-04 2005-09-22 Florent Selves Digital camera adapted for taking images with a flashlight and corresponding method
CN102595030A (zh) * 2011-01-12 2012-07-18 英属开曼群岛商恒景科技股份有限公司 具环境光感测的数字摄像装置
CN103400366A (zh) * 2013-07-03 2013-11-20 西安电子科技大学 基于条纹结构光的动态场景深度获取方法
CN106094398A (zh) * 2016-08-08 2016-11-09 哈尔滨理工大学 彩色复合相移条纹结构光投影装置和方法
CN107024850A (zh) * 2017-05-26 2017-08-08 清华大学 高速结构光三维成像系统

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW399742U (en) * 1999-12-22 2000-07-21 Inventec Corp Projector automatic light and illuminance adjusting device
US7083284B2 (en) * 2004-04-30 2006-08-01 Infocus Corporation Method and apparatus for sequencing light emitting devices in projection systems
CA2633377C (en) * 2005-12-19 2016-05-10 Institut National D'optique Object-detecting lighting system and method
EP2084491A2 (en) * 2006-11-21 2009-08-05 Mantisvision Ltd. 3d geometric modeling and 3d video content creation
KR101461216B1 (ko) * 2008-03-11 2014-11-19 삼성전자주식회사 주변 광 제거를 위한 cmos 센서의 픽셀 및 그 동작방법
WO2009147862A1 (ja) * 2008-06-04 2009-12-10 本田技研工業株式会社 撮像装置
CN101520326B (zh) * 2009-03-24 2012-04-25 湖北恒颖超科技有限公司 一种利用不同颜色顺序发光体非接触式定位装置
CN101604111B (zh) * 2009-06-15 2013-01-02 张一鸣 一种防逆光拍摄的方法和装置
JP5143808B2 (ja) * 2009-10-08 2013-02-13 本田技研工業株式会社 撮像装置、撮像システム及び演算方法
JP2011169701A (ja) * 2010-02-17 2011-09-01 Sanyo Electric Co Ltd 物体検出装置および情報取得装置
TWI407075B (zh) * 2010-03-16 2013-09-01 Test Research Inc 量測立體物件之系統
EP2500687A3 (en) * 2011-03-14 2013-02-20 Heliotis SA Structured light projector
US9083905B2 (en) * 2011-04-26 2015-07-14 Semiconductor Components Industries, Llc Structured light imaging system
KR20130100524A (ko) * 2012-03-02 2013-09-11 삼성전자주식회사 3차원 이미지 센서의 구동 방법
US8634020B2 (en) * 2012-03-30 2014-01-21 Mitsubishi Electric Research Laboratories, Inc. Structured light projection and acquisition
US9154708B1 (en) * 2014-11-06 2015-10-06 Duelight Llc Image sensor apparatus and method for simultaneously capturing flash and ambient illuminated images
US10466359B2 (en) * 2013-01-01 2019-11-05 Inuitive Ltd. Method and system for light patterning and imaging
SG11201509788QA (en) * 2013-06-06 2015-12-30 Heptagon Micro Optics Pte Ltd Sensor system with active illumination
US9296111B2 (en) * 2013-07-22 2016-03-29 LuxVue Technology Corporation Micro pick up array alignment encoder
US9143720B2 (en) 2013-10-31 2015-09-22 Htc Corporation Handheld electronic device and image projection method of the same
TWI623242B (zh) * 2013-12-11 2018-05-01 Liao Cai Zi Light control device for image capturing mechanism
CN103712576B (zh) * 2013-12-20 2017-02-08 上海瑞立柯信息技术有限公司 一种可编程控制的光栅投影装置
CN104134426B (zh) * 2014-07-07 2017-02-15 京东方科技集团股份有限公司 像素结构及其驱动方法、显示装置
CN104266607B (zh) * 2014-09-22 2017-03-29 电子科技大学 镜面目标轮廓光学测量方法
TWI525307B (zh) * 2015-02-10 2016-03-11 聯詠科技股份有限公司 用於影像感測器之感光單元及其感光電路
CN106289092B (zh) * 2015-05-15 2020-10-27 高准国际科技有限公司 光学装置及其发光装置
CN105789202B (zh) * 2016-05-20 2018-09-14 京东方科技集团股份有限公司 有源像素传感器电路、驱动方法和图像传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050206777A1 (en) * 2002-06-04 2005-09-22 Florent Selves Digital camera adapted for taking images with a flashlight and corresponding method
CN102595030A (zh) * 2011-01-12 2012-07-18 英属开曼群岛商恒景科技股份有限公司 具环境光感测的数字摄像装置
CN103400366A (zh) * 2013-07-03 2013-11-20 西安电子科技大学 基于条纹结构光的动态场景深度获取方法
CN106094398A (zh) * 2016-08-08 2016-11-09 哈尔滨理工大学 彩色复合相移条纹结构光投影装置和方法
CN107024850A (zh) * 2017-05-26 2017-08-08 清华大学 高速结构光三维成像系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3470773A4 *

Also Published As

Publication number Publication date
KR20190141800A (ko) 2019-12-24
CN110906864B (zh) 2022-04-29
CN110906864A (zh) 2020-03-24
CN107690565A (zh) 2018-02-13
KR20190031422A (ko) 2019-03-26
JP6908689B2 (ja) 2021-07-28
JP2019533134A (ja) 2019-11-14
US20200213577A1 (en) 2020-07-02
KR102163643B1 (ko) 2020-10-12
KR102061182B1 (ko) 2019-12-31
EP3470773A4 (en) 2019-04-17
US20190052863A1 (en) 2019-02-14
EP3470773A1 (en) 2019-04-17
US10659765B2 (en) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2019033232A1 (zh) 三维影像系统及电子装置
CN103748479A (zh) 用于提供距离信息的飞行时间摄像机及方法
CN106055172A (zh) 光学导航芯片、光学导航模块以及光学编码器
CN113924507A (zh) 混合主动深度
US20210116549A1 (en) Distance measurement method and apparatus, and distance measurement sensor and distance measurement sensing array
CN110168398B (zh) 飞时测距系统及校正方法
US10212785B2 (en) Staggered array of individually addressable light-emitting elements for sweeping out an angular range
CN209167538U (zh) 时间飞行深度相机
TWI748460B (zh) 飛時測距裝置及飛時測距方法
WO2021016781A1 (zh) 三维图像传感器以及相关三维图像传感模组及手持装置
Martin et al. An all-in-one 64-zone SPAD-based direct-time-of-flight ranging sensor with embedded illumination
JP6887036B2 (ja) 三次元イメージングシステム及び電子デバイス
WO2023065589A1 (zh) 一种测距系统及测距方法
US10645319B2 (en) Pixel circuit and image sensing system
EP3015958B1 (en) Light sensor array device
TW202041884A (zh) 飛時測距模組、其操作方法以及多媒體系統
CN213041994U (zh) 飞行时间tof装置和电子设备
WO2019196049A1 (zh) 影像传感系统及电子装置
CN214703999U (zh) 飞行时间tof装置和电子设备
CN213041995U (zh) 飞行时间tof装置和电子设备
CN114706057A (zh) 发射模组、tof装置和电子设备
TWI749280B (zh) 結構光發射模塊、結構光感測模塊及電子裝置
CN113805187A (zh) 飞行时间tof装置和电子设备
CN113805185A (zh) 飞行时间tof装置和电子设备
CN113805186A (zh) 飞行时间tof装置和电子设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187014405

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019503439

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE