WO2019196049A1 - 影像传感系统及电子装置 - Google Patents

影像传感系统及电子装置 Download PDF

Info

Publication number
WO2019196049A1
WO2019196049A1 PCT/CN2018/082776 CN2018082776W WO2019196049A1 WO 2019196049 A1 WO2019196049 A1 WO 2019196049A1 CN 2018082776 W CN2018082776 W CN 2018082776W WO 2019196049 A1 WO2019196049 A1 WO 2019196049A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
pixel
output signal
flight
sensing system
Prior art date
Application number
PCT/CN2018/082776
Other languages
English (en)
French (fr)
Inventor
杨孟达
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2018/082776 priority Critical patent/WO2019196049A1/zh
Priority to CN201880000680.3A priority patent/CN110603457A/zh
Publication of WO2019196049A1 publication Critical patent/WO2019196049A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/493Extracting wanted echo signals

Definitions

  • the present invention relates to an image sensing system and an electronic device, and more particularly to an image sensing system and an electronic device capable of simultaneously generating a time-of-flight image and a general image.
  • the structured light three-dimensional measurement method as a non-contact three-dimensional information acquisition technology, has been widely used due to its advantages of simple implementation, high speed and high precision.
  • the Time of Flight (ToF) ranging method is a commonly used three-dimensional depth measurement method.
  • the time-of-flight image required for the time-of-flight ranging is different from the image generated by a general camera (referred to as a general image).
  • the general image requires high resolution, while the time-of-flight image requires better sensitivity.
  • two different sets of photosensitive pixels are required to obtain a general image and a fly-time depth image, which causes an increase in production cost.
  • an object of some embodiments of the present application is to provide an image sensing system and an electronic device capable of simultaneously generating a time-of-flight depth image and a general image to improve the disadvantages of the prior art.
  • an embodiment of the present application provides an image sensing system including a plurality of time-of-flight ranging pixel units, each of which includes a first pixel circuit, including a first photosensitive element and a a first transmission gate coupled to the first photosensitive element, the first transmission gate receiving a first transmission signal and conducting at a first conduction time, the first pixel circuit being The first on-time outputs a first pixel output signal; and the second pixel circuit includes a second photosensitive element and a second transfer gate, the second transfer gate is coupled to the second photosensitive element, and the second transfer The gate receives the second transmission signal and is turned on at the second on-time, the second pixel circuit outputs a second pixel output signal at the second on-time; the control unit is coupled to each of the fly-time measurements The first transmission gate and the second transmission gate from the pixel unit are configured to generate the first transmission signal to the first transmission gate and the second transmission signal to the second transmission gate; Depth calculation unit, coupled to a plurality of time
  • a plurality of first pixel circuits and a plurality of second pixel circuits of the plurality of time-of-flight ranging pixel units are arranged in a first array, and the plurality of time-of-flight ranging pixel units are arranged in a second array,
  • the first array generates a first image
  • the second array generates a second image, the first resolution of the first image being greater than the second resolution of the second image.
  • the first pixel circuit includes a first output transistor coupled to the first transfer gate, and a first read transistor coupled to the first output transistor for outputting the first pixel output
  • the second pixel circuit includes a second output transistor coupled to the second transfer gate, and a second read transistor coupled to the second output transistor for outputting the second pixel output signal.
  • each of the time-of-flight ranging pixel units further includes a third pixel circuit including a third photosensitive element and a third transfer gate, the third transfer gate being coupled to the third photosensitive element, the third transfer gate Receiving a third transmission signal, the third on-time is not turned on, and the third pixel circuit outputs a third pixel output signal at the third on-time; wherein the control unit generates The third transmission signal to the third transmission gate; wherein the depth calculation unit calculates a correspondence corresponding to the first pixel output signal, the second pixel output signal, and the third pixel output signal Describe the depth value of the time of flight.
  • the third pixel circuit includes a third output transistor coupled to the third transfer gate, and a third read transistor coupled to the third output transistor for outputting the third pixel output signal.
  • D ToF represents the time-of-flight depth value
  • Pout1 represents the first pixel output signal
  • Pout2 represents the second pixel output signal
  • Pout3 represents the third pixel output
  • the signal, c represents the speed of light
  • T represents the length of time of the first conduction time or the second conduction time.
  • an embodiment of the present application provides an electronic device, including an image sensing system, where the image sensing system includes a plurality of time-of-flight ranging pixel units, and each time-of-flight ranging pixel unit includes a first pixel circuit.
  • the first transmission gate is coupled to the first photosensitive element, and the first transmission gate receives the first transmission signal and is turned on at the first conduction time.
  • the first pixel circuit outputs a first pixel output signal at the first on-time; and the second pixel circuit includes a second photosensitive element and a second transfer gate, the second transfer gate being coupled to the second a photosensitive element, the second transmission gate receives a second transmission signal and is turned on at a second conduction time, and the second pixel circuit outputs a second pixel output signal at the second on-time; the control unit is coupled
  • the first transmission gate and the second transmission gate of each of the time-of-flight ranging pixel units are configured to generate the first transmission signal to the first transmission gate and the second transmission signal to
  • the second transmission gate a depth calculation unit, configured to be coupled to the plurality of time-of-flight ranging pixel units, configured to calculate, according to the first pixel output signal and the second pixel output signal, a pixel unit corresponding to each of the time-of-flight ranging pixels a time-of-flight depth value; and a light-emitting unit for emitting light in the first on-time
  • the present application can simultaneously satisfy the high-resolution requirements of general images and the sensitivity requirements of the flying depth image, and only utilizes a single group of photosensitive pixel arrays to simultaneously generate general images and time-of-flight images, thereby saving production cost and effectively utilizing pixels.
  • the advantages of the array can simultaneously satisfy the high-resolution requirements of general images and the sensitivity requirements of the flying depth image, and only utilizes a single group of photosensitive pixel arrays to simultaneously generate general images and time-of-flight images, thereby saving production cost and effectively utilizing pixels.
  • FIG. 1 is a schematic diagram of an image sensing system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a first pixel circuit and a second pixel circuit according to Embodiment 1 of the present application;
  • FIG. 3 is a waveform diagram of multiple signals in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an image sensing system according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a third pixel circuit according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an image sensing system according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an image sensing system according to an embodiment of the present application.
  • FIG. 10 is a waveform diagram of a plurality of signals according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an image sensing system 10 according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a first pixel circuit PX1 and a second pixel circuit PX2 according to an embodiment of the present application.
  • the image sensing system 10 can be used to generate a time-of-flight (ToF) depth image and a general image, wherein the general image can refer to a color or black-and-white image produced by a general camera.
  • the image sensing system 10 includes a light emitting unit 12, a plurality of time-of-flight ranging pixel units 11, a control unit 14, and a depth calculating unit 16.
  • the light-emitting unit 12 is used for performing time-of-flight ranging, and may be a Light-Emitting Diode (LED), such as an infrared ray (IR) light-emitting diode.
  • LED Light-Emitting Diode
  • IR infrared ray
  • the light-emitting unit 12 receives the light-emitting signal LD and emits incident light.
  • the fly-time ranging pixel unit 11 includes a first pixel circuit PX1 and a second pixel circuit PX2, and each of the first pixel circuit PX1 and the second pixel circuit PX2 can output pixel values to form a general image, and on the other hand, when image sensing
  • the plurality of time-of-flight ranging pixel units 11 are configured to receive the reflected light corresponding to the light-emitting unit 12, and the depth calculating unit 16 may generate the output according to the outputs of the plurality of time-of-flight ranging pixel units 11. Fly-time depth image.
  • the first pixel circuit PX1 includes a photosensitive element PD1, a transfer gate TG1, an output transistor DV1, a read transistor RD1, a reset transistor RT1, and an anti-Blooming transistor AB1, and a second pixel circuit PX2.
  • the photosensitive element PD2, the transfer gate TG2, the output transistor DV2, the read transistor RD2, the reset transistor RT2, and the anti-smear transistor AB2 are included, wherein the photosensitive elements PD1, PD2 may be photodiodes.
  • the circuit structures of the first pixel circuit PX1 and the second pixel circuit PX2 are respectively shown in the sub-image 2a and the sub-image 2b of FIG.
  • the transmission gate TG1 of the first pixel circuit PX1 receives the first transmission signal TX1, and the transmission gate TG2 of the second pixel circuit PX2 receives the second transmission signal TX2.
  • the read transistor RD1 outputs a first pixel output signal Pout1, and the read transistor RD2 outputs a second pixel output signal Pout2.
  • the reset transistors RT1, RT2 receive the reset signal Rst
  • the anti-smudge transistors AB1, AB2 receive the anti-smudge signals TX1', TX2'
  • the read transistors RD1, RD2 receive the read signal RS.
  • the control unit 14 When the image sensing system 10 performs the time-of-flight ranging, the control unit 14 generates the first transmission signal TX1 to the transmission gate TG1 of the first pixel circuit PX1 and generates the transmission gate TG2 of the second transmission signal TX2 to the second transmission signal TX2,
  • the depth calculation unit 16 receives the first pixel output signal Pout1 outputted by the read transistor RD1 in the first pixel circuit PX1 and the second pixel output signal Pout2 outputted by the read transistor RD2 in the second pixel circuit PX2, and according to the first
  • the pixel output signal Pout1 and the second pixel output signal Pout2 calculate a time-of-flight depth value D ToF corresponding to the time-of-flight ranging pixel unit 11.
  • FIG. 3 is a waveform diagram of the illumination signal LD, the first transmission signal TX1, and the second transmission signal TX2 when the image sensing system 10 operates in the time-of-flight ranging mode.
  • the light-emitting unit 12 receives the light-emitting signal LD and emits light in the first on-time T1, and the electrical signal converted by the reflected light through the photosensitive element can be represented as the reflected signal RX in FIG.
  • the transfer gate TG1 of the first pixel circuit PX1 is turned on at the first on-time T1
  • the transfer gate TG2 of the second pixel circuit PX2 is turned on at the second on-time T2.
  • the photosensitive element PD1 receives the reflected light in the first on-time T1 and the reading transistor RD1 outputs the first pixel output signal Pout1
  • the photosensitive element PD2 receives the reflected light in the second on-time T2 and the reading transistor RD2 outputs the first Two pixel output signal Pout2.
  • the first on-time T1 and the second on-time T2 are separated by a time interval ⁇ T.
  • the pixel output signal Pout1 the overlap of the on-time T2 and the reflected light time is related to the second pixel output signal Pout2.
  • the time-of-flight ranging method calculates the time-of-flight depth value D ToF according to the ratio of the length of time during which the reflected light appears at the on-time T2 to the length of time during which the reflected light is conducted at the on-time T1 and the on-time T2, in other words,
  • the array formed by the plurality of first pixel circuits PX1 and the plurality of second pixel circuits PX2 can also be used to form a general image.
  • the plurality of first pixel circuits PX1 and the plurality of second pixel circuits PX2 may be arranged in a first array M1, and the plurality of time-of-flight ranging pixel units 11 are arranged in a second array M2.
  • the size of the first array M1 is 8 ⁇ 8, and the size of the second array M2 is 4 ⁇ 8.
  • the first array M1 can be used to generate an 8 ⁇ 8 general image (corresponding to the first image in the claims), and the second array M2 can be used to generate a 4 ⁇ 8 time-of-flight depth image (corresponding to the second in the claims) image). Therefore, the first resolution of the general image generated by the first array M1 is greater than the second resolution of the time-of-flight image generated by the second array M2.
  • the general image is different from the requirement of the flying depth image.
  • the general image requires high resolution, while the flying depth image requires better sensitivity (ie, the photosensitive element requires a larger photosensitive area). Therefore, the prior art utilizes two different sets of photosensitive pixels to obtain a general image and a time-of-flight image, resulting in an increase in production cost.
  • the present application utilizes a plurality of first pixel circuits PX1 and a first array M1 in which a plurality of second pixel circuits PX2 are arranged to generate a general image, and is arranged by using a plurality of time-of-flight ranging pixel units 11
  • the second array M2 generates a fly-time depth image, so that the present application can simultaneously satisfy the high-resolution requirements of the general image and the photosensitivity requirement of the fly-time depth image (wherein the photosensitive area of the fly-time ranging pixel unit 11 is the photosensitive element)
  • the sum of the PD1 and the photosensitive element PD2) in other words, the present application only needs a set of photosensitive pixel arrays, which can simultaneously generate a general image and a time-of-flight depth image, and has the advantages of saving production cost and effectively utilizing the pixel array.
  • FIG. 4 is a schematic diagram of an image sensing system 40 according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a third pixel circuit PX3 according to an embodiment of the present application.
  • the image sensing system 40 is similar to the image sensing system 10.
  • the image sensing system 40 includes a time-of-flight ranging pixel unit 41 (as compared to the time-of-flight ranging pixel unit 11).
  • the third pixel circuit PX3 is further configured to receive the background light, and the third pixel output signal Pout3 outputted by the third pixel circuit PX3 can be used to convert the background light component in the first pixel output signal Pout1 and the second pixel output signal Pout2. Remove.
  • the third pixel circuit PX3 includes a photosensitive element PD3, a transfer gate TG3, an output transistor DV3, a read transistor RD3, a reset transistor RT3, and an anti-smear transistor AB3, the circuit structure of which is shown in FIG. Similarly, the reset transistor RT3 receives the reset signal Rst, the anti-smoke transistor AB3 receives the anti-smudge signal TX3', and the read transistor RD3 receives the read signal RS.
  • the transmission gate TG3 receives the third transmission signal TX3.
  • the waveform diagram of the third transmission signal TX3 is also shown in FIG. 3.
  • the transmission gate TG3 is turned on at the third conduction time T3 when the illumination unit 12 does not emit light.
  • the photosensitive element PD3 receives the background light and the reading transistor RD3 outputs the third pixel output signal Pout3.
  • the control unit 44 When the image sensing system 40 performs the time-of-flight ranging, the control unit 44 generates the transmission signals TX1, TX2, TX3 to the transmission gates TG1, TG2, TG3 of the time-of-flight ranging pixel unit 41, and the depth calculation unit 46 receives the pixel circuit PX1.
  • the plurality of pixel circuits PX1, PX2, and PX3 are arranged such that the size of the array M1' is 9 ⁇ 8, which can be used to generate a general image, and multiple fly times.
  • the ranging pixel unit 41 is arranged in an array M1' having a size of 3 x 8, which can be used to generate a time-of-flight depth image.
  • the resolution of the general image produced by array M1' is greater than the resolution of the time-of-flight image produced by array M2', and is also within the scope of the present application in accordance with the requirements of the present application.
  • FIG. 7 and FIG. 8 are schematic diagrams of image sensing systems 70 and 80 according to an embodiment of the present application.
  • the image sensing systems 70, 80 are similar to the image sensing systems 10, 40, respectively, such that the same elements follow the same symbols.
  • the pixel circuits PX1/PX2 in the time-of-flight ranging pixel unit 11 are arranged in the same row, and in FIG.
  • the pixel circuits PX1 and PX2 in the time-of-flight ranging pixel unit 71 are staggered, which is also in accordance with the present application. The requirements are within the scope of this application.
  • the pixel circuits PX1, PX2, and PX3 are arranged in a 3 ⁇ 1 array in the time-of-flight ranging pixel unit 40, and in FIG. 8, the pixel circuits PX1 and PX2 in the time-of-flight ranging pixel unit 81 are arranged.
  • the PX3 is arranged in a mutually perpendicular manner and is also in compliance with the requirements of the present application and falls within the scope of the present application.
  • FIG. 9 illustrates the illuminating signal LD and the transmission signals TX1, TX2, and TX3 when the image sensing system 10/40 is operated in the invisible light (eg, infrared) grayscale image capturing mode.
  • Waveform diagram FIG. 10 is a waveform diagram of the reset signal Rst, the illumination signal LD, the transmission signals TX1 to TX3, and the anti-smudge signals TX1' to TX3' when the image sensing system 10/40 is operated in the general camera mode.
  • the reflected signal RX in FIG. 9 corresponds to the incident light emitted by the light-emitting unit 12, and as shown in FIG. 9, the conduction intervals T1, T2, and T3 of the transfer gates TG1, TG2, and TG3 are required to cover the time when the reflected light arrives.
  • the light-emitting unit 12 does not emit light, and after the reset transistors RT1, RT2, and RT2 are reset, the photosensitive members PD1, PD2, and PD3 start to be exposed, and the anti-smear transistors AB1, AB2, and AB3 are disconnected.
  • the transfer gates TG1, TG2, TG3 are turned on to extract photoelectrons stored in the photosensitive elements PD1, PD2, PD3.
  • the read transistors RD1, RD2, RD3 are turned on, and the anti-smear transistors AB1, AB2, and AB3 are also turned on.
  • FIG. 6 is a schematic diagram of an electronic device 6 according to an embodiment of the present application.
  • the electronic device 6 includes an image sensing system 60 that can be implemented by the image sensing system 10 or the image sensing system 40.
  • the present application can simultaneously satisfy the high resolution requirements of general images and the sensitivity requirements of the flying depth image, and only use a single group of photosensitive pixel arrays to simultaneously generate general images and time-of-flight images.
  • the present application has the advantages of saving production cost and effectively utilizing the pixel array.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本申请提供了一种影像传感系统(10),包括多个飞时测距像素单元(11),每一飞时测距像素单元包括第一像素电路(PX1),包括第一感光元件(PD1)及第一传输闸(TG1),所述第一传输闸接收第一传输信号(TX1)并输出第一像素输出信号(Pout1);以及第二像素电路(PX2),包括第二感光元件(PD2)及第二传输闸(PD2),所述第二传输闸接收第二传输信号(TX2)并输出第二像素输出信号(Pout2);控制单元(14),产生第一传输信号及所述第二传输信号;以及深度计算单元(16),根据所述第一像素输出信号及所述第二像素输出信号,计算飞时深度值。

Description

影像传感系统及电子装置 技术领域
本申请涉及一种影像传感系统及电子装置,尤其涉及一种可同时产生飞时深度影像以及一般影像的影像传感系统及电子装置。
背景技术
随着科学与技术的飞速发展,物体三维信息的获取在很多应用领域都有着广泛的应用前景,如生产自动化、人机交互、医学诊断、逆向工程、数字化建模等。其中,结构光三维测量法作为一种非接触式的三维信息获取技术,因其实现简单、速度快和精度高等优点得到了广泛应用。
飞时(Time of Flight,ToF)测距法为常用的三维深度测量方法。然而,飞时测距所需的飞时深度影像与一般相机所生成影像(简称一般影像)的需求不同,一般影像要求高分辨率,而飞时深度影像要求较佳的感光灵敏度。现有技术利中,需配置两组不同的感光像素阵列来取得一般影像以及飞时深度影像,而造成生产成本的增加。
因此,现有技术实有改进的必要。
发明内容
因此,本申请部分实施例的目的即在于提供一种可同时产生飞时深度影像以及一般影像的影像传感系统及电子装置,以改善现有技术的缺点。
为了解决上述技术问题,本申请实施例提供了一种影像传感系统,包括多个飞时测距像素单元,每一飞时测距像素单元包括第一像素电路,包括第一感光元件及第一传输闸,所述第一传输闸耦接于所述第一感光元件,所述第一传输闸接收第一传输信号而于第一导通时间导通,所述第一像素电路于所述第一导通时间输出第一像素输出信号;以及第二像素电路,包括第二感光元件及第二传输闸,所述第二传输闸耦接于所述第二感光元件,所述第二传输闸接收第二传输信号而于第二导通时间导通,所述第二像素电路于所述第二导通时间输出第二像素输出信号;控制单元,耦接于所述每一飞时测距像素单元的所述第一传输闸及所述第二传输闸,用来产生所述第一传输信号至所述第一传输闸及所述第二传输信号至所述第二传输闸;以及深度计算单元,耦接于所述多个飞时测距像素单元,用来根据所述第一像素输出信号及所述第二像素输出信号,计算对应于所述每一飞时测距像素单元的飞时深度值;以及发光单元,用来于所述第一导通时间中发光。
例如,所述多个飞时测距像素单元中多个第一像素电路以及多个第二像素电路排列成第一阵列,所述多个飞时测距像素单元排列成第二阵列,所述第一阵列产生第一影像,所述第二阵列产生第二影像,所述第一影像的第一分辨率大于所述第二影像的第二分辨率。
例如,所述第一像素电路包括第一输出晶体管,耦接于所述第一传输闸;以及第一读取晶体管,耦接于所述第一输出晶体管,用来输出所述第一像素输出信号;所述第二像素电路包括第二输出晶体管,耦接于所述第二传输闸;以及第二读取晶体管,耦接于所述第二输出晶体管,用来输出所述第二像素输出信号。
例如,所述第一导通时间所所述第二导通时间相隔一时间间隔,所述深度计算单元计算所述飞时深度值为D ToF=(Pout2)/(Pout1+Pout2)*(c*T);其中,D ToF代表所述飞时深度值,Pout1代表所述第一像素输出信号,Pout2代表所述第二像素输出信号,c代表光速,T代表所述第一导通时间或所述第二导通时间的时间长度。
例如,每一飞时测距像素单元还包括第三像素电路,包括第三感光元件及第三传输闸,所述第三传输闸耦接于所述第三感光元件,所述第三传输闸接收第三传输信号而于所述发光单元不发光的第三导通时间导通,所述第三像素电路于所述第三导通时间输出第三像素输出信号;其中,所述控制单元产生所述第三传输信号至所述第三传输闸;其中,所述深度计算单元根据所述第一像素输出信号、所述第二像素输出信号及所述第三像素输出信号,计算对应于所述飞时深度值。
例如,所述第三像素电路包括第三输出晶体管,耦接于所述第三传输闸;以及第三读取晶体管,耦接于所述第三输出晶体管,用来输出所述第三像素输出信号。
例如,所述第一导通时间所所述第二导通时间相隔一时间间隔,所述深度计算单元计算所述飞时深度值为D ToF=(Pout2-Pout3)/(Pout1+Pout2–2*Pout3)*(c*T);其中,D ToF代表所述飞时深度值,Pout1代表所述第一像素输出信号,Pout2代表所述第二像素输出信号,Pout3代表所述第三像素输出信号,c代表光速,T代表所述第一导通时间或所述第二导通时间的时间长度。
为了解决上述技术问题,本申请实施例提供了一种电子装置,包括影像传感系统,影像传感系统包括多个飞时测距像素单元,每一飞时测距像素单元包括第一像素电路,包括第一感光元件及第一传输闸,所述第一传输闸耦接于所述第一感光元件,所述第一传输闸接收第一传输信号而于第一导通时间导通,所述第一像素电路于所述第一导通时间输出第一像素输出信号;以及第二像素电路,包括第二感光元件及第二传输闸,所述第二传输闸耦接于所述第二感光元件,所述第二传输闸接收第二传输信号而于第二导通时间导通,所述第二像素电路于所述第二导通时间输出第二像素输出信号;控制单元,耦接于所述每一飞时测距像素单元的所述第一传输闸及所述第二传输闸,用来产生所述第一传输信号至所述第一传输闸及所述第二传输信号至所述第二传输闸;深度计算单元,耦接于所述多个飞时测距像素单元,用来根据所述第一像素输出信号及所述第二像素输出信号,计算对应于所述每一飞时测距像素单元的飞时深度值; 以及发光单元,用来于所述第一导通时间中发光。
本申请可同时满足一般影像的高分辨率需求及飞时深度影像的感光灵敏度需求,而仅利用单一组感光像素阵列来同时产生一般影像及飞时深度影像,而具有节省生产成本以及有效利用像素阵列的优点。
附图说明
图1为本申请实施例一影像传感系统的示意图;
图2为本申请实施例一第一像素电路及一第二像素电路的示意图;
图3为本申请实施例多个信号的波形图;
图4为本申请实施例一影像传感系统的示意图;
图5为本申请实施例一第三像素电路的示意图;
图6为本申请实施例一电子装置的示意图;
图7为本申请实施例一影像传感系统的示意图;
图8为本申请实施例一影像传感系统的示意图;
图9为本申请实施例多个信号的波形图;
图10为本申请实施例多个信号的波形图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
请一并参考图1及图2,图1为本申请实施例影像传感系统10的示意图,图2为本申请实施例第一像素电路PX1及第二像素电路PX2的示意图。影像传感系统10可用来产生飞时(Time of Flight,ToF)深度影像以及一般影像,其中一般影像可指由一般相机所产生彩色或黑白的影像。影像传感系统10包括发光单元12、多个飞时测距像素单元11、控制单元14以及深度计算单元16。发光单元12为进行飞时测距时使用,其可为发光二极管(Light-Emitting Diode,LED),如红外线(Infrared Ray,IR)发光二极管,发光单元12接收发光信号LD而发射入射光。飞时测距像素单元11包括第一像素电路PX1及第二像素电路PX2,第一像素电路PX1及第二像素电路PX2皆可各自输出像素值而形成一般影像,另一方面,当影像传感系统10进行飞时测距时,多个飞时测距像素单元11用来接收对应于发光单元12的反射光,而深度计算单元16可根据多个飞时测距像素单元11的输出而产生飞时深度影像。
如图2所示,第一像素电路PX1包括感光元件PD1、传输闸TG1、输出晶体管DV1、读取晶体管RD1、重置晶体管RT1以及防晕染(Anti-Blooming)晶体管AB1,第二像素电路PX2包括感光元件PD2、传输闸TG2、输出晶体管DV2、读取晶体管RD2、重置晶体管RT2以及防晕染晶体管AB2,其中感光元件PD1、PD2可为感光二极管(Photo Diode)。第一像素电路PX1及第二像素电路PX2的电路结构分别绘示于图2的子图2a及子图2b。第一像素电路PX1的传输闸TG1接收第一传输信号TX1,第二像素电路PX2的传输闸TG2接收第二传输信号TX2。读取晶体管RD1输出第一像素输出信号Pout1,读取晶体 管RD2输出第二像素输出信号Pout2。另外,重置晶体管RT1、RT2接收重置信号Rst,防晕染晶体管AB1、AB2接收防晕染信号TX1’、TX2’,读取晶体管RD1、RD2接收读取信号RS。
当影像传感系统10进行飞时测距时,控制单元14产生第一传输信号TX1至第一像素电路PX1的传输闸TG1并产生第二传输信号TX2至第二传输信号TX2的传输闸TG2,而深度计算单元16接收第一像素电路PX1中读取晶体管RD1所输出的第一像素输出信号Pout1以及第二像素电路PX2中读取晶体管RD2所输出的第二像素输出信号Pout2,并根据第一像素输出信号Pout1及第二像素输出信号Pout2,计算对应于飞时测距像素单元11的飞时深度值D ToF
请参考图3,图3绘示当影像传感系统10操作于飞时测距模式时,发光信号LD、第一传输信号TX1及第二传输信号TX2的波形图。如图3所示,发光单元12接收发光信号LD而于第一导通时间T1中发光,其反射光经过感光元件而转换成的电信号可表示为图3中的反射信号RX。第一像素电路PX1的传输闸TG1于第一导通时间T1导通,第二像素电路PX2的传输闸TG2于第二导通时间T2导通。另外,感光元件PD1于第一导通时间T1中接收反射光而读取晶体管RD1输出第一像素输出信号Pout1,感光元件PD2于第二导通时间T2中接收反射光而读取晶体管RD2输出第二像素输出信号Pout2。于一实施例中,第一导通时间T1与第二导通时间T2之间相隔一时间间隔ΔT。
传输闸TG1、TG2的导通时间T1、T2与对应反射光的时间部份重迭(如 图3中的阴影处),其中导通时间T1与反射光时间的重迭部份相关于第一像素输出信号Pout1,导通时间T2与反射光时间的重迭部份相关于第二像素输出信号Pout2。飞时测距法可根据反射光于导通时间T2出现的时间长度相对于反射光于导通时间T1以及导通时间T2出现的时间长度的比例,计算飞时深度值D ToF,换句话说,深度计算单元16可计算飞时深度值D ToF为D ToF=(Pout2)/(Pout1+Pout2)*(c*T),其中c代表光速,T代表导通时间T1或T2的时间长度。如此一来,影像传感系统10即可产生飞时深度影像。
另一方面,由于影像传感系统10的多个第一像素电路PX1以及多个第二像素电路PX2亦排列成阵列,且像素输出信号Pout1、Pout2可视为像素电路PX1、PX2的像素值,因此,多个第一像素电路PX1以及多个第二像素电路PX2所形成的阵列亦可用来形成一般影像。其中,多个第一像素电路PX1以及多个第二像素电路PX2可排列成第一阵列M1,而多个飞时测距像素单元11排列成第二阵列M2。以图1所绘示的实施例为例,第一阵列M1的尺寸(Size)为8×8,第二阵列M2的尺寸为4×8。第一阵列M1可用来产生8×8的一般影像(可对应权利要求中的第一影像),而第二阵列M2可用来产生4×8的飞时深度影像(可对应权利要求中的第二影像)。因此,第一阵列M1所产生一般影像的第一分辨率(Resolution)大于第二阵列M2所产生飞时深度影像的第二分辨率。
一般影像与飞时深度影像的需求不同,一般影像要求高分辨率,而飞时深度影像要求较佳的感光灵敏度(即感光元件需要较大的感光面积)。因此,现有技术利用两组不同的感光像素阵列来取得一般影像以及飞时深度影像,而造 成生产成本的增加。相较之下,本申请利用多个第一像素电路PX1以及多个第二像素电路PX2所排列成的第一阵列M1产生一般影像,并利用多个飞时测距像素单元11所排列成的第二阵列M2产生飞时深度影像,如此一来,本申请可同时满足一般影像的高分辨率需求及飞时深度影像的感光灵敏度需求(其中飞时测距像素单元11的感光面积为感光元件PD1与感光元件PD2的总和),换句话说,本申请只需要一组感光像素阵列,即可同时产生一般影像及飞时深度影像,而具有节省生产成本以及有效利用像素阵列的优点。
需注意的是,前述实施例用以说明本申请的发明概念,本领域具通常知识者当可据以做不同的修饰,而不限于此。举例来说,请一并参考图4及图5,图4为本申请实施例影像传感系统40的示意图,图5为本申请实施例第三像素电路PX3的示意图。影像传感系统40与影像传感系统10类似,与影像传感系统10不同的是,影像传感系统40所包括的飞时测距像素单元41(相较于飞时测距像素单元11)还包括第三像素电路PX3,第三像素电路PX3用来接收背景光,其所输出的第三像素输出信号Pout3可用来将第一像素输出信号Pout1及第二像素输出信号Pout2中的背景光成份去除。第三像素电路PX3包括感光元件PD3、传输闸TG3、输出晶体管DV3、读取晶体管RD3、重置晶体管RT3以及防晕染晶体管AB3,其电路结构绘示于图5。同样地,重置晶体管RT3接收重置信号Rst,防晕染晶体管AB3接收防晕染信号TX3’,读取晶体管RD3接收读取信号RS。
传输闸TG3接收第三传输信号TX3,其中第三传输信号TX3的波形图亦 绘示于图3,传输闸TG3于发光单元12不发光的第三导通时间T3导通。于图3所示的第三导通时间T3,感光元件PD3接收背景光而读取晶体管RD3输出第三像素输出信号Pout3。当影像传感系统40进行飞时测距时,控制单元44产生传输信号TX1、TX2、TX3至飞时测距像素单元41的传输闸TG1、TG2、TG3,深度计算单元46接收像素电路PX1、PX2、PX3所输出的像素输出信号Pout1、Pout2、Pout3,并根据像素输出信号Pout1、Pout2、Pout3,计算对应于飞时测距像素单元41的飞时深度值D ToF,其中,深度计算单元16可计算飞时深度值D ToF为D ToF=(Pout2-Pout3)/(Pout1+Pout2–2*Pout3)*(c*T)。
如此一来,以图4所绘示的实施例为例,多个像素电路PX1、PX2、PX3所排列成阵列M1’的尺寸为9×8,其可用来产生一般影像,而多个飞时测距像素单元41所排列成阵列M1’的尺寸为3×8,其可用来产生飞时深度影像。同样地,阵列M1’所产生一般影像的分辨率大于阵列M2’所产生飞时深度影像的分辨率,亦符合本申请的要求而属于本申请的范畴。
另外,飞时测距像素单元中的像素电路可视实际需要而排列,而不限于如图1或图4般排列于同一行(或同一列)中。举例来说,请参考图7及图8,图7及图8分别为本申请实施例一影像传感系统70及80的示意图。影像传感系统70、80分别与影像传感系统10、40相似,故相同元件沿用相同符号。于图1,飞时测距像素单元11中的像素电路PX1/PX2排列于同一行,而于图7中,飞时测距像素单元71中像素电路PX1、PX2交错排列,亦符合本申请的要求而属于本申请的范畴。另外,于图4中,像素电路PX1、PX2、PX3于飞时 测距像素单元40排列成3×1的阵列,而于图8中,飞时测距像素单元81中的像素电路PX1、PX2、PX3以相互垂直的形式排列,亦符合本申请的要求而属于本申请的范畴。
另外,请参考图9及图10,图9绘示当影像传感系统10/40操作于不可见光(如红外线)灰阶影像撷取模式时,发光信号LD、传输信号TX1、TX2、TX3的波形图,图10绘示当影像传感系统10/40操作于一般相机模式时,重置信号Rst、发光信号LD、传输信号TX1~TX3、防晕染信号TX1’~TX3’的波形图。同样地,图9中的反射信号RX对应发光单元12所发射的入射光,如图9所示,传输闸TG1、TG2、TG3的导通区间T1、T2、T3需涵盖反射光抵达的时间。
另外,于一般相机模式中,发光单元12不发光,重置晶体管RT1、RT2、RT2经重置过后,感光组件PD1、PD2、PD3开始曝光,防晕染晶体管AB1、AB2、AB3断路。曝光一段时间之后,传输闸TG1、TG2、TG3导通以汲取储存于感光组件PD1、PD2、PD3的光电子。于读与时间t RD之后,读取晶体管RD1、RD2、RD3导通,此时防晕染晶体管AB1、AB2、AB3亦导通。
另外,本申请的影像传感系统可设置于如手机或平板计算机的电子装置中。请参考图6,图6为本申请实施例电子装置6的示意图。电子装置6包括影像传感系统60,影像传感系统60可通过影像传感系统10或影像传感系统40来实现。
综上所述,本申请可同时满足一般影像的高分辨率需求及飞时深度影像的感光灵敏度需求,而仅利用单一组感光像素阵列来同时产生一般影像及飞时深度影像。相较于现有技术,本申请具有节省生产成本以及有效利用像素阵列的优点。
以上所述仅为本申请的部分实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (8)

  1. 一种影像传感系统,其特征在于,包括:
    多个飞时测距像素单元,每一飞时测距像素单元包括:
    第一像素电路,包括第一感光元件及第一传输闸,所述第一传输闸耦接于所述第一感光元件,所述第一传输闸接收第一传输信号而于第一导通时间导通,所述第一像素电路于所述第一导通时间输出第一像素输出信号;以及
    第二像素电路,包括第二感光元件及第二传输闸,所述第二传输闸耦接于所述第二感光元件,所述第二传输闸接收第二传输信号而于第二导通时间导通,所述第二像素电路于所述第二导通时间输出第二像素输出信号;
    控制单元,耦接于所述每一飞时测距像素单元的所述第一传输闸及所述第二传输闸,用来产生所述第一传输信号至所述第一传输闸及所述第二传输信号至所述第二传输闸;
    深度计算单元,耦接于所述多个飞时测距像素单元,用来根据所述第一像素输出信号及所述第二像素输出信号,计算对应于所述每一飞时测距像素单元的飞时深度值;以及
    发光单元,用来于所述第一导通时间中发光。
  2. 如权利要求1所述的影像传感系统,其特征在于,所述多个飞时测距像素单元中多个第一像素电路以及多个第二像素电路排列成第一阵列,所述多个 飞时测距像素单元排列成第二阵列,所述第一阵列产生第一影像,所述第二阵列产生第二影像,所述第一影像的第一分辨率大于所述第二影像的第二分辨率。
  3. 如权利要求1所述的影像传感系统,其特征在于,所述第一像素电路包括:
    第一输出晶体管,耦接于所述第一传输闸;以及
    第一读取晶体管,耦接于所述第一输出晶体管,用来输出所述第一像素输出信号;
    所述第二像素电路包括:
    第二输出晶体管,耦接于所述第二传输闸;以及
    第二读取晶体管,耦接于所述第二输出晶体管,用来输出所述第二像素输出信号。
  4. 如权利要求1所述的影像传感系统,其特征在于,所述第一导通时间所所述第二导通时间相隔一时间间隔,所述深度计算单元计算所述飞时深度值为
    D ToF=(Pout2)/(Pout1+Pout2)*(c*T);
    其中,D ToF代表所述飞时深度值,Pout1代表所述第一像素输出信号,Pout2代表所述第二像素输出信号,c代表光速,T代表所述第一导通时间或所述第二导通时间的时间长度。
  5. 如权利要求1所述的影像传感系统,其特征在于,每一飞时测距像素单元还包括:
    第三像素电路,包括第三感光元件及第三传输闸,所述第三传输闸耦接于所述第三感光元件,所述第三传输闸接收第三传输信号而于所述发光单元不发光的第三导通时间导通,所述第三像素电路于所述第三导通时间输出第三像素输出信号;
    其中,所述控制单元产生所述第三传输信号至所述第三传输闸;
    其中,所述深度计算单元根据所述第一像素输出信号、所述第二像素输出信号及所述第三像素输出信号,计算对应于所述飞时深度值。
  6. 如权利要求5所述的影像传感系统,其特征在于,所述第三像素电路包括:
    第三输出晶体管,耦接于所述第三传输闸;以及
    第三读取晶体管,耦接于所述第三输出晶体管,用来输出所述第三像素输出信号。
  7. 如权利要求5所述的影像传感系统,其特征在于,所述第一导通时间所所述第二导通时间相隔一时间间隔,所述深度计算单元计算所述飞时深度值为
    D ToF=(Pout2-Pout3)/(Pout1+Pout2–2*Pout3)*(c*T);
    其中,D ToF代表所述飞时深度值,Pout1代表所述第一像素输出信号,Pout2代表所述第二像素输出信号,Pout3代表所述第三像素输出信号,c代表光速,T代表所述第一导通时间或所述第二导通时间的时间长度。
  8. 一种电子装置,其特征在于,包括权利要求1-7中任意一项所述的影像传感系统。
PCT/CN2018/082776 2018-04-12 2018-04-12 影像传感系统及电子装置 WO2019196049A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/082776 WO2019196049A1 (zh) 2018-04-12 2018-04-12 影像传感系统及电子装置
CN201880000680.3A CN110603457A (zh) 2018-04-12 2018-04-12 影像传感系统及电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/082776 WO2019196049A1 (zh) 2018-04-12 2018-04-12 影像传感系统及电子装置

Publications (1)

Publication Number Publication Date
WO2019196049A1 true WO2019196049A1 (zh) 2019-10-17

Family

ID=68162827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082776 WO2019196049A1 (zh) 2018-04-12 2018-04-12 影像传感系统及电子装置

Country Status (2)

Country Link
CN (1) CN110603457A (zh)
WO (1) WO2019196049A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103297714A (zh) * 2012-03-01 2013-09-11 全视科技有限公司 用于飞行时间传感器的电路配置和方法
CN104067607A (zh) * 2012-01-13 2014-09-24 全视科技有限公司 共享飞行时间像素
CN105100780A (zh) * 2014-05-19 2015-11-25 洛克威尔自动控制技术股份有限公司 使用选择的像素阵列分析的光学安全监视
CN106125086A (zh) * 2015-05-04 2016-11-16 英飞凌科技股份有限公司 用于使用单次曝光的渡越时间测量的系统和方法
CN106576146A (zh) * 2014-08-29 2017-04-19 松下知识产权经营株式会社 摄像装置
JP2017198477A (ja) * 2016-04-25 2017-11-02 スタンレー電気株式会社 距離画像生成装置
CN107452760A (zh) * 2016-05-13 2017-12-08 英飞凌科技股份有限公司 光学传感器设备和用于操作飞行时间传感器的方法
WO2018042801A1 (ja) * 2016-09-01 2018-03-08 ソニーセミコンダクタソリューションズ株式会社 撮像装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121116A (ja) * 2005-10-28 2007-05-17 Sharp Corp 光学式測距装置
KR101467509B1 (ko) * 2008-07-25 2014-12-01 삼성전자주식회사 이미지 센서 및 이미지 센서 동작 방법
US9076706B2 (en) * 2011-01-07 2015-07-07 Samsung Electronics Co., Ltd. Image sensor based on depth pixel structure
KR101909630B1 (ko) * 2012-10-30 2018-10-18 삼성전자주식회사 동작 인식 방법 및 동작 인식 장치
KR102007277B1 (ko) * 2013-03-11 2019-08-05 삼성전자주식회사 3차원 이미지 센서의 거리 픽셀 및 이를 포함하는 3차원 이미지 센서
US20160290790A1 (en) * 2015-03-31 2016-10-06 Google Inc. Method and apparatus for increasing the frame rate of a time of flight measurement
TW201800901A (zh) * 2016-06-17 2018-01-01 原相科技股份有限公司 偵測動作資訊的方法及感光陣列
WO2019033232A1 (zh) * 2017-08-14 2019-02-21 深圳市汇顶科技股份有限公司 三维影像系统及电子装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104067607A (zh) * 2012-01-13 2014-09-24 全视科技有限公司 共享飞行时间像素
CN103297714A (zh) * 2012-03-01 2013-09-11 全视科技有限公司 用于飞行时间传感器的电路配置和方法
CN105100780A (zh) * 2014-05-19 2015-11-25 洛克威尔自动控制技术股份有限公司 使用选择的像素阵列分析的光学安全监视
CN106576146A (zh) * 2014-08-29 2017-04-19 松下知识产权经营株式会社 摄像装置
CN106125086A (zh) * 2015-05-04 2016-11-16 英飞凌科技股份有限公司 用于使用单次曝光的渡越时间测量的系统和方法
JP2017198477A (ja) * 2016-04-25 2017-11-02 スタンレー電気株式会社 距離画像生成装置
CN107452760A (zh) * 2016-05-13 2017-12-08 英飞凌科技股份有限公司 光学传感器设备和用于操作飞行时间传感器的方法
WO2018042801A1 (ja) * 2016-09-01 2018-03-08 ソニーセミコンダクタソリューションズ株式会社 撮像装置

Also Published As

Publication number Publication date
CN110603457A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
TWI524762B (zh) 共用飛行時間像素
US10594965B2 (en) Avalanche photodiode image sensors
KR101715141B1 (ko) 깊이 센서의 픽셀 및 상기 픽셀을 포함하는 이미지 센서
CN110906864B (zh) 三维影像系统及电子装置
US8901498B2 (en) Unit pixels, depth sensors and three-dimensional image sensors including the same
CN102891969A (zh) 图像感测设备和操作其的方法
KR20140047271A (ko) 깊이 센서, 이의 이미지 캡쳐 방법, 및 상기 깊이 센서를 포함하는 이미지 처리 시스템
KR20130111130A (ko) 거리 측정 장치와 이의 동작 방법
WO2021016781A1 (zh) 三维图像传感器以及相关三维图像传感模组及手持装置
CN207706284U (zh) Tof电路模块及tof模组
KR20200143559A (ko) 하이브리드 픽셀을 포함하는 깊이 센서
TW202127635A (zh) 飛行時間感測系統及其中使用的圖像感測器
WO2020237765A1 (zh) 激光雷达的接收机装置及激光雷达
CN113099072B (zh) 图像传感电路以及图像深度传感系统
WO2019196049A1 (zh) 影像传感系统及电子装置
TW202122823A (zh) 飛行時間感測系統和其中使用的圖像感測器
US10645319B2 (en) Pixel circuit and image sensing system
WO2019200513A1 (zh) 影像传感系统及电子装置
US11089245B2 (en) Image sensor circuit and image depth sensor system
US20240144506A1 (en) Information processing device
CN111757031B (zh) 成像设备和图像传感器
Shi et al. A Spike-Based Background Light Suppression Time-of-Flight Pixel for Outdoor Applications
TW202005359A (zh) 影像感測系統及其多功能影像感測器
JP2022158045A (ja) 基板、光電変換装置および機器
CN114706057A (zh) 发射模组、tof装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914020

Country of ref document: EP

Kind code of ref document: A1