WO2019200513A1 - 影像传感系统及电子装置 - Google Patents

影像传感系统及电子装置 Download PDF

Info

Publication number
WO2019200513A1
WO2019200513A1 PCT/CN2018/083211 CN2018083211W WO2019200513A1 WO 2019200513 A1 WO2019200513 A1 WO 2019200513A1 CN 2018083211 W CN2018083211 W CN 2018083211W WO 2019200513 A1 WO2019200513 A1 WO 2019200513A1
Authority
WO
WIPO (PCT)
Prior art keywords
time interval
sensing system
image sensing
time
collected signal
Prior art date
Application number
PCT/CN2018/083211
Other languages
English (en)
French (fr)
Inventor
杨孟达
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2018/083211 priority Critical patent/WO2019200513A1/zh
Priority to EP18914940.4A priority patent/EP3605016B1/en
Priority to CN201880000667.8A priority patent/CN110612430B/zh
Publication of WO2019200513A1 publication Critical patent/WO2019200513A1/zh
Priority to US16/669,147 priority patent/US11509847B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/705Pixels for depth measurement, e.g. RGBZ
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders

Definitions

  • the present application relates to an image sensing system and an electronic device, and more particularly to an image sensing system and an electronic device that can simultaneously operate in an optical ranging mode and a general camera mode.
  • the structured light three-dimensional measurement method as a non-contact three-dimensional information acquisition technology, has been widely used due to its advantages of simple implementation, high speed and high precision.
  • the incident light emitted by the image sensing system is usually a short pulsed light.
  • the collecting gate receives a fixed voltage.
  • the full-well capacity (Full Well Capacity) of the photosensitive element in the existing pixel circuit is low, which is disadvantageous for long-time exposure, and is not suitable for operation in the general camera mode. Therefore, in the prior art, an electronic device requires a set of pixel arrays operating in a general camera mode and another set of pixel arrays operating in an optical ranging mode, resulting in an increase in production cost.
  • an embodiment of the present application provides an image sensing system including a first pixel circuit including a photosensitive element; and a first transmission gate controlled by the first transmission signal and guided in the first conduction time interval And a collecting gate coupled between the photosensitive element and the transmission gate for receiving a collected signal; and a control unit coupled to the collecting gate, wherein the collecting signal is used to generate the collected signal A collection grid, wherein the collected signal has a non-fixed voltage value.
  • the collected signal generated by the control unit is a first high potential
  • the control unit in the first on-time interval, the control unit generates a location
  • the collected signal transitions from the first high potential to a low potential.
  • the first transmission signal has a first rising edge at a first rising edge time
  • the collected signal is converted from the first high potential to the low potential at a first transition time, the first rising
  • the time difference between the time and the first transition time is greater than the round trip time of the light passing through the image sensing system and the target object.
  • the first pixel circuit further includes a reset transistor that is turned on during the reset time interval by the reset signal, after the first reset time interval and at the first
  • the collected signal generated by the control unit is the first high potential before the on-time interval.
  • the collected signal generated by the control unit is converted from the low potential to the first high potential.
  • the first transmission signal has a first falling edge at a first falling edge time
  • the collected signal is converted from the low potential to the first high potential at a second transition time, the second turn The state time is after the first falling edge time.
  • the first pixel circuit further includes a second transmission gate controlled by the second transmission signal to be turned on in the second conduction time interval; wherein, before the second conduction time interval, the control unit The generated signal generated is a first high potential; wherein, in the second conduction time interval, the collected signal generated by the control unit is changed from the first high potential to a low potential.
  • the collected signal generated by the control unit is converted from the low potential to the first high potential.
  • the first pixel circuit outputs a first pixel output signal in a read time interval, in the read time interval, the collected signal generated by the control unit is a second high potential, and the second The high potential is greater than the first high potential.
  • An embodiment of the present application further provides an electronic device including an image sensing system, the image sensing system including a first pixel circuit including a photosensitive element; and a first transmission gate controlled by the first transmission signal An on-time interval is turned on; and a collection gate is coupled between the photosensitive element and the transfer gate for receiving a collected signal; and a control unit coupled to the collection gate, the The collecting signal is to the collection grid, wherein the collected signal has a non-fixed voltage value.
  • the present application utilizes the timing of collecting signals to expand the full well capacity of the photosensitive element. Therefore, as the exposure time is longer, the photosensitive element can store more photoelectrons and improve signal quality. Compared with the prior art, the present application only utilizes a single set of pixel arrays, that is, it can operate in a general camera mode and an optical ranging mode, and has the advantage of reducing production cost.
  • FIG. 1 is a schematic diagram of an image sensing system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a pixel circuit according to an embodiment of the present application.
  • FIG. 3 is a schematic cross-sectional view of a collecting gate electrode according to an embodiment of the present application.
  • FIG. 5 is a waveform diagram of multiple signals according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an image sensing system according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a pixel circuit according to an embodiment of the present application.
  • FIG. 8 is a waveform diagram of multiple signals according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an image sensing system 10 according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a pixel circuit 120 according to an embodiment of the present application.
  • the image sensing system 10 can perform (at the same time) optical ranging and generate general images, wherein the optical ranging can be measured by using structured light and triangulation, or by using the time-of-flight ranging method, and the general image can refer to The color or black-and-white image produced by a general camera, that is, the image sensing system 10 can operate in a light ranging mode or in a general camera mode.
  • the image sensing system 10 includes a light emitting unit 11, a pixel array 12, and a control unit 14.
  • the light-emitting unit 11 is used for optical ranging, and may be a Light-Emitting Diode (LED), such as an Infrared Ray (IR) light-emitting diode.
  • LED Light-Emitting Diode
  • IR Infrared Ray
  • the light-emitting unit 11 receives the light-emitting signal LD1 and emits incident light.
  • the pixel array 12 includes a plurality of pixel circuits 120 arranged in an array.
  • the pixel circuit 120 includes a photosensitive element PD, a transfer gate TG1, a collection gate CG, an output transistor DV1, a read transistor RQ1, and a reset.
  • Transistor RT1 and anti-Blooming transistor AB Transistor RT1 and anti-Blooming transistor AB.
  • the photosensitive element PD is used to receive illumination (including reflected light or background light corresponding to incident light) and to generate photoelectrons, and the reset transistor RT1 receives (or is controlled by) the reset signal Rst and is turned on during the reset time interval TR.
  • the transmission gate TG1 is controlled by the transmission signal TX1 and turned on during the on-time interval TC1 to extract the photoelectrons stored in the photosensitive element PD to the node FD1.
  • the gate of the output transistor DV1 is coupled to the node FD1, and the read transistor RQ1 is coupled to the output transistor DV1.
  • the read transistor RQ1 receives the read signal RD and outputs the pixel output signal Pout1 in the read time interval TRD.
  • the collecting gate CG is coupled between the photosensitive element PD and the transfer gate TG1, the collecting gate CG receives a collected signal CX, and the collecting gate CG and the collecting signal CX can form an electric field or potential energy in the photosensitive element PD to store or clear the photosensitive element.
  • the anti-smudge transistor AB is used to extract the photoelectron generated by the photosensitive element PD by receiving the background light, so as not to affect the normal operation of the circuit, and the anti-smudge transistor AB receives the signal TX4.
  • the control unit 14 is coupled to the collection gate CG of the pixel circuit 120 for generating the collected signal CX having a non-fixed voltage value to the collection gate CG.
  • FIG. 3 is a cross-sectional view of the photosensitive element PD, the transfer gate TG1 and the collection gate CG, and a schematic diagram of forming electric field/potential energy
  • FIG. 4 illustrates image sensing.
  • the transfer gate TG1 is a complete Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET), and the collector gate CG is disposed on the photosensitive element PD and adjacent to the transmission.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the electrode of the gate TG1 (instead of the complete field effect transistor) can be considered to be coupled between the photosensitive element PD and the transfer gate TG1.
  • the curve cv1 in FIG. 3 is shown between the reset time interval TR and the rising edge time t re1 of the transmission signal TX1, and the potential formed by the pixel circuit 120 (the photosensitive element PD, the transmission gate TG1, and the collection gate CG)
  • the curve cv2 is plotted between the rising edge time t re1 and the transition time t trs1 of the collected signal CX, and the potential energy formed in the pixel circuit 120;
  • the curve cv3 is plotted on the transition time t trs1 of the collected signal CX and The potential energy formed in the pixel circuit 120 between the falling edge time t fe1 of the transmission signal TX1;
  • the curve cv4 is shown between the falling edge time t fe1 and the transition time t trs2 of the collected signal CX,
  • the low potential V L can be 0.1 volts (Volt, V) and the high potential V H1 can be approximately 1.8V.
  • collection signal CX at time t trs1 transited from a high potential V H1 is transited to a low potential V L
  • collection signal CX at time t trs2 transited from the low potential V L transient high potential V H1 additionally,
  • the transmission signal TX1 has a rising edge (Rising Edge) at the rising edge time t re1 and a falling edge (falling edge) at the falling edge time t fe1 .
  • the transition time t trs1 of the collected signal CX is located in the on-time interval TC1, that is, the transition time t trs1 is between the rising edge time t re1 and the falling edge time t fe1 , and the transition time t trs2 is located at the falling edge time t fe1 Thereafter, the transition time t trs2 is later than the falling edge time t fe1 .
  • the potential in the pixel circuit 120 can be formed as a large potential in the transfer gate TG1 and the collection gate CG as shown in FIG. 3, FIG. 3c (curve cv1). Barrier, photoelectrons are not easily transferred to node FD1, but more photoelectrons can be stored.
  • the transmission signal TX1 is at a high potential, and the potential in the pixel circuit 120 can be as shown in the sub-image 3d (curve cv2). At this point, some photoelectron transfer (taken) is started to the node FD1.
  • the time due to the transmission signal TX1 is high potential and the low potential CX collection signal V L, stored in the optoelectronic photosensitive element PD may be more efficiently and more transferred to the node FD1.
  • the potential in the pixel circuit 120 can be as shown in sub-figure 3f (curve cv4).
  • the collected signal CX is again converted to the high potential V H1 , and the potential in the pixel circuit 120 can be restored to the original state, that is, as shown in the sub-image 3c (curve cv1) in FIG. 3, and the signal is transmitted at this time.
  • TX1 is low and again forms a large potential barrier.
  • the falling edge time of the illuminating signal LD1 has a time difference DT between the falling edge time of the collected signal CX (ie, the transition time t trs1 ).
  • the time difference DT is greater than the last incident light emitted by the light emitting unit 11 arrival sensing system 10 before passing through the image of the image sensor system 10 and the target object's round-trip time (Round Trip time), to ensure that the reflected light may be collected at a low potential V L becomes a signal CX transient (i.e., transient time t trs1) .
  • FIG. 5 is a waveform diagram of the read signal RD, the illuminating signal LD1, the reset signal Rst, the transmission signal TX1, the signal TX4, and the collected signal CX when the image sensing system is in the normal camera mode. Similar to the timing of the optical ranging mode illustrated in FIG. 4, the collected signal CX in FIG. 5 is at a high potential V H1 between the reset time interval TR and the on-time interval TC1 (ie, during the exposure time). And the transition time t trs1 of the collected signal CX in the on-time interval TC1 is changed from the high potential V H1 to the low potential V L .
  • the read transistor RQ1 when the read transistor RQ1 is turned on, that is, when the read signal RD is high, the voltage of the collected signal CX is pulled up to another high.
  • the potential of the high potential V H2 formed at the collection gate CG is higher, and a potential potential barrier is formed between the transfer gate TG1 and the collection gate CG, and the photoelectron is formed. It is not easy to transfer to node FD1 to avoid affecting the output signal.
  • the signal TX4 for controlling the anti-smudge transistor AB is pulled up to a high potential in the easy-to-read time interval TRD, so that the photoelectrons of the photosensitive element PD are extracted in the reading time interval TRD, so as not to affect the normal operation of the circuit.
  • the voltage of the collected signal CX can be maintained at a low potential V L , as shown by the dotted line of the collected signal CX in the read time interval TRD in FIG. 5 . It is within the scope of this application to satisfy the requirements of this application.
  • the incident light emitted by the light emitting unit is a short pulsed light, and in order to smoothly capture the photoelectron corresponding to the transient pulsed light, the collected signal of the collecting gate in the existing pixel circuit is usually a fixed voltage (for example, 0.1 volt). .
  • the full-well capacity (Full Well Capacity) of the photosensitive element in the existing pixel circuit is low, which is disadvantageous for long-time exposure, that is, when existing pixels for optical ranging are used.
  • the photoelectrons of the photosensitive element which is currently used for optical ranging
  • will quickly overflow which affects the signal quality of the general image.
  • the circuit is not suitable for operation in a general camera mode, such that existing electronic devices require a set of pixel arrays operating in a general camera mode and another set of pixel arrays operating in an optical ranging mode, resulting in increased production costs.
  • the present application provides an appropriate timing (Timing) for collecting the signal CX such that when the image sensing system 10 operates in the normal camera mode, a large potential potential barrier is formed between the collection gate CG and the transmission gate TG1.
  • Timing timing for collecting the signal CX
  • the full well capacity of the photosensitive element PD is enlarged, and as the exposure time is longer, the photosensor PD can store more photoelectrons, thereby improving the signal quality in the general camera mode.
  • the present application utilizes a single set of pixel arrays 12, that is, can operate in a general camera mode as well as an optical ranging mode, and has the advantage of reducing production cost.
  • FIG. 6 is a schematic diagram of an image sensing system 60 according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a pixel circuit 620 according to an embodiment of the present application.
  • the image sensing system 60 is similar to the image sensing system 10.
  • the image sensing system 60 includes two light emitting units 61a, 61b and a pixel array 62.
  • the light emitting units 61a, 61b receive the light emitting signals, respectively.
  • LD1, LD2 emit incident light at different times.
  • the pixel array 62 includes a plurality of pixel circuits 620 arranged in an array.
  • the pixel circuit 620 further includes transmission gates TG2, TG3, output transistors DV2, DV3, and read, as compared with the pixel circuit 120 of FIG. Transistors RQ2, RQ3 and reset transistors RT2, RT3.
  • the read transistors RQ2 and RQ3 receive the read signal RD, and output the pixel output signals Pout2 and Pout3 in the read time interval TRD, respectively, and the reset transistors RT2 and RT3 receive the reset signal Rst and are turned on in the reset time interval TR.
  • the transmission gates TG2, TG3 receive the transmission signals TX2, TX3, respectively.
  • FIG. 8 and FIG. 9 are timing diagrams of the image sensing system 60 operating in the optical ranging mode and the general camera mode, respectively.
  • the transmission gates TG1, TG2 are turned on in the on-period sections TC1, TC2, respectively, and the light-emitting units 61a, 61b emit light in the on-period sections TC1, TC2, respectively.
  • the photosensitive elements PD respectively receive the reflected light corresponding to the light-emitting units 61a, 61b.
  • the transmission gate TG3 is turned on in the on-period TC3 in which the light-emitting units 61a and 61b are not illuminated.
  • the photosensitive element PD receives the background light.
  • the signal TX4 used to control the anti-smudge transistor AB is at a low potential during the on-time interval TC1, TC2, TC3, and is at a high potential for most of the rest.
  • the collected signal CX transitions from the high potential V H1 to the low potential V L in the on-time intervals TC1, TC2, TC3.
  • the conducting time interval TC1, TC2, TC3 end after a period of time, and then by collecting signals CX low potential V L transient high potential V H1.
  • the collected signal CX in FIG. 9 is at a high potential V H1 between the reset time interval TR and the on-time interval TC1 (ie, in the exposure time), and the collected signal CX is guided.
  • the transition time t trs1 in the pass time interval TC1 is changed from the high potential V H1 to the low potential V L .
  • the image sensing system of the present application can be disposed in an electronic device such as a mobile phone or a tablet computer.
  • FIG. 10 is a schematic diagram of an electronic device A according to an embodiment of the present application.
  • the electronic device A includes an image sensing system A0, and the image sensing system A0 can be implemented by the image sensing system 10 or the image sensing system 60.
  • the present application utilizes the timing of collecting signals to expand the full-well capacity of the photosensitive element. Therefore, as the exposure time is longer, the photosensitive element can store more photoelectrons and improve signal quality.
  • the present application only utilizes a single set of pixel arrays, that is, it can operate in a general camera mode and an optical ranging mode, and has the advantage of reducing production cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本申请提供了一种影像传感系统(10),包括第一像素电路(120),所述第一像素电路包括感光元件(PD);第一传输闸(TG1),受控于第一传输信号而于第一导通时间区间导通;以及收集栅(CG),耦接于所述感光元件与所述传输闸之间,用来接收收集信号(CX);以及控制单元(14),用来产生所述收集信号至所述收集栅,其中所述收集信号具有非固定的电压值。

Description

影像传感系统及电子装置 技术领域
本申请涉及一种影像传感系统及电子装置,尤其涉及一种可同时操作于光学测距模式以及一般相机模式的影像传感系统及电子装置。
背景技术
随着科学与技术的飞速发展,物体三维信息的获取在很多应用领域都有着广泛的应用前景,如生产自动化、人机交互、医学诊断、逆向工程、数字化建模等。其中,结构光三维测量法作为一种非接触式的三维信息获取技术,因其实现简单、速度快和精度高等优点得到了广泛应用。
当影像传感系统进行光学测距时,影像传感系统所发射的入射光通常为短暂的脉冲光,现有影像传感系统中的像素电路中收集栅的接收固定的电压。然而,在收集电压为固定的情况下,现有像素电路中感光元件的满井容量(Full Well Capacity)较低,不利于长时间曝光,不适合操作于一般相机模式。因此,现有技术中,电子装置需要一组操作于一般相机模式的像素阵列以及另一组操作于光学测距模式的像素阵列,而导致生产成本增加。
因此,现有技术实有改进的必要。
发明内容
因此,本申请部分实施例的目的即在于提供一种可同时操作于光学测距模式以及一般相机模式的影像传感系统及电子装置,以改善现有技术的缺点。
为了解决上述技术问题,本申请实施例提供了一种影像传感系统,包括第一像素电路,包括感光元件;第一传输闸,受控于第一传输信号而于第一导通时间区间导通;以及收集栅,耦接于所述感光元件与所述传输闸之间,用来接收收集信号;以及控制单元,耦接于所述收集栅,所述用来产生所述收集信号至所述收集栅,其中所述收集信号具有非固定的电压值。
例如,于所述第一导通时间区间之前,所述控制单元所产生的所述收集信号为第一高电位,并于所述第一导通时间区间中,所述控制单元所产生的所述收集信号由所述第一高电位转态成为低电位。
例如,所述第一传输信号于第一上升沿时间具有第一上升沿,所述收集信号于第一转态时间由所述第一高电位转态成为所述低电位,所述第一上升沿时间与所述第一转态时间的时间差大于光行经所述影像传感系统与目标物件的来回时间。
例如,所述第一像素电路还包括重置晶体管,所述重置晶体管受控于重置信号而于重置时间区间导通,于所述第一重置时间区间之后且于所述第一导通 时间区间之前,所述控制单元所产生的所述收集信号为所述第一高电位。
例如,于所述第一导通时间区间之后,所述控制单元所产生的所述收集信号由所述低电位转态成为所述第一高电位。
例如,所述第一传输信号于第一下降沿时间具有第一下降沿,所述收集信号于第二转态时间由所述低电位转态成为所述第一高电位,所述第二转态时间于所述第一下降沿时间之后。
例如,所述第一像素电路还包括第二传输闸,受控于第二传输信号而于第二导通时间区间导通;其中,于所述第二导通时间区间之前,所述控制单元所产生的所述收集信号为第一高电位;其中,于所述第二导通时间区间中,所述控制单元所产生的所述收集信号由所述第一高电位转态成为低电位。
例如,于所述第二导通时间区间之后,所述控制单元所产生的所述收集信号由所述低电位转态成为所述第一高电位。
例如,所述第一像素电路于读取时间区间输出第一像素输出信号,于所述读取时间区间中,所述控制单元所产生的所述收集信号为第二高电位,所述第二高电位大于所述第一高电位。
本申请实施例还提供了一种电子装置,其包括影像传感系统,所述影像传 感系统包括第一像素电路,包括感光元件;第一传输闸,受控于第一传输信号而于第一导通时间区间导通;以及收集栅,耦接于所述感光元件与所述传输闸之间,用来接收收集信号;以及控制单元,耦接于所述收集栅,所述用来产生所述收集信号至所述收集栅,其中所述收集信号具有非固定的电压值。
本申请利用收集信号的时序,扩大感光元件的满井容量,因此,随着曝光时间越长,感光元件可储存越多的光电子而增进信号质量。相较于现有技术,本申请仅利用单一套像素阵列,即可操作于一般相机模式以及光学测距模式,具有降低生产成本的优点。
附图说明
图1为本申请实施例一影像传感系统的示意图;
图2为本申请实施例一像素电路的示意图;
图3为本申请实施例一收集栅电极的剖面示意图;
图4为本申请实施例多个信号的波形图;
图5为本申请实施例多个信号的波形图;
图6为本申请实施例一影像传感系统的示意图;
图7为本申请实施例一像素电路的示意图;
图8为本申请实施例多个信号的波形图;
图9为本申请实施例多个信号的波形图;
图10为本申请实施例一电子装置的示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
请一并参考图1及图2,图1为本申请实施例影像传感系统10的示意图,图2为本申请实施例像素电路120的示意图。影像传感系统10可(同时)进行光学测距以及产生一般影像,其中光学测距可利用结构光以及三角测量法进行测距,或是利用飞时测距法进行测距,一般影像可指由一般相机所产生彩色或黑白的影像,即影像传感系统10可操作于光测距模式或是操作于一般相机模式。如图1所示,影像传感系统10包括发光单元11、像素阵列12以及控制单元14。发光单元11为进行光学测距时使用,其可为发光二极管(Light-Emitting Diode,LED),如红外线(Infrared Ray,IR)发光二极管,发光单元11接收发光信号LD1而发射入射光。
像素阵列12包括多个像素电路120排列成一阵列,如图2所示,像素电路120包括感光元件PD、传输闸TG1、收集栅(Collection Gate)CG、输出晶体管DV1、读取晶体管RQ1、重置晶体管RT1以及防晕染(Anti-Blooming)晶体管AB。感光元件PD用来接收光照(包含对应于入射光的反射光或背景光)并产生光电子,重置晶体管RT1接收(或受控于)重置信号Rst而于重置时间区间TR导通。传输闸TG1受控于传输信号TX1而于导通时间区间TC1导通,以将感光元件PD所储存的光电子汲取至节点FD1。输出晶体管DV1的栅极 (Gate)耦接于节点FD1,读取晶体管RQ1耦接于输出晶体管DV1。读取晶体管RQ1接收读取信号RD,并于读取时间区间TRD输出像素输出信号Pout1。收集栅CG耦接于感光元件PD与传输闸TG1之间,收集栅CG接收一收集信号CX,收集栅CG及收集信号CX可于感光元件PD形成电场或电位能,以储存或清除位于感光元件PD的光电子,以增进信号质量。防晕染晶体管AB用来将感光元件PD因接收背景光而产生的光电子汲取出来,以免影响电路的正常运作,防晕染晶体管AB接收信号TX4。控制单元14耦接于像素电路120的收集栅CG,用来产生具有非固定电压值的收集信号CX至收集栅CG。
详细来说,请一并参考图3及图4,图3绘示感光元件PD、传输闸TG1以及收集栅CG的剖面图及其形成电场/电位能的示意图,图4绘示当影像传感系统10操作于光学测距模式时,发光信号LD1、重置信号Rst、传输信号TX1、信号TX4以及收集信号CX的波形图。如图3所示,传输闸TG1为一颗完整的金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET),而收集栅CG为设置于感光元件PD上且邻近于传输闸TG1的电极(而非完整的场效应管),其可视为耦接于感光元件PD与传输闸TG1之间。其中,图3中的曲线cv1绘示于重置时间区间TR与传输信号TX1的上升沿时间t re1之间,像素电路120中(感光组件PD、传输闸TG1以及收集栅CG)所形成的电位能;曲线cv2绘示于上升沿时间t re1与收集信号CX的转态时间t trs1之间,像素电路120中所形成的电位能;曲线cv3绘示于收集信号CX的转态时间t trs1与传输信号TX1的下降沿时间t fe1之间,像素电路120中所形成的电位能;曲线cv4绘示于下降沿时间t fe1与收集信号CX的转态时间t trs2的之间,像 素电路120中所形成的电位能。另外,图3中的子图3c~3f分开绘示曲线cv1~cv4,图3中的子图3b合并绘示电位能/曲线cv1~cv4,以表示其之间的相对关系。
如图4所示,于像素电路120开始运作前,重置晶体管RT1于重置时间区间TR导通,控制单元14所产生的收集信号CX于重置时间区间TR由低电位V L转态成为高电位V H1。于重置时间区间TR后,控制单元14所产生的收集信号CX维持在高电位V H1,直到传输闸TG1的导通时间区间TC1。于导通时间区间TC1中,控制单元14所产生的收集信号CX由高电位V H1转态成为低电位V L。当导通时间区间TC1结束一段时间后,控制单元14所产生的收集信号CX再由低电位V L转态成为高电位V H1。于一实施例中,低电位V L可为0.1伏特(Volt,V),高电位V H1可大致为1.8V。更进一步地,收集信号CX于转态时间t trs1由高电位V H1转态成为低电位V L,收集信号CX于转态时间t trs2由低电位V L转态成为高电位V H1,另外,传输信号TX1于上升沿时间t re1具有上升沿(Rising Edge)并于下降沿时间t fe1具有下降沿(Falling Edge)。收集信号CX的转态时间t trs1位于导通时间区间TC1中,即转态时间t trs1位于上升沿时间t re1与下降沿时间t fe1之间,转态时间t trs2-位于下降沿时间t fe1之后,即转态时间t trs2晚于下降沿时间t fe1
于重置时间区间TR与导通时间区间TC1之间,像素电路120中的电位能如图3中子图3c(曲线cv1)所示,于传输闸TG1及收集栅CG可形成较大的电位能障碍(Barrier),光电子不容易转移到节点FD1,而可储存较多的光电 子。于导通时间区间TC1的初期,即于上升沿时间t re1与转态时间t trs1之间,传输信号TX1为高电位,像素电路120中的电位能如子图3d(曲线cv2)所示,此时开始有一些光电子转移(被汲取)到节点FD1。于导通时间区间TC1的后期,即于转态时间t trs1与下降沿时间t fe2之间,收集信号CX转态为低电位V L,像素电路120中的电位能如子图3e(曲线cv3)所示,此时因传输信号TX1为高电位且收集信号CX为低电位V L,储存于感光元件PD的光电子可被更多且更有效率地转移至节点FD1。下降沿时间t fe2与转态时间t trs2之间,像素电路120中的电位能如子图3f(曲线cv4)所示。转态时间t trs2之后,收集信号CX再度转态为高电位V H1,像素电路120中的电位能回复成为原始状态,即为图3中子图3c(曲线cv1)所示,此时传输信号TX1为低电位,再度形成大的电位能障碍。
较佳地,发光信号LD1的下降沿时间与收集信号CX的的下降沿时间(即转态时间t trs1)之间具有时间差DT,较佳地,时间差DT大于发光单元11所发射最后的入射光行经影像传感系统10与目标物件的来回时间(Round Trip Time),即可保证反射光可在收集信号CX转态成为低电位V L(即转态时间t trs1)之前抵达影像传感系统10。
另外,图5绘示当影像传感系统做于一般相机模式时,读取信号RD、发光信号LD1、重置信号Rst、传输信号TX1、信号TX4以及收集信号CX的波形图。类似于图4所绘示(光学测距模式)的时序,图5中的收集信号CX于于重置时间区间TR与导通时间区间TC1之间(即于曝光时间中)为高电位V H1, 且收集信号CX于导通时间区间TC1中的转态时间t trs1由高电位V H1转态成为低电位V L
不同于类似于图4(光学测距模式),于一实施例中,当读取晶体管RQ1导通时,即当读取信号RD为高电位时,收集信号CX的电压拉高至另一高电位V H2,其中高电位V H2大于高电位V H1,例如,高电位V H2可为高电位V H1的2倍(V H2=2*V H1)。换句话说,于读取时间区间TRD中,高电位V H2于收集栅CG所形成的电位能更高,此时传输闸TG1与收集栅CG之间形成更大的电位能障碍,而使光电子更不容易转移到节点FD1,以避免影响输出信号。另外,用来控制防晕染晶体管AB的信号TX4易于读取时间区间TRD中拉高成为高电位,以于读取时间区间TRD中将感光元件PD的光电子汲取出来,以免影响电路的正常运作。于另一实施例中,当读取晶体管RQ1导通时,收集信号CX的电压可继续维持为低电位V L,如图5中收集信号CX于读取时间区间TRD的点线所示,亦满足本申请的要求而属于本申请的范畴。
当进行光学测距时,发光单元所发射的入射光为短暂的脉冲光,而为了顺利汲取对应短暂脉冲光的光电子,现有像素电路中收集栅的收集信号通常为固定电压(如0.1伏特)。然而,在收集信号为固定电压的情况下,现有像素电路中感光元件的满井容量(Full Well Capacity)低,不利于长时间曝光,也就是说,当现有应用于光学测距的像素电路的曝光时间稍长时,(现有应用于光学测距的)感光元件的光电子很快就会满溢出来,而影响到一般影像的信号质量,因此,现有应用于光学测距的像素电路并不适合操作于一般相机模式,使 得现有电子装置需要一组操作于一般相机模式的像素阵列以及另一组操作于光学测距模式的像素阵列,而导致生产成本增加。
相较之下,本申请赋予收集信号CX适当的时序(Timing),使得当影像传感系统10操作于一般相机模式时,收集栅CG与传输闸TG1之间形成够大的电位能障碍,以扩大感光元件PD的满井容量,随着曝光时间越长,感光元件PD可储存越多的光电子,进而增进一般相机模式时的信号质量。相较于现有技术,本申请仅利用单一套像素阵列12,即可操作于一般相机模式以及光学测距模式,具有降低生产成本的优点。
需注意的是,前述实施例用以说明本申请的发明概念,本领域具通常知识者当可据以做不同的修饰,而不限于此。举例来说,请一并参考图6及图7,图6为本申请实施例影像传感系统60的示意图,图7为本申请实施例像素电路620的示意图。影像传感系统60与影像传感系统10类似,与影像传感系统10不同的是,影像传感系统60包括二个发光单元61a、61b以及像素阵列62,发光单元61a、61b分别接收发光信号LD1、LD2而于不同时间发射入射光。另外,像素阵列62包括多个像素电路620排列成一阵列,如图7所示,相较于图2的像素电路120,像素电路620还包括传输闸TG2、TG3、输出晶体管DV2、DV3、读取晶体管RQ2、RQ3以及重置晶体管RT2、RT3。其中,读取晶体管RQ2、RQ3接收读取信号RD,并于读取时间区间TRD分别输出像素输出信号Pout2、Pout3,重置晶体管RT2、RT3接收重置信号Rst而于重置时间区间TR导通。另外,传输闸TG2、TG3分别接收传输信号TX2、TX3。
关于影像传感系统60的操作,请参考图8及图9,图8及图9分别为影像传感系统60操作于光学测距模式及一般相机模式的时序图。于光学测距模式中,如图8所示,传输闸TG1、TG2分别于导通时间区间TC1、TC2导通,发光单元61a、61b分别于导通时间区间TC1、TC2中发光。于导通时间区间TC1、TC2中,感光元件PD分别接收对应于发光单元61a、61b的反射光。传输闸TG3于发光单元61a、61b皆不发光的导通时间区间TC3导通,于导通时间区间TC3中,感光元件PD接收背景光。用来控制防晕染晶体管AB的信号TX4于导通时间区间TC1、TC2、TC3为低电位,其余大部分时间为高电位。类似地,收集信号CX于导通时间区间TC1、TC2、TC3中由高电位V H1转态成为低电位V L。当导通时间区间TC1、TC2、TC3结束一段时间后,收集信号CX再由低电位V L转态成为高电位V H1
类似地,于一般相机模式中,图9中的收集信号CX于于重置时间区间TR与导通时间区间TC1之间(即于曝光时间中)为高电位V H1,且收集信号CX于导通时间区间TC1中的转态时间t trs1由高电位V H1转态成为低电位V L。其余细节请参考前述相关段落,于此不再赘述。
另外,本申请的影像传感系统可设置于如手机或平板计算机的电子装置中。请参考图10,图10为本申请实施例电子装置A的示意图。电子装置A包括影像传感系统A0,影像传感系统A0可通过影像传感系统10或影像传感系统60来实现。
综上所述,本申请利用收集信号的时序,扩大感光元件的满井容量,因此,随着曝光时间越长,感光元件可储存越多的光电子而增进信号质量。相较于现有技术,本申请仅利用单一套像素阵列,即可操作于一般相机模式以及光学测距模式,具有降低生产成本的优点。
以上所述仅为本申请的部分实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种影像传感系统,其特征在于,包括:
    第一像素电路,包括:
    感光元件;
    第一传输闸,受控于第一传输信号而于第一导通时间区间导通;以及
    收集栅,耦接于所述感光元件与所述传输闸之间,用来接收收集信号;
    以及
    控制单元,耦接于所述收集栅,所述用来产生所述收集信号至所述收集栅,其中所述收集信号具有非固定的电压值。
  2. 如权利要求1所述的影像传感系统,其特征在于,于所述第一导通时间区间之前,所述控制单元所产生的所述收集信号为第一高电位,并于所述第一导通时间区间中,所述控制单元所产生的所述收集信号由所述第一高电位转态成为低电位。
  3. 如权利要求2所述的影像传感系统,其特征在于,所述第一传输信号于第一上升沿时间具有第一上升沿,所述收集信号于第一转态时间由所述第一高电位转态成为所述低电位,所述第一上升沿时间与所述第一转态时间的时间差大于光行经所述影像传感系统与目标物件的来回时间。
  4. 如权利要求2所述的影像传感系统,其特征在于,所述第一像素电路还包括重置晶体管,所述重置晶体管受控于重置信号而于重置时间区间导通,于 所述第一重置时间区间之后且于所述第一导通时间区间之前,所述控制单元所产生的所述收集信号为所述第一高电位。
  5. 如权利要求2所述的影像传感系统,其特征在于,于所述第一导通时间区间之后,所述控制单元所产生的所述收集信号由所述低电位转态成为所述第一高电位。
  6. 如权利要求5所述的影像传感系统,其特征在于,所述第一传输信号于第一下降沿时间具有第一下降沿,所述收集信号于第二转态时间由所述低电位转态成为所述第一高电位,所述第二转态时间于所述第一下降沿时间之后。
  7. 如权利要求1所述的影像传感系统,其特征在于,所述第一像素电路还包括:
    第二传输闸,受控于第二传输信号而于第二导通时间区间导通;
    其中,于所述第二导通时间区间之前,所述控制单元所产生的所述收集信号为第一高电位;
    其中,于所述第二导通时间区间中,所述控制单元所产生的所述收集信号由所述第一高电位转态成为低电位。
  8. 如权利要求7所述的影像传感系统,其特征在于,于所述第二导通时间区间之后,所述控制单元所产生的所述收集信号由所述低电位转态成为所述第一高电位。
  9. 如权利要求1所述的影像传感系统,其特征在于,所述第一像素电路于读取时间区间输出第一像素输出信号,于所述读取时间区间中,所述控制单元所产生的所述收集信号为第二高电位,所述第二高电位大于所述第一高电位。
  10. 一种电子装置,其特征在于,包括权利要求1-9中任意一项所述的影像传感系统。
PCT/CN2018/083211 2018-04-16 2018-04-16 影像传感系统及电子装置 WO2019200513A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2018/083211 WO2019200513A1 (zh) 2018-04-16 2018-04-16 影像传感系统及电子装置
EP18914940.4A EP3605016B1 (en) 2018-04-16 2018-04-16 Image sensing system and electronic device
CN201880000667.8A CN110612430B (zh) 2018-04-16 2018-04-16 影像传感系统及电子装置
US16/669,147 US11509847B2 (en) 2018-04-16 2019-10-30 Image sensing system and electronic device operating in optical ranging mode and general camera mode at the same time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/083211 WO2019200513A1 (zh) 2018-04-16 2018-04-16 影像传感系统及电子装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/669,147 Continuation US11509847B2 (en) 2018-04-16 2019-10-30 Image sensing system and electronic device operating in optical ranging mode and general camera mode at the same time

Publications (1)

Publication Number Publication Date
WO2019200513A1 true WO2019200513A1 (zh) 2019-10-24

Family

ID=68240524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083211 WO2019200513A1 (zh) 2018-04-16 2018-04-16 影像传感系统及电子装置

Country Status (4)

Country Link
US (1) US11509847B2 (zh)
EP (1) EP3605016B1 (zh)
CN (1) CN110612430B (zh)
WO (1) WO2019200513A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11509847B2 (en) 2018-04-16 2022-11-22 Shenzhen GOODIX Technology Co., Ltd. Image sensing system and electronic device operating in optical ranging mode and general camera mode at the same time

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017082093A1 (ja) * 2015-11-13 2017-05-18 ソニー株式会社 撮像素子、撮像素子の駆動方法、及び、電子機器
CN107888903A (zh) * 2016-09-30 2018-04-06 佳能株式会社 固态成像设备、固态成像设备的驱动方法和成像系统

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1225897C (zh) * 2002-08-21 2005-11-02 佳能株式会社 摄像装置
US7388183B2 (en) * 2002-08-23 2008-06-17 Micron Technology, Inc. Low dark current pixel with a guard drive active photodiode
US9386241B2 (en) * 2003-07-02 2016-07-05 Verity Instruments, Inc. Apparatus and method for enhancing dynamic range of charge coupled device-based spectrograph
KR100591075B1 (ko) * 2004-12-24 2006-06-19 삼성전자주식회사 커플드 게이트를 가진 전송 트랜지스터를 이용한 액티브픽셀 센서
KR100825806B1 (ko) * 2007-02-21 2008-04-29 삼성전자주식회사 Cmos 이미지 센서의 픽셀 및 그의 형성 방법
JP5171158B2 (ja) * 2007-08-22 2013-03-27 浜松ホトニクス株式会社 固体撮像装置及び距離画像測定装置
US8730382B2 (en) * 2008-06-04 2014-05-20 Honda Motor Co., Ltd. Charge accumulating and splitting imaging device
WO2010013205A1 (en) * 2008-07-29 2010-02-04 Microsoft International Holdings B.V. Imaging system
US8314924B2 (en) * 2009-02-17 2012-11-20 Microsoft Corporation CMOS three-dimensional image sensor detectors with assured non collection of late arriving charge, more rapid collection of other charge, and with improved modulation contrast
DE102009020218B8 (de) * 2009-05-07 2011-05-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Detektor und Verfahren zum Detektieren elektromagnetischer Strahlung und Computerprogramm zur Durchführung des Verfahrens
US8514284B2 (en) * 2009-12-17 2013-08-20 Raytheon Company Textured pattern sensing and detection, and using a charge-scavenging photodiode array for the same
JP5614993B2 (ja) * 2010-01-19 2014-10-29 キヤノン株式会社 撮像装置及び固体撮像素子の駆動方法
EP2405663A1 (en) * 2010-06-15 2012-01-11 Thomson Licensing Method of driving an image sensor
DE102011079589A1 (de) * 2010-08-11 2012-02-16 Samsung Electronics Co., Ltd. Einheitspixel für ein Photodetektionsbauelement
CN101931021A (zh) * 2010-08-28 2010-12-29 湘潭大学 单光子雪崩二极管及基于此的三维coms图像传感器
JP5518667B2 (ja) * 2010-10-12 2014-06-11 浜松ホトニクス株式会社 距離センサ及び距離画像センサ
JP2012147187A (ja) * 2011-01-11 2012-08-02 Olympus Imaging Corp 撮像装置
KR101869371B1 (ko) * 2011-07-21 2018-06-21 삼성전자주식회사 거리 측정 방법 및 이를 수행하는 3차원 이미지 센서
US9229096B2 (en) * 2011-07-27 2016-01-05 Semiconductor Components Industries, Llc Time-of-flight imaging systems
JP6011273B2 (ja) * 2012-11-26 2016-10-19 住友電気工業株式会社 増幅器
KR20140092712A (ko) * 2013-01-16 2014-07-24 삼성전자주식회사 센싱 픽셀 및 이를 포함하는 이미지 센서
KR102009192B1 (ko) * 2013-02-05 2019-08-09 삼성전자주식회사 이미지 센서의 단위 픽셀 및 이를 포함하는 이미지 센서
JP6231940B2 (ja) * 2014-05-08 2017-11-15 浜松ホトニクス株式会社 測距装置及び測距装置の駆動方法
DE102014214733B3 (de) * 2014-07-28 2015-07-23 Pmd Technologies Gmbh Lichtlaufzeitsensor mit einer Vorrichtung zur Ladungskompensation
KR102354420B1 (ko) * 2014-12-24 2022-01-24 삼성전자주식회사 이미지 센서
JP6467924B2 (ja) * 2015-01-06 2019-02-13 富士通株式会社 増幅回路
CN107251120B (zh) * 2015-01-09 2020-06-19 金泰克斯公司 具有单摄像头停车辅助的可训练收发器
US10024966B2 (en) * 2015-01-28 2018-07-17 Texas Instruments Incorporated Efficient implementation of distance de-aliasing for ranging systems using phase domain computation
WO2016133053A1 (ja) * 2015-02-20 2016-08-25 国立大学法人静岡大学 距離画像計測装置
CN104853113A (zh) * 2015-05-15 2015-08-19 零度智控(北京)智能科技有限公司 自适应调节相机曝光时间的装置及方法
JP6716864B2 (ja) * 2015-06-19 2020-07-01 ソニー株式会社 投影装置および投影方法、投影モジュール、電子機器、並びにプログラム
JP6785429B2 (ja) * 2015-12-03 2020-11-18 パナソニックIpマネジメント株式会社 撮像装置
CN107490370B (zh) * 2016-06-13 2020-01-10 原相科技股份有限公司 测量装置及其运作方法,轨迹感测系统及其轨迹感测方法
CN107223276B (zh) * 2017-04-26 2020-03-20 深圳市汇顶科技股份有限公司 眼球遥控系统及电子装置
WO2019033232A1 (zh) * 2017-08-14 2019-02-21 深圳市汇顶科技股份有限公司 三维影像系统及电子装置
WO2019200513A1 (zh) 2018-04-16 2019-10-24 深圳市汇顶科技股份有限公司 影像传感系统及电子装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017082093A1 (ja) * 2015-11-13 2017-05-18 ソニー株式会社 撮像素子、撮像素子の駆動方法、及び、電子機器
CN107888903A (zh) * 2016-09-30 2018-04-06 佳能株式会社 固态成像设备、固态成像设备的驱动方法和成像系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3605016A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11509847B2 (en) 2018-04-16 2022-11-22 Shenzhen GOODIX Technology Co., Ltd. Image sensing system and electronic device operating in optical ranging mode and general camera mode at the same time

Also Published As

Publication number Publication date
CN110612430A (zh) 2019-12-24
EP3605016B1 (en) 2022-04-06
CN110612430B (zh) 2021-11-19
EP3605016A1 (en) 2020-02-05
US11509847B2 (en) 2022-11-22
US20200068153A1 (en) 2020-02-27
EP3605016A4 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
JP7074954B2 (ja) 動的ビジョンセンサアーキテクチャ
KR102373088B1 (ko) 이벤트 기반의 비전 센서
TWI524762B (zh) 共用飛行時間像素
KR102470675B1 (ko) 등극선 레이저 포인트 스캔을 이용한 3차원 카메라의 타임스탬프 측정
CN107247269B (zh) 用于采集处理激光信号的探测装置、像素单元及阵列
CN108366212A (zh) 用于测距的设备和方法
TWI480586B (zh) 用於判定飛行時間之方法及飛行時間成像設備與系統
CN107300705B (zh) 基于载波调制的激光雷达测距系统及测距方法
KR20140056986A (ko) 모션 센서 어레이 장치, 상기 모선 센서 어레이를 이용한 거리 센싱 시스템, 및 거리 센싱 방법
US10594965B2 (en) Avalanche photodiode image sensors
CN107026993A (zh) 图像传感器及其操作方法
CN110168398B (zh) 飞时测距系统及校正方法
CN109709531A (zh) 光传感器、距离测量装置及电子设备
WO2021016781A1 (zh) 三维图像传感器以及相关三维图像传感模组及手持装置
TW201604837A (zh) 手持式電子裝置、影像擷取裝置及景深資訊的獲取方法
TW202032099A (zh) 藉由使用基於電容之比較器之閥值檢測的光子感測
JPWO2014129118A1 (ja) 固体撮像装置
WO2019200513A1 (zh) 影像传感系统及电子装置
TW201926985A (zh) 時間解析感測器、三維成像系統和解析時間的方法
JP2009047475A (ja) 固体撮像素子
WO2020196378A1 (ja) 距離画像の取得方法、及び、距離検出装置
US10645319B2 (en) Pixel circuit and image sensing system
WO2019196049A1 (zh) 影像传感系统及电子装置
Kim et al. A cmos image sensor-based stereo matching accelerator with focal-plane sparse rectification and analog census transform
CN111726548B (zh) 图像传感器的像素和图像传感器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018914940

Country of ref document: EP

Effective date: 20191024

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE