WO2023065589A1 - 一种测距系统及测距方法 - Google Patents

一种测距系统及测距方法 Download PDF

Info

Publication number
WO2023065589A1
WO2023065589A1 PCT/CN2022/080514 CN2022080514W WO2023065589A1 WO 2023065589 A1 WO2023065589 A1 WO 2023065589A1 CN 2022080514 W CN2022080514 W CN 2022080514W WO 2023065589 A1 WO2023065589 A1 WO 2023065589A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
light source
light sources
parallax
columns
Prior art date
Application number
PCT/CN2022/080514
Other languages
English (en)
French (fr)
Inventor
胡小龙
张亦男
闫敏
Original Assignee
深圳奥锐达科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳奥锐达科技有限公司 filed Critical 深圳奥锐达科技有限公司
Publication of WO2023065589A1 publication Critical patent/WO2023065589A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems

Definitions

  • the present application relates to the technical field of optical ranging, and in particular to a ranging system and a ranging method.
  • the ranging system based on the TOF principle usually includes a transmitter and a collector.
  • the transmitter emits a pulsed beam to irradiate the target field of view and the collector collects the reflected beam, and calculates the time required for the beam from being emitted to being reflected back to be received to calculate the distance of the object.
  • Ranging systems based on the TOF principle such as time-of-flight depth cameras, LiDAR (Light Detection And Ranging, LIDAR) and other systems have been widely used in consumer electronics, robotics, unmanned vehicles, AR/VR and other fields.
  • the ranging system based on the TOF principle mainly includes a mechanical ranging system and a solid-state ranging system.
  • the mechanical ranging system realizes distance measurement with a large field of view of 360 degrees through a rotating base.
  • the emitter is generally a point light source or a line light source, which has the characteristics of concentrated beam intensity and high precision, but the longer scanning time results in a lower frame rate.
  • the solid-state ranging system does not include movable mechanical parts.
  • the emission field of the light source and the collection field of view of the pixel have a one-to-one correspondence. After each light source emits a spot beam to the target field of view, it will be reflected and imaged to the corresponding pixel. on the pixel.
  • the solid-state ranging system is an off-axis system, and the setting of the off-axis system will cause a blind area during measurement. Due to the limited size of the combined pixel and the existence of system parallax and assembly tolerance, the light spot imaged by the reflected beam on the pixel array is prone to out-of-bounds situations and the ranging signal is lost. Especially when the distance of the measured object is relatively close, the position where the light spot is incident on the pixel array will be shifted away from the corresponding combined pixel, and an effective ranging signal cannot be collected.
  • the purpose of the present application is to provide a ranging system and a ranging method, so as to solve at least one of the problems in the background technology above.
  • a ranging system comprising: a transmitter, a collector and a processing circuit
  • the emitter includes a light source array composed of a plurality of columns of light sources; at least two columns of light sources in the light source array emit spot beams;
  • the collector includes a pixel array composed of a plurality of columns of pixels
  • the processing circuit controls at least two columns of light sources in the light source array to emit spot beams, and synchronously controls at least one column of pixels in the collector to turn on and collect the spot beams reflected by the target and output photon signals, the The processing circuit calculates the distance information of the target according to the photon signal;
  • the at least two column light sources include a parallax-free column light source and a parallax column light source corresponding to the same column pixel in the at least one column pixel.
  • the processing circuit further includes a readout circuit, the readout circuit includes a TDC circuit and a histogram circuit, the TDC circuit outputs a time signal according to the photon signal, and the histogram circuit according to the Time signals generate histograms.
  • the processing circuit is used to receive the photon signal for processing and generate a histogram, calculate the time-of-flight of the spot beam from emission to collection according to the histogram, and calculate the time-of-flight according to the time-of-flight Calculate distance information of the target.
  • the processing circuit is connected to the transmitter and the collector.
  • the parallax column light source of the at least two columns of light sources is turned on first, and the parallax column light source of the at least two columns of light sources is turned on later.
  • the turn-on duration of the row of light sources with parallax in the at least two rows of light sources is shorter than the duration of turn-on of the row of light sources without parallax in the at least two rows of light sources.
  • the pulse period of the parallax column light source in the at least two columns of light sources is shorter than the pulse period of the parallax-free column light source in the at least two columns of light sources.
  • pixels in the same row in the pixel array share one readout circuit.
  • said emitter comprises a plurality of said light source arrays
  • the collector includes a plurality of pixel arrays corresponding to the plurality of light source arrays;
  • the processing circuit controls at least two columns of light sources in each of the light source arrays to emit spot beams, synchronously controls one column of pixels in each of the pixel arrays to turn on and collect the spot beams from the corresponding light source array and reflected by the target, and Outputting a photon signal, the processing circuit calculates the distance information of the target according to the photon signal;
  • the at least two columns of light sources in each of the light source arrays include a parallax-free column light source and a parallax column light source corresponding to the one column of pixels in the corresponding pixel array.
  • a ranging method comprising:
  • the at least two column light sources include a parallax-free column light source and a parallax column light source corresponding to the same column pixel in the at least one column pixel.
  • calculating the distance information of the target according to the photon signal includes: receiving the photon signal for processing and outputting a histogram, and calculating the distance between the spot beam from being emitted to being collected according to the histogram time of flight, and calculate the distance information of the target according to the time of flight.
  • the distance measuring method further includes: controlling the parallax column light source of the at least two columns of light sources to be turned on first, and the parallax column light source of the at least two columns of light sources to be turned on later.
  • the distance measuring method further includes: controlling the turn-on duration of the parallax row of light sources in the at least two rows of light sources to be shorter than the turn-on duration of the parallax-free row of light sources in the at least two rows of light sources.
  • the ranging method further includes: controlling the pulse period of the parallax column light source in the at least two columns of light sources to be smaller than the pulse period of the parallax-free column light source in the at least two columns of light sources.
  • An electronic device includes the ranging system described in any one of the above-mentioned technical solutions; the transmitter and the collector of the ranging system are arranged on the same side of the electronic device body.
  • the embodiment of the present application turns on the parallax column light source and the parallax-free column light source corresponding to a column of pixels to emit spot beams, so that the one column of pixels can collect echoes at shorter distances and longer distances signal, so it can solve short-range blind spots and improve ranging accuracy.
  • Fig. 1 is a schematic structural diagram of a ranging system provided by an embodiment of the present application.
  • FIG. 2A is a schematic diagram of a parallax principle of a ranging system provided by an embodiment of the present application.
  • FIG. 2B is a schematic diagram of a parallax principle of another ranging system provided by an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a ranging system provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of an implementation flow of a ranging method provided by an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • One embodiment or “some embodiments” or the like described in the specification of the present application means that a specific feature, structure or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral body; it can be directly connected or through an intermediate
  • the media is indirectly connected, which can be the internal communication of two elements or the interaction relationship between two elements.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” or “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • FIG. 1 is a schematic structural diagram of a ranging system provided by an embodiment of the present application.
  • the ranging system 10 includes a transmitter 11 , a collector 12 and a processing circuit 13 .
  • the emitter 11 is used to emit the emission beam 30 to the target area 20
  • the emission beam 30 is emitted into the space of the target area 20 to illuminate the target object in the space, and at least part of the emission beam 30 is reflected by the target area 20 to form a reflected beam 40, At least part of the light beam in the reflected light beam 40 is received by the collector 12
  • the processing circuit 13 is connected to the transmitter 11 and the collector 12 respectively, and the trigger signals of the transmitter 11 and the collector 12 are synchronized to calculate the light beam from being emitted to being reflected back and being received.
  • the required time i.e. the flight time t between the emission beam 30 and the reflection beam 40, further, the distance D of the corresponding point on the target object can be calculated by the following formula (1):
  • the emitter 11 includes a light source 111 , an emitting optical element 112 , a driver 113 and the like.
  • the light source 111 may be a light-emitting diode (LED), a laser diode (LD), an edge-emitting laser (EEL), a vertical-cavity surface-emitting laser (VCSEL), etc., or a one-dimensional or two-dimensional light source composed of multiple light sources. array.
  • the light source array is a VCSEL array light source chip formed by generating multiple VCSEL light sources on a single semiconductor substrate, and the arrangement of the light sources in the light source array can be regular or irregular.
  • the light beam emitted by the light source 111 may be visible light, infrared light, ultraviolet light, and the like.
  • the light source 111 emits light beams outward under the control of the driver 113 .
  • the light source 111 is configured as a light source array composed of multiple light sources, wherein the light source array includes multiple column light sources or multiple row light sources, which can be called multiple linear light sources, and each time a linear light source is turned on Send a linear beam towards the target area until the last linear light source is turned on to realize the scanning of the target area, wherein the linear beam is formed by arranging a plurality of spots in sequence, which can be arranged at a certain distance or connected in sequence .
  • the light source 111 is configured to consist of a plurality of light source arrays, wherein each light source array is configured to include a plurality of light sources, and each of the plurality of light source arrays emits a linear light beam toward the target area at the same time, and the plurality of lines
  • the plurality of linear projection patterns projected into the target area by the linear light beam have a certain distance, so as to divide the target area into multiple areas, thereby realizing sub-area scanning of the target area.
  • the light source 111 emits a pulsed beam at a certain frequency (or pulse period) under the control of the driver 113 for direct time-of-flight (Direct TOF, dTOF) measurement, and the frequency is set according to the measurement distance.
  • a part of the processing circuit 13 or a sub-circuit independent of the processing circuit 13 may also be used to control the light source 111 to emit light beams.
  • the emitting optical element 112 receives and shapes the light beam emitted from the light source 111 and projects it to a target area.
  • the transmitting optical element 112 receives the pulsed beam from the light source 111, and optically modulates the pulsed beam, such as modulation such as diffraction, refraction, reflection, etc., and then emits the modulated beam into space, such as a focused beam, Flood beam, structured light beam, etc.
  • the emitting optical element 112 may be one or a combination of lenses, liquid crystal elements, diffractive optical elements, microlens arrays, metasurface optical elements, masks, reflectors, MEMS vibrating mirrors, and the like.
  • the collector 12 includes a pixel unit 121, a filter unit 122 and a receiving optical element 123; wherein the receiving optical element 123 is used to receive at least part of the light beam reflected back by the target object and guide the at least part of the light beam to On the pixel unit 121; the filtering unit 122 is used to filter out background light or stray light; the pixel unit 121 includes a one-dimensional or two-dimensional pixel array composed of a plurality of pixels. The pixel unit 121 is used to collect at least part of the light beams reflected back by the target object and generate corresponding photon signals.
  • the pixel unit 121 is a pixel array composed of single-photon avalanche photodiodes (SPADs), which can respond to an incident single photon and output a signal indicating the corresponding arrival time of the received photon at each SPAD,
  • SPDs single-photon avalanche photodiodes
  • TCSPC time-correlated single-photon counting
  • the ranging system 10 further includes a readout circuit (not shown in FIG. 1 ) composed of one or more of signal amplifiers, TDCs, digital-to-analog converters (ADCs) and other devices. These readout circuits can be integrated with the processing circuit 13 and regarded as a part of the processing circuit 13 . In one embodiment, the readout circuit receives the photon signal and processes it to generate a histogram.
  • a readout circuit (not shown in FIG. 1 ) composed of one or more of signal amplifiers, TDCs, digital-to-analog converters (ADCs) and other devices.
  • ADCs digital-to-analog converters
  • the processing circuit 13 synchronizes the trigger signals of the emitter 11 and the collector 12, processes the photon signals collected by the pixel unit 121, and calculates the distance information of the target object to be measured based on the time-of-flight of the light beam from emission to reflection.
  • the SPAD outputs a photon signal in response to an incident single photon
  • the processing circuit 13 receives the photon signal and performs signal processing to obtain the time-of-flight of the light beam.
  • the processing circuit 13 calculates the number of collected photons to form continuous time bins, and these time bins are connected together to form a statistical histogram for reproducing the time sequence of reflected light pulses, using peak matching and filter detection to identify the beam from emission to Received flight time.
  • the processing circuit 13 may be an independent dedicated circuit, such as a dedicated SOC chip, FPGA chip, ASIC chip, etc., or may include a general processing circuit.
  • the ranging system 10 further includes a memory for storing a pulse encoding program, and the encoding program is used to control the excitation time and emission frequency of the light beam emitted by the light source 111 .
  • the ranging system 10 may also include components such as a color camera, an infrared camera, and an IMU, and the combination of these components can realize more abundant functions, such as 3D texture modeling, infrared face recognition, SLAM and other functions.
  • the baseline direction is taken as the horizontal direction, and the shift caused by parallax is considered as an example of shifting from right to left Be explained.
  • the offset direction is only for schematic illustration, and should not be construed as a limitation to the solution of the present invention. It should be understood that the exemplary description cannot be construed as limiting the present application, and in some other cases, the direction of the baseline may also be a vertical (or vertical) direction and the like.
  • the SPAD pixels are connected to the readout circuit in the processing circuit, and each SPAD pixel is connected to one readout circuit.
  • the readout circuit includes a TDC circuit and a histogram circuit.
  • the SPAD pixel responds to an incident single photon to output a photon signal.
  • the TDC circuit is used to receive the photon signal to generate a time signal.
  • the histogram circuit is used to generate a histogram according to the time signal.
  • a single photon incident on a SPAD pixel will cause an avalanche, and the SPAD pixel will output an avalanche signal to the TDC circuit, and then the TDC circuit will detect the time signal from when the photon is sent from the emitter to when the avalanche is caused, and use this time signal to find the corresponding time signal in the histogram circuit.
  • time interval (bin) so that the photon count value in the time interval is increased by 1, and after multiple detections, the histogram statistics of the time bin are performed to recover the waveform of the entire pulse signal, so as to achieve accurate time-of-flight detection.
  • the time-of-flight calculates the distance information of the target object.
  • FIG. 3 is a schematic structural diagram of a light source array, a pixel unit and a processing circuit in a ranging system provided by an embodiment of the present application.
  • the left figure in FIG. 3 is a schematic structural diagram of the light source array 31 .
  • the right figure in FIG. 3 is a schematic structural diagram of the pixel unit 32 and the processing circuit 33 .
  • Each light source in the light source array 31 corresponds to each pixel (or combined pixel) in the pixel unit 32 .
  • the arrangement of light sources may be regular or irregular, and correspondingly, the arrangement of pixels may be regular or irregular.
  • FIG. 3 only schematically shows an example of regular arrangement.
  • the light source array 31 is configured as a two-dimensional light source array composed of a plurality of light sources disposed on a single-chip or multi-chip substrate. It can be understood that the light source array 31 includes multiple columns of light sources. In some embodiments, in a measurement stage of the distance measuring system, the light source array 31 emits a linear light source, which is formed by interconnecting spot beams emitted by multiple light sources in a row of light sources. Preferably, the light source array 31 is an array VCSEL chip composed of a plurality of VCSEL light sources arranged on a semiconductor substrate. The light sources in the light source array 31 can emit spot beams of arbitrary wavelengths, such as visible light, infrared light, ultraviolet light, and the like.
  • the light source array 31 can emit light under the modulation of the driving circuit, such as continuous wave modulation, pulse modulation, etc., and the light source array 31 can also emit light in groups under the control of the driving circuit.
  • the driver circuit may be part of the processing circuit 33 .
  • the light source array 31 includes multiple rows of light sources, such as a first row of light sources 1 , a second row of light sources 2 and a third row of light sources 7 .
  • Each of the first row of light sources 1 , the second row of light sources 2 and the third row of light sources 7 includes a plurality of light sources (a small box shown in the left figure in FIG. 3 represents one light source).
  • Multiple columns of light sources can be activated under the control of the drive circuit to project spot beams to the target field of view, at least two columns of light sources are activated in one measurement phase, until all columns of light sources are activated, the scanning of the entire target field of view is completed ;
  • the scanning direction of the light source array 31 (that is, the starting sequence of each column of light sources) is along the baseline direction.
  • the baseline direction is the horizontal direction, so the light source array 31 is configured to include multiple columns of light sources, and the light source arrays are activated column by column in the horizontal direction (that is, along the baseline direction) to complete a frame scan.
  • each column of light sources can be disposed on a separate substrate, and controlled by different driving circuits to emit light in groups.
  • the light source array specifically needs to include multiple rows of light sources or rows of light sources according to the baseline direction.
  • the baseline direction is horizontal
  • the light source array is configured to include multiple columns of light sources or multiple rows of light sources; and when the baseline direction For the vertical (or vertical) direction, the light source array is configured to include multiple rows of light sources or multiple rows of light sources.
  • the pixel unit 32 includes a pixel array, specifically, the pixel array includes a two-dimensional pixel array composed of a plurality of pixels.
  • the baseline direction is the horizontal direction
  • the pixel array is configured to include multiple columns of pixels or multiple columns of combined pixels (a small box shown on the right in FIG. 3 represents a pixel or a combined pixel).
  • the size of the composite pixel can be specifically set according to the actual situation, and at least includes one pixel. For the convenience of description, this embodiment will be described later by taking one light source corresponding to one pixel as an example.
  • the pixel array may include multiple columns of pixels, such as the first column of pixels 3 , the second column of pixels 4 , the third column of pixels 5 and the fourth column of pixels 6 shown in FIG. 3 .
  • the processing circuit 33 includes a TDC circuit and a histogram circuit. Specifically, each pixel is correspondingly connected to a TDC circuit and a histogram circuit, and the sum of multiple time bins in the histogram circuit is equal to T, that is, the measurement time range of the histogram circuit is T. It should be noted that, when combined pixels are used, preferably, each pixel in each combined pixel shares a TDC circuit and a histogram circuit, that is, the same TDC circuit and histogram circuit are correspondingly connected.
  • the parallax of the ranging system mainly causes the beam reflected by the short-distance target to shift.
  • multiple columns of light sources are configured to emit spot beams, and a column of pixels is turned on to receive the reflected spot beams from multiple columns of light sources.
  • a column of pixels configured is used to collect reflected beams from some light sources reflected by targets in a relatively long range (no parallax), and on the other hand, to collect reflected beams from other light sources reflected by targets in a relatively short range ( with parallax). That is to say, the configured multiple columns of light sources include column light sources with parallax and column light sources without parallax corresponding to columns of pixels.
  • the column-ignoring light source is mainly used to project beams to targets within the field of view that are far away from the system, and the column light source with parallax is mainly used to project beams to targets within the field of view that are relatively close to the system.
  • the first row of light sources 1 and the second row of light sources 2 are turned on to emit spot beams, and the pixels 3 in the first row of configured pixel arrays are turned on to collect reflected light spots.
  • the first row of light sources 1 is a non-parallax row of light sources corresponding to the first row of pixels 3
  • the second row of light sources 2 is a parallax row of light sources corresponding to the first row of pixels 3 .
  • the first row of light sources 1 when the first row of light sources 1 emits spot beams, it will project onto the target in the field of view which is located in a longer detection range and the reflected beams will be imaged to the first row of pixels 3; when the second row of light sources 2 emits When the spot beam is used, it will be projected onto the target in the field of view within the closer detection range and the reflected beam will be imaged to the first column of pixels 3 .
  • the light sources 2 in the second row and the light sources 7 in the third row are turned on to emit spot beams, and the pixels 4 in the second row of the configured pixel array are turned on and collect reflected light spots.
  • the second column of light sources 2 is a parallax-free column light source corresponding to the second column of pixels 4
  • the third column of light sources 7 is a parallax column of light sources corresponding to the second column of pixels 4 .
  • the light source 2 of the second column when the light source 2 of the second column emits the spot beam, it will be projected onto the target located in the detection range at a longer distance in the field of view and the reflected beam will be imaged to the pixel 4 of the second column; when the light source 7 of the third column emits When the spot beam is used, it will be projected to the target in the field of view within the short detection range and the reflected beam will be imaged to the second column of pixels 4 .
  • Each pixel of the pixel array is correspondingly connected to a TDC circuit and a histogram circuit, and the sum of multiple time bins in the histogram circuit is equal to T, that is, the measurement time range of the histogram circuit is T.
  • TDC circuit and a histogram circuit since the columns of pixels are turned on sequentially column by column, pixels in the same row of pixels in different columns can share a TDC circuit and a histogram circuit.
  • the pixels in the same row in the first column of pixels 3, the second column of pixels 4, the third column of pixels 5, and the fourth column of pixels 6 can share a TDC circuit and a histogram circuit to realize the time division of the TDC circuit and the histogram circuit. Multiplexing, reducing power consumption and cost, is conducive to the miniaturization of the system.
  • the number of columns of light sources corresponding to the deviation range caused by parallax is 2 columns as an exemplary description. It should be understood that this exemplary description cannot be interpreted as a specific limitation on the content of the application.
  • the number of columns of light sources corresponding to the deviation range caused by parallax can be affected by the baseline size of the system, the ranging range, and so on. In some embodiments, the number of column light sources corresponding to the deviation range caused by parallax can be determined by theoretical calculation or calibration.
  • two light sources are used to respectively emit spot light beams to targets located in the short-range range and the far-range range in the collection field of view. Affected by factors such as target reflectivity and ambient temperature, the projection ranges corresponding to the two light sources overlap. It is impossible to determine which light source the measured signal corresponds to, and the accurate three-dimensional coordinate data of the target cannot be calculated.
  • the range that can be covered by the emission of a distant light source is D01 to D02, D01 ⁇ D02
  • the range that can be covered by the emission of an adjacent light source is D11 to D02.
  • the measurement range of the short-range column light source is 0 to 30m
  • the corresponding measurement time range in the histogram circuit is 0 to 0.2us
  • the measurement range of the long-distance column light source is 15m to 150m
  • the corresponding The measurement time range in the histogram circuit is 0.1us to 1us.
  • multiple columns of light sources are controlled to emit sequentially and the columns of light sources are controlled to emit according to a preset time delay.
  • the time delay t can be determined according to the overlapping range measured by the near and far column light sources.
  • first control the short-distance column light source that is, the parallax column light source
  • control the long-distance column light source that is, the parallax-free column light source
  • the receiving column pixels are always on in this implementation, so there is no switching blind spot in the test results, and multiple transmission triggers can be completed within one test pulse cycle, while reducing TDC resource consumption. constant. The effect is better.
  • the measurement time range for configuring the histogram circuit is T+t.
  • the first column of light sources 1 is a parallax-free column light source corresponding to the first column of pixels 3
  • the second column of light sources 2 is a parallax column of light sources corresponding to the first column of pixels 3
  • the second column of light sources 2 is a non-parallax column light source corresponding to the second column of pixels 4
  • the third column of light sources 7 is a parallax column of light sources corresponding to the second column of pixels 4 .
  • the second row of light sources 2 is first turned on to emit spot beams, and the first row of pixels 3 is turned on to collect the reflected light spots from the second row of light sources 2; after a preset time interval t, the first row of light sources 1 is turned on to emit For spot beams, the first row of pixels 3 collects the reflected light spots from the first row of light sources 1 .
  • the third row of light sources 7 is first turned on to emit spot beams, and the second row of pixels 4 is turned on to collect the reflected light spots from the third row of light sources 7; after a preset time interval t, the second row of light sources 2 is turned on to emit Spot light beams, the pixels 4 in the second column collect the reflected light spots from the light source 2 in the second column.
  • the turn-on time for the near-distance column light source (parallax column) can be greatly reduced in the actual test process, thereby reducing Frame rate reduction caused by multiple columns of light sources being turned on.
  • the first column of light sources 1 is a parallax-free column light source corresponding to the first column of pixels 3
  • the second column of light sources 2 is a parallax column of light sources corresponding to the first column of pixels 3 .
  • the first row of light sources 1 and the second row of light sources 2 are turned on to emit spot beams, and the first row of pixels 3 is turned on to collect reflected light spots.
  • the first row of light sources 1 is turned on for h1, and the second row of light sources
  • the opening time of 2 is h2, h1>h2.
  • first turn on the second row of light sources 2 to emit spot beams, and at the same time turn on the first row of pixels 3 to collect reflected light spots, and the turn-on time of the second row of light sources 2 is h3; turn on the second row of light sources at a distance 2 After a preset time interval t, turn on the first column of light sources 1 to emit spot beams, and the first column of pixels 3 to collect reflected light spots, and the first column of light sources 1 is turned on for h4.
  • each row of light sources has a separate driving circuit.
  • the driving circuit can be used to dynamically regulate the period of the emitted pulsed beam, thereby reducing Frame rate reduction caused by multiple columns of light sources being turned on.
  • the driving circuit can be used to dynamically adjust the period of the short-distance column light source (ie, the column light source with parallax) to emit pulsed beams to be shorter than the period of the long-distance column light source (ie, the column light source without parallax).
  • the first column of light sources 1 is a parallax-free column light source corresponding to the first column of pixels 3
  • the second column of light sources 2 is a parallax column of light sources corresponding to the first column of pixels 3 .
  • the first row of light sources 1 and the second row of light sources 2 are turned on to emit spot light beams, while the first row of pixels 3 is turned on to collect reflected light spots.
  • Both the first row of light sources 1 and the second row of light sources 2 emit pulsed beams, and the period of the second row of light sources 2 emitting pulsed beams is shorter than the period of the first row of light sources 1 emitting pulsed beams.
  • the second row of light sources 2 is first turned on to emit spot beams, and the first row of pixels 3 is turned on to collect reflected light spots; after a preset time interval t from turning on the second row of light sources 2, the second row of A column of light sources 1 emits spot beams, and the first column of pixels 3 collects reflected light spots.
  • Both the first row of light sources 1 and the second row of light sources 2 emit pulsed beams, and the period of the second row of light sources 2 emitting pulsed beams is shorter than the period of the first row of light sources 1 emitting pulsed beams.
  • a single row of pixels is turned on to receive reflected light spots as an exemplary description.
  • multiple columns of emission and multiple columns of reception may also be used, that is, multiple columns of light sources are turned on to emit spot light beams, and multiple columns of pixels are turned on to receive reflected light spots.
  • the first row of light sources 1 and the second row of light sources 2 are turned on to emit spot beams, and the first row of pixels 3 and the second row of pixels 4 can be adjusted At the same time, turn on and collect the reflected light spot.
  • the first column of pixels 3 the first column of light sources 1 is a parallax-free column
  • the second column of light sources 2 is a parallax-free column
  • the second column of light sources 2 is a parallax-free column.
  • the first row of light sources 2 and the second row of light sources 7 are turned on to emit spot light beams, and the second row of pixels 4 and the third row of pixels 5 can be controlled to simultaneously turn on and collect reflected light spots.
  • the second column of pixels 4 the second column of light sources 2 is a parallax-free column
  • the third column of light sources 7 is a parallax-free column
  • the third column of light sources 7 is a parallax-free column.
  • single-line scanning is used as an exemplary description of the scanning mode.
  • point-by-point scanning or multi-line scanning may also be used. It should be understood that the exemplary descriptions are not to be construed as specific limitations on the content of the present application.
  • multiple light sources are turned on each time to emit spot beams, and at the same time, the collector is controlled to turn on a pixel to receive reflected light spots, wherein the multiple light sources include a parallax light source and a parallax-free light source corresponding to a pixel.
  • the emitter includes multiple light source arrays, and each light source array is configured as a one-dimensional or two-dimensional light source array composed of multiple light sources.
  • the collector includes multiple pixel arrays, and each pixel array is configured as a one-dimensional or two-dimensional pixel array composed of multiple pixels. The multiple pixel arrays correspond to the multiple light source arrays one by one.
  • each light source array and its corresponding pixel array is the same as that of the aforementioned embodiment shown in FIG. 3 .
  • the transmitter includes 3 light source arrays
  • the collector includes 3 pixel arrays as an example for illustration.
  • the three light source arrays are respectively the first light source array, the second light source array and the third light source array; the three pixel arrays are respectively the first pixel array, the second pixel array and the third pixel array.
  • the target field of view is divided into three areas for scanning, the first light source array and the corresponding first pixel array are used for scanning the first area, and the second light source array and the corresponding second pixel array are used for scanning the second area.
  • the third light source array and the corresponding third pixel array are used to scan the third area. It should be understood that the scanning process for each region is the same as that of the aforementioned single-line scanning embodiment.
  • the first stage of measurement control the first column of light sources and the second column of light sources in each light source array to emit spot beams to the target area, and at the same time control each pixel array to turn on the first column pixels, the first row of light sources is a parallax-free row corresponding to the first row of pixels, and the second row of light sources is a parallax row corresponding to the first row of pixels; in the second stage of measurement, control the second row in each light source array The light source in the first column and the light source in the third column emit spot beams to the target area, and so on.
  • the nth stage of measurement control the light sources in the nth column and the n+1th column of each light source array to emit spot beams until each The spot beam emitted by the last row of light sources in the light source array is received by the collector to complete a frame of measurement.
  • the above numerical description is only for illustrative purposes, and does not specifically limit the content of the present application.
  • FIG. 4A shows a ranging method provided by another embodiment of the present application.
  • the ranging method can be applied to the ranging system of any of the foregoing embodiments.
  • the ranging method may be performed by a processing circuit of a ranging system.
  • the ranging method may be performed by an electronic device.
  • the ranging method may include the following steps S41 to S43.
  • the at least two column light sources include a parallax-free column light source and a parallax column light source corresponding to the same column pixel in the at least one column pixel.
  • the collector includes multiple pixel arrays, and the multiple light source arrays correspond to the multiple pixel arrays one by one.
  • Step S41 includes: controlling at least two columns of light sources in each light source array to emit spot beams;
  • step S42 includes: synchronously controlling one column of pixels in each pixel array to turn on and collect the spot beams from the corresponding light source array and reflected by the target and output photon signals .
  • step S43 specifically includes: receiving the photon signal for processing and generating a histogram, calculating the time-of-flight of the spot beam from emission to collection according to the histogram, and calculating the distance information of the target object based on the time-of-flight .
  • the ranging method further includes: controlling the at least two columns of light sources to be turned on first, and the at least two columns of light sources without parallax to be turned on later. That is to say, among the at least two column light sources, the column light source with parallax is controlled to emit the spot beam first, and the column light source without parallax emits the spot beam afterwards.
  • the ranging method further includes: controlling the turn-on duration of the parallax row light source in the at least two rows of light sources to be shorter than the turn-on duration of the non-parallax row light source in the at least two row light sources. That is to say, the duration of emitting the speckle beam by the row of light sources with parallax among the at least two row of light sources is controlled to be shorter than the duration of emitting the spot beam by the row of light sources without parallax.
  • the ranging method further includes: controlling the period of emitting pulsed beams of the at least two columns of light sources with parallax to be shorter than the period of emitting pulsed beams of the at least two columns of light sources without parallax.
  • the ranging method of this embodiment uses the ranging system of any of the aforementioned embodiments for ranging, and its technical solution is similar to that of the aforementioned ranging system, so it will not be repeated here.
  • the emitter can also be controlled to emit a transverse linear beam to scan along the longitudinal direction.
  • the light source array may also be a light source array in other combined forms, for example, it may be a light source array formed by combining multiple sub-light sources into one light source by using a beam combining element.
  • the array of sub-light sources can also be dynamically controlled to generate linear beams of different widths.
  • the electronic device 500 includes: a processor 50, a memory 51, and an A computer program 52, such as a program for distance measurement.
  • the processor 50 executes the computer program 52, it implements the steps in the distance measuring method embodiment of any of the above embodiments, such as steps S41 to S43 shown in FIG. 4 .
  • the computer program 52 can be divided into one or more modules/units, and the one or more modules/units are stored in the memory 51 and executed by the processor 50 to complete this application.
  • the one or more modules/units may be a series of computer program instruction segments capable of accomplishing specific functions, and the instruction segments are used to describe the execution process of the computer program 52 in the electronic device 500 .
  • FIG. 5 is only an example of the electronic device 500, and does not constitute a limitation to the electronic device 500.
  • the electronic device 500 may include more or less components than those shown in the illustration, or combine certain components, or Different components, for example, the electronic device 500 may also include input and output devices, network access devices, buses, and so on.
  • the so-called processor 50 can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the storage 51 may be an internal storage unit of the electronic device 500 , such as a hard disk or memory of the electronic device 500 .
  • the memory 51 can also be an external storage device of the electronic device 500, such as a plug-in hard disk equipped on the electronic device 500, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash memory card (Flash Card) etc.
  • the memory 51 may also include both an internal storage unit of the electronic device 500 and an external storage device.
  • the memory 51 is used to store the computer program and other programs and data required by the electronic device.
  • the memory 51 can also be used to temporarily store data that has been output or will be output.
  • Another embodiment of the present application further provides an electronic device, the electronic device includes the distance measuring system of any one of the foregoing embodiments, wherein the transmitter and the collector of the distance measuring system are arranged on the same side of the body of the electronic device.
  • the ranging system is used to transmit a light beam to a target object and receive a light beam reflected by the target object to form a photon signal, and calculate the distance information of the target object according to the photon signal.
  • the electronic device may include an optical measurement system, such as lidar or the like.
  • An embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the steps in the foregoing embodiments of the ranging method can be realized.
  • An embodiment of the present application provides a computer program product.
  • the computer program product When the computer program product is run on an electronic device, the electronic device can implement the steps in the foregoing embodiments of the distance measuring method.
  • the disclosed device/electronic equipment and method can be implemented in other ways.
  • the device/electronic device embodiments described above are only illustrative, for example, the division of modules or units is only a logical function division, and there may be other division methods in actual implementation, such as multiple units or components May be combined or may be integrated into another system, or some features may be omitted, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separated, and a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • an integrated module/unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the present application realizes all or part of the processes in the methods of the above embodiments, and can also be completed by instructing related hardware through computer programs, and the computer programs can be stored in a computer-readable storage medium.
  • the computer program includes computer program code, and the computer program code can be in the form of source code, object code, executable file or some intermediate form, etc.
  • Computer-readable media may include: any entity or device capable of carrying computer program code, recording media, U disk, removable hard disk, magnetic disk, optical disk, computer memory, ROM, RAM, electrical carrier signals, telecommunication signals, and software distribution media, etc. . It should be noted that the content contained on computer readable media may be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction. For example, in some jurisdictions, according to legislation and patent practice, computer readable media does not include Electrical carrier signals and telecommunication signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种测距系统(10)及测距方法。该测距系统(10)包括:发射器(11)、采集器(12)和处理电路(13);发射器(11)包括由多个列光源组成的光源阵列(31);采集器(12)包括由多个列像素组成的像素阵列;处理电路(13)控制光源阵列(31)中的至少两个列光源发射斑点光束,同步控制采集器(12)中的至少一个列像素开启并采集被目标反射的斑点光束并输出光子信号,处理电路(13)根据光子信号计算目标的距离信息;其中,至少两个列光源包括至少一个列像素中同一个列像素对应的无视差列光源和有视差列光源。该测距系统(10)及测距方法可以解决近距盲区。

Description

一种测距系统及测距方法
本申请要求于2021年10月19日提交中国专利局,申请号为202111216644.0,发明名称为“一种测距系统及测距方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学测距技术领域,尤其涉及一种测距系统及测距方法。
背景技术
利用飞行时间(Time of Flight,TOF)原理可以对目标进行距离测量以获取包含目标的距离信息。基于TOF原理的测距系统通常包括发射器和采集器,利用发射器发射脉冲光束照射目标视场并利用采集器采集反射光束,计算光束由发射到反射回来被接收所需要的时间来计算物体的距离。基于TOF原理的测距系统比如飞行时间深度相机、激光雷达(Light Detection And Ranging,LIDAR)等系统已被广泛应用于消费电子、机器人、无人架驶、AR/VR等领域。
其中,基于TOF原理的测距系统,主要包括机械式测距系统和固态式测距系统。机械式测距系统通过旋转基座实现360度大视场的距离测量,其发射器一般为点光源以及线光源,具有光束强度集中、精度高的特点,但扫描时间较长导致帧率较低。而固态式测距系统不包括可移动的机械零件,光源的发射视场与像素的采集视场具有一一对应的关系,每一个光源发射斑点光束到目标视场后都会反射并成像到对应的像素上。
根据发射器和采集器之间的设置方式,固态式测距系统属于离轴系统,离轴系统的设置导致在测量时会产生盲区的情况。由于合像素的大小有限以及系统视差和装配公差的存在,导致反射光束成像到像素阵列上的光斑容易出现出界的情况而丢失测距信号。特别是当被测物体距离较近时,光斑入射到像素阵列上 的位置会发生偏移远离对应的合像素,无法采集有效的测距信号。
以上背景技术内容的公开仅用于辅助理解本申请的发明构思及技术方案,其并不必然属于本专利申请的现有技术,在没有明确的证据表明上述内容在本专利申请的申请日前已经公开的情况下,上述背景技术不应当用于评价本申请的新颖性和创造性。
发明内容
本申请的目的在于提供一种测距系统及测距方法,以解决上述背景技术问题中的至少一种问题。
为达到上述目的,本申请实施例的技术方案是这样实现的:
一种测距系统,包括:发射器、采集器和处理电路;
所述发射器包括由多个列光源组成的光源阵列;所述光源阵列中的至少两个列光源发射斑点光束;
所述采集器包括由多个列像素组成的像素阵列;
所述处理电路控制所述光源阵列中的至少两个列光源发射斑点光束,同步控制所述采集器中的至少一个列像素开启并采集被目标反射的所述斑点光束并输出光子信号,所述处理电路根据所述光子信号计算所述目标的距离信息;
其中,所述至少两个列光源包括所述至少一个列像素中同一个列像素对应的无视差列光源和有视差列光源。
在一些实施例中,所述处理电路还包括读出电路,所述读出电路包括TDC电路和直方图电路,所述TDC电路根据所述光子信号输出时间信号,所述直方图电路根据所述时间信号生成直方图。
在一些实施例中,所述处理电路用于接收所述光子信号进行处理并生成直方图,根据所述直方图计算所述斑点光束从发射到被采集之间的飞行时间,根据所述飞行时间计算所述目标的距离信息。
在一些实施例中,所述处理电路与所述发射器以及所述采集器连接。
在一些实施例中,所述至少两个列光源中所述有视差列光源先开启,所述至少两个列光源中所述无视差列光源后开启。
在一些实施例中,所述至少两个列光源中所述有视差列光源的开启时长,小于所述至少两个列光源中所述无视差列光源的开启时长。
在一些实施例中,所述至少两个列光源中所述有视差列光源的脉冲周期,小于所述至少两个列光源中所述无视差列光源的脉冲周期。
在一些实施例中,所述像素阵列中处于同一行的像素共用一个读出电路。
在一些实施例中,所述发射器包括多个所述光源阵列;
所述采集器包括与多个所述光源阵列一一对应的多个所述像素阵列;
所述处理电路控制各所述光源阵列中的至少两个列光源发射斑点光束,同步控制各所述像素阵列中一个列像素开启并采集来自对应光源阵列的且被目标反射的所述斑点光束并输出光子信号,所述处理电路根据所述光子信号计算所述目标的距离信息;
其中,每个所述光源阵列中的所述至少两个列光源包括对应像素阵列中的所述一个列像素对应的无视差列光源和有视差列光源。
本申请实施例的另一技术方案为:
一种测距方法,包括:
控制发射器中的至少两个列光源发射斑点光束;
同步控制采集器中的至少一个列像素开启并采集被目标反射的所述斑点光束并输出光子信号;
根据所述光子信号计算所述目标的距离信息;
其中,所述至少两个列光源包括所述至少一个列像素中同一个列像素对应的无视差列光源和有视差列光源。
在一些实施例中,根据所述光子信号计算所述目标的距离信息包括:接收所述光子信号进行处理并输出直方图,根据所述直方图并计算所述斑点光束从发射到被采集之间的飞行时间,根据所述飞行时间计算所述目标的距离信息。
在一些实施例中,测距方法还包括:控制所述至少两个列光源中所述有视差列光源先开启,所述至少两个列光源中所述无视差列光源后开启。
在一些实施例中,测距方法还包括:控制所述至少两个列光源中所述有视差列光源的开启时长,小于所述至少两个列光源中所述无视差列光源的开启时长。
在一些实施例中,测距方法还包括:控制所述至少两个列光源中所述有视差列光源的脉冲周期,小于所述至少两个列光源中所述无视差列光源的脉冲周期。
本申请实施例的又一技术方案为:
一种电子设备,包括上述任一实施例技术方案中所述的测距系统;测距系统的发射器与采集器设置于电子设备本体的同一侧。
本申请技术方案的有益效果是:
相较于现有技术,本申请实施例开启一个列像素对应的有视差列光源和无视差列光源发射斑点光束,使得该一个列像素可以采集到较近距离处和较远距离处的回波信号,因此可以解决近距盲区,提升测距精度。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提供的一种测距系统的结构示意图。
图2A是本申请一实施例提供的一种测距系统的视差原理示意图。
图2B是本申请一实施例提供的另一种测距系统的视差原理示意图。
图3是本申请一实施例提供的一种测距系统的结构示意图。
图4是本申请一实施例提供的一种测距方法的实现流程示意图。
图5是本申请一实施例提供的一种电子设备的结构示意图。
具体实施方式
为了使本申请实施例所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
在本申请说明书中描述的“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
还应当理解,除非另有明确的规定或限定,术语“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多该特征。在本申请实施例的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
图1所示为本申请一实施例提供的一种测距系统的结构示意图,该测距系统10包括发射器11、采集器12以及处理电路13。其中,发射器11用于向目标区域20发射发射光束30,发射光束30发射至目标区域20空间中以照明空间中的目标物体,至少部分发射光束30经目标区域20反射后形成反射光束40,反 射光束40中的至少部分光束被采集器12接收;处理电路13分别与发射器11以及采集器12连接,同步发射器11与采集器12的触发信号以计算光束从发射到反射回来被接收所需要的时间,即发射光束30与反射光束40之间的飞行时间t,进一步,目标物体上对应点的距离D可由下式(1)计算出:
D=c·t/2       (1)
其中,c为光速。
在一些实施例中,发射器11包括光源111、发射光学元件112以及驱动器113等。其中,光源111可以是发光二极管(LED)、激光二极管(LD)、边发射激光器(EEL)、垂直腔面发射激光器(VCSEL)等,也可以是由多个光源组成的一维或二维光源阵列。优选地,光源阵列是在单块半导体基底上生成多个VCSEL光源以形成的VCSEL阵列光源芯片,光源阵列中光源的排列方式可以是规则的也可以是不规则的。光源111所发射的光束可以是可见光、红外光、紫外光等。光源111在驱动器113的控制下向外发射光束。
在一些实施例中,光源111被配置为由多个光源组成的光源阵列,其中光源阵列包括多个列光源或多个行光源,可以称为多个线状光源,每次开启一个线状光源朝向目标区域发射一条线状光束,直至开启最后一个线状光源,实现目标区域的扫描,其中,所述线状光束是由多个光斑依次排列形成,可以是间隔一定的间距也可以依次连接设置。在其他一些实施例中,光源111被配置为由多个光源阵列组成,其中每个光源阵列被配置为包括多个光源,多个光源阵列各自同时朝向目标区域发射一条线状光束,多条线状光束投射到目标区域中的多个线状投影图案具有一定的间距,以将目标区域分成多个区域,从而实现对目标区域的分区域扫描。
在一个实施例中,光源111在驱动器113的控制下以一定频率(或脉冲周期)向外发射脉冲光束,以用于直接飞行时间(Direct TOF,dTOF)测量,频率根据测量距离进行设定。可以理解的是,还可以利用处理电路13中的一部分或者独立于处理电路13存在的子电路来控制光源111发射光束。
发射光学元件112接收来自光源111发射的光束并整形后投射到目标区域。在一个实施例中,发射光学元件112接收来自光源111的脉冲光束,并将脉冲光束进行光学调制,比如衍射、折射、反射等调制,随后向空间中发射被调制后的光束,比如聚焦光束、泛光光束、结构光光束等。发射光学元件112可以是透镜、液晶元件、衍射光学元件、微透镜阵列、超表面(Metasurface)光学元件、掩膜板、反射镜、MEMS振镜等形式中的一种或多种的组合。
在一些实施例中,采集器12包括像素单元121、过滤单元122和接收光学元件123;其中,接收光学元件123用于接收由目标物体反射回的至少部分光束并将所述至少部分光束引导至像素单元121上;过滤单元122用于滤除背景光或杂散光;像素单元121包括由多个像素组成的一维或二维像素阵列。像素单元121用于采集由目标物体反射回的至少部分光束并生成相应的光子信号。在一个实施例中,像素单元121为由单光子雪崩光电二极管(SPAD)组成的像素阵列,SPAD可以对入射的单个光子进行响应并输出指示所接收光子在每个SPAD处相应到达时间的信号,利用诸如时间相关单光子计数法(TCSPC)实现对微弱光信号的采集以及飞行时间的计算。
在一些实施例中,测距系统10还包括信号放大器、TDC、数模转换器(ADC)等器件中的一种或多种组成的读出电路(图1中未示出)。这些读出电路可以与处理电路13集成在一起,视作处理电路13的一部分。在一个实施例中,读出电路接收光子信号进行处理以生成直方图。
处理电路13同步发射器11与采集器12的触发信号,对像素单元121采集的光子信号进行处理,并基于光束从发射到反射的飞行时间计算出待测目标物体的距离信息。在一个实施例中,SPAD对入射的单个光子进行响应而输出光子信号,处理电路13接收光子信号并进行信号处理获取光束的飞行时间。具体的,处理电路13计算采集光子的数量形成连续的时间bin,这些时间bin连在一起形成统计直方图用于重现反射光脉冲的时间序列,利用峰值匹配和滤波检测识别出光束从发射到被接收的飞行时间。可以理解的是,处理电路13可以是独立的 专用电路,比如专用SOC芯片、FPGA芯片、ASIC芯片等等,也可以包含通用处理电路。
在一些实施例中,测距系统10还包括存储器,用于存储脉冲编码程序,利用编码程序控制光源111发射光束的激发时间、发射频率等。
在一些实施例中,测距系统10还可以包括彩色相机、红外相机、IMU等器件,与这些器件的组合可以实现更加丰富的功能,比如3D纹理建模、红外人脸识别、SLAM等功能。
需要说明的是,参见图2A所示的单发多收原理图和图2B所示的多发单收原理图,在一些实施例中,由于测距系统中发射器和采集器之间基线的存在,会导致光源的发射光斑在像素单元上的成像位置会随着目标距离的不同而发生变化,称之为视差。因此在列扫描测距的过程中,只开启与光源对应的像素接收会无法接收某些距离下的回波信号,形成盲区。由于视差导致的光斑偏移是沿着基线方向,因此,为了方便描述,在后续实施例的描述中,以基线方向为水平方向,并且认为视差引起的偏移是从右往左偏移为例进行说明。需要说明的是,偏移方向仅做示意性说明,不能理解为对本发明方案的限制。应理解,示例性描述不能解释为对本申请的限制,在其他一些情形下,基线的方向还可以为垂直(或竖直)方向等。
在一些实施例中,以SPAD作为像素阵列的基于dTOF的测距系统中,SPAD像素与处理电路中的读出电路连接,各SPAD像素对应连接一个读出电路。读出电路包括TDC电路和直方图电路,SPAD像素对入射的单个光子进行响应而输出光子信号,TDC电路用于接收光子信号生成时间信号,直方图电路用于根据时间信号生成直方图。具体地,单个光子入射SPAD像素将引起雪崩,SPAD像素将输出雪崩信号至TDC电路,再由TDC电路检测出光子从发射器发出到引起雪崩的时间信号,利用该时间信号寻找直方图电路中相应的时间间隔(bin),使得该时间间隔内的光子计数值加1,通过多次检测之后将时间bin进行直方图统计以恢复出整个脉冲信号的波形,从而实现精确的飞行时间检测,最后根据飞行 时间计算出目标物体的距离信息。假定脉冲光束发射的脉冲周期为T,测距系统的最大测量范围为D max,对应的最大飞行时间是t 1=2D max/c,一般要求T≥t 1以避免信号混淆,其中c是光速。其中,直方图电路被配置为包括多个时间bin,多个时间bin的总和(记为直方图电路的测量时间范围)等于脉冲周期T,则时间bin的数量m=T/Δt,Δt为时间bin的大小。
图3所示为本申请一实施例提供的测距系统中光源阵列、像素单元与处理电路的结构示意图。其中,图3中左图为光源阵列31的结构示意图。图3中右图为像素单元32与处理电路33的结构示意图。光源阵列31中的每个光源与像素单元32中的每个像素(或合像素)一一对应。光源的排列可以是规则的也可以是不规则的,对应的,像素的排列可以是规则的也可以是不规则的,图3中仅示意性的示出了一种规则排列的示例。
光源阵列31被配置为由设置在单片或多片基底上的多个光源组成的二维光源阵列。可以理解的,光源阵列31包括多个列光源。在一些实施例中,在测距系统的一个测量阶段,光源阵列31发射的是线状光源,线状光源是由一个列光源的多个光源发射出的斑点光束相互连接形成的线状光源。优选地,光源阵列31是由设置在半导体基底上的多个VCSEL光源组成的阵列VCSEL芯片。光源阵列31中的光源可以发射任意波长的斑点光束,比如可见光、红外光、紫外光等。在一些实施例中,光源阵列31可以在驱动电路的调制驱动下进行发光,比如连续波调制、脉冲调制等,光源阵列31也可以在驱动电路的控制下进行分组发光。在一些实现方式中,驱动电路可以是处理电路33的一部分。
如图3中左图所示,光源阵列31包括多列光源,例如第一列光源1、第二列光源2和第三列光源7。第一列光源1、第二列光源2和第三列光源7各自包括多个光源(图3中左图所示一个小方框代表一个光源)。多个列光源可以在驱动电路的控制下启动以投射斑点光束到目标视场,在一个测量阶段激活至少两个列光源,直到所有列的光源均被启动后,完成对整个目标视场的扫描;其中,光源阵列31的扫描方向(即各列光源的启动顺序)沿着基线方向。在本实施例 中,基线方向为水平方向,则光源阵列31被配置为包括多列光源,在水平方向上(即沿着基线方向)逐列启动光源阵列完成一帧扫描。在一些实现方式中,每列光源可以设置在单独的基底上,分别由不同的驱动电路控制进行分组发光。
需要说明的是,光源阵列具体需根据基线方向设定包括多列光源或多行光源,当基线方向为水平方向时,光源阵列被配置为包括多个列光源或多列光源;而当基线方向为竖直(或垂直)方向,光源阵列被配置为包括多个行光源或多行光源。
如图3中右图所示,像素单元32包括像素阵列,具体地,像素阵列包括由多个像素组成的二维像素阵列。在本实施例中,基线方向为水平方向,像素阵列被配置为包括多列像素或多列合像素(图3中右图所示一个小方框代表一个像素或一个合像素)。当测距系统的发射器向目标发射斑点光束时,斑点光束经目标反射后,采集器会引导斑点光束成像至相应的像素或合像素上,测距系统的光源与像素(或合像素)一一对应。合像素的大小可以根据实际情况具体设定,至少包括一个像素。为了描述的方便,后续以一个光源对应一个像素作为示例对本实施例进行描述。像素阵列可以包括多列列像素,例如图3中所示的第一列像素3、第二列像素4、第三列像素5和第四列像素6。处理电路33包括TDC电路和直方图电路。具体地,每个像素对应连接一个TDC电路和直方图电路,直方图电路中多个时间bin的和等于T,即直方图电路的测量时间范围为T。需要说明的是,当采用合像素时,优选地,每个合像素中的各像素共用一个TDC电路和直方图电路,即对应连接同一个TDC电路和直方图电路。
由于测距系统中视差的存在,需要考虑光斑受到目标远近不同时存在成像偏移的情况,一般地,光斑会沿着基线方向发生偏移。结合图2A和图2B所示,测距系统的视差主要引起近距目标反射的光束产生偏移。本申请实施例中,为了克服近距离的测量盲区,配置多列光源发射斑点光束,开启一列像素用于接收反射回的来自多列光源的斑点光束。配置的一列像素一方面用于采集较远距离范围内目标反射的来自一些光源的反射光束(无视差),另一方面用于采集较近距 离范围内目标反射的来自其他一些光源的反射光束(有视差)。也就是说,配置的多列光源包括列像素对应的有视差列光源和无视差列光源。无视列光源主要用于向视场内离系统较远距离范围内的目标投射光束,有视差列光源主要用于向视场内离系统较近距离范围内的目标投射光束。
继续参见图3所示,在第一个测量阶段,第一列光源1和第二列光源2开启发射斑点光束,配置像素阵列第一列像素3开启并采集反射光斑。其中,第一列光源1为第一列像素3对应的无视差列光源,第二列光源2为第一列像素3对应的有视差列光源。也就是说,当第一列光源1发射斑点光束时,将投射到视场内的位于较远距离探测范围内的目标并将反射光束成像到第一列像素3;当第二列光源2发射斑点光束时,将投射到视场内的位于较近距离探测范围内的目标并将反射光束成像到第一列像素3。
在第二个测量阶段,第二列光源2和第三列光源7开启发射斑点光束,配置像素阵列第二列像素4开启并采集反射光斑。其中,第二列光源2为第二列像素4对应的无视差列光源,第三列光源7为第二列像素4对应的有视差列光源。也就是说,当第二列光源2发射斑点光束时,将投射到视场内的位于较远距离探测范围内的目标并将反射光束成像到第二列像素4;当第三列光源7发射斑点光束时,将投射到视场内的位于较近距离探测范围内的目标并将反射光束成像到第二列像素4。
像素阵列的每个像素对应连接一个TDC电路和直方图电路,直方图电路中多个时间bin的和等于T,即直方图电路的测量时间范围为T。在一个优选的实施例中,由于列像素是逐列依次开启的,因此,不同列像素中处于相同行的像素可以共用一个TDC电路和直方图电路。例如,第一列像素3、第二列像素4、第三列像素5和第四列像素6中位于同一行的像素可以共用一个TDC电路和直方图电路,实现TDC电路和直方图电路的时分复用,降低功耗和成本,有利于系统的小型化。
需要说明的是,在本申请实施例中,因视差引起的偏差范围所对应的列光源 数为2列作为示例性描述,应理解,此示例性描述不能解释为对本申请内容的具体限制。因视差引起的偏差范围所对应的列光源数可以受到系统的基线大小,测距范围等的影响。在一些实施例中,可以通过理论计算或者标定的方法确定由视差引起的偏差范围所对应的列光源数。
在图3所示实施例中,用两个光源分别对采集视场中位于近距范围和远距范围的目标发射斑点光束。受到目标反射率、环境温度等因素的影响,导致两个光源对应的投射范围存在重叠的情况,无法确定测量到的信号对应哪个光源,则无法在计算出目标准确的三维坐标数据。在一些实现方式中,远距光源(无视差光源)发射能够覆盖的测距范围为D01至D02,D01<D02,相邻近距光源(有视差光源)发射能够覆盖的测距范围为D11至D12,D11<D12,因为两者的测距范围有重叠,所以D12>D01。作为一非限制性示例,近距列光源的测量范围为0至30m,对应的直方图电路中的测量时间范围为0至0.2us,而远距列光源的测量范围为15m至150m,对应的直方图电路中的测量时间范围为0.1us至1us,当解算直方图确定目标飞行时间为0.18us时,无法确定是该飞行时间对应的是哪个光源的投射视场,则无法准确获取目标的三维坐标数据。
针对上述实施例存在的问题,在其他一些实施例中,控制多个列光源依次发射并控制列光源按照预设的时间延时发射。时间延时t可以根据近远距列光源测量重叠范围确定。在配置直方图电路时需要设置直方图电路的测量时间范围为T+t。T为未加时间延时的情形下直方图电路的测量时间范围。
作为一实现方式,首先控制近距列光源(即有视差列光源)发射脉冲,在时间间隔t≥(D12-D01)/(2×c)之后控制远距列光源(即无视差列光源)发射脉冲,其中c为光速。这样就可消除不同发射列之间的直方图混叠。当开启更多列发射时,可以参考这一方式进行扩展,此处不再赘述。相较于一发多收的方式,本实现方式中接收列像素是一直开启的,因此测试结果上不存在切换盲区,可以在一个测试脉冲周期内完成多个发射的触发,同时对TDC资源消耗不变。效果更佳。在本实现方式中,配置直方图电路的测量时间范围为T+t。
作为一非限制性示例,继续参见图3所示,第一列光源1为第一列像素3对应的无视差列光源,第二列光源2为第一列像素3对应的有视差列光源。第二列光源2为第二列像素4对应的无视差列光源,第三列光源7为第二列像素4对应的有视差列光源。在第一个测量阶段,先开启第二列光源2发射斑点光束,开启第一列像素3采集来自第二列光源2的反射光斑;在预设时间间隔t后再开启第一列光源1发射斑点光束,第一列像素3采集来自第一列光源1的反射光斑。在第二个测量阶段,先开启第三列光源7发射斑点光束,开启第二列像素4采集来自第三列光源7的反射光斑;在预设时间间隔t后再开启第二列光源2发射斑点光束,第二列像素4采集来自第二列光源2的反射光斑。
在其他一些实施例中,考虑到近距点的反射信号能量更强,信噪比更高,因此在实际测试过程中针对近距列光源(有视差列)的开启时间可以大幅降低,从而减少多列光源开启导致的帧频降低。
此时,在一些实施例中,可以通过同时减少远距列光源的开启时长,通过牺牲一部分远距测试性能以保证帧频不变;在其他一些实施例中,也可以维持远距列光源对应开启时长不变,通过牺牲一些帧频来维持远距测试性能。
作为一非限制性示例,继续参见图3所示,第一列光源1为第一列像素3对应的无视差列光源,第二列光源2为第一列像素3对应的有视差列光源。
例如,在第一个测量阶段,开启第一列光源1和第二列光源2发射斑点光束,开启第一列像素3采集反射光斑,第一列光源1的开启时长为h1,第二列光源2的开启时长为h2,h1>h2。
又如,在第一个测量阶段,先开启第二列光源2发射斑点光束,同时开启第一列像素3采集反射光斑,第二列光源2的开启时长为h3;在距离开启第二列光源2预设时间间隔t后,再开启第一列光源1发射斑点光束,第一列像素3采集反射光斑,第一列光源1的开启时长为h4。其中,h3<h4。
在其他一些实施例中,每个列光源都具有单独的驱动电路,考虑到近距点的反射信号能量更强,信噪比更高,可以利用驱动电路动态调控发射脉冲光束的周 期,从而减少多列光源开启导致的帧频降低。
具体地,可以利用驱动电路动态调控近距列光源(即有视差列光源)发射脉冲光束的周期小于远距列光源(即无视差列光源)。
作为一非限制性示例,继续参见图3所示,第一列光源1为第一列像素3对应的无视差列光源,第二列光源2为第一列像素3对应的有视差列光源。
例如,在第一个测量阶段,开启第一列光源1和第二列光源2发射斑点光束,同时开启第一列像素3采集反射光斑。第一列光源1和第二列光源2均发射脉冲光束,第二列光源2发射脉冲光束的周期小于第一列光源1发射脉冲光束的周期。
又如,在第一个测量阶段,先开启第二列光源2发射斑点光束,同时开启第一列像素3采集反射光斑;在距离开启第二列光源2预设时间间隔t后,再开启第一列光源1发射斑点光束,第一列像素3采集反射光斑。第一列光源1和第二列光源2均发射脉冲光束,第二列光源2发射脉冲光束的周期小于第一列光源1发射脉冲光束的周期。
需要说明的是,在图3所示实施例中,以开启单列列像素接收反射光斑作为示例性描述。在其他一些实施例中,还可以采用多列发射多列接收的方式,也就是说,开启多列列光源发射斑点光束,开启多列列像素接收反射光斑。
作为一非限制性示例,继续参见图3所示,在第一个测量阶段,开启第一列光源1和第二列光源2发射斑点光束,可以调控第一列像素3和第二列像素4同时开启并采集反射光斑。对于第一列像素3来说,第一列光源1是无视差列,第二列光源2是有视差列;对于第二列像素4来说,第二列光源2则是无视差列。在第二个测量阶段,开启第一列光源2和第二列光源7发射斑点光束,可以调控第二列像素4和第三列像素5同时开启并采集反射光斑。对于第二列像素4来说,第二列光源2是无视差列,第三列光源7是有视差列;对于第三列像素5来说,第三列光源7则是无视差列。
还需要说明的是,在图3所示实施例中,以单线扫描作为扫描方式的示例 性描述。在其他一些实施例中,还可以采用逐点扫描的方式,或者采用多线扫描的方式等。应理解,示例性描述不能解释为对本申请内容的具体限制。
在逐点扫描的方式中,每次开启多个光源发射斑点光束,并同时控制采集器开启一个像素接收反射光斑,其中,多个光源包括一个像素对应的有视差光源和无视差光源。
在前述的实施例中详细介绍了单线扫描的情形,现在介绍多线扫描的情形。多线扫描的实施例中与单线扫描实施例相同之处,此处不再赘述。
在多线扫描实施例中,发射器包括多个光源阵列,每个光源阵列配置为由多个光源组成的一维或二维光源阵列。对应的,采集器包括多个像素阵列,每个像素阵列配置为由多个像素组成的一维或二维像素阵列。多个像素阵列与多个光源阵列一一对应。
每个光源阵列与其对应的像素阵列的具体结构与前述图3所示实施例的情形相同。
为了方便描述多线扫描实施例,在一个实施例中,以发射器包括3个光源阵列,采集器包括3个像素阵列为例进行说明。3个光源阵列分别为第一光源阵列、第二光源阵列和第三光源阵列;3个像素阵列分别为第一像素阵列、第二像素阵列和第三像素阵列。在该实施例中,将目标视场分成三个区域进行扫描,第一光源阵列和对应的第一像素阵列用于扫描第一区域,第二光源阵列和对应的第二像素阵列用于扫描第二区域,第三光源阵列和对应的第三像素阵列用于扫描第三区域。应理解,针对每个区域的扫描过程,与前述单线扫描实施例的情形相同。
为实现对目标区域的分区域扫描,在测量的第一阶段,控制每一光源阵列中的第一列光源和第二列光源向目标区域发射斑点光束,同时控制每个像素阵列开启第一列像素,第一列光源为与第一列像素对应的无视差列,第二列光源为与第一列像素对应的有视差列;在测量的第二阶段,控制每一光源阵列中的第二列光源和第三列光源向目标区域发射斑点光束,以此类推,在测量的第n阶段时, 控制每一光源阵列的第n列光源和第n+1列光源发射斑点光束,直至每一光源阵列中的最后一个列光源发射的斑点光束被采集器接收到,完成一帧测量。可以理解的是,以上数字描述只做示意性说明,不对本申请的内容做具体限制。通过将面阵光源系统配置为全固态,可靠性高,通过发射端线光源的动态切换,实现全视场覆盖。
图4A所示为本申请另一实施例提供的一种测距方法。测距方法可应用于前述任一实施例的测距系统。在一些实施例中,测距方法可以由测距系统的处理电路执行。在一些实施例中,测距方法可以由电子设备执行。
如图4所示,测距方法可以包括如下步骤S41至S43。
S41,控制光源阵列中的至少两个列光源发射斑点光束。
S42,同步控制采集器中的至少一个列像素开启并采集被目标反射的斑点光束并输出光子信号。
S43,根据光子信号计算目标的距离信息。
其中,所述至少两个列光源包括所述至少一个列像素中同一个列像素对应的无视差列光源和有视差列光源。
在一些实施例中,具体地,光源阵列为多个,采集器包括多个像素阵列,多个光源阵列与多个像素阵列一一对应。步骤S41包括:控制各光源阵列中的至少两个列光源发射斑点光束;步骤S42包括:同步控制各像素阵列中一个列像素开启并采集来自对应光源阵列且被目标反射的斑点光束并输出光子信号。
在一些实施例中,具体地,步骤S43包括:接收光子信号进行处理并生成直方图,根据直方图计算斑点光束从发射到被采集之间的飞行时间,基于飞行时间计算出目标物体的距离信息。
在其他一些实施例中,测距方法还包括:控制至少两个列光源中有视差列光源先开启,至少两个列光源中无视差列光源后开启。也就是说,控制至少两个列光源中有视差列光源先发射斑点光束,无视差列光源后发射斑点光束。
在其他一些实施例中,测距方法还包括:控制至少两个列光源中有视差列光 源的开启时长,小于至少两个列光源中无视差列光源的开启时长。也就是说,控制至少两个列光源中有视差列光源发射斑点光束的时长小于无视差列光源发射斑点光束的时长。
在其他一些实施例中,测距方法还包括:控制至少两个列光源中有视差列光源发射脉冲光束的周期小于至少两个列光源中无视差列光源发射脉冲光束的周期。
需要说明的是,本实施例的测距方法是采用前述任一实施例测距系统进行测距,其技术方案与前述测距系统相似,故在此不再重复赘述。
可以理解的是,以上实施例只做示意性说明,并不能作为对本申请的限制。在其他一些实施例中,也可以控制发射器发射横向的线状光束沿纵向进行扫描。在其他一些实施例中,光源阵列也可以是其他组合形式的光源阵列,例如,可以是利用合束元件将多个子光源合成一个光源形成的光源阵列。在一些实施例中,还可以动态控制子光源阵列以产生不同宽度的线状光束。
作为本申请另一实施例,还提供一种电子设备,参照图5所示,电子设备500包括:处理器50、存储器51以及存储在所述存储器51中并可在所述处理器50上运行的计算机程序52,例如距离测量的程序。所述处理器50执行所述计算机程序52时实现上述任一实施例的测距方法实施例中的步骤,例如图4所示的步骤S41至S43。
示例性的,所述计算机程序52可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器51中,并由所述处理器50执行,以完成本申请。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序52在电子设备500中的执行过程。
本领域技术人员可以理解,图5仅仅是电子设备500的示例,并不构成对电子设备500的限定,电子设备500可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如电子设备500还可以包括输入输出设备、 网络接入设备、总线等。
所称处理器50可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器51可以是电子设备500的内部存储单元,例如电子设备500的硬盘或内存。所述存储器51也可以是电子设备500的外部存储设备,例如电子设备500上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器51还可以既包括电子设备500的内部存储单元也包括外部存储设备。所述存储器51用于存储所述计算机程序以及电子设备所需的其他程序和数据。所述存储器51还可以用于暂时地存储已经输出或者将要输出的数据。
本申请另一实施例,还提供一种电子设备,电子设备包括前述任一实施例的测距系统,其中,所述测距系统的发射器与采集器设置于电子设备本体的同一侧。在一个实施例中,测距系统用于向目标物体发射光束以及接收目标物体反射回来的光束并形成光子信号,跟据所述光子信号计算目标物体的距离信息。
作为一非限制性示例,电子设备可以包括光学测量系统,例如激光雷达等。
本申请一实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现可实现上述各个测距方法实施例中的步骤。
本申请一实施例提供了一种计算机程序产品,当计算机程序产品在电子设备上运行时,使得电子设备可实现上述各个测距方法实施例中的步骤。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/电子设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/电子设备实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,计算机程序包括计算机程序代码,计算机程序代码可以为源代码形式、对象代码形式、可执行文件 或某些中间形式等。计算机可读介质可以包括:能够携带计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、ROM、RAM、电载波信号、电信信号以及软件分发介质等。需要说明的是,计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种测距系统,其特征在于,包括:发射器、采集器和处理电路;
    所述发射器包括由多个列光源组成的光源阵列;
    所述采集器包括由多个列像素组成的像素阵列;
    所述处理电路控制所述光源阵列中的至少两个列光源发射斑点光束,同步控制所述采集器中的至少一个列像素开启并采集被目标反射的所述斑点光束并输出光子信号,所述处理电路根据所述光子信号计算所述目标的距离信息;
    其中,所述至少两个列光源包括所述至少一个列像素中同一个列像素对应的无视差列光源和有视差列光源。
  2. 如权利要求1所述的测距系统,其特征在于,所述处理电路还包括读出电路,所述读出电路包括TDC电路和直方图电路,所述TDC电路根据所述光子信号输出时间信号,所述直方图电路根据所述时间信号生成直方图。
  3. 如权利要求1所述的测距系统,其特征在于,所述处理电路用于接收所述光子信号进行处理并生成直方图,根据所述直方图计算所述斑点光束从发射到被采集之间的飞行时间,根据所述飞行时间计算所述目标的距离信息。
  4. 如权利要求1至3任一项所述的测距系统,其特征在于,所述至少两个列光源中所述有视差列光源先开启,所述至少两个列光源中所述无视差列光源后开启。
  5. 如权利要求1至3任一项所述的测距系统,其特征在于,所述至少两个列光源中所述有视差列光源的开启时长小于所述至少两个列光源中所述无视差列光源的开启时长。
  6. 如权利要求1至3任一项所述的测距系统,其特征在于,所述至少两个列光源中所述有视差列光源的脉冲周期小于所述至少两个列光源中所述无视差列光源的脉冲周期。
  7. 如权利要求2所述的测距系统,其特征在于,所述像素阵列中处于同一行的像素共用一个读出电路。
  8. 如权利要求1至3任一项所述的测距系统,其特征在于,
    所述发射器包括多个所述光源阵列;
    所述采集器包括与多个所述光源阵列一一对应的多个所述像素阵列;
    所述处理电路控制各所述光源阵列中的至少两个列光源发射斑点光束,同步控制各所述像素阵列中一个列像素开启并采集来自对应光源阵列的且被目标反射的所述斑点光束并输出光子信号,所述处理电路根据所述光子信号计算所述目标的距离信息;
    其中,每个所述光源阵列中的所述至少两个列光源包括对应像素阵列中的所述一个列像素对应的无视差列光源和有视差列光源。
  9. 一种测距方法,其特征在于,包括:
    控制发射器中的至少两个列光源发射斑点光束;
    同步控制采集器中的至少一个列像素开启并采集被目标反射的所述斑点光束并输出光子信号;
    根据所述光子信号计算所述目标的距离信息;
    其中,所述至少两个列光源包括所述至少一个列像素中同一个列像素对应的无视差列光源和有视差列光源。
  10. 一种电子设备,其特征在于,包括如权利要求1至8任一项所述的测距系统,所述测距系统的所述发射器与所述采集器设置于所述电子设备本体的同一侧。
PCT/CN2022/080514 2021-10-19 2022-03-13 一种测距系统及测距方法 WO2023065589A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111216644.0 2021-10-19
CN202111216644.0A CN113960569A (zh) 2021-10-19 2021-10-19 一种测距系统及测距方法

Publications (1)

Publication Number Publication Date
WO2023065589A1 true WO2023065589A1 (zh) 2023-04-27

Family

ID=79464722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080514 WO2023065589A1 (zh) 2021-10-19 2022-03-13 一种测距系统及测距方法

Country Status (2)

Country Link
CN (1) CN113960569A (zh)
WO (1) WO2023065589A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113960569A (zh) * 2021-10-19 2022-01-21 深圳奥锐达科技有限公司 一种测距系统及测距方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160041266A1 (en) * 2014-08-11 2016-02-11 Gerard Dirk Smits Three-dimensional triangulation and time-of-flight based tracking systems and methods
CN109212538A (zh) * 2017-06-29 2019-01-15 苹果公司 具有视差补偿的飞行时间深度映射
CN110998365A (zh) * 2017-07-05 2020-04-10 奥斯特公司 具有电子扫描发射器阵列和同步传感器阵列的光测距装置
CN111856433A (zh) * 2020-07-25 2020-10-30 深圳奥锐达科技有限公司 一种距离测量系统及测量方法
CN212694039U (zh) * 2020-05-18 2021-03-12 深圳奥锐达科技有限公司 一种距离测量系统
CN113260874A (zh) * 2018-11-20 2021-08-13 感觉光子公司 用于空间分布式选通的方法和系统
CN113447933A (zh) * 2020-03-24 2021-09-28 上海禾赛科技有限公司 激光雷达的探测单元、激光雷达及其探测方法
CN113960569A (zh) * 2021-10-19 2022-01-21 深圳奥锐达科技有限公司 一种测距系统及测距方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160041266A1 (en) * 2014-08-11 2016-02-11 Gerard Dirk Smits Three-dimensional triangulation and time-of-flight based tracking systems and methods
CN109212538A (zh) * 2017-06-29 2019-01-15 苹果公司 具有视差补偿的飞行时间深度映射
CN110998365A (zh) * 2017-07-05 2020-04-10 奥斯特公司 具有电子扫描发射器阵列和同步传感器阵列的光测距装置
CN113260874A (zh) * 2018-11-20 2021-08-13 感觉光子公司 用于空间分布式选通的方法和系统
CN113447933A (zh) * 2020-03-24 2021-09-28 上海禾赛科技有限公司 激光雷达的探测单元、激光雷达及其探测方法
CN212694039U (zh) * 2020-05-18 2021-03-12 深圳奥锐达科技有限公司 一种距离测量系统
CN111856433A (zh) * 2020-07-25 2020-10-30 深圳奥锐达科技有限公司 一种距离测量系统及测量方法
CN113960569A (zh) * 2021-10-19 2022-01-21 深圳奥锐达科技有限公司 一种测距系统及测距方法

Also Published As

Publication number Publication date
CN113960569A (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
CN110596722B (zh) 直方图可调的飞行时间距离测量系统及测量方法
CN111722241B (zh) 一种多线扫描距离测量系统、方法及电子设备
CN111025317B (zh) 一种可调的深度测量装置及测量方法
WO2022021797A1 (zh) 一种距离测量系统及测量方法
WO2021248892A1 (zh) 一种距离测量系统及测量方法
WO2021072802A1 (zh) 一种距离测量系统及方法
CN110596724B (zh) 动态直方图绘制飞行时间距离测量方法及测量系统
CN109343070A (zh) 时间飞行深度相机
CN110596723B (zh) 动态直方图绘制飞行时间距离测量方法及测量系统
WO2021244011A1 (zh) 一种距离测量方法、系统及计算机可读存储介质
CN110780312B (zh) 一种可调距离测量系统及方法
WO2022011974A1 (zh) 一种距离测量系统、方法及计算机可读存储介质
CN209894976U (zh) 时间飞行深度相机及电子设备
WO2023065589A1 (zh) 一种测距系统及测距方法
CN111796295A (zh) 一种采集器、采集器的制造方法及距离测量系统
CN109283508A (zh) 飞行时间计算方法
CN110716189A (zh) 一种发射器及距离测量系统
WO2021212915A1 (zh) 一种激光测距装置及方法
CN212694039U (zh) 一种距离测量系统
CN114236496A (zh) 发射模组、光学检测装置及电子设备
CN213091889U (zh) 一种距离测量系统
CN210835244U (zh) 基于同步ToF离散点云的3D成像装置及电子设备
CN111796296A (zh) 一种距离测量方法、系统及计算机可读存储介质
CN111487603A (zh) 一种激光发射单元及其制造方法
CN113820724A (zh) 一种执行飞行时间的离轴测量系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882214

Country of ref document: EP

Kind code of ref document: A1