WO2022137685A1 - 測距装置、測距方法および位相検出装置 - Google Patents

測距装置、測距方法および位相検出装置 Download PDF

Info

Publication number
WO2022137685A1
WO2022137685A1 PCT/JP2021/035123 JP2021035123W WO2022137685A1 WO 2022137685 A1 WO2022137685 A1 WO 2022137685A1 JP 2021035123 W JP2021035123 W JP 2021035123W WO 2022137685 A1 WO2022137685 A1 WO 2022137685A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
sensitivity
pixel
light
voltage
Prior art date
Application number
PCT/JP2021/035123
Other languages
English (en)
French (fr)
Inventor
雄介 岡田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2022571056A priority Critical patent/JPWO2022137685A1/ja
Publication of WO2022137685A1 publication Critical patent/WO2022137685A1/ja
Priority to US18/321,928 priority patent/US20230296738A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/489Gain of receiver varied automatically during pulse-recurrence period

Definitions

  • the present disclosure relates to a distance measuring device, a distance measuring method, and a phase detection device.
  • the TOF (Time-Of-Flight) method is a method of measuring the distance to an object by measuring the flight time of the pulsed light. In this way, the distance is measured by using a device that detects the phase difference, which is the delay time (delay time) from a certain reference time.
  • Patent Document 1 proposes a technique for acquiring a two-dimensional distance image by applying this principle and using a CMOS (Complementary Metal Oxide Semiconductor) type solid-state imaging device having a pixel structure of a charge distribution method. .. Specifically, the projected pulse light is reflected on the object, and the signal component corresponding to the preceding portion of the reflected pulse light arriving late and the signal component corresponding to the trailing portion are distributed by the switch. Distance information for each pixel can be obtained by detecting these distributed signal components for each pixel and obtaining the ratio between the leading portion and the trailing portion.
  • CMOS Complementary Metal Oxide Semiconductor
  • the present disclosure provides a distance measuring device and a distance measuring method capable of improving the distance measuring accuracy. Further, the present disclosure provides a phase detection device capable of improving the phase detection accuracy.
  • the distance measuring device includes a light projecting unit that projects pulsed light toward an object to be detected, and light that receives the reflected light of the pulsed light projected by the light projecting unit from the object to be detected. It is a detection unit and includes a light detection unit including a first pixel with variable sensitivity and a control circuit.
  • the light projection unit projects a first pulse light in a first period
  • the control circuit is the control circuit.
  • a first light receiving light that is a second period having the same length as the first period and is composed of a second period that starts after the start time of the first period and a third period that follows the second period. In the period, the sensitivity of the first pixel is set to the first sensitivity in the second period, and is set to the second sensitivity different from the first sensitivity in the third period.
  • the first pulse light is projected toward the object to be detected in the first period, and the reflected light of the first pulse light from the object to be detected is used in the first period.
  • the first light receiving period which is a second period having the same length as the above, and is composed of a second period starting after the start time of the first period and a third period following the second period.
  • the detection is performed with the first sensitivity
  • the detection is performed with a second sensitivity different from the first sensitivity.
  • the phase detection device is a light detection unit that receives pulsed light delayed by a predetermined time from a reference time, and includes a light detection unit including a first pixel having variable sensitivity and a control circuit.
  • the control circuit is provided with a second period in which the pulse width and the length of the pulsed light are equal to each other, the second period starting after the reference time and the third period following the second period.
  • the sensitivity of the first pixel is set to the first sensitivity in the second period, and is set to a second sensitivity different from the first sensitivity in the third period.
  • the distance measurement accuracy can be improved.
  • the phase detection accuracy can be improved.
  • FIG. 1A is a cross-sectional view showing an example of pixels of an image pickup device in a distance measuring device that measures a distance by a conventional TOF method.
  • FIG. 1B is a diagram showing an example of pixel operation in the conventional TOF method.
  • FIG. 2 is a block diagram showing an exemplary configuration of the distance measuring device according to the first embodiment.
  • FIG. 3 is a diagram showing an exemplary circuit configuration of the image pickup apparatus according to the first embodiment.
  • FIG. 4 is a cross-sectional view schematically showing an exemplary device structure of the pixels according to the first embodiment.
  • FIG. 5 is a timing chart showing an example of the operation of the distance measuring device according to the first embodiment.
  • FIG. 6 is a timing chart showing an example of the operation of a plurality of pixels according to the first embodiment.
  • FIG. 7 is a timing chart showing an example of the timing of the control signal in the pixel readout period according to the first embodiment.
  • FIG. 8 is a diagram for explaining the principle of measuring the distance to the object to be detected by the distance measuring device according to the first embodiment.
  • FIG. 9 is another diagram for explaining the principle of measuring the distance to the object to be detected by the distance measuring device according to the first embodiment.
  • FIG. 10 is a timing chart showing a case where the operation shown in FIG. 5 is repeated.
  • FIG. 11 is a timing chart showing a modification 1 of the operation of the distance measuring device according to the first embodiment.
  • FIG. 12A is a diagram showing the signal charge amount of the reflected light accumulated in the distance measuring device when the projected light is projected onto the object to be detected.
  • FIG. 12A is a diagram showing the signal charge amount of the reflected light accumulated in the distance measuring device when the projected light is projected onto the object to be detected.
  • FIG. 12B is a diagram showing the signal charge amount of the reflected light accumulated in the distance measuring device when the projected light having a pulse width different from that of FIG. 12A is projected onto the object to be detected.
  • FIG. 13 is a timing chart showing a modified example 2 of the operation in the distance measuring device according to the first embodiment.
  • FIG. 14 is a timing chart showing a modified example 3 of the operation in the distance measuring device according to the first embodiment.
  • FIG. 15 is a diagram showing an exemplary circuit configuration of the image pickup apparatus according to the second embodiment.
  • FIG. 16 is a timing chart showing an example of the operation of the distance measuring device according to the second embodiment.
  • FIG. 17 is a diagram showing an exemplary circuit configuration of the image pickup apparatus according to the third embodiment.
  • FIG. 18 is a timing chart showing an example of the operation of the distance measuring device according to the third embodiment.
  • FIG. 19 is a timing chart showing a modified example of the operation of the distance measuring device according to the third embodiment.
  • FIG. 20 is a diagram showing an exemplary circuit configuration of the image pickup apparatus according to the fourth embodiment.
  • FIG. 21 is a timing chart showing an example of the operation of the distance measuring device according to the fourth embodiment.
  • FIG. 22 is a block diagram showing an exemplary configuration of the phase detection device according to the fifth embodiment.
  • FIG. 23 is a diagram showing an example of a signal transmitted by the transmitting device.
  • FIG. 24 is a timing chart showing an example of the operation in the phase detection device according to the fifth embodiment.
  • FIG. 1A is a cross-sectional view showing an example of pixels 900 of an image pickup device in a distance measuring device that measures a distance by a conventional TOF method.
  • the pixel 900 includes a photodiode 902, a charge storage unit FD1 and a charge storage unit FD2 configured on the semiconductor substrate 901, which are controlled by the control signal line TX1 and the control signal line TX2. It is connected via a gate. Further, the portion other than the photodiode 902 is shielded from light by the light-shielding plate 903. Although the description is omitted in FIG.
  • the distance measuring device for measuring the distance by the TOF method includes an image pickup element including the pixel 900, a light source for irradiating the object to be detected with light, and a pixel.
  • the 900 includes a lens for forming an image of the reflected light from the object to be detected.
  • FIG. 1B is a diagram showing an example of the operation of the pixel 900 in the conventional TOF method.
  • pulsed light having a pulse width Tp is projected from the light source onto the object to be detected at the timing shown as “projected light” in FIG. 1B, and the reflected light from the object to be detected is the “received light” in FIG. 1B.
  • the light is incident on the pixel 900 as a pulse light having a pulse width T p delayed by the flight time T d from the projected light at the timing shown as.
  • the charge generated by photoelectric conversion of the reflected light in the photodiode 902 is distributed and accumulated in the two charge storage units FD1 and the charge storage unit FD2. More specifically, the charges generated in the photodiode 902 by the reflected light are shown in "TX1", “TX2", “stored charge in FD1” and “stored charge in FD2” in FIG. 1B.
  • the voltage of the control signal line TX1 is stored in the charge storage unit FD1 during the period when the voltage is at the high level, and is stored in the charge storage unit FD2 during the period when the voltage of the control signal line TX2 is at the high level.
  • the voltage of the control signal line TX1 is set to the High level during the period from the time when the irradiation of the projected light is started to the time when the irradiation of the projected light is finished. Further, the voltage of the control signal line TX2 is set to the High level for a period from the time when the irradiation of the projected light is completed to the time when the pulse width Tp of the projected light has elapsed. As a result, the amount of charge corresponding to the charge generated in the time width (T p ⁇ T d ) of the pulse width T p of the reflected light is accumulated in the charge storage unit FD1, and the charge storage unit FD2 flies.
  • the amount of charge corresponding to the generated charge is accumulated in the time width of time T d .
  • the signal read from the charge storage unit FD1 by a readout circuit is A1 and the signal read from the charge storage unit FD2 is A2 .
  • the reflected light which is the phase difference between the projected light and the reflected light is The delay time, that is, the flight time T d of the pulsed light is calculated by the following equation (1).
  • the distance d to the object to be detected can be calculated by the following equation (2).
  • the distance d to the object to be detected can be calculated by using the pixel 900, but in the pixel 900, the charge generated by one photodiode 902 is charged according to the pulse width Tp . It is necessary to distribute the charge to the charge storage unit FD2 at high speed. Further, the charge generated in the photodiode 902 may be distributed and accumulated in the charge storage unit FD2 before being completely transferred to the charge storage unit FD1. Therefore, it is difficult to improve the distance measurement accuracy with the conventional TOF method.
  • the upper limit d max of the distance that can be measured by this method is when the flight time T d in the equation (1) is equal to the pulse width T p of the projected light, and the following equation (3). ) Is calculated.
  • the upper limit d max of the measurable distance is proportional to the pulse width T p of the projected light, and the measurement range of the distance can be expanded by increasing the pulse width T p .
  • increasing the pulse width Tp deteriorates the resolution of distance measurement and lowers the distance measurement accuracy. That is, there is a trade-off relationship between the size of the distance measurement range and the measurement resolution in the conventional TOF method, and it is difficult to maintain both of them in good condition.
  • the present inventors have found that in order to solve such a problem, the phase detection accuracy and the distance measurement accuracy can be improved by controlling the sensitivity of the pixel.
  • one aspect of the distance measuring device in the present disclosure is characterized in that the distance measuring device using the TOF method expands the distance measuring range without causing deterioration of the measurement resolution.
  • the distance measuring device includes a light projecting unit that projects pulsed light toward an object to be detected, and light that receives the reflected light of the pulsed light projected by the light projecting unit from the object to be detected. It is a detection unit and includes a light detection unit including a first pixel with variable sensitivity and a control circuit.
  • the light projection unit projects a first pulse light in a first period
  • the control circuit is the control circuit.
  • a first light receiving light that is a second period having the same length as the first period and is composed of a second period that starts after the start time of the first period and a third period that follows the second period. In the period, the sensitivity of the first pixel is set to the first sensitivity in the second period, and is set to the second sensitivity different from the first sensitivity in the third period.
  • the sensitivity of the first pixel changes between the first sensitivity and the second sensitivity during the first light receiving period, so that the amount of signal charge accumulated in the first pixel is increased according to the flight time of the first pulse light. Change.
  • the flight time can be calculated from the amount of signal charge stored in the first pixel, the distance to the object to be detected can be measured by the TOF method.
  • the distance measuring device can improve the distance measuring accuracy.
  • the first sensitivity and the second sensitivity may be constant in the second period and the third period, respectively.
  • the flight time can be easily calculated from the amount of electric charge accumulated in the first pixel.
  • the first sensitivity and the second sensitivity increase linearly in the second period and the third period, respectively, or linearly in the second period and the third period, respectively. May drop to.
  • the flight time can be easily calculated from the amount of electric charge accumulated in the first pixel.
  • the first light receiving period is composed of the second period, the third period, and the fourth period following the third period, and the control circuit determines the sensitivity of the first pixel.
  • the fourth period the first sensitivity and the third sensitivity different from the second sensitivity are set, the length of the third period is equal to the length of the first period, and the second sensitivity is the first. It may be a sensitivity between the 1st sensitivity and the 3rd sensitivity.
  • the sensitivity of the first pixel changes in this order between the first sensitivity, the second sensitivity, and the third sensitivity in the first light receiving period, so that the sensitivity of the first pixel increases or decreases in this order, depending on the flight time of the pulsed light.
  • the amount of signal charge stored in the first pixel changes.
  • the first light receiving period is longer than the first period in which the first pulse light is projected, that is, twice the pulse width of the first pulse light.
  • the flight time can be calculated from the amount of signal charge stored in the first pixel, so that the flight time can be calculated by the TOF method to the object to be detected. You can measure the distance. Therefore, since the measurement range of the distance to the object to be detected can be expanded without increasing the pulse width, it is possible to prevent the distance measurement accuracy from being lowered due to the increase in the pulse width. Therefore, the distance measuring device can improve the distance measuring accuracy.
  • the first sensitivity, the second sensitivity, and the third sensitivity may be constant in each of the second period, the third period, and the fourth period, respectively.
  • the flight time can be easily calculated from the amount of electric charge accumulated in the first pixel.
  • the first sensitivity, the second sensitivity, and the third sensitivity increase linearly in each of the second period, the third period, and the fourth period, respectively.
  • it may decrease linearly in each of the second period, the third period, and the fourth period.
  • the flight time can be easily calculated from the amount of electric charge accumulated in the first pixel.
  • the photodetector may include a second pixel, and the control circuit may set the sensitivity of the second pixel to a reference sensitivity for distance measurement during the first light receiving period.
  • the signal charge based on the reference sensitivity is accumulated in the second pixel.
  • the sensitivity ratio between the first pixel and the second pixel which is easier to measure more accurately than the absolute value of the sensitivity, and the amount of signal charge stored in the first pixel and the amount of signal charge stored in the second pixel. Based on this, the flight time can be calculated. Therefore, the distance measuring device can improve the distance measuring accuracy.
  • the photodetector includes a third pixel
  • the control circuit measures the sensitivity of the first pixel in the non-light receiving period following the first light receiving period to obtain the sensitivity of the first pixel in the first light receiving period.
  • the base sensitivity may be set to be lower than the sensitivity of one pixel, and the sensitivity of the third pixel may be set to the base sensitivity during the first light receiving period.
  • the sensitivity of the third pixel is set to the base sensitivity of the first pixel in the non-light receiving period.
  • the distance measurement is performed by the amount of the signal charge accumulated in the first pixel in the non-light receiving period.
  • the effect on accuracy can be reduced by subtracting the amount of signal charge stored in the third pixel.
  • the light projecting unit projects the second pulse light in the fifth period having the same length as the first period
  • the control circuit has the same length as the first light receiving period and the fifth.
  • the sensitivity of the first pixel may be set as the reference sensitivity for distance measurement.
  • the signal charge based on the reference sensitivity is accumulated in the first pixel.
  • the ratio of the sensitivity of the first pixel in the first light receiving period to the sensitivity of the first pixel in the second light receiving period which is easier to measure more accurately than the absolute value of the sensitivity of the first pixel, and in the first light receiving period.
  • the flight time can be calculated based on the amount of signal charge stored in the first pixel and the amount of signal charge stored in the first pixel during the second light receiving period. Therefore, the distance measuring device can improve the distance measuring accuracy.
  • the light projecting unit projects a third pulse light in a sixth period having the same length as the first period, and the control circuit performs the non-light receiving period following the first light receiving period.
  • the sensitivity of the first pixel is set to a base sensitivity lower than the sensitivity of the first pixel in the first light receiving period, the length is equal to the first light receiving period, and the sensitivity is started after the start time of the sixth period.
  • the sensitivity of the first pixel may be set to the basal sensitivity.
  • the sensitivity of the first pixel in the third light receiving period is set to the basal sensitivity of the first pixel in the non-light receiving period.
  • the measurement is performed by the amount of the signal charge accumulated in the first pixel in the non-light receiving period.
  • the influence on the distance accuracy can be reduced by subtracting the amount of signal charge accumulated in the first pixel during the third light receiving period.
  • the first pixel includes a photoelectric conversion unit
  • the control circuit may set the sensitivity of the first pixel by adjusting the magnitude of the voltage applied to the photoelectric conversion unit. good.
  • the sensitivity of the first pixel is set only by adjusting the magnitude of the voltage applied to the photoelectric conversion unit, so that the operation of setting the sensitivity can be simplified.
  • the first pixel includes a photoelectric conversion unit
  • the control circuit includes a first voltage and a second voltage larger than the first voltage, which is a pulse voltage applied to the photoelectric conversion unit.
  • the sensitivity of the first pixel may be set by adjusting the duty ratio of the pulse voltage in which the above steps are alternately repeated.
  • the sensitivity of the first pixel is proportional to the duty ratio, it becomes easy to adjust the sensitivity of the first pixel to a desired sensitivity.
  • the first pulse light is projected toward the object to be detected in the first period, and the reflected light of the first pulse light from the object to be detected is the first.
  • the first light receiving period which is a second period having the same length as the first period and is composed of a second period starting after the start time of the first period and a third period following the second period.
  • the detection is performed with the first sensitivity
  • the detection is performed with a second sensitivity different from the first sensitivity.
  • the sensitivity to be detected in the first light receiving period changes between the first sensitivity and the second sensitivity, so that the amount of the signal to be detected changes according to the flight time of the pulsed light.
  • the distance to the object to be detected can be measured by the TOF method. In such distance measurement, for example, it is not necessary to divide the signal into two for detection as in the conventional case, so that the distribution of the signal is incomplete and the accuracy is not deteriorated. Therefore, the distance measuring method according to this aspect can improve the distance measuring accuracy.
  • the distance measuring method may further detect the reflected light with a reference sensitivity for distance measurement during the first light receiving period.
  • the flight time can be calculated based on the signal amount. Therefore, the distance measuring method can improve the distance measuring accuracy.
  • the second pulse light is projected toward the object to be detected in the fifth period having the same length as the first period, and the length is equal to the first light receiving period, and the fifth period is started.
  • the reflected light of the second pulse light from the object to be detected may be detected with a reference sensitivity for distance measurement.
  • the distance measuring method can improve the distance measuring accuracy.
  • the phase detection device is a light detection unit that receives pulsed light delayed by a predetermined time from a reference time, and includes a light detection unit including a first pixel having variable sensitivity, and a control circuit.
  • the control circuit has a second period in which the pulse width and length of the pulsed light are equal to each other, a second period starting after the reference time, and a third period following the second period.
  • the sensitivity of the first pixel is set to the first sensitivity in the second period, and is set to the second sensitivity different from the first sensitivity in the third period.
  • the sensitivity of the first pixel changes between the first sensitivity and the second sensitivity during the first light receiving period, so that the amount of signal charge accumulated in the first pixel according to the delay time from the reference time of the pulsed light. Changes.
  • the phase difference which is the delay time from the reference time, can be detected based on the amount of signal charge stored in the first pixel.
  • the phase detection device can improve the phase detection accuracy.
  • the ranging device in the present disclosure is subject to a TOF method, that is, an electrical signal obtained by irradiating a pulsed object with a predetermined width with pulsed light and photoelectrically converting the pulsed light reflected from the object to be detected.
  • the distance from the object to the distance measuring device is measured by measuring the round-trip flight time of the pulsed light to the detection object.
  • Each pixel of the light receiving element in the distance measuring device has a function of changing the light receiving sensitivity by changing the voltage applied to the light receiving element, for example.
  • Some pixels of the light receiving element have, for example, a predetermined ratio each time a time corresponding to the pulse width of the pulsed light elapses from a time point after the time when the light receiving sensitivity starts irradiating the object to be detected with the pulsed light. Is set to increase with.
  • the pulsed light reflected from the object to be detected is photoelectrically converted by the pixels whose light receiving sensitivity is set in this way, and the flight time of the pulsed light between the light source and the object to be detected is calculated from the output signal. After that, the distance from the calculated flight time to the object to be detected is calculated.
  • the light receiving sensitivity may be referred to simply as "sensitivity".
  • FIG. 2 is a block diagram showing an exemplary configuration of the distance measuring device according to the present embodiment.
  • the distance measuring device 100 includes a lens optical system 110, a light detection unit 120, a control unit 130, a light source 140, and a distance measuring unit 150.
  • the lens optical system 110 includes, for example, a lens and an aperture.
  • the lens optical system 110 collects light on the light receiving surface of the photodetector 120.
  • the photodetector 120 receives the reflected light from the object to be detected of the pulsed light projected by the light source 140.
  • the photodetector 120 is, for example, an image pickup device.
  • the photodetector 120 converts the light incident through the lens optical system 110 into an electric signal according to its intensity and outputs it as image data.
  • the photodetector 120 has a function of changing the light receiving sensitivity by changing the applied voltage, for example, by external control.
  • the photodetector 120 is an image pickup device will be mainly described. The detailed configuration of the photodetector 120 will be described later.
  • the control unit 130 generates a signal for controlling the photodetection unit 120 and the light source 140, and supplies the signal to the photodetection unit 120 and the light source 140.
  • the control unit 130 is an example of a control circuit. More specifically, the control unit 130 controls the photodetection unit 120 and the light source 140 so that the photodetection unit 120 performs an imaging operation based on the timing of light irradiation from the light source 140. In addition, as described above, the control unit 130 controls to adjust the light receiving sensitivity of the light detection unit 120.
  • the control unit 130 is realized by, for example, a microcontroller including one or more processors having a built-in program. The function of the control unit 130 may be realized by a combination of a general-purpose processing circuit and software, or may be realized by hardware specialized for the processing of the control unit 130.
  • the light source 140 projects pulsed light toward the object to be detected. Specifically, the light source 140 irradiates the object to be detected with pulsed light at a predetermined timing controlled by the control unit 130. For example, infrared light is used for this pulsed light.
  • the light source 140 is an example of a light projecting unit.
  • a known light source can be used as long as it is a light source that irradiates pulsed light of infrared light, and is, for example, a laser diode light source that emits infrared light.
  • the distance measuring unit 150 calculates the distance to the object to be detected based on the output signal from the light detection unit 120, and outputs the calculated distance data or the like to the outside of the distance measuring device 100. Specifically, the distance measuring unit 150 calculates the flight time of the pulsed light based on the output signal or the like from the photodetecting unit 120 by using each of the equations described later. The distance measuring unit 150 calculates the distance to the object to be detected using the above equation (2) based on the calculated flight time. The distance measuring unit 150 may output flight time data instead of the distance data.
  • the distance measuring unit 150 is realized by, for example, a microcontroller including one or more processors having a built-in program. The function of the distance measuring unit 150 may be realized by a combination of a general-purpose processing circuit and software, or may be realized by hardware specialized for processing of the distance measuring unit 150.
  • the distance measuring device 100 does not have to include the distance measuring unit 150, and the photodetecting unit 120 may output an output signal to the outside.
  • circuit configuration of photodetector 120 Next, the circuit configuration of the photodetector 120 will be described. Here, a case where the photodetector 120 is an image pickup apparatus 120A will be described.
  • FIG. 3 is a diagram showing an exemplary circuit configuration of the image pickup apparatus 120A according to the present embodiment.
  • the image pickup apparatus 120A shown in FIG. 3 has a pixel array PA including a plurality of pixels 10A arranged in two dimensions.
  • the plurality of pixels 10A includes at least one pixel 10AA and at least one pixel 10AB.
  • the pixel 10AA and the pixel 10AB are arranged adjacent to each other as, for example, a set of pixels.
  • Pixel 10AA is an example of the first pixel
  • pixel 10AB is an example of the second pixel.
  • the pixel 10AA is a variable sensitivity pixel whose sensitivity is set so that the sensitivity changes during the charge storage period described later, and the pixel 10AB is a fixed sensitivity and is set to a constant reference sensitivity during the charge storage period. It is a fixed sensitivity pixel.
  • the pixel 10AA and the pixel 10AB may be collectively referred to as the pixel 10A.
  • FIG. 3 schematically shows an example in which a plurality of pixels 10A are arranged in a matrix of 2 rows and 2 columns.
  • the number and arrangement of the plurality of pixels 10A in the image pickup apparatus 120A is not limited to the example shown in FIG. 3 as long as the plurality of pixels 10A include at least one set of the pixels 10AA and the pixels 10AB.
  • a surface in which these plurality of pixels 10A are two-dimensionally arranged may be referred to as an imaging surface.
  • Each pixel 10A has a photoelectric conversion unit 13 and a signal detection circuit 14.
  • the photoelectric conversion unit 13 has a photoelectric conversion layer sandwiched between two electrodes facing each other, and receives incident light to generate a signal.
  • the entire photoelectric conversion unit 13 does not have to be an independent element for each pixel 10A, and for example, a part of the photoelectric conversion unit 13 may span a plurality of pixels 10A.
  • the signal detection circuit 14 is a circuit that detects the signal charge generated by the photoelectric conversion unit 13. Specifically, the signal detection circuit 14 reads out a signal corresponding to the signal charge stored in the charge storage node 41 described later.
  • the signal detection circuit 14 includes a signal detection transistor 24 and an address transistor 26.
  • the signal detection transistor 24 and the address transistor 26 are, for example, field effect transistors (FETs), and here, an N-channel MOSFET (Metal Oxide Semiconductor Field Effect Transistor) is exemplified as the signal detection transistor 24 and the address transistor 26.
  • FETs field effect transistors
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • Each transistor such as the signal detection transistor 24 and the address transistor 26, and the reset transistor 28 described later has a control terminal, an input terminal, and an output terminal.
  • the control terminal is, for example, a gate.
  • the input terminal is one of the drain and the source, for example, the drain.
  • the output terminal is the other of the drain and the source, for example the source.
  • the control terminal of the signal detection transistor 24 has an electrical connection with the photoelectric conversion unit 13.
  • the signal charge generated by the photoelectric conversion unit 13 is stored in the charge storage node 41 between the gate of the signal detection transistor 24 and the photoelectric conversion unit 13.
  • the signal charge is a hole or an electron.
  • the charge storage node 41 is an example of a charge storage unit, and is also referred to as a “floating diffusion node”. The details of the structure of the photoelectric conversion unit 13 will be described later.
  • the image pickup apparatus 120A includes a drive unit that drives the pixel array PA and acquires images at a plurality of timings.
  • the drive unit includes a voltage supply circuit 32, a voltage supply circuit 33, a reset voltage source 34, a vertical scanning circuit 36, a column signal processing circuit 37, and a horizontal signal reading circuit 38.
  • the photoelectric conversion unit 13 of each pixel 10A has a connection with either the sensitivity control line 42 or the sensitivity control line 43.
  • the photoelectric conversion unit 13 of each pixel 10AA has a connection with the sensitivity control line 42.
  • the photoelectric conversion unit 13 of each pixel 10AB has a connection with the sensitivity control line 43.
  • the configurations of the pixels 10AA and the pixels 10AB are the same except that, for example, the sensitivity control lines to which the photoelectric conversion unit 13 is connected are different.
  • each pixel 10A the pixel 10AA connected to the sensitivity control line 42 and the pixel 10AB connected to the sensitivity control line 43 are arranged alternately in the vertical and horizontal directions.
  • the sensitivity control line 42 is connected to the voltage supply circuit 32
  • the sensitivity control line 43 is connected to the voltage supply circuit 33.
  • the voltage supply circuit 32 and the voltage supply circuit 33 supply different voltages to the sensitivity control line 42 and the sensitivity control line 43, respectively.
  • Each pixel 10A includes a pixel electrode 11 and a counter electrode 12. Details of the configurations of these electrodes are shown in FIG. 4 and will be described later.
  • the potential of the counter electrode 12 With respect to the potential of the pixel electrode 11 by the voltage supply circuit 32 and the voltage supply circuit 33, among the hole-electron pairs generated in the photoelectric conversion layer 15 described later by photoelectric conversion, positive Either the hole or the electron can be collected by the pixel electrode 11.
  • holes can be selectively collected by the pixel electrodes 11 by making the potential of the counter electrode 12 higher than that of the pixel electrodes 11. Further, the amount of signal charge collected per unit time changes according to the potential difference between the pixel electrode 11 and the counter electrode 12.
  • the voltage supply circuit 32 and the voltage supply circuit 33 are not limited to a specific power supply circuit, and may be a circuit that generates a predetermined voltage, or a circuit that converts a voltage supplied from another power supply into a predetermined voltage. May be.
  • Each pixel 10A has a connection with a power supply line 40 that supplies a power supply voltage VDD. As shown, the input terminal of the signal detection transistor 24 is connected to the power supply line 40. When the power supply line 40 functions as a source follower power supply, the signal detection transistor 24 amplifies and outputs the signal generated by the photoelectric conversion unit 13.
  • the input terminal of the address transistor 26 is connected to the output terminal of the signal detection transistor 24.
  • the output terminal of the address transistor 26 is connected to one of a plurality of vertical signal lines 47 arranged for each row of the pixel array PA.
  • the control terminal of the address transistor 26 is connected to the address control line 46, and by controlling the potential of the address control line 46, the output of the signal detection transistor 24 is selectively read out to the corresponding vertical signal line 47. Can be done.
  • the address control line 46 is connected to the vertical scanning circuit 36.
  • the vertical scanning circuit 36 is also referred to as a "row scanning circuit".
  • the vertical scanning circuit 36 selects a plurality of pixels 10A arranged in each row in units of rows by applying a predetermined voltage to the address control line 46. As a result, the reading of the signal of the selected pixel 10A and the reset of the pixel electrode 11, that is, the charge storage node 41, which will be described later, are executed.
  • a pixel drive signal generation circuit 39 is connected to the vertical scanning circuit 36.
  • the pixel drive signal generation circuit 39 generates a signal to drive the pixels 10A arranged in each row of the pixel array PA, and the generated pixel drive signal is a pixel in the row selected by the vertical scanning circuit 36. It is supplied to 10A.
  • the vertical signal line 47 is a main signal line that transmits a pixel signal from the pixel array PA to a peripheral circuit.
  • a column signal processing circuit 37 is connected to the vertical signal line 47.
  • the column signal processing circuit 37 is also referred to as a “row signal storage circuit”.
  • the column signal processing circuit 37 performs noise suppression signal processing represented by correlated double sampling, analog-to-digital conversion (AD conversion), and the like.
  • AD conversion analog-to-digital conversion
  • the column signal processing circuit 37 is provided corresponding to each row of pixels 10A in the pixel array PA.
  • a horizontal signal reading circuit 38 is connected to these column signal processing circuits 37.
  • the horizontal signal readout circuit 38 is also referred to as a "column scanning circuit”.
  • the horizontal signal reading circuit 38 sequentially reads signals from the plurality of column signal processing circuits 37 to the horizontal common signal line 49.
  • each pixel 10A has a reset transistor 28.
  • the reset transistor 28 can be, for example, a field effect transistor, similar to the signal detection transistor 24 and the address transistor 26.
  • an N-channel MOSFET is applied as the reset transistor 28 will be described.
  • the reset transistor 28 is connected between the reset voltage line 44 that supplies the reset voltage Vr and the charge storage node 41.
  • the control terminal of the reset transistor 28 is connected to the reset control line 48, and the potential of the charge storage node 41 can be reset to the reset voltage Vr by controlling the potential of the reset control line 48.
  • the reset control line 48 is connected to the vertical scanning circuit 36. Therefore, the vertical scanning circuit 36 can reset the plurality of pixels 10A arranged in each row in units of rows by applying a predetermined voltage to the reset control line 48.
  • the reset voltage line 44 that supplies the reset voltage Vr to the reset transistor 28 is connected to the reset voltage source 34.
  • the reset voltage source 34 is also referred to as a "reset voltage supply circuit".
  • the reset voltage source 34 may have a configuration capable of supplying a predetermined reset voltage Vr to the reset voltage line 44 during the operation of the image pickup apparatus 120A, and may be supplied to a specific power supply circuit as in the voltage supply circuit 32 described above. Not limited.
  • Each of the voltage supply circuit 32 and the reset voltage source 34 may be a part of a single voltage supply circuit or may be an independent and separate voltage supply circuit.
  • one or both of the voltage supply circuit 32 and the reset voltage source 34 may be a part of the vertical scanning circuit 36.
  • the sensitivity control voltage from the voltage supply circuit 32 and / or the reset voltage Vr from the reset voltage source 34 may be supplied to each pixel 10A via the vertical scanning circuit 36.
  • the power supply voltage VDD of the signal detection circuit 14 is also possible to use the power supply voltage Vr.
  • the voltage supply circuit (not shown) in FIG. 3, which supplies the power supply voltage to each pixel 10A, and the reset voltage source 34 can be shared.
  • the power supply line 40 and the reset voltage line 44 can be shared, the wiring in the pixel array PA can be simplified.
  • the reset voltage Vr is set to a voltage different from the power supply voltage VDD of the signal detection circuit 14, more flexible control of the image pickup apparatus 120A is possible.
  • FIG. 4 is a cross-sectional view schematically showing an exemplary device structure of the pixel 10A according to the present embodiment.
  • the above-mentioned signal detection transistor 24, address transistor 26, and reset transistor 28 are formed on the semiconductor substrate 20.
  • the semiconductor substrate 20 is not limited to a substrate whose entire structure is a semiconductor.
  • the semiconductor substrate 20 may be an insulating substrate or the like in which a semiconductor layer is provided on the surface on the side where the photosensitive region is formed.
  • a P-type silicon (Si) substrate is used as the semiconductor substrate 20 will be described.
  • the semiconductor substrate 20 has impurity regions 26s, 24s, 24d, 28d and 28s, and an element separation region 20t for electrical separation between pixels 10A.
  • the impurity regions 26s, 24s, 24d, 28d and 28s are N-type regions.
  • the element separation region 20t is also provided between the impurity region 24d and the impurity region 28d.
  • the device separation region 20t is formed, for example, by implanting acceptors with ions under predetermined implantation conditions.
  • the impurity regions 26s, 24s, 24d, 28d and 28s are, for example, diffusion layers of impurities formed in the semiconductor substrate 20.
  • the signal detection transistor 24 includes an impurity region 24s, an impurity region 24d, and a gate electrode 24g.
  • the gate electrode 24g is formed by using a conductive material.
  • the conductive material is, for example, polysilicon to which conductivity is imparted by doping with impurities, but a metallic material may also be used.
  • the impurity region 24s functions as, for example, a source region of the signal detection transistor 24.
  • the impurity region 24d functions as, for example, a drain region of the signal detection transistor 24.
  • a channel region of the signal detection transistor 24 is formed between the impurity region 24s and the impurity region 24d.
  • the address transistor 26 includes an impurity region 26s and an impurity region 24s, and a gate electrode 26g connected to the address control line 46 (see FIG. 3).
  • the gate electrode 26g is formed by using a conductive material.
  • the conductive material is, for example, polysilicon to which conductivity is imparted by doping with impurities, but a metallic material may also be used.
  • the signal detection transistor 24 and the address transistor 26 are electrically connected to each other by sharing the impurity region 24s.
  • the impurity region 24s functions as, for example, a drain region of the address transistor 26.
  • the impurity region 26s functions as, for example, a source region of the address transistor 26.
  • the impurity region 26s has a connection with a vertical signal line 47 (see FIG. 3) not shown in FIG.
  • the impurity region 24s may not be shared by the signal detection transistor 24 and the address transistor 26.
  • the source region of the signal detection transistor 24 and the drain region of the address transistor 26 are separated in the semiconductor substrate 20, and are electrically connected via a wiring layer provided in the interlayer insulating layer 50. It may have been done.
  • the reset transistor 28 includes impurity regions 28d and 28s and a gate electrode 28g connected to the reset control line 48 (see FIG. 3).
  • the gate electrode 28g is formed by using, for example, a conductive material.
  • the conductive material is, for example, polysilicon to which conductivity is imparted by doping with impurities, but a metallic material may also be used.
  • the impurity region 28s functions as, for example, a source region of the reset transistor 28.
  • the impurity region 28s has a connection with a reset voltage line 44 (see FIG. 3) not shown in FIG.
  • the impurity region 28d functions as, for example, a drain region of the reset transistor 28.
  • An interlayer insulating layer 50 is arranged on the semiconductor substrate 20 so as to cover the signal detection transistor 24, the address transistor 26, and the reset transistor 28.
  • the interlayer insulating layer 50 is formed of an insulating material such as silicon dioxide.
  • the wiring layer 56 may be arranged in the interlayer insulating layer 50.
  • the wiring layer 56 is formed of, for example, a metal such as copper, and may include, for example, a signal line such as the above-mentioned vertical signal line 47 or a power supply line as a part thereof.
  • the number of layers of the insulating layer in the interlayer insulating layer 50 and the number of layers included in the wiring layer 56 arranged in the interlayer insulating layer 50 can be arbitrarily set and are not limited to the example shown in FIG.
  • the above-mentioned photoelectric conversion unit 13 is arranged on the interlayer insulating layer 50.
  • a plurality of pixels 10A constituting the pixel array PA are formed in the semiconductor substrate 20 and on the semiconductor substrate 20.
  • a plurality of pixels 10A arranged two-dimensionally on the semiconductor substrate 20 form a photosensitive region.
  • the photosensitive area is also called a pixel area.
  • the distance between two adjacent pixels 10A, that is, the pixel pitch can be, for example, about 2 ⁇ m.
  • the photoelectric conversion unit 13 includes a pixel electrode 11, a counter electrode 12, and a photoelectric conversion layer 15 arranged between them.
  • the photoelectric conversion layer 15 is formed so as to span a plurality of pixels 10A.
  • the pixel electrode 11 is provided for each pixel 10A, and is electrically separated from the pixel electrode 11 of the other pixel 10A by being spatially separated from the pixel electrode 11 of another adjacent pixel 10A.
  • the counter electrode 12 is formed by spatially separating the adjacent pixels 10AA and the pixels 10AB from at least the plurality of pixels 10A. As a result, the facing electrode 12 of the adjacent pixel 10AA and the facing electrode 12 of the pixel 10AB are electrically separated.
  • the counter electrode 12 may be formed so as to span a plurality of pixels 10AA. Further, the counter electrode 12 may be formed so as to span a plurality of pixels 10AB.
  • the counter electrode 12 is, for example, a transparent electrode formed of a transparent conductive material.
  • the counter electrode 12 is arranged on the side of the photoelectric conversion layer 15 on which light is incident. Therefore, the light transmitted through the counter electrode 12 is incident on the photoelectric conversion layer 15.
  • the light detected by the image pickup apparatus 120A is not limited to the light within the wavelength range of visible light.
  • the image pickup apparatus 120A may detect infrared light or ultraviolet light.
  • the wavelength range of visible light is, for example, 380 nm or more and 780 nm or less.
  • transparent means transmitting at least a part of light in the wavelength range to be detected, and it is not essential to transmit light over the entire wavelength range of visible light.
  • electromagnetic waves in general including infrared light and ultraviolet light, are referred to as "light” for convenience.
  • a transparent conductive oxide Transient Conductive Oxide (TCO)
  • ITO Transient Conductive Oxide
  • IZO IZO
  • AZO Zero Oxide
  • FTO Transient Conductive Oxide
  • SnO 2 SnO 2
  • TIO 2 Tin Oxide
  • ZnO 2 ZnO 2
  • the photoelectric conversion layer 15 receives the incident light to generate a hole-electron pair.
  • the photoelectric conversion layer 15 is formed of, for example, an organic semiconductor material.
  • the photoelectric conversion layer 15 may be formed of an inorganic semiconductor material.
  • the counter electrode 12 has a connection with a sensitivity control line 42 connected to the voltage supply circuit 32 or a sensitivity control line 43 connected to the voltage supply circuit 33.
  • the counter electrode 12 is formed so as to span a plurality of pixels 10AA. Further, for example, the counter electrode 12 is formed so as to straddle a plurality of pixels 10AB. Therefore, a sensitivity control voltage of a desired magnitude is collectively applied between the plurality of pixels 10AA and the plurality of pixels 10AB from the voltage supply circuit 32 and the voltage supply circuit 33 via the sensitivity control line 42 and the sensitivity control line 43. It is possible to apply. If a sensitivity control voltage of a desired magnitude can be applied from the voltage supply circuit 32 and the voltage supply circuit 33, the counter electrode 12 may be provided separately for each pixel 10A. Similarly, the photoelectric conversion layer 15 may be provided separately for each pixel 10A.
  • one of the hole and the electron among the hole-electron pairs generated in the photoelectric conversion layer 15 by the photoelectric conversion is transferred by the pixel electrode 11.
  • the holes that are signal charges can be selectively collected by the pixel electrodes 11 by making the potential of the counter electrode 12 higher than that of the pixel electrodes 11. Further, the amount of signal charge collected per unit time changes according to the potential difference between the pixel electrode 11 and the counter electrode 12. In the following, a case where holes are used as signal charges will be illustrated. Of course, it is also possible to use electrons as signal charges.
  • the pixel electrode 11 is formed of a metal such as aluminum or copper, a metal nitride, or polysilicon that has been imparted with conductivity by being doped with impurities.
  • the pixel electrode 11 may be a light-shielding electrode.
  • a TaN electrode having a thickness of 100 nm as the pixel electrode 11 sufficient light-shielding property can be realized.
  • the transistor is at least one of a signal detection transistor 24, an address transistor 26 and a reset transistor 28.
  • a light-shielding film may be formed in the interlayer insulating layer 50 by using the wiring layer 56 described above.
  • the suppression of the incident light on the semiconductor substrate 20 contributes to the improvement of the reliability of the image pickup apparatus 120A.
  • the pixel electrode 11 is connected to the gate electrode 24g of the signal detection transistor 24 via the plug 52, the wiring 53, and the contact plug 54.
  • the gate of the signal detection transistor 24 has an electrical connection with the pixel electrode 11.
  • the plug 52 and the wiring 53 may be made of a metal such as copper.
  • the plug 52, the wiring 53, and the contact plug 54 form at least a part of the charge storage node 41 (see FIG. 3) between the signal detection transistor 24 and the photoelectric conversion unit 13.
  • the wiring 53 may be part of the wiring layer 56.
  • the pixel electrode 11 is also connected to the impurity region 28d via the plug 52, the wiring 53, and the contact plug 55. In the configuration exemplified in FIG.
  • the gate electrode 24 g of the signal detection transistor 24, the plug 52, the wiring 53, the contact plugs 54 and 55, and the impurity region 28d, which is one of the source region and the drain region of the reset transistor 28, are It functions as a charge storage region of the charge storage node 41 or the like that stores the signal charge collected by the pixel electrode 11.
  • a voltage corresponding to the amount of the signal charge stored in the charge storage region is applied to the gate of the signal detection transistor 24.
  • the signal detection transistor 24 amplifies this voltage.
  • the voltage amplified by the signal detection transistor 24 is selectively read out as a signal voltage via the address transistor 26.
  • the image pickup apparatus 120A as described above can be manufactured by using a general semiconductor manufacturing process.
  • a silicon substrate is used as the semiconductor substrate 20, it can be manufactured by using various silicon semiconductor processes.
  • FIG. 5 is a timing chart showing an example of the operation of the distance measuring device 100 according to the present embodiment.
  • the graph of FIG. 5A shows the waveform of the pulsed light projected from the light source 140 of the distance measuring device 100 onto the object to be detected.
  • the projected pulsed light is referred to as "projected light” or “projected pulsed light”.
  • the projected light is applied to the object to be detected at a certain time, in FIG. 5, during the period from time 0 to the pulse width Tp .
  • the period from time 0 to the pulse width Tp is an example of the first period. That is, the length of the pulse width Tp is the length of the first period, and the light source 140 is irradiated with light such as infrared light during the first period, so that the first pulse light is emitted in the first period.
  • the projected light projected by the light source 140 shown in the graph of FIG. 5 (a) is reflected by the object to be detected at a distance d from the distance measuring device 100, and the image pickup device.
  • the waveform of the pulsed light incident on 120A is shown.
  • the pulsed light reflected by the object to be detected and incident on the image pickup apparatus 120A is referred to as “reflected light”.
  • the reflected light is incident on the image pickup apparatus 120A with a delay time, which is the flight time T d of the projected light, with respect to the projected light.
  • T d the flight time of the projected light
  • the image pickup apparatus 120A in the present embodiment includes two voltage supply circuits 32 and a voltage supply circuit 33, and two sensitivity control lines 42 and sensitivity control lines 43 connected to each of the two voltage supply circuits 32 and 33.
  • a voltage different from each other is applied to the counter electrode 12 of the pixel 10AA and the counter electrode 12 of the pixel 10AB, which are connected to each other.
  • the magnitude of the voltage supplied from the voltage supply circuit 32 and the voltage supply circuit 33 and the timing for changing the magnitude of the voltage are controlled by, for example, the control unit 130.
  • the graph of FIG. 5C shows the time change of the voltage V bA supplied from the voltage supply circuit 32 to the counter electrode 12 of the pixel 10AA connected via the sensitivity control line 42.
  • the graph of FIG. 5D shows the time change of the voltage V bB supplied from the voltage supply circuit 33 to the counter electrode 12 of the pixel 10AB connected via the sensitivity control line 43.
  • the voltage V bA shown in the graph of FIG. 5 (c) is supplied from the voltage supply circuit 32 to the counter electrode 12 of the pixel 10AA, and is supplied from the voltage supply circuit 33 to the graph of FIG. 5 (d). It is assumed that the indicated voltage V bB is supplied to the counter electrode 12 of the pixel 10AB.
  • the pixel 10AA to which the voltage V bA shown in FIG. 5 (c) is supplied is referred to as a variable sensitivity pixel
  • the pixel 10AB to which the voltage V bB shown in FIG. 5 (d) is supplied is referred to as a fixed sensitivity pixel.
  • the voltage value V bA applied to the counter electrode 12 of the variable sensitivity pixel changes with the passage of time. More specifically, as shown in FIG. 5, when the time when the projected light is turned on is set to time 0, the voltage V bA is set to a predetermined voltage VL before time 0, and from time 0 to time T p . The period of voltage V 1 is higher than the voltage VL , the period from time T p to time 2 T p is the voltage V 2 higher than the voltage V 1 , and the period from time 2 T p to time 3 T p is voltage V 2 . Higher voltage V 3 is set respectively. After that, the voltage V bA is set to the voltage VL for a period after the time 3T p .
  • the period from time 0 to time T p is an example of the second period
  • the period following the second period from time T p to time 2 T p is an example of the third period, from time 2 T p to time 3 T p
  • the period following the third period of is an example of the fourth period.
  • the second, third and fourth periods are, for example, equal in length to the first period.
  • the length of the fourth period may be different from the length of the first period. From the viewpoint of not narrowing the distance measurement range, the length of the fourth period is, for example, greater than or equal to the length of the first period.
  • the voltage V bB applied to the counter electrode 12 of the fixed sensitivity pixel is fixed to the voltage V 1 during the period from time 0 to time 3 Tp , that is, during the first light receiving period. That is, these voltage V bA and voltage V bB are expressed by the following equations (4) and (5) as a function of time t.
  • the graph of FIG. 5 (e) shows an outline of the timing of charge accumulation and readout operation in each pixel 10A of the image pickup apparatus 120A.
  • each pixel 10A has a voltage V 1 to a voltage V 3 on the counter electrode 12 of the variable sensitivity pixel and a voltage V 1 on the counter electrode 12 of the fixed sensitivity pixel.
  • V 1 a voltage on the counter electrode 12 of the variable sensitivity pixel
  • V 1 a voltage V 1 on the counter electrode 12 of the fixed sensitivity pixel.
  • the application of a series of variable voltage or fixed voltage to the counter electrode 12 of the variable sensitivity pixel and the fixed sensitivity pixel is completed, and the voltage V bA and the voltage V b B applied to the counter electrode 12 are changed to the predetermined voltage VL .
  • the reading of the signal charge from each pixel 10A is started. The period during which this reading is performed is indicated by the white rectangle in FIG. 5 (e).
  • the start time T s of reading the signal charge from the pixel 10A is 1 at the time 3T p in FIG. 5, that is, the time when the voltage V bA and the voltage V b B applied to the counter electrode 12 of the pixel 10A are changed to VL .
  • the reading operation from the pixel such as the pixel 10A is started after the time when the voltage VL is applied after the predetermined variable voltage or the fixed voltage is applied to the counter electrode 12 of each pixel.
  • the period indicated by the attached rectangle may be called the charge accumulation period.
  • the charge accumulation period is an example of the first light receiving period.
  • the first light receiving period is a period composed of a first period, a second period, and a third period from time 0 to time 3 Tp .
  • the voltage V bA applied to the counter electrode 12 after the charge accumulation period is set to the voltage VL the period shown by the white rectangle in FIG.
  • the pixel 10A in which the pixel 10A is read out is the pixel.
  • the read period the period indicated by the rectangle with halftone dots in FIG. 5 (e), which does not correspond to both the charge accumulation period and the pixel readout period, that is, the period from the end of the charge accumulation period to the start of the pixel readout period.
  • the period from the end of the pixel readout period to the start of the next charge accumulation period may be referred to as a blanking period.
  • a period in which the pixel readout period and the blanking period are combined, that is, a period following at least the charge accumulation period may be referred to as a non-light receiving period.
  • the non-light receiving period may be continued before and after so as to sandwich the charge accumulation period.
  • the image pickup apparatus 120A has a plurality of pixels 10A arranged two-dimensionally.
  • the operation timing chart shown in FIG. 5 is for one set of pixels 10AA and pixels 10AB, and an example of timing when this is expanded to a plurality of pixels 10A will be described below.
  • FIG. 6 is a timing chart showing an example of the operation of the plurality of pixels 10A.
  • the graphs of FIGS. 6A to 6D are the same as the graphs of FIGS. 5A to 5D. That is, although the description of the values of the voltage V bA and the voltage V bB is omitted in (c) and (d) of FIG. 6, they are the same as (c) and (d) of FIG.
  • the graph of FIG. 6E shows a schematic diagram of the operation timing of the plurality of pixels 10A on the image pickup surface, specifically, the pixels 10A belonging to the rows R0 to R5 on the image pickup surface.
  • the shaded rectangles indicate the charge accumulation period in each row
  • the white rectangles indicate the pixel readout period
  • the halftone dots indicate the blanking period.
  • the light source 140 projects pulsed light onto the object to be detected.
  • the voltage supply circuit 32 and the voltage supply circuit 33 change the voltage V bA and the voltage V b B applied to the opposite electrodes 12 of the variable sensitivity pixel and the fixed sensitivity pixel from the voltage VL to the voltage V 1 , respectively. ..
  • the voltage supply circuit 32 applies the voltage V bA applied to the counter electrode 12 of the variable sensitivity pixel to the voltage V 2 and each time the pulse width Tp of the projected pulse light elapses. The voltage is gradually increased to V3 .
  • the voltage supply circuit 33 keeps the voltage V bB applied to the counter electrode 12 of the fixed sensitivity pixel as the voltage V 1 .
  • the voltage supply circuit 32 and the voltage supply circuit 33 change the voltage V bA and the voltage V bB applied to the counter electrode 12 of the variable sensitivity pixel and the fixed sensitivity pixel to the voltage VL again at the time of 3 Tp , respectively.
  • this voltage change is simultaneously performed for all the variable sensitivity pixels and the fixed sensitivity pixels on the image pickup surface.
  • the R0th row is selected by the vertical scanning circuit 36.
  • the read operation of the plurality of pixels 10A belonging to the R0th row is performed simultaneously in column parallel.
  • both variable-sensitivity pixels and fixed-sensitivity pixels are arranged in each pixel row, and reading is performed simultaneously in these pixels. After that, for example, every time the time Th shown in FIG. 6 (e) elapses, the pixel rows selected by the vertical scanning circuit 36 and the signal is read out are sequentially updated as the R1 row, the R2 row, and so on.
  • the time Th of the update interval of the selected row is the signal read time in each pixel 10A, that is, a length equal to or larger than the width of the white rectangle in FIG. 6 (e). It is set to. That is, in this example, as shown in FIG. 6 (e), for the plurality of pixels 10A on the imaging surface, the charge accumulation period is the same for all the pixels 10A, whereas the start time and the end time are the same. , The start time and end time of the pixel readout period are different for each pixel row. Note that, unlike the example of FIG.
  • the configuration is such that the signal can be read out independently for each pixel 10A, for example, each pixel 10A is equivalent to the column signal processing circuit 37 in FIG.
  • the start time and the end time of the pixel read-out period of the pixels 10A arranged in different pixel rows may be the same.
  • the reset of the charge storage node 41 of each pixel 10A and the reading of the pixel signal stored after the reset are executed.
  • the pixel signal is read out and the charge storage node 41 for charge storage for the next pulsed light projection is reset in one pixel read-out period.
  • the time T s is an example of the start time of the pixel readout period.
  • FIG. 7 is a timing chart showing an example of the timing of the control signal during the pixel readout period.
  • “V sel ” in (a) of FIG. 7 represents the potential of the address control line 46. The potential V sel can vary between the low level potential VL1 and the high level potential V H1 .
  • “V rc ” in (b) of FIG. 7 represents the potential of the reset control line 48. The potential V rc can vary between the low level potential VL 2 and the high level potential V H 2 .
  • VFD in (c) of FIG. 7 represents the potential of the charge storage node 41.
  • the potential V FD is used as a pixel signal V psig when the charge is stored in the charge storage node 41.
  • the potential VFD is used as a reset signal V rig when the charge storage node 41 is reset.
  • the potential V sel of the address control line 46 in the R0 line changes from the low level potential VL1 to the high level potential V H1 .
  • the address transistor 26 whose gate is connected to the address control line 46 is switched from OFF to ON, and the potential VFD of the charge storage node 41 is output to the vertical signal line 47.
  • the pixel signal V psig is output to the vertical signal line 47.
  • This pixel signal V psig is a signal corresponding to the amount of charge stored in the charge storage node 41 by photoelectric conversion of the reflected light reflected from the object to be detected by the immediately preceding pulsed light projection.
  • the pixel signal V psig is transmitted to the column signal processing circuit 37.
  • the signal read period represented by the white rectangle in the graph (e) includes a reset period as well as a period for reading the pixel signal V psig .
  • the reset period is a period for resetting the potential of the charge storage node 41 of the pixel 10A.
  • the pixel 10A belonging to the R0th row is reset.
  • AD conversion of the pixel signal in the column signal processing circuit 37 may be interposed between the completion of the pixel readout and the reset of the pixel 10A belonging to the R0th row.
  • the reset of the pixel 10A belonging to the R0th row is performed by the following procedure.
  • the potential V rc of the reset control line 48 in the R0 row is switched from the low level potential VL2 to the high level potential V H2 as shown in FIG. 7 (b).
  • the reset transistor 28 whose gate is connected to the reset control line 48 is switched from OFF to ON.
  • the charge storage node 41 and the reset voltage line 44 are connected, and the reset voltage Vr is supplied to the charge storage node 41.
  • the potential of the charge storage node 41 is reset to the reset voltage Vr.
  • the reset voltage Vr is, for example, 0V.
  • the potential V rc of the reset control line 48 is switched from the high level potential V H2 to the low level potential VL 2.
  • the reset transistor 28 is switched from ON to OFF.
  • the reset signal V rsig is read from the pixel 10A on the R0 line via the vertical signal line 47.
  • the reset signal V rsig is a signal corresponding to the magnitude of the reset voltage Vr.
  • the reset signal V rig is transmitted to the column signal processing circuit 37.
  • the potential V sel of the address control line 46 is switched from the high level potential V H1 to the low level potential VL 1 .
  • the address transistor 26 is switched from ON to OFF.
  • the read pixel signal V psig and the reset signal V rig are transmitted to the column signal processing circuit 37, respectively.
  • the reset signal V rsig corresponds to the noise component, and the noise is removed by subtracting the noise component from the pixel signal V psig .
  • FIG. 8 is a diagram for explaining the principle of measuring the distance to the object to be detected by the distance measuring device 100.
  • the graphs (a) to (d) of FIG. 8 show the same graphs as those of FIGS. 5 (a) to (d).
  • the light receiving sensitivity of the image pickup apparatus 120A changes in conjunction with the change of the voltage V bA and the voltage V bB applied to the counter electrode 12. That is, the sensitivity of the photoelectric conversion unit 13 changes depending on the magnitude of the applied voltage.
  • the magnitudes of the light receiving sensitivities corresponding to the voltage V 1 , the voltage V 2 and the voltage V 3 applied to the counter electrode 12 are defined as the sensitivity ⁇ 1 , the sensitivity ⁇ 2 and the sensitivity ⁇ 3 .
  • the control unit 130 sets, for example, the sensitivity of the variable sensitivity pixel to a constant sensitivity ⁇ 1 in the period from time 0 to time T p , and the constant sensitivity in the period from time T p to time 2 T p .
  • the sensitivity in is set to the sensitivity ⁇ 2
  • the sensitivity in the third period is set to the sensitivity ⁇ 3 .
  • Sensitivity ⁇ 1 , sensitivity ⁇ 2 and sensitivity ⁇ 3 have different sensitivities.
  • the sensitivity ⁇ 2 is a sensitivity between the sensitivity ⁇ 1 and the sensitivity ⁇ 3 .
  • the image pickup apparatus 120A detects the reflected light from the object to be detected with a constant sensitivity ⁇ 1 during the period from time 0 to time T p , and has a constant sensitivity ⁇ during the period from time T p to time 2 T p .
  • the sensitivity ⁇ 1 and the sensitivity ⁇ 2 and the sensitivity ⁇ 3 may be higher in this order, for example, and may not be higher in this order by a certain ratio or difference. As described above, since the light receiving sensitivity is set only by adjusting the magnitude of the voltage applied to the photoelectric conversion unit 13, the operation of setting the sensitivity can be simplified.
  • control unit 130 sets, for example, the sensitivity of the fixed sensitivity pixel to a constant sensitivity ⁇ 1 in the period from time 0 to time 3 Tp .
  • the image pickup apparatus 120A detects the reflected light from the object to be detected with a constant sensitivity ⁇ 1 in the period from time 0 to time 3Tp .
  • the sensitivity at which the fixed sensitivity pixel is set during the charge accumulation period is not limited to the sensitivity ⁇ 1 , and is not particularly limited as long as the sensitivity can accumulate the charge by receiving the reflected light, that is, the sensitivity is not zero.
  • the sensitivity at which the fixed-sensitivity pixel is set during the charge accumulation period is, for example , one of the sensitivities at which the variable - sensitivity pixel is set during the charge accumulation period. Either. This facilitates the calculation of the flight time T d , which will be described later.
  • the magnitude of the light receiving sensitivity corresponding to the voltage VL applied to the counter electrode 12 is defined as the sensitivity ⁇ 0 . That is, the control unit 130 sets the sensitivities of the variable sensitivity pixel and the fixed sensitivity pixel to the sensitivity ⁇ 0 .
  • the sensitivity ⁇ 0 is a sensitivity lower than the sensitivity of the variable sensitivity pixel during the charge accumulation period, that is, a sensitivity lower than any of the sensitivity ⁇ 1 , the sensitivity ⁇ 2 and the sensitivity ⁇ 3 .
  • the sensitivity ⁇ 0 is, for example, substantially zero.
  • the voltage VL is a voltage that can be applied to the counter electrode 12 to sufficiently reduce the light receiving sensitivity of the image pickup apparatus 120A so that it can be regarded as zero.
  • the light receiving sensitivity of the variable sensitivity pixel is described as the sensitivity ⁇ A and the light receiving sensitivity of the fixed sensitivity pixel is described as the sensitivity ⁇ B , these are expressed by the following equations (6) and (7) as a function of the time t.
  • the sensitivity ⁇ 1 in the sensitivity ⁇ A is an example of the first sensitivity
  • the sensitivity ⁇ 2 is an example of the second sensitivity
  • the sensitivity ⁇ 3 is an example of the third sensitivity.
  • the sensitivity ⁇ 1 in the sensitivity ⁇ B is an example of the reference sensitivity for distance measurement used in the calculation of the distance described later.
  • the sensitivity ⁇ 0 is an example of the basal sensitivity.
  • the sensitivity ⁇ 0 can be regarded as substantially zero during the period in which the voltage V bA and the voltage V bB applied to the counter electrode 12 of the variable sensitivity pixel and the fixed sensitivity pixel are the voltage VL .
  • the charge accumulation period coincides with the start time and the end time of the pixel 10A in all the pixel rows.
  • the light receiving sensitivity during the period other than the charge accumulation period is substantially zero, so that the pixels are accumulated in any of the pixels 10A.
  • the signal charge does not change substantially from the amount accumulated during the charge accumulation period. Therefore, in the image pickup apparatus 120A according to the present embodiment, the change in the amount of signal charge due to the time lag in the pixel readout period for each pixel row is unlikely to occur.
  • the distance measuring device 100 is an image pickup device 120A having a plurality of pixels 10A set to the light receiving sensitivity expressed by the above equations (6) and (7), and is from an object to be detected. Image the reflected light.
  • the amount of charge generated and accumulated by photoelectric conversion in the variable-sensitivity pixel and the fixed-sensitivity pixel to which the reflected light shown in FIG. 8 (b) is incident is shown in FIGS. 8 (e) and 8 (f). It corresponds to the area of the shaded area.
  • the charge amount SA and the charge amount SB are the following equations ( It is expressed by 8) and equation (9).
  • a signal having a magnitude corresponding to the charge amount SA and the charge amount SB is output from each pixel.
  • any variable-sensitivity pixel is arranged in close proximity to at least one or more fixed-sensitivity pixels, and the photocurrents generated by the same reflected pulsed light in those variable-sensitivity pixels and the fixed-sensitivity pixels can be regarded as equal amounts. And.
  • the delay time of the reflected light with respect to the projected light that is, the flight time T d of the projected pulse light is in the range of 0 ⁇ T d ⁇ T p .
  • the charge amount SA and the charge amount SB stored in the variable sensitivity pixel and the fixed sensitivity pixel are calculated by the following equations (10) and (11).
  • the flight time Td of the projected pulsed light is calculated by the following equation (12).
  • k 2 ⁇ 2 / ⁇ 1 and k 2 > 1.
  • FIG. 9 is another diagram for explaining the principle of measuring the distance to the object to be detected by the distance measuring device 100.
  • the same pixel 10A as in FIG. 8 is driven for the distance measuring device 100, but more specifically, when the flight time T d of the projected pulse light is larger than that in the example of FIG.
  • An example is shown in the case where T p ⁇ T d ⁇ 2 T p .
  • the charge amount SA and the charge amount SB stored in the image pickup apparatus 120A in the example shown in FIG. 9 are expressed by the above equations (8) and (9). Specifically, the charge amount SA and the charge amount SB are calculated by the following equations (13) and (14).
  • the distance measuring device 100 has a projection pulse as opposed to the conventional TOF method example shown in FIGS. 1A and 1B.
  • the pulse width T p of light is the same, the upper limit d max of the measurable distance is expanded to twice the magnitude. That is, in the distance measuring device 100 according to the present embodiment, the upper limit d max of the distance that can be measured without increasing the pulse width Tp is expanded, so that the distance measuring accuracy is not deteriorated and the distance measuring accuracy is high. It can measure longer distances than before.
  • the flight time Td of the projected pulsed light can be calculated from the equations (10) and (13) alone based on the equations (17) and (18), respectively.
  • the image pickup apparatus 120A may not include the pixel 10AB which is a fixed sensitivity pixel, and the plurality of pixels 10A may be the pixel 10AA which is a variable sensitivity pixel.
  • the flight time T d of the projected pulse light can be calculated using the equations (12) and (15).
  • equations (12) and (15) the values of sensitivity ⁇ 1 to sensitivity ⁇ 3 and the values of photocurrent I ph , which are necessary for calculating the flight time T d in equations (17) and (18), are used. Not done. It is difficult to accurately measure the absolute values of the photocurrent I ph and the sensitivity ⁇ 1 to the sensitivity ⁇ 3 of the variable sensitivity pixel and the fixed sensitivity pixel.
  • k 2 and k 3 in the equations (12) and (15) are the ratio of the light receiving sensitivity of the variable sensitivity pixel to the light receiving sensitivity of the fixed sensitivity pixel.
  • the signal amount based on the signal charge accumulated in each pixel was measured while changing the voltage applied to the counter electrode 12, and the ratio thereof. Can be obtained relatively easily by finding. Therefore, the distance measuring device 100 is based only on k 2 and k 3 which are these light receiving sensitivity ratios , and the charge amount SA and the charge amount SB of the variable sensitivity pixel and the fixed sensitivity pixel which are actually measured, respectively.
  • the flight time T d of the projected pulsed light can be calculated. That is, the distance measuring device 100 according to the present embodiment has a sensitivity ratio and an electric charge between the variable sensitivity pixel and the fixed sensitivity pixel, which can be measured more easily than the values of the sensitivity ⁇ 1 to the sensitivity ⁇ 3 and the value of the photocurrent If.
  • the flight time T d of the projected pulsed light can be calculated based on the quantity SA and the charge quantity SB. Further, in the distance measuring device 100 according to the present embodiment, since the charge is accumulated in the variable sensitivity pixel and the fixed sensitivity pixel at the same time, the measurement time can be shortened.
  • the boundary condition can be detected from the magnitudes of the charge amount SA and the charge amount SB measured in the variable sensitivity pixel and the fixed sensitivity pixel.
  • This boundary condition is a condition in which the flight time T d of the projected pulsed light calculated by the equation (12) and the equation (15) is the same, and is defined as the following equation (19).
  • the equation (15) becomes the equation. It has the same shape as (12). That is, the flight time T d can be calculated only by the same equation (12) regardless of the magnitude of the flight time T d of the projected pulse light.
  • FIG. 10 is a timing chart showing a case where the operation shown in FIG. 5 is repeated.
  • the graphs (a) to (d) of FIG. 10 show the repetition of the operations (a) to (d) of FIG.
  • pulsed light is projected multiple times at predetermined time T 0 intervals, flight time T d is calculated for each pulsed light projection, and the average or median value thereof is calculated.
  • the predetermined time T 0 is (i) a period during which the voltage V bA and the voltage V bB applied to the counter electrode 12 of the variable sensitivity pixel and the fixed sensitivity pixel are set to a voltage other than the voltage VL , for example.
  • FIG. 11 is a timing chart showing a modification 1 of the operation of the distance measuring device 100 according to the present embodiment.
  • the sensitivity ⁇ A includes a period of time having the sensitivity ⁇ 4 corresponding to the new voltage V 4 .
  • VL ⁇ V 1 ⁇ V 2 ⁇ V 3 ⁇ V 4 and ⁇ 0 ⁇ 1 ⁇ 2 ⁇ 3 ⁇ 4 .
  • V bA and voltage V bB applied to the counter electrode 12 of the variable sensitivity pixel and the fixed sensitivity pixel in the example shown in FIG. 11 and the sensitivity ⁇ A and the sensitivity ⁇ B of those pixels are determined. It is set to follow the following equations (20) to (23).
  • the accumulated charge amount SA and the charge amount SB are expressed by the above equations (8) and (9). Therefore, in the operation of FIG. 11, even when the flight time T d of the projected pulsed light as shown in the figure is 2 T p ⁇ T d ⁇ 3 T p , the equations (12) and (15) are used. Similarly, it is possible to formulate a calculation formula for the flight time T d of the projected pulsed light.
  • the flight time T d of the projected pulsed light at this time is calculated by the following equation (24).
  • k 4 ⁇ 4 / ⁇ 1 and k 4 > k 3 > k 2 > 1.
  • the upper limit d max of the distance that can be measured by the distance measuring device 100 according to the present embodiment by the operation shown in FIG. 11 is calculated by the following equation (25).
  • the upper limit d max of the measurable distance is further expanded even when the pulse width T p of the projected pulse light is the same, as compared with the case represented by the equation (16). Has been done. Even in the operation shown in FIG. 11, when the flight time T d of the projected pulse light is 0 ⁇ T d ⁇ T p or T p ⁇ T d ⁇ 2 T p , the equation (12) or the equation (15), respectively. ) Can be used to calculate the flight time T d of the projected pulsed light.
  • the boundary condition for the proper use of the equation (15) and the equation (24) is the ratio of the signal charge amount between the variable sensitivity pixel and the fixed sensitivity pixel, as in the case of the proper use of the equation (12) and the equation (15). It can be determined and is determined as the following equation (26).
  • the equation (24) can be expressed in exactly the same form as the equations (12) and (15).
  • the upper limit d max of the distance that can be measured by the distance measuring device 100 according to the present embodiment can be set. It can be expanded further. For example, during the period of time 4T p ⁇ t ⁇ 5T p , a voltage V 5 larger than the new voltage V 4 is applied to the counter electrode 12 of the variable sensitivity pixel, and the fixed sensitivity is the same period as the period in which the voltage V 5 is applied. By applying the voltage V1 to the counter electrode 12 of the pixel, it is possible to measure the flight time T d of the projected pulsed light in the range of T d ⁇ 4 T p .
  • the upper limit d max of the measurable distance also increases by the corresponding distance.
  • the present implementation is carried out.
  • the upper limit of the measurable distance in the distance measuring device 100 according to the embodiment can be expanded.
  • the pulse width of the pulsed light projected on the object to be detected in the TOF method for example, the pulse width Tp in FIG. 5 can be measured without being enlarged.
  • the upper limit of the distance, d max can be expanded.
  • the measurement can be performed by expanding the pulse width Tp of the projected pulse light. It is possible to increase the upper limit d max of the distance.
  • the flight time of the projected pulsed light measured accordingly for example, the resolution of the flight time Td in FIG. 5, that is, the resolution of the distance from the flight time Td to the object to be detected deteriorates. This is qualitatively understood with reference to FIGS. 12A and 12B as follows.
  • FIG. 12A is a diagram showing the signal charge amount of the reflected light accumulated in the distance measuring device 100 when the projected light is projected onto the object to be detected.
  • FIG. 12B is a diagram showing the signal charge amount of the reflected light accumulated in the distance measuring device 100 when the projected light having a pulse width different from that of FIG. 12A is projected onto the object to be detected.
  • the graphs (c) and (d) in FIGS. 12A and 12B show the time variation of the sensitivity ⁇ A of the variable sensitivity pixel and the sensitivity ⁇ B of the fixed sensitivity pixel, respectively, and in the same graph, horizontal lines or diagonal lines are shown.
  • the area of the attached rectangular portion corresponds to the amount of signal charge accumulated by receiving the reflected light from the object to be detected in the image pickup apparatus 120A.
  • the area of the rectangular portion with a horizontal line in the graph of FIG. 12A and FIG. 12B (c) depends on the flight time T d of the projected pulse light. And change.
  • the shaded rectangular portion is the signal charge commonly accumulated in the variable sensitivity pixel and the fixed sensitivity pixel, and the pulse width Tp . It changes depending on. The area of these shaded rectangular portions coincides with the amount of charge SB stored in the fixed - sensitivity pixels.
  • equations (12), (15) and (24) include the ratio of the signal charge between the variable sensitivity pixel and the fixed sensitivity pixel, that is, the term SA / SB .
  • SA / SB the term of the signal charge between the variable sensitivity pixel and the fixed sensitivity pixel. From equation (27), the term SA / SB can be described by the following equation (28).
  • the flight time T d of the projected pulsed light is the same as in the example shown in FIG. 12A and the example shown in FIG. 12B, that is, the amount of charge S that increases in the variable sensitivity pixel depending on the flight time T d of the projected pulsed light.
  • the size of A' is the same.
  • the pulse width Tp of the projected light is different in each example, the magnitude of the charge amount SB of the fixed sensitivity pixel is different. More specifically, in the example of FIG. 12A, the pulse width Tp of the projected pulse light is larger than that of the example of FIG. 12B , and accordingly, the size of the charge amount SB of the fixed sensitivity pixel is also larger in the example of FIG. 12A in FIG. 12B. Greater than the example.
  • the right-hand side second term SA '/ SB of the equation (28) is better in the case of FIG. 12A. It is smaller than the case of FIG. 12B. That is, in the example of FIG. 12A , it corresponds to the sensitivity of SA / SB to the change of SA', and thus the flight time T d of the projected pulsed light becomes low.
  • the case of FIG. 12A is SA', that is, the case of FIG. 12B.
  • the flight time T d needs to change significantly. This means that when the pulse width Tp of the projected pulsed light as in the example of FIG. 12A is wide, the resolution of the flight time measurement and the distance measurement to the target is further deteriorated.
  • the upper limit d max of the distance that can be measured by the distance measuring device 100 according to the present embodiment is twice the pulse width Tp of the projected pulse light as shown in the equation (16) in the example of FIG. Further, it is possible to further extend the pulse width T p more than twice as shown in the example of FIG. This makes it possible to obtain a wider distance measurement range without deterioration of the measurement resolution due to the expansion of the pulse width Tp of the projected pulse light. In other words, the distance measuring device 100 can improve the distance measuring accuracy when performing distance measuring in the same distance measuring range as compared with the conventional TOF method.
  • variable sensitivity pixel 10AA and the fixed sensitivity pixel 10AB are arranged alternately in the horizontal and vertical directions.
  • the pixels 10AA and the pixels 10AB may be arranged alternately only in the horizontal direction, and in the vertical direction, that is, only one of the pixels 10AA and the pixels 10AB may be arranged in each pixel row, or in the vertical direction.
  • the configuration may be such that only the pixels 10AA and the pixels 10AB are arranged alternately.
  • the magnitude relation between the three types of voltage V 1 , voltage V 2 and voltage V 3 applied to the counter electrode 12 of the variable sensitivity pixel is V 1 ⁇ V 2 ⁇ V 3 .
  • these magnitude relations are not limited to this.
  • the magnitude relationship between them may be V 1 > V 2 > V 3 . That is, the magnitude relationship between the sensitivity ⁇ 1 , the sensitivity ⁇ 2 and the sensitivity ⁇ 3 may also be ⁇ 1 > ⁇ 2 > ⁇ 3 .
  • the magnitude relationship of the voltage VbA applied to the counter electrode 12 of the variable sensitivity pixel during the charge storage period is a one-way change, that is, it is applied to the counter electrode 12 of the variable sensitivity pixel during the charge storage period.
  • the voltage V bA needs to be a monotonic increase that does not decrease or a monotonic decrease that does not increase over time.
  • the sensitivity ⁇ A of the variable sensitivity pixel during the charge accumulation period set by the control unit 130 needs to be a monotonous increase that does not decrease or a monotonous decrease that does not increase with the passage of time.
  • the flight time T d can be calculated as described above.
  • the charge accumulation period is composed of a second period, a third period, and a fourth period from time 0 to time 3Tp , but is not limited to this.
  • the charge accumulation period may be composed of, for example, a second period and a third period from time 0 to time 2Tp .
  • a voltage higher than the voltage VL is applied to the counter electrode 12 only from time 0 to time 2Tp , and the variable sensitivity pixel and the fixed sensitivity pixel are generated. It is set to a sensitivity that can store signal charges.
  • the measurement range of the distance cannot be expanded without lengthening the pulse width Tp , but it is not necessary to distribute and store the charges in the two charge storage units as in the conventional TOF method. Therefore, the distance measurement accuracy does not deteriorate due to the incomplete distribution of signal charges. Therefore, the distance measuring device 100 can improve the distance measuring accuracy.
  • the length of the third period may be different from the length of the first period. From the viewpoint of not narrowing the distance measurement range, the length of the third period is, for example, greater than or equal to the length of the first period.
  • the projection of the pulsed light is started, that is, the second period is started from the time 0 at the start time of the first period, but the present invention is not limited to this.
  • the start of the second period may be after time 0.
  • the second period may start later than the flight time Td minutes and time 0 corresponding to the minimum value of the distance to be measured.
  • the upper limit d max of the measurable distance can be lengthened by the amount of delaying the start of the second period.
  • FIG. 13 is a timing chart showing a modification 2 of the operation of the distance measuring device 100 according to the present embodiment.
  • the graphs (a) to (f) of FIG. 13 show examples of different timing charts of the items corresponding to the graphs (a) to (f) of FIG. 8, respectively.
  • the voltage V bA applied to the counter electrode 12 of the variable sensitivity pixel continuously increases in the charge accumulation period, which is the period from time 0 to time 3 Tp . .. Therefore, as shown in FIG. 13 (e), the sensitivity ⁇ A of the variable sensitivity pixel also increases continuously, specifically linearly, during the charge accumulation period.
  • the first sensitivity, the second sensitivity and the third sensitivity increase linearly in each of the second period, the third period and the fourth period, respectively.
  • the first sensitivity, the second sensitivity, and the third sensitivity may be linearly decreased in each of the second period, the third period, and the fourth period, respectively.
  • the first sensitivity, the second sensitivity and the third sensitivity may be increased or decreased stepwise in each of the second period, the third period and the fourth period, respectively.
  • the charge amount SA stored in the variable sensitivity pixel is the above - mentioned equation (8). It is represented by. Further, as shown in FIGS. 13 (d) and 13 (f), the voltage V bB and the sensitivity ⁇ B applied to the counter electrode 12 in the fixed sensitivity pixel are shown in FIGS. 8 (d) and 8 (f), respectively. It is the same as the case shown in. Therefore, the amount of charge SB stored in the fixed - sensitivity pixel is expressed by the above equation (9). Then, assuming that the sensitivity ⁇ A and the sensitivity ⁇ B are functions of time, the equations (8) and (9) can be expanded to derive an equation capable of calculating the flight time T d .
  • FIG. 14 is a timing chart showing a modified example 3 of the operation of the distance measuring device 100 according to the present embodiment.
  • the graphs (a) to (f) of FIG. 14 show examples of different timing charts of the items corresponding to the graphs (a) to (f) of FIG. 8, respectively.
  • the voltage V bA and the voltage V bB applied to the counter electrode 12 of the variable sensitivity pixel and the fixed sensitivity pixel are larger than the voltage VL and the voltage VL .
  • It may be a pulse voltage in which two values with a predetermined voltage V H are alternately repeated in a predetermined cycle significantly shorter than the pulse width T p .
  • the voltage VL is an example of the first voltage
  • the voltage V H is an example of the second voltage.
  • the voltage VL has a sensitivity ⁇ 0 in which the light receiving sensitivity of the variable sensitivity pixel and the fixed sensitivity pixel is substantially zero by applying the voltage VL to the counter electrode 12, for example, as in the example shown in FIG.
  • the voltage VH is a voltage that makes the light receiving sensitivity of the variable sensitivity pixel and the fixed sensitivity pixel larger than the basal sensitivity (for example, sensitivity ⁇ 0 ) by applying the voltage to the counter electrode 12, and is, for example, the voltage in FIG. It is V3 .
  • the duty ratio of the pulse of voltage V bA is 25%.
  • the ratio is 50%.
  • the control unit 130 sets the sensitivity of the variable sensitivity pixel by adjusting the duty ratio of the pulse voltage applied to the photoelectric conversion unit 13.
  • the sensitivity ⁇ 1 has an average voltage V bA constant at the voltage V H. It will be 25% in some cases.
  • the sensitivity ⁇ 2 is, on average, 50% when the voltage V bA is constant at the voltage V H , which is proportional to the duty ratio. Then, the light receiving sensitivity changes. Therefore, as shown in FIG. 14 (c), the duty ratio of the pulse of the voltage V bA applied to the counter electrode 12 of the variable sensitivity pixel is changed in each of the second period, the third period, and the fourth period. As shown in FIG. 14 (e), the light receiving sensitivity of the variable sensitivity pixel can be changed to the sensitivity ⁇ 1 , the sensitivity ⁇ 2 and the sensitivity ⁇ 3 .
  • the light receiving sensitivity of the fixed sensitivity pixel can be set in the same manner, and the duty ratio of the pulse of the voltage V bB applied to the counter electrode 12 of the fixed sensitivity pixel is, for example, the second, as shown in FIG. 14 (d). It is set to be the same as the duty ratio of the pulse of the voltage V bA in the period, and the sensitivity ⁇ B becomes the sensitivity ⁇ 1 as shown in FIG. 14 (f).
  • (e) and (f) in FIG. 14 represent average values of the light receiving sensitivities of the variable sensitivity pixel and the fixed sensitivity pixel in the second period, the third period, and the fourth period, respectively. That is, the control unit 130 may set the average light receiving sensitivity in each period as the light receiving sensitivity of the variable sensitivity pixel and the fixed sensitivity pixel.
  • adjusting the light-receiving sensitivity of the variable-sensitivity pixel and the fixed-sensitivity pixel not by the magnitude of the voltage applied to the counter electrode 12 but by the duty ratio of the voltage pulse makes it easy to control the light-receiving sensitivity.
  • the relationship between the magnitude of the voltage applied to the counter electrode 12 and the light receiving sensitivity of the photoelectric conversion unit 13 is determined by the material composition of the photoelectric conversion unit 13 and the like, and may not be in a proportional relationship. If this relationship is not proportional, adjusting the magnitude of the voltage applied to the counter electrode 12 in order to obtain the desired light receiving sensitivity may be complicated.
  • the light receiving sensitivity is proportional to the duty ratio. Therefore, for example, if the light receiving sensitivity when a predetermined voltage VH is applied to the counter electrode 12 is known, the light receiving sensitivity can be calculated only by multiplying the light receiving sensitivity by the duty ratio of the pulse, which is more intuitive. It is possible to adjust the light receiving sensitivity of the variable sensitivity pixel and the fixed sensitivity pixel.
  • the sensitivity of only one of the variable sensitivity pixel and the fixed sensitivity pixel may be set by adjusting the duty ratio of the pulse voltage applied to the photoelectric conversion unit 13.
  • the sensitivity of the other pixel is set, for example, by adjusting the magnitude of the voltage applied to the photoelectric conversion unit 13.
  • one of the voltage V 1 , the voltage V 2 and the voltage V 3 is fixed to the counter electrode 12 of the variable sensitivity pixel during the period from time 0 to time 3 Tp in FIG. Except for the charge accumulation period in which the voltage V1 is applied to the counter electrode 12 of the sensitivity pixel, a predetermined voltage VL is applied to the counter electrode 12 of each of the variable sensitivity pixel and the fixed sensitivity pixel.
  • This voltage VL is, for example, a voltage that causes the sensitivity ⁇ 0 of the variable sensitivity pixel and the fixed sensitivity pixel to be substantially zero.
  • the sensitivity ⁇ 0 cannot be lowered to the extent that it can be regarded as zero for any voltage VL , and the variable sensitivity pixel and the fixed sensitivity pixel are described above. It may be unavoidable to have a finite sensitivity ⁇ 0 even in a period other than the period from time 0 to time 3Tp , that is, the above-mentioned non-light receiving period. In this case, the signal charge generated by the sensitivity ⁇ 0 corresponding to the voltage VL is added to each pixel output as an offset.
  • the term ( SA / SB) of the signal charge ratio of the variable sensitivity pixel and the fixed sensitivity pixel is Although it exists, the addition of offsets to each of them causes an error in the value of this ratio, which can deteriorate the accuracy of distance measurement.
  • the distance measuring device according to the present embodiment has a configuration capable of removing the influence of the offset added in such a case and improving the distance measurement accuracy.
  • the ranging device 100 includes an image pickup device 120B instead of the image pickup device 120A according to the first embodiment.
  • FIG. 15 is a diagram showing an exemplary circuit configuration of the image pickup apparatus 120B according to the present embodiment.
  • the difference between the image pickup device 120B and the image pickup device 120A in the first embodiment shown in FIG. 3 is that the voltage supply circuit 70 is added in addition to the voltage supply circuit 32 and the voltage supply circuit 33, and the sensitivity control.
  • the sensitivity control line 71 is added in addition to the line 42 and the sensitivity control line 43.
  • the image pickup apparatus 120B includes a plurality of pixels 10B instead of the plurality of pixels 10A.
  • the plurality of pixels 10B includes at least one pixel 10BA, at least one pixel 10BB, and at least one pixel 10BC.
  • Pixel 10BA, pixel 10BB, and pixel 10BC are arranged as one set of pixels so that one pixel in one set of pixels is adjacent to at least one other pixel in one set of pixels. ..
  • the pixel array shown in FIG. 15 is expanded to three or more columns, for example, one set of pixels 10BA, 10BB, and 10BC are arranged side by side in the same pixel row.
  • the pixel 10BA is an example of the first pixel
  • the pixel 10BB is an example of the second pixel
  • the pixel 10BC is an example of the third pixel.
  • the configuration of the pixel 10BA is, for example, the same as the pixel 10AA, and the configuration of the pixel 10BB is, for example, the same as the pixel 10AB.
  • the pixel 10BA, the pixel 10BB, and the pixel 10BC may be collectively referred to as the pixel 10B.
  • the pixel 10BC has the same configuration as the pixel 10BA and the pixel 10BB except that it is connected to the sensitivity control line 71. Specifically, the photoelectric conversion unit 13 of the pixel 10BC has a connection with the sensitivity control line 71.
  • the sensitivity control line 71 is connected to the counter electrode 12 of the pixel 10BC.
  • the sensitivity control line 71 is connected to the voltage supply circuit 70.
  • the voltage supply circuit 70 supplies the sensitivity control line 71 with a voltage different from that of the voltage supply circuit 32 and the voltage supply circuit 33. As a result, the voltage supply circuit 70 controls the potential of the counter electrode 12 with respect to the pixel electrode 11 in the pixel 10BC.
  • FIG. 16 is a timing chart showing an example of the operation of the distance measuring device 100 according to the present embodiment.
  • the graphs (a) to (d) of FIG. 16 are the same as the graphs shown in FIGS. 5 (a) to 5 (d).
  • the voltage V bC is supplied to the sensitivity control line 71 from the newly added voltage supply circuit 70.
  • the graph of FIG. 16 (e) shows the time change of the voltage V bC supplied from the voltage supply circuit 70 to the counter electrode 12 of the pixel 10BC connected via the sensitivity control line 71.
  • the voltage V bC is set to the voltage VL at any time.
  • the control unit 130 sets the sensitivity of the offset pixel to the sensitivity ⁇ 0 during the entire period including the charge accumulation period.
  • the amount of signal charge accumulated in the offset pixel is described as the amount of charge SC
  • an equation for calculating the flight time T d of the projected pulsed light specifically, the equation (12) in the first embodiment.
  • the equation (15) are rewritten using the charge amount SA , the charge amount SB and the charge amount SC, are expressed by the following equations (29) and (30).
  • the charge accumulation period is the same for all the pixels 10B as the start time and the end time, whereas the pixel read period The start time and end time are different for each pixel line.
  • the length of the blanking period from the end time of the charge accumulation period to the start time of the pixel readout period differs for each pixel row.
  • signal charges are accumulated during this period as well, and the amount of accumulated charges varies from pixel row to pixel row.
  • the effect of the difference in the length of the blanking period for each pixel row is as follows, for example, for the terms ( SA - SC) and (SB - SC ) in the equations (29) and (30). It can be suppressed by performing various calculations. For example, the calculation is performed using the signal charge amounts of the variable-sensitivity pixels and the offset pixels arranged in the same pixel row, and the signal charge amounts of the fixed-sensitivity pixels and the offset pixels arranged in the same pixel row, respectively. Since the read times of the pixels 10B arranged in the same pixel row are the same, the lengths of the blanking periods of the variable-sensitivity pixels, the fixed-sensitivity pixels, and the offset pixels arranged in the same pixel row are also the same. Therefore, by using the signal charge amount of the pixels 10B arranged in these same pixel rows in the calculation of the equations (29) and (30), the difference in the length of the blanking period for each pixel row can be canceled. , The influence can be suppressed.
  • the image pickup apparatus 120B of the present embodiment even if the light receiving sensitivity of each pixel 10B when the voltage VL is applied to the image pickup apparatus 120B cannot be regarded as zero, the influence thereof is reduced and the accuracy is higher. Distance measurement is possible.
  • the distance measuring device 100 includes an image pickup device 120C having a different configuration and drive method from the image pickup device 120A instead of the image pickup device 120A according to the first embodiment.
  • FIG. 17 is a diagram showing an exemplary circuit configuration of the image pickup apparatus 120C according to the present embodiment.
  • the image pickup device 120C is different from the image pickup device 120A in that the image pickup device 120A includes a plurality of pixels 10CA instead of the plurality of pixels 10A.
  • the pixel 10CA is an example of the first pixel. Further, the difference from the circuit configuration of the image pickup device 120A shown in FIG.
  • the image pickup device 120C does not include the voltage supply circuit 33 and the sensitivity control line 43, and the voltage supply circuit 32 The point is that the same voltage is supplied to the counter electrode 12 of all the pixels 10CA through the sensitivity control line 42.
  • the device configuration of the pixel 10CA is, for example, the same as the device configuration of the pixel 10A shown in FIG. In the pixel 10CA, since the same voltage is supplied to the counter electrode 12 of all the pixels 10CA, the counter electrode 12 may be formed across two adjacent pixels 10CA, and all the pixels 10CA may be formed. It may be formed over.
  • FIG. 18 is a timing chart showing an example of the operation of the distance measuring device 100 according to the present embodiment.
  • the graphs (a) to (c) of FIG. 18 show an example of a timing chart of the items corresponding to the graphs (a) to (c) of FIG. 5, respectively.
  • the same voltage VbA is supplied to all the pixels 10CA.
  • the light source 140 projects pulsed light a plurality of times at intervals of time T0 .
  • the pulse widths Tp of the plurality of projected lights projected by the light source 140 are all the same. In the example of FIG.
  • the light source 140 projects the first pulse light in the period from time 0 to the pulse width T p , and the pulse width T p from time T 0 after the end of the projection of the first pulse light.
  • the second second pulse light is projected up to the period of, that is, time T 0 + T p .
  • the period from the time T 0 to the pulse width T p is an example of the fifth period.
  • the voltage supply circuit 32 supplies different voltages to each of the plurality of charge storage periods corresponding to the projection of the plurality of pulsed lights.
  • the voltage supply circuit 32 has a voltage V 1 , a voltage V 2 and a voltage V 3 for each pulse width Tp of the projected light. That is, a voltage similar to that of the variable sensitivity pixel described with reference to FIG. 5 is supplied.
  • the voltage supply circuit 32 supplies a constant voltage V 1 during the charge accumulation period in the even-numbered pulse light projection, that is, a voltage similar to that of the fixed-sensitivity pixel described with reference to FIG.
  • the control unit 130 sets the sensitivity of the pixel 10CA as the reference sensitivity in the charge accumulation period starting from time T0 .
  • the charge accumulation period from the time T 0 to the time T 0 + 3T p is an example of the second light receiving period.
  • the second light receiving period may also start after time T0 for the same reason as the above-mentioned first period. Further, in this case, the time difference between the time 0 and the start time of the first period is equal to the time difference between the time T0 and the start time of the second light receiving period.
  • the charge amount SA corresponding to the signal of the variable sensitivity pixel in the equations (12) and (15) is measured at the odd - numbered pulse light projection, and the charge amount corresponding to the signal of the fixed sensitivity pixel is measured. SB is measured at the even - numbered pulsed light projection. Then, using each measurement result, the flight time T d of the projected pulsed light is calculated by the same method as in the first embodiment.
  • the first light receiving period is before the second light receiving period, but the first light receiving period may be after the second light receiving period.
  • the distance measuring device 100 it is possible to measure the distance to the object to be detected in a state where the same voltage is applied to all the pixels 10CA on the imaging surface. In other words, this eliminates the need to divide and arrange the counter electrode 12 for each pixel 10CA, and makes it possible to use the counter electrode 12 common to all the pixels 10CA on the imaging surface.
  • FIG. 19 is a timing chart showing a modified example of the operation of the distance measuring device 100 according to the present embodiment.
  • the graphs (a) to (c) of FIG. 19 show an example of a timing chart of the items corresponding to the graphs (a) to (c) of FIG. 5, respectively.
  • the light source 140 has a pulse width T from time 2T 0 after the end of projection of the second pulse light.
  • the third pulse light is projected for the period of p , that is, until the time 2T 0 + T p .
  • the period from time 2T 0 to the pulse width Tp is an example of the sixth period.
  • the voltage supply circuit 32 supplies a single voltage V bA to all the pixels 10 CA of the image pickup apparatus 120C, and pulse this voltage V bA to the object to be detected. Change for each light projection. That is, for example, in the 3n + 1st pulse light projection, the voltage supply circuit 32 applies the same voltage as the variable sensitivity pixel described with reference to FIG. 5 to the counter electrode 12 of each pixel 10CA on the imaging surface. Further, for example, in the 3n + second pulse light projection, the voltage supply circuit 32 applies the same voltage as the fixed sensitivity pixel described with reference to FIG. 5 to the counter electrode 12 of each pixel 10CA on the imaging surface.
  • the voltage supply circuit 32 applies the same voltage as the offset pixel described with reference to FIG. 16 to the counter electrode 12 of each pixel 10CA on the imaging surface.
  • n is an integer of 0 or more.
  • the control unit 130 sets the sensitivity of the pixel 10CA to the basal sensitivity in the charge accumulation period starting from time 2T 0 .
  • the charge accumulation period from time 2T 0 to time 2T 0 + 3T p is an example of the third light receiving period.
  • the third light receiving period may also be started after the time 2T 0 for the same reason as the above-mentioned first period.
  • the time difference between the time 0 and the start time of the first period is equal to the time difference between the time 2T 0 and the start time of the third light receiving period.
  • the above equations (28) and (29) are used. Is calculated, and the flight time T d is calculated.
  • the photoelectric conversion unit of the image pickup device of the distance measuring device 100 in the present disclosure has a means for changing the light receiving sensitivity as shown in FIGS. 8 and 9. It is not limited to the one having the photoelectric conversion unit 13 including the photoelectric conversion layer 15.
  • a photodiode can be used as the photoelectric conversion unit.
  • the ranging device 100 includes an image pickup device 120D instead of the image pickup device 120A according to the first embodiment.
  • FIG. 20 is a diagram showing an exemplary circuit configuration of the image pickup apparatus 120D according to the present embodiment.
  • the image pickup apparatus 120D according to the present embodiment includes a photodiode 13D, a transfer transistor 80, a charge discharge transistor 81, a voltage supply circuit 82, a voltage supply circuit 83, a voltage supply circuit 84, a transfer control line 85, and a charge discharge voltage line 86. It differs from the image pickup device 120A, the image pickup device 120B, and the image pickup device 120C according to the first to third embodiments in that the charge discharge control line 87 and the charge discharge control line 88 are included.
  • the image pickup apparatus 120D includes a plurality of pixels 10D.
  • the plurality of pixels 10D includes at least one pixel 10DA and at least one pixel 10DB.
  • the pixel 10DA and the pixel 10DB are arranged so as to be adjacent to each other as a set of pixels.
  • Pixel 10DA is an example of the first pixel
  • pixel 10DB is an example of the second pixel.
  • substantially the same configuration as in FIG. 5 is designated by the same reference numeral as in FIG.
  • the photodiode 13D in the image pickup apparatus 120D receives the projection pulse light reflected from the object to be detected, and generates and accumulates an amount of electric charge according to the intensity by photoelectric conversion.
  • the photodiode 13D generates and accumulates a negative charge by receiving light is described.
  • the transfer transistor 80 one of the source and the drain is connected to the photodiode 13D, and the other is connected to the charge storage node 41.
  • a transfer control line 85 is connected to the gate.
  • the transfer control line 85 is connected to the vertical scanning circuit 36 like the address control line 46 and the reset control line 48, and the transfer transistor 80 is made conductive by applying a predetermined potential from the vertical scanning circuit 36 to conduct the photodiode 13D. The charges generated and stored in the above are transferred to the charge storage node 41.
  • the charge discharge transistor 81 In the charge discharge transistor 81, one of the source and the drain is connected to the photodiode 13D, and the other is connected to the charge discharge voltage line 86. In the charge discharge transistor 81, a charge discharge control line 87 or a charge discharge control line 88 is connected to the gate. Specifically, the charge discharge control line 87 is connected to the gate of the charge discharge transistor 81 of the pixel 10DA, and the charge discharge control line 88 is connected to the gate of the charge discharge transistor 81 of the pixel 10DB.
  • the charge discharge control line 87 has a potential controlled by the voltage supply circuit 83
  • the charge discharge control line 88 has a potential controlled by the voltage supply circuit 84.
  • the charge discharge control line 87 and the charge discharge control line 88 Depending on the magnitude of each potential, the charges stored in the respective photodiodes 13D are discharged to the voltage supply circuit 82 through the respective charge discharge voltage lines 86.
  • the power supply voltage VDD is supplied from the voltage supply circuit 82 to the charge discharge voltage line 86.
  • the pixel 10DA is a variable sensitivity pixel
  • the pixel 10DB is a fixed sensitivity pixel. That is, the charge discharge control line 87 and the voltage supply circuit 83 are connected to the charge discharge transistor 81 of the variable sensitivity pixel. Further, the charge discharge control line 88 and the voltage supply circuit 84 are connected to the charge discharge transistor 81 of the fixed sensitivity pixel.
  • the potentials of the charge discharge control line 87 and the charge discharge control line 88 are increased, the amount of charge discharged to the charge discharge voltage line 86 increases, and the amount of charge transferred to the charge storage node 41, that is, the pixel finally read out. The amount of signal charge in is reduced.
  • the light receiving sensitivity is equivalently lowered.
  • the change in the light receiving sensitivity similar to that of the sensitivity ⁇ A and the sensitivity ⁇ B shown in f) is realized.
  • setting the sensitivity by controlling such equivalent light receiving sensitivity is also included in the meaning of the word "setting the sensitivity".
  • FIG. 21 is a timing chart showing an example of the operation of the distance measuring device 100 according to the present embodiment.
  • the graphs of FIGS. 21 (a) and 21 (b) are the same as the graphs of FIGS. 5 (a) and 5 (b).
  • the graph of FIG. 21 (c) shows an example of the potential V bA of the charge discharge control line 87 connected to the variable sensitivity pixel.
  • the voltage supply circuit 83 sets the potential V bA of the charge discharge control line 87 to a predetermined voltage V H.
  • This voltage VH is equal to a voltage such that all the charges stored in the photodiode 13D are discharged to the charge discharge voltage line 86, for example, the power supply voltage VDD. That is, no charge is accumulated in the photodiode 13D during this period, and the equivalent light receiving sensitivity when the potential V bA , which is an example of the basic sensitivity, is set to the voltage V H is substantially zero.
  • the voltage supply circuit 83 sequentially lowers the potential V bA of the charge discharge control line 87 in the order of voltage V 1 , voltage V 2 , and voltage V 3 for each pulse width T p from time 0.
  • the voltage supply circuit 83 sets the potential of the charge discharge control line 87 to the voltage VH again, and all the charge is discharged from the photodiode 13D, that is, the pixel 10D.
  • the equivalent light receiving sensitivity of is returned to the state of substantially zero.
  • the graph of FIG. 21 (d) shows an example of the potential of the charge emission control line 88 connected to the fixed sensitivity pixel.
  • the voltage supply circuit 84 sets the potential V bB of the charge discharge control line 88 to the voltage V 1 during the period from time 0 to Tr , and the voltage V H during the other periods. Set to.
  • the graph of FIG. 21 (e) shows an outline of the timing of the reading operation of the pixel 10D of the image pickup apparatus 120D according to the present embodiment.
  • the potential V bA of the charge discharge control line 87 is set to the voltage V 1 , the voltage V 2 and the voltage in a predetermined time width in the variable sensitivity pixel.
  • the transfer transistor 80 is made conductive, and the charge stored in the photodiode 13D is transferred to the charge storage node 41.
  • the predetermined time width is the pulse width Tp of the projected pulse light.
  • the time for changing the potentials of the charge discharge control line 87 and the charge discharge control line 88 from the voltage V3 or the voltage V1 to the voltage VH which is indicated by the time Tr in (c) and (d) of FIG. 21, is shown in FIG. It is the time after the completion of charge transfer by the transfer transistor 80 in (e) of 21.
  • the charge of the charge storage node 41 may be reset by using the reset transistor 28 of the pixel 10D.
  • the distance measurement device 100 according to the present embodiment also including the image pickup device 120D having no photoelectric conversion layer can also improve the accuracy of distance measurement.
  • the distance measuring device receives the projected light by measuring the flight time T d , which is a deviation from the time T 0 at which the projection of the pulse projected light is started. It can be said that the phase difference with light is detected.
  • a phase detection device including the same optical detection unit 120, control unit 130, and the like as in the first embodiment will be described.
  • the differences from the first embodiment to the fourth embodiment will be mainly described, and the description of the common points will be omitted or simplified.
  • FIG. 22 is a block diagram showing an exemplary configuration of the phase detection device according to the present embodiment.
  • the phase detection device 100A according to the present embodiment includes a lens optical system 110, a light detection unit 120, a control unit 130, and a phase detection unit 150A.
  • the phase detection device 100A according to the present embodiment detects, for example, the phase difference of the pulsed light from the transmission device 200.
  • transmission data is emitted from the transmission device 200 by wire or wirelessly by phase modulation of a train of pulsed light having a predetermined period, and the phase detection device 100A detects the phase modulation signal of the pulsed light and then phase modulation.
  • the transmitted data is demodulated.
  • the pulsed light used here is, for example, infrared light.
  • the photodetector 120 is, for example, one of the above-mentioned image pickup device 120A to the image pickup device 120D. Similar to the distance measuring device 100 described above, the operation of the photodetector 120 is controlled by the control unit 130.
  • the phase detection unit 150A outputs a phase detection result based on the output signal from the light detection unit 120.
  • the phase detection result is, for example, transmission data obtained by demodulating the detected phase modulation signal.
  • the phase detection unit 150A may calculate the delay time from a certain reference time by the same method as the above-mentioned distance measuring method, and output the calculated result.
  • the projection start time of the projection pulse light in the above-mentioned distance measuring method corresponds to the reference time
  • the flight time in the above-mentioned distance measuring method corresponds to the delay time.
  • the phase detection device 100A may not include the phase detection unit 150A, and the photodetection unit 120 may output an output signal to the outside.
  • FIG. 23 is a diagram showing an example of a signal transmitted by the transmitting device.
  • the transmission device 200 transmits a signal whose signal level indicates a time change as shown in FIG. 23 (a)
  • the signal of FIG. 23 (a) or (b) is transmitted.
  • a sequence of pulsed light having a pulse width Tp in which the magnitude of the delay time from a certain reference time is proportional to the magnitude of the transmitted signal as shown in (c) of FIG. 23.
  • the delay time from the reference time may be referred to as a phase difference
  • this phase-modulated sequence of pulsed light may be referred to as a carrier wave.
  • the transmission device 200 samples the transmission data indicating the level change shown in FIG. 23 (a) at a predetermined period T c as shown in FIG. 23 (b). Then, as shown in FIG. 23 (c), the transmission device 200 emits a sequence of pulsed light having a delay time T d proportional to the sampled signal level during each period T c as a carrier wave. .. That is, the pulsed light having the pulse width Tp repeatedly emitted from the transmitting device 200 is emitted with a time delay according to the signal level from the reference time of the interval of the period T c in each period T c .
  • the phase detection device 100A according to the present embodiment has several charge accumulation periods for the carrier wave as shown in FIG. 23 (c), similarly to the distance measuring device 100 shown in the above embodiment.
  • the light receiving sensitivity of each period is sequentially changed and detected.
  • FIG. 24 is a timing chart showing an example of the operation of the phase detection device 100A according to the present embodiment.
  • the graph of FIG. 24 (a) shows the time change of the carrier wave as in FIG. 23 (c).
  • the graph of FIG. 24 (b) shows the time change of the light receiving sensitivity obtained in the variable sensitivity pixel, similarly to the graph of FIG. 8 (e).
  • the graph of FIG. 24 (c) shows an outline of the timing of the charge accumulation and read operation in the pixel 10A, similarly to the graph of FIG. 5 (e).
  • each rectangle shown in FIG. 24 (c) has the same pattern as in FIG. 5 (e), and has a charge accumulation period (diagonal line), a pixel readout period (white), and a blanking period (halftone dots). Is shown.
  • the graph of FIG. 24 (d) shows the time change of the signal level detected by the phase detector 100A.
  • each pulsed light of the carrier wave is emitted with a delay of a predetermined time from a certain reference time in each period T c .
  • the reference time is the time T 01 , T 02 , T 03 , ... Which is the start time of each cycle T c , and the delayed time corresponding to each reference time is delayed.
  • the time is T d1 , T d2 , T d3 , ....
  • the photodetector 120 receives pulsed light delayed by a predetermined time from such a reference time.
  • T d1 T p
  • T d2 2 ⁇ T p
  • T d3 3 ⁇ T p
  • the length of the delay time T d4 is equal to the length of the delay time T d2
  • the length of the delay time T d5 is equal to the length of the delay time T d1 . That is, the delay time of each pulsed light of the carrier wave may be set to change discretely in a step with the pulse width Tp as a unit time.
  • the length of the delay time is not limited to a multiple of the pulse width Tp , and is not particularly limited as long as the pulsed light is received during the exposure period of the variable sensitivity pixel.
  • the light receiving sensitivity (sensitivity ⁇ A ) of the photoelectric conversion unit 13 of the variable sensitivity pixel is the period T c , which is the interval of the reference time of the pulsed light emission of the carrier wave by the control unit 130. It is set to change repeatedly in the same cycle as. Further, in the example shown in FIG. 24, the variable sensitivity pixel is set to the sensitivity ⁇ 0 at the time points T 01 , T 02 , T 03 , ..., Which are the reference times. Further, the variable sensitivity pixel starts after the same time as the pulse width T p elapses from the reference time, and is set to the sensitivity ⁇ 1 in the second period in which the length is the pulse width T p .
  • variable sensitivity pixel starts after the lapse of time twice the pulse width T p from the reference time, and is set to the sensitivity ⁇ 2 in the third period in which the length is the pulse width T p . Further, the variable sensitivity pixel starts after a lapse of time three times the pulse width T p from the reference time, and is set to the sensitivity ⁇ 3 in the fourth period in which the length is the pulse width T p .
  • the start time of the second period does not have to be a predetermined time from the reference time, and is set to start after the reference time according to the delay time of the pulsed light emitted by the transmission device 200. ..
  • the change in the light receiving sensitivity of the variable sensitivity pixel may be realized by the change in the voltage value of the voltage applied to the counter electrode 12 as shown in FIG. 5, or as shown in FIG. 14, the counter electrode. It may be realized by making the voltage applied to 12 into a pulse shape and changing the duty ratio thereof. Further, the same operation as that of the distance measuring device according to the first to fourth embodiments described above can be applied to the phase detection device 100A. For example, FIG. 24 (b) shows only the time change of the light receiving sensitivity of the variable sensitivity pixel in the above-described first to fourth embodiments, but the light is the same as in each of the above-described embodiments.
  • the detection unit 120 may be provided with fixed-sensitivity pixels and / or offset pixels that keep the light-receiving sensitivity constant during the charge accumulation period. Since the operation for measuring the delay time T d using the fixed sensitivity pixel and / or the offset pixel is as described above, the description thereof is omitted here.
  • the charge accumulation and pixel readout of the variable sensitivity pixel are repeated in the cycle T c as the pulsed light of the repeatedly carrier wave is emitted based on the reference time of the cycle T c . Will be done.
  • a signal having a signal level corresponding to the amount of charge accumulated in the charge accumulation period read out in the pixel readout period is output from the phase detection device 100A.
  • the detection signal level changes during the pixel readout period in FIG . 24C, and the output level is held until the next signal readout period after the period Tc.
  • the signal output by the phase detection device 100A according to the present embodiment is not limited to such an example.
  • the light detection unit 120 may hold the output level, or the phase detection unit 150A may hold the output level.
  • S is assumed to be an output signal level obtained when the light receiving sensitivity of the photoelectric conversion unit 13 is 1.
  • the larger the delay time from the reference time time T 01 , T 02 , T 03 , ...), the more variable.
  • the light receiving sensitivity of the photoelectric conversion unit 13 of the sensitivity pixel becomes high.
  • the carrier wave emits pulsed light so that the higher the signal level of the transmitted data is, the larger the delay time from the reference time is, so that such an operation is performed.
  • the magnitude relation of the output signal from the phase detection device 100A is the restoration of the signal level of the original transmission data. That is, the phase detection device 100A outputs a signal of a signal level having a magnitude corresponding to the delay time from the reference time. In this way, by setting the sensitivity of the variable sensitivity pixel so as to output the magnitude of the signal level corresponding to the delay time, the carrier wave can be easily restored to the transmission data.
  • signal transmission is started for the purpose of aligning the reference times for carrier wave transmission (time T 01 , T 02 , ... In FIG. 24, etc.) between the transmission device 200 and the phase detection device 100A.
  • handshake communication may be performed between the transmission device 200 and the phase detection device 100A, and data transmission / reception may be started when both the transmission side and the reception side have the same reference time. ..
  • the information indicating the reference time may be included in a part of the carrier wave, for example, at the beginning of the carrier wave, or may be transmitted from the transmission device 200 to the phase detection device 100A as a signal different from the carrier wave.
  • the above-mentioned reference time interval is constant, the reference time interval may not be constant as long as the reference time can be set by sending a signal indicating the reference time for each pulsed light or the like.
  • phase detection device 100A outputs a signal in which the signal level of the transmission data is restored as the phase detection result, but the present invention is not limited to this. Even if the phase detection device 100A (phase detection unit 150A of the phase detection device 100A) calculates the delay time (phase difference) by the same method as the distance measuring device 100 and outputs data indicating the result of the calculated delay time. good. Further, the restoration of the transmission data using the calculated delay time may be performed by an external device, may be performed by the phase detection unit 150A, and the restoration result may be output from the phase detection unit 150A.
  • the phase detection device 100A can output a signal according to the delay time without distributing the signal charge to the two charge storage units, similarly to the distance measuring device 100 described above. That is, the phase detection device 100A can output the phase detection result with high accuracy because the distribution of the signal charge is not incomplete. Therefore, for example, the phase detection device 100A can be used as a receiving device in optical data communication using phase modulation.
  • the phase detection device 100A does not reduce the accuracy even with the same pulse width Tp as compared with the case where the delay time is calculated by the charge distribution method, as described with reference to FIGS. 12A and 12B.
  • the range of measurable delay times can be expanded. Therefore, for example, when the phase detection device 100A is used for the above-mentioned optical data communication, the amplitude range of the transmission signal converted into a carrier wave and transmitted can be increased.
  • another processing unit may execute the processing executed by the specific processing unit.
  • the order of the plurality of processes may be changed, or the plurality of processes may be executed in parallel.
  • each component may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • each component may be realized by hardware.
  • Each component may be a circuit (or an integrated circuit). These circuits may form one circuit as a whole, or may be separate circuits from each other. Further, each of these circuits may be a general-purpose circuit or a dedicated circuit.
  • the general or specific aspects of the present disclosure may be realized by a recording medium such as a system, an apparatus, a method, an integrated circuit, a computer program, or a computer-readable CD-ROM. Further, it may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program and a recording medium.
  • the present disclosure may be realized as a distance measuring device of the above-described embodiment, or may be realized as a program for causing a computer to execute a distance measuring method performed by a processing unit, and such a program may be realized. It may be realized as a non-temporary recording medium that can be read by a computer on which it is recorded.
  • the distance measuring device, phase detecting device, etc. can be applied to various applications such as an optical data communication receiving device, a distance measuring system, and a distance sensing system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

測距装置100は、被検出物に向けてパルス光を投射する光源140と、光源140が投射したパルス光の被検出物からの反射光を受光する、感度可変の第1画素を含む光検出部120と、制御部130と、を備える。光源140は、第1期間において第1パルス光を投射する。制御部130は、第1期間と長さが等しい第2期間であって、第1期間の開始時点以降に開始する第2期間と、第2期間の後に続く第3期間とで構成される第1受光期間において、第1画素の感度を、第2期間において感度αに設定し、第3期間において感度αと異なる感度αに設定する。

Description

測距装置、測距方法および位相検出装置
 本開示は、測距装置、測距方法および位相検出装置に関するものである。
 近年、被検出物に赤外光を投射し、その反射光を撮像装置で受光することで、被検出物までの距離を算出する方法が提案されている。光の速さが既知であるため、光源より対象物に向かってパルス光を放ち、対象物からはね返ってきた反射光を受け、そのパルス光の遅れ時間、つまりパルス光の飛行時間を計測することで、対象物までの距離を測定することができる。TOF(Time-Of-Flight)法とは、このパルス光の飛行時間を測定することで、対象物までの距離を測る方法である。このように、ある基準時刻からの遅れ時間(遅延時間)である位相差を検出する装置を用いることで距離が測定される。
 例えば、特許文献1では、この原理を応用し、電荷振り分け方式の画素構造を有するCMOS(Complementary Metal Oxide Semiconductor)型固体撮像装置を用いて、2次元の距離画像を取得する技術が提案されている。具体的には、投射パルス光が物体に反射して、遅れて到達する反射パルス光の先行部分に対応する信号成分と後行部分に対応する信号成分とをスイッチで振り分ける。これらの振り分けられた信号成分を画素毎に検出し、先行部分と後行部分との比率を求めることにより、画素毎の距離情報を得ることができる。
特開2004-294420号公報
 本開示では、測距精度を高めることができる測距装置および測距方法を提供する。また、本開示では、位相検出精度を高めることができる位相検出装置を提供する。
 本開示の一態様に係る測距装置は、被検出物に向けてパルス光を投射する投光部と、前記投光部が投射したパルス光の前記被検出物からの反射光を受光する光検出部であって、感度可変の第1画素を含む光検出部と、制御回路と、を備え、前記投光部は、第1期間において第1パルス光を投射し、前記制御回路は、前記第1期間と長さが等しい第2期間であって、前記第1期間の開始時点以降に開始する第2期間と、前記第2期間の後に続く第3期間と、で構成される第1受光期間において、前記第1画素の感度を、前記第2期間において第1感度に設定し、前記第3期間において前記第1感度と異なる第2感度に設定する。
 本開示の一態様に係る測距方法は、被検出物に向けて第1期間において第1パルス光を投射し、前記第1パルス光の前記被検出物からの反射光を、前記第1期間と長さが等しい第2期間であって、前記第1期間の開始時点以降に開始する第2期間と、前記第2期間の後に続く第3期間とで構成される第1受光期間において、前記第2期間において第1感度で検出し、前記第3期間において前記第1感度と異なる第2感度で検出する。
 本開示の一態様に係る位相検出装置は、基準時刻から所定の時間遅延したパルス光を受光する光検出部であって、感度可変の第1画素を含む光検出部と、制御回路と、を備え、前記制御回路は、前記パルス光のパルス幅と長さが等しい第2期間であって、前記基準時刻以降に開始する第2期間と、前記第2期間の後に続く第3期間と、で構成される第1受光期間において、前記第1画素の感度を、前記第2期間において第1感度に設定し、前記第3期間において前記第1感度と異なる第2感度に設定する。
 本開示の一態様によれば、測距精度を高めることができる。また、本開示の一態様によれば、位相検出精度を高めることができる。
図1Aは、従来のTOF方式による距離測定を行う測距装置における撮像素子の画素の一例を示す断面図である。 図1Bは、従来のTOF方式における画素の動作の一例を示す図である。 図2は、実施の形態1に係る測距装置の例示的な構成を示すブロック図である。 図3は、実施の形態1に係る撮像装置の例示的な回路構成を示す図である。 図4は、実施の形態1に係る画素の例示的なデバイス構造を模式的に示す断面図である。 図5は、実施の形態1に係る測距装置における動作の一例を示すタイミングチャートである。 図6は、実施の形態1に係る複数の画素の動作の一例を示すタイミングチャートである。 図7は、実施の形態1に係る画素読み出し期間における制御信号のタイミングの一例を示すタイミングチャートである。 図8は、実施の形態1に係る測距装置による被検出物までの距離の測定原理を説明するための図である。 図9は、実施の形態1に係る測距装置による被検出物までの距離の測定原理を説明するための別の図である。 図10は、図5に示される動作が繰り返された場合を示すタイミングチャートである。 図11は、実施の形態1に係る測距装置における動作の変形例1を示すタイミングチャートである。 図12Aは、投射光を被検出物に投射したときに測距装置において蓄積される反射光の信号電荷量を示す図である。 図12Bは、図12Aとは異なるパルス幅の投射光を被検出物に投射したときに測距装置において蓄積される反射光の信号電荷量を示す図である。 図13は、実施の形態1に係る測距装置における動作の変形例2を示すタイミングチャートである。 図14は、実施の形態1に係る測距装置における動作の変形例3を示すタイミングチャートである。 図15は、実施の形態2に係る撮像装置の例示的な回路構成を示す図である。 図16は、実施の形態2に係る測距装置の動作の一例を示すタイミングチャートである。 図17は、実施の形態3に係る撮像装置の例示的な回路構成を示す図である。 図18は、実施の形態3に係る測距装置における動作の一例を示すタイミングチャートである。 図19は、実施の形態3に係る測距装置における動作の変形例を示すタイミングチャートである。 図20は、実施の形態4に係る撮像装置の例示的な回路構成を示す図である。 図21は、実施の形態4に係る測距装置の動作の一例を示すタイミングチャートである。 図22は、実施の形態5に係る位相検出装置の例示的な構成を示すブロック図である。 図23は、送信装置が送出する信号の例を示す図である。 図24は、実施の形態5に係る位相検出装置における動作の一例を示すタイミングチャートである。
 (本開示の一態様に至った経緯)
 本開示における実施の形態の詳細な説明の前に、従来のTOF方式による測距方法を説明する。
 図1Aは、従来のTOF方式による距離測定を行う測距装置における撮像素子の画素900の一例を示す断面図である。図1Aに示されるように、画素900は、半導体基板901上に構成されたフォトダイオード902、電荷蓄積部FD1および電荷蓄積部FD2を含み、それらが制御信号線TX1および制御信号線TX2により制御されるゲートを介して接続される。また、フォトダイオード902以外の箇所は、遮光板903により遮光される。図1Aにおいては記載を省略しているが、TOF方式による距離測定を行う測距装置には、画素900を含む撮像素子のほかに、被検出物に光を照射するための光源、および、画素900に被検出物からの反射光を結像するためのレンズなどが含まれる。
 図1Bは、従来のTOF方式における画素900の動作の一例を示す図である。図1Bでは、図1B中の「投射光」として示されるタイミングで光源からパルス幅Tのパルス光が被検出物に投射され、被検出物からの反射光が図1B中の「受信光」として示されるタイミングで、すなわち投射光から飛行時間Tだけ遅れたパルス幅Tのパルス光として画素900に入射されたとする。画素900においては、反射光がフォトダイオード902において光電変換されることより生成された電荷が、2つの電荷蓄積部FD1および電荷蓄積部FD2に振り分けて蓄積される。より具体的には、反射光によってフォトダイオード902において生成された電荷は、図1B中の「TX1」、「TX2」、「FD1への蓄積電荷」および「FD2への蓄積電荷」に示されるように、制御信号線TX1の電圧がHighレベルになる期間は電荷蓄積部FD1に蓄積され、制御信号線TX2の電圧がHighレベルになる期間は電荷蓄積部FD2に蓄積される。
 ここで、図1Bに示されるように、制御信号線TX1の電圧は投射光の照射が開始される時点から投射光の照射が終了する時点までの期間Highレベルとされる。また、制御信号線TX2の電圧は、投射光の照射が終了した時点から、投射光のパルス幅Tだけ経過した時点までの期間Highレベルとされる。これにより、電荷蓄積部FD1には、反射光のパルス幅Tのうち(T-T)の時間幅に生成された電荷に相当する電荷量が蓄積され、電荷蓄積部FD2には飛行時間Tの時間幅に生成された電荷に相当する電荷量が蓄積される。電荷蓄積部FD1から不図示の読み出し回路により読み出された信号をA、電荷蓄積部FD2から読み出された信号をAとすると、投射光と反射光との位相差である反射光の遅延時間、つまりパルス光の飛行時間Tは以下の式(1)で計算される。
Figure JPOXMLDOC01-appb-M000001
 式(1)により得られる飛行時間Tから、被検出物までの距離dを以下の式(2)で計算できる。
Figure JPOXMLDOC01-appb-M000002
 ここで、cは光速(c=3×10m/s)である。このようにして、画素900を用いることで被検出物までの距離dを計算できるが、画素900では、パルス幅Tに合わせて、1つのフォトダイオード902で生成された電荷を電荷蓄積部FD1と電荷蓄積部FD2とに高速で振り分ける必要がある。また、フォトダイオード902において生成された電荷が、電荷蓄積部FD1に完全に転送される前に、電荷蓄積部FD2に振り分けられて蓄積する可能性がある。そのため、従来のTOF方式では、測距精度を高めにくい。
 また、式(2)において、この方式によって測定が可能な距離の上限dmaxは、式(1)における飛行時間Tが投射光のパルス幅Tに等しいときであり、以下の式(3)で計算される。
Figure JPOXMLDOC01-appb-M000003
 式(3)より、測定可能な距離の上限dmaxは投射光のパルス幅Tに比例し、パルス幅Tを大きくすることで距離の測定レンジを拡大することができる。一方で、パルス幅Tを大きくすることで、距離測定の分解能が劣化し、測距精度が低下することが知られている。すなわち、従来のTOF方式における距離測定レンジの大きさと測定分解能とはトレードオフの関係にあり、その双方を良好に保つことは困難である。
 本発明者らは、このような課題を解決するため、画素の感度を制御することによって、位相検出精度および測距精度を高めることができることを見出した。例えば、本開示における測距装置の一側面は、TOF方式を用いた測距装置において測定分解能の劣化を引き起こすことなく距離測定レンジを拡大する特徴を有する。以下、詳細に説明する。
 (本開示の概要)
 本開示の一態様の概要は以下の通りである。
 本開示の一態様に係る測距装置は、被検出物に向けてパルス光を投射する投光部と、前記投光部が投射したパルス光の前記被検出物からの反射光を受光する光検出部であって、感度可変の第1画素を含む光検出部と、制御回路と、を備え、前記投光部は、第1期間において第1パルス光を投射し、前記制御回路は、前記第1期間と長さが等しい第2期間であって、前記第1期間の開始時点以降に開始する第2期間と、前記第2期間の後に続く第3期間と、で構成される第1受光期間において、前記第1画素の感度を、前記第2期間において第1感度に設定し、前記第3期間において前記第1感度と異なる第2感度に設定する。
 このように、第1受光期間において第1画素の感度が第1感度と第2感度とで変化することで、第1パルス光の飛行時間に応じて第1画素に蓄積される信号電荷量が変化する。その結果、第1画素に蓄積された信号電荷量から飛行時間を算出できるため、TOF方式で被検出物までの測距ができる。このような測距では、例えば、従来のように信号電荷を2つの電荷蓄積部に振り分ける必要がないため、信号電荷の振り分けが不完全になるために測距精度が低下することがない。よって、本態様に係る測距装置は、測距精度を高めることができる。
 また、例えば、前記第1感度および前記第2感度はそれぞれ、前記第2期間および前記第3期間それぞれにおいて一定であってもよい。
 このように、第1感度および第2感度がそれぞれ一定であるため、第1画素に蓄積される電荷量から飛行時間を簡便に算出できる。
 また、例えば、前記第1感度および前記第2感度はそれぞれ、前記第2期間および前記第3期間それぞれにおいて、直線的に増加する、または、前記第2期間および前記第3期間それぞれにおいて、直線的に低下してもよい。
 このように、第1感度および第2感度がそれぞれ直線状に変化するため、第1画素に蓄積される電荷量から飛行時間を簡便に算出できる。
 また、例えば、前記第1受光期間は、前記第2期間と、前記第3期間と、前記第3期間の後に続く第4期間とで構成され、前記制御回路は、前記第1画素の感度を、前記第4期間において前記第1感度および前記第2感度と異なる第3感度に設定し、前記第3期間の長さは、前記第1期間の長さと等しく、前記第2感度は、前記第1感度と前記第3感度との間の感度であってもよい。
 これにより、第1受光期間において第1画素の感度が第1感度と第2感度と第3感度とで、この順で増加または低下するように変化することで、パルス光の飛行時間に応じて第1画素に蓄積される信号電荷量が変化する。また、第1受光期間は、第1パルス光が投射されている第1期間、つまり、第1パルス光のパルス幅の2倍より長い。その結果、パルス幅よりも長い飛行時間になるような被検出物までの距離の場合でも、第1画素に蓄積された信号電荷量から飛行時間を算出できるため、TOF方式で被検出物までの測距ができる。そのため、パルス幅を長くすることなく被検出物までの距離の測定レンジを拡大できるため、パルス幅を長くしたために測距精度が低下することを防止できる。よって測距装置は、測距精度を高めることができる。
 また、例えば、前記第1感度、前記第2感度および前記第3感度はそれぞれ、前記第2期間、前記第3期間および前記第4期間それぞれにおいて一定であってもよい。
 このように、第1感度、第2感度および第3感度がそれぞれ一定であるため、第1画素に蓄積される電荷量から飛行時間を簡便に算出できる。
 また、例えば、前記第1受光期間において、前記第1感度、前記第2感度および前記第3感度はそれぞれ、前記第2期間、前記第3期間および前記第4期間それぞれにおいて、直線的に増加する、または、前記第2期間、前記第3期間および前記第4期間それぞれにおいて、直線的に低下してもよい。
 このように、第1感度、第2感度および第3感度がそれぞれ直線状に変化するため、第1画素に蓄積される電荷量から飛行時間を簡便に算出できる。
 また、例えば、前記光検出部は、第2画素を含み、前記制御回路は、前記第1受光期間において、前記第2画素の感度を、測距のための基準感度に設定してもよい。
 これにより、第2画素には、基準感度に基づいた信号電荷が蓄積される。その結果、感度の絶対値よりも精度よく測定しやすい第1画素と第2画素との感度比、ならびに、第1画素に蓄積された信号電荷量および第2画素に蓄積された信号電荷量に基づいて、飛行時間が算出できる。よって、測距装置は、測距精度を高めることができる。
 また、例えば、前記光検出部は、第3画素を含み、前記制御回路は、前記第1受光期間の後に続く非受光期間において、前記第1画素の感度を、前記第1受光期間における前記第1画素の感度よりも低い基底感度に設定し、前記第3画素の感度を、前記第1受光期間において前記基底感度に設定してもよい。
 このように、第3画素の感度を非受光期間における第1画素の基底感度に設定する。これにより、信号電荷を蓄積しなくてもよい非受光期間において、第1画素に信号電荷が蓄積されてしまう場合であっても、非受光期間において第1画素に蓄積した信号電荷量による測距精度への影響を、第3画素に蓄積された信号電荷量を差し引くことによって低減できる。
 また、例えば、前記投光部は、前記第1期間と長さが等しい第5期間において第2パルス光を投射し、前記制御回路は、前記第1受光期間と長さが等しく、前記第5期間の開始時点以降に開始する第2受光期間において、前記第1画素の感度を測距のための基準感度に設定してもよい。
 これにより、第2受光期間において、第1画素には、基準感度に基づいた信号電荷が蓄積される。その結果、第1画素の感度の絶対値よりも精度よく測定しやすい第1受光期間における第1画素の感度と第2受光期間における第1画素の感度との比、ならびに、第1受光期間において第1画素に蓄積された信号電荷量および第2受光期間において第1画素に蓄積された信号電荷量に基づいて、飛行時間が算出できる。よって、測距装置は、測距精度を高めることができる。
 また、例えば、前記投光部は、前記第1期間と長さが等しい第6期間において第3パルス光を投射し、前記制御回路は、前記第1受光期間の後に続く非受光期間において、前記第1画素の感度を、前記第1受光期間における前記第1画素の感度よりも低い基底感度に設定し、前記第1受光期間と長さが等しく、前記第6期間の開始時点以降に開始する第3受光期間において、前記第1画素の感度を、前記基底感度に設定してもよい。
 これにより、第3受光期間における第1画素の感度を非受光期間における第1画素の基底感度に設定する。これにより、信号電荷を蓄積しなくてもよい非受光期間において、第1画素に信号電荷が蓄積されてしまう場合であっても、非受光期間において第1画素に蓄積された信号電荷量による測距精度への影響を、第3受光期間において第1画素に蓄積された信号電荷量を差し引くことによって低減できる。
 また、例えば、前記第1画素は、光電変換部を含み、前記制御回路は、前記光電変換部に印加される電圧の大きさを調整することにより、前記第1画素の感度を設定してもよい。
 これにより、光電変換部に印加される電圧の大きさを調整するだけで第1画素の感度が設定されるため、感度設定の動作を簡素化できる。
 また、例えば、前記第1画素は、光電変換部を含み、前記制御回路は、前記光電変換部に印加されるパルス電圧であって、第1電圧と前記第1電圧よりも大きい第2電圧とを交互に繰り返すパルス電圧のデューティ比を調整することにより、前記第1画素の感度を設定してもよい。
 これにより、第1画素の感度がデューティ比に比例するため、第1画素の感度を所望の感度に調整することが容易になる。
 また、本開示の一態様に係る測距方法は、被検出物に向けて第1期間において第1パルス光を投射し、前記第1パルス光の前記被検出物からの反射光を、前記第1期間と長さが等しい第2期間であって、前記第1期間の開始時点以降に開始する第2期間と、前記第2期間の後に続く第3期間とで構成される第1受光期間において、前記第2期間において第1感度で検出し、前記第3期間において前記第1感度と異なる第2感度で検出する。
 このように、第1受光期間において検出する感度が第1感度と第2感度とで変化することで、パルス光の飛行時間に応じて検出する信号量が変化する。その結果、検出された信号量から飛行時間を算出できるため、TOF方式で被検出物までの測距ができる。このような測距では、例えば、従来のように信号を2つに振り分けて検出する必要がないため、信号の振り分けが不完全になるために精度が低下することがない。よって、本態様に係る測距方法は、測距精度を高めることができる。
 また、例えば、前記測距方法は、さらに、前記第1受光期間において、前記反射光を、測距のための基準感度で検出してもよい。
 これにより、基準感度に基づいた信号を検出できる。その結果、感度の絶対値よりも精度よく測定しやすい第1感度および第2感度それぞれと基準感度との感度比、ならびに、第1感度および第2感度で検出された信号量および基準感度で検出された信号量に基づいて、飛行時間が算出できる。よって、測距方法は、測距精度を高めることができる。
 また、例えば、前記被検出物に向けて、前記第1期間と長さが等しい第5期間において第2パルス光を投射し、前記第1受光期間と長さが等しく、前記第5期間の開始時点以降に開始する第2受光期間において、前記第2パルス光の前記被検出物からの反射光を、測距のための基準感度で検出してもよい。
 これにより、第2受光期間において、基準感度に基づいた信号を検出できる。その結果、感度の絶対値よりも精度よく測定しやすい第1受光期間における感度と第2受光期間における感度との比、ならびに、第1受光期間において検出された信号量および第2受光期間において検出された信号量に基づいて、飛行時間が算出できる。よって、測距方法は、測距精度を高めることができる。
 また、本開示の一態様に係る位相検出装置は、基準時刻から所定の時間遅延したパルス光を受光する光検出部であって、感度可変の第1画素を含む光検出部と、制御回路と、を備え、前記制御回路は、前記パルス光のパルス幅と長さが等しい第2期間であって、前記基準時刻以降に開始する第2期間と、前記第2期間の後に続く第3期間と、で構成される第1受光期間において、前記第1画素の感度を、前記第2期間において第1感度に設定し、前記第3期間において前記第1感度と異なる第2感度に設定する。
 これにより、第1受光期間において第1画素の感度が第1感度と第2感度とで変化することで、パルス光の基準時刻からの遅延時間に応じて第1画素に蓄積される信号電荷量が変化する。その結果、第1画素に蓄積された信号電荷量に基づいて、基準時刻からの遅延時間である位相差を検出できる。このような位相検出では、例えば、従来のように信号電荷を2つの電荷蓄積部に振り分ける必要がないため、信号電荷の振り分けが不完全になるために位相検出精度が低下することがない。よって、本態様に係る位相検出装置は、位相検出精度を高めることができる。
 以下本開示の実施の形態について、図面を参照しながら説明する。なお、以下で説明する実施形態は、いずれも包括的または具体的な例を示す。以下の実施形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。本明細書において説明される種々の態様は、矛盾が生じない限り互いに組み合わせることが可能である。また、以下の実施形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。以下の説明において、実質的に同じ機能を有する構成要素は共通の参照符号で示し、説明を省略することがある。
 また、本明細書において、要素間の関係性を示す用語、および、要素の形状を示す用語、ならびに、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。
 (実施の形態1)
 まず、実施の形態1について説明する。実施の形態1では、TOF方式で測距を行う測距装置について説明する。
 [測距装置の全体構成]
 本開示における測距装置は、TOF方式、すなわち所定の幅を持つパルス光を被検出物に照射し、被検出物から反射されたパルス光を光電変換することで得られる電気信号に基づいて被検出物までのパルス光の往復の飛行時間を測定することにより、対象から測距装置までの距離を測定する。当該測距装置における受光素子の各画素は、例えば受光素子に印加する電圧を変化させることによって受光感度を変化させる機能を有する。当該受光素子の一部の画素は、例えば、受光感度が被検出物へのパルス光の照射を開始した時点以降の時点から当該パルス光のパルス幅に相当する時間が経過するたびに所定の割合で増加するように設定される。このような受光感度設定をなされた画素によって被検出物から反射されたパルス光を光電変換し、出力された信号から光源と被検出物との間のパルス光の飛行時間を算出する。その後、算出された飛行時間から被検出物までの距離を算出する。本明細書では、受光感度を、単に「感度」と称する場合がある。
 図2は、本実施の形態に係る測距装置の例示的な構成を示すブロック図である。図2に示されるように、本実施の形態に係る測距装置100は、レンズ光学系110、光検出部120、制御部130、光源140および距離測定部150を備える。
 レンズ光学系110は、例えばレンズおよび絞りを含む。レンズ光学系110は、光検出部120の受光面に光を集光する。
 光検出部120は、光源140が投射したパルス光の被検出物からの反射光を受光する。光検出部120は、例えば、撮像装置である。光検出部120は、例えば、レンズ光学系110を通して入射した光を、その強度に応じた電気信号に変換し、画像データとして出力する。ここで、光検出部120は、例えば外部からの制御によって、印加される電圧を変化させることにより、受光感度を変化させる機能を有する。以下では、主に、光検出部120が撮像装置である場合について説明する。光検出部120の詳細な構成については後述する。
 制御部130は、光検出部120および光源140を制御するための信号を生成し、光検出部120および光源140に供給する。制御部130は、制御回路の一例である。より具体的には、制御部130は、光源140からの光照射のタイミングに基づいて光検出部120が撮像動作を行うように光検出部120および光源140の制御を行う。それに加え、前述の通りに制御部130は、光検出部120の受光感度を調整する制御を行う。制御部130は、例えば、プログラムを内蔵する1以上のプロセッサを含むマイクロコントローラによって実現される。制御部130の機能は、汎用の処理回路とソフトウェアとの組み合わせによって実現されてもよいし、制御部130の処理に特化したハードウェアによって実現されてもよい。
 光源140は、被検出物に向けてパルス光を投射する。具体的には、光源140は、制御部130により制御された所定のタイミングにて、被検出物に対しパルス光を照射する。このパルス光には、例えば赤外光が用いられる。光源140は、投光部の一例である。光源140は、赤外光のパルス光を照射する光源であれば、公知の光源を用いることができ、例えば、赤外光を射出するレーザダイオード光源である。
 距離測定部150は、光検出部120からの出力信号をもとに、被検出物までの距離を算出し、算出された距離データ等を測距装置100の外部に出力する。具体的には、距離測定部150は、後述する各式を用いて、光検出部120からの出力信号等に基づいて、パルス光の飛行時間を算出する。距離測定部150は、算出した飛行時間に基づいて、上述の式(2)を用いて被検出物までの距離を算出する。距離測定部150は、距離データの代わりに飛行時間データを出力してもよい。距離測定部150は、例えば、プログラムを内蔵する1以上のプロセッサを含むマイクロコントローラによって実現される。距離測定部150の機能は、汎用の処理回路とソフトウェアとの組み合わせによって実現されてもよいし、距離測定部150の処理に特化したハードウェアによって実現されてもよい。
 なお、測距装置100は、距離測定部150を備えていなくてもよく、光検出部120は、出力信号を外部に出力してもよい。
 [光検出部の回路構成]
 次に、光検出部120の回路構成について説明する。ここでは、光検出部120が、撮像装置120Aである場合について説明する。
 図3は、本実施の形態に係る撮像装置120Aの例示的な回路構成を示す図である。図3に示される撮像装置120Aは、2次元に配列された複数の画素10Aを含む画素アレイPAを有する。複数の画素10Aは、少なくとも1つの画素10AAと、少なくとも1つの画素10ABとを含む。画素10AAと画素10ABとは、例えば、1セットの画素として、互いに隣接して配置される。画素10AAは第1画素の一例であり、画素10ABは第2画素の一例である。画素10AAは、後述する電荷蓄積期間において、感度が変化するように設定される感度可変の可変感度画素であり、画素10ABは、電荷蓄積期間において、感度固定であり一定の基準感度に設定される固定感度画素である。なお、以下では、画素10AAと画素10ABとを特に区別する必要が無い場合には、画素10AAと画素10ABとを総称した画素10Aとして説明する場合がある。
 図3は、複数の画素10Aが2行2列のマトリクス状に配置された例を模式的に示している。言うまでもないが、撮像装置120Aにおける複数の画素10Aの数および配置は、複数の画素10Aが、少なくとも1セットの画素10AAと画素10ABとを含んでいれば、図3に示す例に限定されない。また、これらの複数の画素10Aが2次元的に配列された面を撮像面と称することがある。
 各画素10Aは、光電変換部13および信号検出回路14を有する。後に図面を参照して説明するように、光電変換部13は、互いに対向する2つの電極の間に挟まれた光電変換層を有し、入射した光を受けて信号を生成する。光電変換部13は、その全体が、画素10Aごとに独立した素子である必要はなく、光電変換部13の例えば一部分が複数の画素10Aにまたがっていてもよい。信号検出回路14は、光電変換部13によって生成された信号電荷を検出する回路である。具体的には、信号検出回路14は、後述する電荷蓄積ノード41に蓄積された信号電荷に対応する信号を読み出す。この例では、信号検出回路14は、信号検出トランジスタ24およびアドレストランジスタ26を含んでいる。信号検出トランジスタ24およびアドレストランジスタ26は、例えば、電界効果トランジスタ(FET)であり、ここでは、信号検出トランジスタ24およびアドレストランジスタ26としてNチャネルMOSFET(Metal Oxide Semiconductor Field Effect Transistor)を例示する。信号検出トランジスタ24およびアドレストランジスタ26、ならびに、後述するリセットトランジスタ28などの各トランジスタは、制御端子、入力端子および出力端子を有する。制御端子は、例えばゲートである。入力端子は、ドレインおよびソースの一方であり、例えばドレインである。出力端子は、ドレインおよびソースの他方であり、例えばソースである。
 図3において模式的に示されるように、信号検出トランジスタ24の制御端子は、光電変換部13との電気的な接続を有する。光電変換部13によって生成される信号電荷は、信号検出トランジスタ24のゲートと光電変換部13との間の電荷蓄積ノード41に蓄積される。ここで、信号電荷は、正孔または電子である。また、電荷蓄積ノード41は、電荷蓄積部の一例であり、「フローティングディフュージョンノード」とも呼ばれる。光電変換部13の構造の詳細は、後述する。
 撮像装置120Aは、画素アレイPAを駆動し、複数のタイミングで画像を取得する駆動部を備えている。駆動部は、電圧供給回路32、電圧供給回路33、リセット電圧源34、垂直走査回路36、カラム信号処理回路37および水平信号読み出し回路38を含む。
 図3に示される撮像装置120Aの例において、各画素10Aの光電変換部13は、感度制御線42または感度制御線43のいずれか一方との接続を有する。具体的には、各画素10AAの光電変換部13は、感度制御線42との接続を有する。また、各画素10ABの光電変換部13は、感度制御線43との接続を有する。画素10AAおよび画素10ABの構成は、例えば、光電変換部13が接続される感度制御線が異なる以外は同じである。さらに、撮像面上において、各画素10Aは、感度制御線42に接続される画素10AAと感度制御線43に接続される画素10ABとが、垂直および水平方向に交互に配列されている。図3に例示する構成において、感度制御線42は、電圧供給回路32に接続されており、感度制御線43は、電圧供給回路33に接続されている。詳細は後述するが、電圧供給回路32と電圧供給回路33とは、それぞれ互いに異なる電圧を感度制御線42および感度制御線43に供給する。
 各々の画素10Aは、画素電極11および対向電極12を含む。これらの電極の構成についての詳細は、図4に示して後述する。電圧供給回路32と電圧供給回路33とによって画素電極11の電位に対する対向電極12の電位を制御することにより、光電変換によって後述する光電変換層15内に生じた正孔-電子対のうち、正孔および電子のいずれか一方を、画素電極11によって収集することができる。例えば信号電荷として正孔を利用する場合には、画素電極11よりも対向電極12の電位を高くすることにより、画素電極11によって正孔を選択的に収集することが可能である。また、単位時間当たりに収集される信号電荷量は画素電極11と対向電極12との電位差に応じて変化する。以下では、信号電荷として正孔を利用する場合を例示する。もちろん、信号電荷として電子を利用することも可能である。電圧供給回路32および電圧供給回路33は、特定の電源回路に限定されず、所定の電圧を生成する回路であってもよいし、他の電源から供給された電圧を所定の電圧に変換する回路であってもよい。
 各画素10Aは、電源電圧VDDを供給する電源線40との接続を有する。図示されるように、電源線40には、信号検出トランジスタ24の入力端子が接続されている。電源線40がソースフォロア電源として機能することにより、信号検出トランジスタ24は、光電変換部13によって生成された信号を増幅して出力する。
 信号検出トランジスタ24の出力端子には、アドレストランジスタ26の入力端子が接続されている。アドレストランジスタ26の出力端子は、画素アレイPAの列ごとに配置された複数の垂直信号線47のうちの1つに接続されている。アドレストランジスタ26の制御端子は、アドレス制御線46に接続されており、アドレス制御線46の電位を制御することにより、信号検出トランジスタ24の出力を、対応する垂直信号線47に選択的に読み出すことができる。
 図示される例では、アドレス制御線46は、垂直走査回路36に接続されている。垂直走査回路36は、「行走査回路」とも呼ばれる。垂直走査回路36は、アドレス制御線46に所定の電圧を印加することにより、各行に配置された複数の画素10Aを行単位で選択する。これにより、選択された画素10Aの信号の読み出しと、後述する、画素電極11、つまり、電荷蓄積ノード41のリセットとが実行される。
 さらに、垂直走査回路36には、画素駆動信号生成回路39が接続されている。図示される例では、画素駆動信号生成回路39が画素アレイPAの各行に配置された画素10Aを駆動する信号を生成し、生成された画素駆動信号は垂直走査回路36により選択された行の画素10Aに供給される。
 垂直信号線47は、画素アレイPAからの画素信号を周辺回路へ伝達する主信号線である。垂直信号線47には、カラム信号処理回路37が接続される。カラム信号処理回路37は、「行信号蓄積回路」とも呼ばれる。カラム信号処理回路37は、相関二重サンプリングに代表される雑音抑制信号処理およびアナログ-デジタル変換(AD変換)などを行う。図示されるように、カラム信号処理回路37は、画素アレイPAにおける画素10Aの各列に対応して設けられる。これらのカラム信号処理回路37には、水平信号読み出し回路38が接続される。水平信号読み出し回路38は、「列走査回路」とも呼ばれる。水平信号読み出し回路38は、複数のカラム信号処理回路37から水平共通信号線49に信号を順次読み出す。
 図3に例示される構成において、各画素10Aは、リセットトランジスタ28を有する。リセットトランジスタ28は、例えば、信号検出トランジスタ24およびアドレストランジスタ26と同様に、電界効果トランジスタであり得る。以下では、特に断りの無い限り、リセットトランジスタ28としてNチャネルMOSFETを適用した例を説明する。図示されるように、リセットトランジスタ28は、リセット電圧Vrを供給するリセット電圧線44と、電荷蓄積ノード41との間に接続される。リセットトランジスタ28の制御端子は、リセット制御線48に接続されており、リセット制御線48の電位を制御することによって、電荷蓄積ノード41の電位をリセット電圧Vrにリセットすることができる。この例では、リセット制御線48が、垂直走査回路36に接続されている。したがって、垂直走査回路36がリセット制御線48に所定の電圧を印加することにより、各行に配置された複数の画素10Aを行単位でリセットすることが可能である。
 この例では、リセットトランジスタ28にリセット電圧Vrを供給するリセット電圧線44が、リセット電圧源34に接続されている。リセット電圧源34は、「リセット電圧供給回路」とも呼ばれる。リセット電圧源34は、撮像装置120Aの動作時にリセット電圧線44に所定のリセット電圧Vrを供給可能な構成を有していればよく、上述の電圧供給回路32と同様に、特定の電源回路に限定されない。電圧供給回路32およびリセット電圧源34の各々は、単一の電圧供給回路の一部分であってもよいし、独立した別個の電圧供給回路であってもよい。なお、電圧供給回路32およびリセット電圧源34の一方または両方が、垂直走査回路36の一部分であってもよい。あるいは、電圧供給回路32からの感度制御電圧および/またはリセット電圧源34からのリセット電圧Vrが、垂直走査回路36を介して各画素10Aに供給されてもよい。
 リセット電圧Vrとして、信号検出回路14の電源電圧VDDを用いることも可能である。この場合、各画素10Aに電源電圧を供給する図3において不図示の電圧供給回路と、リセット電圧源34とを共通化し得る。また、電源線40と、リセット電圧線44を共通化できるので、画素アレイPAにおける配線を単純化し得る。ただし、リセット電圧Vrを、信号検出回路14の電源電圧VDDと異なる電圧とすることにより、撮像装置120Aのより柔軟な制御を可能にする。
 [画素のデバイス構造]
 次に、撮像装置120Aの画素10Aのデバイス構造について説明する。図4は、本実施の形態に係る画素10Aの例示的なデバイス構造を模式的に示す断面図である。図4に例示される構成では、上述の信号検出トランジスタ24、アドレストランジスタ26およびリセットトランジスタ28が、半導体基板20に形成されている。半導体基板20は、その全体が半導体である基板に限定されない。半導体基板20は、感光領域が形成される側の表面に半導体層が設けられた絶縁性基板などであってもよい。ここでは、半導体基板20としてP型シリコン(Si)基板を用いる例を説明する。
 半導体基板20は、不純物領域26s、24s、24d、28dおよび28sと、画素10A間の電気的な分離のための素子分離領域20tとを有する。ここでは、不純物領域26s、24s、24d、28dおよび28sはN型領域である。また、素子分離領域20tは、不純物領域24dと不純物領域28dとの間にも設けられている。素子分離領域20tは、例えば所定の注入条件のもとでアクセプタのイオン注入を行うことによって形成される。
 不純物領域26s、24s、24d、28dおよび28sは、例えば、半導体基板20内に形成された不純物の拡散層である。図4に模式的に示されるように、信号検出トランジスタ24は、不純物領域24sおよび不純物領域24dと、ゲート電極24gとを含む。ゲート電極24gは、導電性材料を用いて形成される。導電性材料は、例えば、不純物がドープされることにより導電性が付与されたポリシリコンであるが、金属材料でもよい。不純物領域24sは、信号検出トランジスタ24の例えばソース領域として機能する。不純物領域24dは、信号検出トランジスタ24の例えばドレイン領域として機能する。不純物領域24sと不純物領域24dとの間に、信号検出トランジスタ24のチャネル領域が形成される。
 同様に、アドレストランジスタ26は、不純物領域26sおよび不純物領域24sと、アドレス制御線46(図3参照)に接続されたゲート電極26gとを含む。ゲート電極26gは、導電性材料を用いて形成される。導電性材料は、例えば、不純物がドープされることにより導電性が付与されたポリシリコンであるが、金属材料でもよい。この例では、信号検出トランジスタ24およびアドレストランジスタ26は、不純物領域24sを共有することによって互いに電気的に接続されている。不純物領域24sは、アドレストランジスタ26の例えばドレイン領域として機能する。不純物領域26sは、アドレストランジスタ26の例えばソース領域として機能する。不純物領域26sは、図4において不図示の垂直信号線47(図3参照)との接続を有する。なお、不純物領域24sは、信号検出トランジスタ24およびアドレストランジスタ26によって共有されていなくてもよい。具体的には、信号検出トランジスタ24のソース領域とアドレストランジスタ26のドレイン領域とは、半導体基板20内では分離しており、層間絶縁層50内に設けられた配線層を介して電気的に接続されていてもよい。
 リセットトランジスタ28は、不純物領域28dおよび28sと、リセット制御線48(図3参照)に接続されたゲート電極28gとを含む。ゲート電極28gは、例えば、導電性材料を用いて形成される。導電性材料は、例えば、不純物がドープされることにより導電性が付与されたポリシリコンであるが、金属材料でもよい。不純物領域28sは、リセットトランジスタ28の例えばソース領域として機能する。不純物領域28sは、図4において不図示のリセット電圧線44(図3参照)との接続を有する。不純物領域28dは、リセットトランジスタ28の例えばドレイン領域として機能する。
 半導体基板20上には、信号検出トランジスタ24、アドレストランジスタ26およびリセットトランジスタ28を覆うように層間絶縁層50が配置されている。層間絶縁層50は、例えば、二酸化シリコンなどの絶縁性材料から形成される。図示されるように、層間絶縁層50中には、配線層56が配置され得る。配線層56は、例えば、銅などの金属から形成され、例えば、上述の垂直信号線47などの信号線または電源線をその一部に含み得る。層間絶縁層50中の絶縁層の層数、および、層間絶縁層50中に配置される配線層56に含まれる層数は、任意に設定可能であり、図4に示す例に限定されない。
 層間絶縁層50上には、上述の光電変換部13が配置される。別の言い方をすれば、本実施の形態では、画素アレイPA(図3参照)を構成する複数の画素10Aが、半導体基板20中および半導体基板20上に形成されている。半導体基板20上に2次元に配列された複数の画素10Aは、感光領域を形成する。感光領域は、画素領域とも呼ばれる。隣接する2つの画素10A間の距離、すなわち画素ピッチは、例えば2μm程度であり得る。
 光電変換部13は、画素電極11と、対向電極12と、これらの間に配置された光電変換層15とを含む。図示される例では、光電変換層15は、複数の画素10Aにまたがって形成されている。他方、画素電極11は、画素10Aごとに設けられており、隣接する他の画素10Aの画素電極11と空間的に分離されることによって、他の画素10Aの画素電極11から電気的に分離されている。また、対向電極12は、少なくとも、複数の画素10Aのうち、隣接する画素10AAと画素10ABとで空間的に分離して形成されている。これにより、隣接する画素10AAの対向電極12と画素10ABの対向電極12とが電気的に分離されている。対向電極12は、複数の画素10AAにまたがって形成されていてもよい。また、対向電極12は、複数の画素10ABにまたがって形成されていてもよい。
 対向電極12は、例えば、透明な導電性材料から形成される透明電極である。対向電極12は、光電変換層15において光が入射される側に配置される。したがって、光電変換層15には、対向電極12を透過した光が入射する。なお、撮像装置120Aによって検出される光は、可視光の波長範囲内の光に限定されない。例えば、撮像装置120Aは、赤外光または紫外光を検出してもよい。ここで、可視光の波長範囲とは、例えば、380nm以上780nm以下である。本明細書における「透明」は、検出しようとする波長範囲の光の少なくとも一部を透過することを意味し、可視光の波長範囲全体にわたって光を透過することは必須ではない。本明細書では、赤外光および紫外光を含めた電磁波全般を、便宜上「光」と表現する。対向電極12には、例えば、ITO、IZO、AZO、FTO、SnO、TiOおよびZnOなどの透明導電性酸化物(Transparent Conductive Oxide(TCO))を用いることができる。
 光電変換層15は、入射する光を受けて正孔-電子対を発生させる。光電変換層15は、例えば、有機半導体材料から形成される。光電変換層15は、無機半導体材料から形成されてもよい。
 図3を参照して説明したように、対向電極12は、電圧供給回路32に接続された感度制御線42または電圧供給回路33に接続された感度制御線43との接続を有する。例えば、対向電極12は、複数の画素10AAにまたがって形成されている。また、例えば、対向電極12は、複数の画素10ABにまたがって形成されている。したがって、感度制御線42および感度制御線43を介して、電圧供給回路32および電圧供給回路33から所望の大きさの感度制御電圧を複数の画素10AAおよび複数の画素10ABそれぞれの間に一括して印加することが可能である。なお、電圧供給回路32および電圧供給回路33から所望の大きさの感度制御電圧を印加することができれば、対向電極12は、画素10Aごとに分離して設けられていてもよい。同様に、光電変換層15が画素10Aごとに分離して設けられていてもよい。
 画素電極11の電位に対する対向電極12の電位を制御することにより、光電変換によって光電変換層15内に生じた正孔-電子対のうち、正孔および電子のいずれか一方を、画素電極11によって収集することができる。例えば信号電荷として正孔を利用する場合、画素電極11よりも対向電極12の電位を高くすることにより、画素電極11によって信号電荷である正孔を選択的に収集することが可能である。また、単位時間当たりに収集される信号電荷量は画素電極11と対向電極12との間の電位差に応じて変化する。以下では、信号電荷として正孔を利用する場合を例示する。もちろん、信号電荷として電子を利用することも可能である。
 画素電極11は、アルミニウム、銅などの金属、金属窒化物、または、不純物がドープされることにより導電性が付与されたポリシリコンなどから形成される。
 画素電極11は、遮光性の電極であってもよい。例えば、画素電極11として、厚さが100nmのTaN電極を形成することにより、十分な遮光性を実現し得る。画素電極11を遮光性の電極とすることにより、半導体基板20に形成されたトランジスタのチャネル領域または不純物領域への、光電変換層15を通過した光の入射を抑制し得る。図示される例では、当該トランジスタは、信号検出トランジスタ24、アドレストランジスタ26およびリセットトランジスタ28の少なくともいずれかである。上述の配線層56を利用して層間絶縁層50内に遮光膜を形成してもよい。これらの遮光性の電極または遮光膜によって半導体基板20に形成されたトランジスタのチャネル領域への光の入射を抑制することにより、例えばトランジスタの閾値電圧の変動などのトランジスタの特性のシフトなどを抑制し得る。また、半導体基板20に形成された不純物領域への光の入射を抑制することにより、不純物領域における意図しない光電変換によるノイズの混入を抑制し得る。このように、半導体基板20への光の入射の抑制は、撮像装置120Aの信頼性の向上に貢献する。
 図4に模式的に示されるように、画素電極11は、プラグ52、配線53およびコンタクトプラグ54を介して、信号検出トランジスタ24のゲート電極24gに接続されている。言い換えれば、信号検出トランジスタ24のゲートは、画素電極11との電気的な接続を有する。プラグ52および配線53は、例えば銅などの金属から形成され得る。プラグ52、配線53およびコンタクトプラグ54は、信号検出トランジスタ24と光電変換部13との間の電荷蓄積ノード41(図3参照)の少なくとも一部を構成する。配線53は、配線層56の一部であり得る。また、画素電極11は、プラグ52、配線53およびコンタクトプラグ55を介して、不純物領域28dにも接続されている。図4に例示される構成において、信号検出トランジスタ24のゲート電極24g、プラグ52、配線53、コンタクトプラグ54および55、ならびに、リセットトランジスタ28のソース領域およびドレイン領域の一方である不純物領域28dは、画素電極11によって収集された信号電荷を蓄積する電荷蓄積ノード41等の電荷蓄積領域として機能する。
 画素電極11によって信号電荷が収集されることにより、電荷蓄積領域に蓄積された信号電荷の量に応じた電圧が、信号検出トランジスタ24のゲートに印加される。信号検出トランジスタ24は、この電圧を増幅する。信号検出トランジスタ24によって増幅された電圧が、信号電圧としてアドレストランジスタ26を介して選択的に読み出される。
 以上のような撮像装置120Aは、一般的な半導体製造プロセスを用いて製造することができる。特に、半導体基板20としてシリコン基板を用いる場合には、種々のシリコン半導体プロセスを利用することによって製造することができる。
 [測距装置の動作]
 次に、本実施の形態に係る測距装置100の動作について説明する。まず、図5を参照しながら、撮像装置120Aにおける距離画像の取得について説明する。図5は、本実施の形態に係る測距装置100における動作の一例を示すタイミングチャートである。図5の(a)のグラフは、測距装置100の光源140から被検出物に対して投射するパルス光の波形を示す。以下では、投射するパルス光を、「投射光」または「投射パルス光」と称する。図中に示されるように、投射光は、ある時刻、図5においては時刻0からパルス幅Tの期間、被検出物に対して照射される。時刻0からパルス幅Tの期間は、第1期間の一例である。つまり、パルス幅Tの長さは、第1期間の長さであり、光源140は、第1期間の間、赤外光等の光を照射することで、第1期間において第1パルス光を投射する。図5の(b)のグラフは、図5の(a)のグラフで示される光源140が投射した投射光が測距装置100から距離dの位置にある被検出物にて反射し、撮像装置120Aに入射されたパルス光の波形を示す。以下では、被検出物にて反射し、撮像装置120Aに入射されたパルス光を「反射光」と称する。図5の(b)に示されるように、この例において反射光は、投射光に対して、投射光の飛行時間Tである遅延時間をもって撮像装置120Aに入射される。この飛行時間Tを求めることによって前出の式(2)を用いて被検出物までの距離を算出することができる。
 図3に示して説明したように、本実施の形態における撮像装置120Aは、2つの電圧供給回路32および電圧供給回路33と、それぞれに接続される2つの感度制御線42および感度制御線43とを有し、それぞれが接続される画素10AAの対向電極12および画素10ABの対向電極12には、互いに異なる電圧が印加される。これらの電圧供給回路32および電圧供給回路33から供給される電圧の大きさおよび当該電圧の大きさを変化させるタイミングは、例えば、制御部130によって制御される。図5の(c)のグラフは、電圧供給回路32から、感度制御線42を介して接続された画素10AAの対向電極12に供給される電圧VbAの時間変化を示す。図5の(d)のグラフは、電圧供給回路33から、感度制御線43を介して接続された画素10ABの対向電極12に供給される電圧VbBの時間変化を示す。
 ここで、電圧供給回路32からは図5の(c)のグラフに示される電圧VbAが、画素10AAの対向電極12に供給され、電圧供給回路33からは図5の(d)のグラフに示される電圧VbBが、画素10ABの対向電極12に供給されるとする。以下では、図5の(c)に示される電圧VbAが供給される画素10AAを可変感度画素、図5の(d)に示される電圧VbBが供給される画素10ABを固定感度画素と呼ぶことがある。
 図5の(c)に示されるように、可変感度画素の対向電極12に印加される電圧VbAは、時間経過とともに電圧値が変化される。より具体的には、図5に示されるように、投射光が点灯した時点を時刻0とした場合に、電圧VbAは、時刻0以前は所定の電圧Vに、時刻0から時刻Tの期間は電圧Vよりも高い電圧Vに、時刻Tから時刻2Tまでの期間は電圧Vよりも高い電圧Vに、時刻2Tから時刻3Tまでの期間は電圧Vよりも高い電圧Vにそれぞれ設定される。その後、電圧VbAは、時刻3Tよりも後の期間は電圧Vに設定される。時刻0から時刻Tの期間は第2期間の一例であり、時刻Tから時刻2Tまでの第2期間の後に続く期間は第3期間の一例であり、時刻2Tから時刻3Tまでの第3期間の後に続く期間は、第4期間の一例である。第2期間、第3期間および第4期間は、例えば、第1期間と長さが等しい。なお、第4期間の長さは、第1期間の長さと異なっていてもよい。距離測定レンジを狭くしない観点からは、第4期間の長さは、例えば、第1期間の長さ以上である。
 一方で、固定感度画素の対向電極12に印加される電圧VbBは、時刻0から時刻3Tの期間中、つまり第1受光期間中は電圧Vに固定される。すなわち、これらの電圧VbAおよび電圧VbBは、時刻tの関数として以下の式(4)および式(5)で表現される。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 図5の(e)のグラフは、撮像装置120Aの各画素10Aにおける電荷蓄積および読み出し動作のタイミングの概略を示す。図5の(e)に示されるように、各画素10Aは、可変感度画素の対向電極12に電圧Vから電圧Vのいずれか、および、固定感度画素の対向電極12に電圧Vがそれぞれ印加される期間、すなわち図5の(e)で斜線を付した矩形で示される期間では読み出しを行わず、光電変換によって発生する信号電荷の蓄積を行う。可変感度画素および固定感度画素のそれぞれの対向電極12への一連の可変電圧または固定電圧の印加が完了し、対向電極12へ印加される電圧VbAおよび電圧VbBが所定の電圧Vに変更された時点以後の時刻Tより、各々の画素10Aからの信号電荷の読み出しを開始する。この読み出しが行われる期間は、図5の(e)の白の矩形で示される。画素10Aからの信号電荷読み出しの開始時刻Tは、図5中の時刻3T、すなわち画素10Aの対向電極12に印加される電圧VbAおよび電圧VbBがVに変化される時刻に一致していてもよいし、その時点から所定の時間が経過した後の時刻に設定されてもよい。これ以降、本開示における測距装置100の動作の説明の際に、この画素10A等の画素の読み出し動作のタイミングに関する記述を省略することがあるが、いずれの場合においても、図5の(e)と同様に各画素の対向電極12に対し所定の可変電圧ないし固定電圧が印加されたのちに電圧Vが印加された時点以後に、画素10A等の画素からの読み出し動作が開始される。
 以下では、上記の可変感度画素の対向電極12へ印加される電圧VbAがVから電圧Vのいずれか、すなわち、電圧V以外に設定される、図5の(e)で斜線を付した矩形で示される期間を電荷蓄積期間と呼ぶことがある。電荷蓄積期間は、第1受光期間の一例である。図5に示される例では、第1受光期間は、時刻0から時刻3Tまでの第1期間と第2期間と第3期間とで構成される期間である。また、電荷蓄積期間ののちに対向電極12へ印加される電圧VbAを電圧Vに設定した後に、画素10Aの読み出しが行われる図5の(e)で白の矩形で示される期間を画素読み出し期間と呼ぶことがある。また、電荷蓄積期間および画素読み出し期間の両方に該当しない図5の(e)で網点を付した矩形で示される期間、つまり、電荷蓄積期間の終了時点から画素読み出し期間の開始時点までの期間、および、画素読み出し期間の終了時点から次の電荷蓄積期間の開始時点までの期間をブランキング期間と呼ぶことがある。また、画素読み出し期間とブランキング期間を合わせた期間、すなわち、少なくとも電荷蓄積期間の後に続く期間を、非受光期間と呼ぶことがある。非受光期間は、電荷蓄積期間を挟むように前後に続いていてもよい。
 図3に示される例において、本実施の形態に係る撮像装置120Aは、2次元的に配列された複数の画素10Aを有する。図5に示される動作タイミングチャートは1セットの画素10AAおよび画素10ABにおけるものであり、これを複数の画素10Aに拡張する場合のタイミング例を以下に説明する。
 図6は、複数の画素10Aの動作の一例を示すタイミングチャートである。図6の(a)から(d)のグラフは、図5の(a)から(d)に記載のグラフと同一である。つまり、図6の(c)および(d)において電圧VbAおよび電圧VbBの値の記載は省略しているが、図5の(c)および(d)と同一である。図6の(e)のグラフは、撮像面上の複数の画素10A、具体的には撮像面上の第R0行から第R5行に属する画素10Aの動作タイミングの模式図を示している。図6の(e)において、斜線を付した矩形は各々の行における電荷蓄積期間を示し、白の矩形は画素読み出し期間を示し、網点を付した矩形はブランキング期間を示す。
 図6に示されるように、まず時刻0において被検出物に対して光源140がパルス光を投射する。それと同時に、電圧供給回路32および電圧供給回路33は、それぞれ、可変感度画素および固定感度画素のそれぞれの対向電極12に印加する電圧VbAおよび電圧VbBを電圧Vから電圧Vに変化させる。その後、図5における説明と同様、投射パルス光のパルス幅T分の時間が経過するごとに、電圧供給回路32は、可変感度画素の対向電極12に印加する電圧VbAを電圧Vおよび電圧Vへと順次上昇させていく。一方で、電圧供給回路33は、固定感度画素の対向電極12に印加する電圧VbBは電圧Vのままに保っておく。その後、電圧供給回路32および電圧供給回路33は、それぞれ、時刻3Tの時点で可変感度画素および固定感度画素の対向電極12へ印加される電圧VbAおよび電圧VbBを再度電圧Vに変化させる。本実施の形態に係る撮像装置120Aにおいては、この電圧の変化は、撮像面上のすべての可変感度画素および固定感度画素に対し同時に行われる。
 時刻3Tにおいて可変感度画素および固定感度画素へ印加される電圧VbAおよび電圧VbBを電圧Vに設定した時点より後の時刻Tにおいて、垂直走査回路36によって第R0行が選択され、第R0行に属する複数の画素10Aの読み出し動作が列並列で同時に行われる。本実施の形態に係る撮像装置120Aにおいては、各々の画素行に可変感度画素および固定感度画素の両方が配置されており、これらの画素において同時に読み出しが行われる。その後、例えば図6の(e)に示される時間Tが経過するごとに、垂直走査回路36によって選択され信号読み出しが行われる画素行が第R1行、第R2行、・・・と順次更新されていく。図6の(e)に示されるように、この選択行の更新の間隔の時間Tは、各画素10Aにおける信号読み出し時間、つまり、図6の(e)における白の矩形の幅以上の長さに設定される。すなわち、この例においては、図6の(e)に示されるように、撮像面上の複数の画素10Aについて、電荷蓄積期間はすべての画素10Aでその開始時刻および終了時刻は一致するのに対し、画素読み出し期間の開始時刻および終了時刻は画素行ごとに異なる。なお、図6の(e)の例とは異なり、各々の画素10Aについて独立にその信号読み出しを行うことが可能であるような構成、例えば画素10Aごとに図3におけるカラム信号処理回路37と同等の機能を有する回路が配置される構成などである場合には、互いに異なる画素行に配置された画素10Aの画素読み出し期間の開始時刻と終了時刻とが同一であってもよい。
 画素10Aの読み出し動作においては、例えば各画素10Aの電荷蓄積ノード41のリセットと、リセット後に蓄積された画素信号の読み出しとが実行される。本実施の形態における測距装置100においては、一度の画素読み出し期間の中で、画素信号の読み出しおよび次のパルス光投射に対する電荷蓄積のための電荷蓄積ノード41のリセットが行われる。
 時刻Tは、画素読み出し期間の開始時刻の一例である。図7は、画素読み出し期間における制御信号のタイミングの一例を示すタイミングチャートである。図7の(a)における「Vsel」は、アドレス制御線46の電位を表す。電位Vselは、Lowレベルである電位VL1と、Highレベルである電位VH1との間で変化し得る。図7の(b)における「Vrc」は、リセット制御線48の電位を表す。電位Vrcは、Lowレベルである電位VL2と、Highレベルである電位VH2との間で変化し得る。図7の(c)における「VFD」は、電荷蓄積ノード41の電位を表す。電位VFDは、電荷蓄積ノード41に電荷が蓄積されているときには、画素信号Vpsigとして利用される。電位VFDは、電荷蓄積ノード41がリセットされているときには、リセット信号Vrsigとして利用される。
 図6で示された時刻Tにおいて、図7の(a)に示されるように、第R0行のアドレス制御線46の電位Vselが、Lowレベルの電位VL1からHighレベルの電位VH1に切り替わる。これにより、そのアドレス制御線46にゲートが接続されているアドレストランジスタ26は、OFFからONに切り替わり、電荷蓄積ノード41の電位VFDが垂直信号線47に出力される。具体的には、画素信号Vpsigが、垂直信号線47に出力される。この画素信号Vpsigは、直前のパルス光投射によって被検出物から反射された反射光の光電変換により電荷蓄積ノード41に蓄積された電荷量に対応する信号である。画素信号Vpsigは、カラム信号処理回路37へ伝達される。
 図5および図6に示される例では、グラフ(e)の白色の矩形で表された信号読み出し期間は、画素信号Vpsigを読み出すための期間とともに、リセット期間を含む。リセット期間は、画素10Aの電荷蓄積ノード41の電位をリセットするための期間である。具体的には、この例では、上記の画素読み出しの完了後に、第R0行に属する画素10Aのリセットが行われる。画素読み出しの完了と第R0行に属する画素10Aのリセットとの間に、カラム信号処理回路37における画素信号のAD変換等を介在させてもよい。
 第R0行に属する画素10Aのリセットは、以下の手順で行われる。第R0行のリセット制御線48の電位Vrcが、図7の(b)に示されるように、Lowレベルの電位VL2からHighレベルの電位VH2に切り替わる。これにより、そのリセット制御線48にゲートが接続されているリセットトランジスタ28は、OFFからONに切り替わる。これにより、電荷蓄積ノード41とリセット電圧線44とが接続され、電荷蓄積ノード41にリセット電圧Vrが供給される。これにより、電荷蓄積ノード41の電位が、リセット電圧Vrにリセットされる。ここで、リセット電圧Vrは、例えば0Vである。
 その後、リセット制御線48の電位Vrcが、Highレベルの電位VH2からLowレベルの電位VL2に切り替わる。これにより、リセットトランジスタ28は、ONからOFFに切り替わる。リセットトランジスタ28がOFFであるときに、垂直信号線47を介して、第R0行の画素10Aからリセット信号Vrsigが読み出される。リセット信号Vrsigは、リセット電圧Vrの大きさに対応する信号である。リセット信号Vrsigは、カラム信号処理回路37へ伝達される。
 リセット信号Vrsigの読み出し後、アドレス制御線46の電位Vselが、Highレベルの電位VH1からLowレベルの電位VL1に切り替わる。これにより、アドレストランジスタ26は、ONからOFFに切り替わる。
 上述のとおり、読み出された画素信号Vpsigおよびリセット信号Vrsigは、それぞれ、カラム信号処理回路37に伝達される。これらの信号の差分をとることにより、固定パターンノイズを除去することができる。具体的には、リセット信号Vrsigがノイズ成分に対応し、そのノイズ成分を画素信号Vpsigから差し引くことにより、ノイズが除去される。
 次に、図8を用いて、本実施の形態に係る測距装置100による被検出物までの距離の測定原理を説明する。上述の式(2)で説明したように、飛行時間Tを測定できれば、測距装置100から被検出物までの距離dを算出できるため、以下では主に飛行時間Tを測定できる原理について説明する。図8は、測距装置100による被検出物までの距離の測定原理を説明するための図である。図8の(a)から(d)のグラフは、図5の(a)から(d)と同一のグラフを示している。図8の(e)および(f)のグラフは、対向電極12に対して図8の(c)および(d)のグラフに示される電圧VbAおよび電圧VbBを印加することにより、可変感度画素および固定感度画素のそれぞれにおいて得られる受光感度の時間変化を示す。図8の(e)および(f)において、撮像装置120Aの受光感度は対向電極12へ印加される電圧VbAおよび電圧VbBの変化に連動して変化する。つまり、光電変換部13は、印加される電圧の大きさにより感度が変化する。ここで、対向電極12へ印加される電圧V、電圧Vおよび電圧Vに対応する受光感度の大きさを感度α、感度αおよび感度αとする。
 このように、制御部130は、例えば、可変感度画素の感度を、時刻0から時刻Tの期間において一定の感度αに設定し、時刻Tから時刻2Tまでの期間において一定の感度αに設定し、時刻2Tから時刻3Tまでの期間において一定の感度αに設定する。つまり、制御部130は、可変感度画素の光電変換部13に印加される電圧の大きさを調整することにより、可変感度画素の、第1期間における感度を感度αに設定し、第2期間における感度を感度αに設定し、第3期間における感度を感度αに設定する。感度αと感度αと感度αとは、それぞれ異なる感度である。また、感度αは、感度αと感度αとの間の感度である。これにより、撮像装置120Aは、被検出物からの反射光を、時刻0から時刻Tの期間において一定の感度αで検出し、時刻Tから時刻2Tまでの期間において一定の感度αで検出し、時刻2Tから時刻3Tまでの期間において一定の感度αで検出する。なお、感度αと感度αと感度αとは、例えば、この順で高くなる関係であればよく、この順に一定の比率または差で高くなっていなくてもよい。このように、光電変換部13に印加される電圧の大きさを調整するだけで受光感度が設定されるため、感度設定の動作を簡素化できる。
 また、制御部130は、例えば、固定感度画素の感度を、時刻0から時刻3Tの期間において一定の感度αに設定する。これにより、撮像装置120Aは、被検出物からの反射光を、時刻0から時刻3Tの期間において一定の感度αで検出する。なお、電荷蓄積期間において固定感度画素が設定される感度は、感度αに限らず、反射光の受光によって電荷を蓄積できる感度であれば、つまり、感度がゼロでなければ、特に制限されない。電荷蓄積期間において固定感度画素が設定される感度は、例えば、電荷蓄積期間において可変感度画素が設定される感度のいずれか、図8の例では、感度α、感度αおよび感度αのいずれかである。これにより、後述する飛行時間Tの算出が容易になる。
 また、対向電極12へ印加される電圧Vに対応する受光感度の大きさを感度αとする。つまり、制御部130は、可変感度画素および固定感度画素の感度を、感度αに設定する。感度αは、電荷蓄積期間における可変感度画素の感度よりも低い感度、つまり、感度α、感度αおよび感度αのいずれよりも低い感度である。感度αは、例えば実質的にゼロである。言い換えると、電圧Vは、対向電極12に印加することにより撮像装置120Aの受光感度をゼロと見なせるほど十分に小さくせしめる電圧であるとする。可変感度画素の受光感度を感度α、固定感度画素の受光感度を感度αと記述したとき、これらは時刻tの関数として以下の式(6)および式(7)により表現される。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 本実施の形態において、感度αにおける感度αは第1感度の一例であり、感度αは第2感度の一例であり、感度αは第3感度の一例である。また、感度αにおける感度αは、後述する距離の計算等で用いる測距のための基準感度の一例である。また、感度αは、基底感度の一例である。
 可変感度画素および固定感度画素の対向電極12へ印加される電圧VbAおよび電圧VbBが電圧Vである期間は、上記の通り感度αが実質的にゼロとみなせる。前出の図6において、電荷蓄積期間はすべての画素行の画素10Aにおいてその開始時刻および終了時刻が一致している。それに対し、画素読み出し期間の開始時刻および終了時刻は画素行ごとに異なっているが、電荷蓄積期間以外の期間の受光感度は実質的にゼロであるため、いずれの画素10Aにおいても、蓄積される信号電荷は電荷蓄積期間に蓄積された量から実質的に変化しない。そのため、本実施の形態に係る撮像装置120Aにおいては、画素行ごとの画素読み出し期間の時間ずれに伴う信号電荷量の変化は発生しにくい。
 本実施の形態に係る測距装置100は、上記の式(6)および式(7)で表現される受光感度に設定される複数の画素10Aを有する撮像装置120Aにて、被検出物からの反射光を撮像する。図8の(b)に示される反射光が入射された可変感度画素および固定感度画素において、光電変換により発生して蓄積される電荷量は、図8の(e)および(f)で示される斜線を付した箇所の面積に相当する。図8の(b)に示される反射光により、互いに隣接した可変感度画素および固定感度画素に蓄積される電荷量をそれぞれ電荷量Sおよび電荷量Sとしたとき、これらは以下の式(8)および式(9)によって表現される。電荷量Sおよび電荷量Sに応じた大きさの信号がそれぞれの画素から出力される。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 ここで、Iphは反射光を各々の画素で光電変換することにより発生する光電流である。ここで任意の可変感度画素は、少なくとも一つ以上の固定感度画素と近接して配置され、それらの可変感度画素および固定感度画素において同一の反射パルス光によって発生する光電流は等量とみなせるものとする。
 図8に示される例では、投射光に対する反射光の遅延時間、すなわち投射パルス光の飛行時間Tは0≦T<Tの範囲にある。このときに可変感度画素および固定感度画素に蓄積される電荷量Sおよび電荷量Sは、以下の式(10)および式(11)によって計算される。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 さらに、式(10)および式(11)より、投射パルス光の飛行時間Tは以下の式(12)により計算される。
Figure JPOXMLDOC01-appb-M000012
 ここでk=α/αであり、k>1である。
 次に、投射パルス光の飛行時間Tが図8の例よりも大きい場合について説明する。図9は、測距装置100による被検出物までの距離の測定原理を説明するための別の図である。図9では、測距装置100に対しては図8と同一の画素10Aの駆動がなされているが、投射パルス光の飛行時間Tが図8の例よりも大きい場合、より具体的にはT≦T<2Tの範囲にある場合の例が示されている。図9に示される例での撮像装置120Aにおいて蓄積される電荷量Sおよび電荷量Sは、上述の式(8)および式(9)で表現される。具体的に、電荷量Sおよび電荷量Sは、以下の式(13)および式(14)によって計算される。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 式(13)および式(14)より、投射パルス光の飛行時間Tは以下の式(15)によって計算される。
Figure JPOXMLDOC01-appb-M000015
 ここでk=α/αであり、k>k>1である。このように、0≦T<Tの場合には、式(12)によって投射パルス光の飛行時間Tが算出され、T≦T<2Tの場合には、式(15)によって投射パルス光の飛行時間Tが算出される。すなわち、本実施の形態に係る測距装置100においては、0≦T<2Tの範囲の投射パルス光の飛行時間Tを測定可能となる。算出された飛行時間Tに基づいて、上述の式(2)を用いることで、測距装置100から被検出物までの距離dを算出できる。そのため、本実施の形態に係る測距装置100によって測定できる距離の上限dmaxは、以下の式(16)で計算される。
Figure JPOXMLDOC01-appb-M000016
 式(3)と式(16)とを比較することによってわかるように、図1Aおよび図1Bに示される従来のTOF方式の例に対し、本実施の形態に係る測距装置100は、投射パルス光のパルス幅Tが同じである場合、測定できる距離の上限dmaxが2倍の大きさに拡大されている。つまり、本実施の形態に係る測距装置100は、パルス幅Tを大きくすることなく測定できる距離の上限dmaxが拡大されるため、測距精度を低下させることなく、高い測距精度で従来よりも長い距離を測定できる。
 なお、式(6)における可変感度画素の感度αの値、具体的には、感度αから感度αの値と、式(8)における光電流Iphの値とを観測することで、投射パルス光の飛行時間Tを式(10)および式(13)単独からそれぞれ式(17)および式(18)に基づいて算出可能である。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 そのため、撮像装置120Aは、固定感度画素である画素10ABを含んでいなくてもよく、複数の画素10Aは全て可変感度画素である画素10AAであってもよい。
 ここで、撮像装置120Aが可変感度画素に加えて、固定感度画素を含むことにより、式(12)および式(15)を用いて投射パルス光の飛行時間Tを算出できる。式(12)および式(15)では、式(17)および式(18)での飛行時間Tの算出に必要な、感度αから感度αの値および光電流Iphの値が用いられていない。光電流Iph、ならびに、可変感度画素および固定感度画素の感度αから感度αについては、これらの絶対値を正確に測定しにくい。
 一方、式(12)および式(15)におけるkおよびkは、可変感度画素の受光感度と固定感度画素の受光感度との比である。kおよびkについては、可変感度画素および固定感度画素それぞれについて、対向電極12に印加する電圧を変えながら、それぞれの画素に蓄積された信号電荷に基づいた信号量を測定し、それらの比を求めることで比較的容易に得られる。よって、測距装置100は、これらの受光感度比であるkおよびkと、実際に測定される可変感度画素および固定感度画素それぞれの電荷量Sおよび電荷量Sのみに基づいて、投射パルス光の飛行時間Tを計算できる。つまり、本実施の形態に係る測距装置100は、感度αから感度αの値および光電流Iphの値よりも容易に測定できる、可変感度画素と固定感度画素との感度比ならびに電荷量Sおよび電荷量Sに基づいて投射パルス光の飛行時間Tを計算できる。また、本実施の形態に係る測距装置100は、可変感度画素と固定感度画素とにおける電荷蓄積が同時に行われるため、測定時間の短縮が可能である。
 また、前出の式(12)および式(15)の説明において、これらの式の使い分けは投射パルス光の飛行時間Tの大きさに依存していたが、実使用におけるこれらの式の使い分けの境界条件は、可変感度画素および固定感度画素において測定される電荷量Sおよび電荷量Sの大きさから検出できる。この境界条件は、式(12)と式(15)とでそれぞれ計算される投射パルス光の飛行時間Tが一致する条件であり、以下の式(19)のように定められる。
Figure JPOXMLDOC01-appb-M000019
 すなわち、可変感度画素および固定感度画素の測定信号電荷量の比、つまり、S/Sを求め、この比が可変感度画素の時刻0≦t<Tの期間における感度αと時刻T≦t<2Tの期間における感度αの比であるkよりも小さければ式(12)を使い、大きければ式(15)を使えばよい。また、式(19)が成立する条件における投射パルス光の飛行時間TはT=Tである。なお、式(12)および式(15)における分母が同一の値となるように、すなわちk-k1=k-kとなるように感度比を設定すると、式(15)は、式(12)と同一の形となる。すなわち、投射パルス光の飛行時間Tの大きさによらず、同一の式(12)のみによって飛行時間Tの算出が可能となる。
 本実施の形態に係る測距装置100における投射パルス光の飛行時間Tの測定は、図5に示した一連の駆動を複数回繰り返し、その複数回の駆動によって得られた複数の投射パルス光の飛行時間Tに基づいて行われることもできる。図10は、図5に示される動作が繰り返された場合を示すタイミングチャートである。図10の(a)から(d)のグラフは、図5の(a)から(d)の動作の繰り返しを示している。例えば、図10に示されるように、パルス光の投射を所定の時間Tの間隔で複数回行い、それぞれのパルス光の投射に対して飛行時間Tを計算し、その平均値または中央値などを投射パルス光の飛行時間Tの測定結果として採用することも可能である。ここで、上記の所定の時間Tは、(i)可変感度画素および固定感度画素の対向電極12へ印加される電圧VbAおよび電圧VbBを電圧V以外の電圧に設定する期間、例えば図6における時刻0から時刻3Tまでの長さと、(ii)撮像面上のすべての画素10Aの読み出しが完了するのにかかる時間、例えば図6における時間T×撮像面上の全画素行数の長さと、の和よりも長く設定される必要がある。このような測定方法を取ることにより、ノイズ等の影響を抑えたより精度の高い測距が可能である。
 [測距装置の動作の変形例]
 次に、本実施の形態に係る測距装置100の動作の変形例について説明する。図11は、本実施の形態に係る測距装置100における動作の変形例1を示すタイミングチャートである。図11で示される例においては、可変感度画素の対向電極12に印加する電圧VbAのパターンが電圧V、電圧V、電圧V、電圧Vおよび電圧Vの5通りとなっており、それに伴い感度αは、新たな電圧Vに対応する感度αを有する期間を含んでいる。図11においては、V<V<V<V<Vであり、α<α<α<α<αである。より具体的には、図11で示される例における可変感度画素および固定感度画素の対向電極12に印加する電圧VbAおよび電圧VbB、ならびに、それらの画素の感度αおよび感度αは、以下の式(20)から式(23)に従うように設定される。
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
 図11に示される動作においても、蓄積される電荷量Sおよび電荷量Sは、上述の式(8)および式(9)で表現される。そのため、図11の動作においては、図中に示されるような投射パルス光の飛行時間Tが2T≦T<3Tとなるような場合にも、式(12)および式(15)と同様に投射パルス光の飛行時間Tの計算式を立てることが可能となる。このときの投射パルス光の飛行時間Tは、以下の式(24)により計算される。
Figure JPOXMLDOC01-appb-M000024
 ここで、k=α/αであり、k>k>k>1である。図11に示される動作によって本実施の形態に係る測距装置100において測定可能な距離の上限dmaxは、以下の式(25)で計算される。
Figure JPOXMLDOC01-appb-M000025
 このように、式(16)で示される場合と比べて、式(25)では、投射パルス光のパルス幅Tが同じである場合であっても、さらに測定できる距離の上限dmaxが拡大されている。なお、図11に示される動作においても、投射パルス光の飛行時間Tが0≦T<TまたはT≦T<2Tである場合は、それぞれ式(12)または式(15)によって投射パルス光の飛行時間Tを計算することが可能である。また、式(15)と式(24)との使い分けの境界条件は、式(12)と式(15)との使い分けと同様に、可変感度画素と固定感度画素との信号電荷量の比から定めることができ、以下の式(26)のように定められる。
Figure JPOXMLDOC01-appb-M000026
 なお、式(24)における分母が、式(12)および式(15)における分母と等しい値になるように、すなわちk-k=k-k=k-1となるように受光感度比を設定すると、式(24)も式(12)および式(15)と全く同じ形で表現することが可能である。
 図11における動作を単純に拡張することで、投射パルス光のパルス幅Tが同じである場合であっても、本実施の形態に係る測距装置100において測定可能な距離の上限dmaxをさらに拡大することができる。例えば、時刻4T≦t<5Tの期間に、可変感度画素の対向電極12に新たな電圧Vより大きい電圧Vが印加され、電圧Vが印加される期間と同じ期間、固定感度画素の対向電極12に電圧Vが印加されることで、投射パルス光の飛行時間TについてT<4Tの範囲の測定が可能となる。その結果、測定可能な距離の上限dmaxも対応する距離分増加する。同様に、可変感度画素の対向電極12に印加する電圧を上昇させる段数を増加し、それに対応して固定感度画素の対向電極12に電圧Vを印加する期間を延長することで、本実施の形態に係る測距装置100における測定可能な距離の上限を拡大することができる。
 本実施の形態に係る測距装置100の特徴の1つは、TOF方式において被検出物に対して投射するパルス光のパルス幅、例えば図5におけるパルス幅Tを拡大せずとも、測定可能な距離の上限dmaxを拡大できるところにある。本実施の形態に係る測距装置100においても、従来の方式と同様に、式(16)および式(25)に示されるように、投射パルス光のパルス幅Tを拡大することで測定できる距離の上限dmaxを拡大することが可能である。しかし、それに伴って測定される投射パルス光の飛行時間、例えば図5における飛行時間Tの分解能、すなわち、飛行時間Tから求まる被検出物までの距離の分解能が劣化する。このことは、定性的には図12Aおよび図12Bを用いて以下のように理解される。
 図12Aは、投射光を被検出物に投射したときに測距装置100において蓄積される反射光の信号電荷量を示す図である。図12Bは、図12Aとは異なるパルス幅の投射光を被検出物に投射したときに測距装置100において蓄積される反射光の信号電荷量を示す図である。図12Aおよび図12Bにおける(c)および(d)のグラフは、それぞれ可変感度画素の感度αおよび固定感度画素の感度αの時間変化を示しており、また同グラフにおいて、横線または斜線を付した矩形部分の面積は、撮像装置120Aにおいて被検出物からの反射光を受信することによって蓄積される信号電荷量に相当する。
 撮像装置120Aの可変感度画素において蓄積される信号電荷のうち、図12Aおよび図12Bの(c)のグラフにおいて、横線を付した矩形の部分の面積は、投射パルス光の飛行時間Tに依存して変化する。一方で、図12Aおよび図12Bの(c)および(d)のグラフにおいて、斜線を付した矩形部分は、可変感度画素および固定感度画素において共通に蓄積される信号電荷であり、パルス幅Tに依存して変化する。これらの斜線を付した矩形部分の面積は、固定感度画素に蓄積される電荷量Sと一致する。ここで、横線を付した矩形の面積である投射パルス光の飛行時間Tに依存して増加する信号電荷量を電荷量S’と表現したとき、可変感度画素において蓄積される信号電荷の電荷量Sは、以下の式(27)で表現される。
Figure JPOXMLDOC01-appb-M000027
 また、式(12)、式(15)および式(24)には、可変感度画素と固定感度画素との信号電荷の比、すなわちS/Sの項が含まれる。式(27)より、S/Sの項は、以下の式(28)で記述できる。
Figure JPOXMLDOC01-appb-M000028
 投射パルス光の飛行時間Tは、図12Aに示される例と、図12Bで示される例とで同じ、すなわち投射パルス光の飛行時間Tに依存して可変感度画素において増加する電荷量S’の大きさは同じである。一方、各々の例において投射光のパルス幅Tが異なるために固定感度画素の電荷量Sの大きさが異なっている。より具体的には、図12Aの例では図12Bの例よりも投射パルス光のパルス幅Tが大きく、それに伴って固定感度画素の電荷量Sの大きさも図12Aの例のほうが図12Bの例より大きい。このとき、図12Aの例および図12Bの例のそれぞれの場合について、式(28)を計算すると、式(28)の最右辺第2項S’/Sは、図12Aの場合のほうが図12Bの場合よりも小さくなる。つまり、図12Aの例では、S’の変化に対するS/Sの、ひいては投射パルス光の飛行時間Tの感度が低くなることに相当する。換言すると、所定の飛行時間Tの変化量、例えば測定器がそれらの差を判別できる最小の変化量を得るためには、図12Aの場合のほうが図12Bの場合よりもS’、すなわち飛行時間Tが大きく変化する必要がある。これはすなわち、図12Aの例のような投射パルス光のパルス幅Tが広い場合に、飛行時間測定ならびに対象までの距離測定の分解能がより劣化することを意味する。
 本実施の形態に係る測距装置100において測定可能な距離の上限dmaxは、図5の例において、式(16)に示されるように、投射パルス光のパルス幅Tの2倍であり、さらに図9の例のようにパルス幅Tの2倍よりもさらに拡張することも可能である。これにより、投射パルス光のパルス幅Tの拡大に伴う測定分解能の劣化なしに、より広い距離測定レンジを得ることが可能である。言い換えると、測距装置100は、従来のTOF方式と比べて、同じ距離測定レンジの測距を行う場合に、測距精度を高めることができる。
 なお、本実施の形態に係る撮像装置120Aにおいて、図3に示される例では可変感度画素である画素10AAと固定感度画素である画素10ABが水平および垂直方向に交互に配列されていたが、この構成に限らない。例えば、水平方向にのみ画素10AAと画素10ABとを交互に並べ、垂直方向、すなわち各々の画素列には画素10AAおよび画素10ABのいずれかのみが配置されるような構成でもよいし、垂直方向にのみ画素10AAと画素10ABとを交互に並べるような構成でもよい。
 また、図5において、可変感度画素の対向電極12に印加される3種の電圧V、電圧Vおよび電圧Vについて、その大小関係をV<V<Vとしているが、本実施の形態に係る測距装置100においてはこれらの大小関係はこれに限定されない。本実施の形態に係る測距装置100においては、これらの大小関係がV>V>Vであってもよい。つまり、感度α、感度αおよび感度αの大小関係も、α>α>αであってもよい。一方で、電荷蓄積期間において可変感度画素の対向電極12に印加される電圧VbAの大小関係は一方向の変化であること、つまり、電荷蓄積期間において可変感度画素の対向電極12に印加される電圧VbAは、時間経過に対して減ることのない単調増加または増えることのない単調減少である必要がある。言い換えると、制御部130が設定する電荷蓄積期間における可変感度画素の感度αは、時間経過に対して減ることのない単調増加または増えることのない単調減少である必要がある。このような条件が満たされる場合には、上述のように飛行時間Tを算出できる。
 また、図5において、電荷蓄積期間は、時刻0から時刻3Tまでの第2期間と第3期間と第4期間とで構成されたが、これに限らない。電荷蓄積期間は、例えば、時刻0から時刻2Tまでの第2期間と第3期間とで構成されてもよい。後述する図13の動作の変形例2においても同様である。電荷蓄積期間が第2期間と第3期間とで構成される場合、例えば、時刻0から時刻2Tまでのみ電圧Vより高い電圧が対向電極12に印加され、可変感度画素および固定感度画素が信号電荷を蓄積できる感度に設定される。このような動作の場合には、パルス幅Tを長くすることなく距離の測定レンジの拡大はできないものの、従来のTOF方式のように電荷を2つの電荷蓄積部に振り分けて蓄積させる必要がないため、信号電荷の振り分けが不完全になるために測距精度が低下することがない。よって、測距装置100は、測距精度を高めることができる。また、この場合には第3期間の長さは、第1期間の長さと異なっていてもよい。距離測定レンジを狭くしない観点からは、第3期間の長さは、例えば、第1期間の長さ以上である。
 また、図5において、パルス光の投射開始、つまり第1期間の開始時点の時刻0から第2期間が開始したが、これに限らない。第2期間の開始は、時刻0より後であってもよい。例えば、測定したい距離の最低値に対応する飛行時間T分、時刻0から遅れて第2期間が開始してもよい。これにより、同じパルス幅Tでも、第2期間の開始を遅延させた分、測定できる距離の上限dmaxを長くすることができる。
 また、図5において、電荷蓄積期間において可変感度画素の対向電極12に印加される電圧VbAは、第2期間、第3期間および第4期間のそれぞれの間一定であり、ステップ状に変化したが、これに限らない。電圧VbAは、電荷蓄積期間において連続的に変化してもよい。つまり、制御部130は、第2期間、第3期間および第4期間のそれぞれにおいて、可変感度画素の感度を変化させてもよい。図13は、本実施の形態に係る測距装置100における動作の変形例2を示すタイミングチャートである。図13の(a)から(f)のグラフは、それぞれ、図8の(a)から(f)のグラフに対応する項目の、別のタイミングチャートの例を示している。
 図13の(c)に示されるように、可変感度画素の対向電極12へ印加される電圧VbAは、時刻0から時刻3Tの期間である電荷蓄積期間において、連続的に増加している。そのため、図13の(e)に示されるように、可変感度画素の感度αも、電荷蓄積期間において、連続的に増加、具体的には直線的に増加している。言い換えると、第1感度、第2感度および第3感度はそれぞれ、第2期間、第3期間および第4期間それぞれにおいて、直線的に増加している。なお、第1感度、第2感度および第3感度はそれぞれ、第2期間、第3期間および第4期間それぞれにおいて、直線的に低下してもよい。また、第1感度、第2感度および第3感度はそれぞれ、第2期間、第3期間および第4期間それぞれにおいて、ステップ状に増加または低下してもよい。
 図13に示される場合のように、可変感度画素の感度αが連続的に変化する増加する場合であっても、可変感度画素に蓄積される電荷量Sは、上述の式(8)で表される。また、図13の(d)および(f)に示されるように、固定感度画素における、対向電極12へ印加される電圧VbBおよび感度αはそれぞれ、図8の(d)および(f)に示される場合と同じである。そのため、固定感度画素に蓄積される電荷量Sは、上述の式(9)で表される。そして、感度αおよび感度αが時間の関数であるとして式(8)および式(9)を展開し、飛行時間Tを算出できる式を導出できる。
 また、電荷蓄積期間において可変感度画素および固定感度画素の感度を設定するための対向電極12に印加される電圧VbAおよび電圧VbBは、図5に示されるようなステップ状に電圧の大きさを変化させる動作形態、および、図13に示されるような連続的に電圧の大きさを変化させる動作形態のほかに、2値のパルス電圧を印加する動作形態であってもよい。図14は、本実施の形態に係る測距装置100における動作の変形例3を示すタイミングチャートである。図14の(a)から(f)のグラフは、それぞれ、図8の(a)から(f)のグラフに対応する項目の、別のタイミングチャートの例を示している。
 図14の(c)および(d)に示されるように、可変感度画素および固定感度画素の対向電極12へ印加される電圧VbAおよび電圧VbBは、電圧Vと電圧Vよりも大きい所定の電圧Vとの2値を、パルス幅Tよりも大幅に短い所定の周期で交互に繰り返すパルス電圧であってもよい。電圧Vは第1電圧の一例であり、電圧Vは第2電圧の一例である。また、ここで、電圧Vは、例えば、図5で示した例と同様に、対向電極12に印加することにより可変感度画素ならびに固定感度画素の受光感度を実質的にゼロである感度αにせしめる電圧である。また、電圧Vは、対向電極12に印加することにより可変感度画素および固定感度画素の受光感度を基底感度(例えば感度α)よりも大きな値とする電圧であり、例えば、図5における電圧Vである。
 図14の(c)に示されるように、可変感度画素の対向電極12に印加される電圧VbAのパルスは、第2期間、第3期間および第4期間のそれぞれにおいてデューティ(duty)比が異なる。すなわち、可変感度画素の対向電極12に印加される電圧VbAについて、第2期間、第3期間および第4期間のそれぞれにおいて、各期間全体の長さに対する、VbA=Vである期間の長さの割合が異なる。図14の(c)に示される例では、時刻0から時刻Tの第2期間においては、VbA=Vである期間の長さがVbA=Vである期間の長さより短く、例えば、電圧VbAのパルスのduty比は25%である。時刻Tから時刻2Tの第3期間においては、VbA=Vである期間の長さとVbA=Vである期間の長さとは同程度で、例えば、電圧VbAのパルスのduty比は50%である。時刻2Tから時刻3Tの第4期間においては、VbA=Vである期間の長さがVbA=Vである期間の長さより長く、例えば、電圧VbAのパルスのduty比は75%である。
 このように、第2期間、第3期間および第4期間のそれぞれにおいて、可変感度画素の対向電極12に印加される電圧VbAのパルスのduty比を変更することによっても、それぞれの期間における受光感度を変化させることができる。つまり、制御部130は、光電変換部13に印加されるパルス電圧のduty比を調整することにより、可変感度画素の感度を設定する。
 図14の(e)に示されるように、例えば、電圧VbAのパルスのduty比が25%である第2期間において、感度αは平均的には電圧VbAが電圧Vで一定である場合の25%になる。同様に、電圧VbAのパルスのduty比が50%である第3期間において、感度αは平均的には電圧VbAが電圧Vで一定である場合の50%となり、duty比に比例して受光感度が変化する。よって、図14の(c)のように、第2期間、第3期間および第4期間のそれぞれにおいて可変感度画素の対向電極12に印加する電圧VbAのパルスのduty比を変化させることにより、図14の(e)のように可変感度画素の受光感度を、感度α、感度αおよび感度αに変化させることができる。
 固定感度画素の受光感度の設定も同様に行うことができ、固定感度画素の対向電極12に印加する電圧VbBのパルスのduty比は、図14の(d)のように、例えば、第2期間における電圧VbAのパルスのduty比と同一に設定され、図14の(f)に示されるように、感度αは感度αになる。なお、図14の(e)および(f)は、可変感度画素および固定感度画素の受光感度の、第2期間、第3期間および第4期間のそれぞれにおける平均値を表している。つまり、制御部130は、可変感度画素および固定感度画素の受光感度として、各期間における平均的な受光感度を設定してもよい。
 このように、可変感度画素および固定感度画素の受光感度を、対向電極12に印加する電圧の大きさではなく電圧のパルスのduty比によって調整することには、受光感度の制御が容易になるという利点がある。対向電極12に印加される電圧の大きさと光電変換部13の受光感度との関係は、光電変換部13の材料組成等によって定まり、比例の関係にならない場合もある。この関係が比例関係にない場合、所望の受光感度を得るための、対向電極12に印加する電圧の大きさの調整は煩雑になる場合がある。一方で、対向電極12に印加する電圧を2値の電圧からなるパルス形状とし、そのduty比によって受光感度を調整する方法では、受光感度はduty比に比例する。よって、例えば、対向電極12に所定の電圧Vを印加したときの受光感度が分かれば、当該受光感度にパルスのduty比を乗ずることのみによって受光感度を計算することができ、より直感的に可変感度画素および固定感度画素の受光感度の調整を行うことが可能となる。
 なお、可変感度画素および固定感度画素のうちの一方のみ、例えば、可変感度画素のみの感度が、光電変換部13に印加するパルス電圧のduty比を調整することで設定されてもよい。この場合、他方の画素の感度は、例えば、光電変換部13に印加する電圧の大きさを調整することで設定される。
 (実施の形態2)
 次に、実施の形態2に係る測距装置について説明する。以下の実施の形態2の説明において、実施の形態1との相違点を中心に説明し、共通点の説明を省略または簡略化する。
 前述の実施の形態1においては、例えば、図5における時刻0から時刻3Tの期間、すなわち可変感度画素の対向電極12には電圧V、電圧Vおよび電圧Vのいずれかを、固定感度画素の対向電極12には電圧Vを印加する電荷蓄積期間以外は、可変感度画素および固定感度画素それぞれの対向電極12には所定の電圧Vを印加している。この電圧Vは、例えば、可変感度画素および固定感度画素の感度αを実質的にゼロにせしめる電圧である。一方で、例えば、光電変換部13の材料の組成等により、いかなる電圧Vに対しても感度αをゼロとみなせるまでに下げることができず、可変感度画素および固定感度画素が、上記の時刻0から時刻3Tの期間以外の期間、つまり、上述の非受光期間にも有限の感度αを持つことを避けられない場合も考えられる。この場合、電圧Vに対応する感度αによって生成される信号電荷が各々の画素出力にオフセットとして加算されることになる。前述の実施の形態における投射パルス光の飛行時間Tを求める式(12)および式(15)において、これら可変感度画素および固定感度画素の信号電荷の比の項(S/S)が存在するが、それぞれにオフセットが加算されることによりこの比の値に誤差が生じ、距離測定の精度が劣化しうる。本実施の形態に係る測距装置は、このような場合に加算されるオフセットの影響を除去し、距離測定精度を向上することが可能となる構成を有する。
 本実施の形態に係る測距装置100は、実施の形態1に係る撮像装置120Aの代わりに撮像装置120Bを備える。図15は、本実施の形態に係る撮像装置120Bの例示的な回路構成を示す図である。撮像装置120Bと、図3に示される実施の形態1における撮像装置120Aとの違いは、電圧供給回路32および電圧供給回路33に加えて電圧供給回路70が追加されていること、および、感度制御線42および感度制御線43に加えて感度制御線71が追加されていることである。また、撮像装置120Bは、複数の画素10Aの代わりに複数の画素10Bを含む。
 複数の画素10Bは、少なくとも1つの画素10BAと、少なくとも1つの画素10BBと、少なくとも1つの画素10BCとを含む。画素10BAと画素10BBと画素10BCとは、1セットの画素として、1セットの画素のうちの1つの画素が1セットの画素のうちの少なくとも他の1つの画素と隣接するように配置されている。図示はされていないが、図15に示される画素アレイを3列以上に拡張した場合、例えば、1セットの画素10BAと画素10BBと画素10BCとは、同一の画素行に並んで配置される。本実施の形態において、画素10BAは第1画素の一例であり、画素10BBは第2画素の一例であり、画素10BCは第3画素の一例である。画素10BAの構成は、例えば、画素10AAと同じであり、画素10BBの構成は、例えば、画素10ABと同じである。なお、以下では、画素10BAと画素10BBと画素10BCとを特に区別する必要が無い場合には、画素10BAと画素10BBと画素10BCとを総称した画素10Bとして説明する場合がある。
 また、画素10BCは、感度制御線71に接続されている以外は、画素10BAおよび画素10BBと同様の構成である。具体的に、画素10BCの光電変換部13は、感度制御線71との接続を有する。
 感度制御線71は、画素10BCの対向電極12に接続される。感度制御線71は、電圧供給回路70に接続されている。電圧供給回路70は、感度制御線71に、電圧供給回路32および電圧供給回路33とは異なる電圧を供給する。これにより、電圧供給回路70は、画素10BCにおける画素電極11に対する対向電極12の電位を制御する。
 図16は、本実施の形態に係る測距装置100の動作の一例を示すタイミングチャートである。図16の(a)から(d)のグラフは、図5の(a)から(d)に記載のグラフと同一である。本実施の形態に係る測距装置100の撮像装置120Bにおいて、新たに追加した電圧供給回路70から電圧VbCが感度制御線71に供給される。図16の(e)のグラフは、電圧供給回路70から、感度制御線71を介して接続された画素10BCの対向電極12に供給される電圧VbCの時間変化を示す。図16の(e)に示されるように、電圧VbCは、いずれの時刻も電圧Vに設定される。この電圧VbCが供給される画素10BCには、この電圧Vに対応する感度αによって取得される電荷が蓄積され、この画素10BCに蓄積された電荷が前述のオフセット成分に相当する。対向電極12に対しこの電圧VbCが印加される画素10BCをオフセット画素と称する。このように、制御部130は、電荷蓄積期間を含む全期間において、オフセット画素の感度を感度αに設定する。ここで、オフセット画素に蓄積される信号電荷量を電荷量Sと記述したとき、投射パルス光の飛行時間Tを算出するための式、具体的には、実施の形態1における式(12)および式(15)を、電荷量S、電荷量Sおよび電荷量Sを用いて書き直すと、は、以下の式(29)および式(30)で表される。
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000030
 前述の実施の形態1における図6のように、複数の画素10Bから順次読み出しを行う場合は、電荷蓄積期間はすべての画素10Bで開始時刻および終了時刻が一致するのに対し、画素読み出し期間の開始時刻および終了時刻は画素行ごとに異なる。その結果、電荷蓄積期間の終了時刻から画素読み出し期間の開始時刻までのブランキング期間の長さが画素行ごとに異なる。本実施の形態において、ブランキング期間にも各々の画素10Bは有限の感度αを持っているため、この期間にも信号電荷が蓄積され、さらに蓄積される電荷量は画素行ごとに異なる。この画素行ごとのブランキング期間の長さの差異による影響は、例えば式(29)および式(30)における(S-S)および(S-S)の項に対し以下のような計算をすることで抑制できる。例えば、それぞれ同一の画素行に配置された可変感度画素およびオフセット画素の信号電荷量、ならびに、それぞれ同一の画素行に配置された固定感度画素およびオフセット画素の信号電荷量を用いて計算する。同一の画素行に配置された各画素10Bの読み出し時刻は同一であるため、同一の画素行に配置された可変感度画素、固定感度画素およびオフセット画素のブランキング期間の長さも同一となる。よって、式(29)および式(30)の計算にこれらの同一の画素行に配置された画素10Bの信号電荷量を用いることで、画素行ごとのブランキング期間の長さの差異をキャンセルでき、その影響を抑制することができる。
 本実施の形態の撮像装置120Bの構成によると、撮像装置120Bに対し電圧Vを印加した場合の各画素10Bの受光感度がゼロとみなせない場合も、その影響を低減してより精度の高い距離測定が可能となる。
 (実施の形態3)
 次に、実施の形態3に係る測距装置について説明する。以下の実施の形態3の説明において、実施の形態1および実施の形態2との相違点を中心に説明し、共通点の説明を省略または簡略化する。本実施の形態に係る測距装置は、対向電極12への印加電圧のパターンの異なる複数の画素で撮像する代わりに、1つの画素で時間的に印加電圧のパターンを切りかえる。
 本実施の形態において、測距装置100は、実施の形態1に係る撮像装置120Aの代わりに、撮像装置120Aと構成および駆動方式が異なる撮像装置120Cを備える。図17は、本実施の形態に係る撮像装置120Cの例示的な回路構成を示す図である。撮像装置120Cは、撮像装置120Aと比較して、撮像装置120Aにおける複数の画素10Aの代わりに、複数の画素10CAを含む点が相違する。本実施の形態において、画素10CAは、第1画素の一例である。また、撮像装置120Cにおける、実施の形態1における図3に示した撮像装置120Aの回路構成との違いは、撮像装置120Cが電圧供給回路33および感度制御線43を備えず、電圧供給回路32から感度制御線42を通してすべての画素10CAの対向電極12に同一の電圧が供給される点である。画素10CAのデバイス構成は、例えば、図4に示される画素10Aのデバイス構成と同じである。なお、画素10CAにおいては、すべての画素10CAの対向電極12に同一の電圧が供給されるため、対向電極12は、隣接する2つの画素10CAにまたがって形成されていてもよく、すべての画素10CAにまたがって形成されていてもよい。
 次に、本実施の形態に係る測距装置100の駆動方式の例を説明する。図18は、本実施の形態に係る測距装置100における動作の一例を示すタイミングチャートである。図18の(a)から(c)のグラフは、それぞれ、図5の(a)から(c)のグラフに対応する項目の、タイミングチャートの例を示している。本実施の形態に係る撮像装置120Cにおいては、すべての画素10CAに同一の電圧VbAが供給される。図18の(a)に示されるように、光源140は、時間Tの間隔でパルス光を複数回投射する。光源140が投射する複数の投射光のパルス幅Tはすべて同じである。図18の例では、光源140は、時刻0からパルス幅Tの期間において、1回目の第1パルス光を投射し、第1パルス光の投射終了より後の時刻Tからパルス幅Tの期間、つまり、時刻T+Tまで、2回目の第2パルス光を投射する。時刻Tからパルス幅Tの期間は、第5期間の一例である。
 本実施の形態に係る電圧供給回路32は、図18の(c)に示されるように、複数回のパルス光の投射に対応する複数の電荷蓄積期間のそれぞれに互いに異なる電圧を供給する。具体的には、図18の例において、奇数回目のパルス光投射における電荷蓄積期間には、電圧供給回路32は、投射光のパルス幅Tごとに電圧V、電圧Vおよび電圧Vの順に増加する電圧、つまり、図5で説明した可変感度画素と同様の電圧を供給する。また、電圧供給回路32は、偶数回目のパルス光投射における電荷蓄積期間には一定の電圧V、つまり、図5で説明した固定感度画素と同様の電圧を供給する。このように、制御部130は、図5で説明した電荷蓄積期間における感度の設定に加えて、時刻Tから開始する電荷蓄積期間において、画素10CAの感度を基準感度に設定する。時刻Tから時刻T+3Tまでの電荷蓄積期間は、第2受光期間の一例である。なお、第2受光期間も、上述の第1期間と同様の理由で、時刻Tより後に開始してもよい。また、この場合、時刻0と第1期間の開始時点との時間差は、時刻Tと第2受光期間の開始時点との時間差と等しい。
 このような動作によって、式(12)および式(15)における、可変感度画素の信号に相当する電荷量Sを奇数回目のパルス光投射時に測定し、固定感度画素の信号に相当する電荷量Sを偶数回目のパルス光投射時に測定する。そして、それぞれの測定結果を用いて、実施の形態1と同様の方法で投射パルス光の飛行時間Tを計算する。
 図18の例においては、第1受光期間が第2受光期間よりも前であるが、第1受光期間は、第2受光期間より後であってもよい。
 本実施の形態に係る測距装置100の構成によれば、撮像面上のすべての画素10CAに対し同一の電圧を印加した状態での被検出物までの距離の測定が可能となる。言い換えると、これによって対向電極12を画素10CAごとに分割して配置する必要がなくなり、撮像面上のすべての画素10CAで共通の対向電極12とすることも可能となる。
 また、実施の形態2に係る撮像装置120Bによるオフセット成分の除去は、本実施の形態の動作を拡張することでも実現可能である。図19は、本実施の形態に係る測距装置100における動作の変形例を示すタイミングチャートである。図19の(a)から(c)のグラフは、それぞれ、図5の(a)から(c)のグラフに対応する項目の、タイミングチャートの例を示している。
 図19の(a)に示されるように、光源140は、図18で説明した第1パルス光および第2パルス光に加え、第2パルス光の投射終了より後の時刻2Tからパルス幅Tの期間、つまり、時刻2T+Tまで、3回目の第3パルス光を投射する。時刻2Tからパルス幅Tの期間は、第6期間の一例である。
 図19の(c)に示されるように、電圧供給回路32は、撮像装置120Cの全ての画素10CAに対して単一の電圧VbAを供給し、この電圧VbAを被検出物へのパルス光投射ごとに変化させる。すなわち、例えば、電圧供給回路32は、3n+1回目のパルス光投射においては図5で説明した可変感度画素と同様の電圧を撮像面上の各画素10CAの対向電極12に印加する。また、例えば、電圧供給回路32は、3n+2回目のパルス光投射においては図5で説明した固定感度画素と同様の電圧を撮像面上の各画素10CAの対向電極12に印加する。また、例えば、電圧供給回路32は、3(n+1)回目のパルス光投射においては図16で説明したオフセット画素と同様の電圧を撮像面上の各画素10CAの対向電極12に印加する。nは0以上の整数である。このように、制御部130は、図18で説明した画素10CAの感度の設定に加えて、時刻2Tから開始する電荷蓄積期間において、画素10CAの感度を基底感度に設定する。時刻2Tから時刻2T+3Tまでの電荷蓄積期間は、第3受光期間の一例である。なお、第3受光期間も、上述の第1期間と同様の理由で、時刻2Tより後に開始してもよい。また、この場合、時刻0と第1期間の開始時点との時間差は、時刻2Tと第3受光期間の開始時点との時間差と等しい。これらの3回のパルス光投射によって得られた信号電荷量、つまり、電荷量S、電荷量Sおよび電荷量Sに相当する電荷量から、上記の式(28)および式(29)を計算し、飛行時間Tを算出する。
 (実施の形態4)
 次に、実施の形態4に係る測距装置について説明する。以下の実施の形態4の説明において、実施の形態1から実施の形態3との相違点を中心に説明し、共通点の説明を省略または簡略化する。
 本開示における測距装置100の撮像装置の光電変換部は、図8および図9に示されるものと同様に受光感度を変更する手段を有するものであれば、図3および図4に示されるような光電変換層15を含む光電変換部13を有するものに限られない。例えば、光電変換部としてフォトダイオードを使用することが可能である。
 本実施の形態に係る測距装置100は、実施の形態1に係る撮像装置120Aの代わりに撮像装置120Dを備える。図20は、本実施の形態に係る撮像装置120Dの例示的な回路構成を示す図である。本実施の形態に係る撮像装置120Dは、フォトダイオード13D、転送トランジスタ80、電荷排出トランジスタ81、電圧供給回路82、電圧供給回路83、電圧供給回路84、転送制御線85、電荷排出電圧線86、電荷排出制御線87および電荷排出制御線88を含む点において、実施の形態1から実施の形態3に係る撮像装置120A、撮像装置120Bおよび撮像装置120Cと異なる。また、撮像装置120Dは、複数の画素10Dを含む。複数の画素10Dは、少なくとも1つの画素10DAと、少なくとも1つの画素10DBとを含む。画素10DAと画素10DBとは、1セットの画素として、互いに隣接するように配置されている。画素10DAは第1画素の一例であり、画素10DBは第2画素の一例である。図20において、図5と実質的に同一の構成には図5と同じ符号を付している。
 撮像装置120Dにおけるフォトダイオード13Dは、被検出物から反射された投射パルス光を受光し、光電変換によりその強度に応じた量の電荷を発生し蓄積する。本実施の形態においては、フォトダイオード13Dは受光することにより負の電荷を生成し、蓄積する場合を記載する。
 転送トランジスタ80において、ソースまたはドレインの一方がフォトダイオード13Dに接続され、他方が電荷蓄積ノード41に接続されている。転送トランジスタ80において、ゲートには転送制御線85が接続される。転送制御線85は、アドレス制御線46およびリセット制御線48と同様に垂直走査回路36に接続され、垂直走査回路36から所定の電位を印加されることによって転送トランジスタ80を導通させ、フォトダイオード13Dにおいて発生および蓄積された電荷を電荷蓄積ノード41に転送する。
 電荷排出トランジスタ81において、ソースまたはドレインの一方がフォトダイオード13Dに接続され、他方が電荷排出電圧線86に接続されている。電荷排出トランジスタ81において、ゲートには電荷排出制御線87または電荷排出制御線88が接続される。具体的には、画素10DAの電荷排出トランジスタ81のゲートには、電荷排出制御線87が接続され、画素10DBの電荷排出トランジスタ81のゲートには、電荷排出制御線88が接続されている。
 電荷排出制御線87は電位を電圧供給回路83によって制御され、電荷排出制御線88は電位を電圧供給回路84によって制御されている画素10DAおよび画素10DBでは、電荷排出制御線87および電荷排出制御線88それぞれの電位の大きさに応じて、それぞれのフォトダイオード13Dに蓄積された電荷がそれぞれの電荷排出電圧線86を通して電圧供給回路82に排出される。電圧供給回路82から電荷排出電圧線86には、例えば電源電圧VDDが供給される。
 ここで、例えば、画素10DAは可変感度画素であり、画素10DBは固定感度画素である。つまり、電荷排出制御線87および電圧供給回路83は、可変感度画素の電荷排出トランジスタ81に接続される。また、電荷排出制御線88および電圧供給回路84は、固定感度画素の電荷排出トランジスタ81に接続される。電荷排出制御線87および電荷排出制御線88の電位を大きくすると、電荷排出電圧線86に排出される電荷量が増加し、電荷蓄積ノード41に転送される電荷量、すなわち最終的に読み出される画素の信号電荷量は減少する。電荷排出制御線87および電荷排出制御線88の電位を調整し、フォトダイオード13Dに蓄積される電荷量に対して所定の割合で電荷を排出させることにより、等価的に受光感度を低下させた状態とすることができる。すなわち電荷排出制御線87および電荷排出制御線88の電位を制御することで、フォトダイオード13Dから排出される電荷量を制御し、前述の実施の形態1の説明における図8の(e)および(f)に示される感度αおよび感度αと同様の受光感度の変化を実現する。本実施の形態においては、このような等価的な受光感度の制御による感度の設定も、「感度を設定する」という語の意味に含まれる。
 本実施の形態に係る測距装置100の動作は、例えば、図21に示されるように行われる。図21は、本実施の形態に係る測距装置100の動作の一例を示すタイミングチャートである。図21の(a)および(b)のグラフは、図5の(a)および(b)に記載のグラフと同一である。図21の(c)のグラフは、可変感度画素に接続される電荷排出制御線87の電位VbAの一例を示している。図21の(c)において、時刻0以前においては、電圧供給回路83は、電荷排出制御線87の電位VbAを所定の電圧Vに設定する。この電圧Vは、フォトダイオード13Dに蓄積される電荷がすべて電荷排出電圧線86に排出される程度の電圧、例えば、電源電圧VDDに等しい。すなわち、この期間はフォトダイオード13Dには電荷が蓄積されず、基底感度の一例である電位VbAが電圧Vに設定される場合の等価的な受光感度は実質的にゼロである。その後、電圧供給回路83は、時刻0からパルス幅Tごとに、電荷排出制御線87の電位VbAを電圧V、電圧Vおよび電圧Vの順に順次下げていく。前述の通り、電荷排出制御線87の電位を下げることにより、撮像装置120Dの画素10Dの等価的な受光感度が上昇される。その後、時刻3Tより後の時刻Tにおいて、電圧供給回路83は、電荷排出制御線87の電位を再び電圧Vに設定し、フォトダイオード13Dからすべての電荷が排出される、すなわち画素10Dの等価的な受光感度が実質的にゼロの状態に戻る。
 図21の(d)のグラフは、固定感度画素に接続される電荷排出制御線88の電位の一例を示している。図21の(d)において、電圧供給回路84は、電荷排出制御線88の電位VbBを、時刻0からTの期間においては電圧Vに設定し、それ以外の期間においては電圧Vに設定する。
 図21の(e)のグラフは、本実施の形態に係る撮像装置120Dの画素10Dの読み出し動作のタイミングの概略を示す。図21の(e)中で「転送」で示される白の矩形の期間には、可変感度画素において電荷排出制御線87の電位VbAを所定の時間幅で電圧V、電圧Vおよび電圧Vに変化させたのちに、転送トランジスタ80を導通させ、フォトダイオード13D中に蓄積された電荷を電荷蓄積ノード41に転送する。図21の例では、所定の時間幅は、投射パルス光のパルス幅Tである。図21の(c)および(d)において時刻Tで示される、電荷排出制御線87および電荷排出制御線88の電位を電圧Vまたは電圧Vから電圧Vに変化させる時刻は、図21の(e)における転送トランジスタ80による電荷転送の完了以後の時刻である。なお、この転送トランジスタ80を用いた電荷転送に先んじて、画素10Dのリセットトランジスタ28を用いて電荷蓄積ノード41の電荷をリセットしてもよい。
 本実施の形態に係る撮像装置120Dの構成とすることにより、光電変換層を有しない撮像装置120Dを備える本実施の形態に係る測距装置100も、測距の精度を高めることができる。
 (実施の形態5)
 次に、実施の形態5について説明する。上記で説明した実施の形態1から実施の形態4に係る測距装置は、パルス投射光の投射を開始した時刻Tからのずれである飛行時間Tを測定することにより、投射光と受信光との位相差を検出しているとも言える。実施の形態5では、実施の形態1等と同様の光検出部120および制御部130等を備える位相検出装置について説明する。以下の実施の形態5の説明において、実施の形態1から実施の形態4との相違点を中心に説明し、共通点の説明を省略または簡略化する。
 図22から図24を用いて、本実施の形態に係る位相検出装置100Aを光通信における受信装置として使用する場合の例について述べる。図22は、本実施の形態に係る位相検出装置の例示的な構成を示すブロック図である。図22に示されるように、本実施の形態に係る位相検出装置100Aは、レンズ光学系110、光検出部120、制御部130および位相検出部150Aを備える。本実施の形態に係る位相検出装置100Aは、例えば、送信装置200からのパルス光の位相差を検出する。例えば、送信装置200から、送信データが所定の周期のパルス光の列の位相変調によって有線または無線で発出され、位相検出装置100Aによって当該パルス光の位相変調信号が検出されたうえで、位相変調された送信データが復調される。ここで使用されるパルス光は、例えば赤外光である。
 光検出部120は、例えば、上述の撮像装置120Aから撮像装置120Dのいずれかである。上述の測距装置100と同様に、光検出部120の動作は、制御部130によって制御される。位相検出部150Aは、光検出部120からの出力信号に基づいた位相検出結果を出力する。位相検出結果は、例えば、検出された位相変調信号が復調された送信データである。位相検出部150Aは、上述の測距方法と同様の方法で、ある基準時刻からの遅延時間を算出し、算出された結果を出力してもよい。上述の測距方法における投射パルス光の投射開始時刻が基準時刻に対応し、上述の測距方法における飛行時間が遅延時間に対応する。
 なお、位相検出装置100Aは、位相検出部150Aを備えていなくてもよく、光検出部120は、出力信号を外部に出力してもよい。
 図23は、送信装置が送出する信号の例を示す図である。本実施の形態における例では、送信装置200は、信号レベルが図23の(a)に示されるような時間変化を示す信号を伝送する場合に、図23の(a)または(b)の信号波形をそのまま伝送するのではなく、図23の(c)に示されるような、ある基準時刻からの遅延時間の大きさが伝送信号の大きさに比例するパルス幅Tのパルス光の列を発出する。本実施の形態では、この基準時刻からの遅延時間を位相差と呼ぶことがあり、この位相変調されたパルス光の列を、搬送波と呼ぶことがある。
 より具体的には、送信装置200は、図23の(a)で示されるレベル変化を示す送信データを、図23の(b)に示されるように所定の周期Tでサンプリングする。そして、図23の(c)に示されるように、送信装置200は、各々の周期Tの期間にそのサンプリングした信号レベルに比例した遅延時間Tをもつパルス光の列を搬送波として発出する。つまり、送信装置200から繰り返し発出されるパルス幅Tpのパルス光は、各々の周期Tにおいて、周期Tの間隔の基準時刻から信号レベルに応じた時間遅延して発出される。
 本実施の形態に係る位相検出装置100Aは、図23の(c)に示されるような搬送波に対し、上記の実施の形態等に示される測距装置100と同様に、電荷蓄積期間をいくつかの期間に分割し、各々の期間の受光感度を順次変化させて検出する。図24は、本実施の形態に係る位相検出装置100Aにおける動作の一例を示すタイミングチャートである。図24の(a)のグラフは、図23の(c)と同様に搬送波の時間変化を示す。図24の(b)のグラフは、図8の(e)のグラフと同様に、可変感度画素において得られる受光感度の時間変化を示す。図24の(c)のグラフは、図5の(e)のグラフと同様に、画素10Aにおける電荷蓄積および読み出し動作のタイミングの概略を示す。そのため、図24の(c)に示される各矩形は、図5の(e)と同様の模様が付され、電荷蓄積期間(斜線)、画素読み出し期間(白)およびブランキング期間(網点)を示している。図24の(d)のグラフは、位相検出装置100Aによって検出された信号レベルの時間変化を示す。
 図24の(a)に示される例において、搬送波の各パルス光は、各周期T内のある基準時刻から所定の時間の遅延をもって発出される。図24で示される例において、基準時間は、各周期Tの開始時刻である時刻T01、T02、T03、・・・であり、それぞれの基準時刻に対応する遅延した時間は、遅延時間Td1、Td2、Td3、・・・である。光検出部120は、このような基準時刻から所定の時間遅延したパルス光を受光する。ここで、これらの遅延時間Td1、Td2、Td3、・・・の長さは、例えば、それぞれ、搬送波のパルス光のパルス幅Tの倍数であってもよい。図24に示される例では、Td1=T、Td2=2×T、Td3=3×Tである。また、遅延時間Td4の長さは、遅延時間Td2の長さに等しく、遅延時間Td5の長さは遅延時間Td1の長さに等しい。すなわち、搬送波の各パルス光の遅延時間は、パルス幅Tを単位時間とするステップで離散的に変化するように設定されてもよい。なお、遅延時間の長さは、パルス幅Tの倍数に限らず、パルス光が可変感度画素の露光期間に受光される範囲であれば、特に制限されない。
 図24の(b)に示されるように、可変感度画素の光電変換部13の受光感度(感度α)は、制御部130によって、搬送波のパルス光発出の基準時刻の間隔である周期Tと同じ周期で繰り返し変化するように設定される。また、図24に示される例では、可変感度画素は、基準時刻である時刻T01、T02、T03、・・・の時点では感度αに設定される。また、可変感度画素は、基準時刻からパルス幅Tと同じ時間経過後に開始し、長さがパルス幅Tである第2期間に感度αに設定される。また、可変感度画素は、基準時刻からパルス幅Tの2倍の時間経過後に開始し、長さがパルス幅Tである第3期間に感度αに設定される。また、可変感度画素は、基準時刻からパルス幅Tの3倍の時間経過後に開始し、長さがパルス幅Tである第4期間に感度αに設定される。なお、第2期間の開始時刻は、基準時刻から所定の時間経過していなくてもよく、送信装置200が発出するパルス光の遅延時間に応じて、基準時刻以降に開始するように設定される。
 可変感度画素の受光感度の変化は、前述の図5に示されるように、対向電極12に印加する電圧の電圧値の変化によって実現されてもよいし、図14に示されるように、対向電極12に印加する電圧をパルス形状にし、そのduty比を変化することによって実現されてもよい。また、前述の実施の形態1から実施の形態4に係る測距装置と同様の動作が、位相検出装置100Aにも適用可能である。例えば、図24の(b)には、前述の実施の形態1から実施の形態4における可変感度画素の受光感度の時間変化のみを示しているが、前述の各実施の形態と同様に、光検出部120には電荷蓄積期間における受光感度を一定とする固定感度画素および/またはオフセット画素が配置されていてもよい。固定感度画素および/またはオフセット画素を用いた遅延時間Tの測定のための動作は上述の通りであるため、ここでは説明を省略する。
 図24の(c)に示されるように、周期Tの基準時刻に基づいて、繰り返し搬送波のパルス光が発出されるのに合わせ、可変感度画素の電荷蓄積および画素読み出しも周期Tで繰り返し行われる。
 図24の(d)に示されるように、上記画素読み出し期間で読み出された、電荷蓄積期間で蓄積された電荷量に応じた信号レベルを有する信号が位相検出装置100Aから出力される。図24の(d)では便宜上、図24の(c)における画素読み出し期間に検出信号レベルが変化し、周期T後の次の信号読み出し期間までその出力レベルをホールドするように記述されているが、本実施の形態に係る位相検出装置100Aが出力する信号はこのような例に限られるものではない。出力レベルのホールドは、光検出部120が行ってもよく、位相検出部150Aが行ってもよい。
 図24中の時刻T01から始まる1周期の期間において、搬送波のパルス光は、時刻T01から遅延時間Td1(=T)だけ遅延した時刻に発出される。このときの本実施の形態に係る位相検出装置100Aの可変感度画素における光電変換部13の受光感度はαであることから、このときの位相検出装置100Aから得られる出力信号レベルはαSとなる。ここでSは、光電変換部13の受光感度が1であるときに得られる出力信号レベルであるとする。同様に、時刻T02から始まる1周期の期間において、搬送波のパルス光は、時刻T02から遅延時間Td2(=2×T)だけ遅延した時刻に発出され、このときの光電変換部13の受光感度はαであることから、位相検出装置100Aから得られる出力信号レベルはαSとなる。時刻T03以降の基準時刻から始まる1周期の期間においても同様の議論が可能である。
 図24の(c)に示されるように、本実施の形態に係る位相検出装置100Aにおいて、基準時刻(時刻T01、T02、T03、・・・)からの遅延時間が大きいほど、可変感度画素の光電変換部13の受光感度は大きくなる。図23および図24で示される例では、搬送波は、送信データの信号レベルが大きいほど、上記の基準時刻からの遅延時間が大きくなるようにパルス光を発出しているため、このような動作が行われることで、位相検出装置100Aからの出力信号の大小関係はもとの送信データの信号レベルを復元したものとなる。つまり、位相検出装置100Aは、基準時刻からの遅延時間に対応する大きさの信号レベルの信号を出力する。このように、遅延時間に対応する信号レベルの大きさを出力するように可変感度画素の感度を設定することで、搬送波を容易に送信データに復元できる。
 なお、送信装置200と位相検出装置100Aとの間で、搬送波送出の基準となる時刻(図24における時刻T01、T02、・・・等)を揃えておく目的で、信号伝送を開始する前に、送信装置200と位相検出装置100Aとの間でハンドシェイク通信を実施し、送信側と受信側との双方で基準となる時刻が揃えられた時点でデータの送受信が開始されてもよい。また、基準時刻を示す情報は、搬送波の一部、例えば、搬送波の初期に含まれていてもよく、搬送波とは別の信号で送信装置200から位相検出装置100Aへ送信されてもよい。また、上記の基準時刻の間隔は一定であったが、パルス光ごとの基準時刻を示す信号を送付する等によって、基準時刻が設定可能あれば、基準時刻の間隔は一定でなくてもよい。
 また、位相検出装置100Aは、位相検出結果として、送信データの信号レベルを復元した信号を出力したが、これに限らない。位相検出装置100A(位相検出装置100Aの位相検出部150A)は、測距装置100と同様の方法で遅延時間(位相差)を算出し、算出した遅延時間の結果を示すデータを出力してもよい。また、算出された遅延時間を用いた送信データの復元は、外部の装置によって行われてもよく、位相検出部150Aによって行われ、位相検出部150Aから復元結果が出力されてもよい。
 以上のように、本実施の形態に係る位相検出装置100Aは、上述の測距装置100と同様に、信号電荷を2つの電荷蓄積部に振り分けることなく、遅延時間に応じた信号を出力できる。つまり、位相検出装置100Aは、信号電荷の振り分けが不完全になることがないため、高い精度で位相検出結果を出力できる。そのため、例えば、位相検出装置100Aを、位相変調を用いた光データ通信における受信装置として使用することが可能となる。
 また、位相検出装置100Aは、図12Aおよび図12Bを用いて説明したのと同様に、電荷振り分け方式で遅延時間を算出する場合と比べて、同じパルス幅Tでも、精度を低下させずに測定可能な遅延時間の範囲が拡大可能である。そのため、例えば、位相検出装置100Aを、上述の光データ通信に用いる場合に、搬送波に変換して送信する伝送信号の振幅の範囲を大きくできる。
 (その他の実施の形態)
 以上、本開示に係る測距装置および位相検出装置について、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。
 例えば、上記実施の形態において、特定の処理部が実行する処理を別の処理部が実行してもよい。また、複数の処理の順序が変更されてもよいし、複数の処理が並行して実行されてもよい。
 また、上記実施の形態において、各構成要素は、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU又はプロセッサなどのプログラム実行部が、ハードディスク又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
 また、各構成要素は、ハードウェアによって実現されてもよい。各構成要素は、回路(又は集積回路)でもよい。これらの回路は、全体として1つの回路を構成してもよいし、それぞれ別々の回路でもよい。また、これらの回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。
 また、本開示の全般的又は具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム又はコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
 例えば、本開示は、上記実施の形態の測距装置として実現されてもよいし、処理部が行う測距方法をコンピュータに実行させるためのプログラムとして実現されてもよいし、このようなプログラムが記録されたコンピュータ読み取り可能な非一時的な記録媒体として実現されてもよい。
 その他、本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態および実施例に施したもの、ならびに、実施の形態および実施例における一部の構成要素を組み合わせて構築される別の形態も、本開示の範囲に含まれる。
 本開示に係る測距装置および位相検出装置等は、光データ通信受信装置、距離測定システムおよび距離センシングシステム等の様々な用途に適用できる。
10A、10AA、10AB、10B、10BA、10BB、10BC、10CA、10D、10DA、10DB 画素
11 画素電極
12 対向電極
13 光電変換部
13D フォトダイオード
14 信号検出回路
15 光電変換層
20 半導体基板
20t 素子分離領域
24 信号検出トランジスタ
24d、24s、26s、28d、28s 不純物領域
24g、26g、28g ゲート電極
26 アドレストランジスタ
28 リセットトランジスタ
32、33、70、82、83、84 電圧供給回路
34 リセット電圧源
36 垂直走査回路
37 カラム信号処理回路
38 水平信号読み出し回路
39 画素駆動信号生成回路
40 電源線
41 電荷蓄積ノード
42、43、71 感度制御線
44 リセット電圧線
46 アドレス制御線
47 垂直信号線
48 リセット制御線
49 水平共通信号線
50 層間絶縁層
52 プラグ
53 配線
54、55 コンタクトプラグ
56 配線層
80 転送トランジスタ
81 電荷排出トランジスタ
85 転送制御線
86 電荷排出電圧線
87、88 電荷排出制御線
100 測距装置
100A 位相検出装置
110 レンズ光学系
120 光検出部
120A、120B、120C、120D 撮像装置
130 制御部
140 光源
150 距離測定部
150A 位相検出部
200 送信装置
PA 画素アレイ

Claims (16)

  1.  被検出物に向けてパルス光を投射する投光部と、
     前記投光部が投射したパルス光の前記被検出物からの反射光を受光する光検出部であって、感度可変の第1画素を含む光検出部と、
     制御回路と、
     を備え、
     前記投光部は、第1期間において第1パルス光を投射し、
     前記制御回路は、
     前記第1期間と長さが等しい第2期間であって、前記第1期間の開始時点以降に開始する第2期間と、前記第2期間の後に続く第3期間と、で構成される第1受光期間において、前記第1画素の感度を、前記第2期間において第1感度に設定し、前記第3期間において前記第1感度と異なる第2感度に設定する、
     測距装置。
  2.  前記第1感度および前記第2感度はそれぞれ、前記第2期間および前記第3期間それぞれにおいて一定である、
     請求項1に記載の測距装置。
  3.  前記第1感度および前記第2感度はそれぞれ、前記第2期間および前記第3期間それぞれにおいて、直線的に増加する、または、前記第2期間および前記第3期間それぞれにおいて、直線的に低下する、
     請求項1に記載の測距装置。
  4.  前記第1受光期間は、前記第2期間と、前記第3期間と、前記第3期間の後に続く第4期間とで構成され、
     前記制御回路は、
     前記第1画素の感度を、前記第4期間において前記第1感度および前記第2感度と異なる第3感度に設定し、
     前記第3期間の長さは、前記第1期間の長さと等しく、
     前記第2感度は、前記第1感度と前記第3感度との間の感度である、
     請求項1に記載の測距装置。
  5.  前記第1感度、前記第2感度および前記第3感度はそれぞれ、前記第2期間、前記第3期間および前記第4期間それぞれにおいて一定である、
     請求項4に記載の測距装置。
  6.  前記第1受光期間において、前記第1感度、前記第2感度および前記第3感度はそれぞれ、前記第2期間、前記第3期間および前記第4期間それぞれにおいて、直線的に増加する、または、前記第2期間、前記第3期間および前記第4期間それぞれにおいて、直線的に低下する、
     請求項4に記載の測距装置。
  7.  前記光検出部は、第2画素を含み、
     前記制御回路は、前記第1受光期間において、前記第2画素の感度を、測距のための基準感度に設定する、
     請求項1から6のいずれか1項に記載の測距装置。
  8.  前記光検出部は、第3画素を含み、
     前記制御回路は、
     前記第1受光期間の後に続く非受光期間において、前記第1画素の感度を、前記第1受光期間における前記第1画素の感度よりも低い基底感度に設定し、
     前記第3画素の感度を、前記第1受光期間において前記基底感度に設定する、
     請求項1から7のいずれか1項に記載の測距装置。
  9.  前記投光部は、前記第1期間と長さが等しい第5期間において第2パルス光を投射し、
     前記制御回路は、
     前記第1受光期間と長さが等しく、前記第5期間の開始時点以降に開始する第2受光期間において、前記第1画素の感度を測距のための基準感度に設定する、
     請求項1から6のいずれか1項に記載の測距装置。
  10.  前記投光部は、前記第1期間と長さが等しい第6期間において第3パルス光を投射し、
     前記制御回路は、
     前記第1受光期間の後に続く非受光期間において、前記第1画素の感度を、前記第1受光期間における前記第1画素の感度よりも低い基底感度に設定し、
     前記第1受光期間と長さが等しく、前記第6期間の開始時点以降に開始する第3受光期間において、前記第1画素の感度を、前記基底感度に設定する、
     請求項1、2、3、4、5、6および9のいずれか1項に記載の測距装置。
  11.  前記第1画素は、光電変換部を含み、
     前記制御回路は、前記光電変換部に印加される電圧の大きさを調整することにより、前記第1画素の感度を設定する、
     請求項1から10のいずれか1項に記載の測距装置。
  12.  前記第1画素は、光電変換部を含み、
     前記制御回路は、前記光電変換部に印加されるパルス電圧であって、第1電圧と前記第1電圧よりも大きい第2電圧とを交互に繰り返すパルス電圧のデューティ比を調整することにより、前記第1画素の感度を設定する、
     請求項1から10のいずれか1項に記載の測距装置。
  13.  被検出物に向けて第1期間において第1パルス光を投射し、
     前記第1パルス光の前記被検出物からの反射光を、前記第1期間と長さが等しい第2期間であって、前記第1期間の開始時点以降に開始する第2期間と、前記第2期間の後に続く第3期間とで構成される第1受光期間において、前記第2期間において第1感度で検出し、前記第3期間において前記第1感度と異なる第2感度で検出する、
     測距方法。
  14.  さらに、前記第1受光期間において、前記反射光を、測距のための基準感度で検出する、
     請求項13に記載の測距方法。
  15.  前記被検出物に向けて、前記第1期間と長さが等しい第5期間において第2パルス光を投射し、
     前記第1受光期間と長さが等しく、前記第5期間の開始時点以降に開始する第2受光期間において、前記第2パルス光の前記被検出物からの反射光を、測距のための基準感度で検出する、
     請求項13に記載の測距方法。
  16.  基準時刻から所定の時間遅延したパルス光を受光する光検出部であって、感度可変の第1画素を含む光検出部と、
     制御回路と、
     を備え、
     前記制御回路は、
     前記パルス光のパルス幅と長さが等しい第2期間であって、前記基準時刻以降に開始する第2期間と、前記第2期間の後に続く第3期間と、で構成される第1受光期間において、前記第1画素の感度を、前記第2期間において第1感度に設定し、前記第3期間において前記第1感度と異なる第2感度に設定する、
     位相検出装置。
PCT/JP2021/035123 2020-12-23 2021-09-24 測距装置、測距方法および位相検出装置 WO2022137685A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022571056A JPWO2022137685A1 (ja) 2020-12-23 2021-09-24
US18/321,928 US20230296738A1 (en) 2020-12-23 2023-05-23 Distance measurement device, distance measurement method, and phase detection device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020213650 2020-12-23
JP2020-213650 2020-12-23
JP2021-144421 2021-09-06
JP2021144421 2021-09-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/321,928 Continuation US20230296738A1 (en) 2020-12-23 2023-05-23 Distance measurement device, distance measurement method, and phase detection device

Publications (1)

Publication Number Publication Date
WO2022137685A1 true WO2022137685A1 (ja) 2022-06-30

Family

ID=82157524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035123 WO2022137685A1 (ja) 2020-12-23 2021-09-24 測距装置、測距方法および位相検出装置

Country Status (3)

Country Link
US (1) US20230296738A1 (ja)
JP (1) JPWO2022137685A1 (ja)
WO (1) WO2022137685A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141957A1 (ja) * 2016-02-17 2017-08-24 パナソニックIpマネジメント株式会社 距離測定装置
JP2017229057A (ja) * 2016-06-17 2017-12-28 パナソニックIpマネジメント株式会社 撮像装置
WO2019078366A1 (ja) * 2017-10-20 2019-04-25 国立大学法人静岡大学 距離画像測定装置及び距離画像測定方法
JP2019113530A (ja) * 2017-12-22 2019-07-11 株式会社デンソー 距離測定装置、認識装置、及び距離測定方法
JP2021004781A (ja) * 2019-06-26 2021-01-14 株式会社 日立産業制御ソリューションズ 距離画像生成装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141957A1 (ja) * 2016-02-17 2017-08-24 パナソニックIpマネジメント株式会社 距離測定装置
JP2017229057A (ja) * 2016-06-17 2017-12-28 パナソニックIpマネジメント株式会社 撮像装置
WO2019078366A1 (ja) * 2017-10-20 2019-04-25 国立大学法人静岡大学 距離画像測定装置及び距離画像測定方法
JP2019113530A (ja) * 2017-12-22 2019-07-11 株式会社デンソー 距離測定装置、認識装置、及び距離測定方法
JP2021004781A (ja) * 2019-06-26 2021-01-14 株式会社 日立産業制御ソリューションズ 距離画像生成装置

Also Published As

Publication number Publication date
US20230296738A1 (en) 2023-09-21
JPWO2022137685A1 (ja) 2022-06-30

Similar Documents

Publication Publication Date Title
US10498991B2 (en) High dynamic range pixel and a method for operating it
KR101508410B1 (ko) 거리 화상 센서, 및 촬상 신호를 비행시간법에 의해 생성하는 방법
CN106449669B (zh) 光电转换器件、测距装置和信息处理系统
JP5395323B2 (ja) 固体撮像素子
JP5635937B2 (ja) 固体撮像装置
JP6501403B2 (ja) イメージセンサ
KR101751090B1 (ko) 거리 화상 센서
US8767189B2 (en) Solid state imaging device and distance image measurement device
JP5333869B2 (ja) 撮像装置
JP5576851B2 (ja) 測距システム及び測距方法
WO2017022219A1 (ja) 固体撮像装置の駆動方法
US20120200841A1 (en) Photoelectric conversion element, light receiving device, light receiving system, and distance measuring device
US7622704B2 (en) Optoelectronic detector with multiple readout nodes and its use thereof
US9151831B2 (en) Distance measurement device
US10708511B2 (en) Three-dimensional motion obtaining apparatus and three-dimensional motion obtaining method
CN111885316B (zh) 一种图像传感器像素电路、图像传感器及深度相机
US8947646B2 (en) Photoelectric conversion element, light receiving device, light receiving system, and distance measuring device
JP5675469B2 (ja) 測距システム
CN110729315B (zh) 像素架构和图像传感器
KR20120015257A (ko) 광감지 장치의 단위 픽셀, 광감지 장치 및 이를 이용한 거리 측정 방법
WO2022137685A1 (ja) 測距装置、測距方法および位相検出装置
CN113923382A (zh) 图像感测装置
KR20210127153A (ko) 비행시간 디바이스 및 3d 광 검출기
US20240085535A1 (en) Ranging sensor and ranging module
US20230258808A1 (en) Imaging element and imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909843

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571056

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909843

Country of ref document: EP

Kind code of ref document: A1