WO2009147823A1 - リソグラフィー用重合体並びにその製造方法 - Google Patents

リソグラフィー用重合体並びにその製造方法 Download PDF

Info

Publication number
WO2009147823A1
WO2009147823A1 PCT/JP2009/002437 JP2009002437W WO2009147823A1 WO 2009147823 A1 WO2009147823 A1 WO 2009147823A1 JP 2009002437 W JP2009002437 W JP 2009002437W WO 2009147823 A1 WO2009147823 A1 WO 2009147823A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
hydrogen atom
polymer
ring
carbon atoms
Prior art date
Application number
PCT/JP2009/002437
Other languages
English (en)
French (fr)
Inventor
奥村有道
井上慶三
岡本和樹
Original Assignee
ダイセル化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイセル化学工業株式会社 filed Critical ダイセル化学工業株式会社
Priority to US12/992,423 priority Critical patent/US8470510B2/en
Priority to DE112009001389T priority patent/DE112009001389T5/de
Publication of WO2009147823A1 publication Critical patent/WO2009147823A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/125Monomers containing two or more unsaturated aliphatic radicals, e.g. trimethylolpropane triallyl ether or pentaerythritol triallyl ether
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/283Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing one or more carboxylic moiety in the chain, e.g. acetoacetoxyethyl(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1818C13or longer chain (meth)acrylate, e.g. stearyl (meth)acrylate

Definitions

  • the present invention relates to a lithography polymer (photoresist resin) used when performing fine processing of a semiconductor, a manufacturing method thereof, a lithography composition, and a semiconductor manufacturing method using the lithography composition. .
  • Japanese Patent Application Laid-Open No. 2002-296782 proposes a polymer having one acetal structure in the crosslinked chain of the crosslinked polymer. Since this compound has only one acid breakpoint in the cross-linked chain, the efficiency of reducing the molecular weight is not sufficient.
  • Japanese Patent Application Laid-Open No. 2006-003844 discloses a crosslinked polymer by a divinyl ether compound using a hydroxyl group bonded to a polycyclic alicyclic hydrocarbon group of a polymer side chain.
  • the efficiency of the crosslinking reaction is poor because of the influence of steric hindrance.
  • a hydroxyl group is used as a reaction point with divinyl ether, the solubility in an alkali developer hardly changes before and after the crosslinking is cut, so that the LER improvement effect is not sufficient.
  • Japanese Patent No. 3756270 discloses a polymer in which a carboxyl group of a polymer side chain is crosslinked with a divinyl ether compound.
  • a large amount of carboxyl groups serving as crosslinking points must be introduced, and the sensitivity to acid becomes too high. For this reason, the tolerance with respect to the amount of acid generation such as exposure blurring becomes small, and handling is difficult.
  • a material having a balance between LER and etching resistance has not been found, and it has been desired to provide a resist polymer with improved problems.
  • a lithographic polymer photoresist resin
  • a method for producing the same a lithographic composition, and a lithographic composition that solve the above-mentioned problems and enable ultrafine and uniform pattern formation in semiconductor production.
  • An object of the present invention is to provide a method for manufacturing a semiconductor using the above.
  • the present invention provides a polymer for lithography (A) having at least a repeating structural unit represented by the following general formula (I).
  • R 1 , R 3 , R 4 and R 6 each independently represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group or a haloalkyl group.
  • R 2 and R 5 each represents Independently represents a hydrogen atom, a cyano group, —CO—OR A , or —CON (R B ) (R C ), wherein X 1 and X 2 each independently have a single bond or a substituent;
  • X 3 and X 4 each independently represents a single bond or —CO—
  • R 7 , R 8 , R 9 and R 10 each independently represents a hydrogen atom, an alkyl group or Represents a cycloalkyl group, and R 7 and R 8 , R 9 and R 10 , together with adjacent carbon atoms bonded to each other.
  • X may represent a ring, and X represents a k-valent group, which may have a substituent, consisting of at least one aromatic cyclic group and at least one non-aromatic group.
  • k is an integer of 2 or more
  • R A represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, or an acid-decomposable group
  • R B , R C , and R F each independently represent a hydrogen atom.
  • R B , R C may combine to form a ring
  • R D , R E , and R G each independently represent a single bond, or Divalent alkylene group, alkenylene group, cycloalkylene group, or bridged cyclic hydrocarbon group (bridged hydrocarbon group) which may have an ether group, ester group, amide group, urethane group or ureido group Or a group in which two or more of these are bonded (k-1).
  • Group in parentheses, respectively, may be the same or different.
  • R 1 and R 3 each independently represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group or a haloalkyl group.
  • R 2 represents a hydrogen atom, a cyano group, —CO—OR A.
  • X 1 represents a single bond or a divalent alkylene group, alkenylene group, cycloalkylene group, or —O—, which may have a substituent.
  • R A represents a hydrogen atom or an alkyl group, a cycloalkyl group, an alkenyl group, or an acid-decomposable group
  • R B , R C , and R F each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, Represents an alkenyl group
  • R B , R C may combine to form a ring
  • R D , R E , R G each independently represents a single bond, or a divalent alkylene group, alkenylene group, cycloalkylene group, or bridged cyclic group which may have an ether group, ester group, amide group, urethane group or ureido group.
  • a polymer for lithography (A ′) obtained by reacting the compound (C) represented by formula (A) with a compound in the presence of a catalyst is provided.
  • the polymer compound (B) having at least one repeating structural unit represented by the general formula (II) has a weight average molecular weight of 7000 or less, and the polymer compound (B) and the general formula (III)
  • the average molecular weight of the polymer for lithography obtained by reacting the compound (C) represented is preferably 4500 or more.
  • the physographic polymers (A) and (A ′) of the present invention further contain a group represented by the following general formulas (IVa) to (IVe) containing a group which is eliminated by an acid and becomes alkali-soluble. At least one structural unit can be included.
  • ring Z 1 represents an optionally substituted alicyclic hydrocarbon ring having 5 to 20 carbon atoms.
  • Ra represents a hydrogen atom, a halogen atom, or a halogen atom.
  • E 1 represents a divalent hydrocarbon group having 1 to 12 carbon atoms
  • s 1 represents an integer of 0 to 3.
  • R 14 to R 16 may be the same or Differently represents an optionally substituted alkyl group having 1 to 6 carbon atoms, and R 17 is a substituent bonded to ring Z 1 , which may be the same or different and represents an oxo group or an alkyl group.
  • the alicyclic hydrocarbon ring having 5 to 20 carbon atoms in ring Z 1 may be a single ring, a condensed ring or a bridge.
  • R 21 represents a t-butyl group, a 2-tetrahydrofuranyl group, a 2-tetrahydropyranyl group, or a 2-oxepanyl group.
  • S represents 0 or 1.
  • the physographic polymers (A) and (A ′) of the present invention may further have at least one repeating structural unit having a lactone skeleton represented by the following general formulas (Va) to (Vh).
  • R a represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms which may have a halogen atom.
  • R 22 to R 24 may be the same or different and represent a hydrogen atom, an alkyl A hydroxyl group which may be protected with a protecting group, a hydroxyalkyl group which may be protected with a protecting group, or a carboxyl group which may be protected with a protecting group, V 1 to V 3 are the same Or differently —CH 2 —, —CO— or —COO—, wherein at least one of V 1 to V 3 is —COO—, Y 1 represents a carbon atom, an oxygen atom or a sulfur atom.
  • R 28 and R 29 are present only when it is a carbon atom, and R 25 to R 29 and R 30 are the same or different and represent a hydrogen atom, an alkyl group, a hydroxyl group optionally protected by a protecting group, a protected group Hydroxy group optionally protected by a group
  • t is an integer of 1 or 2
  • u is an integer of 0 or 1
  • Y 2 represents an oxygen atom, a sulfur atom or a methylene group
  • R 31 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 32 , R 33 , R 34 and R 35 are the same or different.
  • R 36 represents a hydrogen atom, a halogen atom, or an optionally substituted carbon atom having 1 to 6 carbon atoms.
  • R 37 represents a group having a lactone skeleton, and M represents a divalent organic group having 1 to 6 carbon atoms.
  • the ratio of the aromatic cyclic group contained in the lithography polymer (A) and the lithography polymer (A ′) of the present invention is preferably 1.5 mmol / g or less based on the weight of the prepolymer. .
  • the aromatic ring contained in X in the general formula (I) or the general formula (III) has a substituent. It is preferably a naphthalene ring which may be present.
  • the present invention also provides a lithographic composition
  • a lithographic composition comprising the lithographic polymer (A) of the present invention and / or the lithographic polymer (A ') of the present invention and a compound capable of generating an acid upon irradiation with actinic rays or radiation.
  • the present invention further provides a method for producing a semiconductor, comprising a step of applying the above-mentioned lithography composition on a substrate or a substrate to form a resist coating film, and performing pattern formation through exposure and development.
  • a method for producing a semiconductor comprising a step of applying the above-mentioned lithography composition on a substrate or a substrate to form a resist coating film, and performing pattern formation through exposure and development.
  • an exposure light source for exposure it is preferable to use far ultraviolet light having a wavelength of 220 nm or less.
  • the present invention also provides a compound (B) having at least one repeating structural unit represented by the following general formula (II) and a compound (C) represented by the following general formula (III) in the presence of a catalyst.
  • a method for producing a polymer for lithography characterized by reacting.
  • R 1 and R 3 each independently represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group or a haloalkyl group.
  • R 2 represents a hydrogen atom, a cyano group, —CO—OR A.
  • X 1 represents a single bond or a divalent alkylene group, alkenylene group, cycloalkylene group, or —O—, which may have a substituent.
  • X 3 representing a represents a single bond or -CO- and R A represents a hydrogen atom or an alkyl group, a cycloalkyl group, an alkenyl group, or an acid-decomposable group
  • R B , R C , and R F each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, Represents an alkenyl group, and R B , R C may combine to form a ring R D , R E , R G each independently represents a single bond, or a divalent alkylene
  • R 11 represents a hydrogen atom or an alkyl group having 1 to 16 carbon atoms
  • R 12 and R 13 are the same or different and represent a hydrogen atom, an alkyl group, or a cycloalkyl group.
  • R 12 and R 13 May be bonded to each other to form a ring with adjacent carbon atoms, and X may be substituted with at least one aromatic cyclic group and at least one non-aromatic group.
  • k is an integer of 2 or more, and the groups within k parentheses may be the same or different.
  • the polymer for lithography of the present invention is bridged by an acetal bond having an aromatic ring, when the polymer is used for lithography, it becomes possible to form a very fine and clear pattern, and particularly high accuracy. Therefore, it can be used very favorably also for the production of highly integrated semiconductors and the like that require this work.
  • the polymer for lithography (A) of the present invention is characterized by containing a repeating structural unit represented by the general formula (I).
  • X represents a k-valent group having an aromatic ring as its central skeleton.
  • it preferably has a structure represented by the following formula (1).
  • X a represents an aromatic cyclic group
  • X b represents a non-aromatic hydrocarbon group which may contain a linking group.
  • the terminal of the non-aromatic hydrocarbon group in the formula, Is directly bonded to the oxygen atom bonded to X in formula (I)
  • k represents an integer of 2 or more, and the groups in the k parentheses are the same. May be different.
  • X b is, for example, a linear, branched, cyclic hydrocarbon group or bridged alicyclic hydrocarbon group, or one or more groups selected from these hydrocarbon groups, an ether group, an ester A group in which one or two or more linking groups selected from a group, an amide group, a urethane group, a ureido group, and an aromatic cyclic group are bonded.
  • X is no aromatic cyclic group X a, not intended improving effect is sufficient for collapse etching resistance and pattern.
  • Specific examples of the aromatic ring in the X a for example, a benzene ring, a naphthalene ring, anthracene ring, phenanthrene ring, pyrene ring, a tetracene ring, a pentacene ring, a chrysene ring, a picene ring, and the like.
  • a naphthalene ring and an anthracene ring are preferable, and a naphthalene ring is particularly preferable.
  • X a is preferably an aromatic cyclic group having a substituent.
  • substituents include a halogen atom; a hydrocarbon group such as an alkyl group, a cycloalkyl group, a bicycloalkyl group, a tricycloalkyl group, and a bridged hydrocarbon group; a hydrocarbon group substituted with a halogen atom; oxygen, A hydrocarbon group containing a functional group containing a heteroatom such as sulfur; or a group in which two or more of the above substituents are combined and linked.
  • a substituent that suppresses the electron withdrawing property of the aromatic ring is preferably introduced as a functional group. If X does not contain Xb and does not have the above substituent, the crosslinking reaction may not proceed.
  • K must be an integer of 2 or greater. If it is 1 or less, a bond cannot be formed between molecular chains, and the strength of the pattern is greatly reduced. If k is 2 or more, the number is not limited, but if the number is too large, the crosslinking density may be increased too much. Therefore, k is preferably an integer of 2 to 5, particularly preferably 2 or 3.
  • the halogen atoms in R 1 , R 2 , R 3 , R 4 , and R 6 include fluorine, chlorine, bromine atoms, and the like.
  • alkyl in R 1 , R 2 , R 3 , R 4 , R 6, R 7 , R 8 , R 9 , R 10 , R A include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s- Examples include butyl, t-butyl and hexyl groups.
  • the haloalkyl group in R 1 , R 3 , R 4 and R 6 includes a group in which at least one hydrogen atom of the alkyl group is substituted with a fluorine atom, such as monofluoromethyl, difluoromethyl, trifluoromethyl, 2,2 , 2-trifluoromethyl, tetrafluoroethyl, 2,2,3,3,3-pentafluoropropyl group and the like.
  • Examples of the alkylene group in X 1 , X 2 and R D , R E , and R G include linear or branched C 1 to C carbon atoms such as methylene, methylmethylene, dimethylmethylene, ethylene, propylene, and trimethylene groups. 6 hydrocarbon groups.
  • Examples of the alkenylene group include vinylene, 1-propenylene, 1,3-butazinene, 3-methyl-2-butenylene group and the like.
  • Examples of the cycloalkylene group include a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, and a cyclooctenyl group.
  • Examples of the acid-decomposable group in R A include a tertiary hydrocarbon group which may have a substituent; a carboxyl group is generated by decomposition with an acid such as a tetrahydrofuranyl group, a tetrahydropyranyl group or an oxepanyl group. Possible groups.
  • Examples of the cycloalkyl group in R 7 , R 8 , R 9 , R 10 and R A , R B , R C , R F include cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl and the like.
  • Examples of the alkenyl group in R B , R C and R F include an allyl group.
  • Examples of the bridged cyclic hydrocarbon group in R D , R E and R G include, for example, an adamantane ring, norbornane ring, narbornene ring, bornane ring, isobornane ring, tricyclo [5.2.1.0 2,6 ] decane.
  • the polymer for lithography (A) of the present invention has not only reduced LER (Line Edge Roughness) on the pattern surface but also improved etching resistance by having the bridge structure shown in the formula (I).
  • the pattern strength can be improved.
  • the repeating structural unit represented by the formula (I) includes, for example, a polymer compound (B) having a repeating structural unit represented by the general formula (II) and a general formula (III) as shown in the following reaction formula: It can manufacture preferably by attaching
  • the lithographic polymer (A ′) of the present invention will be described in detail. Unless otherwise specified, the following description regarding the lithographic polymer (A ′) is directly applied to the lithographic polymer (A). Also applies
  • the structural unit represented by the general formula (II) is, for example, an ⁇ , ⁇ -unsaturated carboxylic acid such as (meth) acrylic acid, or a mono ( ⁇ -lower alkyl) acrylic acid ester containing a hydroxyl group or a carboxyl group A group in which at least one hydrogen of the linking group is substituted with a hydroxyl group or a carboxyl group via a linking group on the ester side chain portion of the ( ⁇ -lower alkyl) acrylate ester. It is a combined structural unit.
  • an ⁇ , ⁇ -unsaturated carboxylic acid such as (meth) acrylic acid, or a mono ( ⁇ -lower alkyl) acrylic acid ester containing a hydroxyl group or a carboxyl group A group in which at least one hydrogen of the linking group is substituted with a hydroxyl group or a carboxyl group via a linking group on the ester side chain portion of the ( ⁇ -lower alkyl) acrylate ester
  • linking group examples include a group in which one hydrogen atom is removed from a single bond, alkane, cycloalkane, bicycloalkane, tricycloalkane, tetracycloalkane or the like.
  • a polycycloalkane such as methylene, ethylene, propene, butene, pentene, hexene, heptene, octene, cyclopentane, cyclohexane, cycloheptane, adamantane, norbornane, isobornane, tricyclodecane, tetracyclododecane, etc.
  • a group in which a hydrogen atom is removed such as methylene, ethylene, propene, butene, pentene, hexene, heptene, octene, cyclopentane, cyclohexane, cycloheptane, adamantane, nor
  • the linking group may be substituted or linked with a hydrocarbon group, a halogen atom, a hydrocarbon group substituted with a halogen atom, or a functional group containing a hetero atom such as oxygen or sulfur.
  • the number of hydroxyl groups or carboxyl groups substituting for hydrogen atoms of the linking group may be one or more, and the upper limit can be set to a number that can be substituted. Preferably it is 1-3. Both a hydroxyl group and a carboxyl group may be substituted on one linking group.
  • repeating structural unit represented by the general formula (II) in the polymer compound (B) include structural units represented by the following general formulas (IIa) to (IIs).
  • R a represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms which may have a halogen atom.
  • R a is preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, particularly preferably a hydrogen atom or a methyl group.
  • the repeating structural unit represented by the general formula (II) in the polymer compound (B) may be used alone or in combination of two or more. It is particularly preferable to use a combination of a repeating unit having a hydroxyl group and a repeating unit having a carboxyl group. By using a combination of a repeating unit having a hydroxyl group and a repeating unit having a carboxyl group, it is possible to widen the tolerance for variations in exposure dose.
  • the repeating structural unit represented by the general formula (II) in the polymer compound (B) is preferably 5 to 50 mol% with respect to all repeating units in the polymer compound (B). If it is less than 5 mol%, not only does the crosslinking reaction not proceed sufficiently, but also the adhesion to the substrate or the like is insufficient. When it exceeds 50 mol%, the etching resistance is lowered.
  • X in the compound (C) may be the same as X in the repeating structural unit represented by the above formula (I). However, among the descriptions of X in the repeating structural unit represented by the above formula (I), “bonded to an oxygen atom bonded to X in the formula (I)” or “bonded to X” “Bonded to an oxygen atom” is read as “bonded to an oxygen atom in the vinyl ether group”.
  • vinyl ethers can be easily synthesized by a conventionally known method. In particular, it can be efficiently synthesized by using a transition metal compound as a catalyst.
  • a synthesis method using a transition metal compound as a catalyst is described in detail in JP-A No. 2004-161742. Specific examples of the compound (C) are shown below [formulas (IIIa) to (IIIp)], but the present invention is not limited thereto.
  • the linear polymer compound used in the present invention may have a repeating structural unit containing a group that becomes alkali-soluble by the action of an acid in addition to the repeating structural units such as the general formulas (I) and (II). preferable.
  • a repeating structural unit containing an alkali-soluble group in the resist resin By including a repeating structural unit containing an alkali-soluble group in the resist resin, the solubility in alkali is improved by the action of an acid, and a clearer pattern can be formed.
  • the alkali solubility of the polymer in the exposed portion can be controlled, the range of molecular design such as molecular weight and the number of crosslinking points can be expanded.
  • Monomers corresponding to repeating structural units containing a group that becomes alkali-soluble are represented, for example, by the following formulas (IVa) to (IVe).
  • ring Z 1 represents an optionally substituted alicyclic hydrocarbon ring having 5 to 20 carbon atoms.
  • R a may have a hydrogen atom, a halogen atom, or a halogen atom.
  • E 1 represents a divalent hydrocarbon group having 1 to 12 carbon atoms
  • s 1 represents an integer of 0 to 3.
  • R 14 to R 16 may be the same or Differently represents an optionally substituted alkyl group having 1 to 6 carbon atoms, and R 17 is a substituent bonded to ring Z 1 which may be the same or different and represents an oxo group, an alkyl group A hydroxyl group that may be protected with a protecting group, a hydroxyalkyl group that may be protected with a protecting group, or a carboxyl group that may be protected with a protecting group, where r is the number of R 17. Represents an integer of 1 to 3, provided that at least one of r R 17 represents a —COOR i group.
  • R i represents an optionally substituted tertiary hydrocarbon group, tetrahydrofuranyl group, tetrahydropyranyl group, or oxepanyl group, and R 18 and R 19 are the same or different and each represents a hydrogen atom; Or an optionally substituted alkyl group having 1 to 6 carbon atoms, R 20 represents a hydrogen atom or an organic group, and at least two of R 18 , R 19 and R 20 are adjacent to each other.
  • the alicyclic hydrocarbon ring having 5 to 20 carbon atoms in ring Z 1 may be a single ring, a condensed ring or a bridge.
  • R 21 represents a t-butyl group, a 2-tetrahydrofuranyl group, a 2-tetrahydropyranyl group, or a 2-oxepanyl group, and s represents 0 or 1).
  • the halogen atom in R a includes a fluorine, chlorine, bromine atom and the like.
  • alkyl group having 1 to 6 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, and hexyl groups.
  • Examples of the alkyl group having 1 to 6 carbon atoms include a group in which at least one hydrogen atom of the alkyl group having 1 to 6 carbon atoms is substituted with a fluorine atom, such as monofluoromethyl, difluoromethyl, trifluoromethyl, Examples include 2,2,2-trifluoroethyl, tetrafluoroethyl, 2,2,3,3,3-tetrafluoropropyl group and the like.
  • R a a hydrogen atom or an alkyl group having 1 to 6 carbon atoms can be suitably used, and among these, a hydrogen atom or a methyl group is particularly preferable.
  • alkyl group having 1 to 6 carbon atoms which may have a substituent in R 14 to R 16 and R 18 and R 19 include, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, Examples thereof include linear or branched alkyl groups having 1 to 6 carbon atoms such as t-butyl and hexyl groups; and haloalkyl groups having 1 to 6 carbon atoms such as trifluoromethyl groups.
  • examples of the alkyl group for R 17 include straight-chain such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, hexyl, octyl, decyl, dodecyl group, etc.
  • Examples include branched chain alkyl groups having about 1 to 20 carbon atoms.
  • Examples of the hydroxyl group that may be protected with a protecting group for R 17 include a hydroxyl group and a substituted oxy group (for example, C 1-4 alkoxy group such as methoxy, ethoxy, propoxy group, etc.).
  • Examples of the hydroxyalkyl group which may be protected with a protecting group include a group in which a hydroxyl group which may be protected with the protecting group is bonded via an alkylene group having 1 to 6 carbon atoms.
  • Examples of the tertiary hydrocarbon group R i in -COOR i in R 17, for example, t- butyl, t-amyl, 2-methyl-2-adamantyl, and (1-methyl-1-adamantyl) ethyl Can be mentioned.
  • the tetrahydrofuranyl group includes a 2-tetrahydrofuranyl group
  • the tetrahydropyranyl group includes a 2-tetrahydropyranyl group
  • the oxepanyl group includes a 2-oxepanyl group.
  • the alicyclic hydrocarbon ring of 5 to 20 in the ring Z 1 may be a single ring or a polycyclic ring such as a condensed ring or a bridged ring.
  • Typical alicyclic hydrocarbon rings include, for example, cyclohexane ring, cyclooctane ring, cyclodecane ring, adamantane ring, norbornane ring, norbornene ring, bornane ring, isobornane ring, perhydroindene ring, decalin ring, perhydrofluorene ring.
  • the alicyclic hydrocarbon ring includes an alkyl group such as a methyl group (eg, a C 1-4 alkyl group), a halogen atom such as a chlorine atom, a hydroxyl group optionally protected by a protecting group, an oxo group, a protected group It may have a substituent such as a carboxyl group which may be protected with a group.
  • the ring Z 1 is preferably a polycyclic alicyclic hydrocarbon ring (bridged hydrocarbon ring) such as an adamantane ring.
  • Examples of the organic group for R 20 include a group containing a hydrocarbon group and / or a heterocyclic group.
  • the hydrocarbon group includes an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group in which two or more of these are bonded.
  • Examples of the aliphatic hydrocarbon group include linear or branched alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, hexyl, and octyl groups (C 1- 8 alkyl groups); linear or branched alkenyl groups such as allyl groups (C 2-8 alkenyl groups, etc.); linear or branched alkynyl groups such as propynyl groups (C 2-8 alkynyl) Group, etc.).
  • Examples of the alicyclic hydrocarbon group include cycloalkyl groups such as cyclopropyl, cyclopentyl, and cyclohexyl groups (3 to 8 membered cycloalkyl groups); cycloalkenyl groups such as cyclopentenyl and cyclohexenyl groups (3 to 8 members) Cycloalkenyl groups and the like); bridged carbocyclic groups such as adamantyl and norbornyl groups (C 4-20 bridged carbocyclic groups and the like) and the like.
  • Examples of the aromatic hydrocarbon group include C 6-14 aromatic hydrocarbon groups such as phenyl and naphthyl groups.
  • Examples of the group in which an aliphatic hydrocarbon group and an aromatic hydrocarbon group are bonded include benzyl and 2-phenylethyl groups. These hydrocarbon groups are protected with alkyl groups (C 1-4 alkyl groups, etc.), haloalkyl groups (C 1-4 haloalkyl groups, etc.), halogen atoms, hydroxyl groups that may be protected with protecting groups, and protecting groups. It may have a substituent such as a hydroxymethyl group which may be protected, a carboxyl group which may be protected with a protecting group, or an oxo group.
  • the protecting group a protecting group conventionally used in the field of organic synthesis can be used.
  • Preferred organic groups include C 1-8 alkyl groups, organic groups containing a cyclic skeleton, and the like.
  • the “ring” constituting the cyclic skeleton includes a monocyclic or polycyclic non-aromatic or aromatic carbocyclic or heterocyclic ring.
  • monocyclic or polycyclic non-aromatic carbocycles and lactone rings are particularly preferable.
  • the monocyclic non-aromatic carbocycle include a cycloalkane ring having about 3 to 15 members such as a cyclopentane ring and a cyclohexane ring.
  • stereoisomers may exist, but they can be used alone or as a mixture of two or more.
  • Typical examples of the compound represented by the formula (IVa) include, but are not limited to, the following compounds. 2- (meth) acryloyloxy-2-methyladamantane, 1-hydroxy-2- (meth) acryloyloxy-2-methyladamantane, 5-hydroxy-2- (meth) acryloyloxy-2-methyladamantane, 2- ( (Meth) acryloyloxy-2-ethyladamantane.
  • Typical examples of the compound represented by the formula (IVb) include the following compounds, but are not limited thereto.
  • the compound represented by the above formula (IVd) can be obtained, for example, by reacting a corresponding vinyl ether compound and (meth) acrylic acid by a conventional method using an acid catalyst.
  • 1-adamantyloxy-1-ethyl (meth) acrylate can be produced by reacting 1-adamantyl-vinyl ether with (meth) acrylic acid in the presence of an acid catalyst.
  • Typical examples of the monomer that forms the monomer unit represented by the formula (IVe) include the following compounds, but the invention is not limited thereto. 5-t-butoxycarbonylnorbornene, 9-t-butoxycarbonyltetracyclo [6.2.1 3,6 . 0 2,7 ] dodec-4-ene, 5- (2-tetrahydropyranyloxycarbonyl) norbornene, 9- (2-tetrahydropyranyloxycarbonyl) tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene.
  • the polymer for lithography of the present invention preferably has a repeating structural unit having a lactone skeleton in addition to the repeating structural units such as the general formulas (II) and (III).
  • a repeating structural unit having a lactone skeleton By having a repeating structural unit having a lactone skeleton, the adhesiveness of the resist resin to the substrate is improved, and a clearer pattern can be formed.
  • Monomers corresponding to repeating structural units having a lactone skeleton are represented by the following formulas (Va) to (Vh). (Wherein R a represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms which may have a halogen atom.
  • R 22 to R 24 may be the same or different and represent a hydrogen atom, an alkyl A hydroxyl group which may be protected with a protecting group, a hydroxyalkyl group which may be protected with a protecting group, or a carboxyl group which may be protected with a protecting group, V 1 to V 3 are the same Or differently —CH 2 —, —CO— or —COO—, wherein at least one of V 1 to V 3 is —COO—, Y 1 represents a carbon atom, an oxygen atom or a sulfur atom.
  • R 28 and R 29 are present only when it is a carbon atom, and R 25 to R 29 and R 30 are the same or different and represent a hydrogen atom, an alkyl group, a hydroxyl group optionally protected by a protecting group, a protected group Hydroxy group optionally protected by a group
  • t is an integer of 1 or 2
  • u is an integer of 0 or 1
  • Y 2 represents an oxygen atom, a sulfur atom or a methylene group
  • R 31 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 32 , R 33 , R 34 and R 35 are the same or different.
  • R 36 represents a hydrogen atom, a halogen atom, or an optionally substituted carbon atom having 1 to 6 carbon atoms.
  • R 37 represents a group having a lactone skeleton, and M represents a divalent organic group having 1 to 6 carbon atoms.
  • the halogen atom in R a includes a fluorine, chlorine, bromine atom and the like.
  • alkyl group having 1 to 6 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, and hexyl groups.
  • alkyl group having a halogen atom having 1 to 6 carbon atoms examples include groups in which at least one hydrogen atom of the alkyl group having 1 to 6 carbon atoms is substituted with a fluorine atom, such as monofluoromethyl, difluoromethyl, trifluoromethyl 2,2,2-trifluoroethyl, tetrafluoroethyl, 2,2,3,3,3-tetrafluoropropyl group and the like.
  • a hydrogen atom and an alkyl group having 1 to 6 carbon atoms can be preferably used, and a hydrogen atom or a methyl group is particularly preferable.
  • R 25 to R 29 and R 30 those similar to the alkyl group for R a can be used.
  • the halogen atoms in R 25 to R 29 and R 30 include, for example, fluorine, chlorine, bromine atoms and the like.
  • the protecting group a protecting group conventionally used in the field of organic synthesis can be used.
  • Typical examples of the monomer that forms the monomer unit represented by the formula (Vf) include the following compounds, but are not limited thereto.
  • 4-oxatricyclo [5.2.1.0 2,6 ] decan-8-en-5-one 3-oxatricyclo [5.2.1.0 2,6 ] decan-8- En-4-one, 5-oxatricyclo [6.2.1.0 2,7 ] undecan-9-en-6-one, 4-oxatricyclo [6.2.1.0 2,7 ] Undecan-9-en-5-one, 4-oxapentacyclo [6.5.1.1 9,12 . 0 2,6 .
  • the halogen atom includes, for example, fluorine, chlorine, bromine atom and the like.
  • the alkyl group having 1 to 6 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, pentyl, and hexyl groups. Among these, a C 1-4 alkyl group, particularly a methyl group is preferable.
  • Examples of the substituted alkyl group having 1 to 6 carbon atoms include chloroalkyl groups such as chloromethyl group; fluoroalkyl groups such as trifluoromethyl, 2,2,2-trifluoroethyl, and pentafluoroethyl groups ( Preferably, a C 1-6 alkyl group having a halogen atom such as a C 1-3 fluoroalkyl group) and the like can be mentioned.
  • R 36 is preferably a hydrogen atom, a C 1-3 alkyl group such as a methyl group, or a C 1-3 haloalkyl group such as a trifluoromethyl group, and particularly preferably a hydrogen atom or a methyl group.
  • Examples of the group having a lactone skeleton in R 37 include a group having a lactone skeleton composed of a monocyclic lactone ring such as a ⁇ -butyrolactone ring, a ⁇ -valerolactone ring, and an ⁇ -caprolactone ring; 6-oxabicyclo [ 3.2.1 Polycyclic lactones containing a lactone ring, such as 1,5 ] octane-7-one ring and 3-oxatricyclo [4.2.1.0 4,8 ] nonan-2-one ring Examples include skeletons. Among these, a group having a lactone skeleton composed of a monocyclic lactone ring, particularly a group having a monocyclic lactone skeleton composed of a ⁇ -butyrolactone ring is preferable.
  • the lactone skeleton may have a substituent.
  • substituents include an alkyl group such as a methyl group (eg, a C 1-4 alkyl group), a haloalkyl group such as a trifluoromethyl group (eg, a C 1-4 haloalkyl group), a chlorine atom, and a fluorine atom.
  • a protective group examples thereof include a good carboxyl group, an amino group which may be protected with a protecting group, and a sulfonic acid group which may be protected with a protecting group.
  • the protecting group a protecting group commonly used in the field of organic synthesis can be used.
  • the lactone skeleton in R 37 may be directly bonded to the ester bond (—COO—) shown in the formula, or may be bonded via a linking group.
  • the linking group include alkylene groups such as methylene, ethylene, propylene, trimethylene, tetramethylene, and hexamethylene groups (for example, C 1-6 alkylene groups).
  • R 37 include ⁇ -butyrolactone-2-yl group, 3-methyl- ⁇ -butyrolactone-2-yl group, 3,3-dimethyl- ⁇ -butyrolactone-2-yl group, 4-methyl- ⁇ -butyrolactone-2-yl group, 4,4-dimethyl- ⁇ -butyrolactone-2-yl group, 3,4,4-trimethyl- ⁇ -butyrolactone-2-yl group, 3,3,4-trimethyl- ⁇ - ⁇ -butyrolactone optionally having a substituent such as C 1-4 alkyl group such as butyrolactone-2-yl group, 3,3,4,4-tetramethyl- ⁇ -butyrolactone-2-yl group 2-yl group; ⁇ -valerolactone-2-yl group, 3-methyl- ⁇ -valerolactone-2-yl group, 3,3-dimethyl- ⁇ -valerolactone-2-yl group, 4-methyl- ⁇ -Valerolactone-2-yl group, 4,4
  • ⁇ -valerolactone-2-yl group which may have a substituent of: ⁇ -caprolactone-2-yl group, 2-methyl- ⁇ -caprolactone-2-yl group, 2,2-dimethyl- ⁇ - And an ⁇ -caprolactone-2-yl group which may have a substituent such as a C 1-4 alkyl group such as a caprolactone-2-yl group.
  • a C 1-4 alkyl group one or more (especially two) with ⁇ - butyrolactone-2-yl group, a C 1-4 alkyl group one or more (especially two) having ⁇ - valerolactone A lactone-2-yl group and an ⁇ -caprolactone-2-yl group having 1 or 2 (especially 2) C 1-4 alkyl groups are preferred, especially a 3,3-dimethyl- ⁇ -butyrolactone-2-yl group A ⁇ -butyrolactone-2-yl group having 1 or 2 (especially 2) C 1-4 alkyl groups such as
  • M represents a divalent organic group having 1 to 6 carbon atoms.
  • the divalent organic group include alkylene groups such as methylene, ethylene, propylene and butylene (particularly C 1-6 alkylene group); alkenylene groups such as vinylene (particularly C 2-6 alkenylene group); cyclopentylene, A cycloalkenylene group such as a cyclohexylene group; two or more of these are bonded via a linking group such as an ether bond (—O—), a thioether bond (—S—), or an ester bond (—COO—; —OCO—) And divalent organic groups.
  • methylene, ethylene, propylene and the like are preferable.
  • those substituted with a halogen atom, particularly a fluorine atom are also useful.
  • the polymerization method used for obtaining the polymer compound (B) is not particularly limited, but radical polymerization is preferred.
  • the polymerization can be carried out by a conventional method used for producing an acrylic polymer, such as solution polymerization, bulk polymerization, suspension polymerization, bulk-suspension polymerization, emulsion polymerization, etc., but is not particularly limited. Is suitable.
  • drop polymerization is preferable among solution polymerization. Specifically, for example, (i) a monomer solution previously dissolved in an organic solvent and a polymerization initiator solution dissolved in an organic solvent are prepared in an organic solvent kept at a constant temperature.
  • a monomer solution previously dissolved in an organic solvent and a polymerization initiator solution dissolved in the organic solvent are respectively prepared, and the polymerization initiator solution is dropped into the monomer solution maintained at a constant temperature. It is performed by a method or the like.
  • radical polymerization initiator If radical polymerization is used as the polymerization initiator, the radical polymerization initiator is not particularly limited, but examples include azo compounds, peroxide compounds, and redox compounds. 2,2'-azobisisobutyrate, azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile), t-butylperoxypivalate, di-t-butylperoxide, iso Preferred are butyryl peroxide, lauroyl peroxide, succinic acid peroxide, dicinnamyl peroxide, di-n-propyl peroxydicarbonate, t-butylperoxyallyl monocarbonate, benzoyl peroxide, hydrogen peroxide, ammonium persulfate, etc. .
  • a known solvent can be used.
  • ether chain ether such as diethyl ether, propylene glycol monomethyl ether, etc., chain ether such as tetrahydrofuran, dioxane, etc.
  • ester methyl acetate, ethyl acetate, Glycol ether esters such as butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate
  • ketones acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.
  • amides N, N-dimethylacetamide, N, N-dimethylformamide, etc.
  • Sulfoxide such as dimethyl sulfoxide
  • alcohol such as methanol, ethanol, propanol
  • hydrocarbon aromatic carbonization such as benzene, toluene, xylene
  • the polymer obtained by polymerization can be purified by precipitation or reprecipitation.
  • the precipitation or reprecipitation solvent may be either an organic solvent or water, or a mixed solvent.
  • the organic solvent used as the precipitation or reprecipitation solvent include hydrocarbons (aliphatic hydrocarbons such as pentane, hexane, heptane, and octane; alicyclic hydrocarbons such as cyclohexane and methylcyclohexane; aromatics such as benzene, toluene, and xylene.
  • Aromatic hydrocarbons halogenated hydrocarbons (halogenated aliphatic hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride; halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene), nitro compounds (nitromethane, nitroethane, etc.) , Nitrile (acetonitrile, benzonitrile, etc.), ether (chain ether such as diethyl ether, diisopropyl ether, dimethoxyethane; cyclic ether such as tetrahydrofuran, dioxane), ketone (acetone, methyl ethyl ketone) Diisobutyl ketone, etc.), ester (ethyl acetate, butyl acetate, etc.), carbonate (dimethyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, etc.), alcohol (methanol, ethanol, propanol
  • a solvent containing at least a hydrocarbon (particularly an aliphatic hydrocarbon such as hexane) is preferable.
  • the weight average molecular weight (Mw) of the polymer compound (B) is, for example, about 1000 to 7000, preferably about 2000 to 5000, and the molecular weight distribution (Mw / Mn) is, for example, about 1.2 to 2.5. is there.
  • said Mn shows a number average molecular weight
  • both Mn and Mw are values of polystyrene conversion.
  • the proportion of those that react with the compound (C) is based on the total amount of the repeating structural units represented by the general formula (II). It is preferably in the range of 10 to 100 mol%. More preferably, it is in the range of 20 to 90 mol%.
  • the cross-linking reaction by the compound (C) to the polymer compound (B) is preferably performed in the form of a solution.
  • a known solvent can be used.
  • ether chain ether such as diethyl ether, propylene glycol monomethyl ether, etc., chain ether such as tetrahydrofuran, dioxane, etc.
  • ester methyl acetate, acetic acid, etc.
  • butyl acetate, ethyl lactate glycol ether esters such as propylene glycol monomethyl ether acetate), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), amides (N, N-dimethylacetamide, N, N-dimethyl) Formamide), sulfoxide (dimethylsulfoxide, etc.), alcohol (methanol, ethanol, propano
  • a solvent that is not reactive with these compounds.
  • Specific examples include THF (tetrahydrofuran), cyclohexanone, PGMEA (propylene glycol monomethyl ether acetate), and hydrocarbon compounds.
  • the polymer compound (B) is dissolved in the solvent, and the acid catalyst and the compound (C) are added at the crosslinking temperature.
  • the crosslinking temperature can be appropriately selected within the range of, for example, about 0 to 150 ° C.
  • the polymer compound (B) can be used alone or in combination of two or more.
  • the amount of the compound (C) used is 0.01% to 100% by weight, preferably 0.03% to 50% by weight, based on the weight of the polymer compound (B) used for the crosslinking reaction. . If it is less than 0.01% by weight, the crosslinking reaction does not proceed and a fine and clear resist pattern cannot be obtained. On the other hand, if it exceeds 100% by weight, the degree of cross-linking increases and the solubility in a resist solvent decreases.
  • the charging ratio is changed to the polymer compound (B) instead of the polymer compound (B) to be used.
  • the amount of the compound (C) is used in the above-mentioned range with respect to the weight of the whole monomer used for synthesizing.
  • an acid catalyst is used.
  • the acid catalyst include sulfuric acid, hydrochloric acid, p-toluenesulfonic acid, pyridium p-toluenesulfonate, boron trifluoride and the like.
  • hydrochloric acid, p-toluenesulfonic acid, pyridium p-toluenesulfonate, and the like are particularly preferably used.
  • Such an acid catalyst is usually used in an amount of 0.01 to 5 mol%, preferably 0.1 to 3 mol%, based on the compound (C) used.
  • the reaction solution After completion of the crosslinking reaction, the reaction solution is added to a poor solvent having low solubility in the produced resin and precipitated. Further, it is also preferable to remove the remaining monomer and low molecular weight compound by recovering and re-dissolving the obtained precipitate and further re-precipitation.
  • the precipitation or reprecipitation solvent may be either an organic solvent or water, or a mixed solvent.
  • organic solvent used as the precipitation or reprecipitation solvent examples include hydrocarbons (aliphatic hydrocarbons such as pentane, hexane, heptane, and octane; alicyclic hydrocarbons such as cyclohexane and methylcyclohexane; aromatics such as benzene, toluene, and xylene.
  • hydrocarbons aliphatic hydrocarbons such as pentane, hexane, heptane, and octane
  • alicyclic hydrocarbons such as cyclohexane and methylcyclohexane
  • aromatics such as benzene, toluene, and xylene.
  • Aromatic hydrocarbons halogenated hydrocarbons (halogenated aliphatic hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride; halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene), nitro compounds (nitromethane, nitroethane, etc.) , Nitrile (acetonitrile, benzonitrile, etc.), ether (chain ether such as diethyl ether, diisopropyl ether, dimethoxyethane; cyclic ether such as tetrahydrofuran, dioxane), ketone (acetone, methyl ethyl ketone) Diisobutyl ketone, etc.), ester (ethyl acetate, butyl acetate, etc.), carbonate (dimethyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, etc.), alcohol (methanol, ethanol, propanol
  • a solvent containing at least a hydrocarbon (particularly an aliphatic hydrocarbon such as hexane) is preferable.
  • the weight average molecular weight (Mw) of the generated cross-linked molecular compound (lithographic polymer (A ′)) is, for example, about 4500 to 200000, preferably about 4600 to 200000, particularly preferably 5000 to 100000, and the molecular weight distribution (Mw) / Mn) is, for example, about 1.2 to 10.0.
  • said Mn shows a number average molecular weight
  • both Mn and Mw are values of polystyrene conversion.
  • the content of the repeating structural unit represented by the general formula (II) present in the polymer unreacted is, for example, 1 to 40 with respect to all the repeating units.
  • the mol% is preferably 1 to 35 mol%, particularly preferably 5 to 30 mol%.
  • the content of the repeating structural unit represented by the general formula (II) present unreacted in the polymer is, for example, 1 -40 mol%, preferably 1-35 mol%, particularly preferably 5-30 mol%.
  • the lithographic composition of the present invention comprises the lithographic polymer (A ′) produced according to the present invention, a photoacid generator, and a resist solvent.
  • the resin composition for photoresist can be prepared, for example, by adding a photoacid generator to the polymer solution for photoresist obtained as described above.
  • Photoacid generator examples include conventional or known compounds that efficiently generate acid upon exposure, such as diazonium salts, iodonium salts (for example, diphenyliodohexafluorophosphate), sulfonium salts (for example, triphenylsulfonium hexafluoroantimony).
  • diazonium salts for example, diphenyliodohexafluorophosphate
  • sulfonium salts for example, triphenylsulfonium hexafluoroantimony
  • sulfonate esters [eg 1-phenyl-1- (4-methylphenyl) sulfonyloxy-1-benzoylmethane, 1,2,3-tri Sulfonyloxymethylbenzene, 1,3-dinitro-2- (4-phenylsulfonyloxymethyl) benzene, 1-phenyl-1- (4-methylphenylsulfonyloxymethyl) -1-hydroxy-1-benzo Rumetan etc.], oxathiazole derivatives, s- triazine derivatives, disulfone derivatives (diphenyl sulfone) imide compound, an oxime sulfonate, a diazonaphthoquinone, and benzoin tosylate.
  • photoacid generators can be used alone or in combination of two or
  • the use amount of the photoacid generator can be appropriately selected according to the strength of the acid generated by light irradiation, the ratio of each repeating unit in the polymer (resin for photoresist), and the like. It can be selected from a range of about 1 to 30 parts by weight, preferably 1 to 25 parts by weight, and more preferably about 2 to 20 parts by weight.
  • resist solvent examples include glycol solvents, ester solvents, ketone solvents, and mixed solvents exemplified as the polymerization solvent.
  • the resist solvent examples include propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, methyl isobutyl ketone, methyl amyl ketone, cyclohexanone, and a mixed solution thereof are preferable.
  • propylene glycol monomethyl ether acetate alone solvent propylene glycol monomethyl ether
  • a solvent containing at least propylene glycol monomethyl ether acetate, such as a mixed solvent of acetate and propylene glycol monomethyl ether, a mixed solvent of propylene glycol monomethyl ether acetate and ethyl lactate, a mixed solvent of propylene glycol monomethyl ether acetate and cyclohexanone is preferable. Used.
  • the polymer concentration in the lithographic composition (concentration of the lithographic polymer (A ′)) is, for example, about 3 to 40% by weight.
  • the composition for lithography may contain an alkali-soluble component such as an alkali-soluble resin (for example, a novolac resin, a phenol resin, an imide resin, a carboxyl group-containing resin), a colorant (for example, a dye), and the like.
  • an alkali-soluble component such as an alkali-soluble resin (for example, a novolac resin, a phenol resin, an imide resin, a carboxyl group-containing resin), a colorant (for example, a dye), and the like.
  • the thus-obtained lithographic composition is applied onto a substrate or substrate, dried, and then exposed to light on the coating film (resist film) through a predetermined mask (or further subjected to post-exposure baking).
  • a predetermined mask or further subjected to post-exposure baking.
  • the base material or the substrate examples include a silicon wafer, metal, plastic, glass, and ceramic.
  • the photoresist composition can be applied using a conventional application means such as a spin coater, a dip coater, or a roller coater.
  • the thickness of the coating film is, for example, about 0.05 to 20 ⁇ m, preferably about 0.1 to 2 ⁇ m.
  • Exposure method For exposure, various wavelengths of light such as ultraviolet rays and X-rays can be used.
  • semiconductor resists g-line, i-line, and excimer lasers (eg, XeCl, KrF, KrCl, ArF, ArCl, etc.) are usually used.
  • Extreme ultraviolet light (EUV) or the like can be used.
  • the lithographic composition of the present invention is particularly suitable for exposure with far-violet light having a wavelength of 220 nm or less.
  • the exposure energy is, for example, about 1 to 1000 mJ / cm 2 , preferably about 5 to 100 mJ / cm 2 .
  • An acid is generated from the photoacid generator by light irradiation, and this acid, for example, a carboxyl group of a repeating unit (a repeating unit having an acid-eliminating group) that becomes alkali-soluble by the action of the acid of the photoresist polymer compound.
  • a protecting group such as succinctly desorbs to generate a carboxyl group and the like that contribute to solubilization.
  • the acetal bond at the cross-linked portion is also cleaved by the acid, and the polymer chain in the exposed portion is lowered in molecular weight. Therefore, a predetermined pattern can be accurately formed by development with water or an alkali developer.
  • the semiconductor can be manufactured with high accuracy and efficiency by forming the pattern by the above-described steps.
  • the produced precipitate was dried after filtration.
  • the weight average molecular weight (Mw) of the obtained resin was 4200, and the molecular weight distribution (Mw / Mn) was 2.0.
  • the produced precipitate was dried after filtration.
  • the weight average molecular weight (Mw) of the obtained resin was 3700, and the molecular weight distribution (Mw / Mn) was 1.7.
  • the produced precipitate was dried after filtration.
  • the weight average molecular weight (Mw) of the obtained resin was 10700, and the molecular weight distribution (Mw / Mn) was 2.7.
  • the produced precipitate was dried after filtration.
  • the weight average molecular weight (Mw) of the obtained resin was 7200, and the molecular weight distribution (Mw / Mn) was 1.8.
  • Example 1 [Preparation of polymer for lithography] 1.4 g of the polymer compound obtained in Synthesis Example 1 was uniformly dissolved in 10 g of CHO (cyclohexanone). After uniformly dispersing 0.005 g of p-toluenesulfonic acid, 0.4 g of 2,6-naphthalene dimethylol divinyl ether obtained in Reference Example 2 uniformly dissolved in 4.0 g of CHO was added. Stirring was carried out at room temperature for 2 hours. After completion of the reaction, 1.5 g of a 1 wt% THF (tetrahydrofuran) solution of triethylamine was added for neutralization.
  • THF tetrahydrofuran
  • the wet polymer was collected by vacuum filtration and dried under reduced pressure at 45 ° C. for 10 hours to obtain a polymer a for lithography.
  • Example 2 [Preparation of polymer for lithography] 0.7 g of the resin obtained in Synthesis Example 2 was uniformly dissolved in 10 g of CHO (cyclohexanone). After uniformly dispersing 0.005 g of p-toluenesulfonic acid, 0.2 g of 2,6-naphthalene dimethylol divinyl ether obtained in Reference Example 2 uniformly dissolved in 4.0 g of CHO was added. Stirring was carried out at room temperature for 2 hours. After completion of the reaction, 1.5 g of a 1 wt% THF (tetrahydrofuran) solution of triethylamine was added for neutralization.
  • THF tetrahydrofuran
  • Example 3 [Preparation of polymer for lithography] 0.7 g of the resin obtained in Synthesis Example 3 was uniformly dissolved in 10 g of CHO (cyclohexanone). After uniformly dispersing 0.005 g of p-toluenesulfonic acid, 0.2 g of 2,6-naphthalene dimethylol divinyl ether obtained in Reference Example 2 uniformly dissolved in 4.0 g of CHO was added. Stirring was carried out at room temperature for 2 hours. After completion of the reaction, 1.5 g of a 1 wt% THF (tetrahydrofuran) solution of triethylamine was added for neutralization.
  • THF tetrahydrofuran
  • Example 4 [Preparation of polymer for lithography] 1.4 g of the resin obtained in Synthesis Example 1 was uniformly dissolved in 10 g of CHO (cyclohexanone). After uniformly dispersing 0.005 g of p-toluenesulfonic acid, 0.2 g of 2,6-naphthalene dimethylol divinyl ether obtained in Reference Example 2 uniformly dissolved in 4.0 g of CHO was added. Stirring was carried out at room temperature for 2 hours. After completion of the reaction, 1.5 g of a 1 wt% THF (tetrahydrofuran) solution of triethylamine was added for neutralization.
  • THF tetrahydrofuran
  • the wet polymer was collected by vacuum filtration and dried under reduced pressure at 45 ° C. for 10 hours to obtain a polymer d for lithography.
  • a lithographic composition d was obtained in the same manner as in [Preparation of lithographic composition] in Example 1, except that the lithographic polymer d was used instead of the lithographic polymer a.
  • Example 5 [Preparation of polymer for lithography] 1.4 g of the resin obtained in Synthesis Example 1 was uniformly dissolved in 10 g of CHO (cyclohexanone). After uniformly dispersing 0.005 g of p-toluenesulfonic acid, 0.5 g of 2,6-naphthalene dimethylol divinyl ether obtained in Reference Example 2 uniformly dissolved in 4.0 g of CHO was added. Stirring was carried out at room temperature for 2 hours. After completion of the reaction, 1.5 g of a 1 wt% THF (tetrahydrofuran) solution of triethylamine was added for neutralization.
  • THF tetrahydrofuran
  • Example 6 [Preparation of polymer for lithography] A lithographic polymer e was obtained in the same manner as in Example 1, except that 1,4-benzenedimethylol divinyl ether was used in place of 2,6-naphthalene dimethylol divinyl ether as a crosslinking agent. .
  • a lithographic composition e was obtained in the same manner as in [Preparation of lithographic composition] in Example 1, except that the lithographic polymer e was used instead of the lithographic polymer a.
  • Example 3 The same operation as in Example 1 was performed except that 2,6-naphthalenediol divinyl ether was used in place of 2,6-naphthalenedimethyldivinyl ether, and [Preparation of Lithographic Composition] in Example 1 was carried out. The same operation was performed. The molecular weight of the obtained polymer was not changed from that before the reaction, and the crosslinking reaction did not proceed. When the amount of 2,6-naphthalenediol divinyl ether in the reaction solution after the reaction was quantified, it was confirmed that it was hardly consumed and remained. From this, it is understood that when vinyl ether is bonded to an aromatic compound having no substituent, the crosslinking reaction does not proceed when vinyl ether is bonded.
  • the polymer for lithography of the present invention can form a very fine and clear pattern when used for lithography, and can be used particularly suitably for the production of highly integrated semiconductors and the like that require high-precision work.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

 本発明のリソグラフィー用重合体は、少なくとも下記一般式(I)で表される繰り返し構造単位を有する。式(I)中、R1、R3、R4、R6は、各々独立に、水素原子、ハロゲン原子、シアノ基、アルキル基又はハロアルキル基を表す。R2、R5、は各々独立に、水素原子、シアノ基、等を表す。X1、X2は各々独立に、単結合、あるいは置換基を有していても良い2価のアルキレン基、アルケニレン基、シクロアルキレン基、等を表す。X3、X4は各々独立に、単結合、もしくは-CO-を表す。R7、R8、R9、R10は、各々独立に、水素原子、アルキル基又はシクロアルキル基を表す。このようなリソグラフィー用重合体によれば、LERとエッチング耐性とのバランスがとれ、極微細で均一なパターン形成が可能となる。

Description

リソグラフィー用重合体並びにその製造方法
 本発明は、半導体の微細加工などを行う際に用いるリソグラフィー用重合体(フォトレジスト用樹脂)とその製造方法、リソグラフィー用組成物、並びにリソグラフィー用組成物を使用する半導体の製造方法に関するものである。
 半導体の製造において、パターン形成のためのリソグラフ技術は飛躍的な革新により、近年その線幅が極微細化されている。リソグラフのための露光は当初、i線、g線が使用され、その線幅も広いものであった。従って、製造される半導体の容量も低かった。しかし、近年の技術開発によりKrFエキシマレーザーの使用が可能となり、さらにはArFエキシマレーザーが適用され、その線幅も飛躍的に微細なものとなった。更には、液浸漬下での露光が可能となる露光機の開発、また、更なる短波長紫外線露光であるEUV(極端紫外線)による露光など、パターンの微細化を求める開発は更に活発となっている。パターンの微細化に伴って、パターン表面粗さの指標であるLER(Line Edge Roughness)に対する要求も厳しくなってきている。LERを改善するために、ポリマー共重合体組成の均一化を図る、モノマー間の極性差を小さくして分子鎖の凝集を抑制する、ポリマーを低分子量化してアルカリ現像時の溶解単位を小さくするといった手法が検討されている。ポリマー低分子量化は、LERを小さくするという観点からは有効な方法であるが、低分子量化すると結晶性が生じて製膜性が低下したり、強度が低下するためパターン倒れが生じる等の問題が発生する。これらの問題を解決するために、ポリマー鎖を酸等により切断可能な化合物で架橋するという方法が提案されている。このような架橋ポリマーを使用すれば、露光されない部分は高分子量で十分な強度を示し、また、露光された部分は露光で発生した酸により架橋が切断され、アルカリ現像液により現像される際には小さな構造単位となって溶解していく。このため露光部の脱落単位が小さくなりLERが低減されると考えられる。
 特開2002-296782号公報では、架橋ポリマーの架橋鎖の中にアセタール構造を一つ有するポリマーを提案している。この化合物は酸による切断点が架橋鎖の中に一つしか無いために低分子量化の効率が十分でない。
 特開2006-003844号公報ではポリマー側鎖の多環の脂環式炭化水素基に結合している水酸基を利用したジビニルエーテル化合物による架橋ポリマーが開示されている。この化合物の場合にはジビニルエーテルによる架橋点として多価の脂環式炭化水素に結合している水酸基を利用しているので立体障害の影響があるためか、架橋反応の効率が悪い。また、ジビニルエーテルとの反応点として水酸基を利用しているために、架橋の切断前後でアルカリ現像液に対する溶解性がほとんど変化しないためにLERの改善効果が十分でない。
 特許第3756270号公報ではポリマー側鎖のカルボキシル基をジビニルエーテル化合物で架橋したポリマーが開示されている。この化合物の場合は露光後のポリマー鎖の分子量を十分に小さくするためには架橋点となるカルボキシル基を大量に導入しなければならず、酸に対する感度が高くなりすぎる。このため露光ぶれ等の酸の発生量に対する許容度が小さくなってしまい、取扱が困難である。上述のように、LERとエッチング耐性のバランスがとれた材料は見出されておらず、上記問題点が改善されたレジスト用ポリマーの提供が望まれていた。
特開2002-296782号公報 特開2006-003844号公報 特許第3756270号公報
 上記課題を解決すべく、ジビニルエーテルとの反応点として水酸基とカルボキシル基を共存させた重合体の使用が試みられたが、該重合体は、LERの低減には効果的であるが、ポリマー中の酸素原子の割合が多くなり、エッチング耐性が大幅に低下する事が分かった。本発明では上述の問題を解決し、半導体の製造において極微細で均一なパターン形成を可能とするリソグラフィー用重合体(フォトレジスト用樹脂)とその製造方法、リソグラフィー用組成物、並びにリソグラフィー用組成物を使用する半導体の製造方法を提供することを目的とする。
 本発明者は、上記課題を解決するために鋭意研究を重ねた結果、芳香族環を有するアセタール結合で架橋された高分子を用いることにより極微細で均一なパターン形成を可能とすることを見出し、本発明を完成した。
 すなわち、本発明は、少なくとも下記一般式(I)で表される繰り返し構造単位を有するリソグラフィー用重合体(A)を提供する。
Figure JPOXMLDOC01-appb-C000001
(一般式(I)中、R1、R3、R4、R6は、各々独立に、水素原子、ハロゲン原子、シアノ基、アルキル基又はハロアルキル基を表す。R2、R5、は各々独立に、水素原子、シアノ基、-CO-ORA、又は-CON(RB)(RC)を表す。X1、X2は各々独立に、単結合、あるいは置換基を有していても良い2価のアルキレン基、アルケニレン基、シクロアルキレン基、もしくは-O-、-SO2-、-O-CORD-、-CO-O-RE-、又は-CO-N(RF)-RG-を表す。X3、X4は各々独立に、単結合、もしくは-CO-を表す。R7、R8、R9、R10は、各々独立に、水素原子、アルキル基又はシクロアルキル基を表す。また、R7とR8、R9とR10は、それぞれ、互いに結合して隣接する炭素原子とともに環を形成していてもよい。Xは置換基を有していてもよい、少なくとも1つの芳香族環式基と少なくとも一つの非芳香族性基とからなるk価の基を表す。但し、kは2以上の整数である。RAは水素原子、又はアルキル基、シクロアルキル基、アルケニル基、もしくは酸分解性基を表す。RB、RC、RFは、各々独立に、水素原子、アルキル基、シクロアルキル基、アルケニル基を表す。また、RB、RCが結合して環を形成しても良い。RD、RE、RGは、各々独立に、単結合、又はエーテル基、エステル基、アミド基、ウレタン基、ウレイド基を有していても良い2価のアルキレン基、アルケニレン基、シクロアルキレン基、もしくは有橋環状炭化水素基(橋架け環式炭化水素基)、又はこれらが2以上結合した基を表す。(k-1)個のかっこ内の基は、それぞれ、同一であっても異なっていてもよい。)
 本発明はまた、下記一般式(II)
Figure JPOXMLDOC01-appb-C000002
(一般式(II)中、R1、R3は各々独立に、水素原子、ハロゲン原子、シアノ基、アルキル基又はハロアルキル基を表す。R2は、水素原子、シアノ基、-CO-ORA、-CO-N(RB)(RC)を示す。X1は、単結合あるいは置換基を有していても良い2価のアルキレン基、アルケニレン基、シクロアルキレン基、もしくは-O-、-SO2-、-O-CO-RD-、-CO-O-RE-、-CO-N(RF)-RG-を表す。X3は、単結合、もしくは-CO-を表す。RAは水素原子又はアルキル基、シクロアルキル基、アルケニル基、もしくは酸分解性基を表す。RB、RC、RFは、各々独立に、水素原子、アルキル基、シクロアルキル基、アルケニル基を表す。また、RB、RCが結合して環を形成してもよい。RD、RE、RGは、各々独立に、単結合、又はエーテル基、エステル基、アミド基、ウレタン基、ウレイド基を有していても良い2価のアルキレン基、アルケニレン基、シクロアルキレン基、もしくは有橋環状炭化水素基(橋架け環式炭化水素基)又はこれらが2以上結合した基を表す。)
で表される繰り返し構造単位を少なくとも一つ有する高分子化合物(B)と、下記一般式(III)
Figure JPOXMLDOC01-appb-C000003
(式中、R11は水素原子又は炭素数1~16のアルキル基を示し、R12及びR13は同一又は異なって、水素原子、アルキル基、又はシクロアルキル基を示す。R12とR13互いに結合して、隣接する炭素原子と共に環を形成していてもよい。Xは置換基を有していてもよい、少なくとも1つの芳香族環式基と少なくとも1つの非芳香族性基とからなるk価の基を表す。kは2以上の整数である。k個のかっこ内の基は、それぞれ、同一であっても異なっていてもよい。)
で表される化合物(C)とを触媒の存在下で反応させて得られるリソグラフィー用重合体(A′)を提供する。
 前記一般式(II)で表される繰り返し構造単位を少なくとも1つ有する高分子化合物(B)の重量平均分子量は7000以下であり、上記高分子化合物(B)と、前記一般式(III)で表される化合物(C)を反応させて得られるリソグラフィー用重合体の平均分子量は4500以上であることが好ましい。
 本発明のフィソグラフィー用重合体(A)及び(A′)は、更に、下記一般式(IVa)~(IVe)で表される、酸により脱離してアルカリ可溶となる基を含む繰り返し構造単位を少なくとも1種含む事ができる。
Figure JPOXMLDOC01-appb-C000004
(式中、環Z1は置換基を有していてもよい炭素数5~20の脂環式炭化水素環を示す。Raは水素原子、ハロゲン原子、又はハロゲン原子を有していてもよい炭素数1~14のアルキル基を示し、E1は炭素数1~12の2価の炭化水素基を示す。s1は0~3の整数を示す。R14~R16は、同一又は異なって、置換基を有していてもよい炭素数1~6のアルキル基を示す。R17は、環Z1に結合している置換基であり、同一又は異なって、オキソ基、アルキル基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、又は保護基で保護されていてもよいカルボキシル基を示す。rはR17の個数であって、1~3の整数を示す。但し、r個のR17のうち少なくとも一つは-COORi基を示す。Riは置換基を有していてもよい第3級炭化水素基、テトラヒドロフラニル基、テトラヒドロピラニル基、又はオキセパニル基を示す。R18、R19は、同一又は異なって、水素原子又は置換基を有していてもよい炭素数1~6のアルキル基を示す。R20は水素原子又は有機基を示す。R18、R19、R20のうち少なくとも2つが互いに結合して隣接する原子とともに環を形成していてもよい。式(IVa)~(IVc)中、環Z1における炭素数5~20の脂環式炭化水素環は単環であっても、縮合環や橋架け環等の多環であってもよい。R21は、t-ブチル基、2-テトラヒドロフラニル基、2-テトラヒドロピラニル基、又は2-オキセパニル基を示す。sは0又は1を示す。)
 本発明のフィソグラフィー用重合体(A)及び(A′)は、更に下記一般式(Va)~(Vh)で表されるラクトン骨格を有する繰り返し構造単位を少なくとも1種有することができる。
Figure JPOXMLDOC01-appb-C000005
(式中、Raは水素原子、ハロゲン原子、又はハロゲン原子を有していても良い炭素数1~6のアルキル基を示す。R22~R24は、同一又は異なって、水素原子、アルキル基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、又は保護基で保護されていてもよいカルボキシル基を示す。V1~V3は、同一又は異なって、-CH2-、-CO-又は-COO-を示す。但し、V1~V3のうち少なくとも一つは-COO-である。Y1は炭素原子、酸素原子又は硫黄原子を示し、炭素原子のときにのみR28及びR29が存在する。R25~R29及びR30は同一又は異なって、水素原子、アルキル基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、保護基で保護されていてもよいカルボキシル基、シアノ基、ハロゲン原子、炭素数1~6のフルオロアルキル基を示す。tは1又は2の整数を示し、uは0又は1の整数を示す。Y2は酸素原子、硫黄原子又はメチレン基を示す。R31は水素原子又は炭素数1~6のアルキル基を示す。R32、R33、R34及びR35は、同一又は異なって、水素原子又はメチル基を示す。o、p、q及びvは、それぞれ0又は1を示す。R36は水素原子、ハロゲン原子、又は置換基を有していてもよい炭素数1~6のアルキル基を示し、R37はラクトン骨格を有する基を示し、Mは炭素数1~6の2価の有機基を示す。)
 本発明のリソグラフィー用重合体(A)及びリソグラフィー用重合体(A′)中に含まれる芳香族環式基の割合は、前重合体重量に対して1.5mmol/g以下である事が望ましい。
 本発明のリソグラフィー用重合体(A)又はリソグラフィー用重合体(A′)は、それぞれ、一般式(I)又一般式(III)中のXに含まれる芳香族環が、置換基を有していてもよいナフタレン環であるのが好ましい。
 本発明はまた、本発明のリソグラフィー用重合体(A)及び/又は本発明のリソグラフィー用重合体(A′)と活性光線又は放射線の照射により酸を発生する化合物とを含むリソグラフィー用組成物を提供する。
 本発明はさらに又、上記リソグラフィー用組成物を基材又は基板上に塗布してレジスト塗膜を形成し、露光及び現像を経てパターン形成をする工程を含む半導体の製造方法を提供する。露光の際の露光光源としては、220nm以下の波長の遠紫外光を用いるのが好ましい。
 本発明は又、下記一般式(II)で表される繰り返し構造単位を少なくとも一つ有する化合物(B)と、下記一般式(III)で表される化合物(C)とを触媒の存在下で反応させることを特徴とするリソグラフィー用重合体の製造方法を提供する。
Figure JPOXMLDOC01-appb-C000006
(一般式(II)中、R1、R3は各々独立に、水素原子、ハロゲン原子、シアノ基、アルキル基又はハロアルキル基を表す。R2は、水素原子、シアノ基、-CO-ORA、-CO-N(RB)(RC)を示す。X1は、単結合あるいは置換基を有していても良い2価のアルキレン基、アルケニレン基、シクロアルキレン基、もしくは-O-、-SO2-、-O-CO-RD-、-CO-O-RE-、-CO-N(RF)-RG-を表す。X3は、単結合、もしくは-CO-を表す。RAは水素原子又はアルキル基、シクロアルキル基、アルケニル基、もしくは酸分解性基を表す。RB、RC、RFは、各々独立に、水素原子、アルキル基、シクロアルキル基、アルケニル基を表す。また、RB、RCが結合して環を形成してもよい。RD、RE、RGは、各々独立に、単結合、又はエーテル基、エステル基、アミド基、ウレタン基、ウレイド基を有していても良い2価のアルキレン基、アルケニレン基、シクロアルキレン基、もしくは有橋環状炭化水素基(橋架け環式炭化水素基)又はこれらが2以上結合した基を表す。)
Figure JPOXMLDOC01-appb-C000007
(式中、R11は水素原子又は炭素数1~16のアルキル基を示し、R12及びR13は同一又は異なって、水素原子、アルキル基、又はシクロアルキル基を示す。R12とR13互いに結合して、隣接する炭素原子と共に環を形成していてもよい。Xは置換基を有していてもよい、少なくとも1つの芳香族環式基と少なくとも1つの非芳香族性基とからなるk価の基を表す。kは2以上の整数である。k個のかっこ内の基は、それぞれ同一であっても異なっていてもよい。)
 本発明のリソグラフィー用重合体は、芳香族環を有するアセタール結合で橋架けされているため、該重合体をリソグラフィー用途に使用した場合は、極微細で鮮明なパターン形成が可能となり、特に高精度の作業が要求される高集積半導体等の製造にも極めて好適に使用することができる。
 本発明のリソグラフィー用重合体(A)は、一般式(I)で表される繰り返し構造単位を含む事を特徴とする。
 一般式(I)中、Xは芳香族環をその中心骨格とするk価の基を示す。特に下記式(1)に示す構造を有している事が好ましい。
Figure JPOXMLDOC01-appb-C000008
(式中、Xaは芳香族環式基を示し、Xbは連結基を含んでいてもよい非芳香族炭化水素基を示す。又、該非芳香族炭化水素基の末端(式中破線で示す部位)は、式(I)中のXに結合している酸素原子と直接結合している。kは2以上の整数を示す。k個のかっこ内の基は、それぞれ、同一であっても異なっていてもよい。)
 Xbは、例えば、直鎖状、分岐鎖状、環状の炭化水素基若しくは有橋脂環式炭化水素基、又はこれら炭化水素基から選択される1又は2以上の基と、エーテル基、エステル基、アミド基、ウレタン基、ウレイド基、芳香族環式基から選択される1又は2以上の連結基が結合した基である。
 Xが芳香族環式基Xaを有しない場合は、エッチング耐性並びにパターン倒れに対する改良効果が十分なものとはならない。上記Xaにおける芳香族環の具体例としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ピレン環、テトラセン環、ペンタセン環、クリセン環、ピセン環等が挙げられる。中でもArF光に対する透明性の観点からは、ナフタレン環、アントラセン環が好ましく、特にナフタレン環が好ましい。
 Xが、Xbを含まず、芳香族環式基Xaが直接アセタール基における酸素原子と結合している際には、Xaは置換基を有する芳香族環式基であることが好ましい。上記置換基としては、例えば、ハロゲン原子;アルキル基、シクロアルキル基、ビシクロアルキル基、トリシクロアルキル基、橋架け炭化水素基などの炭化水素基;ハロゲン原子で置換された炭化水素基;酸素、硫黄等のヘテロ原子を含む官能基を含む炭化水素基;又は上記置換基を2以上組み合わせて連結させた基等が挙げられる。特に芳香環の電子吸引性を抑制する置換基を官能基として導入されていることが好ましい。XがXbを含まず、かつ、上記置換基を有しないと、架橋反応が進行しない場合がある。
 kは2以上の整数である必要がある。1以下では分子鎖間に結合を形成することができないので、パターンの強度が大幅に低下してしまう。kは2以上であればその数は制限されるものではないが、数が多すぎると架橋密度が上がりすぎる恐れがある。従って、kは好ましくは2から5の整数であり、特に好ましくは2又は3である。
 一般式(I)中、R1、R2、R3、R4、R6におけるハロゲン原子にはフッ素、塩素、臭素原子などが含まれる。R1、R2、R3、R4、R6、7、R8、R9、R10、RAにおけるアルキルには、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル、ヘキシル基などが挙げられる。R1、R3、R4、R6におけるハロアルキル基には、上記アルキル基の少なくとも1つの水素原子がフッ素原子に置換した基、例えば、モノフルオロメチル、ジフルオロメチル、トリフルオロメチル、2,2,2-トリフルオロメチル、テトラフルオロエチル、2,2,3,3,3-ペンタフルオロプロピル基などが挙げられる。
 X1、X2及びRD、RE、RGにおけるアルキレン基としては、例えば、メチレン、メチルメチレン、ジメチルメチレン、エチレン、プロピレン、トリメチレン基などの直鎖状又は分岐鎖状の炭素数1~6の炭化水素基が挙げられる。又、アルケニレン基としては、例えば、ビニレン、1-プロペニレン、1,3-ブタジニエン、3-メチル-2-ブテニレン基などが例示できる。シクロアルキレン基としては、シクロペンテニル基、シクロヘキセニル基、シクロヘプテニル基、シクロオクテニル基等を例示できる。
 RAにおける酸分解性基としては、例えば、置換基を有していてもよい第3級炭化水素基;テトラヒドロフラニル基、テトラヒドロピラニル基、オキセパニル基等の酸により分解してカルボキシル基を生成しうる基があげられる。
 R7、R8、R9、R10及びRA、RB、RC、RFにおけるシクロアルキル基としては、シクロプロピル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル等を挙げられる。RB、RC、RFにおけるアルケニル基としては、例えば、アリル基を例示できる。RD、RE、RGにおける有橋環式炭化水素基としては、例えば、アダマンタン環、ノルボルナン環、ナルボルネン環、ボルナン環、イソボルナン環、トリシクロ[5.2.1.02,6」デカン環、テトラシクロ[4.4.0.12,5.17,10]ドデカン環基等を例示できる。
 本発明のリソグラフィー用重合体(A)は、前記式(I)中に示される橋架け構造を有することにより、パターン表面のLER(Line Edge Roughness)が低減されるのみならず、エッチング耐性の向上、パターン強度の向上を図ることができる。式(I)で表される繰り返し構造単位は、例えば、下記反応式に示すように、一般式(II)で表される繰り返し構造単位を有する高分子化合物(B)と、一般式(III)で表される化合物(C)とを触媒の存在下、付加反応に付すことにより好ましく製造する事ができる。
Figure JPOXMLDOC01-appb-C000009
 以下、本発明のリソグラフィー用重合体(A′)について詳細に説明するが、特に記載がある場合を除き、リソグラフィー用重合体(A′)に関する以下の記述はそのままリソグラフィー用重合体(A)にも適用される
[一般式(II)で表される繰り返し構造単位を有する高分子化合物(B)]
 一般式(II)で表される構成単位は、例えば、(メタ)アクリル酸等のα,β-不飽和カルボン酸、もしくは、水酸基又はカルボキシル基を含有するモノ(α-低級アルキル)アクリル酸エステルから誘導される構成単位であり、(α-低級アルキル)アクリル酸エステルのエステル側鎖部に、連結基を介して少なくとも連結基の水素の1個が水酸基又はカルボキシル基で置換されてなる基が結合した構成単位である。
 上記連結基としては、単結合、アルカン、シクロアルカン、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカン等から1個の水素原子を除いた基等を例示できる。具体的には、メチレン、エチレン、プロペン、ブテン、ペンテン、ヘキセン、ヘプテン、オクテン、シクロペンタン、シクロヘキサン、シクロヘプタン、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカン等のポリシクロアルカンから1個の水素原子を除いた基などが挙げられる。上記連結基は炭化水素基、ハロゲン原子、ハロゲン原子で置換された炭化水素基、あるいは酸素、硫黄等のヘテロ原子を含む官能基で置換あるいは連結していても構わない。連結基の水素原子と置換している水酸基またはカルボキシル基の数は1以上であればよく、上限は置換可能な数とすることができる。好ましくは1~3である。1つの連結基に水酸基およびカルボキシル基の両方が置換していてもよい。
 高分子化合物(B)中の一般式(II)で表される繰り返し構造単位の具体例としては、下記一般式(IIa)~(IIs)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
(式中Raは水素原子、ハロゲン原子、又はハロゲン原子を有していてもよい炭素数1~6のアルキル基を示す。)
 上記式(IIa)~(IIs)において、Raとしては水素原子又は炭素数1~6のアルキル基が好ましく、特に水素原子又はメチル基が好ましい。
高分子化合物(B)中の一般式(II)で表される繰り返し構造単位は、一種類だけでもかまわないが、二種類以上組み合わせて使用することが好ましい。特に、水酸基を有する繰り返し単位とカルボキシル基を有する繰り返し単位を組み合わせて使用することが好ましい。水酸基を有する繰り返し単位とカルボキシル基を有する繰り返し単位を組み合わせて使用することにより、露光量のばらつきに対する許容幅を広げることができる。
 高分子化合物(B)中の一般式(II)で表される繰り返し構造単位は、高分子化合物(B)中の全繰り返し単位に対して5~50モル%であることが好ましい。5モル%より少ないと架橋反応が十分に進まないだけでなく、基板等にたいする密着性が不足する。50モル%よりも多くなると、エッチング耐性が低下してしまう。
[一般式(III)で表される化合物(C)]
 化合物(C)の中のXは、上述の式(I)で表される繰り返し構造単位におけるXと同様のものを使用できる。ただし、上述の式(I)で表される繰り返し構造単位におけるXに関する説明のうち、「式(I)中でXと結合している酸素原子と結合している」又は「Xと結合している酸素原子と結合している」は、「ビニルエーテル基における酸素原子と結合している」と読み替えるものとする。
 これらのビニルエーテルは従来公知の方法で容易に合成できる。特に遷移金属化合物を触媒として用いることにより効率的に合成することができる。遷移金属化合物を触媒として用いる合成方法は特開2004‐161742号公報に詳細に記載されている。
 以下に、化合物(C)の具体例を以下に示す〔式(IIIa)~(IIIp)〕が、本発明がこれに限定されるものではない。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 これらの中で、上記式(IIIa)、(IIIb)及び(IIIi)~(IIIp)で表されるナフタレン骨格を有する化合物全好適に使用でき、特に式 (IIIa)、(IIIb)、(IIIi)及び(IIIl)で表される化合物を使用するとArF光に対する透明性とエッチング耐性のバランスに優れ、また効率的に架橋反応が進むため好ましい。
[その他の繰り返し単位]
 本発明に使用される線状高分子化合物は前記した一般式(I)及び(II)などの繰り返し構造単位の他に酸の作用によりアルカリ可溶となる基を含む繰り返し構造単位を有することが好ましい。アルカリ可溶となる基を含む繰り返し構造単位がレジスト用樹脂に含まれることにより、酸の作用によりアルカリへの溶解性が良好となり、より鮮明なパターン形成を可能とする。また、露光部のポリマーのアルカリ溶解性の制御が可能となるので、分子量・架橋点の数等の分子設計の幅を広げることが可能である。アルカリ可溶となる基を含む繰り返し構造単位に対応する単量体は、例えば、下記式(IVa)~(IVe)によって表される。
Figure JPOXMLDOC01-appb-C000016
(式中、環Z1は置換基を有していてもよい炭素数5~20の脂環式炭化水素環を示す。Raは水素原子、ハロゲン原子、又はハロゲン原子を有していても良い炭素数1~14のアルキル基を示し、E1は炭素数1~12の2価の炭化水素基を示す。s1は0~3の整数を示す。R14~R16は、同一又は異なって、置換基を有していてもよい炭素数1~6のアルキル基を示す。R17は、環Z1に結合している置換基であって、同一又は異なって、オキソ基、アルキル基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、又は保護基で保護されていてもよいカルボキシル基を示す。rはR17の個数であって、1~3の整数を示す。但し、r個のR17のうち少なくとも一つは-COORi基を示す。Riは置換基を有していてもよい第3級炭化水素基、テトラヒドロフラニル基、テトラヒドロピラニル基、又はオキセパニル基を示す。R18、R19は、同一又は異なって、水素原子又は置換基を有していてもよい炭素数1~6のアルキル基を示す。R20は水素原子又は有機基を示す。R18、R19、R20のうち少なくとも2つが互いに結合して隣接する原子とともに環を形成していてもよい。式(IVa)~(IVc)中、環Z1における炭素数5~20の脂環式炭化水素環は単環であっても、縮合環や橋架け環等の多環であってもよい。R21はt-ブチル基、2-テトラヒドロフラニル基、2-テトラヒドロピラニル基、又は2-オキセパニル基を示す。sは0又は1を示す。)
 Raにおけるハロゲン原子には、フッ素、塩素、臭素原子などが含まれる。炭素数1~6のアルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル、ヘキシル基などが挙げられる。炭素数1~6ハロゲン原子を有するアルキル基としては、前記炭素数1~6のアルキル基の少なくとも1つの水素原子がフッ素原子に置換した基、例えば、モノフルオロメチル、ジフルオロメチル、トリフルオロメチル、2,2,2-トリフルオロエチル、テトラフルオロエチル、2,2,3,3,3-テトラフルオロプロピル基などが挙げられる。Raとしては水素原子又は炭素数1~6のアルキル基を好適に使用でき、これらの中で、水素原子又はメチル基が特に好ましい。
 R14~R16及びR18、R19における置換基を有していてもよい炭素数1~6のアルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル、ヘキシル基などの直鎖状又は分岐鎖状の炭素1~6のアルキル基;トリフルオロメチル基等の炭素1~6のハロアルキル基などが挙げられる。式(IVc)中、R17におけるアルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル、ヘキシル、オクチル、デシル、ドデシル基などの直鎖状又は分岐鎖状の炭素1~20程度のアルキル基が挙げられる。R17における保護基で保護されていてもよいヒドロキシル基としては、例えば、ヒドロキシル基、置換オキシ基(例えば、メトキシ、エトキシ、プロポキシ基等のC1-4アルコキシ基など)などが挙げられる。保護基で保護されていてもよいヒドロキシアルキル基としては、前記保護基で保護されていてもよいヒドロキシル基が炭素数1~6のアルキレン基を介して結合している基などが挙げられる。R17で-COORiにおけるRiの第3級炭化水素基としては、例えば、t-ブチル、t-アミル、2-メチル-2-アダマンチル、(1-メチル-1-アダマンチル)エチル基などが挙げられる。テトラヒドロフラニル基には2-テトラヒドロフラニル基が、テトラヒドロピラニル基には2-テトラヒドロピラニル基が、オキセパニル基には2-オキセパニル基が含まれる。
 環Z1における5~20の脂環式炭化水素環は単環であっても、縮合環や橋かけ環等の多環であってもよい。代表的な脂環式炭化水素環として、例えば、シクロヘキサン環、シクロオクタン環、シクロデカン環、アダマンタン環、ノルボルナン環、ノルボルネン環、ボルナン環、イソボルナン環、パーヒドロインデン環、デカリン環、パーヒドロフルオレン環(トリシクロ[7.4.0.03,8]トリデカン環)、パーヒドロアントラセン環、トリシクロ[5.2.1.02,6]デカン環、トリシクロ[4.2.2.12,5]ウンデカン環、テトラシクロ[4.4.0.12,5.17,10]ドデカン環などが挙げられる。脂環式炭化水素環には、メチル基等のアルキル基(例えば、C1-4アルキル基など)、塩素原子等のハロゲン原子、保護基で保護されていてもよいヒドロキシル基、オキソ基、保護基で保護されていてもよいカルボキシル基などの置換基を有していてもよい。環Z1は例えばアダマンタン環等の多環の脂環式炭化水素環(橋かけ環式炭化水素環)であるのが好ましい。
 R20における有機基としては、炭化水素基及び/又は複素環式基を含有する基が挙げられる。炭化水素基には脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基及びこれらが2以上結合した基が含まれる。脂肪族炭化水素基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル、ヘキシル、オクチル基等の直鎖状または分岐鎖状のアルキル基(C1-8アルキル基等);アリル基等の直鎖状または分岐鎖状のアルケニル基(C2-8アルケニル基等);プロピニル基等の直鎖状または分岐鎖状のアルキニル基(C2-8アルキニル基等)などが挙げられる。脂環式炭化水素基としては、例えば、シクロプロピル、シクロペンチル、シクロヘキシル基等のシクロアルキル基(3~8員シクロアルキル基等);シクロペンテニル、シクロヘキセニル基等のシクロアルケニル基(3~8員シクロアルケニル基等);アダマンチル、ノルボルニル基等の橋架け炭素環式基(C4-20橋架け炭素環式基等)などが挙げられる。芳香族炭化水素基としては、例えば、フェニル、ナフチル基等のC6-14芳香族炭化水素基などが挙げられる。脂肪族炭化水素基と芳香族炭化水素基とが結合した基としては、ベンジル、2-フェニルエチル基などが挙げられる。これらの炭化水素基は、アルキル基(C1-4アルキル基等)、ハロアルキル基(C1-4ハロアルキル基等)、ハロゲン原子、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシメチル基、保護基で保護されていてもよいカルボキシル基、オキソ基などの置換基を有していてもよい。保護基としては有機合成の分野で慣用の保護基を使用できる。
 好ましい有機基として、C1-8アルキル基、環式骨格を含む有機基等が挙げられる。前記環式骨格を構成する「環」には、単環又は多環の非芳香族性又は芳香族性の炭素環又は複素環が含まれる。なかでも、単環又は多環の非芳香族性炭素環、ラクトン環(非芳香族性炭素環が縮合していてもよい)が特に好ましい。単環の非芳香族性炭素環として、例えば、シクロペンタン環、シクロヘキサン環などの3~15員程度のシクロアルカン環などが挙げられる。
 式(IVa)~(IVd)で表される化合物には、それぞれ立体異性体が存在しうるが、それらは単独で又は2種以上の混合物として使用できる。
[式(IVa)のモノマー単位]
 式(IVa)で表される化合物の代表的な例として下記化合物が挙げられるが、これらに限定されるものではない。2-(メタ)アクリロイルオキシ-2-メチルアダマンタン、1-ヒドロキシ-2-(メタ)アクリロイルオキシ-2-メチルアダマンタン、5-ヒドロキシ-2-(メタ)アクリロイルオキシ-2-メチルアダマンタン、2-(メタ)アクリロイルオキシ-2-エチルアダマンタン。
[式(IVb)のモノマー単位]
 式(IVb)で表される化合物の代表的な例として下記化合物が挙げられるが、これらに限定されるものではない。1-(1-(メタ)アクリロイルオキシ-1-メチルエチル)アダマンタン、1-ヒドロキシ-3-(1-(メタ)アクリロイルオキシ-1-メチルエチル)アダマンタン、1-(1-エチル-1-(メタ)アクリロイルオキシプロピル)アダマンタン、1-(1-(メタ)アクリロイルオキシ-1-メチルプロピル)アダマンタン。
[式(IVc)のモノマー単位]
 式(IVc)で表されるモノマー単位を形成するモノマーの代表的な例として下記化合物が挙げられるが、これらに限定されるものではない。1-t-ブトキシカルボニル-3-(メタ)アクリロイルオキシアダマンタン、1-(2-テトラヒドロピラニルオキシカルボニル)-3-(メタ)アクリロイルオキシアダマンタン。
[式(IVd)のモノマー単位]
 式(IVd)で表されるモノマー単位を形成するモノマーの代表的な例として下記化合物が挙げられるが、これらに限定されるものではない。1-アダマンチルオキシ-1-エチル(メタ)アクリレート、1-アダマンチルメチルオキシ-1-エチル(メタ)アクリレート、2-(1-アダマンチルエチル)オキシ-1-エチル(メタ)アクリレート、1-ボルニルオキシ-1-エチル(メタ)アクリレート、2-ノルボルニルオキシ-1-エチル(メタ)アクリレート、2-テトラヒドロピラニル(メタ)アクリレート、2-テトラヒドロフラニル(メタ)アクリレート。
 上記式(IVd)で表される化合物は、例えば、対応するビニルエーテル化合物と(メタ)アクリル酸とを酸触媒を用いた慣用の方法で反応させることにより得ることができる。例えば、1-アダマンチルオキシ-1-エチル(メタ)アクリレートは、1-アダマンチル-ビニルエーテルと(メタ)アクリル酸とを酸触媒の存在下で反応させることにより製造できる。
 式(IVe)で表されるモノマー単位を形成するモノマーの代表的な例として下記化合物が挙げられるが、これらに限定されるものではない。5-t-ブトキシカルボニルノルボルネン、9-t-ブトキシカルボニルテトラシクロ[6.2.13,6.02,7]ドデカ-4-エン、5-(2-テトラヒドロピラニルオキシカルボニル)ノルボルネン、9-(2-テトラヒドロピラニルオキシカルボニル)テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン。
 本発明のリソグラフィー用重合体は、前記した一般式(II)及び(III)などの繰り返し構造単位の他にラクトン骨格を有する繰り返し構造単位を有することが好ましい。ラクトン骨格を有する繰り返し構造単位を有することにより、レジスト樹脂の基板への密着性が良好となりより鮮明なパターン形成を可能とする。ラクトン骨格を有する繰り返し構造単位に対応する単量体は下記式(Va)~(Vh)によって表される。
Figure JPOXMLDOC01-appb-C000017
(式中、Raは水素原子、ハロゲン原子、又はハロゲン原子を有していても良い炭素数1~6のアルキル基を示す。R22~R24は、同一又は異なって、水素原子、アルキル基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、又は保護基で保護されていてもよいカルボキシル基を示す。V1~V3は、同一又は異なって、-CH2-、-CO-又は-COO-を示す。但し、V1~V3のうち少なくとも一つは-COO-である。Y1は炭素原子、酸素原子又は硫黄原子を示し、炭素原子のときにのみR28及びR29が存在する。R25~R29及びR30は同一又は異なって、水素原子、アルキル基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、保護基で保護されていてもよいカルボキシル基、シアノ基、ハロゲン原子、炭素数1~6のフルオロアルキル基を示す。tは1又は2の整数を示し、uは0又は1の整数を示す。Y2は酸素原子、硫黄原子又はメチレン基を示す。R31は水素原子又は炭素数1~6のアルキル基を示す。R32、R33、R34及びR35は、同一又は異なって、水素原子又はメチル基を示す。o、p、q及びvは、それぞれ0又は1を示す。R36は水素原子、ハロゲン原子、又は置換基を有していてもよい炭素数1~6の2価の有機基を示す。R37はラクトン骨格を有する基を示し、Mは炭素数1~6の2価の有機基を示す。)
 Raにおけるハロゲン原子には、フッ素、塩素、臭素原子などが含まれる。炭素数1~6のアルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル、ヘキシル基などが挙げられる。炭素数1~6のハロゲン原子を有するアルキル基としては、前記炭素数1~6のアルキル基の少なくとも1つの水素原子がフッ素原子に置換した基、例えば、モノフルオロメチル、ジフルオロメチル、トリフルオロメチル、2,2,2-トリフルオロエチル、テトラフルオロエチル、2,2,3,3,3-テトラフルオロプロピル基などが挙げられる。これらの中で、水素原子、炭素数1~6のアルキル基を好適に使用でき、特に水素原子又はメチル基が好ましい。
 R22~R24、R25~R29及びR30におけるアルキル基としては、前記Raにおけるアルキル基と同様のものを使用することができる。R25~R29及びR30におけるハロゲン原子には、例えば、フッ素、塩素、臭素原子などが含まれる。保護基としては有機合成の分野で慣用の保護基を使用できる。
[式(Va)のモノマー単位]
 式(Va)で表されるモノマー単位を形成するモノマーの代表的な例として下記化合物が挙げられるが、これらに限定されるものではない。1-(メタ)アクリロイルオキシ-4-オキサトリシクロ[4.3.1.13,8]ウンデカン-5-オン、1-(メタ)アクリロイルオキシ-4,7-ジオキサトリシクロ[4.4.1.13,9]ドデカン-5,8-ジオン、1-(メタ)アクリロイルオキシ-4,8-ジオキサトリシクロ[4.4.1.13,9]ドデカン-5,7-ジオン、1-(メタ)アクリロイルオキシ-5,7-ジオキサトリシクロ[4.4.1.13,9]ドデカン-4,8-ジオン、1-(メタ)アクリロイルオキシ-3-ヒドロキシアダマンタン、1-(メタ)アクリロイルオキシ-3,5-ジヒドロキシアダマンタン、1-(メタ)アクリロイルオキシ-3,5,7-トリヒドロキシアダマンタン、1-(メタ)アクリロイルオキシ-3-ヒドロキシ-5,7-ジメチルアダマンタン、1-(メタ)アクリロイルオキシ-3-カルボキシアダマンタン。
[式(Vb)のモノマー単位]
 式(Vb)で表されるモノマー単位を形成するモノマーの代表的な例として下記化合物が挙げられるが、これらに限定されるものではない。例えば、Y1が炭素原子の時には、5-(メタ)アクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、5-(メタ)アクリロイルオキシ-5-メチル-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、5-(メタ)アクリロイルオキシ-1-メチル-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、5-(メタ)アクリロイルオキシ-9-メチル-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、5-(メタ)アクリロイルオキシ-9-カルボキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、5-(メタ)アクリロイルオキシ-9-メトキシカルボニル-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、5-(メタ)アクリロイルオキシ-9-エトキシカルボニル-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、5-(メタ)アクリロイルオキシ-9-t-ブトキシカルボニル-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オンなどが挙げられる。
 また、1-シアノ-5-(メタ)アクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、1-フルオロ-5-(メタ)アクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、1-クロロ-5-(メタ)アクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、1-クロロ-5-(メタ)アクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、1-トリフルオロメチル-5-(メタ)アクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、9-シアノ-5-(メタ)アクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、9-フルオロ-5-(メタ)アクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、9-クロロ-5-(メタ)アクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、9-クロロ-5-(メタ)アクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、9-トリフルオロメチル-5-(メタ)アクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン等が挙げられる。
 また、Y1が酸素原子のときは、1-シアノ-5-(メタ)アクリロイルオキシ-3、7-ジオキサトリシクロ[4.2.1.04,8]ノナン-2-オン、1-フルオロ-5-(メタ)アクリロイルオキシ-3、7-ジオキサトリシクロ[4.2.1.04,8]ノナン-2-オン、1-クロロ-5-(メタ)アクリロイルオキシ-3、7-ジオキサトリシクロ[4.2.1.04,8]ノナン-2-オン、1-クロロ-5-(メタ)アクリロイルオキシ-3、7-ジオキサトリシクロ[4.2.1.04,8]ノナン-2-オン、1-トリフルオロメチル-5-(メタ)アクリロイルオキシ-3、7-ジオキサトリシクロ[4.2.1.04,8]ノナン-2-オン、9-シアノ-5-(メタ)アクリロイルオキシ-3、7-ジオキサトリシクロ[4.2.1.04,8]ノナン-2-オン、9-フルオロ-5-(メタ)アクリロイルオキシ-3、7-ジオキサトリシクロ[4.2.1.04,8]ノナン-2-オン、9-クロロ-5-(メタ)アクリロイルオキシ-3、7-ジオキサトリシクロ[4.2.1.04,8]ノナン-2-オン、9-クロロ-5-(メタ)アクリロイルオキシ-3、7-ジオキサトリシクロ[4.2.1.04,8]ノナン-2-オン、9-トリフルオロメチル-5-(メタ)アクリロイルオキシ-3、7-ジオキサトリシクロ[4.2.1.04,8]ノナン-2-オン等が挙げられる。
[式(Vc)のモノマー単位]
 式(Vc)で表されるモノマー単位を形成するモノマーの代表的な例として下記化合物が挙げられるが、これらに限定されるものではない。例えば、8-(メタ)アクリロイルオキシ-4-オキサトリシクロ[5.2.1.02,6]デカン-5-オン、9-(メタ)アクリロイルオキシ-4-オキサトリシクロ[5.2.1.02,6]デカン-5-オン等が挙げられる。
[式(Vd)のモノマー単位]
 式(Vd)で表される化合物の代表的な例として下記化合物が挙げられるが、これらに限定されるものではない。例えば、α-(メタ)アクリロイルオキシ-γ-ブチロラクトン、α-(メタ)アクリロイルオキシ-α-メチル-γ-ブチロラクトン、α-(メタ)アクリロイルオキシ-β,β-ジメチル-γ-ブチロラクトン、α-(メタ)アクリロイルオキシ-α,β,β-トリメチル-γ-ブチロラクトン、α-(メタ)アクリロイルオキシ-γ,γ-ジメチル-γ-ブチロラクトン、α-(メタ)アクリロイルオキシ-α,γ,γ-トリメチル-γ-ブチロラクトン、α-(メタ)アクリロイルオキシ-β,β,γ,γ-テトラメチル-γ-ブチロラクトン、α-(メタ)アクリロイルオキシ-α,β,β,γ,γ-ペンタメチル-γ-ブチロラクトン、α-(メタ)アクリロイルオキシ-γ-ブチロラクトン、α-(メタ)アクリロイルオキシ-α-メチル-γ-ブチロラクトン、α-(メタ)アクリロイルオキシ-β,β-ジメチル-γ-ブチロラクトン、α-(メタ)アクリロイルオキシ-α,β,β-トリメチル-γ-ブチロラクトン、α-(メタ)アクリロイルオキシ-γ,γ-ジメチル-γ-ブチロラクトン、α-(メタ)アクリロイルオキシ-α,γ,γ-トリメチル-γ-ブチロラクトン、α-(メタ)アクリロイルオキシ-β,β,γ,γ-テトラメチル-γ-ブチロラクトン、α-(メタ)アクリロイルオキシ-α,β,β,γ,γ-ペンタメチル-γ-ブチロラクトンなどのα-(メタ)アクリロイルオキシ-γ-ブチロラクトン類;β-(メタ)アクリロイルオキシ-γ-ブチロラクトン、β-(メタ)アクリロイルオキシ-γ-ブチロラクトンなどのβ-(メタ)アクリロイルオキシ-γ-ブチロラクトン類などが挙げられる。
[式(Ve)のモノマー単位]
 式(Ve)で表されるモノマー単位を形成するモノマーの代表的な例として下記化合物が挙げられるが、これらに限定されるものではない。例えば、5-(メタ)アクリロイルオキシ-4-オキサトリシクロ[5.2.1.05,9]デカン-3-オン、2-メチル-5-(メタ)アクリロイルオキシ-4-オキサトリシクロ[5.2.1.05,9]デカン-3-オン、2-エチル-5-(メタ)アクリロイルオキシ-4-オキサトリシクロ[5.2.1.05,9]デカン-3-オン、5-(メタ)アクリロイルオキシ-4、8-ジオキサトリシクロ[5.2.1.05,9]デカン-3-オン、2-メチル-5-(メタ)アクリロイルオキシ-4、8-ジオキサトリシクロ[5.2.1.05,9]デカン-3-オン、2-エチル-5-(メタ)アクリロイルオキシ-4、8-ジオキサトリシクロ[5.2.1.05,9]デカン-3-オンなどが挙げられる。
[式(Vf)のモノマー単位]
 式(Vf)で表されるモノマー単位を形成するモノマーの代表的な例として下記化合物が挙げられるがこれらに限定されるものではない。例えば、4-オキサトリシクロ[5.2.1.02,6]デカン-8-エン-5-オン、3-オキサトリシクロ[5.2.1.02,6]デカン-8-エン-4-オン、5-オキサトリシクロ[6.2.1.02,7]ウンデカン-9-エン-6-オン、4-オキサトリシクロ[6.2.1.02,7]ウンデカン-9-エン-5-オン、4-オキサペンタシクロ[6.5.1.19,12.02,6.08,13]ペンタデカン-10-エン-5-オン、3-オキサペンタシクロ[6.6.1.110,13.02,7.09,14]ヘキサデカン-11-エン-6-オン、4-オキサペンタシクロ[6.6.1.110,13.02,7.09,14]ヘキサデカン-11-エン-5-オン。
[式(Vg)のモノマー単位]
 前記式(Vg)のモノマー単位を形成するモノマーの代表的な例には下記の化合物が挙げられるがこれらに限定されるものではない。例えば、8-(メタ)アクリロイルオキシ-4-オキサトリシクロ[5.2.1.02,6]デカン-5-オン[=9-(メタ)アクリロイルオキシ-4-オキサトリシクロ[5.2.1.02,6]デカン-3-オン]、9-(メタ)アクリロイルオキシ-4-オキサトリシクロ[5.2.1.02,6]デカン-5-オン[=8-(メタ)アクリロイルオキシ-4-オキサトリシクロ[5.2.1.02,6]デカン-3-オン]、8-(メタ)アクリロイルオキシ-9-ヒドロキシ-4-オキサトリシクロ[5.2.1.02,6]デカン-5-オン[=9-(メタ)アクリロイルオキシ-8-ヒドロキシ-4-オキサトリシクロ[5.2.1.02,6]デカン3-オン、9-(メタ)アクリロイルオキシ-8-ヒドロキシ-4-オキサトリシクロ[5.2.1.02,6]デカン-5-オン[=8-((メタ)アクリロイルオキシ-9-ヒドロキシ-4-オキサトリシクロ[5.2.1.02,6]デカン-3-オン]、8-(メタ)アクリロイルオキシ-3-オキサトリシクロ[5.2.1.02,6]デカン-4-オン、9-(メタ)アクリロイルオキシ-4-オキサトリシクロ[6.2.1.02,7]ウンデカン-3-オン、10-(メタ)アクリロイルオキシ-4-オキサトリシクロ[6.2.1.02,7]ウンデカン-3-オン、9-(メタ)アクリロイルオキシ-4-オキサトリシクロ[6.2.1.02,7]ウンデカン-5-オン、10-(メタ)アクリロイルオキシ-4-オキサトリシクロ[6.2.1.02,7」ウンデカン-5-オン。
[式(Vh)のモノマー単位]
 式(Vh)のモノマー単位中のR36において、ハロゲン原子には、例えば、フッ素、塩素、臭素原子などが含まれる。炭素数1~6のアルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル、ペンチル、ヘキシル基などが挙げられる。これらの中でも、C1-4アルキル基、特にメチル基が好ましい。置換基を有する炭素数1~6のアルキル基としては、例えば、クロロメチル基などのクロロアルキル基;トリフルオロメチル、2,2,2-トリフルオロエチル、ペンタフルオロエチル基などのフルオロアルキル基(好ましくは、C1-3フルオロアルキル基)などのハロゲン原子を有する炭素数1~6のアルキル基などが挙げられる。
 R36としては、水素原子、メチル基等のC1-3アルキル基、トリフルオロメチル基等のC1-3ハロアルキル基が好ましく、特に、水素原子又はメチル基が好ましい。
 R37におけるラクトン骨格を有する基としては、例えば、γ-ブチロラクトン環、δ-バレロラクトン環、ε-カプロラクトン環などの単環のラクトン環から構成されるラクトン骨格を有する基;6-オキサビシクロ[3.2.11,5]オクタン-7-オン環、3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン環等の、ラクトン環を含む多環のラクトン骨格などが挙げられる。これらの中でも、単環のラクトン環から構成されるラクトン骨格を有する基、特にγ-ブチロラクトン環から構成される単環のラクトン骨格を有する基が好ましい。
 ラクトン骨格は置換基を有していてもよい。置換基としては、例えば、メチル基等のアルキル基(例えば、C1-4アルキル基など)、トリフルオロメチル基などのハロアルキル基(例えば、C1-4ハロアルキル基など)、塩素原子やフッ素原子等のハロゲン原子、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、保護基で保護されていてもよいメルカプト基、保護基で保護されていてもよいカルボキシル基、保護基で保護されていてもよいアミノ基、保護基で保護されていてもよいスルホン酸基などが挙げられる。前記保護基としては有機合成の分野で慣用の保護基を使用できる。
 式(Vh)において、R37におけるラクトン骨格は式中に示されるエステル結合(-COO-)と直接結合していてもよく、連結基を介して結合していてもよい。連結基としては、メチレン、エチレン、プロピレン、トリメチレン、テトラメチレン、ヘキサメチレン基等のアルキレン基(例えばC1-6アルキレン基等)などが挙げられる。
 R37の代表的な例として、γ-ブチロラクトン-2-イル基、3-メチル-γ-ブチロラクトン-2-イル基、3,3-ジメチル-γ-ブチロラクトン-2-イル基、4-メチル-γ-ブチロラクトン-2-イル基、4,4-ジメチル-γ-ブチロラクトン-2-イル基、3,4,4-トリメチル-γ-ブチロラクトン-2-イル基、3,3,4-トリメチル-γ-ブチロラクトン-2-イル基、3,3,4,4-テトラメチル-γ-ブチロラクトン-2-イル基等のC1-4アルキル基等の置換基を有していてもよいγ-ブチロラクトン-2-イル基;δ-バレロラクトン-2-イル基、3-メチル-δ-バレロラクトン-2-イル基、3,3-ジメチル-δ-バレロラクトン-2-イル基、4-メチル-δ-バレロラクトン-2-イル基、4,4-ジメチル-δ-バレロラクトン-2-イル基、5-メチル-δ-バレロラクトン-2-イル基、5,5-ジメチル-δ-バレロラクトン-2-イル基等のC1-4アルキル基等の置換基を有していてもよいδ-バレロラクトン-2-イル基;ε-カプロラクトン-2-イル基、2-メチル-ε-カプロラクトン-2-イル基、2,2-ジメチル-ε-カプロラクトン-2-イル基等のC1-4アルキル基等の置換基を有していてもよいε-カプロラクトン-2-イル基などが挙げられる。これらの中でも、C1-4アルキル基を1又は2以上(特に2個)有するγ-ブチロラクトン-2-イル基、C1-4アルキル基を1又は2以上(特に2個)有するδ-バレロラクトン-2-イル基、C1-4アルキル基を1又は2以上(特に2個)有するε-カプロラクトン-2-イル基が好ましく、とりわけ3,3-ジメチル-γ-ブチロラクトン-2-イル基等のC1-4アルキル基を1又は2以上(特に2個)有するγ-ブチロラクトン-2-イル基が好ましい。
 Mは炭素数1~6の2価の有機基を示す。2価の有機基としては、メチレン、エチレン、プロピレン、ブチレンなどのアルキレン基(特に、C1-6アルキレン基);ビニレンなどのアルケニレン基(特に、C2-6アルケニレン基);シクロペンチレン、シクロヘキシレン基等のシクロアルケニレン基;これらの2以上が、エーテル結合(-O-)、チオエーテル結合(-S-)、エステル結合(-COO-;-OCO-)などの連結基を介して結合した2価の有機基などが挙げられる。特に、メチレン、エチレン、プロピレンなどが好ましい。これらの例示された基にはハロゲン原子、特にフッ素原子で置換されたものも有用である。
 式(Vh)で表されるラクトン骨格を有する単量体の代表的な例として、2-(メタ)アクリロイルオキシアセトキシ-3-メチル-γ-ブチロラクトン[=α-(メタ)アクリロイルオキシアセトキシ-β-メチル-γ-ブチロラクトン]、2-(メタ)アクリロイルオキシアセトキシ-3,3-ジメチル-γ-ブチロラクトン[=α-(メタ)アクリロイルオキシアセトキシ-β,β-ジメチル-γ-ブチロラクトン]、2-(メタ)アクリロイルオキシアセトキシ-4-メチル-γ-ブチロラクトン、2-(メタ)アクリロイルオキシアセトキシ-4,4-ジメチル-γ-ブチロラクトン、2-(メタ)アクリロイルオキシアセトキシ-3-メチル-δ-バレロラクトン、2-(メタ)アクリロイルオキシアセトキシ-3,3-ジメチル-δ-バレロラクトン、2-(メタ)アクリロイルオキシアセトキシ-4-メチル-δ-バレロラクトン、2-(メタ)アクリロイルオキシアセトキシ-4,4-ジメチル-δ-バレロラクトン、2-(メタ)アクリロイルオキシアセトキシ-5-メチル-δ-バレロラクトン、2-(メタ)アクリロイルオキシアセトキシ-5,5-ジメチル-δ-バレロラクトン、2-(メタ)アクリロイルオキシアセトキシ-3-メチル-ε-カプロラクトン、2-(メタ)アクリロイルオキシアセトキシ-3,3-ジメチル-ε-カプロラクトンなどが挙げられる。
[高分子化合物Bの製造]
 高分子化合物(B)を得るに際し、使用される重合方法としては、特に限定はされないが、ラジカル重合が好ましい。重合は、溶液重合、塊状重合、懸濁重合、塊状-懸濁重合、乳化重合など、アクリル系ポリマー等を製造する際に用いる慣用の方法により行うことができ特に制限されないが、溶液重合が最も適している。さらに、溶液重合のなかでも滴下重合が好ましい。滴下重合は、具体的には、例えば、(i)予め有機溶媒に溶解した単量体溶液と、有機溶媒に溶解した重合開始剤溶液とをそれぞれ調製し、一定温度に保持した有機溶媒中に前記単量体溶液と重合開始剤溶液とを各々滴下する方法、(ii)単量体と重合開始剤とを有機溶媒に溶解した混合溶液を、一定温度に保持した有機溶媒中に滴下する方法、(iii)予め有機溶媒に溶解した単量体溶液と、有機溶媒に溶解した重合開始剤溶液とをそれぞれ調製し、一定温度に保持した前記単量体溶液中に重合開始剤溶液を滴下する方法などの方法により行われる。
[重合開始剤]
 重合開始剤として、ラジカル重合を使用するのであれば、ラジカル重合開始剤としては特に限定されるものではないが、例としてアゾ系化合物、過酸化物系化合物、レドックス系化合物が挙げられ、特にジメチル2,2′-アゾビスイソブチレート、アゾビスイソブチロニトリル、2,2′-アゾビス(2-メチルブチロニトリル)、t-ブチルパーオキシピバレート、ジ-t-ブチルパーオキシド、イソ-ブチリルパーオキシド、ラウロイルパーオキサイド、スクシン酸パーオキシド、ジシンナミルパーオキシド、ジ-n-プロピルパーオキシジカーボネート、t-ブチルパーオキシアリルモノカーボネート、過酸化ベンゾイル、過酸化水素、過硫酸アンモニウム等が好ましい。
 重合溶媒としては公知の溶媒を使用でき、例えば、エーテル(ジエチルエーテル、プロピレングリコールモノメチルエーテル等グリコールエーテル類などの鎖状エーテル、テトラヒドロフラン、ジオキサン等の環状エーテルなど)、エステル(酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート等のグリコールエーテルエステル類など)、ケトン(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなど)、アミド(N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドなど)、スルホキシド(ジメチルスルホキシドなど)、アルコール(メタノール、エタノール、プロパノールなど)、炭化水素(ベンゼン、トルエン、キシレン等の芳香族炭化水素、ヘキサン等の脂肪族炭化水素、シクロヘキサン等の脂環式炭化水素など)、これらの混合溶媒などが挙げられる。重合温度は、例えば30~150℃程度の範囲で適宜選択できる。
 重合により得られたポリマーは、沈殿又は再沈殿により精製できる。沈殿又は再沈殿溶媒は有機溶媒及び水の何れであってもよく、また混合溶媒であってもよい。沈殿又は再沈殿溶媒として用いる有機溶媒として、例えば、炭化水素(ペンタン、ヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサンなどの脂環式炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素)、ハロゲン化炭化水素(塩化メチレン、クロロホルム、四塩化炭素などのハロゲン化脂肪族炭化水素;クロロベンゼン、ジクロロベンゼンなどのハロゲン化芳香族炭化水素など)、ニトロ化合物(ニトロメタン、ニトロエタンなど)、ニトリル(アセトニトリル、ベンゾニトリルなど)、エーテル(ジエチルエーテル、ジイソプロピルエーテル、ジメトキシエタンなどの鎖状エーテル;テトラヒドロフラン、ジオキサンなどの環状エーテル)、ケトン(アセトン、メチルエチルケトン、ジイソブチルケトンなど)、エステル(酢酸エチル、酢酸ブチルなど)、カーボネート(ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネートなど)、アルコール(メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノールなど)、カルボン酸(酢酸など)、これらの溶媒を含む混合溶媒等が挙げられる。
 中でも、前記沈殿又は再沈殿溶媒として用いる有機溶媒として、少なくとも炭化水素(特に、ヘキサンなどの脂肪族炭化水素)を含む溶媒が好ましい。このような少なくとも炭化水素を含む溶媒において、炭化水素(例えば、ヘキサンなどの脂肪族炭化水素)と他の溶媒との比率は、例えば前者/後者(体積比;25℃)=10/90~99/1、好ましくは前者/後者(体積比;25℃)=30/70~98/2、さらに好ましくは前者/後者(体積比;25℃)=50/50~97/3程度である。
 高分子化合物(B)の重量平均分子量(Mw)は、例えば、1000~7000程度、好ましくは2000~5000程度であり、分子量分布(Mw/Mn)は、例えば1.2~2.5程度である。なお、前記Mnは数平均分子量を示し、Mn、Mwともにポリスチレン換算の値である。
[リソグラフィー用重合体(A′)の製造]
 重合により得られた高分子化合物(B)は沈殿又は再沈殿操作を行わずに、重合溶液のまま酸触媒添加し、化合物(C)を滴下して熟成し架橋反応を実施し、リソグラフィー用重合体(A′)とした後に沈殿又は再沈殿操作を実施することも可能である。
 高分子化合物(B)の一分子中に複数の一般式(II)で示される繰り返し構造単位が含まれる場合は、一般式(II)で表される繰り返し構造単位と化合物(C)とを全部反応させてもよいが、高分子化合物(B)中の構造(II)が一部未反応で残っているのも好ましい。リソグラフィー用重合体(A′)中に、未反応で残った一般式(II)で示される繰り返し構造単位が存在することにより、加工対象となる基板あるいは下層反射防止膜との密着性が付与されるためパターン倒れが抑制される。高分子化合物(B)中の一般式(II)で示される繰り返し構造単位のうち、化合物(C)と反応するものの割合は、一般式(II)で表される繰り返し構造単位全量に対して、10~100モル%の範囲にあることが好ましい。さらに好ましくは、20~90モル%の範囲である。
[架橋]
 高分子化合物(B)への化合物(C)による架橋反応は溶液状で実施することが好ましい。使用される溶媒としては公知の溶媒を使用でき、例えば、エーテル(ジエチルエーテル、プロピレングリコールモノメチルエーテル等グリコールエーテル類などの鎖状エーテル、テトラヒドロフラン、ジオキサン等の環状エーテルなど)、エステル(酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート等のグリコールエーテルエステル類など)、ケトン(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなど)、アミド(N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドなど)、スルホキシド(ジメチルスルホキシドなど)、アルコール(メタノール、エタノール、プロパノールなど)、炭化水素(ベンゼン、トルエン、キシレン等の芳香族炭化水素、ヘキサン等の脂肪族炭化水素、シクロヘキサン等の脂環式炭化水素など)、これらの混合溶媒などが挙げられる。多官能ビニルエーテル及び触媒等との副反応を抑制するという観点からは、これらの化合物と反応性を有しない溶媒を用いることがこのましい。具体的にはTHF(テトラヒドロフラン)、シクロヘキサノン、PGMEA(プロピレングリコールモノメチルエーテルアセテート)、炭化水素化合物等が挙げられる。高分子化合物(B)を前記溶媒に溶解し、架橋温度において酸触媒及び化合物(C)を添加する。添加方法としては一括で添加してもよいし、分割添加、更には連続滴下による添加してもかまわない。架橋温度は、例えば0~150℃程度の範囲で適宜選択できる。
 高分子化合物(B)は単独で、又は2種以上組み合わせて使用することができる。化合物(C)の使用量は架橋反応に使用される高分子化合物(B)の重量に対して0.01重量%~100重量%であり、好ましくは0.03重量%~50重量%である。0.01重量%より低いと架橋反応が進行せずに微細で鮮明なレジストパターンが得られない。また、100重量%を超えると架橋度が高くなり、レジスト用溶媒への溶解性が低下する。また、高分子化合物(B)を合成した重合溶液を使用して続けて架橋反応を実施する場合においては、仕込み比率は使用される高分子化合物(B)に代えて、高分子化合物(B)を合成するために使用された単量体全体の重量に対して化合物(C)の量を前記した範囲で使用する。
 架橋反応において反応速度を速くするために、酸触媒が用いられる。酸触媒としては、硫酸、塩酸、p-トルエンスルホン酸、p-トルエンスルホン酸ピリジウム、三フッ化ホウ素等を挙げることができる。これらのなかでは、特に、塩酸、p-トルエンスルホン酸、p-トルエンスルホン酸ピリジウム等が好ましく用いられる。このような酸触媒は、使用される化合物(C)に対して、通常、0.01~5モル%であり、好ましくは、0.1~3モル%の範囲で用いられる。
[架橋後精製方法]
 架橋反応終了後、その反応溶液は生成した樹脂に対して溶解性が低い貧溶媒中へ添加して沈殿させる。また、得られた沈殿物を回収再溶解、更には再沈殿させて残存する単量体および低分子量化合物を除くことも好ましい。沈殿又は再沈殿溶媒は有機溶媒及び水の何れであってもよく、また混合溶媒であってもよい。沈殿又は再沈殿溶媒として用いる有機溶媒として、例えば、炭化水素(ペンタン、ヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサンなどの脂環式炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素)、ハロゲン化炭化水素(塩化メチレン、クロロホルム、四塩化炭素などのハロゲン化脂肪族炭化水素;クロロベンゼン、ジクロロベンゼンなどのハロゲン化芳香族炭化水素など)、ニトロ化合物(ニトロメタン、ニトロエタンなど)、ニトリル(アセトニトリル、ベンゾニトリルなど)、エーテル(ジエチルエーテル、ジイソプロピルエーテル、ジメトキシエタンなどの鎖状エーテル;テトラヒドロフラン、ジオキサンなどの環状エーテル)、ケトン(アセトン、メチルエチルケトン、ジイソブチルケトンなど)、エステル(酢酸エチル、酢酸ブチルなど)、カーボネート(ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネートなど)、アルコール(メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノールなど)、カルボン酸(酢酸など)、これらの溶媒を含む混合溶媒等が挙げられる。
 中でも、前記沈殿又は再沈殿溶媒として用いる有機溶媒として、少なくとも炭化水素(特に、ヘキサンなどの脂肪族炭化水素)を含む溶媒が好ましい。このような少なくとも炭化水素を含む溶媒において、炭化水素(例えば、ヘキサンなどの脂肪族炭化水素)と他の溶媒との比率は、例えば前者/後者(体積比;25℃)=10/90~100/0、好ましくは前者/後者(体積比;25℃)=30/70~100/0、さらに好ましくは前者/後者(体積比;25℃)=50/50~100/0程度である。
[分子量]
 生成した架橋分子化合物(リソグラフィー用重合体(A′))の重量平均分子量(Mw)は、例えば4500~200000程度、好ましくは4600~200000程度、特に好ましくは5000~100000であり、分子量分布(Mw/Mn)は、例えば1.2~10.0程度である。なお、前記Mnは数平均分子量を示し、Mn、Mwともにポリスチレン換算の値である。
 リソグラフィー用重合体(A′)において、該重合体中に未反応で存在する上記一般式(II)で示される繰り返し構造単位の含有量としては、全繰り返し単位に対して、例えば、1~40モル%であり、好ましくは1~35モル%、特に好ましくは5~30モル%である。なお、リソグラフィー用重合体(A)において、該重合体中に未反応で存在する上記一般式(II)で表される繰り返し構造単位の含有量としては、全繰り返し単位に対して、例えば、1~40モル%であり、好ましくは1~35モル%、特に好ましくは5~30モル%である。
[リソグラフィー用組成物]
 本発明のリソグラフィー用組成物は、上記本発明により製造されたリソグラフィー用重合体(A′)と光酸発生剤とレジスト用溶剤とを含む。フォトレジスト用樹脂組成物は、例えば、上記のようにして得られるフォトレジスト用ポリマー溶液に光酸発生剤を添加することにより調製できる。
[光酸発生剤]
 光酸発生剤としては、露光により効率よく酸を生成する慣用乃至公知の化合物、例えば、ジアゾニウム塩、ヨードニウム塩(例えば、ジフェニルヨードヘキサフルオロホスフェートなど)、スルホニウム塩(例えば、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムメタンスルホネートなど)、スルホン酸エステル[例えば、1-フェニル-1-(4-メチルフェニル)スルホニルオキシ-1-ベンゾイルメタン、1,2,3-トリスルホニルオキシメチルベンゼン、1,3-ジニトロ-2-(4-フェニルスルホニルオキシメチル)ベンゼン、1-フェニル-1-(4-メチルフェニルスルホニルオキシメチル)-1-ヒドロキシ-1-ベンゾイルメタンなど]、オキサチアゾール誘導体、s-トリアジン誘導体、ジスルホン誘導体(ジフェニルジスルホンなど)、イミド化合物、オキシムスルホネート、ジアゾナフトキノン、ベンゾイントシレートなどを使用できる。これらの光酸発生剤は単独で又は2種以上組み合わせて使用できる。
 光酸発生剤の使用量は、光照射により生成する酸の強度やポリマー(フォトレジスト用樹脂)における各繰り返し単位の比率などに応じて適宜選択でき、例えば、ポリマー100重量部に対して0.1~30重量部、好ましくは1~25重量部、さらに好ましくは2~20重量部程度の範囲から選択できる。
[レジスト溶媒]
 レジスト用溶剤としては、前記重合溶媒として例示したグリコール系溶媒、エステル系溶媒、ケトン系溶媒、これらの混合溶媒などが挙げられる。これらのなかでも、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、メチルイソブチルケトン、メチルアミルケトン、シクロヘキサノン、これらの混合液が好ましく、特に、プロピレングリコールモノメチルエーテルアセテート単独溶媒、プロピレングリコールモノメチルエーテルアセテートとプロピレングリコールモノメチルエーテルとの混合溶媒、プロピレングリコールモノメチルエーテルアセテートと乳酸エチルとの混合溶媒、プロピレングリコールモノメチルエーテルアセテートとシクロヘキサノンとの混合溶媒などの、少なくともプロピレングリコールモノメチルエーテルアセテートを含む溶媒が好適に用いられる。
[リソグラフィー用組成物中のポリマー濃度]
 リソグラフィー用組成物中のポリマー濃度(リソグラフィー用重合体(A′)の濃度)は、例えば、3~40重量%程度である。
 リソグラフィー用組成物は、アルカリ可溶性樹脂(例えば、ノボラック樹脂、フェノール樹脂、イミド樹脂、カルボキシル基含有樹脂など)などのアルカリ可溶成分、着色剤(例えば、染料など)などを含んでいてもよい。
 こうして得られるリソグラフィー用組成物を基材又は基板上に塗布し、乾燥した後、所定のマスクを介して、塗膜(レジスト膜)に光線を露光して(又は、さらに露光後ベークを行い)潜像パターンを形成し、次いで現像することにより、微細なパターンを高い精度で形成できる。
 基材又は基板としては、シリコンウエハ、金属、プラスチック、ガラス、セラミックなどが挙げられる。フォトレジスト組成物の塗布は、スピンコータ、ディップコータ、ローラコータなどの慣用の塗布手段を用いて行うことができる。塗膜の厚みは、例えば0.05~20μm、好ましくは0.1~2μm程度である。
[露光方法]
 露光には、種々の波長の光線、例えば、紫外線、X線などが利用でき、半導体レジスト用では、通常、g線、i線、エキシマレーザー(例えば、XeCl、KrF、KrCl、ArF、ArClなど)、極端紫外光(EUV)などを使用することができる。本発明のリソグラフィー用組成物は、特に、波長220nm以下遠紫光での露光に適している。露光エネルギーは、例えば1~1000mJ/cm2、好ましくは5~100mJ/cm2程度である。
 光照射により光酸発生剤から酸が生成し、この酸により、例えばフォトレジスト用高分子化合物の酸の作用によりアルカリ可溶となる繰り返し単位(酸脱離性基を有する繰り返し単位)のカルボキシル基等の保護基(脱離性基)が速やかに脱離して、可溶化に寄与するカルボキシル基等が生成する。また、架橋部分のアセタール結合も酸により切断されて、露光部のポリマー鎖は低分子量化する。そのため、水又はアルカリ現像液による現像により、所定のパターンを精度よく形成できる。
 上述の工程によりパターンを形成することにより、高精度かつ効率よく半導体の製造を行うことができる。
 以下に実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により何ら制限されるものではない。
(参考例1) 2,6-ナフタレンジオールジビニルエーテルの合成
 ジ-μ-クロロビス(1,5-シクロオクタジエン)二イリジウム(I)[Ir(cod)Cl]2(2.1g、3.1mmol)と炭酸ナトリウム(26.2g、312.2mmol)のトルエン(250g)混合溶液に2,6-ジヒドロキシナフタレン(25g、156.1mmol)及びプロピオン酸ビニル(62.5g、624.3mmol)を加え、アルゴン雰囲気下、110℃で4時間攪拌した。反応液をガスクロマトグラフィーにより分析したところ、2,6-ビス(ビニルオキシ)ナフタレンが収率55%で生成していた。
[2,6-ビス(ビニルオキシ)ナフタレンのスペクトルデータ]
1H NMR (CDCl3) δ4.50(2H,d)、4.81(2H,d)、6.75(2H,dd)、7.22(2H,d)、7.30(2H,s)、7.71(2H,d)
(参考例2) 2,6-ナフタレンジメチロールジビニルエーテルの合成
 ジ-μ-クロロビス(1,5-シクロオクタジエン)二イリジウム(I)[Ir(cod)Cl]2(0.86g、1.3mmol)と炭酸ナトリウム(10.7g、127.5mmol)のトルエン(100g)混合溶液に2,6-ナフタレンジメタノール(12.0g、63.8mmol)及びプロピオン酸ビニル(25.5g、255.0mmol)を加え、アルゴン雰囲気下、110℃で6時間攪拌した。反応液をガスクロマトグラフィーにより分析したところ、2,6-ビス(ビニルオキシメチル)ナフタレンが収率40%で生成していた。
[2,6-ビス(ビニルオキシメチル)ナフタレンのスペクトルデータ]
1H NMR (CDCl3)δ:4.11(2H,d)、4.36(2H,d)、4.92(4H,s)、6.61(2H,dd)、7.47(2H,d)、7.81(2H,s)、7.84(2H,d)
(合成例1)
 下記構造の高分子化合物の合成
Figure JPOXMLDOC01-appb-C000018
 還流管、撹拌子、3方コック、温度計を備えた丸底フラスコに、窒素雰囲気下、PGMEA(プロピレングリコールモノメチルエーテルアセテート)128.9g、PGME
(プロピレングリコールモノメチルエーテル)55.3gをいれて温度を90℃に保ち、撹拌しながら5-アクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン26.5g(127.3mmol)、1-ヒドロキシ-5-メタクリロイルオキシアダマンタン6.0g(25.4mmol)、1-(1-メタクリロイルオキシ-1-メチルエチル)アダマンタン13.3g(50.7mmol)メタアクリル酸4.4g(51.1mmol)、ジメチル2,2'-アゾビス(イソ酪酸)ジメチル(和光純薬工業(株)製;商品名「V-601」)4.02g、PGMEA69.4g、PGME29.8gの混合溶液を5時間かけて滴下した。さらに同温度で2時間撹拌を続けた。重合溶液は冷却後、酢酸エチル:ヘプタン=1:9(重量比)の混合溶液2800g中に撹拌しながら添加し、沈殿させた。生成した沈殿はろ過後乾燥した。得られた樹脂の重量平均分子量(Mw)は4200であり、分子量分布(Mw/Mn)は2.0であった。
(合成例2)
 下記構造の高分子化合物の合成
Figure JPOXMLDOC01-appb-C000019
 還流管、撹拌子、3方コック、温度計を備えた丸底フラスコに、窒素雰囲気下、PGMEA(プロピレングリコールモノメチルエーテルアセテート)23.8g、PGME
(プロピレングリコールモノメチルエーテル)10.2gをいれて温度を90℃に保ち、撹拌しながら5-アクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン14.0g(67.2mmol)、1-ヒドロキシ-5-アクリロイルオキシアダマンタン6.0g(27.0mmol)、1-(1-アクリロイルオキシ-1-メチルエチル)アダマンタン10.0g(40.3mmol)、ジメチル2,2'-アゾビス(イソ酪酸)ジメチル(和光純薬工業(株)製;商品名「V-601」)2.40g、PGMEA99.2g、PGME40.8gの混合溶液を5時間かけて滴下した。さらに同温度で2時間撹拌を続けた。重合溶液は冷却後、酢酸エチル:ヘプタン=1:9(重量比)の混合溶液1800g中に撹拌しながら添加し、沈殿させた。生成した沈殿はろ過後乾燥した。得られた樹脂の重量平均分子量(Mw)は3700であり、分子量分布(Mw/Mn)は1.7であった。
(合成例3)
 下記構造の高分子化合物の合成
Figure JPOXMLDOC01-appb-C000020
 還流管、撹拌子、3方コック、温度計を備えた丸底フラスコに、窒素雰囲気下、PGMEA(プロピレングリコールモノメチルエーテルアセテート)23.8g、PGME
(プロピレングリコールモノメチルエーテル)10.2gをいれて温度を90℃に保ち、撹拌しながら5-アクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン16.0g(76.8mmol)、1-(1-アクリロイルオキシ-1-メチルエチル)アダマンタン11.5g(46.3mmol)、メタアクリル酸2.6g(30.2mmol)、ジメチル2,2'-アゾビス(イソ酪酸)ジメチル(和光純薬工業(株)製;商品名「V-601」)2.40g、PGMEA115.9g、PGME20.1gの混合溶液を5時間かけて滴下した。さらに同温度で2時間撹拌を続けた。重合溶液は冷却後、酢酸エチル:ヘプタン=1:9(重量比)の混合溶液1800g中に撹拌しながら添加し、沈殿させた。生成した沈殿はろ過後乾燥した。得られた樹脂の重量平均分子量(Mw)は3400であり、分子量分布(Mw/Mn)は1.6であった。
(比較合成例1)
 下記構造の高分子化合物の合成
Figure JPOXMLDOC01-appb-C000021
 還流管、撹拌子、3方コック、温度計を備えた丸底フラスコに、窒素雰囲気下、PGMEA(プロピレングリコールモノメチルエーテルアセテート)41.7g、PGME
(プロピレングリコールモノメチルエーテル)17.9gをいれて温度を80℃に保ち、撹拌しながら5-アクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン10.7g(51.4mmol)、1-ヒドロキシ-5-メタクリロイルオキシアダマンタン6.0g(25.4mmol)、1-(1-メタクリロイルオキシ-1-メチルエチル)アダマンタン13.4g(51.1mmol)、ジメチル2,2'-アゾビス(イソ酪酸)ジメチル(和光純薬工業(株)製;商品名「V-601」)1.00g、PGMEA77.4g、PGME33.2gの混合溶液を5時間かけて滴下した。さらに同温度で2時間撹拌を続けた。重合溶液は冷却後、酢酸エチル:ヘプタン=1:9(重量比)の混合溶液1800g中に撹拌しながら添加し、沈殿させた。生成した沈殿はろ過後乾燥した。得られた樹脂の重量平均分子量(Mw)は10700であり、分子量分布(Mw/Mn)は2.7であった。
(比較合成例2)
 下記構造の高分子化合物の合成
Figure JPOXMLDOC01-appb-C000022
 還流管、撹拌子、3方コック、温度計を備えた丸底フラスコに、窒素雰囲気下、PGMEA(プロピレングリコールモノメチルエーテルアセテート)23.8g、PGME
(プロピレングリコールモノメチルエーテル)10.2gをいれて温度を85℃に保ち、撹拌しながら5-メタアクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン12.4g(55.8mmol)、1-ヒドロキシ-5-メタクリロイルオキシアダマンタン6.6g(27.9mmol)、2-メチル-2-アダマンチルメタクリレート9.8g(41.8mmol)、メタアクリル酸1.2g(13.9mmol)、ジメチル2,2'-アゾビス(イソ酪酸)ジメチル(和光純薬工業(株)製;商品名「V-601」)1.51g、PGMEA77.4g、PGME33.2gの混合溶液を5時間かけて滴下した。さらに同温度で2時間撹拌を続けた。重合溶液は冷却後、酢酸エチル:ヘプタン=1:9(重量比)の混合溶液1800g中に撹拌しながら添加し、沈殿させた。生成した沈殿はろ過後乾燥した。得られた樹脂の重量平均分子量(Mw)は7200であり、分子量分布(Mw/Mn)は1.8であった。
(実施例1)
[リソグラフィー用重合体の調製]
 合成例1で得られた高分子化合物1.4gを10gのCHO(シクロヘキサノン)に均一に溶解した。0.005gのp-トルエンスルホン酸を均一に分散させた後に、4.0gのCHOに均一に溶解した0.4gの参考例2で得られた2,6-ナフタレンジメチロールジビニルエーテルを加えて室温で2時間撹拌を行った。反応終了後トリエチルアミンの1重量%THF(テトラヒドロフラン)溶液1.5gを添加して中和した。得られた反応液は140gのヘプタン/酢酸エチル=7/3(重量比)混合溶液により再沈殿させた。減圧ろ過により湿ポリマーを回収し、45℃で10時間減圧乾燥し、リソグラフィー用重合体aを得た。得られたリソグラフィー用重合体aの分子量はMw=24100、Mw/Mn=3.9であった。
[リソグラフィー用組成物の調製]
 リソグラフィー用重合体a(0.2g)、光酸発生剤としてトリフェニルスルホニウムトリフルオロメタンスルホナート(0.006g)、有機塩基性化合物としてトリエタノールアミン(0.0006g)を配合し、プロピレングリコールモノメチルエーテルアセテートとプロピレングリコールモノメチルエーテルとの6:4混合溶媒(重量比)に、リソグラフィー用重合体の濃度が6.7重量%となる用に溶解し、0.1μmのミクロフィルターで濾過し、リソグラフィー用組成物aを得た。
(実施例2)
[リソグラフィー用重合体の調製]
 合成例2で得られた樹脂0.7gを10gのCHO(シクロヘキサノン)に均一に溶解した。0.005gのp-トルエンスルホン酸を均一に分散させた後に、4.0gのCHOに均一に溶解した0.2gの参考例2で得られた2,6-ナフタレンジメチロールジビニルエーテルを加えて室温で2時間撹拌を行った。反応終了後トリエチルアミンの1重量%THF(テトラヒドロフラン)溶液1.5gを添加して中和した。得られた反応液は140gのヘプタン/酢酸エチル=7/3(重量比)混合溶液により再沈殿させた。減圧ろ過により湿ポリマーを回収し、45℃で10時間減圧乾燥してリソグラフィー用重合体bを得た。リソグラフィー用重合体bの分子量はMw=6300、Mw/Mn=2.8であった。
[リソグラフィー用組成物の調製]
 リソグラフィー用重合体aに代えてリソグラフィー用重合体bを使用した以外は実施例1の[リソグラフィー用組成物の調製]と同様の操作を行いリソグラフィー用組成物bを得た。
(実施例3)
[リソグラフィー用重合体の調製]
 合成例3で得られた樹脂0.7gを10gのCHO(シクロヘキサノン)に均一に溶解した。0.005gのp-トルエンスルホン酸を均一に分散させた後に、4.0gのCHOに均一に溶解した0.2gの参考例2で得られた2,6-ナフタレンジメチロールジビニルエーテルを加えて室温で2時間撹拌を行った。反応終了後トリエチルアミンの1重量%THF(テトラヒドロフラン)溶液1.5gを添加して中和した。得られた反応液は140gのヘプタン/酢酸エチル=7/3(重量比)混合溶液により再沈殿させた。減圧ろ過により湿ポリマーを回収し、45℃で10時間減圧乾燥してリソグラフィー用重合体cを得た。リソグラフィー用重合体cの分子量はMw=4600、Mw/Mn=2.2であった。
[リソグラフィー用組成物の調製]
 リソグラフィー用重合体aに代えてリソグラフィー用重合体cを使用した以外は実施例1の[リソグラフィー用組成物の調製]と同様の操作を行いリソグラフィー用組成物cを得た。
(実施例4)
[リソグラフィー用重合体の調製]
 合成例1で得られた樹脂1.4gを10gのCHO(シクロヘキサノン)に均一に溶解した。0.005gのp-トルエンスルホン酸を均一に分散させた後に、4.0gのCHOに均一に溶解した0.2gの参考例2で得られた2,6-ナフタレンジメチロールジビニルエーテルを加えて室温で2時間撹拌を行った。反応終了後トリエチルアミンの1重量%THF(テトラヒドロフラン)溶液1.5gを添加して中和した。得られた反応液は140gのヘプタン/酢酸エチル=7/3(重量比)混合溶液により再沈殿させた。減圧ろ過により湿ポリマーを回収し、45℃で10時間減圧乾燥してリソグラフィー用重合体dを得た。リソグラフィー用重合体dの分子量はMw=6600、Mw/Mn=2.6であった。
[リソグラフィー用組成物の調製]
 リソグラフィー用重合体aに代えてリソグラフィー用重合体dを使用した以外は実施例1の[リソグラフィー用組成物の調製]と同様の操作を行いリソグラフィー用組成物dを得た。
(実施例5)
[リソグラフィー用重合体の調製]
 合成例1で得られた樹脂1.4gを10gのCHO(シクロヘキサノン)に均一に溶解した。0.005gのp-トルエンスルホン酸を均一に分散させた後に、4.0gのCHOに均一に溶解した0.5gの参考例2で得られた2,6-ナフタレンジメチロールジビニルエーテルを加えて室温で2時間撹拌を行った。反応終了後トリエチルアミンの1重量%THF(テトラヒドロフラン)溶液1.5gを添加して中和した。得られた反応液は140gのヘプタン/酢酸エチル=7/3(重量比)混合溶液により再沈殿させた。減圧ろ過により湿ポリマーを回収し、45℃で10時間減圧乾燥した。得られたポリマーの分子量はMw=77400、Mw/Mn=8.7であった。
[リソグラフィー用組成物の調製]
 リソグラフィー用重合体aに代えてリソグラフィー用重合体dを使用した以外は実施例1の[リソグラフィー用組成物の調製]と同様の操作を行いリソグラフィー用組成物dを得た。
(実施例6)
[リソグラフィー用重合体の調製]
 架橋剤として、2,6-ナフタレンジメチロールジビニルエーテルに代えて、1,4-ベンゼンジメチロールジビニルエーテルを使用した以外は、実施例1と同様の操作を行ってリソグラフィー用重合体eを得た。リソグラフィー用重合体eの分子量はMw=32000、Mw/Mn=4.0であった。
[リソグラフィー用組成物の調製]
 リソグラフィー用重合体aに代えてリソグラフィー用重合体eを使用した以外は実施例1の[リソグラフィー用組成物の調製]と同様の操作を行いリソグラフィー用組成物eを得た。
(比較例1)
[リソグラフィー用組成物の調製]
 リソグラフィー用重合体aに代えて比較合成例1で得られた高分子化合物を使用した以外は実施例1の[リソグラフィー用組成物の調製]と同様の操作を行いリソグラフィー用組成物eを得た。
(比較例2)
[リソグラフィー用組成物の調製]
 リソグラフィー用重合体aに代えて比較合成例2で得られた高分子化合物を使用した以外は実施例1の[リソグラフィー用組成物の調製]と同様の操作を行いリソグラフィー用組成物fを得た。
(比較例3)
 2,6-ナフタレンジメチロールジビニルエーテルに代えて、2,6-ナフタレンジオールジビニルエーテルを使用した以外は、実施例1と同様の操作を行い、実施例1の[リソグラフィー用組成物の調製]と同様の操作を行った。得られたポリマーの分子量は反応前と変化しておらず、架橋反応は進行していなかった。反応後の反応液中の2,6-ナフタレンジオールジビニルエーテル量を定量したところ、ほとんど消費されずに残っていることが確認された。このことから置換基を有しない芳香族化合物にビニルエーテルが結合している場合は、ビニルエーテルが結合している場合は、架橋反応が進行しないことが分かる。
(評価)
 シリコンウエハー上に実施例1~6及び比較例1~2で得られたリソグラフィー用組成物をスピンコータを利用して塗布し、100℃で60秒間乾燥し、厚み約0.4μmのフィソグラフィー膜を作成した。該リソグラフィー膜上にポジ型マスクを介してArFエキシマレーザー(193nm)で露光量を変えて露光した。露光後の加熱処理を100℃で60秒間行い、2.38%のテトラメチルアンモニウムヒドロキシド水溶液で現像した後、蒸留水でリンスして露光パターンを得た。露光結果下記表1に示す。各露光量において、マスクの形状通りにきれいに現像されているものを○、現像されていない、若しくはマスクの形状とは異なった形に現像されているものを×と評価した。
 また、露光部のうちレジスト膜が途中まで現像された部分の表面を原子間力顕微鏡(AFM)で1000nmの直線上を走査して表面粗さを測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明のリソグラフィー用重合体は、リソグラフィー用途に使用した場合に、極微細で鮮明なパターン形成が可能となり、特に高精度の作業が要求される高集積半導体等の製造に極めて好適に使用できる。

Claims (11)

  1.  少なくとも下記一般式(I)で表される繰り返し構造単位を有するリソグラフィー用重合体。
    Figure JPOXMLDOC01-appb-C000023
    (一般式(I)中、R1、R3、R4、R6は、各々独立に、水素原子、ハロゲン原子、シアノ基、アルキル基又はハロアルキル基を表す。R2、R5、は各々独立に、水素原子、シアノ基、-CO-ORA、又は-CON(RB)(RC)を表す。X1、X2は各々独立に、単結合、あるいは置換基を有していても良い2価のアルキレン基、アルケニレン基、シクロアルキレン基、もしくは-O-、-SO2-、-O-CORD-、-CO-O-RE-、又は-CO-N(RF)-RG-を表す。X3、X4は各々独立に、単結合、もしくは-CO-を表す。R7、R8、R9、R10は、各々独立に、水素原子、アルキル基又はシクロアルキル基を表す。また、R7とR8、R9とR10は、それぞれ、互いに結合して隣接する炭素原子とともに環を形成していてもよい。Xは置換基を有していてもよい、少なくとも1つの芳香族環式基と少なくとも一つの非芳香族性基とからなるk価の基を表す。但し、kは2以上の整数である。RAは水素原子、又はアルキル基、シクロアルキル基、アルケニル基、もしくは酸分解性基を表す。RB、RC、RFは、各々独立に、水素原子、アルキル基、シクロアルキル基、アルケニル基を表す。また、RB、RCが結合して環を形成しても良い。RD、RE、RGは、各々独立に、単結合、又はエーテル基、エステル基、アミド基、ウレタン基、ウレイド基を有していても良い2価のアルキレン基、アルケニレン基、シクロアルキレン基、もしくは有橋環状炭化水素基(橋架け環式炭化水素基)、又はこれらが2以上結合した基を表す。(k-1)個のかっこ内の基は、それぞれ、同一であっても異なっていてもよい。)
  2.  下記一般式(II)
    Figure JPOXMLDOC01-appb-C000024
    (一般式(II)中、R1、R3は各々独立に、水素原子、ハロゲン原子、シアノ基、アルキル基又はハロアルキル基を表す。R2は、水素原子、シアノ基、-CO-ORA、-CO-N(RB)(RC)を示す。X1は、単結合あるいは置換基を有していても良い2価のアルキレン基、アルケニレン基、シクロアルキレン基、もしくは-O-、-SO2-、-O-CO-RD-、-CO-O-RE、-CO-N(RF)-RG-を表す。X3は、単結合、もしくは-CO-を表す。RAは水素原子又はアルキル基、シクロアルキル基、アルケニル基、もしくは酸分解性基を表す。RB、RC、RFは、各々独立に、水素原子、アルキル基、シクロアルキル基、アルケニル基を表す。また、RB、RCが結合して環を形成してもよい。RD、RE、RGは、各々独立に、単結合、又はエーテル基、エステル基、アミド基、ウレタン基、ウレイド基を有していても良い2価のアルキレン基、アルケニレン基、シクロアルキレン基、もしくは有橋環状炭化水素基(橋架け環式炭化水素基)又はこれらが2以上結合した基を表す。)
    で表される繰り返し構造単位を少なくとも一つ有する高分子化合物と、下記一般式(III)
    Figure JPOXMLDOC01-appb-C000025
    (式中、R11は水素原子又は炭素数1~16のアルキル基を示し、R12及びR13は同一又は異なって、水素原子、アルキル基、又はシクロアルキル基を示す。R12とR13互いに結合して、隣接する炭素原子と共に環を形成していてもよい。Xは置換基を有していてもよい、少なくとも1つの芳香族環式基と少なくとも1つの非芳香族性基とからなるk価の基を表す。kは2以上の整数である。k個のかっこ内の基は、それぞれ、同一であっても異なっていてもよい。)
    で表される化合物とを触媒の存在下で反応させて得られるリソグラフィー用重合体。
  3.  前記一般式(II)で表される繰り返し構造単位を少なくとも1つ有する高分子化合物の重量平均分子量が7000以下であり、一般式(II)で表される繰り返し構造単位を少なくとも1つ有する高分子化合物と、前記一般式(III)で表される化合物を反応させて得られる重合体の重量平均分子量が4500以上である請求項2記載のリソグラフィー用重合体。
  4.  更に、一般式(IVa)~(IVe)で表される酸により脱離してアルカリ可溶となる基を含む繰り返し構造単位を少なくとも1種含有する請求項1~3の何れかの項に記載のリソグラフィー用重合体。
    Figure JPOXMLDOC01-appb-C000026
    (式中、環Z1は置換基を有していてもよい炭素数5~20の脂環式炭化水素環を示す。Raは水素原子、ハロゲン原子、又はハロゲン原子を有していてもよい炭素数1~14のアルキル基を示し、E1は炭素数1~12の2価の炭化水素基を示す。s1は0~3の整数を示す。R14~R16は、同一又は異なって、置換基を有していてもよい炭素数1~6のアルキル基を示す。R17は、環Z1に結合している置換基であり、同一又は異なって、オキソ基、アルキル基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、又は保護基で保護されていてもよいカルボキシル基を示す。rはR17の個数であって、1~3の整数を示す。但し、r個のR17のうち少なくとも一つは-COORi基を示す。Riは置換基を有していてもよい第3級炭化水素基、テトラヒドロフラニル基、テトラヒドロピラニル基、又はオキセパニル基を示す。R18、R19は、同一又は異なって、水素原子又は置換基を有していてもよい炭素数1~6のアルキル基を示す。R20は水素原子又は有機基を示す。R18、R19、R20のうち少なくとも2つが互いに結合して隣接する原子とともに環を形成していてもよい。式(IVa)~(IVc)中、環Z1における炭素数5~20の脂環式炭化水素環は単環であっても、縮合環や橋架け環等の多環であってもよい。R21は、t-ブチル基、2-テトラヒドロフラニル基、2-テトラヒドロピラニル基、又は2-オキセパニル基を示す。sは0又は1を示す。)
  5.  更に、下記一般式(Va)~(Vh)で表されるラクトン骨格を有する繰り返し構造単位を少なくとも1種含有する請求項1~4の何れかの項に記載のリソグラフィー用重合体。
    Figure JPOXMLDOC01-appb-C000027
    (式中、Raは水素原子、ハロゲン原子、又はハロゲン原子を有していても良い炭素数1~6のアルキル基を示す。R22~R24は、同一又は異なって、水素原子、アルキル基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、又は保護基で保護されていてもよいカルボキシル基を示す。V1~V3は、同一又は異なって、-CH2-、-CO-又は-COO-を示す。但し、V1~V3のうち少なくとも一つは-COO-である。Y1は炭素原子、酸素原子又は硫黄原子を示し、炭素原子のときにのみR28及びR29が存在する。R25~R29及びR30は同一又は異なって、水素原子、アルキル基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、保護基で保護されていてもよいカルボキシル基、シアノ基、ハロゲン原子、炭素数1~6のフルオロアルキル基を示す。tは1又は2の整数を示し、uは0又は1の整数を示す。Y2は酸素原子、硫黄原子又はメチレン基を示す。R31は水素原子又は炭素数1~6のアルキル基を示す。R32、R33、R34及びR35は、同一又は異なって、水素原子又はメチル基を示す。o、p、q及びvは、それぞれ0又は1を示す。R36は水素原子、ハロゲン原子、又は置換基を有していてもよい炭素数1~6のアルキル基を示し、R37はラクトン骨格を有する基を示し、Mは炭素数1~6の2価の有機基を示す。)
  6.  重合体中に含まれる芳香族環式基の割合が全重合体重量に対して1.5mmol/g以下である請求項1~5の何れかの項に記載のリソグラフィー用重合体。
  7.  一般式(I)中のX又は一般式(III)中のXに含まれる芳香族環が置換基を有していてもよいナフタレン環である請求項1~6の何れかの項に記載のリソグラフィー用重合体。
  8.  請求項1~7の何れかの項に記載のリソグラフィー用重合体と活性光線又は放射線の照射により酸を発生する化合物とを含むリソグラフィー用組成物。
  9.  請求項8記載のリソグラフィー用組成物を基材又は基板上に塗布してレジスト塗膜を形成し、露光及び現像を経てパターン形成をする工程を含む半導体の製造方法。
  10.  露光光源として、220nm以下の波長の遠紫外光を用いる請求項9記載の半導体の製造方法。
  11.  下記一般式(II)で表される繰り返し構造単位を少なくとも1つ有する高分子化合物と下記一般式(III)で表される化合物とを触媒の存在下で反応させることを特徴とするリソグラフィー用重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000028
    (一般式(II)中、R1、R3は各々独立に、水素原子、ハロゲン原子、シアノ基、アルキル基又はハロアルキル基を表す。R2は、水素原子、シアノ基、-CO-ORA、-CO-N(RB)(RC)を示す。X1は、単結合あるいは置換基を有していても良い2価のアルキレン基、アルケニレン基、シクロアルキレン基、もしくは-O-、-SO2-、-O-CO-RD-、-CO-O-RE、-CO-N(RF)-RG-を表す。X3は、単結合、もしくは-CO-を表す。RAは水素原子又はアルキル基、シクロアルキル基、アルケニル基、もしくは酸分解性基を表す。RB、RC、RFは、各々独立に、水素原子、アルキル基、シクロアルキル基、アルケニル基を表す。また、RB、RCが結合して環を形成してもよい。RD、RE、RGは、各々独立に、単結合、又はエーテル基、エステル基、アミド基、ウレタン基、ウレイド基を有していても良い2価のアルキレン基、アルケニレン基、シクロアルキレン基、もしくは有橋環状炭化水素基(橋架け環式炭化水素基)又はこれらが2以上結合した基を表す。)
    Figure JPOXMLDOC01-appb-C000029
    (式中、R11は水素原子又は炭素数1~16のアルキル基を示し、R12及びR13は同一又は異なって、水素原子、アルキル基、又はシクロアルキル基を示す。R12とR13は互いに結合して、隣接する炭素原子と共に環を形成していてもよい。Xは置換基を有していてもよい、少なくとも1つの芳香族環式基と少なくとも1つの非芳香族性基とからなるk価の基を表す。kは2以上の整数である。k個のかっこ内の基は、それぞれ、同一であっても異なっていてもよい。)
PCT/JP2009/002437 2008-06-06 2009-06-01 リソグラフィー用重合体並びにその製造方法 WO2009147823A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/992,423 US8470510B2 (en) 2008-06-06 2009-06-01 Polymer for lithographic purposes and method for producing same
DE112009001389T DE112009001389T5 (de) 2008-06-06 2009-06-01 Polymer für lithografische Zwecke und Verfahren zur Herstellung derselben

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008149979A JP5553488B2 (ja) 2008-06-06 2008-06-06 リソグラフィー用重合体並びにその製造方法
JP2008-149979 2008-06-06

Publications (1)

Publication Number Publication Date
WO2009147823A1 true WO2009147823A1 (ja) 2009-12-10

Family

ID=41397906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002437 WO2009147823A1 (ja) 2008-06-06 2009-06-01 リソグラフィー用重合体並びにその製造方法

Country Status (4)

Country Link
US (1) US8470510B2 (ja)
JP (1) JP5553488B2 (ja)
DE (1) DE112009001389T5 (ja)
WO (1) WO2009147823A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285403A (ja) * 2009-06-15 2010-12-24 Nissan Chem Ind Ltd 架橋剤及び該架橋剤を含有するレジスト下層膜形成組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063327A (ja) * 1998-08-17 2000-02-29 Toyo Ink Mfg Co Ltd 反応性ヘミアセタールエステルの製造方法、該方法で製造された反応性ヘミアセタールエステル、およびその硬化物
JP2004091757A (ja) * 2002-09-04 2004-03-25 Nippon Shokubai Co Ltd (メタ)アクリレート化合物を含む水系組成物
WO2005022260A1 (ja) * 2003-08-28 2005-03-10 Hitachi Chemical Co., Ltd. 感光性樹脂組成物、これを用いた感光性エレメント、レジストパターンの形成方法及びプリント配線板の製造方法並びに光硬化物の除去方法
WO2006016648A1 (ja) * 2004-08-13 2006-02-16 Nippon Soda Co., Ltd. スターポリマー、酸分解性樹脂組成物、レジスト組成物およびジ(メタ)アクリレート化合物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230574A (ja) * 1993-02-05 1994-08-19 Fuji Photo Film Co Ltd ポジ型感光性組成物
JP3756270B2 (ja) 1996-11-07 2006-03-15 株式会社フジクラ 光フェルールおよび光コネクタ
TW528932B (en) * 1997-01-24 2003-04-21 Shinetsu Chemical Co Polymers and chemically amplified positive resist compositions
JP3954233B2 (ja) * 1998-03-30 2007-08-08 富士フイルム株式会社 ポジ型フォトレジスト組成物
JP3285086B2 (ja) * 1999-05-20 2002-05-27 日本電気株式会社 化学増幅型レジスト組成物
JP4295418B2 (ja) * 2000-05-11 2009-07-15 富士フイルム株式会社 ネガ型平版印刷版原版
JP3956088B2 (ja) * 2000-07-19 2007-08-08 信越化学工業株式会社 化学増幅ポジ型レジスト材料
JP2002296782A (ja) 2001-03-30 2002-10-09 Fuji Photo Film Co Ltd ポジ型レジスト組成物
JP3895224B2 (ja) * 2001-12-03 2007-03-22 東京応化工業株式会社 ポジ型レジスト組成物及びそれを用いたレジストパターン形成方法
JP2004066482A (ja) * 2002-08-01 2004-03-04 Fuji Photo Film Co Ltd 平版印刷版用原版及び製版・印刷方法
JP4443161B2 (ja) 2002-10-25 2010-03-31 ダイセル化学工業株式会社 芳香族系ビニルエーテル化合物
JP4372583B2 (ja) * 2004-03-12 2009-11-25 東京応化工業株式会社 ホトレジスト組成物、液晶パネル用スペーサの形成方法、液晶パネル用スペーサ、及び液晶パネル
JP2006003844A (ja) 2004-06-21 2006-01-05 Tokyo Ohka Kogyo Co Ltd ポジ型レジスト組成物およびレジストパターン形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063327A (ja) * 1998-08-17 2000-02-29 Toyo Ink Mfg Co Ltd 反応性ヘミアセタールエステルの製造方法、該方法で製造された反応性ヘミアセタールエステル、およびその硬化物
JP2004091757A (ja) * 2002-09-04 2004-03-25 Nippon Shokubai Co Ltd (メタ)アクリレート化合物を含む水系組成物
WO2005022260A1 (ja) * 2003-08-28 2005-03-10 Hitachi Chemical Co., Ltd. 感光性樹脂組成物、これを用いた感光性エレメント、レジストパターンの形成方法及びプリント配線板の製造方法並びに光硬化物の除去方法
WO2006016648A1 (ja) * 2004-08-13 2006-02-16 Nippon Soda Co., Ltd. スターポリマー、酸分解性樹脂組成物、レジスト組成物およびジ(メタ)アクリレート化合物

Also Published As

Publication number Publication date
JP2009292982A (ja) 2009-12-17
DE112009001389T5 (de) 2011-04-28
JP5553488B2 (ja) 2014-07-16
US8470510B2 (en) 2013-06-25
US20110065044A1 (en) 2011-03-17

Similar Documents

Publication Publication Date Title
JP5030474B2 (ja) 半導体リソグラフィー用樹脂組成物
WO2010001913A1 (ja) アクリル酸エステル誘導体、ハロエステル誘導体、高分子化合物およびフォトレジスト組成物
JP2004323704A (ja) フォトレジスト用重合体合成用(メタ)アクリル酸エステルとその製造法
JP5478106B2 (ja) フォトレジスト用重合体及びその組成物
JP2008050422A (ja) 半導体レジストの保護膜用樹脂及び半導体の製造方法
JP2004182796A (ja) 高分子化合物、該高分子化合物を含むレジスト組成物および溶解制御剤
JP4188058B2 (ja) フォトレジスト用高分子化合物及びフォトレジスト用樹脂組成物
JP2007284381A (ja) フォトレジスト用(メタ)アクリル系単量体、その高分子化合物及びフォトレジスト用樹脂組成物
JP4976229B2 (ja) フォトレジスト用樹脂溶液の製造方法、フォトレジスト組成物およびパターン形成方法
JP5107089B2 (ja) 液浸用フォトレジスト高分子化合物及び組成物
JP2010113035A (ja) 下層膜用重合体、下層膜用組成物及び半導体の製造方法
JP2010100842A (ja) フォトレジスト用重合体及び組成物
JP2010150447A (ja) ラクトン骨格を含む単量体、高分子化合物及びフォトレジスト組成物
KR20030087190A (ko) 감광성 폴리머 및 이를 포함하는 레지스트 조성물
JP5553488B2 (ja) リソグラフィー用重合体並びにその製造方法
JP5215228B2 (ja) フォトレジスト用樹脂組成物の製造法
JP4033826B2 (ja) フォトレジスト用樹脂及びフォトレジスト用樹脂組成物
JP5207878B2 (ja) リソグラフィー用重合体の製造方法、及びパターン形成方法
JP2009041039A (ja) 高分子化合物
US8753793B2 (en) Method for producing resin solution for photoresist, photoresist composition, and pattern-forming method
JP4744113B2 (ja) 液浸露光用フォトレジスト用高分子化合物の製造法
JP4777011B2 (ja) フォトレジスト用高分子化合物の製造方法及びフォトレジスト組成物
JP4316254B2 (ja) フォトレジスト用樹脂組成物及びその製造法
JP5562651B2 (ja) 化学増幅型フォトレジスト用樹脂及びその製造方法
US20100316954A1 (en) Monomer having lactone skeleton, polymer compound and photoresist composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758090

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12992423

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112009001389

Country of ref document: DE

Date of ref document: 20110428

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09758090

Country of ref document: EP

Kind code of ref document: A1