WO2009146900A1 - Elektrischer selektiver selbstschalter - Google Patents

Elektrischer selektiver selbstschalter Download PDF

Info

Publication number
WO2009146900A1
WO2009146900A1 PCT/EP2009/003968 EP2009003968W WO2009146900A1 WO 2009146900 A1 WO2009146900 A1 WO 2009146900A1 EP 2009003968 W EP2009003968 W EP 2009003968W WO 2009146900 A1 WO2009146900 A1 WO 2009146900A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
switch
fixed contact
bridge
contact bridge
Prior art date
Application number
PCT/EP2009/003968
Other languages
English (en)
French (fr)
Inventor
Jozef Smrkolj
Original Assignee
Rissing D.O.O
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rissing D.O.O filed Critical Rissing D.O.O
Priority to CN200980119632.7A priority Critical patent/CN102047370B/zh
Priority to EP09757283.8A priority patent/EP2286432B1/de
Publication of WO2009146900A1 publication Critical patent/WO2009146900A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/1081Modifications for selective or back-up protection; Correlation between feeder and branch circuit breaker
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H75/00Protective overload circuit-breaking switches in which excess current opens the contacts by automatic release of mechanical energy stored by previous operation of power reset mechanism
    • H01H75/02Details
    • H01H75/04Reset mechanisms for automatically reclosing a limited number of times

Definitions

  • the invention relates to an electrical selective self-switch, in particular a circuit breaker. It particularly concerns an electrical selective circuit breaker with low power losses.
  • An electrical self-switch is known for example from DE 103 54 505 Al. If, in the case of this known electrical self-switch, the tappet of the magnet armature strikes the contact bridge in the direction of actuation, the result of the resulting elastic shock is not only an interruption of the main current path, but also a brief interruption of the auxiliary current path. This can lead to the function of the auxiliary release device not being reliably guaranteed.
  • a selective protection device which is used for selective shutdown of consumers, possibly with an upstream main fuse.
  • a switching device is provided in the current path of a main line circuit breaker, which at least partially switches the current on a provided with a magnetic triggers parallel branch when a short-circuit current
  • the parallel branch includes a device which after passing a predetermined value of a temporal square integral current through the Coil of the magnetic release increased so much that this triggers a switch lock, which finally opens a separation point in the current path of the main line circuit breaker.
  • a circuit breaker is already known, the only temporarily shuts off in the event of a short circuit and waits whether a downstream circuit breaker disconnects the short circuit. In this case, it turns on again, otherwise it turns off permanently.
  • a power circuit breaker is provided, in whose main current path an overcurrent responsive thermal release such as a bimetal, a responsive short-circuiting magnetic mechanism and operated by the thermal release and the magnetic mechanism separation point are net.
  • the magnetic mechanism and the separation point are bridged by a Maustromweg, in which a second thermal release such as a second bimetal, an electrical resistance and a second separation point are arranged.
  • a second thermal release such as a second bimetal, an electrical resistance and a second separation point are arranged.
  • another current path branches off to the neutral conductor via a second magnet mechanism, it leads behind the second magnet mechanism via two parallel lines each having a third separation point and a fourth separation point, the first branch current still having a second resistance.
  • main circuit breakers are known according to E DIN VDE 0645, in which in a main current path, a first thermal tripping device such as a bimetal, a main switch and a magnetic tripping seese device are connected in series, the main switch is bridged by a shunt, in which a selective resistor, a second thermal trip device for selective trip and a sub-switch are connected in series, the first thermal tripping device and the second thermal tripping device acting on a derailleur which opens the main switch and the sub-switch, and wherein the magnetic trip device acts on the main switch acts.
  • a first thermal tripping device such as a bimetal
  • the main switch is bridged by a shunt, in which a selective resistor, a second thermal trip device for selective trip and a sub-switch are connected in series, the first thermal tripping device and the second thermal tripping device acting on a derailleur which opens
  • the object of the present invention is to provide an electrical selective self-switch in which, on the one hand, it is reliably ensured that an uninterrupted flow of current in the auxiliary current path is ensured when the main tripping device is actuated, ie if the main current path is interrupted, and at the same time the power losses are minimized during normal operation.
  • an electrical selective self-switch in particular a circuit breaker is provided with a series circuit of an auxiliary trip device, a normally closed first switch, a resistor and a main tripping device, which is connected between a first and a second electrical connection, a bypass current path, the main tripping device is connected in series between the first and the second electrical connection and having a closed in the event of trouble second switch and a normally closed third switch, the second switch is connected in series, and a current bridge connecting an input contact of the first switch with a connection contact between the second and the third switch, wherein the main triggering device is designed so that upon reaching a first threshold current of the second switch and upon reaching a second threshold current, is larger than the first threshold current, in addition, the third switch is opened, and wherein the auxiliary triggering device is designed such that the first and the third switch is opened when the second switch is open after a first period of time, while with the second and third switches open the first switch is opened after a second period of time, which is
  • an electrical selective self-switch which can be used, in particular, as a circuit breaker which has a first and a second parallel circuit which are connected in series with each other and with a main tripping device.
  • the first parallel circuit in its first branch on an auxiliary tripping device and a series-connected normally closed first sub-switch of a double switch, wherein its second branch forms a shunt with a normally closed first switch.
  • the second parallel circuit has in its first branch a normally closed second partial switch of the double switch and a resistor connected in series therewith, wherein its second branch forms a shunt with a normally closed second switch.
  • the main triggering device is designed so that upon reaching a first threshold current of the first switch and on reaching a second threshold current, which is greater than the first threshold current, in addition, the second switch is opened.
  • the auxiliary tripping device is designed such that the first and second subswitch of the double switch and the second switch at an open first switch after a first period of time and at an open second switch after a second period of time which is shorter than the first time period, is opened.
  • the current bridge is formed by a contact bridge, which in the operating state a first and a second fixed contact of the first switch and a third fixed contact of the third switch electrically connects to each other.
  • the third fixed contact on the one hand and the first and second fixed contact on the other hand on opposite sides of the contact bridge are located.
  • the auxiliary trip device comprises a Bimetallbetuschiger adopted with a located between the first terminal and the first switch first bimetal, wherein the Bimetallbet2011 is formed so that it acts on the contact bridge mechanically acting on the switch lock, and wherein the Switching mechanism applied to the contact bridge tripping force in the opening direction of the contact between the third fixed contact and the contact bridge and the opening directions of the contact between the first fixed contact and the contact bridge and the second fixed contact and the contact bridge acts.
  • the bimetallic actuator device it is expedient for the bimetallic actuator device to have a second bimetal located between the first switch and the second connection, which is designed such that it triggers the switching mechanism independently of the first bimetal by means of the bimetallic actuator device.
  • the arrangement of the first fixed contact and the second fixed contact and / or the design of the contact bridge is such that the contact bridge when the switching lock is released, after the third fixed contact has been opened, first separated from the second fixed contact and then from the first fixed contact ,
  • This embodiment causes a reliable consecutive separation of the second fixed contact first of the contact bridge and then the first fixed contact of the contact bridge.
  • the main tripping device has a magnetically actuating device acting mechanically on the contact bridge with a first In the direction of actuation movable magnet armature and a switched between the bypass path and the second coil, wherein the actuating direction of the first armature directed, exerted by the first armature release force in the opening direction of the contact between the third fixed contact and the contact bridge and in the closing direction of the contact between the first Fixed contact and the contact bridge and between the second fixed contact and the contact bridge acts.
  • a connecting line between the first fixed contact and the second fixed contact forms a pivot axis for the contact bridge when the tripping force of the first armature is applied to the contact bridge.
  • the point of action of the release force exerted by the first armature between the third fixed contact on the one hand and the first and second fixed contact on the other hand.
  • a contact spring is provided which simultaneously generates contact forces between the third fixed contact and the contact bridge, between the first fixed contact and the contact bridge and between the second fixed contact and the contact bridge in the respective closing direction of the fixed contacts.
  • the first and second fixed contact superior portion of the contact bridge acts on it is particularly advantageous.
  • the second switch it is particularly expedient for the second switch to have a movable contact which, in the event of a malfunction, electrically connects the first connection to the contact bridge, wherein preferably the movable one
  • the contact bridge is arranged and pivotally mounted by means of a pivoting device, wherein the pivot axis of the pivoting device extends substantially parallel to the pivot axis of the contact bridge.
  • the magnetic actuator has a extending through a through hole of the contact bridge pin with a direction of actuation of the movable armature located in front of the contact bridge expansion, wherein one end of the pin of the magnetic actuator is adapted to act in the opening direction of the movable contact on this and the expansion is adapted to act in the opening direction of the contact bridge on this.
  • the magnetic actuator device prefferably to be designed in such a way that, upon actuation of the first magnet armature, the contact between the contact bridge and the movable contact is opened prior to the contact between the third stationary contact and the contact bridge.
  • the magnetic actuator device has a core which is provided with a short-circuit ring facing the first magnet armature, vibration of the magnet armature is avoided by the eddy currents occurring in the short-circuit ring in the event of a fault or when operating with alternating current.
  • the reliability is increased by the fact that the magnetic actuator has a second movable in the direction of actuation armature, which preferably has a greater mass than the first armature, and in addition to the first armature an accelerated at an increased induction in the magnetic actuator Movement causes in the direction of actuation.
  • the contact between the contact bridge and the third fixed contact is abruptly opened in the case of a short circuit, ie at high induction in the magnetic actuator device as a result of a high overcurrent that a resulting there arc even at the in this Error case increased current flow reliably and quickly cleared.
  • auxiliary triggering device is configured such that upon manual switching on, first the second switch, then the first switch and subsequently the third switch is closed.
  • 1A is a functional diagram of the electrical selective self-switch according to the invention and a detailed view of the first and second fixed contacts lying one behind the other in the direction A;
  • Fig. IB is a circuit diagram of the electrical selective self-switch according to the invention in trouble-free operation
  • FIG. 2A is a functional diagram of the electrical selective self-switch according to the invention in the event of an overcurrent
  • 2B is a circuit diagram of the electrical selective self-switch according to the invention in the case of an overcurrent.
  • 3A is a functional diagram of the electrical selective self-switch according to the invention in the case of a short-circuit current.
  • 3B is a circuit diagram of the electrical selective self-switch according to the invention in the case of a short-circuit current.
  • 4A is a functional diagram of the electrical selective self-switch according to the invention in the switched-off state
  • 4B is a circuit diagram of the electrical selective self-switch according to the invention in the off state
  • FIG. 5A shows a functional sketch of a further embodiment of the electrical selective self-switch according to the invention in the case of trouble-free operation
  • Fig. 5B is a circuit diagram of the further embodiment of the electrical selective self-switch according to the invention in trouble-free case.
  • FIG. 6 is a circuit diagram of a main circuit breaker during the short-circuit with a Selektivauslöser and 7 shows the arrangement according to the invention of a selective resistor in the magnetic circuit of a striking coil.
  • the self-switch according to the invention comprises a first electrical connection 2 and a second electrical connection 4, between which an auxiliary tripping device 6, a first switch 8, a resistor 10 and a main tripping device 12 are connected in series.
  • the electrical selective self-switch according to the invention has a bypass current path which is connected in series with the main triggering device 12 between the first terminal 2 and the second terminal 4 and which has a second switch 14 closed in the event of a malfunction and a third switch 16 normally closed which is connected in series with the second switch 14.
  • the input contact of the first switch 8 is connected by a current bridge with a connection contact 18 between the second switch 14 and the third switch 16.
  • Fig. IA shows the structure of the electrical selective self-switch according to the invention in the switched-on operating state.
  • a pivotally movable contact bridge 20 connects a first fixed contact 22, which forms the input contact of the first switch 8, a second fixed contact 24 which is connected to the resistor 10, and a third fixed contact 26, which via the bypass current path with the main triggering device 12 in connection stands, electrically with each other.
  • the contact bridge 20 bears against a contact point 28 at its first end 30 on the second fixed contact 26 and establishes an electrical connection between the main triggering device 12 and the first connection 2 via the second switch 14.
  • the contact bridge 20 In the vicinity of its other end 32, the contact bridge 20 is supported via a compression spring 34 against an abutment 38 provided on a switching lock 36.
  • the abutment 38 and the third fixed contact 26 lie on the same side of the contact bridge 20. On the side facing away from this side of the contact bridge 20 this lies in a between the point of attack of the compression spring 34 and the third fixed contact 26 on the first fixed contact 22 and second fixed contact 24 and thus provides an electrical connection between the first, second and third fixed contact 22, 24 and 26 ago.
  • FIG. 1A which shows the spatial arrangement of the first fixed contact 22 and the second fixed contact 24 in the direction A perpendicular to the plane of the drawing, the first fixed contact 22 is on the same side of the contact bridge 20 as the second fixed contact 24.
  • the second fixed contact 24 may be spaced slightly further from the abutment 38 than the first fixed contact 22.
  • the first contact bridge 20 is supported by the pressure of the spring 34 against the first fixed contact 22 and the third fixed contact 24 and is dependent on the force of Spring 34 is pivoted counterclockwise about a pivot axis X connecting the first fixed contact 22 and the second fixed contact 24 in the detailed illustration of FIG. 1A, so that the first end 30 of the contact bridge 20 with the contact point 28 is pressed against the third fixed contact 26.
  • the compression spring 34 thus brings on all three fixed contacts 22, 24 and 26 a required pressure force, which brings the first contact bridge 20 against the fixed contacts 22, 24 and 26 for fixed abutment.
  • the electrical selective self-switch according to the invention has a movable contact 40 which electrically connects the first terminal 2 to the contact bridge 20 in the event of a fault.
  • the movable contact 40 is mounted with its first end 42 in a pivot bearing 44 and is located with a contact point 46 at its second end 48 to the contact bridge 20 at.
  • the pivot axis of the pivot bearing 44 lies substantially parallel to the pivot axis X of the contact bridge 20.
  • the movable contact 40 is arranged on the same side of the contact bridge 20 as the first fixed contact 22 and the second fixed contact 24, wherein the movable contact 40 against the Contact bridge 20 is pressed by a compression spring 50, which is supported on an abutment 52.
  • the movable contact 40 thus connects the first terminal 2 with the contact bridge 20 and thus forms the closed second switch 14.
  • the third fixed contact 26 opposite a fixed housing stop 54 is provided, to which the first end 30 of the contact bridge 20 during a movement the contact bridge 20 abuts against the force of the compression spring 34 in a clockwise direction in order to limit a deflection of the contact bridge 20.
  • the main triggering device 12 will be described in more detail.
  • This has a coil 56 which is connected in series between the second terminal 4 and the shunt current path to the second switch 14 and the third switch 16.
  • the main tripping device 12, which is designed as a magnetic actuator device or magnet system, further comprises a coil core 58 located within the coil 56, a pin 60 and a first magnet armature 62.
  • a second armature 64 is provided, which is also displaceable in the release direction B within the coil 56 and acts on the pin 60. At rest, the second armature 64 is supported under the force of a compression spring 66 against a stop 68 fixed to the housing. Furthermore, the core 58 is provided on its side facing the first armature 62 end face with a short-circuit ring 70, wherein formed in the short-circuit ring 70, which is made of a highly electrically conductive material, eddy currents that prevent the formation of vibrations in the main triggering device 12 so that there is no unwanted noise. This is particularly advantageous in AC operation, since then the armature is held vibration-free at the core 58 during the triggering of the self-switch.
  • the pin 60 is axially slidably mounted within the core 58 in the release direction A and is biased by the compression spring 66 against the release direction B.
  • the forward end of the pin 60 protrudes axially from the core 58 toward the contact bridge 20 and the movable contact 40 and forms a striker for actuating the movable contact 40, the point of action of the pin 60 between the pivot bearing 44 of the movable contact 40 and the compression spring 50 is located.
  • the pin 60 extends through a through hole 72 of the contact bridge 20, wherein at the front end of the pin 60 in the direction of actuation B of the first armature 62 in front of the contact bridge 20, a widening or a section of enlarged diameter 74 is arranged, the larger as the through hole 72 of the contact bridge 20 is.
  • the widening 74 abuts against the contact bridge 20 to this about the pivot axis X, which is formed by the first and second fixed contact 22 and 24 against the force of the compression spring 34 counterclockwise to move and to open the contact of the contact bridge 20 with the third fixed contact 26.
  • the widening 74 is arranged on the pin 60 such that first of all the contact between the movable cone clock 40 and the contact bridge 20 is opened before the contact between the contact bridge 20 and the third fixed contact 26 is opened.
  • the rear end of the pin 60 is supported in a blind hole of the second magnet armature 64 against the first magnet armature 62.
  • the pin 60 penetrates an axial bore in the first armature 62.
  • the first magnet armature 62 is axially displaceably guided within the blind hole of the second armature 64 and is supported on its side facing away from the magnet armature 64 against a collar 75 of a portion of the pin 60 with an enlarged diameter from.
  • auxiliary release device 6 This has a Bimetallbetuschiger worn with a first bimetal 76, which is connected between the first terminal 2 and the first fixed contact 22 of the first switch 8.
  • the switching mechanism 36 In a current flowing through the auxiliary current path, the first bimetal 76 is heated and bends with it, whereupon the switching mechanism 36 is triggered in a known manner after a delay time correlated with the current intensity.
  • the switching mechanism 36 moves in the direction of the arrow C shown in Fig. 4A, wherein the second end 32 of the contact bridge 20 pivots in a clockwise direction about the axis X until the first end 30 to rest against the third fixed contact 26 located housing fixed stop 54 device.
  • the switching mechanism 36 and the abutment 38 is moved in the direction of the arrow C, so that the pivotal movement of the contact bridge 20 without compression of the spring 34 takes place, so the force of the spring 34 does not increase additionally.
  • the coil 56 induces a magnetic force on the first armature 62, the latter in the release direction B against the force of the spring 66 against the collar 75th of the pin 60 and then the pin 60 against the force of the spring 66 in the release direction B against the movable contact 40 in its point of action, whereby the contact between the movable contact 40 and contact bridge 20 is opened, as in Figs. 2A and 2B shown.
  • the extension 74 is attached to the pin 60 so that the contact bridge 20 still forms a contact with the third fixed contact 26 and is not opened.
  • the bimetal 76 of the bimetallic actuator of the auxiliary trip device 6 is connected in series with the coil 56 of the main tripping device 12 and a parallel circuit of resistor 10 and a shunt current path with the third switch 16 shorting the resistor 10 by this shunt current path.
  • the current flowing through the first bimetal 76 leads to a heating of the first bimetal 76, whereby after a first period of time the switching mechanism 36 is opened in the manner described above.
  • the overcurrent corresponds to a first threshold current, which is adjustable in terms of apparatus (for example, by a corresponding dimensioning of the ratio between the spring force of the spring 66 and the force of the coil 56) by the electrical selective self-switch.
  • the electrical selective self-switch can be provided as a main switch, with an occurrence of an overcurrent first by lying after the main switch fuses of End consumers can be eliminated without the working as a main switch electrical selective selector switch disconnects the entire supply of a variety of end users.
  • the electrical selective self-switch is intended to actuate the switching mechanism 36 within a very short time, that is to say a second time duration, which is substantially shorter than the first time duration.
  • a short-circuit current which in addition to the movable contact 40 by means of the expansion 74, the contact bridge 20 moves in the direction of actuation B and thus the contact between contact bridge 20 and third fixed contact 26 is opened, there is an opening of the second switch 14 and the third switch 16, as shown in the equivalent circuit diagram in Fig. 3B.
  • the short-circuit current flows via the first bimetal 76, the first switch 8 and the current-limiting resistor 10 via the coil 56 to the second terminal 4.
  • the short-circuit current causes a sudden heating of the first bimetal 76, whereby the switching mechanism 36 is actuated immediately.
  • the second magnet armature 64 has the task of opening the contact fixed immediately after contact opening without the interposition of any kinematics parts sufficient to effectively limit the arc current acting on the third fixed contact 26, so that the Arc is safely deleted.
  • the second magnet armature 64 is abruptly moved in the release direction B and acts on the system of the rear end of the pin 60 directly on the pin 60 and shifts it in the triggering direction abruptly against the contact bridge 20th
  • FIGS. 5A and 5B A further exemplary embodiment of the electrical selective self-switch according to the invention is shown in FIGS. 5A and 5B.
  • the auxiliary tripping device 6 on a Bimetallbetuschiger founded having in addition to the first bimetal 76, a second bimetal 78 which is formed so that it causes independent of the first bimetal 76 by means of the Bimetallbetuschiger adopted triggering the switching mechanism 36.
  • the second bimetal 78 is connected between the second fixed contact 24 and the coil 56.
  • the second bimetal 78 thus becomes active only in the event of a short circuit or when a second threshold current is exceeded, since below one second threshold current, the second bimetal 78 and the resistor IO is shorted to the third switch 16 by the shunt current path.
  • the second bimetal 78 has the function of opening, with a time constant, the switching mechanism 36, which is substantially smaller than the time constant of the first bimetal 76.
  • the present invention thus provides an electrical selective self-switch which selectively opens in the event of an overcurrent occurring after a period of time sufficient for subsequent electrical self-switches of end-users to shut off before the main switch operating as an electrical selective self-switch turns off, and which in Case of a short-circuit current abruptly the contact between the first terminal 2 and second terminal 4 separates.
  • the electric self-switch according to the invention has the advantage that in normal operation, the current between the first terminal 2 and second terminal 4 substantially only flows through the coil 56 of the main triggering device 12, since the first bimetal 76 or the second bimetal 78 through the bypass current path with the second Switch 14 and the third switch 16 are short-circuited.
  • the power consumption of the electric selective self-switch according to the present invention is minimized.
  • the electric selective self-switch of the present invention has the advantage that before switching off by the switching mechanism 36, an uninterrupted flow of current in an auxiliary current path for controlling the switching mechanism 36 is ensured, whereby a fault in the function of the auxiliary release device is avoided.
  • resistor 10 and the coil 56 will be described, which will be explained with reference to FIGS. 6 and 7 for better illustration of the principle of operation by a simplified main fuse.
  • the arrangement and configuration of the selective resistor 101 and the beating coil 102 are applicable to a resistor 10 configured as a coil and the coil 56.
  • resistors in the range of 0.5 ohms are used in the main circuit breaker.
  • the selective resistor has to be able to handle powers of the order of 100 kilowatts non-destructively.
  • a selective resistor which may be the resistor 10 shown in FIGS. 1 to 5, is used, which is wound as a coil of resistive material over the beating coil of the main circuit which may be the coil 56.
  • the Selektivauslöser forms together with the impact coil a structural unit, which is enclosed by a common magnetic yoke and additionally has a magnetic core, a magnet armature and a selective bimetal.
  • the magnetic yoke is formed so that it not only serves to conduct the magnetic flux, but also acts as a magnetic and thermal shield against adjacent devices.
  • the magnetic yoke which also carries the selective bimetal, encloses on four sides in a box-shaped manner both the impact coil and the coil-shaped selective resistance and is spatially arranged on both sides between the latter and the housing walls of the main automatic circuit breaker.
  • winding direction of selective resistance and impact coil is chosen so that complement their magnetic effect in current flow.
  • Fig. 6 is the arrangement of the selective resistor 101 on the impact coil 102 can be seen from the circuit diagram of the main circuit breaker. Likewise, the circuit-technical position of the selective release can be recognized as a parallel circuit. The illustrated switching state corresponds to the fault case "short circuit" during the delay time.
  • the main contact 103 and the isolating contact 104 are closed.
  • the operating current flows through the main contact 103 and the impact coil 102 to the electrical load.
  • the magnet armature 105 shown in FIG. 7, excited by the magnetic field of the impact coil 102 opens the main contact 103.
  • the isolating contact 104 remains closed, so that the main contact 103 is bridged by the parallel circuit of the selective release.
  • the short-circuit current is limited by the selective resistor 101.
  • This residual current flows through both the selective bimetal 106 and through the selective resistor 101 and the impact coil 102.
  • the residual current generates an additional, magnetic induction in the selective resistor which amplifies both the attractive force of the magnet armature 105 when opening the main contact 103 in the magnetic circuit of the beating coil also ensures a sufficient holding force of the armature 105 on the magnetic core 108 during the delay time.
  • the selective bimetal 106 bends and unlatches the switching mechanism, which then opens the isolating contact 104, keeps the main contact 103 open and thus interrupts the circuit to be protected. If during the delay time the circuit elsewhere, so z. B. is interrupted by a downstream circuit breaker, the main circuit breaker remains switched on and ensures the availability of the rest of the system.
  • Fig. 7 is a horizontal section through the main automatic circuit breaker in plan view is shown schematically. From this, the spatial arrangement of the selective resistor 101 on the impact coil 102 can be seen and the formation of the magnetic yoke 107 as thermal and magnetic shielding within the housing 1 10 relative to adjacent devices recognizable.
  • the flux in the magnetic circuit is generated both by the number of turns of the selective resistor 101 and by the windings of the beating coil 102, so that the residual current limited by the selective resistance is certainly sufficient to release the armature 105 during the deceleration. to hold time to the magnetic core 108 and thus to fix the main contact 103 against the force of the closing spring 109 in the open position.
  • a Selektivauslöser for a main circuit breaker, which is arranged in series connection of selective bimetal and selective resistor as a parallel circuit to the main contact and bypasses this in the event of a fault "short circuit".
  • the selective resistor 101 is formed as a coil and arranged in the magnetic circuit of the beating coil 102 for their magnetic support in the force effect when opening and keeping open the main contact 103.
  • the selective resistor 101 limited in functional combination both the short-circuit current and amplified with the remaining residual current, the flooding in the magnetic circuit together with the impact coil 102nd
  • the selective resistor 101 is arranged spatially between the magnet yoke 107 and the impact coil 102, enclosing and covering it at least partially.
  • the selective release is circuitally arranged together with the impact coil 102 on the same side in the energy flow direction of the main contact 103 and isolating contact 104.
  • the Selektivauslöser forms together with the impact coil 102, the magnetic core 108, the armature 105, the selective resistor 101, the selective bimetal 106 and the yoke 107 a structural unit, wherein the yoke which on the housing walls 1 10 over a large area abuts the attachment for the base of the selective bimetal 106 offers.

Landscapes

  • Breakers (AREA)
  • Keying Circuit Devices (AREA)
  • Electromagnets (AREA)

Abstract

Die Erfindung betrifft einen elektrischen selektiven Selbstschalter, insbesondere einen Schutzschalter, mit einer Reihenschaltung aus einer Hilfsauslöse- vorrichtung (6), einem normalerweise geschlossenen ersten Schalter (8), einem Widerstand (10) und einer Hauptauslösevorrichtung (12), die zwischen einen ersten und einen zweiten elektrischen Anschluss (2, 4) geschaltet ist, einem Nebenschlussstrompfad, der mit Hauptauslösevorrichtung (12) in Reihe zwischen den ersten und den zweiten elektrischen Anschluss (2, 4) geschaltet ist und der einen im störungsfreien Fall geschlossenen zweiten Schalter (14) sowie einen normalerweise geschlossenen dritten Schalter (16) aufweist, der zum zweiten Schalter (14) in Reihe geschaltet ist, und einer Strombrücke, die einen Eingangskontakt des ersten Schalters (8) mit einem Verbindungskontakt (18) zwischen dem zweiten und dem dritten Schalter (14, 16) verbindet, wobei die Hauptauslösevorrichtung (12) so ausgebildet ist, dass bei Erreichen eines ersten Schwellenstroms der zweite Schalter (14) und bei Erreichen eines zweiten Schwellenstroms, der größer als der ersten Schwellenstrom ist, zu- sätzlich der dritte Schalter (16) geöffnet wird, und wobei die Hilfsauslösevorrichtung (6) so ausgebildet ist, dass der erste und der dritte Schalter (8, 16) bei geöffnetem zweiten Schalter (14) nach Ablauf einer ersten Zeitdauer geöffnet wird, während bei geöffnetem zweiten und dritten Schalter (14, 16) der erste Schalter (8) nach Ablauf einer zweiten Zeitdauer geöffnet wird, die kürzer als die erste Zeitdauer ist.

Description

Elektrischer selektiver Selbstschalter Beschreibung
Die Erfindung betrifft einen elektrischen selektiven Selbstschalter, insbesondere einen Schutzschalter. Sie betrifft besonders einen elektrischen selekti- ven Schutzschalter mit geringen Leistungsverlusten.
Ein elektrischer Selbstschalter ist beispielsweise aus der DE 103 54 505 Al bekannt. Trifft bei diesem bekannten elektrischen Selbstschalter der Stössel des Magnetankers in Betätigungsrichtung auf die Kontaktbrücke auf, so er- folgt durch den sich ergebenen elastischen Stoß nicht nur eine Unterbrechung des Hauptstrompfads, sondern auch eine kurzzeitige Unterbrechung des Hilfstrompfads. Dies kann dazu führen, dass die Funktion der Hilfsaus- lösevorrichtung nicht zuverlässig gewährleistet ist.
Aus der DE 28 54 616 ist eine Selektivschutzeinrichtung bekannt, die zur selektiven Abschaltung von Verbrauchern, ggf. mit einer vorgeschalteten Hauptsicherung dient. Hierbei ist im Strompfad eines Hauptleitungsschutzschalters eine Umschaltvorrichtung vorgesehen, welche bei Auftreten eines Kurzschlussstroms den Strom zumindest teilweise auf einen mit einem Mag- netauslöser versehenen Parallelzweig umschaltet, wobei der Parallelzweig eine Einrichtung enthält, welche nach Durchgang eines vorgegebenen Wertes eines zeitlichen Stromquadratintegrals den Strom durch die Spule des Magnetauslösers soweit erhöht, dass dieser ein Schaltschloss auslöst, welches eine Trennstelle im Strompfad des Hauptleitungsschutzschalters endgültig öffnet.
Aus der DE 41 183 77 Al ist ein Schutzschalter vorbekannt, der bei Kurz- schluss erst nur vorläufig ausschaltet und wartet, ob ein nachgeschalteter Schutzschalter den Kurzschluss abtrennt. In diesem Fall schaltet er wieder ein, andernfalls schaltet er endgültig ab. Hierzu ist ein Leistungsschutzschalter vorgesehen, in dessen Hauptstromweg ein auf Überstrom ansprechender thermischer Auslöser wie beispielsweise ein Bimetall, ein auf Kurzschluss ansprechender Magnetmechanismus und eine von dem thermischen Auslöser sowie von dem Magnetmechanismus betätigte Trennstelle angeord- net sind. Der Magnetmechanismus und die Trennstelle sind überbrückt durch einen Nebenstromweg, in welchem ein zweiter thermischer Auslöser wie beispielsweise ein zweites Bimetall, ein elektrischer Widerstand und eine zweite Trennstelle angeordnet sind. Hinter den Trennstellen zweigt ein weiterer Stromweg über einen zweiten Magnetmechanismus zum Nullleiter ab, er führt hinter dem zweiten Magnetmechanismus über zwei Parallelleitungen mit jeweils einer dritten Trennstelle und einer vierten Trennstelle, wobei der erste Stromzweig noch einen zweiten Widerstand aufweist.
Darüber hinaus sind Haupt-Sicherungsautomaten nach E DIN VDE 0645 bekannt, bei welchem in einem Hauptstrompfad eine erste thermische Auslösevorrichtung wie ein Bimetall, ein Hauptschalter und eine magnetische Auslö- sevorrichtung in Reihe geschaltet sind, wobei der Hauptschalter durch einen Nebenschluss überbrückt ist, in welchem ein Selektivwiderstand, eine zweite thermische Auslösevorrichtung zur Selektivauslösung und ein Nebenschalter in Reihe geschaltet sind, wobei die erste thermische Auslösevorrichtung und die zweite thermische Auslösevorrichtung auf ein Schaltwerk einwirkt, wel- ches den Hauptschalter und den Nebenschalter öffnet, und wobei die magnetische Auslösevorrichtung auf den Hauptschalter einwirkt.
Aufgabe der vorliegenden Erfindung ist es, einen elektrischen selektiven Selbstschalter zu schaffen, bei dem einerseits zuverlässig sichergestellt ist, dass bei einer Betätigung der Hauptauslösevorrichtung, also bei einer Unterbrechung des Hauptstrompfads, ein ununterbrochener Stromfluss im Hilfs- strompfad gewährleistet ist, und dass gleichzeitig die Leistungsverluste im Normalbetrieb minimiert sind.
Diese Aufgabe wird durch den elektrischen selektiven Selbstschalter nach Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
Insbesondere ist erfindungsgemäß ein elektrischer selektiver Selbstschalter, insbesondere ein Schutzschalter vorgesehen, mit einer Reihenschaltung aus einer Hilfsauslösevorrichtung, einem normalerweise geschlossenen ersten Schalter, einem Widerstand und einer Hauptauslösevorrichtung, die zwischen einen ersten und einen zweiten elektrischen Anschluss geschaltet ist, einem Nebenschlussstrompfad, der mit Hauptauslösevorrichtung in Reihe zwischen den ersten und den zweiten elektrischen Anschluss geschaltet ist und der einen im störungsfreien Fall geschlossenen zweiten Schalter sowie einen normalerweise geschlossenen dritten Schalter aufweist, der zum zweiten Schalter in Reihe geschaltet ist, und einer Strombrücke, die einen Eingangskontakt des ersten Schalters mit einem Verbindungskontakt zwischen dem zweiten und dem dritten Schalter verbindet, wobei die Hauptauslösevorrichtung so ausgebildet ist, dass bei Erreichen eines ersten Schwellenstroms der zweite Schalter und bei Erreichen eines zweiten Schwellenstroms, der größer als der ersten Schwellenstrom ist, zusätzlich der dritte Schalter geöffnet wird, und wobei die Hilfsauslösevorrichtung so ausgebildet ist, dass der erste und der dritte Schalter bei geöffnetem zweiten Schalter nach Ablauf einer ersten Zeitdauer geöffnet wird, während bei geöffnetem zweiten und dritten Schalter der erste Schalter nach Ablauf einer zweiten Zeitdauer geöffnet wird, die kürzer als die erste Zeitdauer ist.
Es ist also mit anderen Worten erfindungsgemäß ein elektrischer selektiver Selbstschalter vorgesehen, welcher insbesondere als Schutzschalter verwen- det werden kann, welcher einen ersten und einen zweiten Parallelschaltkreis, die miteinander und mit einer Hauptauslösevorrichtung in Reihe geschaltet sind, aufweist. Hierbei weist der erste Parallelschaltkreis in seinem ersten Zweig eine Hilfauslösevorrichtung und einen dazu in Reihe geschalteten normalerweise geschlossenen ersten Teilschalter eines Doppelschalters auf, wo- bei sein zweiter Zweig einen Nebenschluss mit einem normalerweise geschlossenen ersten Schalter bildet. Der zweite Parallelschaltkreis weist in seinem ersten Zweig einen normalerweise geschlossenen zweiten Teilschalter des Doppelschalters sowie einen dazu in Reihe geschalteten Widerstand auf, wobei sein zweiter Zweig einen Nebenschluss mit einem normalerweise geschlos- senen zweiten Schalter bildet. Die Hauptauslösevorrichtung ist so ausgebildet, dass bei Erreichen eines ersten Schwellenstroms der erste Schalter und bei Erreichen eines zweiten Schwellenstroms, der größer als der erste Schwellenstrom ist, zusätzlich der zweite Schalter geöffnet wird. Die Hilfsauslösevorrichtung ist so ausgebildet, dass der erste und zweite Teilschalter des Doppel- Schalters sowie der zweite Schalter bei einem geöffneten ersten Schalter nach Ablauf einer ersten Zeitdauer und bei einem geöffneten zweiten Schalter nach Ablauf einer zweiten Zeitdauer, die kürzer als die erste Zeitdauer ist, geöffnet wird.
In einer praktischen Ausgestaltung der Erfindung ist es bevorzugt, dass die Strombrücke durch eine Kontaktbrücke gebildet wird, die im Betriebszustand einen ersten und einen zweiten Festkontakt des ersten Schalters sowie einen dritten Festkontakt des dritten Schalters elektrisch miteinander verbindet.
Um sicherzustellen, dass der erste Schalter grundsätzlich nur durch die Hilfs- auslösevorrichtung geöffnet wird, um einen ununterbrochenen Stromfluss im Hilfsstrompfad zu gewährleisten, ist es hierbei von Vorteil, wenn der dritte Festkontakt einerseits und der erste und zweite Festkontakt andererseits auf voneinander abgewandten Seiten der Kontaktbrücke gelegen sind.
In einer bevorzugten Ausführungsform der Erfindung weist die Hilfsauslöse- vorrichtung eine Bimetallbetätigereinrichtung mit einem zwischen dem ersten Anschluss und dem ersten Schalter gelegenen ersten Bimetall auf, wobei die Bimetallbetätigereinrichtung so ausgebildet ist, dass sie auf ein die Kontaktbrücke mechanisch beaufschlagendes Schaltschloss einwirkt, und wobei die vom Schaltschloss auf die Kontaktbrücke ausgeübte Auslösekraft in Öffnungsrichtung der Kontaktierung zwischen dem dritten Festkontakt und der Kontaktbrücke und den Öffnungsrichtungen der Kontaktierung zwischen dem ersten Festkontakt und der Kontaktbrücke sowie dem zweiten Festkontakt und der Kontaktbrücke wirkt.
Hierbei ist es zweckmäßig, wenn die Bimetallbetätigereinrichtung ein zwischen dem ersten Schalter und dem zweiten Anschluss gelegenes zweites Bimetall aufweist, welches so ausgebildet ist, dass es unabhängig vom ersten Bimetall mittels der Bimetallbetätigereinrichtung ein Auslösen des Schalt- schlosses bewirkt.
Vorzugsweise ist dabei die Anordnung des ersten Festkontakts und des zweiten Festkontakts und/oder die Gestaltung der Kontaktbrücke derart, dass die Kontaktbrücke beim Auslösen des Schaltschlosses, nachdem der dritte Fest- kontakt geöffnet worden ist, zuerst vom zweiten Festkontakt und dann vom ersten Festkontakt getrennt wird. Diese Ausgestaltungsform bewirkt eine zuverlässige konsekutive Trennung zunächst des zweiten Festkontakts von der Kontaktbrücke und danach des ersten Festkontakts von der Kontaktbrücke.
Für eine mechanisch sichere und einfache Ausführung der Erfindung ist es besonders von Vorteil, wenn die Hauptauslösevorrichtung eine mechanisch auf die Kontaktbrücke wirkende Magnetbetätigereinrichtung mit einem ersten in Betätigungsrichtung bewegbaren Magnetanker und eine zwischen den Nebenschlusspfad und den zweiten Anschluss geschaltete Spule aufweist, wobei die in Betätigungsrichtung des ersten Magnetankers gerichtete, vom ersten Magnetanker ausgeübte Auslösekraft in Öffnungsrichtung der Kontaktierung zwischen dem dritten Festkontakt und der Kontaktbrücke und in Schließrichtung der Kontaktierung zwischen dem ersten Festkontakt und der Kontaktbrücke sowie zwischen dem zweiten Festkontakt und der Kontaktbrücke wirkt.
In einer bevorzugten Ausführungsform der Erfindung bildet eine Verbindungslinie zwischen dem ersten Festkontakt und dem zweiten Festkontakt eine Schwenkachse für die Kontaktbrücke, wenn die Auslösekraft des ersten Magnetankers auf die Kontaktbrücke aufgebracht wird.
Weiter ist es bevorzugt, wenn der Wirkpunkt der vom ersten Magnetanker ausgeübten Auslösekraft zwischen dem dritten Festkontakt einerseits und dem ersten und zweiten Festkontakt andererseits liegt.
Ferner ist es zweckmäßig, wenn eine Kontaktfeder vorgesehen ist, die im Be- triebszustand gleichzeitig Kontaktkräfte zwischen dem dritten Festkontakt und der Kontaktbrücke, zwischen dem ersten Festkontakt und der Kontaktbrücke sowie zwischen dem zweiten Festkontakt und der Kontaktbrücke in der jeweiligen Schließrichtung der Festkontakte erzeugt.
Besonders vorteilhaft ist es, wenn die Kontaktfeder an einem vom zweiten Festkontakt abgewandten, den ersten und zweiten Festkontakt überragenden Abschnitt der Kontaktbrücke auf diese einwirkt.
Hierbei ist es besonders zweckmäßig, wenn der zweite Schalter einen bewegli- chen Kontakt aufweist, der im störungsfreien Fall den ersten Anschluss mit der Kontaktbrücke elektrisch verbindet, wobei vorzugsweise der bewegliche
Kontakt in Betätigungsrichtung des bewegbaren Magnetankers hinter der
Kontaktbrücke angeordnet und mittels einer Schwenkvorrichtung schwenkbar gelagert ist, wobei die Schwenkachse der Schwenkvorrichtung im Wesentli- chen parallel zu der Schwenkachse der Kontaktbrücke verläuft. Für eine einfache mechanische Umsetzung des zweiten und dritten Schalters des erfindungsgemäßen elektrischen selektiven Selbstschalters ist es besonders von Vorteil, wenn die Magnetbetätigereinrichtung einen sich durch ein Durchgangsloch der Kontaktbrücke erstreckenden Stift mit einer in Betäti- gungsrichtung des bewegbaren Magnetankers vor der Kontaktbrücke befindlichen Aufweitung aufweist, wobei ein Ende des Stiftes der Magnetbetätigereinrichtung geeignet ist, in Öffnungsrichtung des beweglichen Kontakts auf diesen einzuwirken und die Aufweitung geeignet ist, in Öffnungsrichtung der Kontaktbrücke auf diese einzuwirken.
Hierbei ist es zweckmäßig, wenn die Magnetbetätigereinrichtung derart ausgestaltet ist, dass bei einer Betätigung des ersten Magnetankers die Kontaktie- rung zwischen der Kontaktbrücke und dem beweglichen Kontakt vor der Kon- taktierung zwischen dem dritten Festkontakt und der Kontaktbrücke geöffnet wird.
Wenn in einer weiteren vorteilhaften Ausführungsform die Magnetbetätigereinrichtung einen Kern aufweist, der mit einem dem ersten Magnetanker zugewandten Kurzschlussring versehen ist, wird durch die im Kurzschlussring entstehenden Wirbelströme in einem Störfall oder bei Betrieb mit Wechselstrom eine Vibration der Magnetanker vermieden. Schließlich wird in einer weiteren bevorzugten Ausgestaltungsform die Betriebssicherheit dadurch erhöht, dass die Magnetbetätigereinrichtung einen zweiten in Betätigungsrichtung bewegbaren Magnetanker aufweist, der vorzugsweise eine größere Masse besitzt, als der erste Magnetanker, und der bei einer erhöhten Induktion in der Magnetbetätigereinrichtung zusätzlich zum ersten Magnetanker eine beschleunigte Bewegung in Betätigungsrichtung bewirkt. Durch das Vorsehen des zusätzlichen zweiten Magnetankers wird im Falle eines Kurzschlusses, also bei hoher Induktion in der Magnetbetätigereinrichtung in Folge eines ho- hen Überstroms die Kontaktierung zwischen der Kontaktbrücke und dem dritten Festkontakt schlagartig soweit geöffnet, dass ein dort entstehender Lichtbogen auch bei dem in diesen Fehlerfall erhöhten Stromfluss zuverlässig und schnell gelöscht wird.
Weiter ist es bevorzugt, wenn die Hilfsauslösevorrichtung derart ausgestaltet ist, dass bei einem manuellen Einschalten zunächst der zweite Schalter, dann der erste Schalter und darauf folgend der dritte Schalter geschlossen wird. Die Erfindung wird nachfolgend anhand eines Beispiels unter Bezugnahme auf die Zeichnung näher erläutert; in dieser zeigt
Fig. IA eine Funktionsskizze des erfindungsgemäßen elektrischen selektiven Selbstschalters und eine detaillierte Ansicht der in der Richtung A hintereinander liegenden ersten und zweiten Festkontakte;
Fig. IB ein Schaltbild des erfindungsgemäßen elektrischen selektiven Selbstschalters im störungsfreien Betrieb;
Fig. 2A eine Funktionsskizze des erfindungsgemäßen elektrischen selektiven Selbstschalters im Falle eines Überstroms;
Fig. 2B ein Schaltbild des erfindungsgemäßen elektrischen selektiven Selbst- Schalters im Falle eines Überstroms;
Fig. 3A eine Funktionsskizze des erfindungsgemäßen elektrischen selektiven Selbstschalters im Falle eines Kurzschlussstroms;
Fig. 3B ein Schaltbild des erfindungsgemäßen elektrischen selektiven Selbstschalters im Falle eines Kurzschlussstroms;
Fig. 4A eine Funktionsskizze des erfindungsgemäßen elektrischen selektiven Selbstschalters im abgeschalteten Zustand;
Fig. 4B ein Schaltbild des erfindungsgemäßen elektrischen selektiven Selbstschalters im abgeschalteten Zustand;
Fig. 5A eine Funktionsskizze einer weiteren Ausführungsform des erfindungs- gemäßen elektrischen selektiven Selbstschalters im störungsfreien Fall; und
Fig. 5B ein Schaltbild der weiteren Ausführungsform des erfindungsgemäßen elektrischen selektiven Selbstschalters im störungsfreien Fall.
Fig. 6 ein Schaltbild eines Hauptsicherungsautomaten während der Kurzschlussbeanspruchung mit einem Selektivauslöser und Fig. 7 die erfindungsgemäße Anordnung eines Selektivwiderstandes im Magnetkreis einer Schlagspule.
In Fig. IA und IB sind der Aufbau des schematisch dargestellten elektrischen selektiven Selbstschalters gemäß der Erfindung im eingeschalteten Betriebszustand sowie ein zugehöriges Ersatzschaltbild gezeigt. Wie in Fig. IB gezeigt, weist der erfindungsgemäße Selbstschalter einen ersten elektrischen An- schluss 2 und eine zweiten elektrischen Anschluss 4 auf, zwischen die eine Hilfsauslösevorrichtung 6, ein erster Schalter 8, ein Widerstand 10 und eine Hauptauslösevorrichtung 12 in Reihe geschaltet sind. Ferner weist der erfindungsgemäße elektrische selektive Selbstschalter einen Nebenschlussstrompfad auf, der mit der Hauptauslösevorrichtung 12 in Reihe zwischen den ersten Anschluss 2 und den zweiten Anschluss 4 geschaltet ist und der einen im störungsfreien Fall geschlossenen zweiten Schalter 14 sowie einen norma- lerweise geschlossenen dritten Schalter 16 aufweist, der zum zweiten Schalter 14 in Reihe geschaltet ist. Des weiteren ist der Eingangskontakt des ersten Schalters 8 durch eine Strombrücke mit einem Verbindungskontakt 18 zwischen dem zweiten Schalter 14 und dem dritten Schalter 16 verbunden.
Fig. IA zeigt den Aufbau des erfindungsgemäßen elektrischen selektiven Selbstschalters im eingeschalteten Betriebszustand. Hierbei verbindet eine schwenkbar bewegliche Kontaktbrücke 20 einen ersten Festkontakt 22, welcher den Eingangskontakt des ersten Schalters 8 bildet, einen zweiten Festkontakt 24, welcher mit dem Widerstand 10 verbunden ist, und einen dritten Festkontakt 26, welcher über den Nebenschlussstrompfad mit der Hauptauslösevorrichtung 12 in Verbindung steht, elektrisch miteinander. Hierzu liegt die Kontaktbrücke 20 mit einer Kontaktstelle 28 an ihrem ersten Ende 30 am zweiten Festkontakt 26 an und stellt eine elektrische Verbindung zwischen Hauptauslösevorrichtung 12 und erstem Anschluss 2 über den zweiten Schal - ter 14 her. In der Nähe ihres anderen Endes 32 stützt sich die Kontaktbrücke 20 über eine Druckfeder 34 gegen ein an einem Schaltschloss 36 vorgesehenes Widerlager 38 ab. Das Widerlager 38 und der dritte Festkontakt 26 liegen auf derselben Seite der Kontaktbrücke 20. Auf der von dieser Seite abgewandten Seite der Kontaktbrücke 20 liegt diese in einem zwischen dem Angriffs- punkt der Druckfeder 34 und dem dritten Festkontakt 26 an dem ersten Festkontakt 22 und dem zweiten Festkontakt 24 an und stellt somit eine elektrische Verbindung zwischen dem ersten, zweiten und dritten Festkontakt 22, 24 und 26 her. Wie in der Detaildarstellung der Fig. IA gezeigt, welche die räumliche Anordnung des ersten Festkontakts 22 und des zweiten Festkontakts 24 in der Richtung A senkrecht zur Zeichnungsebene zeigt, liegt der erste Festkontakt 22 auf derselben Seite der Kontaktbrücke 20 wie der zweite Festkontakt 24. Hierbei kann der zweite Festkontakt 24 jedoch etwas weiter vom Widerlager 38 beabstandet sein als der erste Festkontakt 22. Im Betriebszustand stützt sich die erste Kontaktbrücke 20 vom Druck der Feder 34 beaufschlagt gegen den ersten Festkontakt 22 und den dritten Festkontakt 24 ab und wird von der Kraft der Feder 34 um eine den ersten Festkontakt 22 und dem zweiten Festkontakt 24 verbindende Schwenkachse X in der Detaildarstellung der Fig. IA entgegen dem Uhrzeigersinn geschwenkt, sodass das erste Ende 30 der Kontaktbrücke 20 mit der Kontaktstelle 28 gegen den dritten Festkontakt 26 gedrückt wird. Die Druckfeder 34 bringt somit an allen drei Festkontakten 22, 24 und 26 eine erforderliche Andruckkraft auf, die die erste Kontaktbrücke 20 gegen die Festkontakte 22, 24 und 26 zur festen Anlage bringt.
Darüber hinaus weist der erfindungsgemäße elektrische selektive Selbstschalter einen beweglichen Kontakt 40 auf, der im störungsfreien Fall den ersten Anschluss 2 mit der Kontaktbrücke 20 elektrisch verbindet. Der bewegliche Kontakt 40 ist mit seinem ersten Ende 42 in einem Schwenklager 44 gelagert und liegt mit einer Kontaktstelle 46 an seinem zweiten Ende 48 an der Kontaktbrücke 20 an. Die Schwenkachse des Schwenklagers 44 liegt dabei im Wesentlichen parallel zu der Schwenkachse X der Kontaktbrücke 20. Der be- wegliche Kontakt 40 ist auf derselben Seite der Kontaktbrücke 20 wie der erste Festkontakt 22 und der zweite Festkontakt 24 angeordnet, wobei der bewegliche Kontakt 40 gegen die Kontaktbrücke 20 über eine Druckfeder 50 gedrückt wird, welche sich an einem Widerlager 52 abstützt. Der bewegliche Kontakt 40 verbindet somit im störungsfreien Fall den ersten Anschluss 2 mit der Kontaktbrücke 20 und bildet somit den geschlossenen zweiten Schalter 14. Dem dritten Festkontakt 26 gegenüberliegend ist ein gehäusefester Anschlag 54 vorgesehen, an welchen das erste Ende 30 der Kontaktbrücke 20 bei einer Bewegung der Kontaktbrücke 20 im Uhrzeigersinn gegen die Kraft der Druckfeder 34 stößt, um eine Auslenkung der Kontaktbrücke 20 zu be- schränken. Im Folgenden soll die Hauptauslösevorrichtung 12 genauer beschrieben werden. Diese weist eine Spule 56 auf, welche zwischen den zweiten Anschluss 4 und den Nebenschlussstrompfad mit dem zweiten Schalter 14 und dem dritten Schalter 16 in Reihe geschaltet ist. Die Hauptauslösevorrichtung 12, die als Magnetbetätigereinrichtung oder Magnetsystem ausgebildet ist, weist ferner einen innerhalb der Spule 56 gelegenen Spulenkern 58, einen Stift 60 sowie einen ersten Magnetanker 62 auf. Zusätzlich ist ein zweiter Magnetanker 64 vorgesehen, der ebenfalls in Auslöserichtung B innerhalb der Spule 56 verschiebbar ist und auf den Stift 60 einwirkt. Im Ruhezustand stützt sich der zweite Magnetanker 64 unter der Kraft einer Druckfeder 66 gegen einen gehäusefesten Anschlag 68 ab. Des weiteren ist der Kern 58 an seiner zum ersten Magnetanker 62 weisenden Stirnseite mit einem Kurzschlussring 70 versehen, wobei sich in dem Kurzschlussring 70, der aus einem elektrisch gut leitenden Werkstoff hergestellt ist, Wirbelströme ausbilden, die das Entstehen von Schwingungen in der Hauptauslösevorrichtung 12 unterbinden, sodass es nicht zu einer unerwünschten Geräuschentwicklung kommt. Dies ist insbesondere bei Wechselstrombetrieb vorteilhaft, da dann der Anker auf während der Auslösung des Selbstschalters vibrationsfrei am Kern 58 gehalten wird.
Der Stift 60 ist innerhalb des Kerns 58 in Auslöserichtung A axial verschiebbar gelagert und ist von der Druckfeder 66 entgegen der Auslöserichtung B vorgespannt. Das vordere Ende des Stifts 60 steht axial aus dem Kern 58 in Richtung auf die Kontaktbrücke 20 und den beweglichen Kontakt 40 hervor und bildet einen Schlagstift zur Betätigung des beweglichen Kontakts 40, wo- bei der Wirkpunkt des Stifts 60 zwischen dem Schwenklager 44 des beweglichen Kontakts 40 und der Druckfeder 50 liegt. Hierbei erstreckt sich der Stift 60 durch ein Durchgangsloch 72 der Kontaktbrücke 20, wobei an dem vorderen Ende des Stifts 60 in der Betätigungsrichtung B des ersten Magnetankers 62 vor der Kontaktbrücke 20 eine Aufweitung oder ein Abschnitt mit vergrö- ßertem Durchmesser 74 angeordnet ist, die größer als das Durchgangsloch 72 der Kontaktbrücke 20 ist. Bei einer Bewegung des Stifts 60 in Betätigungsrichtung B des Magnetankers 62 stößt die Aufweitung 74 gegen die Kontaktbrücke 20, um diese um die Schwenkachse X, die durch den ersten und zweiten Festkontakt 22 und 24 gebildet wird, gegen die Kraft der Druckfeder 34 gegen den Uhrzeigersinn zu bewegen und um den Kontakt der Kontaktbrücke 20 mit dem dritten Festkontakt 26 zu öffnen. Die Aufweitung 74 ist so an dem Stift 60 angeordnet, dass zuerst der Kontakt zwischen dem beweglichen Kon- takt 40 und der Kontaktbrücke 20 geöffnet wird, bevor der Kontakt zwischen der Kontaktbrücke 20 und dem dritten Festkontakt 26 geöffnet wird.
Das hintere Ende des Stifts 60 stützt sich in einer Sacklochbohrung des zwei- ten Magnetankers 64 gegen den ersten Magnetanker 62 ab. Der Stift 60 durchdringt dabei eine axiale Bohrung im ersten Magnetanker 62. Der erste Magnetanker 62 ist innerhalb der Sacklochbohrung des zweiten Magnetankers 64 axial verschiebbar geführt und stützt sich auf seiner vom Magnetanker 64 abgewandten Seite gegen einen Bund 75 eines Abschnitts des Stifts 60 mit vergrößertem Durchmesser ab.
Im Folgenden soll nun die Hilfsauslösevorrichtung 6 beschrieben werden. Diese weist eine Bimetallbetätigereinrichtung mit einem ersten Bimetall 76 auf, welches zwischen den ersten Anschluss 2 und den ersten Festkontakt 22 des ersten Schalters 8 geschaltet ist. Bei einem durch den Hilfsstrompfad fließenden Strom wird das erste Bimetall 76 erwärmt und biegt sich damit aus, woraufhin in bekannter Weise das Schaltschloss 36 nach einer mit der Stromstärke korrelierten Verzögerungszeit ausgelöst wird. Im Falle der Auslösung des Schaltschlosses 36 bewegt sich das Schaltschloss 36 in Richtung des in Fig. 4A gezeigten Pfeils C, wobei das zweite Ende 32 der Kontaktbrücke 20 im Uhrzeigersinn um die Achse X schwenkt, bis das erste Ende 30 zur Anlage an dem gegenüber dem dritten Festkontakt 26 gelegenen gehäusefesten Anschlag 54 gerät. Bei dieser Bewegung des Schaltschlosses 36 wird auch das Widerlager 38 mit in die Richtung des Pfeils C bewegt, sodass die Schwenkbewegung der Kontaktbrücke 20 ohne eine Kompression der Feder 34 erfolgt, also die Kraft der Feder 34 nicht zusätzlich ansteigt.
Liegt das erste Ende 30 der Kontaktbrücke 20 am Anschlag 54 an, so führt die weitere Bewegung des Schaltschlosses 36 in Richtung des Pfeils C dazu, dass sich die Kontaktbrücke 20 vom ersten Festkontakt 22 und vom zweiten Festkontakt 24 löst, sodass der erste Schalter 8 geöffnet wird. Hierbei kann bei einer in Auslöserichtung C versetzten Positionierung des ersten Festkontakts 22 und des zweiten Festkontakts 24 zunächst der zweite Festkontakt 24 von der Kontaktbrücke 20 gelöst werden, wobei danach die Lösung des ersten Festkontakts 22 von der Kontaktbrücke 20 erfolgt, sodass der Stromkreis endgültig getrennt ist. Nun soll die Funktion des erfindungsgemäßen elektrischen selektiven Selbstschalters genauer beschrieben werden.
Tritt in einem Störfall ein Überstrom zwischen dem ersten Anschluss 2 und dem zweiten Anschluss 4 über den niederohmigen Nebenschlussstrompfad auf, so induziert die Spule 56 eine Magnetkraft auf den ersten Magnetanker 62, die diesen in Auslöserichtung B gegen die Kraft der Feder 66 gegen den Bund 75 des Stifts 60 bewegt und dann den Stift 60 gegen die Kraft der Feder 66 in Auslöserichtung B gegen den beweglichen Kontakt 40 in deren Wirk- punkt schlägt, wodurch der Kontakt zwischen beweglichem Kontakt 40 und Kontaktbrücke 20 geöffnet wird, wie in Fig. 2A und 2B gezeigt. Hierbei ist die Ausweitung 74 an dem Stift 60 so angebracht, dass die Kontaktbrücke 20 nach wie vor einen Kontakt mit dem dritten Festkontakt 26 bildet und nicht geöffnet wird. Für das in Fig. 2B gezeigte Ersatzschaltbild bedeutet dies, dass der zweite Schalter 14 geöffnet ist, während der erste Schalter 8 und der dritte Schalter 16 geschlossen bleiben. Somit wird im Überstromfall das Bimetall 76 der Bimetallbetätigereinrichtung der Hilfsauslösevorrichtung 6 in Reihe zu der Spule 56 der Hauptauslösevorrichtung 12 und einem Parallelkreis aus Widerstand 10 und einem Nebenschlussstrompfad mit dem dritten Schalter 16 geschaltet, wobei der Widerstand 10 durch diesen Nebenschlussstrompfad kurzgeschlossen wird. Hierbei führt der durch das erste Bimetall 76 fließende Strom zu einer Erwärmung des ersten Bimetalls 76, wodurch nach einer ersten Zeitdauer das Schaltschloss 36 in der oben beschriebenen Art geöffnet wird. Hierbei entspricht der Überstrom einem ersten Schwellenstrom, welcher apparativ (beispielsweise durch eine entsprechende Dimensionierung des Verhältnisses zwischen Federkraft der Feder 66 und der Kraft der Spule 56) durch den elektrischen selektiven Selbstschalter einstellbar ist.
Im Falle eines kurzzeitigen Überschreitens des ersten Schwellenstroms unter- halb der ersten Zeitdauer wird der Kontakt zwischen dem beweglichen Kontakt 40 und der Kontaktbrücke 20 wieder geschlossen, wodurch das erste Bimetall 76 wieder durch den Nebenschlussstrompfad mit dem ersten Schalter 14 kurzgeschlossen wird. Somit kommt es bei einer nur kurzzeitigen Erhöhung des Betriebsstroms nicht zu einem Auslösen des Schaltschlosses 36. Diese Funktion hat den Zweck, dass der elektrische selektive Selbstschalter als Hauptschalter vorgesehen werden kann, wobei ein Auftreten eines Überstroms zunächst durch nach dem Hauptschalter liegenden Sicherungen von Endverbrauchern beseitigt werden kann, ohne dass der als Hauptschalter arbeitende elektrische selektive Selbstschalter die Gesamtversorgung einer Vielzahl von Endverbrauchern abtrennt.
Im Falle eines Kurzschlussstroms ist der elektrische selektive Selbstschalter jedoch dazu vorgesehen, innerhalb einer sehr kurzen Zeit, also einer zweiten Zeitdauer, die wesentlich kürzer als die erste Zeitdauer ist, das Schaltschloss 36 zu betätigen. Dieser Fall ist in den Fig. 3A und 3B gezeigt. Aufgrund eines Kurzschlussstroms, der einen zweiten Schwellenstrom, bei welchem neben dem beweglichen Kontakt 40 auch mittels der Ausweitung 74 die Kontaktbrücke 20 in Betätigungsrichtung B bewegt und somit der Kontakt zwischen Kontaktbrücke 20 und dritten Festkontakt 26 geöffnet wird, kommt es zu einem Öffnen des zweiten Schalters 14 als auch des dritten Schalters 16, wie im Ersatzschaltbild in Fig. 3B gezeigt ist. Somit fließt der Kurzschlussstrom über das erste Bimetall 76, den ersten Schalter 8 und den strombegrenzenden Widerstand 10 über die Spule 56 zu dem zweiten Anschluss 4. Der Kurzschlussstrom bewirkt eine schlagartige Erwärmung des ersten Bimetalls 76, wodurch das Schaltschloss 36 sofort betätigt wird. Hierbei hat der zweite Magnetanker 64 im Falle einer Kurzschlussabschaltung die Aufgabe, den drit- ten Festkontakt 26 schlagartig direkt um einen Kontaktöffnungsweg zu öffnen und zwar ohne Zwischenschaltung irgendwelcher Kinematikteile, der ausreicht, um den am dritten Festkontakt 26 wirkenden Lichtbogenstrom wirkungsvoll zu begrenzen, sodass der Lichtbogen sicher gelöscht wird. Im Falle des Auftretens eines hohen Kurzschlussstroms wird daher auch der zweite Magnetanker 64 in Auslöserichtung B schlagartig bewegt und wirkt über die Anlage des hinteren Endes des Stiftes 60 unmittelbar auf den Stift 60 ein und verschiebt diesen in Auslöserichtung schlagartig gegen die Kontaktbrücke 20.
In den Fig. 5A und 5B ist ein weiteres Ausführungsbeispiel des erfindungsge- mäßen elektrischen selektiven Selbstschalters dargestellt. Hierbei weist die Hilfsauslösevorrichtung 6 eine Bimetallbetätigereinrichtung auf, die neben dem ersten Bimetall 76 ein zweites Bimetall 78 aufweist, welches so ausgebildet ist, dass es unabhängig vom ersten Bimetall 76 mittels der Bimetallbetätigereinrichtung ein Auslösen des Schaltschlosses 36 bewirkt. Das zweite Bime- tall 78 ist hierbei zwischen den zweiten Festkontakt 24 und die Spule 56 geschaltet. Das zweite Bimetall 78 wird somit also nur im Kurzschlussfall oder bei Überschreiten eines zweiten Schwellenstroms aktiv, da unterhalb eines zweiten Schwellenstroms das zweite Bimetall 78 und der Widerstand IO durch den Nebenschlussstrompfad mit dem dritten Schalter 16 kurzgeschlossen ist. Hierbei hat das zweite Bimetall 78 die Funktion, dass es mit einer Zeitkonstante das Schaltschloss 36 öffnet, die wesentlich kleiner ist als die Zeitkon- stante des ersten Bimetalls 76.
Die vorliegende Erfindung schafft also einen elektrischen selektiven Selbstschalter, welcher selektiv im Falle eines Auftretens eines Überstroms nach einer Zeitdauer öffnet, die so bemessen ist, dass nachfolgende elektrische Selbstschalter von Endverbrauchern abschalten können, bevor der als elektrische selektive Selbstschalter arbeitende Hauptschalter abschaltet, und welcher im Falle eines Kurzschlussstroms schlagartig den Kontakt zwischen dem ersten Anschluss 2 und zweiten Anschluss 4 trennt. Hierbei hat der erfindungsgemäße elektrische Selbstschalter den Vorteil, dass im Normalbetrieb der Strom zwischen erstem Anschluss 2 und zweitem Anschluss 4 im Wesentlichen nur durch die Spule 56 der Hauptauslösevorrichtung 12 fließt, da das erste Bimetall 76 oder das zweite Bimetall 78 durch den Nebenschlussstrompfad mit dem zweiten Schalter 14 und dem dritten Schalter 16 kurzgeschlossen sind. Somit ist der Leistungsverbrauch des elektrischen selektiven Selbst- Schalters gemäß der vorliegenden Erfindung minimiert. Des weiteren besitzt der elektrische selektive Selbstschalter der vorliegenden Erfindung den Vorteil, dass vor einem Abschalten durch das Schaltschloss 36 ein ununterbrochener Stromfluss in einem Hilfsstrompfad zur Steuerung des Schaltschlosses 36 gewährleistet wird, wodurch ein Fehler in der Funktion der Hilfsauslöse- Vorrichtung vermieden wird.
Im Folgenden soll eine vorteilhafte Ausgestaltung des Widerstands 10 und der Spule 56 beschrieben werden, die anhand der Fig. 6 und 7 zur besseren Veranschaulichung des Funktionsprinzips durch einen vereinfachten Hauptsi- cherungsautomaten erläutert werden soll. Die Anordnung und Ausgestaltung des Selektivwiderstandes 101 und der Schlagspule 102 sind jedoch auf einen als Spule ausgestalteten Widerstand 10 und die Spule 56 anwendbar.
Für die Strombegrenzung im Kurzschlussfall werden im Hauptsicherungsau- tomat Widerstände im Bereich von 0,5 Ohm angewendet. Während der Abschaltzeit von einigen 10 Millisekunden müssen dabei vom Selektivwiderstand Leistungen in der Größenordnung von 100 Kilowatt zerstörungsfrei beherrscht werden.
Dies erfordert erhebliche Abmessungen des Selektivwiderstandes wie dies z. B. in der europäischen Anmeldung WO 03 /065398 Al ausführlich beschrieben wird. Dort wird ein Widerstandskörper aus dotierter Keramik als Selektivwiderstand empfohlen. Neben aus Widerstandsdraht gewickelten Spulen sind gefaltete oder gewickelte Strombegrenzungswiderstände als Flachbänder aus Widerstandsmaterial bekannt.
Abgesehen von den Maßnahmen welche zur Vermeidung des unerwünschten Magnetfeldes von derartigen Anordnungen erforderlich sind, steht der Bauraum in "miniature circuit breakern'Oft auch nicht zur Verfügung.
Grundsätzlich nachteilig ist auch, dass das Magnetfeld der Schlagspule bei Kurzschlüssen von z. B. 5 Mal Nennstrom zwar ausreicht, den Hauptkontakt zu öffnen, nicht aber diesen während der verzögerten Abschaltung offen zu halten. Durch die Strombegrenzung des Selektivwiderstandes wird der Strom in der Schlagspule auf ca. 3 Mal Nennstrom reduziert - die magnetische Erregung reicht nicht mehr aus, um den Magnetanker gegen die Kraft der Schließfeder des Hauptkontaktes zu halten. Die Folge davon ist, dass der Hauptkontakt kurzzeitig schließt um sofort wieder zu öffnen. Dieser alternierende Vorgang, in Fachkreisen als "Spechten" bezeichnet, ist unerwünscht.
Erfindungsgemäß kommt daher ein Selektivwiderstand, welcher der in den Fig. 1 bis 5 gezeigte Widerstand 10 sein kann, zur Anwendung, welcher als Spule aus Widerstandsmaterial gewickelt, über der Schlagspule des Hauptstromkreises, welche die Spule 56 sein kann, angeordnet ist.
Dadurch wird die Nutzung des Freiraumes zwischen Schlagspule und den Gehäusewänden des Hauptsicherungsautomaten zur Unterbringung des Selektivwiderstandes möglich.
Durch diese einfache Maßnahme wird erreicht, dass durch die zusätzliche Windungszahl des Selektivwiderstandes in Reihenschaltung mit der Schlagspule selbst bei begrenztem Reststrom eine größere Durchflutung im Magnet- kreis zur Verfügung steht als beim Ansprechstrom des Elektromagneten. Der Magnetanker hält den Hauptkontakt während der Verzögerungszeit sicher offen und zwar solange bis das Selektivbimetall das Schaltschloss des Hauptsicherungsautomaten entklinkt und dieses den Stromkreis unterbricht.
Der Selektivauslöser bildet zusammen mit der Schlagspule eine bauliche Einheit, welche von einem gemeinsamen Magnetjoch umschlossen wird und zusätzlich einen Magnetkern, einen Magnetanker und ein Selektivbimetall aufweist.
Vorzugsweise wird das Magnetjoch so ausgebildet, dass es nicht nur der Leitung des Magnetflusses dient, sondern zusätzlich als magnetische und thermische Abschirmung gegenüber benachbarten Geräten fungiert. Das Magnetjoch, welches auch das Selektivbimetall trägt, umschließt an vier Seiten kastenförmig sowohl die Schlagspule als auch den spulenförmigen Selektivwiderstand und ist räumlich beidseitig zwischen diesem und den Gehäusewänden des Hauptsicherungsautomaten angeordnet.
Es ist vorteilhaft, wenn der komplette Selektivauslöser, also zusammen mit der Schlagspule auf der gleichen Seite in Energieflussrichtung von Haupt- und Trennkontakt schaltungstechnisch untergebracht ist.
Zudem wird die Wickelrichtung von Selektivwiderstand und Schlagspule so gewählt, dass sich ihre magnetische Wirkungsweise bei Stromfluss ergänzen.
In Fig. 6 ist aus dem Schaltbild des Hauptsicherungsautomaten die Anordnung des Selektivwiderstandes 101 über der Schlagspule 102 ersichtlich. Ebenso ist die schaltungstechnische Position des Selektivauslösers als Parallelkreis zu erkennen. Der dargestellte Schaltzustand entspricht dem Fehlerfall "Kurzschluss" während der Verzögerungszeit.
Im eingeschalteten Zustand ist der Hauptkontakt 103 und der Trennkontakt 104 geschlossen. Der Betriebsstrom fließt über den Hauptkontakt 103 und die Schlagspule 102 zum elektrischen Verbraucher. Im Fehlerfall bei Kurzschluss öffnet der in der Fig. 7 dargestellte Magnetanker 105, erregt durch das Magnetfeld der Schlagspule 102, den Hauptkontakt 103.
Der Trennkontakt 104 bleibt geschlossen, so dass der Hauptkontakt 103 durch den Parallelstromkreis des Selektivauslösers überbrückt wird.
Dabei wird der Kurzschlussstrom durch den Selektivwiderstand 101 begrenzt.
Dieser Reststrom fließt sowohl durch das Selektivbimetall 106 als auch durch den Selektivwiderstand 101 und die Schlagspule 102. Der Reststrom erzeugt dabei im Selektivwiderstand eine zusätzliche, magnetische Induktion, welche im Magnetkreis der Schlagspule sowohl die Anzugskraft des Magnetankers 105 beim Öffnen des Hauptkontaktes 103 verstärkt, als auch eine ausrei- chende Haltekraft des Magnetankers 105 am Magnetkern 108 während der Verzögerungszeit sicherstellt.
In dieser Zeit biegt das Selektivbimetall 106 aus und entklinkt das Schalt- schloss, welches dann den Trennkontakt 104 öffnet, den Hauptkontakt 103 offen hält und somit den zu schützenden Stromkreis unterbricht. Wenn während der Verzögerungszeit der Stromkreis an anderer Stelle, also z. B. durch einen nachgeschalteten Leitungsschutzschalter unterbrochen wird, bleibt der Hauptsicherungsautomat eingeschaltet und stellt die Verfügbarkeit der restlichen Anlage sicher.
In Fig. 7 ist schematisch ein horizontaler Schnitt durch den Hauptsicherungsautomat in Draufsicht dargestellt. Daraus ist die räumliche Anordnung des Selektivwiderstandes 101 über der Schlagspule 102 ersichtlich und die Ausbildung des Magnetjoches 107 als thermische und magnetische Ab- schirmung innerhalb des Gehäuses 1 10 gegenüber benachbarten Geräten erkennbar.
Im Fehlerfall wird die Durchflutung im Magnetkreis sowohl durch die Windungszahl des Selektivwiderstandes 101 als auch durch die Windungen der Schlagspule 102 erzeugt, so dass der durch den Selektivwiderstand begrenzte Reststrom sicher ausreicht, den Magnetanker 105 während der Verzögerungs- zeit an dem Magnetkern 108 zu halten und damit den Hauptkontakt 103 gegen die Kraft der Schließfeder 109 in geöffneter Position zu fixieren.
Somit ist also ein Selektivauslöser für einen Hauptsicherungsautomat vorge- sehen, welcher in Reihenschaltung von Selektivbimetall und Selektivwiderstand als Parallelkreis zum Hauptkontakt angeordnet ist und diesen im Fehlerfall "Kurzschluss" überbrückt. Der Selektivwiderstand 101 ist als Spule ausgebildet und im Magnetkreis der Schlagspule 102 zu deren magnetischer Unterstützung bei der Kraftwirkung beim Öffnen und Offenhalten des Haupt- kontaktes 103 angeordnet.
Der Selektivwiderstand 101 begrenzt in funktioneller Kombination sowohl den Kurzschlussstrom und verstärkt auch mit dem verbleibenden Reststrom die Durchflutung im Magnetkreis zusammen mit der Schlagspule 102.
Der Selektivwiderstand 101 ist räumlich zwischen Magnetjoch 107 und Schlagspule 102 angeordnet, umschließt und überdeckt diese mindestens teilweise.
Der Selektivauslöser ist schaltungstechnisch zusammen mit der Schlagspule 102 auf der gleichen Seite in Energieflussrichtung vom Hauptkontakt 103 und Trennkontakt 104 angeordnet.
Der Selektivauslöser bildet zusammen mit der Schlagspule 102, dem Magnet- kern 108, dem Magnetanker 105, dem Selektivwiderstand 101 , dem Selektivbimetall 106 und dem Magnetjoch 107 eine bauliche Einheit, wobei das Magnetjoch welches an den Gehäusewänden 1 10 großflächig anliegt die Befestigung für den Fußpunkt des Selektivbimetalles 106 bietet.
Die Anordnung des als Spule ausgebildeten Selektivwiderstands 101 zu der Schlagspule 102 ist erfindungsgemäß auf den in Fig. 1 bis 5 gezeigten Widerstand 10 und die Spule 56 anwendbar.

Claims

Patentansprüche
1. Elektrischer selektiver Selbstschalter, insbesondere Schutzschalter, mit einer Reihenschaltung aus einer Hilfsauslösevorrichtung (6), einem nor- malerweise geschlossenen ersten Schalter (8), einem Widerstand ( 10) und einer Hauptauslösevorrichtung ( 12), die zwischen einen ersten und einen zweiten elektrischen Anschluss (2, 4) geschaltet ist, einem Nebenschlussstrompfad, der mit Hauptauslösevorrichtung ( 12) in Reihe zwischen den ersten und den zweiten elektrischen Anschluss (2, 4) ge- schaltet ist und der einen im störungsfreien Fall geschlossenen zweiten Schalter ( 14) sowie einen normalerweise geschlossenen dritten Schalter ( 16) aufweist, der zum zweiten Schalter ( 14) in Reihe geschaltet ist, und einer Strombrücke, die einen Eingangskontakt des ersten Schalters (8) mit einem Verbindungskontakt ( 18) zwischen dem zweiten und dem dritten Schalter ( 14, 16) verbindet, wobei die Hauptauslösevorrichtung ( 12) so ausgebildet ist, dass bei Erreichen eines ersten Schwellenstroms der zweite Schalter ( 14) und bei Erreichen eines zweiten Schwellenstroms, der größer als der ersten Schwellenstrom ist, zusätzlich der dritte Schalter ( 16) geöffnet wird, und wobei die Hilfsauslösevorrichtung (6) so ausgebildet ist, dass der erste und der dritte Schalter (8, 16) bei geöffnetem zweiten Schalter ( 14) nach Ablauf einer ersten Zeitdauer geöffnet wird, während bei geöffnetem zweiten und dritten Schalter ( 14, 16) der erste Schalter (8) nach Ablauf einer zweiten Zeitdauer geöffnet wird, die kürzer als die erste Zeitdauer ist.
2. Elektrischer selektiver Selbstschalter nach Anspruch 1 , dadurch gekennzeichnet, dass die Strombrücke durch eine Kontaktbrücke (20) gebildet wird, die im Betriebszustand einen ersten und einen zweiten Festkontakt (22, 24) des ersten Schalters (8) sowie einen dritten Festkontakt (26) des dritten Schalters ( 16) elektrisch miteinander verbindet.
3. Elektrischer selektiver Selbstschalter nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der dritte Festkontakt (26) einerseits und der erste und zweite Festkontakt (22, 24) andererseits auf voneinander abgewandten Seiten der Kontaktbrücke (20) gelegen sind.
4. Elektrischer selektiver Selbstschalter nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass die Hilfsauslösevorrichtung (6) eine Bimetallbetä- tigereinrichtung mit einem zwischen dem ersten Anschluss (2) und dem ersten Schalter (8) gelegenen ersten Bimetall (76) aufweist, wobei die Bime- tallbetätigereinrichtung so ausgebildet ist, dass sie auf ein die Kontaktbrücke (20) mechanisch beaufschlagendes Schaltschloss (36) einwirkt, und wobei die vom Schaltschloss (36) auf die Kontaktbrücke (20) ausgeübte Auslösekraft in Öffnungsrichtung der Kontaktierung zwischen dem dritten Festkontakt (26) und der Kontaktbrücke (20) und den Öffnungsrichtungen der Kontaktierung zwischen dem ersten Festkontakt (22) und der Kontaktbrücke (20) sowie dem zweiten Festkontakt (24) und der Kontaktbrücke (20) wirkt.
5. Elektrischer selektiver Selbstschalter nach Anspruch 4, dadurch gekennzeichnet, dass die Bimetallbetätigereinrichtung ein zwischen dem ersten Schalter (8) und dem zweiten Anschluss (4) gelegenes zweites Bimetall (78) aufweist, welches so ausgebildet ist, dass es unabhängig vom ersten Bimetall (76) mittels der Bimetallbetätigereinrichtung ein Auslösen des Schaltschlosses (36) bewirkt.
6. Elektrischer selektiver Selbstschalter nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Anordnung des ersten Festkontakts (22) und des zweiten Festkontakts (24) und/oder die Gestaltung der Kontaktbrücke (20) derart ist, dass die Kontaktbrücke (20) beim Auslösen des Schaltschlosses (36), nachdem der dritte Festkontakt (26) geöffnet worden ist, zuerst vom zweiten Festkontakt (24) und dann vom ersten Festkontakt (22) getrennt wird.
7. Elektrischer selektiver Selbstschalter nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass die Hauptauslösevorrichtung ( 12) eine mechanisch auf die Kontaktbrücke (20) wirkende Magnetbetätigereinrichtung mit ei- nem ersten in Betätigungsrichtung bewegbaren Magnetanker (62) und eine zwischen den Nebenschlussstrompfad und den zweiten Anschluss (4) geschaltete Spule (56) aufweist, wobei die in Betätigungsrichtung (B) des ersten Magnetankers (62) gerichtete, vom ersten Magnetanker (62) ausgeübte Auslösekraft in Öffnungsrichtung der Kontaktierung zwischen dem dritten Festkon- takt (26) und der Kontaktbrücke (20) und in Schließrichtung der Kontaktierung zwischen dem ersten Festkontakt (22) und der Kontaktbrücke (20) sowie zwischen dem zweiten Festkontakt (24) und der Kontaktbrücke (20) wirkt.
8. Elektrischer selektiver Selbstschalter nach Anspruch 7, dadurch gekennzeichnet, dass eine Verbindungslinie (X) zwischen dem ersten Festkontakt (22) und dem zweiten Festkontakt (24) eine Schwenkachse für die Kontaktbrücke (20) bildet, wenn die Auslösekraft des ersten Magnetankers (62) auf die Kontaktbrücke (20) aufgebracht wird.
9. Elektrischer selektiver Selbstschalter nach einem der Ansprüche 7 bis 8, dadurch gekennzeichnet, dass der Wirkpunkt der vom ersten Magnetanker (62) ausgeübten Auslösekraft zwischen dem dritten Festkontakt (26) einer- seits und dem ersten und zweiten Festkontakt (22, 24) andererseits liegt.
10. Elektrischer selektiver Selbstschalter nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass eine Kontaktfeder (34) vorgesehen ist, die im Betriebszustand gleichzeitig Kontaktkräfte zwischen dem dritten Festkontakt (26) und der Kontaktbrücke (20), zwischen dem ersten Festkontakt (22) und der Kontaktbrücke (20) sowie zwischen dem zweiten Festkontakt (24) und der Kontaktbrücke (20) in der jeweiligen Schließrichtung der Festkontakte (22, 24, 26) erzeugt.
1 1. Elektrischer selektiver Selbstschalter nach Anspruch 10, dadurch gekennzeichnet, dass die Kontaktfeder (34) an einem vom dritten Festkontakt (26) abgewandten, den ersten und zweiten Festkontakt (22, 24) überragenden Abschnitt der Kontaktbrücke (20) auf diese einwirkt.
12. Elektrischer selektiver Selbstschalter nach einem der Ansprüche 2 bis
1 1. dadurch gekennzeichnet, dass der zweite Schalter ( 14) einen beweglichen Kontakt (40) aufweist, der im störungsfreien Fall den ersten Anschluss (2) mit der Kontaktbrücke (20) elektrisch verbindet.
13. Elektrischer selektiver Selbstschalter nach Anspruch 12, dadurch gekennzeichnet, dass der bewegliche Kontakt (40) in Betätigungsrichtung (B) des ersten Magnetankers (62) hinter der Kontaktbrücke (20) angeordnet und mittels einer Schwenkvorrichtung (44) schwenkbar gelagert ist, wobei die Schwenkachse der Schwenkvorrichtung (44) im Wesentlichen parallel zu der Schwenkachse (X) der Kontaktbrücke (20) verläuft.
14. Elektrischer selektiver Selbstschalter nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass die Magnetbetätigereinrichtung einen sich durch ein Durchgangsloch (72) der Kontaktbrücke (20) erstreckenden Stift (60) mit einer in Betätigungsrichtung (B) des ersten Magnetankers (62) vor der Kon- taktbrücke (20) befindlichen Aufweitung (74) aufweist, wobei ein vorderes Ende des Stiftes (60) der Magnetbetätigereinrichtung geeignet ist, in Öffnungsrichtung des beweglichen Kontakts (40) auf diesen einzuwirken und die Aufweitung (74) geeignet ist, in Öffnungsrichtung der Kontaktbrücke (20) auf diese einzuwirken.
15. Elektrischer selektiver Selbstschalter nach einem der Ansprüche 7 bis
14, dadurch gekennzeichnet, dass die Magnetbetätigereinrichtung derart ausgestaltet ist, dass bei einer Betätigung des ersten Magnetankers (62) die Kon- taktierung zwischen der Kontaktbrücke (20) und dem beweglichen Kontakt (40) vor der Kontaktierung zwischen dem dritten Festkontakt (26) und der Kontaktbrücke (20) geöffnet wird.
16. Elektrischer selektiver Selbstschalter nach einem der Ansprüche 7 bis
15, dadurch gekennzeichnet, dass die Magnetbetätigereinrichtung einen Kern (58) aufweist, der mit einem dem ersten Magnetanker (62) zugewandten Kurzschlussring (70) versehen ist.
17. Elektrischer selektiver Selbstschalter nach einem der Ansprüche 7 bis
16, dadurch gekennzeichnet, dass die Magnetbetätigereinrichtung einen zwei- ten in Betätigungsrichtung (B) bewegbaren Magnetanker (64) aufweist, der vorzugsweise eine größere Masse besitzt, als der erste Magnetanker (62), und der bei einer erhöhten Induktion in der Magnetbetätigereinrichtung zusätzlich zum ersten Magnetanker (62) eine beschleunigte Bewegung in Betätigungsrichtung (B) bewirkt.
18. Elektrischer selektiver Selbstschalter nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Hilfsauslösevorrichtung derart ausgebildet ist, dass bei einem manuellen Einschalten zunächst der zweite Schalter ( 14), danach der erste Schalter (8) und darauf folgend der dritte Schalter ( 16) geschlossen wird.
PCT/EP2009/003968 2008-06-05 2009-06-03 Elektrischer selektiver selbstschalter WO2009146900A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980119632.7A CN102047370B (zh) 2008-06-05 2009-06-03 电子选择式自动开关
EP09757283.8A EP2286432B1 (de) 2008-06-05 2009-06-03 Elektrischer selektiver selbstschalter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008026813.5A DE102008026813B4 (de) 2008-06-05 2008-06-05 Elektrischer selektiver Selbstschalter
DE102008026813.5 2008-06-05

Publications (1)

Publication Number Publication Date
WO2009146900A1 true WO2009146900A1 (de) 2009-12-10

Family

ID=40982289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/003968 WO2009146900A1 (de) 2008-06-05 2009-06-03 Elektrischer selektiver selbstschalter

Country Status (4)

Country Link
EP (1) EP2286432B1 (de)
CN (1) CN102047370B (de)
DE (1) DE102008026813B4 (de)
WO (1) WO2009146900A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011008078A1 (de) 2011-01-08 2012-07-12 Peter Flohr Fernschaltbarer selektiver Hauptleitungsschutzschalter
GB2619070A (en) * 2022-05-26 2023-11-29 Eaton Intelligent Power Ltd Switching arrangement with a current sensitive latched switching contact and a second non-latched switching contact

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3048629A1 (de) * 2015-01-23 2016-07-27 Jozef Smrkolj Leitungsschutzschalter
FR3075458B1 (fr) * 2017-12-14 2020-09-11 Schneider Electric Ind Sas Appareil electrique destine a etablir ou interrompre le courant dans un circuit electrique
GB2585835B (en) * 2019-07-16 2023-07-19 Eaton Intelligent Power Ltd Relay

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2854616A1 (de) * 1978-12-18 1980-06-19 Bbc Brown Boveri & Cie Selektivschutzeinrichtung
DE4118377A1 (de) * 1991-06-05 1992-12-10 Hager Electro Gmbh Leitungs- und/oder geraeteschutzschalter
EP1365432A1 (de) * 2002-05-21 2003-11-26 HAGER ELECTRO GmbH Leitungs- und/oder Geräteschutzschalter
DE10354505A1 (de) * 2003-11-21 2005-07-07 Eti Elektroelement D.D. Elektrischer Selbstschalter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3820993A1 (de) * 1988-06-22 1989-12-28 Hager Electro Gmbh & Co Schutzschalter gegen ueberstrom und kurzschluss
FR2714520B1 (fr) * 1993-12-24 1996-01-19 Telemecanique Appareil électrique interrupteur à contacts séparables.
DE102006037233A1 (de) * 2006-08-09 2008-02-14 Siemens Ag Schutzschalter
CN100587873C (zh) * 2007-07-27 2010-02-03 浙江正泰电器股份有限公司 自动转换开关

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2854616A1 (de) * 1978-12-18 1980-06-19 Bbc Brown Boveri & Cie Selektivschutzeinrichtung
DE4118377A1 (de) * 1991-06-05 1992-12-10 Hager Electro Gmbh Leitungs- und/oder geraeteschutzschalter
EP1365432A1 (de) * 2002-05-21 2003-11-26 HAGER ELECTRO GmbH Leitungs- und/oder Geräteschutzschalter
DE10354505A1 (de) * 2003-11-21 2005-07-07 Eti Elektroelement D.D. Elektrischer Selbstschalter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011008078A1 (de) 2011-01-08 2012-07-12 Peter Flohr Fernschaltbarer selektiver Hauptleitungsschutzschalter
GB2619070A (en) * 2022-05-26 2023-11-29 Eaton Intelligent Power Ltd Switching arrangement with a current sensitive latched switching contact and a second non-latched switching contact

Also Published As

Publication number Publication date
EP2286432A1 (de) 2011-02-23
DE102008026813A1 (de) 2009-12-10
CN102047370A (zh) 2011-05-04
DE102008026813B4 (de) 2016-11-17
EP2286432B1 (de) 2016-04-13
CN102047370B (zh) 2013-10-30

Similar Documents

Publication Publication Date Title
EP2980822B1 (de) Schutzschaltgerät und magnetjoch
EP0042113B1 (de) Selbstschalter
DE102013211539B4 (de) Schaltmechanik und elektromechanisches Schutzschaltgerät
EP2697812B1 (de) Kontakteinrichtung und deren antrieb für schutzschaltgeräte
EP3248204B1 (de) Leitungsschutzschalter
EP2286432B1 (de) Elektrischer selektiver selbstschalter
DE69206749T2 (de) Elektrischer Schützschalter mit Einfügung von zusätzlichen Windungen im Magnetauslöser
EP2263247B1 (de) Schaltgerät
EP2584582A1 (de) Baureihe mehrpoliger Leistungsschalter
DE102016203506B4 (de) Auslösevorrichtung und elektromechanisches Schutzschaltgerät
DE102009031138B4 (de) Schalteinrichtung
DE942455C (de) Elektrischer UEberstromselbstschalter fuer Wechselstrom
WO2008000200A1 (de) Verfahren und vorrichtung zum sicheren betrieb eines schaltgerätes
EP3537466B1 (de) Elektromechanisches schutzschaltgerät
DE102017202790B4 (de) Elektromechanisches Schutzschaltgerät
DE102011079593B4 (de) Elektromechanisches Schutzschaltgerät
EP2824689B1 (de) Dynamischer Auslöser und elektrisches Installationsschaltgerät mit einem dynamischen Auslöser
DE102016203508B4 (de) Auslösevorrichtung und elektromechanisches Schutzschaltgerät
DE69833637T2 (de) Selektiver Auslöser für Leistungsschalter
EP2680293B1 (de) Auslösemechanismus
DE2610951B2 (de) Schutzschalter
EP0371419A2 (de) Elektrischer Selbstschalter
DE102016203505B4 (de) Auslösevorrichtung und elektromechanisches Schutzschaltgerät
DE102012023914A1 (de) Zentral sperr-und freischaltbarer Hauptsicherungsautomat
DE102015203778A1 (de) Elektromechanisches Schutzschaltgerät und Anordnung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980119632.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09757283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009757283

Country of ref document: EP