WO2009145088A1 - ビスマス皮膜付き金属材料およびその製造方法、それに用いる表面処理液ならびにカチオン電着塗装金属材料およびその製造方法 - Google Patents

ビスマス皮膜付き金属材料およびその製造方法、それに用いる表面処理液ならびにカチオン電着塗装金属材料およびその製造方法 Download PDF

Info

Publication number
WO2009145088A1
WO2009145088A1 PCT/JP2009/059255 JP2009059255W WO2009145088A1 WO 2009145088 A1 WO2009145088 A1 WO 2009145088A1 JP 2009059255 W JP2009059255 W JP 2009059255W WO 2009145088 A1 WO2009145088 A1 WO 2009145088A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal material
coating
film
bismuth
surface treatment
Prior art date
Application number
PCT/JP2009/059255
Other languages
English (en)
French (fr)
Inventor
亮助 川越
均 石井
Original Assignee
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パーカライジング株式会社 filed Critical 日本パーカライジング株式会社
Priority to CN200980129676.8A priority Critical patent/CN102112664B/zh
Priority to EP09754596.6A priority patent/EP2280096A4/en
Priority to MX2010012956A priority patent/MX2010012956A/es
Priority to KR1020137015697A priority patent/KR101330878B1/ko
Priority to KR1020107026297A priority patent/KR101330987B1/ko
Priority to JP2010514448A priority patent/JP5421251B2/ja
Priority to BRPI0912295A priority patent/BRPI0912295A2/pt
Priority to CA2725108A priority patent/CA2725108C/en
Priority to US12/736,958 priority patent/US20110073484A1/en
Publication of WO2009145088A1 publication Critical patent/WO2009145088A1/ja
Priority to US14/491,419 priority patent/US9039882B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/50Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/56Treatment of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/20Pretreatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12389All metal or with adjacent metals having variation in thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12681Ga-, In-, Tl- or Group VA metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]

Definitions

  • the present invention relates to a metal material with a bismuth film and a production method thereof, a surface treatment liquid used therefor, a cationic electrodeposition metal material, and a production method thereof.
  • ⁇ Coating is often performed on metal materials for the purpose of imparting corrosion resistance and design.
  • a chemical conversion film is interposed between a coating film formed by painting and a metal material, and this chemical conversion film significantly improves the corrosion resistance and coating film adhesion.
  • the chemical conversion film is formed on and coated on the surface of the metal material by a process called chemical conversion treatment that is brought into contact with a chemical called chemical conversion solution.
  • chemical conversion treatments that impart corrosion resistance and coating film adhesion to metal materials for example, chromate treatment, zinc phosphate treatment, zirconium treatment, and the like are known.
  • chromate treatment is conventionally restricted for environmental reasons because it contains hexavalent chromium in the treatment solution and the formed chemical film.
  • a sufficient amount of film cannot be obtained for iron-based materials, so it can be applied to structures that partially contain steel materials. It was difficult.
  • the zinc phosphate treatment is effective not only for zinc-based plating materials and aluminum alloy materials but also for steel materials, and is suitable as a base treatment when various coatings, particularly cationic electrodeposition coating.
  • it contains eutrophication element phosphorus and carcinogenic nickel, and industrial waste called sludge is generated as a by-product during processing. It is being done.
  • Patent Document 1 discloses a chemical conversion treatment comprising at least one selected from the group consisting of zirconium, titanium, and hafnium, fluorine, and an adhesion and corrosion resistance imparting agent.
  • the adhesion imparting agent and the corrosion resistance imparting agent are at least one selected from the group consisting of metal ions such as zinc, alkaline earth metal ions, group 3 metal ions of the periodic table, copper ions, and silicon-containing compounds.
  • a characteristic chemical conversion treatment agent is described.
  • Patent Document 2 discloses a chemical conversion treatment agent comprising at least one selected from the group consisting of zirconium, titanium, and hafnium, fluorine, an adhesion imparting agent, and a chemical reaction accelerator, wherein the adhesion imparting agent includes: Metal ions such as zinc, alkaline earth metal ions, metal ions of group 3 metals of the periodic table, copper ions, silicon-containing compounds, water-soluble resins, water-soluble epoxy compounds, and silane coupling agents and / or their A chemical conversion treatment is described which is at least one selected from the group consisting of hydrolysates and is characterized by the chemical reaction promoter.
  • the adhesion imparting agent includes: Metal ions such as zinc, alkaline earth metal ions, metal ions of group 3 metals of the periodic table, copper ions, silicon-containing compounds, water-soluble resins, water-soluble epoxy compounds, and silane coupling agents and / or their
  • a chemical conversion treatment is described which is at least one selected from the group consisting of hydrolysates
  • Patent Documents 1 and 2 further describes a surface-treated metal characterized by having a chemical conversion film formed on the surface by the chemical conversion treatment agent as described above.
  • a metal base material of this surface treatment metal an iron-type base material, an aluminum-type base material, and a zinc-type base material are indicated, and as a concrete shape of these metal base materials, a flat plate-like thing is described. Only listed.
  • the coating which can be performed with respect to the metal base material which has a chemical conversion film formed with the chemical conversion treatment agent is not specifically limited, Cationic electrodeposition coating, powder coating, etc. can be mentioned.
  • Such a zirconium-based chemical conversion treatment can form a required amount of chemical conversion film on various metal materials with low environmental load, and can impart corrosion resistance to the metal materials. Furthermore, the adhesion of the coating film when the cationic electrodeposition coating is applied can be improved.
  • JP 2004-218073 A Japanese Patent Laid-Open No. 2004-218075
  • the metal material is a metal material having a bag structure such as an automobile body
  • coating with coating means that a necessary amount of coating can be applied even in a bag structure where an electrodeposition coating film is difficult to be formed due to the fact that current does not flow easily and current density decreases. A film can be formed, and a coating film can be formed relatively uniformly on the entire surface of the metal material.
  • an object of the present invention is to provide a metal material with a bismuth film and a method for producing the metal material, which are excellent in revolving property with coating, corrosion resistance and coating film adhesion and can be manufactured with a low environmental load. It is another object of the present invention to provide a surface treatment liquid that can impart paint coverage, corrosion resistance, and coating film adhesion to a metal material with a low environmental load.
  • the present invention provides a cationic electrodeposition metal material and a method for producing the same, in which a coating film is uniformly formed on a surface, excellent in corrosion resistance and coating film adhesion, and can be produced with a low environmental load. Objective.
  • the present invention provides (1) a metal material with a bismuth film having a metal material and a layer containing bismuth on at least a part of the surface of the metal material, A metal material with a bismuth film, wherein the atomic ratio of bismuth atoms in the surface layer is 10% or more.
  • the metal material preferably has a bag structure.
  • the layer containing bismuth is formed in an island shape on the surface of the metal material.
  • this invention provides the cationic electrodeposition coating metal material which has the coating film formed by the cationic electrodeposition coating on the said film
  • this invention is a surface treatment liquid used when carrying out the chemical conversion treatment of the surface of a metal material as pre-processing of coating, Comprising: Bismuth and the ligand (L1 to bismuth) And a surface treatment liquid containing the same.
  • the coating is preferably cationic electrodeposition coating.
  • the said brightener is an organic compound which has at least 1 selected from the group which consists of an aromatic ring, a sulfone group, a formyl group, a carboxy group, and an amino group.
  • the mass concentration of the brightener when used for surface treatment is preferably 10 to 10,000 ppm.
  • the ligand (L1) is an aminopolycarboxylic acid and / or carboxylic acid, and has a higher stability to bismuth than the stability to ions of the metal constituting the metal material. It is preferable to include at least one.
  • the ligand (L1) is an aminopolycarboxylic acid and / or carboxylic acid, and has a higher stability to bismuth than a metal ion constituting the metal material. Furthermore, it is preferable that the stability of the metal constituting the metal material with respect to ions of the ligand (L1) is higher than the stability of the ligand (L1) with respect to bismuth.
  • the mass concentration of the bismuth when used for the surface treatment is preferably 5 to 1000 ppm.
  • the mass concentration of the ligand when used for the surface treatment is preferably 5 to 25000 ppm.
  • this invention surface-treats a metal material with the surface treatment liquid of this invention, and forms the layer containing bismuth in the at least one part of the surface of the said metal material.
  • a method for producing a metal material with a bismuth film is provided.
  • the metal material with a bismuth film of the present invention is preferably produced.
  • the present invention forms a coating film by cationic electrodeposition coating on the surface of the metal material with a bismuth film obtained by the method for producing a metal material with a bismuth film of the present invention.
  • a method for producing a cationic electrodeposition coated metal material is provided.
  • a surface treatment liquid for chemical conversion treatment of the surface of a metal material which is composed of a water-soluble Bi compound, a ligand (L1) for bismuth, a brightener and fluorine ions, and others are inevitable impurities and water.
  • the surface treatment liquid according to (18) above which does not contain a peroxide.
  • the metal material with a bismuth film of the present invention is excellent in revolving performance with coating, corrosion resistance and coating film adhesion, and can be produced with a low environmental load.
  • the surface treatment liquid of the present invention can impart paint coverage, corrosion resistance, and coating film adhesion to a metal material with a low environmental load.
  • the method for producing a metal material with a bismuth film according to the present invention can produce a metal material with a bismuth film that has a low environmental load and is excellent in revolving properties, corrosion resistance, and coating film adhesion.
  • the cationic electrodeposition metal material of the present invention has a coating film uniformly formed on the surface, is excellent in corrosion resistance and coating film adhesion, and can be produced with a low environmental load.
  • the method for producing a cationic electrodeposition-coated metal material of the present invention can produce a cationic electrodeposition-coated metal material having a low environmental load, a uniform coating film formed on the surface, and excellent corrosion resistance and coating film adhe
  • FIG. 1 is an explanatory view for explaining the mechanism by which a Bi film is formed by the method for producing a metal material with a bismuth film of the present invention.
  • FIG. 2 (A) is a conceptual diagram of a metal plate used for a paintability test
  • FIG. 2 (B) is a perspective view showing a four-box used for a paintability test
  • FIG. It is explanatory drawing which shows the evaluation method of the surrounding property with coating.
  • FIG. 3 is a graph showing FE-SEM photographs of the surfaces of the metal materials with bismuth coatings of Examples 34 to 38, and the relationship between the processing time and the coating amount.
  • the metal material with a bismuth film of the present invention is a metal material and a metal material with a bismuth film having a layer containing bismuth on at least a part of the surface of the metal material, and the bismuth atoms in the surface layer of the metal material with the bismuth film Is a metal material with a bismuth film, wherein the atomic ratio is 10% or more.
  • the shape of the metal material used in the present invention is not particularly limited, but is preferably a metal material having a bag structure.
  • the metal material having the bag structure portion is a metal material having a complicated shape typified by an automobile body, and a portion where the electrodeposition coating film is difficult to form even if the cation electrodeposition coating is difficult to flow (bag structure). Part).
  • Examples of the metal material having the bag structure include an automobile body, an automobile part, a building material, a construction machine part, a transport machine part, and steel furniture.
  • the type (material) of the metal material is not particularly limited, and a plurality of types of metal materials may be joined by a joining method such as welding, adhesion, riveting, or the like. It may have such a layer. Examples thereof include iron-based materials (steel materials, steel plates, zinc-plated steel plates, etc.), non-ferrous metal materials such as aluminum-based materials, zinc-based materials, and magnesium-based materials (plates, bars, die casts, castings).
  • the metal material includes a bismuth-containing layer (hereinafter referred to as “Bi coating”), which is particularly effective for the electrodeposition of iron-based materials. There is no problem even if it is a material.
  • the metal material with a bismuth film of the present invention may have a Bi film on at least a part of the surface of the metal material, and may further have a layer not containing bismuth (hereinafter referred to as “Bi”).
  • Bi bismuth
  • membrane in at least one part on the surface is also contained in the scope of the present invention.
  • the metal material with a bismuth film of the present invention has a Bi film on at least a part of the surface
  • the Bi film may be of a plurality of types.
  • the surface of the metal material may have two types of Bi films having different Bi ratios on the surface layer. In the case of having a plurality of types of Bi coatings, they may overlap each other (may be laminated).
  • membrane of this invention contributes to an improvement in corrosion resistance, it is thought that it does not contribute to the improvement of the coating around property.
  • the atomic ratio (hereinafter referred to as “Bi ratio”) of bismuth atoms in the surface layer of the metal material with a bismuth film is 10% or more.
  • the metal material with a bismuth film of the present invention has high paintability when the Bi ratio in the surface layer is 10% or more.
  • the Bi ratio in the surface layer is less than 10%, the coverage with the coating on the bag structure is lowered, the electrodeposition coating film thickness is lowered, and as a result, sufficient corrosion resistance cannot be imparted to the bag structure.
  • the Bi ratio in the surface layer of the metal material with a bismuth film of the present invention is preferably higher.
  • Bi atoms existing on the surface layer contribute to the improvement of the covering property, so that Bi atoms exist on the surface of the metal material with the bismuth film of the present invention, and Bi atoms are exposed.
  • it is.
  • it may exist in a portion (inside) other than the surface.
  • the atomic ratio of Bi atoms in the surface layer of the metal material with a bismuth film is the surface layer relative to the number of atoms of all atoms (including Bi atoms) other than hydrogen and helium present in the surface layer of the metal material with a bismuth film. This means the ratio (number percentage) of the number of Bi atoms present, and the X-ray photoelectron spectroscopic analysis (ESCA) measures the wide spectrum of the surface layer of the metal material with a bismuth film to measure the number of all atoms other than hydrogen and helium. And the number of atoms of Bi is calculated.
  • ESA X-ray photoelectron spectroscopic analysis
  • the “surface layer” in the metal material with a bismuth film of the present invention refers to a position of 1.3 nm in terms of Si in the depth direction from the surface of the metal material with a bismuth film of the present invention when analyzed by ESCA. This is because there is a considerable amount of oxidation and surface contamination by the atmosphere, and the surface state of the film obtained by chemical conversion treatment changes. Therefore, the thickness of the Bi film in the metal material with a bismuth film of the present invention is not particularly limited, but is preferably 1.3 nm or more in measuring the Bi ratio.
  • ESCA is an analysis device that can analyze the element qualitative configuration in the depth direction from the surface and the electronic state of the substance, and can analyze the surface state.
  • the metal with a bismuth film of the present invention when the metal material with a bismuth film of the present invention has the Bi film on all of its surface (the entire surface of the metal material is covered with the Bi film), the metal with a bismuth film of the present invention
  • the “surface layer” in the material indicates a position of 1.3 nm in terms of Si analyzed from the surface of the Bi coating in the depth direction by ESCA. Further, even if the metal material with a bismuth film of the present invention has the Bi film on a part of its surface and the remaining part of the film not containing the metal material or other Bi is exposed, the present invention.
  • the “surface layer” in the metal material with a bismuth film indicates the position of 1.3 nm in terms of Si analyzed in the depth direction by ESCA from the surface of the Bi film and the exposed surface of the metal material or the like. is there.
  • X-ray fluorescence spectroscopy atoms existing up to a depth of several tens of ⁇ m (for example, 20 to 30 ⁇ m) from the surface can be measured.
  • XRF X-ray fluorescence spectroscopy
  • the coverage of the layer containing bismuth increases with an increase in the amount of adhesion according to the amount of Bi deposited. From the point of being more excellent in corrosion resistance as the Bi adhesion amount increases, it is preferably 10% or more, more preferably 30% or more, and further preferably 50% or more.
  • the “coverage of the layer containing bismuth” is not converted from the surface area considering the surface roughness, but is measured as a flat image obtained from the result of observing the surface state by SEM. It means the area ratio of the material exposed part and the film component part.
  • the coverage shown in the present invention is shown by a photograph attached to this specification. Is not limited by the numerical value.
  • the Bi film may contain a substance other than Bi.
  • Substances other than Bi constituting the Bi film are not particularly limited, but the Bi film preferably does not contain Sn. This is because when Sn is contained, the corrosion resistance is not sufficiently exhibited.
  • the Bi film further contains at least one selected from the group consisting of Al, Ga, Ge, Se, Y, Sb and Te.
  • the total content of Bi in the Bi film and at least one selected from the group consisting of Al, Ga, Ge, Se, Y, Sb, and Te is excellent in corrosion resistance and can be reduced in cost. preferably from ⁇ 200mg / m 2, and more preferably 40 ⁇ 150mg / m 2.
  • Bi in the Bi film exists in the form of a metal or a compound typified by an oxide or hydroxide, and has all of the corrosion resistance after cationic electrodeposition coating, adhesion of the coating film, and reversibility with electrodeposition coating. Performance can be satisfied.
  • the form of Bi in the Bi film is preferably at least one selected from the group consisting of metals, oxides and hydroxides. In the case where the Bi film contains at least one selected from the group consisting of Al, Ga, Ge, Se, Y, Sb and Te in addition to Bi, the form of these substances is similarly metal, oxidation It is preferably at least one selected from the group consisting of substances and hydroxides.
  • Such a Bi film can be formed by the method for producing a metal material with a bismuth film of the present invention described later, and the Bi film formed by the method for producing a metal material with a bismuth film of the present invention can be obtained with an electron microscope or the like. Observation shows that a layer containing metal Bi is formed in an island shape on the surface of the metal material.
  • Such a Bi film is basically formed in the form of islands in the sea, in which metal Bi is scattered in the form of particles on the surface of the metal material.
  • FIG. 1 is an explanatory view for explaining the mechanism by which a Bi film is formed by the method for producing a metal material with a bismuth film of the present invention.
  • the Bi ions in the surface treatment liquid of the present invention receive electrons from Fe in the iron base, and metal Bi is deposited.
  • the anode part from which the iron material is eluted and the cathode part from which Bi is deposited are polarized, and the anode part is expressed as a concave, but a layer containing metal Bi is in the vicinity of the anode part.
  • the layers containing metal Bi are scattered on the surface of the iron base and are formed in an island shape.
  • the layer in which the portion containing the metal Bi is present on the surface in a particulate form may or may not contain other substances as long as it contains the metal Bi.
  • This part contains metal Bi, and considering the influence of surface contamination, a layer containing Bi hydroxide (Bi (OH) 3 etc.) or Bi oxide (Bi 2 O 3 etc.) is formed in the outermost layer.
  • Bi hydroxide Ba (OH) 3 etc.
  • Bi oxide Bi 2 O 3 etc.
  • the above-described metal material with a bismuth film of the present invention is not particularly limited as to its production method, and can be produced, for example, by vapor deposition methods such as sputtering, PVD, and CVD, sol-gel methods, electroplating methods, chemical conversion treatment methods, and the like. .
  • vapor deposition methods such as sputtering, PVD, and CVD
  • sol-gel methods sol-gel methods
  • electroplating methods chemical conversion treatment methods, and the like.
  • chemical conversion treatment methods and the like.
  • Bi or its oxide is used as a target, and Bi atoms are vapor-deposited on the surface of the metal material by a method of irradiating an electron beam in a decompressed gas. Examples thereof include a method of forming a film made of Bi oxide (Bi 2 O 3 or the like).
  • the metal material with a bismuth film of the present invention is preferably produced by a chemical conversion treatment method.
  • the metal material with a bismuth film of the present invention can be produced more easily and inexpensively.
  • it can be manufactured by the method for manufacturing a metal material with a bismuth film of the present invention, which will be described later, and can be manufactured relatively easily with a low environmental load, which is excellent in coating coverage, corrosion resistance, and coating film adhesion. It is more preferable from the point which can be performed.
  • the above-described metal material with a bismuth film of the present invention can form a coating film more uniformly (i.e., higher than the conventional zirconium-based metal material when coated on the Bi film). (It can be rotated with paint.) In addition, it is possible to obtain a coating coverage equivalent to or higher than that of a metal material treated with zinc phosphate. In particular, when cationic electrodeposition coating is performed on the Bi coating, higher coverage with coating can be obtained. Further, the metal material with a bismuth film of the present invention can be produced with a lower environmental load than those subjected to chromate treatment or zinc phosphate treatment. Furthermore, it is excellent in corrosion resistance and coating film adhesion.
  • the surface of the object to be coated is generated by cathodic electrolysis of the object to be coated (metal material with a bismuth film of the present invention), whereby hydrogen ions are reduced on the surface of the object to be coated.
  • the resin component such as an aminated epoxy emulsion resin contained in the coating is gelled and precipitated by the pH increase. Generation of the hydrogen gas is constantly performed during electrolysis, and a gas hole is opened in the coating film. Since the resistance of the deposited resin is sufficiently large, when the same coating material is used, the substantial coating film resistance is determined by the physical coating film shape, that is, the size and number of through holes of hydrogen gas.
  • the metal material with a bismuth film of the present invention has a Bi of 10% or more in atomic ratio in the surface layer when the cationic electrodeposition coating is applied. A good increase in resistance can be obtained with good paintability.
  • the hydrogen gas generation starting point becomes sparser and huge gas holes are generated than in the case of non-treated steel materials, so the coating film resistance is not good. It does not increase and the throwing power becomes poor.
  • the specific example which shows inadequate throwing power is shown when the metal material which has the bag structure part which performed the conventional zirconium type
  • group chemical conversion treatment is performed by cationic electrodeposition coating.
  • the chemical conversion treatment agent described in Patent Documents 1 and 2 is simply applied to a metal material having a bag structure portion, it is not possible to obtain high paintability.
  • the content of at least one selected from the group consisting of zirconium, titanium, and hafnium is preferably a lower limit of 20 ppm and an upper limit of 10000 ppm in terms of metal, and a lower limit of 50 ppm and an upper limit of 2000 ppm.
  • the group III metal ions of the periodic table include aluminum ions, gallium ions, and indium ions.
  • the content of the group III metal ions of the periodic table is lower limit 1 ppm, upper limit 5000 ppm. Although the lower limit is preferably 5 ppm and the upper limit is preferably 2000 ppm, it is high if the chemical conversion treatment agent contained in such a range is simply applied to a metal material having a bag structure. It is not possible to obtain the circulation with painting.
  • One of the features of the metal material with a bismuth film of the present invention is one of the greatest advantages in cationic electrodeposition coating, which is excellent in corrosion resistance after coating and coating film adhesion without impairing the coating coverage. It is. However, it is very difficult to make an absolute evaluation of the ability to coat with cationic electrodeposition. This is because the coating coverage in cationic electrodeposition coating is affected by the method of applying an electric field, the distance between the counter electrode and the object to be coated, the temperature of the paint, the conditions for stirring the paint, the composition of the object to be coated, etc. Of course, this is because the performance depends greatly on the type of resin in the paint, the amine group introduction rate into the resin, the pH of the paint, and so on.
  • the method for producing a metal material with a bismuth film of the present invention (hereinafter referred to as “the method of production of the present invention”) is a method in which a metal material is surface treated with a surface treatment liquid of the present invention described later, and This is a method for producing a metal material with a bismuth film, in which a layer containing Bi is formed.
  • the metal material used in the production method of the present invention is the same as described above, and is preferably a metal material having a bag structure. According to the manufacturing method of the present invention, even if it is a metal material having a bag structure part, it is possible to achieve an excellent paintability.
  • the metal material is preferably cleaned in advance by degreasing treatment.
  • the method of degreasing is not particularly limited, and a conventionally known method can be used.
  • the surface treatment liquid of the present invention is a surface treatment liquid used for chemical conversion treatment of the surface of a metal material as a pretreatment for coating, and contains Bi and a ligand (L1) for Bi. It is.
  • Bi is said to be ionized when the pH of the surface treatment liquid is 2.6 or less, but if the pH of the surface treatment liquid is in such a range, the object to be treated (metal material) dissolves in a large amount. There is a problem of end. In particular, zinc plating and the like are significantly dissolved.
  • the pH of the surface treatment liquid exceeds 2.6, Bi ions become unstable and precipitation occurs, and there is a problem that a sufficient coating amount cannot be secured.
  • the said ligand (L1) is mix
  • the Bi supply source is not particularly limited, and examples thereof include bismuth nitrate, bismuth sulfate, bismuth acetate, bismuth trifluoride, bismuth vanadate, and bismuth hydroxide. These may be used alone or in combination of two or more.
  • the surface treatment liquid of the present invention may be adjusted to a solid content concentration at the time of actual use (that is, when a metal material is surface-treated) at the time of production, but the product inventory management and distribution are easy. From this point of view, it is also possible to manufacture a product having a solid content higher than the concentration at the time of actual use, and dilute or dissolve with a solvent such as water at the time of use.
  • the surface treatment liquid of the present invention in which the solid content concentration is higher than that during use of the surface treatment liquid of the present invention is particularly referred to as “the composition of the present invention”. This composition of this invention is contained in the range of the surface treatment liquid of this invention.
  • the Bi atom content in the composition of the present invention and the surface treatment liquid is not particularly limited, but the mass concentration (A), which is the Bi atom content in the composition of the present invention, is 50 to 5000 ppm. It is preferably 100 to 2000 ppm, more preferably 200 to 1000 ppm. If the mass concentration is too low, the productivity will be reduced, and conversely if it is excessive, the film performance obtained by chemical conversion will be satisfactory, but the effect of the treatment solution concentration will be diminished, and at the same time the amount of chemicals used will increase and it will not be economical. .
  • the mass concentration (a), which is the content of Bi atoms in the surface treatment liquid of the present invention when the surface treatment liquid of the present invention is used for surface treatment, is preferably 5 to 1000 ppm. It is more preferable that If the mass concentration is too low, the Bi film surface layer has a Bi atom number ratio of 10 at% or more, so that it takes a long time to reduce productivity, and if it is excessive, the effect is no longer saturated, which is economically disadvantageous. .
  • the composition and the surface treatment liquid of the present invention contain a ligand for Bi so that the additive component becomes a Bi chemical conversion film more efficiently and efficiently.
  • the ligand (L1) is not particularly limited, and examples thereof include carboxylic acids such as formic acid, acetic acid, acrylic acid, and polyacrylic acid; ethylenediaminetetraacetic acid, 2-hydroxyethylethylenediaminetriacetic acid, trans-1,2-cyclohexane Examples thereof include aminocarboxylic acids such as diaminetetraacetic acid, diethylenetriaminepentaacetic acid, ethylene glycol bis (2-aminoethyl ether) tetraacetic acid, nitrilotriacetic acid, and iminodiacetic acid; aminopolycarboxylic acids; These may be used alone or in combination of two or more.
  • the ligand (L1) is an aminopolycarboxylic acid and / or carboxylic acid, and includes at least one ligand having higher stability to Bi than stability to ions of the metal constituting the metal material. Is preferred. The reason why it is preferable to include at least one ligand whose stability to Bi is higher than the stability to ions of the metal constituting the metal material will be described below. In general, it is important to stably maintain the metal ions (Bi ions in the present invention) to be precipitated in the chemical conversion treatment in an ionic state (pseudo ion state) because they affect the easiness of precipitation during the chemical conversion treatment. is there.
  • a ligand that can be ionized even in a wide range of pH is added.
  • the base metal ions are eluted by a chemical reaction between the base material (metal material) and the surface treatment liquid. If the eluted metal ions are coordinated preferentially to the ligands complexing the metal ions to be deposited, the metal ions to be deposited cannot exist stably and become hydroxides or oxides. Will sink. This hydroxide or oxide cannot be deposited on the surface of the base material, and does not make sense to be added.
  • the stability of the ligand with respect to the metal to be deposited is higher than the stability of the ligand with respect to the eluted metal, the metal to be precipitated can be stably present in the treatment liquid, and as a result,
  • the target film is economical and. Can be obtained efficiently.
  • the treatment liquid of the present invention is an aminopolycarboxylic acid and / or carboxylic acid as the ligand (L1), and the coordination with respect to bismuth is higher than the stability with respect to ions of the metal constituting the metal material.
  • it further comprises a ligand (L2) having a higher stability with respect to bismuth of the ligand (L1) than that of the ligand (L1).
  • L2 ligand having a higher stability with respect to bismuth of the ligand (L1) than that of the ligand (L1).
  • the ligand (L2) has a low stability with bismuth or does not coordinate with bismuth. However, the ligand (L2) has a higher stability with respect to ions of the metal constituting the metal material than the stability with respect to Bi. It is a rank.
  • the ligand (L2) is not particularly limited.
  • the ligand (L2) may be other than the compounds mentioned in the description of the ligand (L1), and may be an organic compound or an inorganic substance. What is necessary is just to select suitably according to the kind of metal material and the kind of said ligand (L1), and even if it uses several types simultaneously, there is no problem.
  • the concentration of the ligand (L1) may be appropriately adjusted according to the target pH and / or Bi concentration of the surface treatment liquid.
  • the surface treatment liquid of the present invention when used for surface treatment
  • the mass concentration of the ligand (L1) in is preferably 5 to 25000 ppm, and can be arbitrarily set depending on the pH of the treatment liquid to be used with reference to the coordination number for Bi. Even if it is excessive, there is no influence, but an excessive amount added is not economical. More preferably, it is 10 to 10,000 ppm, more preferably 200 to 3000 ppm, which can maintain the stability of Bi.
  • concentration of the ligand (L1) is within this range, the effect of stabilizing Bi ions is enhanced, and the intended metal material with a Bi film can be obtained.
  • the concentration of the ligand (L2) is not particularly limited.
  • the mass concentration of the ligand (L2) in the surface treatment liquid of the present invention when used for the surface treatment is 10 to 15000 ppm. Is more preferable, and 200 to 5000 ppm is more preferable.
  • composition and the surface treatment liquid of the present invention may further contain one or more selected from the group consisting of Al, Ga, Ge, Se, Y, Sb and Te.
  • the existence form of these atoms is not particularly limited, and may be an ionic state or a complexed state with a ligand.
  • the supply source of these atoms is not particularly limited, for example, chloride, hydroxide, sulfate compound, nitrate compound, fluoride, organic acid compound and the like can be mentioned. These may be used alone or in combination of two or more.
  • the composition of the present invention and the surface treatment liquid contain at least one selected from the group consisting of Al, Ga, Ge, Se, Y, Sb and Te
  • the total content (mass concentration) of these atoms is not particularly limited.
  • the mass concentration (B) which is the total content of at least one selected from the group consisting of Al, Ga, Ge, Se, Y, Sb and Te in the composition of the present invention is 100 to 2000 ppm. Preferably, it is 200 to 1000 ppm. If the mass concentration is too low, the replenishment amount for replenishing the active ingredient lost by the treatment becomes large. On the contrary, if it is excessive, the stability as the composition is impaired.
  • the mass concentration (b) is a total content of at least one selected from the group consisting of Al, Ga, Ge, Se, Y, Sb and Te in the surface treatment liquid of the present invention when used for the surface treatment. ) Is preferably 30 to 1000 ppm, more preferably 50 to 200 ppm. This is because a Bi coating having a thickness excellent in corrosion resistance can be formed relatively easily and inexpensively.
  • composition and surface treatment liquid of this invention can contain a fluorine further.
  • Fluorine is one of the elements required for the etching reaction of metal materials.
  • the fluorine supply source is not particularly limited, and examples thereof include hydrofluoric acid, ammonium fluoride, ammonium hydrogen fluoride, sodium fluoride, indium fluoride, zirconium hydrofluoric acid, aluminum fluoride, lithium fluoride, Examples thereof include silicic acid hydrofluoric acid, ammonium silicofluoride, and magnesium silicofluoride. These may be used alone or in combination of two or more.
  • the fluorine content in the composition and surface treatment liquid of the present invention is not particularly limited, but the mass concentration of fluorine ions in the composition of the present invention is preferably 300 to 10,000 ppm, and preferably 500 to 5000 ppm. More preferred is 1000 to 3000 ppm. Further, the mass concentration of fluorine ions in the surface treatment liquid of the present invention when used for the surface treatment is preferably 10 to 5000 ppm, more preferably 10 to 2000 ppm, and more preferably 10 to 1000 ppm. Further preferred.
  • the pH of the surface treatment solution of the present invention is not particularly limited, but is preferably 2 or more and less than 10.5. Further, it is more preferably 3.0 to 5.0 because excessive etching of the metal material can be reduced.
  • the chemical used is not particularly limited.
  • acids such as hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, boric acid, organic acids; lithium hydroxide, potassium hydroxide, sodium hydroxide, calcium hydroxide, magnesium hydroxide, alkali metal salts, ammonia, ammonium salts And alkalis such as amines. These may be used alone or in combination of two or more.
  • the composition and / or the surface treatment liquid of the present invention preferably further contains a brightener.
  • a brightener When a brightener is contained, the adhesion between the metal material and the Bi film becomes extremely high. This leads to the possibility of suppressing the falling off of the film component by intense spray rinsing after the chemical conversion treatment, leading to an economic direction.
  • the treatment liquid does not contain a brightening agent, the film component does not fall off by the water washing method, and even if it falls off, it is slightly poor economically. There is no problem with turning.
  • the composition and / or surface treatment liquid of the present invention contains a brightening agent
  • the inventor can control the orientation of Bi deposited on the metal material, and the Bi on the metal material can be controlled. It was found that the precipitation state changed, the precipitation was dense, and the interphase adhesion of Bi was further increased.
  • the brightener is also referred to as a crystal orientation control substance. Even if the composition and / or the surface treatment liquid of the present invention does not contain the above-mentioned brightener, the throwing power, corrosion resistance, and coating film adhesion of the electrodeposition paint do not deteriorate, but a brightener is added. And when Bi adhesion amount is equivalent, corrosion resistance performance improves more.
  • the effect of the brightener on the Bi deposition behavior on the metal material has not been fully elucidated, it is presumed as follows. However, the present invention is not limited by this consideration.
  • the brightener is adsorbed on the metal material, suppresses dissolution of the metal material that becomes an anode reaction, reduces the generated cathode current, and slightly relaxes the deposition rate of Bi.
  • it is preferentially adsorbed on the growth surface of the Bi crystal deposited on the metal material, suppressing the growth of that surface, and promoting Bi precipitation in other parts.
  • a known plating brightening agent that is, a compound added to obtain a glossy plating film by adding to a plating bath or the like can be used without particular limitation.
  • the brightener is preferably an organic compound having at least one selected from the group consisting of an aromatic ring, a sulfone group, a formyl group, a carboxy group and an amino group, and includes sodium naphthalene trisulfonate, sodium naphthalenesulfonate, vanillin and More preferably, it is at least one selected from the group consisting of sodium saccharinate. Also preferred are sodium naphthalene trisulfonate, sodium naphthalene sulfonate, vanillin and sodium saccharinate and salts with other cations.
  • the content of the brightener in the surface treatment liquid of the present invention is not particularly limited, but the mass concentration of the brightener in the surface treatment liquid of the present invention when used for surface treatment is 10 to 10,000 ppm. Preferably, it is 100 to 5000 ppm. When the content of the brightener is within this range, sufficient adhesion of the Bi film to the metal material can be obtained. However, even if it is added excessively, there is no problem.
  • the method for producing the surface treatment liquid of the present invention is not particularly limited.
  • the surface treatment liquid of the present invention can be produced by mixing with a stirrer or the like.
  • the surface treatment liquid of the present invention described above can form a necessary amount of chemical conversion film on various metal materials having a bag structure portion with a low environmental load as in the case of the zirconium-based chemical conversion treatment. It is possible to obtain a metal material with a bismuth film, which can provide film adhesion and can obtain high coating coverage in cationic electrodeposition coating.
  • the above-described surface treatment liquid of the present invention is brought into contact with the metal material to form a layer (Bi film) containing Bi on at least a part of the surface of the metal material.
  • a Bi film is deposited on the surface.
  • Bi in the Bi film formed by the production method of the present invention is considered to be in any form of metal, hydroxide, oxide and hydrate.
  • the method of bringing the surface treatment liquid of the present invention into contact with the metal material is not particularly limited, and can be performed by a method applied in a normal chemical conversion treatment method.
  • a spray treatment method, an immersion treatment method, a pouring treatment method, an electrolytic treatment method and the like can be mentioned.
  • the immersion treatment method is preferred. This is because, for a shape having a complicated structure, the immersion treatment method can come into contact with any part, so that a Bi film can be formed on the entire surface of the metal material relatively easily. .
  • the temperature of the surface treatment solution of the present invention is preferably 25 to 55 ° C., more preferably 30 to 50 ° C., and further preferably 35 to 45 ° C. during the surface treatment. When the temperature is within this range, a large amount of heat energy is not used, and the environment is economical.
  • the surface treatment time is not particularly limited, but is preferably 2 to 600 seconds, more preferably 30 to 300 seconds, and further preferably 30 to 120 seconds.
  • the processing time is largely related to productivity, and the shorter the time, the more preferable.
  • the chemical conversion treatment time is short, the liquid replacement inside the bag structure portion becomes slower than the outer peripheral portion, and it is also true that the start time of the chemical conversion reaction is delayed from the outer peripheral portion. It is necessary to some extent in order to obtain the amount of Bi adhesion in the outer peripheral portion and the bag structure satisfying the corrosion resistance.
  • productivity may be low, there is no problem even if the processing is performed for a long time.
  • washing with water After such surface treatment, it is preferable to wash with water. Moreover, it is preferable to wash with deionized water. It is preferable to wash with deionized water after washing with water.
  • the washing method is not particularly limited, and for example, a conventionally known method such as a dipping method or a spray method can be applied.
  • the final water washing is deionized water and spray water washing is most preferred. After washing with water, it may be dried or not dried.
  • the metal with a bismuth film of the present invention has a low environmental load, has corrosion resistance and coating film adhesion, and has a high coverage with coating (particularly cationic electrodeposition coating). Material can be obtained.
  • the method for producing a cationic electrodeposition coated metal material of the present invention comprises forming a coating film by cationic electrodeposition coating on the surface of the metal material on which the Bi film is formed by the method for producing a metal material with a bismuth film of the present invention. This is a method for producing a cationic electrodeposition metal material.
  • the cationic electrodeposition coating method is not particularly limited, and conventionally known methods can be applied.
  • a cationic electrodeposition coating composition containing an amine-added epoxy resin as a coating material and a blocked polyisocyanate curing agent as a curing component is used, and the metal material with a bismuth film of the present invention is immersed therein.
  • the metal material with a bismuth film of the present invention may be dried before the immersion, or may be immersed in the paint without being dried.
  • a voltage is applied to the metal material with a bismuth film of the present invention using, for example, a rectifier while maintaining the temperature of the paint at, for example, about 26 to 30 ° C. and optionally stirring the paint with a stirrer.
  • the electrolysis conditions may be normal conditions. For example, first, a voltage is linearly applied from 0 V to 200 V in the cathode direction over 30 seconds, and then held at 200 V for 150 seconds.
  • the method for producing a cationic electrodeposition coated metal material of the present invention preferably further includes a water washing step of washing the metal material formed with the cation electrodeposition coating on the surface of the metal material with a bismuth film of the present invention. .
  • the washing method is the same as described above.
  • the method for producing a cationic electrodeposition coated metal material according to the present invention includes a metal material obtained by subjecting the surface of the metal material with a bismuth film according to the present invention to cationic electrodeposition coating after the coating step or after the water washing step. It is preferable to include a step of heating and baking the coating film. For example, baking is performed at 170 ° C. for 20 minutes to form a coating film.
  • the coating film of the cationic electrodeposition metal material obtained by the method for producing a cationic electrodeposition metal material of the present invention preferably has an average thickness of 1 to 50 ⁇ m, and preferably 5 to 40 ⁇ m. More preferably, it is 7 to 25 ⁇ m. Moreover, it is preferable that the thickness of the thinnest part is 7 ⁇ m or more. If the minimum film thickness is thin, the corrosion resistance is not sufficiently exhibited. Furthermore, the thickness of the thickest part is preferably 40 ⁇ m or less, and more preferably 25 ⁇ m or less. If the maximum film thickness is large, the roughness of the coating film surface increases, which causes problems in appearance and is disadvantageous economically.
  • the thickness of the coating film is measured using an electromagnetic film thickness meter or an eddy current film thickness meter.
  • a magnetic metal material iron, iron-based alloy, etc.
  • an electromagnetic film thickness meter it is measured using an electromagnetic film thickness meter.
  • a nonmagnetic metal material aluminum, etc.
  • the above-described cationic electrodeposition coated metal material of the present invention has a coating film uniformly formed on the surface, is excellent in corrosion resistance and coating film adhesion, and can be produced with a low environmental load.
  • the method for producing a cationic electrodeposition coated metal material of the present invention is capable of producing a cationic electrodeposition coated metal material having a low environmental load, a uniform coating film formed on the surface, and excellent corrosion resistance and coating film adhesion. it can.
  • ⁇ Metal plate> The following metal materials were prepared (all manufactured by Partec Co., Ltd.).
  • ⁇ Cationic electrodeposition coating method for coating performance test> The obtained Bi-coated metal material was used as a cathode, and “GT-10HT” manufactured by Kansai Paint Co., Ltd. was used as an electrodeposition coating, and the coating film was deposited on the entire surface of the metal plate by constant voltage cathode electrolysis for 180 seconds. Thereafter, it was washed with water and baked at 170 ° C. for 20 minutes to form a coating film, thereby obtaining an electrodeposition coated plate as a sample. The coating thickness was adjusted to 20 ⁇ m.
  • the electrodeposition paint is a cationic electrodeposition paint containing the above-mentioned amine-added epoxy resin and a blocked polyisocyanate curing agent as a curing component.
  • the obtained sample was cross-cut and subjected to a salt spray test (JIS-Z2371-2000) to evaluate the one-side swollen width of the cross-cut portion after 1000 hours.
  • the one-side swollen width is preferably 3 mm or less, a very good level is 2 mm or less, the galvanized steel sheet is 3 mm or less, and the aluminum alloy sheet is 2 mm or less. Become a level.
  • the salt spray test of Example 32 and Comparative Example 3 the one-side swollen width of the crosscut portion after 72 hours was evaluated. The results are shown in Table 1.
  • the maximum width of the paint adhering to the adhesive tape is 3 mm or less, 2 mm or less is a very good level, galvanized steel sheet is 3 mm or less, and the aluminum alloy sheet 2 mm or less is a good level.
  • Example 32 and Comparative Example 3 were excluded from the test subjects. The results are shown in Table 1.
  • FIG. 2 (A) is a conceptual diagram of a metal plate used in a paintability test
  • FIG. 2 (B) is a perspective view showing a four-sheet box used in a paintability test
  • FIG. 2 (C) is an explanatory view showing a method for evaluating paintability.
  • FIG. 2 (A) four metal plates 12, 13, 14, and 15 of the same type were prepared.
  • a circular hole 11 having a diameter of 8 mm was formed in the three metal plates 12, 13 and 14 among them.
  • the position of the hole 10 is the center in the short side direction of the metal plate, and in the long side direction is 50 mm vertically from one short side (the shortest distance between the center of the hole and one short side is 50 mm), and from the other short side
  • the position was 100 mm in the vertical direction.
  • FIG. 2 (B) each of the two vinyl chloride plates 16 and 17 is bonded with an adhesive tape (not shown) so as to be in contact with all the long sides of the four metal plates.
  • the four-box 10 corresponds to “a metal material having a bag structure” in the present invention.
  • the four metal plates 12, 13, 14, and 15 are parallel, the clearance between them is all 20 mm, and the metal plates 12, 13, and 14 have holes 11.
  • the metal plate 15 does not have a hole.
  • the surfaces on the near side of FIG. 2B of the metal plates 12, 13, 14 and 15 were respectively an A surface, a C surface, an E surface, and a G surface.
  • FIG. 2C is a cross-sectional view in the center of the short side direction of the metal plate. That is, the four-box was arranged so that the metal plate 12 with the holes 11 formed on the side close to the counter electrode 21. And it wired so that all four metal plates might be short-circuited.
  • a 70 ⁇ 150 ⁇ 0.5 mm stainless steel plate (SUS304) whose one surface (the opposite surface to the surface facing the four-box) was sealed with an insulating tape was used.
  • the liquid level of the paint 22 (“GT-10HT” manufactured by Kansai Paint Co., Ltd.) was adjusted to a position where the metal plates 12, 13, 14, 15 and the counter electrode 21 were immersed 90 mm.
  • the temperature of the paint was kept at 28 ° C., and the paint was stirred with a stirrer (not shown).
  • the coating film 23 was electrolytically deposited on the surfaces of the metal plates 12, 13, 14 and 15 of the four-box 10 by the cathodic electrolysis method using the counter electrode 21 as an anode.
  • Specific electrolysis conditions were cathodic electrolysis using a rectifier at a predetermined voltage for 180 seconds. The voltage was adjusted so that the coating thickness on the A side of the four-box 10 was 20 ⁇ m.
  • each metal plate was washed with water and then baked at 170 ° C. for 20 minutes to form a coating film.
  • the film thickness of the coating film formed on the G surface of the metal plate 15 is measured using an electromagnetic film thickness meter (when the metal plate is SPC or GA) or an eddy current film thickness meter (when the metal plate is AL). Measured.
  • the coating thickness on the G surface was the average of 10 measurement results selected at random.
  • the coating film thickness on the G surface is preferably 7 ⁇ m or more. The results are shown in Table 1.
  • ⁇ Bi concentration measurement method of Bi film surface layer A wide spectrum of the surface layer was measured by an X-ray photoelectron spectrometer (ESCA: “ESCA-850M” manufactured by SHIMAZU) to determine the number of atoms of each atom, thereby measuring the Bi ratio of the surface layer. Moreover, the state analysis of the film was also performed by analyzing the narrow spectra of Bi and O. The results are shown in Table 1.
  • Example 1 Bismuth nitrate having a Bi concentration of 200 ppm and hydrofluoric acid having a concentration of 200 ppm were dissolved in water. To this, 840 ppm of HEDTA was added and stirred until the treatment liquid became transparent. Then, the pH of the obtained treatment solution was adjusted to 3.5 using ammonia to 37 ° C., and then a plurality of SPC metal plates were immersed for 180 seconds. And after taking out from a processing liquid, it washed with water and dried at normal temperature, and obtained the metal plate which has a Bi film
  • corrosion resistance 0.8 mm
  • coating film adhesion 0.8 mm
  • paint coverage The result of 9.8 ⁇ m sludge observation was a transparent liquid, and the environmental performance was evaluated as ⁇ .
  • Example 2 A metal material with a bismuth film was produced in the same manner as in Example 1 except that the Bi concentration in Example 1 was changed to 100 ppm. Bi was almost in the form of a metal, the adhesion amount was 60 mg / m 2 , and the Bi atom number ratio of the surface layer was 42%. Then, as a result of performing a corrosion resistance test, a coating film adhesion test, and a coating coverage test using several of the obtained ones, the corrosion resistance: 1.2 mm, the coating film adhesion: 0.8 mm, and the coating rolling performance: The result of having performed the sludge observation at 9.0 ⁇ m was a transparent liquid, and the environmental performance was evaluated as “ ⁇ ”.
  • Example 3 A metal material with a bismuth film was produced in the same manner as in Example 1 except that the Bi concentration of Example 1 was 1000 ppm and HEDTA was 1400 ppm. Bi was almost in the form of metal, the adhesion amount was 500 mg / m 2 , and the Bi atom number ratio of the surface layer was 95%. Then, as a result of performing a corrosion resistance test, a coating film adhesion test, and a coating coverage test using several of the obtained ones, the corrosion resistance: 1.2 mm, the coating film adhesion: 0.8 mm, and the coating rolling performance: The result of 11.0 ⁇ m and sludge observation was a transparent liquid, and the environmental performance was evaluated as ⁇ .
  • Example 4 A metal material with a bismuth film was produced in the same manner as in Example 1 except that the chemical conversion treatment time in Example 1 was set to 60 seconds. Bi was almost in the form of metal, the adhesion amount was 40 mg / m 2 , and the Bi atom number ratio of the surface layer was 38%. And as a result of performing a corrosion resistance test, a coating-film adhesion test, and a coating-around property test using several obtained ones, corrosion resistance: 1.4 mm, coating-film adhesion: 1.6 mm, coating-around property: The result of 8.8 ⁇ m sludge observation was a transparent liquid, and the environmental performance was evaluated as ⁇ .
  • Example 5 A metal material with a bismuth film was produced in the same manner as in Example 1 except that the chemical conversion treatment time in Example 1 was 120 seconds. Bi was almost in the form of a metal, the adhesion amount was 80 mg / m 2 , and the Bi atom number ratio of the surface layer was 70%. And as a result of performing a corrosion resistance test, a coating-film adhesion test, and a coating-around property test using several of the obtained ones, corrosion resistance: 1.2 mm, coating film adhesion: 1.3 mm, coating-around property: The result of having performed the sludge observation at 9.0 ⁇ m was a transparent liquid, and the environmental performance was evaluated as “ ⁇ ”.
  • Example 6> A metal material with a bismuth film was produced in the same manner as in Example 1 except that the chemical conversion treatment time in Example 1 was changed to 300 seconds. Bi was almost in the form of a metal, the adhesion amount was 450 mg / m 2 , and the Bi atom number ratio of the surface layer was 95%. And as a result of performing a corrosion resistance test, a coating-film adhesion test, and a coating coverage test using several sheets of the obtained one, corrosion resistance: 1.0 mm, coating-film adhesion: 0.8 mm, coating coverage: The result of 10.5 ⁇ m sludge observation was a transparent liquid, and the environmental performance was evaluated as ⁇ .
  • Example 7 A metal material with a bismuth film was prepared in the same manner as in Example 1 except that the pH of the surface treatment solution in Example 1 was 2.0. Bi was almost in the form of metal, the adhesion amount was 80 mg / m 2 , and the Bi atom number ratio of the surface layer was 60%. And as a result of performing a corrosion resistance test, a coating-film adhesion test, and a coating-around property test using several of the obtained ones, corrosion resistance: 1.2 mm, coating-film adhesion: 1.4 mm, coating-around property: The result of 8.5 ⁇ m sludge observation was a transparent liquid, and the environmental performance was evaluated as ⁇ .
  • Example 8> A metal material with a bismuth film was produced in the same manner as in Example 1 except that the pH of the surface treatment solution in Example 1 was 4.0. Bi was almost in the form of metal, the adhesion amount was 100 mg / m 2 , and the Bi atom number ratio of the surface layer was 85%. And as a result of performing a corrosion resistance test, a coating-film adhesion test, and a coating adhesion test using several of the obtained ones, corrosion resistance: 1.0 mm, coating film adhesion: 1.1 mm, coating adhesion: The result of having performed the sludge observation at 9.0 ⁇ m was a transparent liquid, and the environmental performance was evaluated as “ ⁇ ”.
  • Example 9 A metal material with a bismuth film was produced in the same manner as in Example 1 except that the pH of the surface treatment solution in Example 1 was 7.0. Bi was almost in the form of metal, the adhesion amount was 40 mg / m 2 , and the Bi atom number ratio of the surface layer was 70%. And as a result of performing a corrosion resistance test, a coating-film adhesiveness test, and a coating-around property test using several of the obtained ones, corrosion resistance: 1.7 mm, coating film adhesion: 1.5 mm, coating-around property: The result of the observation of sludge at 8.0 ⁇ m was a transparent liquid, and the environmental performance was evaluated as “ ⁇ ”.
  • Example 10 A metal material with a bismuth film was produced in the same manner as in Example 1 except that the pH of the surface treatment solution in Example 1 was 10.0. Bi was almost in the form of a metal, the adhesion amount was 25 mg / m 2 , and the Bi atom number ratio of the surface layer was 30%. And as a result of performing a corrosion resistance test, a coating-film adhesiveness test, and a coating-around property test using several of the obtained ones, corrosion resistance: 1.7 mm, coating film adhesion: 1.5 mm, coating-around property: The result of 7.8 ⁇ m sludge observation was a transparent liquid, and the environmental performance was evaluated as ⁇ .
  • Example 11 A metal material with a bismuth film was produced in the same manner as in Example 1 except that 2400 ppm of sodium saccharinate was further added as a brightener to the surface treatment solution used in Example 1. Bi was almost in the form of metal, the adhesion amount was 80 mg / m 2 , and the Bi atom number ratio of the surface layer was 85%. And as a result of performing a corrosion resistance test, a coating-film adhesion test, and a coating-around property test using several of the obtained ones, corrosion resistance: 1.0 mm, coating-film adhesion: 1.0 mm, coating-around property: The result of 9.7 ⁇ m sludge observation was a transparent liquid, and the environmental performance was evaluated as ⁇ .
  • Example 12 A metal material with a bismuth film was produced in the same manner as in Example 1 except that 1500 ppm of vanillin was further added as a brightener to the surface treatment liquid used in Example 1. Bi was almost in the form of a metal, the adhesion amount was 85 mg / m 2 , and the Bi atom number ratio of the surface layer was 85%. Then, as a result of performing a corrosion resistance test, a coating film adhesion test, and a paint coverage test using several of the obtained ones, corrosion resistance: 0.8 mm, coating film adhesion: 0.8 mm, paint coverage: The result of 9.5 ⁇ m sludge observation was a transparent liquid, and the environmental performance was evaluated as ⁇ .
  • Example 13 A metal material with a bismuth film was produced in the same manner as in Example 1 except that 8000 ppm of butynediol was further added as a brightener to the surface treatment liquid used in Example 1. Bi was almost in the form of a metal, the adhesion amount was 80 mg / m 2 , and the Bi atom number ratio of the surface layer was 88%.
  • corrosion resistance 1.1 mm
  • coating-film adhesion 1.0 mm
  • coating-around property The result of having performed the sludge observation at 9.0 ⁇ m was a transparent liquid, and the environmental performance was evaluated as “ ⁇ ”.
  • Example 14 A metal material with a bismuth film was produced in the same manner as in Example 1 except that 230 ppm of sodium naphthalenesulfonate was further added as a brightener to the surface treatment liquid used in Example 1. Bi was almost in the form of metal, the adhesion amount was 72 mg / m 2 , and the Bi atom number ratio of the surface layer was 75%.
  • corrosion resistance 1.2 mm
  • coating-film adhesion 1.0 mm
  • coating-around property The result of having performed the sludge observation at 9.0 ⁇ m was a transparent liquid, and the environmental performance was evaluated as “ ⁇ ”.
  • Example 15 A metal material with a bismuth film was prepared in the same manner as in Example 1 except that 2300 ppm of sodium naphthalene sulfonate was further added as a brightener to the surface treatment liquid used in Example 1. Bi was almost in the form of a metal, the adhesion amount was 70 mg / m 2 , and the Bi atom number ratio of the surface layer was 77%.
  • corrosion resistance 1.2 mm
  • coating-film adhesion 1.0 mm
  • coating-around property The result of having performed the sludge observation at 9.0 ⁇ m was a transparent liquid, and the environmental performance was evaluated as “ ⁇ ”.
  • Example 16 A metal material with a bismuth film was produced in the same manner as in Example 1 except that 23,000 ppm of sodium naphthalene sulfonate was further added as a brightener to the surface treatment liquid used in Example 1. Bi was almost in the form of metal, the adhesion amount was 70 mg / m 2 , and the Bi atom number ratio of the surface layer was 75%.
  • corrosion resistance 1.0 mm
  • coating-film adhesion 1.0 mm
  • coating-around property The result of having performed the sludge observation at 9.0 ⁇ m was a transparent liquid, and the environmental performance was evaluated as “ ⁇ ”.
  • Example 17 Bismuth nitrate having a Bi concentration of 200 ppm and hydrofluoric acid having a concentration of 200 ppm were dissolved in water. To this, 840 ppm of HEDTA and 700 ppm of Tyrone (monohydrate) were added and stirred until the treatment liquid became transparent. Then, the pH of the obtained treatment solution was adjusted to 3.5 using ammonia to 37 ° C., and then a plurality of SPC metal plates were immersed for 180 seconds. And after taking out from a processing liquid, it washed with water and dried at normal temperature, and obtained the metal plate which has a Bi film
  • Bi was almost in the form of a metal, the adhesion amount was 120 mg / m 2 , and the Bi atom number ratio of the surface layer was 97%. Then, as a result of performing a corrosion resistance test, a coating film adhesion test, and a paint coverage test using several of the obtained ones, corrosion resistance: 0.8 mm, coating film adhesion: 0.8 mm, paint coverage: As a result of sludge observation at 9.8 ⁇ m, the appearance of the chemical conversion treatment solution showed a blue color that is characteristic of a complex of iron and Tyrone, but no precipitate was seen at all, and an environmental evaluation of ⁇ was obtained. .
  • Example 18 Bismuth nitrate having a Bi concentration of 200 ppm and hydrofluoric acid having a concentration of 200 ppm were dissolved in water. To this, 900 ppm of EDTA and 1600 ppm of Tyrone (monohydrate) were added and stirred until the treatment liquid became transparent. Then, the pH of the obtained treatment solution was adjusted to 3.5 using ammonia to 37 ° C., and then a plurality of SPC metal plates were immersed for 180 seconds. And after taking out from a processing liquid, it washed with water and dried at normal temperature, and obtained the metal plate which has a Bi film
  • Bi was almost in the form of a metal, the adhesion amount was 120 mg / m 2 , and the Bi atom number ratio of the surface layer was 97%. Then, as a result of performing a corrosion resistance test, a coating film adhesion test, and a paint coverage test using several of the obtained ones, corrosion resistance: 0.8 mm, coating film adhesion: 0.8 mm, paint coverage: As a result of sludge observation at 9.8 ⁇ m, a blue liquid characteristic of the iron-tylon complex was obtained, but no precipitate was observed, and the environmental performance was evaluated as ⁇ .
  • Example 19 A metal material with a bismuth film was prepared in the same manner as in Example 1 except that the ligand in Example 1 was EDTA and the concentration was 300 ppm. Bi was almost in the form of metal, the adhesion amount was 140 mg / m 2 , and the Bi atom number ratio of the surface layer was 95%. And as a result of performing a corrosion resistance test, a coating-film adhesion test, and a coating coverage test using several of the obtained ones, corrosion resistance: 0.8 mm, coating-film adhesion: 1.0 mm, coating coverage: The result of 8.8 ⁇ m sludge observation was a transparent liquid, and the environmental performance was evaluated as ⁇ .
  • Example 20 A metal material with a bismuth film was produced in the same manner as in Example 19 except that the concentration of EDTA, which is a ligand in Example 19, was 900 ppm. Bi was almost in the form of a metal, the adhesion amount was 120 mg / m 2 , and the Bi atom number ratio of the surface layer was 88%. And as a result of performing a corrosion resistance test, a coating-film adhesion test, and a coating adhesion test using several of the obtained ones, corrosion resistance: 1.0 mm, coating film adhesion: 1.1 mm, coating adhesion: The result of 8.8 ⁇ m sludge observation was a transparent liquid, and the environmental performance was evaluated as ⁇ .
  • Example 21 A metal material with a bismuth film was produced in the same manner as in Example 19 except that the concentration of EDTA, which is a ligand in Example 19, was changed to 2700 ppm. Bi was almost in the form of metal, the adhesion amount was 90 mg / m 2 , and the Bi atom number ratio of the surface layer was 85%. And as a result of performing a corrosion resistance test, a coating-film adhesion test, and a coating-around property test using several of the obtained ones, corrosion resistance: 1.1 mm, coating-film adhesion: 1.0 mm, coating-around property: The result of 8.7 ⁇ m sludge observation was a transparent liquid, and the environmental performance was evaluated as ⁇ .
  • Example 22 A metal material with a bismuth film was prepared in the same manner as in Example 1 except that the ligand in Example 1 was HEDTA, which was NTA, and this concentration was 200 ppm. Bi was almost in the form of metal, the adhesion amount was 130 mg / m 2 , and the Bi atom number ratio of the surface layer was 80%. And as a result of performing a corrosion resistance test, a coating-film adhesion test, and a coating-around property test using several obtained ones, corrosion resistance: 1.0 mm, coating-film adhesion: 1.2 mm, coating-around property: The result of 8.5 ⁇ m sludge observation was a transparent liquid, and the environmental performance was evaluated as ⁇ .
  • Example 23 A metal material with a bismuth film was produced in the same manner as in Example 22 except that the concentration of NTA as a ligand in Example 22 was changed to 600 ppm. Bi was almost in the form of metal, the adhesion amount was 100 mg / m 2 , and the Bi atom number ratio of the surface layer was 75%. And as a result of performing a corrosion resistance test, a coating-film adhesion test, and a coating-around property test using several of the obtained ones, corrosion resistance: 1.3 mm, coating-film adhesion: 1.5 mm, coating-around property: The result of 8.4 ⁇ m sludge observation was a transparent liquid, and the environmental performance was evaluated as ⁇ .
  • Example 24 A metal material with a bismuth film was produced in the same manner as in Example 1 except that the ligand concentration in Example 1 was changed to 280 ppm. Bi was almost in the form of metal, the adhesion amount was 140 mg / m 2 , and the Bi atom number ratio of the surface layer was 90%. And as a result of performing a corrosion resistance test, a coating-film adhesion test, and a coating-around property test using several of the obtained ones, corrosion resistance: 1.0 mm, coating-film adhesion: 1.0 mm, coating-around property: The result of having performed the sludge observation at 9.0 ⁇ m was a transparent liquid, and the environmental performance was evaluated as “ ⁇ ”.
  • Example 25 A metal material with a bismuth film was produced in the same manner as in Example 1 except that the ligand concentration in Example 1 was changed to 1680 ppm. Bi was almost in the form of metal, the adhesion amount was 100 mg / m 2 , and the Bi atom number ratio of the surface layer was 88%. And as a result of performing a corrosion resistance test, a coating-film adhesion test, and a coating-around property test using several obtained ones, corrosion resistance: 1.0 mm, coating-film adhesion: 1.2 mm, coating-around property: The result of 8.5 ⁇ m sludge observation was a transparent liquid, and the environmental performance was evaluated as ⁇ .
  • Example 26> In the same manner as in Example 1 except that the surface treatment solution used in Example 1 was added so that Al in the form of aluminum nitrate was 150 ppm, and an equivalent amount of AlF 3 with hydrofluoric acid was further added. A metal material with a bismuth film was prepared. The actual hydrofluoric acid concentration is about 535 ppm. Fluoride ion derived from hydrofluoric acid also functions as a ligand for Al. Bi was almost in the form of metal, the adhesion amount was 90 mg / m 2 , and the Bi atom number ratio of the surface layer was 70%.
  • corrosion resistance 1.5 mm
  • coating film adhesion 1.2 mm
  • coating adhesion The result of 8.5 ⁇ m sludge observation was a transparent liquid, and the environmental performance was evaluated as ⁇ .
  • Example 27 In the same manner as in Example 1, except that the surface treatment solution used in Example 1 was added so that Y was 10 ppm in the form of yttrium nitrate and an equivalent of YF 3 was added with hydrofluoric acid. A metal material with a bismuth film was prepared. The actual hydrofluoric acid concentration is 206 ppm. Bi was almost in the form of metal, the adhesion amount was 90 mg / m 2 , and the Bi atom number ratio of the surface layer was 65%.
  • corrosion resistance 1.5 mm
  • coating-film adhesion 1.5 mm
  • coating coating performance The result of 8.8 ⁇ m sludge observation is slightly cloudy, but it is caused by the cloudiness of yttrium fluoride and not derived from the material metal. Obtained.
  • Example 28 A metal material with a bismuth film was produced in the same manner as in Example 1 except that the surface treatment solution used in Example 1 was added in the form of potassium antimonyl tartrate so that Sb was 5 ppm. Bi was almost in the form of metal, the adhesion amount was 70 mg / m 2 , and the Bi atom number ratio of the surface layer was 50%. And as a result of performing a corrosion resistance test, a coating-film adhesion test, and a coating coverage test using several of the obtained ones, corrosion resistance: 1.8 mm, coating-film adhesion: 1.7 mm, coating coverage: The result of the sludge observation at 8.0 ⁇ m was slightly thin and cloudy, and the environmental performance was evaluated as ⁇ .
  • Example 29> A metal material with a bismuth film was produced in the same manner as in Example 1 except that 300 ppm of fluorozirconic acid was added as an etching agent to the surface treatment liquid used in Example 1. Bi was almost in the form of metal, the adhesion amount was 65 mg / m 2 , and the Bi atom number ratio of the surface layer was 48%. And as a result of performing a corrosion resistance test, a coating-film adhesion test, and a coating coverage test using several of the obtained ones, corrosion resistance: 1.3 mm, coating-film adhesion: 1.2 mm, coating coverage: The result of 8.5 ⁇ m sludge observation was a transparent liquid, and the environmental performance was evaluated as ⁇ .
  • Example 30 A metal material with a bismuth film was produced in the same manner as in Example 1 except that the treatment liquid temperature in Example 1 was 43 ° C. Bi was almost in the form of metal, the adhesion amount was 130 mg / m 2 , and the Bi atom number ratio of the surface layer was 95%. And as a result of performing a corrosion resistance test, a coating-film adhesion test, and a coating coverage test using several of the obtained ones, corrosion resistance: 0.8 mm, coating-film adhesion: 1.0 mm, coating coverage: The result of 9.2 ⁇ m sludge observation was a transparent liquid, and the environmental performance was evaluated as ⁇ .
  • Example 31 A metal material with a bismuth film was produced in the same manner as in Example 1 except that the treatment liquid temperature in Example 1 was changed to 50 ° C. Bi was almost in the form of metal, the adhesion amount was 140 mg / m 2 , and the Bi atom number ratio of the surface layer was 95%. And as a result of performing a corrosion resistance test, a coating-film adhesion test, and a coating-around property test using several obtained ones, corrosion resistance: 1.0 mm, coating-film adhesion: 1.2 mm, coating-around property: The result of having performed the sludge observation at 9.0 ⁇ m was a transparent liquid, and the environmental performance was evaluated as “ ⁇ ”.
  • Example 32> Although it is the same chemical conversion treatment conditions as Example 1, it is the conditions which used coating as solvent coating. Specifically, a solvent paint (clean amylac manufactured by Kansai Paint Co., Ltd.) was applied to the metal material with a bismuth film obtained in the same manner as in Example 1, dried at 130 ° C. for 25 minutes, and coated with 30 ⁇ m. A film was formed. Bi was almost in the form of a metal, the adhesion amount was 120 mg / m 2 , and the Bi atom number ratio of the surface layer was 97%. And as a result of performing a corrosion resistance test and a coating film adhesion test using several of the obtained ones, the corrosion resistance: 1.5 mm, the result of sludge observation is a transparent liquid, and the environmental performance is an evaluation result of ⁇ Got.
  • a solvent paint cleaning amylac manufactured by Kansai Paint Co., Ltd.
  • Example 33 A metal material with a bismuth film was produced in the same manner as in Example 1 except that the metal material was GA. Bi was almost in the form of metal, the adhesion amount was 200 mg / m 2 , and the Bi atom number ratio of the surface layer was 97%. And as a result of performing a corrosion resistance test, a coating-film adhesion test, and a coating coverage test using several of the obtained ones, corrosion resistance: 0.5 mm, coating-film adhesion: 0.6 mm, coating coverage: The result of 10.2 ⁇ m sludge observation was a transparent liquid, and the environmental performance was evaluated as ⁇ .
  • Example 34 A metal material with a bismuth film was prepared in the same manner as in Example 11 except that the metal material was GA. Bi was almost in the form of metal, the adhesion amount was 180 mg / m 2 , and the Bi atom number ratio of the surface layer was 95%. And as a result of performing a corrosion resistance test, a coating-film adhesion test, and a coating adhesion test using several of the obtained ones, corrosion resistance: 0.5 mm, coating film adhesion: 0.5 mm, coating adhesion: The result of 9.8 ⁇ m sludge observation was a transparent liquid, and the environmental performance was evaluated as ⁇ .
  • Example 35 A metal material with a bismuth film was produced in the same manner as in Example 11 except that the metal material was Al. Bi was almost in the form of metal, the adhesion amount was 90 mg / m 2 , and the Bi atom number ratio of the surface layer was 75%. And as a result of performing a corrosion resistance test, a coating-film adhesion test, and a coating adhesion test using several of the obtained ones, corrosion resistance: 0.5 mm, coating film adhesion: 0.5 mm, coating adhesion: The result of 8.9 ⁇ m sludge observation was a transparent liquid, and the environmental performance was evaluated as ⁇ .
  • SPC is immersed in a 3.0 g / L aqueous solution of a surface conditioner (“Preparen X” manufactured by Nihon Parkerizing Co., Ltd.) for 30 seconds at room temperature, and then a zinc phosphate chemical conversion treatment agent (“Palbond” manufactured by Nihon Parkerizing Co., Ltd.).
  • SX35 is immersed in a 50 g / L aqueous solution for 120 seconds at 35 ° C, taken out from the treatment solution, washed with water, dried at room temperature, and a 2.2 g / m 2 zinc phosphate-based chemical conversion coating. A metal plate having was obtained.
  • Example 1 in Patent Document 1 Japanese Patent Application Laid-Open No. 2004-218073 was referred to.
  • Zircon hydrofluoric acid is used as the surface treatment liquid, and it is blended so that the Zr is 250 ppm, added with zinc nitrate so that the Zn concentration is 500 ppm, the pH is 4, and the hydration of zirconium Carefully prepared was prepared with diluted sodium hydroxide so as not to precipitate the product. This was heated to 40 ° C. and the surface-cleaned SPC was immersed for 60 seconds, then sprayed with city water for 30 seconds and sprayed with deionized water for 30 seconds, and dried at room temperature.
  • a surface conditioner preparene X” manufactured by Nihon Parkerizing Co., Ltd.
  • FIG. 3 shows an FE-SEM photograph of the surface of each metal material with a bismuth film in Examples 34 to 38, and a graph showing the relationship between the treatment time and the amount of film attached.
  • Examples 36 to 40 The pH of the surface treatment solution used in Example 11 was 3.7, and the treatment times were 15 seconds (Example 36), 30 seconds (Example 37), 45 seconds (Example 38), and 120 seconds (Example). 39) and a metal material with a bismuth film was produced in the same manner as in Example 11 except that the time was 300 seconds (Example 40).
  • the coating amount of each example and the ratio of the surface area of the Bi film to the surface area of the metal material (coverage) are shown in Table 2 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

 塗装付き廻り性、耐食性および塗膜密着性に優れ、低環境負荷で製造することができる、ビスマス皮膜付き金属材料の提供。  金属材料と、前記金属材料の表面の少なくとも一部にビスマスを含む層を有するビスマス皮膜付き金属材料であって、前記ビスマス皮膜付き金属材料の表層におけるビスマス原子の原子数比率が10%以上である、ビスマス皮膜付き金属材料。

Description

ビスマス皮膜付き金属材料およびその製造方法、それに用いる表面処理液ならびにカチオン電着塗装金属材料およびその製造方法
 本発明は、ビスマス皮膜付き金属材料およびその製造方法、それに用いる表面処理液ならびにカチオン電着塗装金属材料およびその製造方法に関する。
 金属材料上に耐食性や意匠性を付与する目的で塗装を施すことが多い。一般的に、塗装により形成される塗膜と金属材料の間には化成皮膜が介在し、この化成皮膜により耐食性や塗膜密着性が著しく向上する。化成皮膜は、化成処理液と称される化学薬品に接触させる化成処理といわれるプロセスで金属材料表面に形成され、被覆する。金属材料に対して耐食性および塗膜密着性を付与する化成処理としては、例えば、クロメート処理、リン酸亜鉛処理、ジルコニウム系処理等が知られている。
 これらの中でクロメート処理は、処理液中や形成される化成皮膜中に6価クロムを含有することから、従来、環境上の理由で使用が制限されている。また、亜鉛系めっき材やアルミニウム合金材には有効であるものの、鉄系材料に対しては充分な皮膜量が得られないので、鉄鋼材料を部分的に有する構成体等に対しては適用が困難であった。
 また、リン酸亜鉛処理は、亜鉛系めっき材やアルミニウム合金材のみならず、鉄鋼材料にも有効であり、各種塗装、特にカチオン電着塗装を施す場合の下地処理として好適である。しかしながら、富栄養化元素のリンや発癌性の恐れのあるニッケルを含有しており、さらに処理に際してスラッジと称される産業廃棄物が副産物として発生してしまうことから、やはり環境上の理由により敬遠されつつある。
 これに対してジルコニウム系化成処理は、各種材料に必要量の皮膜を形成することができ、耐食性や塗膜密着性等を向上させることができ、さらに環境に対する負荷も少なくすることができる。
 このようなジルコニウム系化成処理として、例えば、特許文献1には、ジルコニウム、チタンおよびハフニウムからなる群から選ばれる少なくとも一種、フッ素、ならびに、密着性および耐食性付与剤からなる化成処理であって、前記密着性付与剤および耐食性付与剤は、亜鉛等の金属イオン、アルカリ土類金属イオン、周期律表第三属金属イオン、銅イオン、およびケイ素含有化合物からなる群から選ばれる少なくとも一種であることを特徴とする化成処理剤が記載されている。
 また、特許文献2には、ジルコニウム、チタンおよびハフニウムからなる群から選ばれる少なくとも一種、フッ素、密着性付与剤、ならびに、化成反応促進剤からなる化成処理剤であって、前記密着性付与剤は、亜鉛等の金属イオン、アルカリ土類金属イオン、周期律表第三属金属イオン、銅イオン、ケイ素含有化合物、水溶性樹脂、水溶性エポキシ化合物、ならびに、シランカップリング剤、および/または、その加水分解物からなる群から選ばれる少なくとも一種であり、前記化成反応促進剤に特徴がある化成処理が記載されている。
 そして特許文献1、2の各々には、さらに、上記のような化成処理剤により形成された化成皮膜を表面に有することを特徴とする表面処理金属が記載されている。そして、この表面処理金属の金属基材としては、鉄系基材、アルミニウム系基材、亜鉛系基材が記載されており、これら金属基材の具体的な形状としては、平面板状のもののみが記載されている。さらに、化成処理剤により形成された化成皮膜を有する金属基材に対して行うことができる塗装は特に限定されず、カチオン電着塗装、粉体塗装等を挙げることができると記載されている。
 このようなジルコニウム系化成処理によれば、低環境負荷で、各種金属材料に必要量の化成皮膜を形成でき、金属材料に耐食性を付与し得る。さらに、カチオン電着塗装を施した場合の塗膜密着性を向上させ得る。
特開2004-218073号公報 特開2004-218075号公報
 しかしながら、金属材料が自動車ボディのような袋構造部を有する金属材料である場合、ジルコニウム系化成処理を適用しても、その後に行われるカチオン電着塗装において高い塗装付き廻り性を得ることが困難である。例えば、特許文献1~2に記載の化成処理剤を、単に袋構造部を有する金属材料に適用しただけでは、高い塗装付き廻り性を得ることはできない。
 ここで「塗装付き廻り性」とは、後に詳細に説明するように、電流が流れ難く電流密度が低下するために電着塗膜が形成され難い袋構造部内であっても、必要量の塗膜を形成することができ、かつ、金属材料の表面の全体に比較的均一に塗膜を形成できる性質である。
 これに対して、袋構造部を有する金属材料にリン酸亜鉛処理を適用した場合は、ジルコニウム系化成処理を適用した場合よりも比較的高い塗装付き廻り性となり易い。しかしながら、上記のような環境面等の問題がある。
 そこで、本発明は、塗装付き廻り性、耐食性および塗膜密着性に優れ、低環境負荷で製造することができる、ビスマス皮膜付き金属材料およびその製造方法を提供することを目的とする。
 また、本発明は、低環境負荷で、金属材料に塗装付き廻り性、耐食性および塗膜密着性を付与することができる表面処理液を提供することを目的とする。
 また、本発明は、表面に塗膜が均一に形成され、耐食性および塗膜密着性に優れ、低環境負荷で製造することができる、カチオン電着塗装金属材料およびその製造方法を提供することを目的とする。
 上記目的を達成するために、本発明は、(1)金属材料と、前記金属材料の表面の少なくとも一部にビスマスを含む層を有するビスマス皮膜付き金属材料であって、前記ビスマス皮膜付き金属材料の表層におけるビスマス原子の原子数比率が10%以上である、ビスマス皮膜付き金属材料を提供する。
 (2)ここで、前記金属材料は、袋構造部を有するのが好ましい。
 (3)また、前記ビスマスを含む層は、金属ビスマスを含む層が前記金属材料の表面に島状に形成されているのが好ましい。
 (4)また、上記目的を達成するために、本発明は、本発明のビスマス皮膜付き金属材料の前記皮膜上にカチオン電着塗装により形成された塗膜を有するカチオン電着塗装金属材料を提供する。
 (5)また、上記目的を達成するために、本発明は、塗装の前処理として金属材料の表面を化成処理する場合に用いる表面処理液であって、ビスマスと、ビスマスに対する配位子(L1)とを含有する表面処理液を提供する。
 (6)ここで、前記塗装は、カチオン電着塗装であるのが好ましい。
 (7)また、更に、光沢剤を含有するのが好ましい。
 (8)また、前記光沢剤は、芳香環、スルホン基、ホルミル基、カルボキシ基およびアミノ基からなる群から選択される少なくとも1つを有する有機化合物であるのが好ましい。
 (9)また、表面処理に用いられる時の前記光沢剤の質量濃度が、10~10000ppmであるのが好ましい。
 (10)また、前記配位子(L1)は、アミノポリカルボン酸および/またはカルボン酸であり、ビスマスに対する安定度が前記金属材料を構成する金属のイオンに対する安定度よりも高い配位子を少なくとも1つ含むのが好ましい。
 (11)また、配位子(L1)は、アミノポリカルボン酸および/またはカルボン酸であり、ビスマスに対する安定度が前記金属材料を構成する金属のイオンに対する安定度よりも高い配位子であり、さらに、前記金属材料を構成する金属のイオンに対する安定度が、前記配位子(L1)のビスマスに対する安定度よりも高い配位子(L2)を含有するのが好ましい。
 (12)また、表面処理に用いられる時の前記ビスマスの質量濃度が、5~1000ppmであるのが好ましい。
 (13)また、表面処理に用いられる時の前記配位子の質量濃度が、5~25000ppmであるのが好ましい。
 (14)また、pHが2以上10.5未満であるのが好ましい。
 (15)また、上記目的を達成するために、本発明は、金属材料を、本発明の表面処理液で表面処理し、前記金属材料の表面の少なくとも一部にビスマスを含む層を形成する、ビスマス皮膜付き金属材料の製造方法を提供する。
 (16)ここで、本発明のビスマス皮膜付き金属材料を製造するのが好ましい。
 (17)また、上記目的を達成するために、本発明は、本発明のビスマス皮膜付き金属材料の製造方法によって得られたビスマス皮膜付き金属材料の表面をカチオン電着塗装して塗膜を形成する、カチオン電着塗装金属材料の製造方法を提供する。
 (18)水溶性Bi化合物、ビスマスに対する配位子(L1)、光沢剤およびフッ素イオンからなり、他は不可避的不純物および水である金属材料の表面を化成処理する表面処理液を提供する。
 (19)上記(18)に記載の表面処理液であって、スズの2価の水溶性化合物を含まない表面処理液。処理液がスズを含むと化成皮膜中にスズが含まれ耐食性に悪影響がある。
 (20)上記(18)に記載の表面処理液であって、過酸化物を含まない表面処理液。
 本発明のビスマス皮膜付き金属材料は、塗装付き廻り性、耐食性および塗膜密着性に優れ、低環境負荷で製造することができる。
 また、本発明の表面処理液は、低環境負荷で、金属材料に塗装付き廻り性、耐食性および塗膜密着性を付与することができる。
 本発明のビスマス皮膜付き金属材料の製造方法は、低環境負荷で、塗装付き廻り性、耐食性および塗膜密着性に優れるビスマス皮膜付き金属材料を製造することができる。
 本発明のカチオン電着塗装金属材料は、表面に塗膜が均一に形成され、耐食性および塗膜密着性に優れ、低環境負荷で製造することができる。
 本発明のカチオン電着塗装金属材料の製造方法は、低環境負荷で、表面に塗膜が均一に形成され、耐食性および塗膜密着性に優れるカチオン電着塗装金属材料を製造することができる。
図1は、本発明のビスマス皮膜付き金属材料の製造方法によってBi皮膜が形成されるメカニズムを説明する説明図である。 図2(A)は塗装付き廻り性試験に用いる金属板の概念図であり、図2(B)は塗装付き廻り性試験に用いる4枚ボックスを示す斜視図であり、図2(C)は塗装付き廻り性の評価方法を示す説明図である。 図3は、実施例34~38の各ビスマス皮膜付き金属材料表面のFE-SEM写真と、処理時間と皮膜付着量との関係を示すグラフである。
 以下、本発明をより詳細に説明する。
 本発明のビスマス皮膜付き金属材料は、金属材料と、前記金属材料の表面の少なくとも一部にビスマスを含む層を有するビスマス皮膜付き金属材料であって、前記ビスマス皮膜付き金属材料の表層におけるビスマス原子の原子数比率が10%以上である、ビスマス皮膜付き金属材料である。
 本発明に用いられる前記金属材料は、その形状については特に限定されないが、袋構造部を有する金属材料であることが好ましい。
 前記袋構造部を有する金属材料は、自動車車体に代表される複雑な形状の金属材料であって、カチオン電着塗装を施しても電流が流れ難く電着塗膜が形成され難い部分(袋構造部)を有する金属材料である。
 袋構造部を有する金属材料としては、例えば、自動車車体、自動車部品、建築材料、建設機械部品、運搬機械部品、スチール家具等が挙げられる。
 また、前記金属材料の種類(材質)は特に限定されず、複数種類の金属材料を溶接、接着、リベット止め等の接合方法によって接合させたものであってもよく、金属材料の表面にめっきのような層を有するものであってもよい。例えば、鉄系材料(鋼材、鋼板、亜鉛系めっき鋼板等)、非鉄金属材料であるアルミニウム系、亜鉛系、マグネシウム系材料(板、棒、ダイキャスト、鋳物)等が挙げられる。
 前記金属材料は、前記ビスマスを含む層(以下「Bi皮膜」という。)は、鉄系材料に対する電着付き廻り性に対して特に効果的であるという点から、鋼材、鋼板のような鉄系材料であったとしても何ら問題はない。
 本発明のビスマス皮膜付き金属材料は、金属材料の表面の少なくとも一部に、Bi皮膜を有していればよく、ビスマス(以下「Bi」という。)を含まない層をさらに有していてもよいが、前記金属材料の表面の全てにBi皮膜を有するものであることが、塗装付き廻り性、耐食性および塗膜密着性に優れる点から好ましい。また、前記金属材料の表面にBiを含まない皮膜を有し、その表面上の少なくとも一部に、さらに前記Bi皮膜を有するものも本発明の範囲に含まれる。
 本発明のビスマス皮膜付き金属材料は、Bi皮膜を表面の少なくとも一部に有するが、Bi皮膜は複数の種類であってもよい。例えば、表層のBi比率が異なる2種類のBi皮膜を前記金属材料の表面に有するものであってもよい。
 複数の種類のBi皮膜を有する場合、それらは互いに、少なくとも一部が重なっていてもよい(積層していてもよい)。なお、本発明のビスマス皮膜付き金属材料の表層を形成しないBi皮膜は、耐食性の向上には寄与するものの、塗装付き廻り性の向上には寄与しないと考えられる。
 本発明のビスマス皮膜付き金属材料は、前記ビスマス皮膜付き金属材料の表層におけるビスマス原子の原子数比率(以下「Bi比率」という。)が10%以上である。本発明のビスマス皮膜付き金属材料は、表層におけるBi比率が10%以上であることにより、高い塗装付き廻り性が得られる。表層におけるBi比率が10%未満であると袋構造部への塗装付き廻り性が低下し、電着塗膜厚が低下し、結果として袋構造部に充分な耐食性を付与させることができなくなる。
 表層におけるBi比率が高いほど塗装付き廻り性がより高くなるため、表層におけるBi比率は15%以上であることが好ましく、20%以上であることがより好ましい。
 上記のように本発明のビスマス皮膜付き金属材料の表層におけるBi比率は高いほうが好ましい。本発明においては表層に存在するBi原子が塗装付き廻り性の向上に寄与していると考えられるため、本発明のビスマス皮膜付き金属材料の表面にBi原子が存在し、Bi原子が露出していることが好ましい。ただし表面以外の部分(内部)に存在してもよい。
 ここで、前記ビスマス皮膜付き金属材料の表層におけるBi原子の原子数比率は、ビスマス皮膜付き金属材料の表層に存在する水素とヘリウム以外の全原子(Bi原子を含む)の原子数に対する、表層に存在するBi原子の原子数の比率(個数百分率)を意味し、X線光電子分光分析(ESCA)によって、ビスマス皮膜付き金属材料の表層のワイドスペクトルを測定して水素とヘリウム以外の全ての原子数およびBiの原子数を求めて算出される。
 また、本発明のビスマス皮膜付き金属材料における「表層」とは、ESCAにより分析した場合における、本発明のビスマス皮膜付き金属材料の表面から深さ方向にSi換算で1.3nmの位置をいう。大気による酸化や表面汚染が少なからず生じ、化成処理により得られる皮膜の表面状態が変化してしまうためである。
 したがって、本発明のビスマス皮膜付き金属材料におけるBi皮膜の厚さは、特に限定されないが、Bi比率を測定する上で1.3nm以上であることが好ましい。
 一般的に、ESCAは、表面から深さ方向に対する構成する元素定性とその物質の電子状態を分析することができ、表面状態の分析が可能となる分析装置である。
 したがって、本発明のビスマス皮膜付き金属材料がその表面の全てに前記Bi皮膜を有している(前記金属材料の表面の全てがBi皮膜に覆われている)場合、本発明のビスマス皮膜付き金属材料における「表層」は、前記Bi皮膜の表面からESCAで深さ方向に分析したSi換算で1.3nmの位置を示すものである。また、本発明のビスマス皮膜付き金属材料がその表面の一部に前記Bi皮膜を有し、残部において金属材料や他のBiを含まない皮膜等が露出している場合であっても、本発明のビスマス皮膜付き金属材料における「表層」は、前記Bi皮膜の表面および露出している部分の金属材料等の表面からESCAで深さ方向に分析したSi換算で1.3nmの位置を示すものである。
 なお、蛍光X線分光分析(XRF)を用いると、表面から数十μm(例えば、20~30μm)の深さまでに存在する原子を測定することができる。通常、本発明における前記Bi皮膜はこれより十分薄い(例えば、20nm程度)ため、皮膜全体に含まれる元素量を定量する場合にはXRFが好適に用いられる。
 本発明のビスマス皮膜付き金属材料における、前記ビスマスを含む層の被覆率は、Biの付着量に応じ、付着量の増加に伴い被覆率は増加していく。Bi付着量が増加するほど耐食性により優れる点から、10%以上であるのが好ましく、30%以上であるのがより好ましく、50%以上であるのが更に好ましい。
 ここで、「ビスマスを含む層の被覆率」は、表面粗さを考慮した表面積から換算したものではなく、SEMによる表面状態を観察した結果から得られる像を平面として計測したものであり、金属材料露出部と皮膜成分部の面積比率を意味する。
 また、SEMにより表面状態を観察する手法は非常に小さなBi結晶が存在しても、目視により観察が困難な場合があるので、本明細書に添付する写真によって、本発明に示している被覆率が数値により制限されるものではない。
 前記Bi皮膜は、Bi以外の物質を含んでいてもよい。
 前記Bi皮膜を構成するBi以外の物質は特に限定されないが、前記Bi皮膜は、Snを含まないことが好ましい。Snを含む場合、耐食性が十分に発揮されなくなるためである。
 また、前記Bi皮膜は、更に、Al、Ga、Ge、Se、Y、SbおよびTeからなる群から選択される少なくとも1種を含有するのが好ましい態様の1つである。
 前記Bi皮膜中のBiと、Al、Ga、Ge、Se、Y、SbおよびTeからなる群から選択される少なくとも1種との合計含有量は、耐食性により優れ、コストも抑えられる点から、20~200mg/m2であることが好ましく、40~150mg/m2であることがより好ましい。
 前記Bi皮膜中のBiは、金属、または、酸化物や水酸化物を代表とする化合物の形態で存在し、カチオン電着塗装後の耐食性、塗膜密着性、電着塗装付き廻り性の全ての性能を満たすことができる。
 前記Bi皮膜中のBiの形態としては、金属、酸化物および水酸化物からなる群から選択される少なくとも1種であることが好ましい。
 前記Bi皮膜が、Biの他に、Al、Ga、Ge、Se、Y、SbおよびTeからなる群から選択される少なくとも1種を含有する場合、これらの物質の形態も同様に、金属、酸化物および水酸化物からなる群から選択される少なくとも1種であることが好ましい。
 このようなBi皮膜は、後述する本発明のビスマス皮膜付き金属材料の製造方法によって形成することができ、本発明のビスマス皮膜付き金属材料の製造方法によって形成されるBi皮膜は、電子顕微鏡等で観察すると、前記金属材料の表面に金属Biを含む層が島状に形成されていることが分かる。このようなBi皮膜は、基本的には、金属Biが粒子状に前記金属材料の表面に点在し、海中の島のように形成されているものである。
 以下、前記金属材料として鉄基材を使用した場合を例として、図1を参照して本発明のビスマス皮膜付き金属材料の製造方法によってBi皮膜が形成されるメカニズムを説明する。ただし、本発明は以下に述べるメカニズムによって限定されるものではない。
 図1は、本発明のビスマス皮膜付き金属材料の製造方法によってBi皮膜が形成されるメカニズムを説明する説明図である。
 本発明のビスマス皮膜付き金属材料の製造方法において、後述する本発明の表面処理液を例えば鉄基材に接触させると、反応式
 3Fe+2Bi3+ → 3Fe2++2Bi
で表されるように、本発明の表面処理液中のBiイオンが鉄基材中のFeから電子を受け取って、金属Biが析出する。図1に示すように、鉄素材が溶出するアノード部分とBiが析出するカソード部分とが分極しており、アノード部分を凹として表現しているが、その近傍に金属Biを含む層が粒子状に形成され、金属Biを含む層が鉄基材の表面に点在し島状に形成される。
 前記金属Biを含む部分が粒子状に多数表面に存在する層は、金属Biを含んでいれば、他の物質を含んでいても含んでいなくてもよいが、通常、粒子状の核となる部分は金属Biを含み、表面汚染の影響を考慮すると最外層にはBi水酸化物(Bi(OH)3等)やBi酸化物(Bi23等)を含む層が形成されていると発明者は考えている。
 上述した本発明のビスマス皮膜付き金属材料は、その製造方法について特に限定されず、例えば、スパッタリング、PVD、CVD等の蒸着法、ゾルゲル法、電気鍍金法、化成処理法等により製造することができる。
 具体的には、例えば、ターゲットにBiやその酸化物を用い、減圧された気体内でこれに電子ビームを照射する方法で前記金属材料の表面にBi原子を蒸着させ、BiからなるBi皮膜やBi酸化物(Bi23等)からなる皮膜を形成する方法が挙げられる。
 本発明のビスマス皮膜付き金属材料は、このような製造方法の中でも、化成処理法により製造することが好ましい。その理由は、より容易かつ安価に本発明のビスマス皮膜付き金属材料を製造することができるからである。特に、後述する本発明のビスマス皮膜付き金属材料の製造方法により製造することが、塗装付き廻り性、耐食性および塗膜密着性に優れるものを、低環境負荷で、比較的容易に製造することができる点からより好ましい。
 上述した本発明のビスマス皮膜付き金属材料は、前記Bi皮膜の上に塗装した場合に、従来のジルコニウム系化成処理した金属材料に比べて、均一に塗膜を形成することができる(すなわち、高い塗装付き廻り性を有する。)。また、リン酸亜鉛処理した金属材料と同等以上の塗装付き廻り性が得られうる。特に、前記Bi皮膜の上にカチオン電着塗装した場合には、より高い塗装付き廻り性が得られる。
 また、本発明のビスマス皮膜付き金属材料は、クロメート処理やリン酸亜鉛処理したものに比べて、低環境負荷で製造することができる。更に、耐食性および塗膜密着性にも優れる。
 本発明のビスマス皮膜付き金属材料をカチオン電着塗装した場合に、塗装付き廻り性が良好になる理由は明確でないが、本発明者は次のように考えている。
 カチオン電着塗装における塗膜は、被塗物(本発明のビスマス皮膜付き金属材料)を陰極電解することにより、被塗物表面で水素イオンが還元されて水素ガスが発生し、被塗物表面のpHを上昇させ、塗料に含まれるアミン化したエポキシエマルジョン樹脂等の樹脂成分がそのpH上昇によりゲル化し、析出する。前記水素ガスの発生は、電解時に絶えず行われており、塗膜にはガスの抜け穴が開いている。
 析出した樹脂の抵抗は充分大きいため、同じ塗料を用いた場合は、実質的な塗膜抵抗は物理的な塗膜形状、つまり水素ガスの抜け穴の大小および数によって決定される。
 水素ガスの発生起点がまばらな場合、そこに電流が集中し、巨大なガス穴ができることにより、塗膜抵抗はなかなか増加していかない。一方、ガスの発生起点が細かく分散している場合、ガス穴の発生数こそ増加するものの、実際にはそこに水素ガスが充填されて新たな抵抗を生むため、塗膜抵抗は速やかに増加することとなる。塗膜抵抗が増加すれば速やかに電流が袋構造部に廻されることとなり、袋構造部にも充分な塗膜厚を確保できるようになり、塗装付き廻り性が高くなる。
 一般的に鉄系材料をそのまま陰極電解した場合の水素ガス発生はまばらであり、上述したように塗膜抵抗は増加しにくい。よって、良好な塗装付き廻り性は期待できない。まばらに水素ガスが発生する理由は、鉄鋼材料の表面がもともと電気化学的に不均一であり、ガス発生起点を作りにくい性状であるためと考えられる。
 これに対して、本発明のビスマス皮膜付き金属材料は、カチオン電着塗装を施す際の表層にBiを原子数比率で10%以上有するため、緻密で微細な水素ガス発生を誘発し、塗膜抵抗の速やかな増加により良好な塗装付き廻り性が得られるようになる。
 なお、リン酸亜鉛処理を施した鉄鋼材料を陰極電解した場合は、水素ガスがリン酸亜鉛結晶同士の狭間で発生する。リン酸亜鉛結晶が半導体であり、電気を通しにくい性質であること、および皮膜が不連続な結晶の集合体によって構成されているためと考えられる。リン酸亜鉛結晶の粒子径は大きくても10μm程度であるので、必然的に緻密で微細な水素ガス発生となり、塗膜抵抗の速やかな増加により良好な塗装付き廻り性が得られる。
 また、従来のジルコニウム系化成処理を施した鉄鋼材料の場合は、無処理の鉄鋼材料よりも更に水素ガス発生起点がまばらになり、巨大なガス穴が発生してしまうため、塗膜抵抗がなかなか増加せず、付き廻り性は劣悪となる。
 以下に、従来のジルコニウム系化成処理を行った袋構造部を有する金属材料に対して、カチオン電着塗装を施した場合に不充分な付き廻り性を示す具体例を示す。
 例えば、特許文献1、2に記載の化成処理剤を、単に袋構造部を有する金属材料に適用しただけのものは、高い塗装付き廻り性を得ることはできない。具体的には、特許文献1には、ジルコニウム、チタンおよびハフニウムからなる群から選ばれる少なくとも一種の含有量は、金属換算で下限20ppm、上限10000ppmであることが好ましく、下限50ppm、上限2000ppmであることがより好ましいと記載されており、周期律表第三属金属イオンとして、アルミニウムイオン、ガリウムイオン、インジウムイオンが挙げられ、この周期律表第三属金属イオンの含有量は下限1ppm、上限5000ppmの範囲内であり、下限は5ppmが好ましく、上限は2000ppmが好ましいと記載されているが、このような範囲に含まれる化成処理剤を、単に袋構造部を有する金属材料に適用しただけでは高い塗装付き廻り性を得ることはできない。
 本発明のBi皮膜は、島状に分布するにもかかわらず、陰極電解時の水素ガス発生は緻密で微細となる。詳細なメカニズムは不明であるが、Bi皮膜表面に対する水素結合力等の特性が寄与しているものと考えられる。
 本発明のビスマス皮膜付き金属材料の特徴の1つは、カチオン電着塗装における最大の利点の一つである、塗装付き廻り性を損なうことなく、塗装後の耐食性、塗膜密着性に優れることである。
 しかしながら、カチオン電着塗装での塗装付き廻り性を絶対評価することは非常に困難である。
 なぜなら、カチオン電着塗装での塗装付き廻り性は、電界のかけ方、対極と被塗物との極間距離、塗料の温度、塗料の攪拌条件、被塗物の構成等に影響を受けることはもちろん、塗料中の樹脂の種類、樹脂へのアミン基導入率、塗料のpHといった、いわば塗料そのものによっても大きく左右される性能だからである。
 よって、ここでは、カチオン電着塗装の前処理として従来広く使用されてきたリン酸亜鉛処理と、近年開発が進んできているジルコニウム系化成処理との比較において、同一条件、同一塗料でカチオン電着塗装した場合の電着塗装付き廻り性が、リン酸亜鉛の場合と同等またはそれ以上の塗装付き廻り性である場合は、良好な塗装付き廻り性であるとし、ジルコニウム系化成処理と同等であれば不充分な塗装付き廻り性であるとする。
 以下、本発明のビスマス皮膜付き金属材料の製造方法および本発明の表面処理液について説明する。
 本発明のビスマス皮膜付き金属材料の製造方法(以下「本発明の製造方法」という。)は、金属材料を後述する本発明の表面処理液で表面処理し、前記金属材料の表面の少なくとも一部にBiを含む層を形成する、ビスマス皮膜付き金属材料の製造方法である。
 本発明の製造方法に使用する金属材料は、上述したものと同様であり、袋構造部を有する金属材料であることが好ましい。本発明の製造方法によれば、袋構造部を有する金属材料であっても優れた塗装付き廻り性を達成することができる。
 前記金属材料は、脱脂処理により予め清浄化されているのが好ましい。脱脂処理の方法は、特に限定されず、従来公知の方法を用いることができる。
 本発明の表面処理液は、塗装の前処理として金属材料の表面を化成処理する場合に用いる表面処理液であって、Biと、前記Biに対する配位子(L1)とを含有する表面処理液である。
 Biは、表面処理液のpHが2.6以下のときはイオン化すると言われているが、表面処理液のpHがこのような範囲であると被処理物(金属材料)が多量に溶解してしまうという問題がある。特に、亜鉛めっき等は著しく溶解してしまう。一方、表面処理液のpHが2.6を超えるときは、Biイオンが不安定になり、沈殿を生ずることとなり、十分な皮膜付着量を確保できないという問題がある。そこで、本発明の表面処理液中に、前記配位子(L1)を配合することにより、前記Biおよび前記配位子(L1)の少なくとも一部が、Biイオンと前記配位子を含む錯体を形成するため、Biイオンが安定化し、pHが2.6を超えるときでも、Biの沈殿を抑制することができ、効率的に、十分な皮膜付着量を確保できる。
 前記Biの供給源は、特に限定されないが、例えば、硝酸ビスマス、硫酸ビスマス、酢酸ビスマス、三フッ化ビスマス、バナジン酸ビスマス、水酸化ビスマス等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
 本発明の表面処理液は、その製造時に、実際に使用する時(即ち、金属材料を表面処理する時)の固形分濃度に調整してもよいが、製品の在庫管理や流通のし易さの観点から、固形分濃度が実際に使用する時の濃度より高いものを製造し、使用時に水などの溶媒で希釈または溶解して使用することもできる。
 以下、本発明の表面処理液の使用時よりも固形分濃度を高くしている本発明の表面処理液のことを、特に「本発明の組成物」ともいう。この本発明の組成物は、本発明の表面処理液の範囲に含まれる。
 本発明の組成物および表面処理液中におけるBi原子の含有率は特に限定されないが、本発明の組成物中におけるBi原子の含有率である質量濃度(A)は、50~5000ppmであることが好ましく、100~2000ppmであることがより好ましく、200~1000ppmであることがさらに好ましい。質量濃度が低すぎると生産性が低下し、逆に過剰な場合は化成処理で得られる皮膜性能は申し分ないものの、処理液濃度が及ぼす効果は薄れ、同時に薬品使用量が多くなり経済的ではない。
 また、本発明の表面処理液が表面処理に用いられる時の本発明の表面処理液中におけるBi原子の含有率である質量濃度(a)は、5~1000ppmであることが好ましく、10~500ppmであることがより好ましい。質量濃度が低すぎるとBi皮膜表層のBi原子数比率を10at%以上にするために長時間を有するので生産性が低下し、過剰な場合はもはやその効果が飽和し、経済的に不利である。
 表面処理液のpHが2.6以下の場合には、配位子を含まなくともBiはイオン状態で存在しうるが、pH3からpH10.5未満では水酸化物イオンまたは水酸化物として存在するため、金属材料表面に析出するBi成分の有効濃度が減じてしまう。そのため、本発明の組成物および表面処理液は、より経済的に、且つ、添加成分が効率よくBi化成皮膜となるように、Biに対する配位子を含有する。
 前記配位子(L1)は、特に限定されないが、例えば、蟻酸、酢酸、アクリル酸、ポリアクリル酸等のカルボン酸;エチレンジアミン四酢酸、2-ヒドロキシエチルエチレンジアミン三酢酸、トランス-1、2-シクロヘキサンジアミン四酢酸、ジエチレントリアミン五酢酸、エチレングリコールビス(2-アミノエチルエーテル)四酢酸、ニトリロ三酢酸、イミノ二酢酸等のアミノカルボン酸;アミノポリカルボン酸;等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
 前記配位子(L1)は、アミノポリカルボン酸および/またはカルボン酸であり、Biに対する安定度が前記金属材料を構成する金属のイオンに対する安定度よりも高い配位子を少なくとも1つ含むのが好ましい。以下に、Biに対する安定度が前記金属材料を構成する金属のイオンに対する安定度よりも高い配位子を少なくとも1つ含むのが好ましい理由を示す。
 一般に、化成処理で析出させたい金属イオン(本発明においてはBiイオン)を安定的にイオン状態(擬似的イオン状態)に維持することは、化成処理時の析出し易さに影響するため重要である。そのため、本発明では、広範囲のpHであってもイオン化しうる配位子を添加する。
 一方、基材(金属材料)と表面処理液が化学反応することで基材金属イオンが溶出する。その溶出してきた金属イオンが析出させたい金属イオンを錯化している配位子に対して優先的に配位すると、析出させたい金属イオンは安定に存在できず、水酸化物や酸化物となって沈降することになる。この水酸化物や酸化物は、基材表面に析出することはできず、添加している意味を成さなくなる。
 したがって、析出させたい金属に対する配位子の安定度が、溶出金属に対する配位子の安定度よりも高ければ、析出させたい金属は安定的に処理液中に存在することができ、その結果、目的とする皮膜を経済的に,且つ.効率的に得ることができる。
 本発明の処理液は、前記配位子(L1)として、アミノポリカルボン酸および/またはカルボン酸であり、ビスマスに対する安定度が前記金属材料を構成する金属のイオンに対する安定度よりも高い配位子を含有し、さらに、前記金属材料を構成する金属のイオンに対する安定度が、前記配位子(L1)のビスマスに対する安定度よりも高い配位子(L2)を含有するのが好ましい態様の1つである。上述した理由と同様に、基材金属イオンに対する安定度が比較的高い配位子が、同時に存在すると、それが基材金属イオンにして専門的に、その結果優先的に配位することができ、析出させたい金属イオンに配位している配位子がその機能を十分に果たすことができる。
 前記配位子(L2)は、ビスマスとの安定度が小さいか、またはビスマスには配位せず、しかしながら、前記金属材料を構成する金属のイオンに対する安定度がBiに対する安定度よりも高い配位子である。配位子(L2)は、特に限定されず、例えば、前記配位子(L1)の説明で挙げた化合物以外であっても良く、有機化合物であっても,無機物であっても、使用する金属材料の種類や前記配位子(L1)の種類に応じて適宜選択すればよいし、数種類を同時に使用しても何ら問題はない。
 前記配位子(L1)の濃度は、表面処理液の目標とするpHおよび/またはBi濃度等に応じて適宜調整すればよいが、例えば、表面処理に用いられる時の本発明の表面処理液における前記配位子(L1)の質量濃度は、5~25000ppmであるのが好ましく、Biに対する配位数を参照に、使用する処理液のpHによって任意に設定できる。過剰であってもなんら影響はでないが必要以上の添加量は経済的でなくなる。Biの安定性を維持できる10~10000ppmであるのがより好ましく、200~3000ppmであるのが更に好ましい。前記配位子(L1)の濃度がこの範囲であると、Biイオンを安定化する効果が高くなり、目的とするBi皮膜付き金属材料を得ることができる。
 前記配位子(L2)の濃度は、特に限定されないが、例えば、表面処理に用いられる時の本発明の表面処理液における前記配位子(L2)の質量濃度は、10~15000ppmであるのが好ましく、200~5000ppmであるのがより好ましい。
 また、本発明の組成物および表面処理液中は、更に、Al、Ga、Ge、Se、Y、SbおよびTeからなる群から選択される1種以上を含有してもよい。これらの原子の存在形態も特に限定されず、イオン状態、配位子による錯体化状態であってもよい。
 これらの原子の供給源は、特に限定されないが、例えば、塩化物、水酸化物、硫酸化合物、硝酸化合物、フッ化物、有機酸化合物等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
 本発明の組成物および表面処理液中がAl、Ga、Ge、Se、Y、SbおよびTeからなる群から選択される少なくとも1種を含有する場合、本発明の組成物および表面処理液中におけるこれらの原子の合計の含有率(質量濃度)は、特に限定されない。
 本発明の組成物中におけるAl、Ga、Ge、Se、Y、SbおよびTeからなる群から選択される少なくとも1種の合計含有率である質量濃度(B)は、100~2000ppmであることが好ましく、200~1000ppmであることがより好ましい。質量濃度が低すぎると処理によって失われる有効成分を補給するための補給量が多大となり、逆に過剰な場合は組成物としての安定性を損ねてしまう。
 また、表面処理に用いられる時の本発明の表面処理液中におけるAl、Ga、Ge、Se、Y、SbおよびTeからなる群から選択される少なくとも1種の合計含有率である質量濃度(b)は、30~1000ppmであることが好ましく、50~200ppmであることがより好ましい。耐食性に優れた厚さのBi皮膜を比較的容易に、かつ安価に形成することができるからである。
 また、本発明の組成物および表面処理液は、さらに、フッ素を含むことができる。フッ素は、金属材料のエッチング反応に必要とされる元素のひとつである。
 前記フッ素の供給源は、特に限定されないが、例えば、フッ化水素酸、フッ化アンモニウム、フッ化水素アンモニウム、フッ化ナトリウム、フッ化インジウム、ジルコニウムフッ化水素酸、フッ化アルミニウム、フッ化リチウム、珪フッ酸、珪フッ化アンモニウム、珪フッ化マグネシウム等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
 本発明の組成物および表面処理液中における前記フッ素の含有率は特に限定されないが、本発明の組成物中におけるフッ素イオンの質量濃度は、300~10000ppmであることが好ましく、500~5000ppmであることがより好ましく、1000~3000ppmであることがさらに好ましい。
 また、表面処理に用いられる時の本発明の表面処理液中におけるフッ素イオンの質量濃度は、10~5000ppmであることが好ましく、10~2000ppmであることがより好ましく、10~1000ppmであることがさらに好ましい。
 本発明の表面処理液のpHは、特に限定されないが、2以上かつ10.5未満であるのが好ましい。また、前記金属材料への過剰なまでのエッチングを低減できることから、3.0~5.0であるのがより好ましい。
 本発明の表面処理液のpHを調整する必要がある場合、用いられる薬剤は、特に限定されない。例えば、塩酸、硫酸、硝酸、フッ化水素酸、ホウ酸、有機酸等の酸;水酸化リチウム、水酸化カリウム、水酸化ナトリウム、水酸化カルシウム、水酸化マグネシウム、アルカリ金属塩、アンモニア、アンモニウム塩、アミン類等のアルカリが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
 本発明の組成物および/または表面処理液は、さらに、光沢剤を含有するのが好ましい。光沢剤を含有する場合、前記金属材料とBi皮膜との密着性が極めて高くなる。これは、化成処理後に強烈なスプレー水洗で皮膜成分の脱落を抑制しうることに繋がり、経済的な方向に向かう。しかしながら、光沢剤を含まない処理液であっても、水洗方法により皮膜成分は脱落しないし、仮に、脱落しても経済的にはやや乏しくなるが、塗装との密着性、耐食性および塗膜付廻り性についてはなんら問題はない。
 本発明者は、本発明の組成物および/または表面処理液が光沢剤を含有する場合、前記金属材料上に析出したBiの配向性を制御することができ、前記金属材料上へのBiの析出状態が変化し、析出が緻密で、Biの相間密着性が、より増した析出状態となることを見出した。本発明においては、前記光沢剤を結晶配向制御物質ともいう。
 本発明の組成物および/または表面処理液は、前記光沢剤を含有しなくても、電着塗料の付廻り性や耐食性、塗膜密着性が悪化することはないが、光沢剤を添加し、かつ、Bi付着量が同等の場合、耐食性能がより良化する。
 前記金属材料上へのBi析出挙動に対する光沢剤の作用効果は十分解明されていないものの、以下のように推測する。ただし、この考察によって、本発明が制限されることはない。
 金属材料上にBiが析出する際、光沢剤は金属材料上に吸着し、アノード反応となる金属材料の溶解を抑制し、発生するカソード電流を減じ、Biの析出速度をやや緩和する。それと同時に、金属材料上に析出するBi結晶の成長面に優先的に吸着し、その面の成長を抑制し、他の部分でのBi析出を促進すると考えられる。
 前記光沢剤は、公知のめっき光沢剤、すなわち、めっき浴等に添加し光沢のあるめっき膜を得るために添加される化合物を特に制限なく使用することができる。
 具体的には、例えば、1,3,6-ナフタレントリスルホン酸ナトリウム、サッカリン酸ナトリウム、パラトルエンスルホンアミド、ポリエチレングリコール、β-ナフトール、m-クロロベンズアルデヒド、酸化メシチル、アクリル酸、(o-、m-、p-)トルイジン、ゼラチン、N-(3-ヒドロキシブチリデン)-p-スルファニル酸、β-ナフトール-6-スルホン酸、p-ニトロベンズアルデヒド、イソホロン、メタクリル酸、(o-、p-)アミノアニリン、ポリペプトン、N-ブチリデンスルファニル酸、β-ナフタレンスルホン酸、p-ヒドロキシベンズアルデヒド、ジアセチル、エタクリン酸、アニリン、N-シンナモイリデンスルファニル酸、(o-、p-)メトキシベンズアルデヒド、ヘキサンジオン-3、4アクリル酸エチル、(o-、p-)クロロアニリン、2,4-ジアミノ-6-(2′-メチルイミダゾリル(1′))エチル-1,3,5-トリアジン、バニリン、アセチルアセトン、メタクリル酸メチル、(2,5-、3,4-)クロロメチルアニリン、2,4-ジアミノ-6-(2′-エチル-4-メチルイミダゾリル(1′))エチル-1,3,5-トリアジン、(2,4-、2,6-)ジクロロベンズアルデヒド、3-クロロベンジリデンアセトン、メタクリル酸ブチル、N-モノメチルアニリン、2,4-ジアミノ-6-(2′-ウンデシルイミダゾリル(1′))エチル-1,3,5-トリアジン、(o-、p-)クロロベンズアルデヒド、sub.ピリジリデンアセトン、クロトン酸、4,4′-ジアミノジフェニルメタン、サリチル酸フェニル、1-ナフトアルデヒド、sub.フルフリジンアセトン、プロピレン-1,3-ジカルボン酸、N-フェニル-(α-、β-)ナフチルアミン、ベンゾチアゾール、2-ナフトアルデヒド、sub.テニリデンアセトン、ケイ皮酸、メチルベンズトリアゾール、2-メチルベンゾチアゾール、2(4)-ヒドロキシ-1-ナフトアルデヒド、4-(1-ナフチル)-3-ブテン-2-オール、1,2,3-トリアジン、2-メルカプトベンゾチアゾール、2(4)-クロロ-1-ナフトアルデヒド、4-(2-フリル)-3-ブテン-2-オン、1,2,4-トリアジン、2-(メチルメルカプト)ベンゾチアゾール、2(3)-チオフェンカルボキシアルデヒド、4-(2-チオフェニル)-3-ブテン-2-オール、1,3,5-トリアジン、2-アミノベンゾチアゾール、2(3)-フルアルデヒド、クルクミン、1,2,3-ベンズトリアジン、2-アミノ-6-メトキシベンゾチアゾール、3-インドールカルボキシアルデヒド、ベンジリデンアセチルアセトン、イミダゾール、2-メチル-5-クロロベンゾチアゾール、サリチルアルデヒド、ベンザルアセトン、2-ビニルピリジン、2-ヒドロキシベンゾチアゾール、o-フタルアルデヒド、アセトフェノン、インドール、2-アミノ-6-メチルベンゾチアゾール、ホルムアルデヒド、(2,4-、3,4-)ジクロロアセトフェノン、キノリン、2-クロロベンゾチアゾール、アセトアルデヒド、ベンジリデンアセトフェノン、モノエタノールアミン、2,5-ジメチルベンゾチアゾール、パラアルデヒド、2-シンナミルチオフェン、6-ニトロ-2-メルカプトベンゾチアゾール、ブチルアルデヒド、2-(ω-ベンゾイル)ビニルフラン、ポリビニルアルコール、5-ヒドロキシ-2-メチルベンゾチアゾール、イソブチルアルデヒド、ビニルフェニルケトン、カテコール、2-ベンゾチアゾールチオ酢酸、プロピオンアルデヒド、ハイドロキノン、n-バレルアルデヒド、レゾルシン、アクロレイン、ポリエチレンイミン、クロトンアルデヒド、エチレンジアミンテトラ酢酸二ナトリウム、グリオキサール、ポリビニルピロリドン、アルドール、スクシンジアルデヒド、カプロンアルデヒド、イソバレルアルデヒド、アリルアルデヒド、グルタルアルデヒド、1-ベンジリデン-7-ヘプタナール、2,4-ヘキサジエナール、シンナムアルデヒド、ベンジルクロトンアルデヒド等が例として挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
 前記光沢剤としては、芳香環、スルホン基、ホルミル基、カルボキシ基およびアミノ基からなる群から選択される少なくとも1つを有する有機化合物が好ましく、ナフタレントリスルホン酸ナトリウム、ナフタレンスルホン酸ナトリウム、バニリンおよびサッカリン酸ナトリウムからなる群から選択される少なくとも1種であるのがより好ましい。また、ナフタレントリスルホン酸ナトリウム、ナフタレンスルホン酸ナトリウム、バニリンおよびサッカリン酸ナトリウムの酸や他カチオンとの塩も好ましい。
 本発明の表面処理液における前記光沢剤の含有率は、特に限定されないが、表面処理に用いられる時の本発明の表面処理液中における前記光沢剤の質量濃度は、10~10000ppmであることが好ましく、100~5000ppmであることがより好ましい。光沢剤の含有率がこの範囲であると、金属材料に対するBi皮膜の密着性が十分に得られる。ただし、過剰に添加されていたとしても、なんら問題はない。
 本発明の表面処理液の製造方法は、特に限定されず、例えば、上述したBiの供給源となるBiを含む物質、Biに対する配位子および必要に応じて光沢剤や溶媒等の任意成分を撹拌機等で混合することにより本発明の表面処理液を製造することができる。
 上述した本発明の表面処理液は、ジルコニウム系化成処理と同様に低環境負荷で、袋構造部を有する各種金属材料に必要量の化成皮膜を形成することができ、前記金属材料に耐食性および塗膜密着性を付与することができ、さらに、カチオン電着塗装において高い塗装付き廻り性を得ることができるビスマス皮膜付き金属材料を得ることができる。
 本発明の製造方法は、前記金属材料に上述した本発明の表面処理液を接触させて表面処理し、前記金属材料の表面の少なくとも一部にBiを含む層(Bi皮膜)を形成する。
 前記金属材料に本発明の表面処理液を接触させることにより、その表面にBi皮膜が析出する。
 本発明の製造方法により形成されたBi皮膜におけるBiは金属、水酸化物、酸化物および水和物のいずれかの形態であると考えられる。
 前記金属材料に本発明の表面処理液を接触させる方法は、特に限定されず、通常の化成処理法において適用される方法で行うことができる。例えば、スプレー処理法、浸漬処理法、流しかけ処理法、電解処理法等が挙げられる。
 中でも浸漬処理法が好ましい。複雑構造を有する形状物に対しては、浸漬処理法がいかなる部位にも接液することができるので、比較的容易に前記金属材料の表面の全面にBi皮膜を形成することができるからである。
 本発明の表面処理液の温度は、表面処理時において、25~55℃であることが好ましく、30~50℃であることがより好ましく、35~45℃であることがさらに好ましい。温度がこの範囲であると、熱エネルギーを多く使用せず、環境的、且つ経済的である。
 また、表面処理時間は、特に限定されないが、2~600秒であることが好ましく、30~300秒であることがより好ましく、30~120秒であることがさらに好ましい。処理時間は生産性と大きく関連しており、短時間であるほど、より好ましい。しかしながら、化成処理時間が短い場合には、袋構造部の内部の液置換が外周部に比べ遅くなり、化成反応の開始時間が外周部よりも遅れることも事実である。耐食性を満足する外周部と袋構造の内部のBi付着量を得るために、ある程度必要となる。逆に、生産性が低くても良い場合には長時間の処理であってもなんら問題はない。
 このような表面処理をした後は、水洗することが好ましい。また、脱イオン水で水洗することが好ましい。水洗した後、さらに脱イオン水で水洗することが好ましい。水洗の方法は特に限定されず、浸漬法、スプレー法などの例えば従来公知の方法を適用することができる。最終に行う水洗は脱イオン水で、且つ、スプレー水洗が最も好ましい。
 水洗の後は、乾燥させてもよいし、乾燥しなくてもよい。
 本発明の製造方法によれば、低環境負荷で、耐食性および塗膜密着性を有し、さらに、塗装(特にカチオン電着塗装)において高い塗装付き廻り性を有する、本発明のビスマス皮膜付き金属材料を得ることができる。
 次に本発明のカチオン電着塗装金属材料およびカチオン電着塗装金属材料の製造方法について説明する。
 本発明のカチオン電着塗装金属材料の製造方法は、本発明のビスマス皮膜付き金属材料の製造方法によって前記Bi皮膜を形成させた前記金属材料の表面をカチオン電着塗装して塗膜を形成し、カチオン電着塗装金属材料を製造する方法である。
 カチオン電着塗装方法は、特に限定されず、従来公知の方法を適用できる。
 例えば、塗料として、アミン付加エポキシ樹脂と、硬化成分としてブロック化ポリイソシアネート硬化剤とを含有するカチオン電着塗料組成物を用い、この中に本発明のビスマス皮膜付き金属材料を浸漬する。なお、浸漬前に本発明のビスマス皮膜付き金属材料を乾燥してもよいし、乾燥せずに塗料に浸漬してもよい。
 そして、塗料の温度を例えば26~30℃程度に保持し、所望により塗料をスターラーで撹拌した状態で、例えば整流器を用いて本発明のビスマス皮膜付き金属材料に電圧を印加する。
 電解条件は通常の条件であってよい。例えば、初めに30秒かけて0Vから200Vまで直線的に電圧を陰極方向に印加し、その後200Vで150秒間保持する。
 本発明のカチオン電着塗装金属材料の製造方法は、さらに、本発明のビスマス皮膜付き金属材料の表面をカチオン電着塗装して塗膜を形成した金属材料を水洗する水洗工程を有するのが好ましい。水洗方法は、上記と同様である。
 また、本発明のカチオン電着塗装金属材料の製造方法は、塗装工程後、または水洗工程を有する場合は水洗工程後に、本発明のビスマス皮膜付き金属材料の表面をカチオン電着塗装した金属材料を加熱して、前記塗膜を焼き付ける工程を有するのが好ましい。例えば、170℃で20分間焼き付けて、塗膜を形成させる。
 本発明のカチオン電着塗装金属材料の製造方法により得られたカチオン電着塗装金属材料の塗膜は、平均厚さで1~50μmの厚さであることが好ましく、5~40μmであることがより好ましく、7~25μmであることがさらに好ましい。
 また、最も薄い箇所の厚さが7μm以上であることが好ましい。最低膜厚が薄いと耐食性が充分に発揮されない。
 さらに、最も厚い箇所の厚さは40μm以下であることが好ましく、25μm以下であることがより好ましい。最高膜厚が厚いと、塗膜表面のラフネスが増加し、外観上問題になると共に、経済的にも不利である。
 本発明において、塗膜の厚さは、電磁式膜厚計または渦電流式膜厚計を用いて測定する。塗膜が磁性体の金属材料(鉄、鉄系合金等)の表面の上に形成されている場合は、電磁式膜厚計を用いて測定する。また、塗膜が非磁性体の金属材料(アルミニウム、アルミ系合金等)の表面の上に形成されている場合は、渦電流式膜厚計を用いて測定する。これらによって塗膜の任意の箇所を数箇所測定して、平均厚さを求める。
 上述した本発明のカチオン電着塗装金属材料は、表面に塗膜が均一に形成され、耐食性および塗膜密着性に優れ、低環境負荷で製造することができる。
 また、本発明のカチオン電着塗装金属材料の製造方法は、低環境負荷で、表面に塗膜が均一に形成され、耐食性および塗膜密着性に優れるカチオン電着塗装金属材料を製造することができる。
 以下、実施例を示して、本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。
<金属板>
 次の金属材料を用意した(全て株式会社パルテック製)。
・冷延鋼板:SPCC(JIS3141)、70×150×0.8mm(以下「SPC」と略す。)
・合金化溶融亜鉛めっき鋼板:SGCC F06 MO(JISG3302)、70×150×0.8mm(以下「GA」と略す。)
・アルミニウム合金板:A5052P(JIS4000)、70×150×1.0mm(以下、「AL」と略す。)
<Bi皮膜の形成>
 それぞれの金属板の表面を脱脂処理し防錆油を除去した。脱脂剤として日本パーカライジング社製「FC-E2001」を使用し、これを40℃に加温した後、120秒間スプレー処理することにより脱脂処理した。脱脂処理後は表面を30秒間スプレー水洗した。
 その後、後述する実施例および比較例のいずれかの表面処理液を用いて、金属板の表面の全面にBi皮膜を形成した。
 得られた各ビスマス皮膜付き金属材料を用いて、下記の方法により、耐食性、塗膜密着性、塗装付き廻り性、スラッジの発生を評価した。ただし、実施例32および比較例3に限っては、電着塗装ではなく、溶剤塗装により塗膜の形成を行った。
<塗装性能試験のためのカチオン電着塗装方法>
 得られたBi皮膜付き金属材料を陰極とし、電着塗料として関西ペイント社製「GT-10HT」を用いて、180秒間定電圧陰極電解して塗膜を金属板の全表面に析出させた。その後、水洗し、170℃で20分間加熱焼き付けすることにより塗膜を形成し、試料となる電着塗装板を得た。塗膜厚は20μmとなるように調整した。
 なお、前記電着塗料は、前述のアミン付加エポキシ樹脂と、硬化成分としてブロック化ポリイソシアネート硬化剤とを含有するカチオン電着塗料である。
<耐食性試験方法および評価方法>
 得られた試料にクロスカットを施し、塩水噴霧試験(JIS-Z2371-2000)を実施し、1000時間後のクロスカット部の片側膨れ幅を評価した。一般に、冷延鋼板であれば、片側膨れ幅が、3mm以下が良好、2mm以下が極めて良好なレベル、合金化亜鉛めっき鋼板では、3mm以下が良好なレベル、アルミニウム合金板では2mm以下が良好なレベルとなる。
 ただし,実施例32および比較例3の塩水噴霧試験においては,72時間後のクロスカット部の片側膨れ幅を評価した。
 結果を第1表に示す。
<塗膜密着性試験方法(二次密着性試験;SDT)>
 得られた試料に、素地まで達する縦平衡カットを2本入れ、5質量%NaCl水溶液中にて、50℃で480時間(20日間)の浸漬を行った後、水洗および風乾を行った。次いで、試料のカット部に接着テープ「エルパックLP-24」(ニチバン社製)を密着させた後、接着テープを手で一気に剥離し、剥離した接着テープに付着した塗料の最大幅を測定した。
 一般に、冷延鋼板であれば、接着テープに付着した塗料の最大幅が、3mm以下が良好、2mm以下が極めて良好なレベル、合金化亜鉛めっき鋼板では3mm以下が良好なレベル、アルミニウム合金板では2mm以下が良好なレベルとなる。
 ただし、実施例32およぼ比較例3に限っては、試験対象から除いた。
 結果を第1表に示す。
<塗装付き廻り性試験方法および評価方法>
 以下、図2(A)~(C)を参照して、塗装付き廻り性試験方法および評価方法を説明する。
 図2(A)は塗装付き廻り性試験に用いる金属板の概念図であり、図2(B)は図2(B)は塗装付き廻り性試験に用いる4枚ボックスを示す斜視図であり、図2(C)は塗装付き廻り性の評価方法を示す説明図である。
 まず、図2(A)に示すように、同種類の金属板12、13、14および15を4枚用意した。その内の3枚金属板12、13および14に直径8mmの円形の穴11を形成した。穴10の位置は金属板の短辺方向では中心で、長辺方向では一方の短辺から垂直方向に50mm(穴の中心と一方の短辺との最短距離が50mm)、他方の短辺から垂直方向に100mmである位置とした。
 次に、図2(B)に示すように、4枚の金属板の全ての長辺に接するように、2枚の塩化ビニル板16、17の各々を粘着テープ(図示せず)で接着し、さらに一方の短辺の全てに接するように塩化ビニル板18を粘着テープで接着し、4枚ボックス10を形成した。この4枚ボックス10は、本発明における「袋構造部を有する金属材料」に相当する。図2(B)において4枚の金属板12、13、14、15は平行であり、これらの間のクリアランスは全て20mmであり、金属板12、13、14は穴11を有するものであり、金属板15は穴を有さないものである。ここで、金属板12、13、14および15の図2(B)の手前側の面を、それぞれ順に、A面、C面、E面、G面とした。
 次に、図2(C)に示すように、4枚ボックス10と対極21とを配置した。図2(C)は、金属板の短辺方向の中心おける断面図である。すなわち、対極21に近い側に穴11を形成した金属板12がくるように4枚ボックスを配置した。そして、4枚の金属板全てを短絡するように配線した。
 対極21としては、片面(4枚ボックスと対向する面の逆面)を絶縁テープでシールした70×150×0.5mmのステンレス板(SUS304)を用いた。
 そして、塗料22(関西ペイント社製「GT-10HT」)の液面を金属板12、13、14、15および対極21が90mm浸漬される位置に調整した。塗料の温度は28℃に保持し、塗料はスターラー(図示せず)にて撹拌した。
 このような状態で、対極21を陽極とした陰極電解法により、4枚ボックス10の金属板12、13、14および15の表面に塗膜23を電解析出させた。
 具体的な電解条件は、整流器を用い、所定の電圧にて180秒間陰極電解した。電圧は4枚ボックス10のA面の塗膜厚さが20μmになるように調整した。そして電解後それぞれの金属板を水洗した後、170℃で20分間焼き付け、塗膜を形成させた。
 そして、金属板15のG面に形成された塗膜の膜厚を電磁式膜厚計(金属板がSPCまたはGAの場合)または渦電流式膜厚計(金属板がALの場合)を用いて測定した。G面上の塗膜厚は無作為に選んだ10箇所の測定結果の平均とした。
 ここで、G面上の塗膜膜厚は7μm以上であることが好ましい。
 結果を第1表に示す。
<スラッジ観察>
 実施例および比較例で1Lあたり1m2の冷延鋼板を処理した後、室温で30日経過後に表面処理液中の濁り(スラッジの発生)を目視により観察して、環境性を下記基準で評価した。
 結果を第1表に示す。
◎:透明液体
○:わずかに薄く濁る
△:濁る
×:沈殿物(スラッジ発生)
<Bi皮膜中のBiの定量方法>
 蛍光X線分光分析装置(XRF:RIGAKU社製「ZSX Primus II」)により電着塗装前のBi皮膜中のBi付着量を定量した。
 結果を第1表に示す。
<Bi皮膜表層のBi濃度測定方法>
 X線光電子分光分析装置(ESCA:SHIMAZU社製「ESCA-850M」)によって表層のワイドスペクトルを測定して各原子の原子数を求め、それにより表層のBi比率を測定した。また、BiおよびOのナロースペクトルを解析することにより、皮膜の状態分析を合わせて行った。
 結果を第1表に示す。
<実施例1>
 Bi濃度が200ppmとなる硝酸ビスマスと、200ppmとなるフッ化水素酸とを水に溶解した。これに、HEDTAを840ppm添加し、処理液が透明となるまで攪拌した。そして得られた処理液のpHを、アンモニアを用いて3.5に調整し、37℃とした後、複数のSPCの金属板を180秒間浸漬した。そして、処理液から取り出した後、水洗し、常温乾燥して、Bi皮膜を有する金属板を得た。Biは概ね金属の形態であり、付着量は120mg/m2、表層のBi原子数比率は97%であった。
 そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:0.8mm、塗膜密着性:0.8mm、塗装付き廻り性:9.8μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例2>
 実施例1のBi濃度を100ppmとした以外は実施例1と同様の方法で、ビスマス皮膜付き金属材料を作製した。
 Biは概ね金属の形態であり、付着量は60mg/m2、表層のBi原子数比率は42%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:1.2mm、塗膜密着性:0.8mm、塗装付き廻り性:9.0μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例3>
 実施例1のBi濃度を1000ppmとし、HEDTAを1400ppmとした以外は実施例1と同様の方法で、ビスマス皮膜付き金属材料を作製した。
 Biは概ね金属の形態であり、付着量は500mg/m2、表層のBi原子数比率は95%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:1.2mm、塗膜密着性:0.8mm、塗装付き廻り性:11.0μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例4>
 実施例1の化成処理時間を60秒とした以外は実施例1と同様の方法で、ビスマス皮膜付き金属材料を作製した。
 Biは概ね金属の形態であり、付着量は40mg/m2、表層のBi原子数比率は38%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:1.4mm、塗膜密着性:1.6mm、塗装付き廻り性:8.8μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例5>
 実施例1の化成処理時間を120秒とした以外は実施例1と同様の方法で、ビスマス皮膜付き金属材料を作製した。
 Biは概ね金属の形態であり、付着量は80mg/m2、表層のBi原子数比率は70%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:1.2mm、塗膜密着性:1.3mm、塗装付き廻り性:9.0μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例6>
 実施例1の化成処理時間を300秒とした以外は実施例1と同様の方法で、ビスマス皮膜付き金属材料を作製した。
 Biは概ね金属の形態であり、付着量は450mg/m2、表層のBi原子数比率は95%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:1.0mm、塗膜密着性:0.8mm、塗装付き廻り性:10.5μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例7>
 実施例1の表面処理液pHを2.0とした以外は実施例1と同様の方法で、ビスマス皮膜付き金属材料を作製した。
 Biは概ね金属の形態であり、付着量は80mg/m2、表層のBi原子数比率は60%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:1.2mm、塗膜密着性:1.4mm、塗装付き廻り性:8.5μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例8>
 実施例1の表面処理液pHを4.0とした以外は実施例1と同様の方法で、ビスマス皮膜付き金属材料を作製した。
 Biは概ね金属の形態であり、付着量は100mg/m2、表層のBi原子数比率は85%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:1.0mm、塗膜密着性:1.1mm、塗装付き廻り性:9.0μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例9>
 実施例1の表面処理液pHを7.0とした以外は実施例1と同様の方法で、ビスマス皮膜付き金属材料を作製した。
 Biは概ね金属の形態であり、付着量は40mg/m2、表層のBi原子数比率は70%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:1.7mm、塗膜密着性:1.5mm、塗装付き廻り性:8.0μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例10>
 実施例1の表面処理液pHを10.0とした以外は実施例1と同様の方法で、ビスマス皮膜付き金属材料を作製した。
 Biは概ね金属の形態であり、付着量は25mg/m2、表層のBi原子数比率は30%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:1.7mm、塗膜密着性:1.5mm、塗装付き廻り性:7.8μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例11>
 実施例1で使用した表面処理液に更に光沢剤としてサッカリン酸ナトリウムを2400ppm添加した以外は実施例1と同様の方法で、ビスマス皮膜付き金属材料を作製した。
 Biは概ね金属の形態であり、付着量は80mg/m2、表層のBi原子数比率は85%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:1.0mm、塗膜密着性:1.0mm、塗装付き廻り性:9.7μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例12>
 実施例1で使用した表面処理液に更に光沢剤としてバニリンを1500ppm添加した以外は実施例1と同様の方法で、ビスマス皮膜付き金属材料を作製した。
 Biは概ね金属の形態であり、付着量は85mg/m2、表層のBi原子数比率は85%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:0.8mm、塗膜密着性:0.8mm、塗装付き廻り性:9.5μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例13>
 実施例1で使用した表面処理液に更に光沢剤としてブチンジオールを8000ppm添加した以外は実施例1と同様の方法で、ビスマス皮膜付き金属材料を作製した。
 Biは概ね金属の形態であり、付着量は80mg/m2、表層のBi原子数比率は88%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:1.1mm、塗膜密着性:1.0mm、塗装付き廻り性:9.0μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例14>
 実施例1で使用した表面処理液に更に光沢剤としてナフタレンスルホン酸ナトリウムを230ppm添加した以外は実施例1と同様の方法で、ビスマス皮膜付き金属材料を作製した。
 Biは概ね金属の形態であり、付着量は72mg/m2、表層のBi原子数比率は75%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:1.2mm、塗膜密着性:1.0mm、塗装付き廻り性:9.0μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例15>
 実施例1で使用した表面処理液に更に光沢剤としてナフタレンスルホン酸ナトリウムを2300ppm添加した以外は実施例1と同様の方法で、ビスマス皮膜付き金属材料を作製した。
 Biは概ね金属の形態であり、付着量は70mg/m2、表層のBi原子数比率は77%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:1.2mm、塗膜密着性:1.0mm、塗装付き廻り性:9.0μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例16>
 実施例1で使用した表面処理液に更に光沢剤としてナフタレンスルホン酸ナトリウムを23000ppm添加した以外は実施例1と同様の方法で、ビスマス皮膜付き金属材料を作製した。Biは概ね金属の形態であり、付着量は70mg/m2、表層のBi原子数比率は75%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:1.0mm、塗膜密着性:1.0mm、塗装付き廻り性:9.0μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例17>
 Bi濃度が200ppmとなる硝酸ビスマスと、200ppmとなるフッ化水素酸とを水に溶解した。これに、HEDTA840ppmおよびタイロン(1水塩)700ppmをそれぞれ添加し、処理液が透明となるまで攪拌した。そして得られた処理液のpHを、アンモニアを用いて3.5に調整し、37℃とした後、複数のSPCの金属板を180秒間浸漬した。そして、処理液から取り出した後、水洗し、常温乾燥して、Bi皮膜を有する金属板を得た。Biは概ね金属の形態であり、付着量は120mg/m2、表層のBi原子数比率は97%であった。
 そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:0.8mm、塗膜密着性:0.8mm、塗装付き廻り性:9.8μm、スラッジ観察を行った結果は,化成処理液外観が鉄とタイロンの錯体の特徴である青色を呈したが、沈殿物は全く見られず環境性は◎との評価結果を得た。
<実施例18>
 Bi濃度が200ppmとなる硝酸ビスマスと、200ppmとなるフッ化水素酸とを水に溶解した。これに、EDTA900ppmおよびタイロン(1水塩)1600ppmをそれぞれ添加し、処理液が透明となるまで攪拌した。そして得られた処理液のpHを、アンモニアを用いて3.5に調整し、37℃とした後、複数のSPCの金属板を180秒間浸漬した。そして、処理液から取り出した後、水洗し、常温乾燥して、Bi皮膜を有する金属板を得た。Biは概ね金属の形態であり、付着量は120mg/m2、表層のBi原子数比率は97%であった。
 そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:0.8mm、塗膜密着性:0.8mm、塗装付き廻り性:9.8μm、スラッジ観察を行った結果は鉄とタイロンの錯体の特徴である青色を呈した液体となったが、沈殿物は全く見られず環境性は◎との評価結果を得た。
<実施例19>
 実施例1における配位子をEDTAとし、その濃度を300ppmとした以外は実施例1と同様の方法で、ビスマス皮膜付き金属材料を作製した。
 Biは概ね金属の形態であり、付着量は140mg/m2、表層のBi原子数比率は95%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:0.8mm、塗膜密着性:1.0mm、塗装付き廻り性:8.8μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例20>
 実施例19における配位子であるEDTAの濃度を900ppmとした以外は実施例19と同様の方法で、ビスマス皮膜付き金属材料を作製した。
 Biは概ね金属の形態であり、付着量は120mg/m2、表層のBi原子数比率は88%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:1.0mm、塗膜密着性:1.1mm、塗装付き廻り性:8.8μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例21>
 実施例19における配位子であるEDTAの濃度を2700ppmとした以外は実施例19と同様の方法で、ビスマス皮膜付き金属材料を作製した。
 Biは概ね金属の形態であり、付着量は90mg/m2、表層のBi原子数比率は85%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:1.1mm、塗膜密着性:1.0mm、塗装付き廻り性:8.7μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例22>
 実施例1における配位子がHEDTAであるのに対し、これをNTAとし、この濃度を200ppmとした以外は実施例1と同様の方法で、ビスマス皮膜付き金属材料を作製した。Biは概ね金属の形態であり、付着量は130mg/m2、表層のBi原子数比率は80%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:1.0mm、塗膜密着性:1.2mm、塗装付き廻り性:8.5μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例23>
 実施例22における配位子であるNTAの濃度を600ppmとした以外は実施例22と同様の方法で、ビスマス皮膜付き金属材料を作製した。
 Biは概ね金属の形態であり、付着量は100mg/m2、表層のBi原子数比率は75%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:1.3mm、塗膜密着性:1.5mm、塗装付き廻り性:8.4μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例24>
 実施例1における配位子の濃度を280ppmとした以外は実施例1と同様の方法で、ビスマス皮膜付き金属材料を作製した。
 Biは概ね金属の形態であり、付着量は140mg/m2、表層のBi原子数比率は90%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:1.0mm、塗膜密着性:1.0mm、塗装付き廻り性:9.0μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例25>
 実施例1における配位子の濃度を1680ppmとした以外は実施例1と同様の方法で、ビスマス皮膜付き金属材料を作製した。
 Biは概ね金属の形態であり、付着量は100mg/m2、表層のBi原子数比率は88%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:1.0mm、塗膜密着性:1.2mm、塗装付き廻り性:8.5μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例26>
 実施例1で使用した表面処理液に硝酸アルミニウムの形態でAlが150ppmとなるように添加し、さらにフッ化水素酸でAlF3となる当量分を添加した以外は実施例1と同様の方法で、ビスマス皮膜付き金属材料を作製した。実質のフッ化水素酸濃度としては約535ppmとなる。フッ化水素酸由来のフッ化物イオンはAlに対する配位子としても機能する。
 Biは概ね金属の形態であり、付着量は90mg/m2、表層のBi原子数比率は70%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:1.5mm、塗膜密着性:1.2mm、塗装付き廻り性:8.5μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例27>
 実施例1で使用した表面処理液に硝酸イットリウムの形態でYが10ppmとなるように添加し、さらにフッ化水素酸でYF3となる当量分を添加した以外は実施例1と同様の方法で、ビスマス皮膜付き金属材料を作製した。実質のフッ化水素酸濃度としては206ppmとなる。
 Biは概ね金属の形態であり、付着量は90mg/m2、表層のBi原子数比率は65%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:1.5mm、塗膜密着性:1.5mm、塗装付き廻り性:8.8μm、スラッジ観察を行った結果はうっすらと白濁しているが,フッ化イットリウムの白濁に起因しており,素材金属に由来するものではなかったので,環境性は○との評価結果を得た。
<実施例28>
 実施例1で使用した表面処理液に酒石酸アンチモニルカリウムの形態でSbが5ppmとなるように添加した以外は実施例1と同様の方法で、ビスマス皮膜付き金属材料を作製した。Biは概ね金属の形態であり、付着量は70mg/m2、表層のBi原子数比率は50%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:1.8mm、塗膜密着性:1.7mm、塗装付き廻り性:8.0μm、スラッジ観察を行った結果はわずかに薄く濁っており、環境性は◎との評価結果を得た。
<実施例29>
 実施例1で使用した表面処理液にエッチング剤としてフルオロジルコニウム酸を300ppm添加した以外は実施例1と同様の方法で、ビスマス皮膜付き金属材料を作製した。
 Biは概ね金属の形態であり、付着量は65mg/m2、表層のBi原子数比率は48%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:1.3mm、塗膜密着性:1.2mm、塗装付き廻り性:8.5μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例30>
 実施例1における処理液温度を43℃とした以外は実施例1と同様の方法で、ビスマス皮膜付き金属材料を作製した。
 Biは概ね金属の形態であり、付着量は130mg/m2、表層のBi原子数比率は95%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:0.8mm、塗膜密着性:1.0mm、塗装付き廻り性:9.2μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例31>
 実施例1における処理液温度を50℃とした以外は実施例1と同様の方法で、ビスマス皮膜付き金属材料を作製した。
 Biは概ね金属の形態であり、付着量は140mg/m2、表層のBi原子数比率は95%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:1.0mm、塗膜密着性:1.2mm、塗装付き廻り性:9.0μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例32>
 実施例1と同一の化成処理条件であるが、塗装を溶剤塗装とした条件である。具体的には、実施例1と同様の方法で得たビスマス皮膜付き金属材料に、溶剤塗料(関西ペイント株式会社製クリーンアミラック)を塗布して、130℃×25分乾燥し、30μmの塗膜を形成した。
 Biは概ね金属の形態であり、付着量は120mg/m2、表層のBi原子数比率は97%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験を行った結果、耐食性:1.5mm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例33>
 金属材料をGAとした以外は実施例1と同様の方法で、ビスマス皮膜付き金属材料を作製した。
 Biは概ね金属の形態であり、付着量は200mg/m2、表層のBi原子数比率は97%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:0.5mm、塗膜密着性:0.6mm、塗装付き廻り性:10.2μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例34>
 金属材料をGAとした以外は実施例11と同様の方法で、ビスマス皮膜付き金属材料を作製した。
 Biは概ね金属の形態であり、付着量は180mg/m2、表層のBi原子数比率は95%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:0.5mm、塗膜密着性:0.5mm、塗装付き廻り性:9.8μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<実施例35>
 金属材料をAlとした以外は実施例11と同様の方法で、ビスマス皮膜付き金属材料を作製した。
 Biは概ね金属の形態であり、付着量は90mg/m2、表層のBi原子数比率は75%であった。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:0.5mm、塗膜密着性:0.5mm、塗装付き廻り性:8.9μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
<比較例1>
 SPCに対し、表面調整剤(日本パーカライジング社製「プレパレンX」)の3.0g/L水溶液中に30秒間常温にて浸漬処理し、次いでリン酸亜鉛系化成処理剤(日本パーカライジング社製「パルボンドSX35」)の50g/L水溶液中に120秒間35℃にて浸漬処理を行い、処理液から取り出した後、水洗し、常温乾燥して、2.2g/m2のリン酸亜鉛系化成処理皮膜を有する金属板を得た。そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:2.0mm、塗膜密着性:1.0mm、塗装付き廻り性:10.0μmとの評価結果を得た。
 塗装性能も塗装付き廻り性も良好であるが、前述の如く多量の重金属やリン酸を含有し、スラッジも大量に発生するなどの問題を有していた。
<比較例2>
 特許文献1(特開2004-218073号公報)における実施例1を参照した。表面処理液はジルコンフッ化水素酸を用い、Zrとして250ppmとなるように配合し、Zn濃度が500ppmとなるように硝酸亜鉛にて添加し、pHが4となるように、また、ジルコニウムの水和物の沈殿ができないよう慎重に、希釈した水酸化ナトリウムで調整したものを用意した。これを40℃に加温し、表面を清浄にしたSPCを60秒間浸漬し、その後、市水によるスプレー水洗を30秒間、脱イオン水によるスプレー水洗を30秒間実施し、常温乾燥した。その結果、特許文献1に記載の実施例1同様のジルコニウム皮膜付き金属材料を得た。皮膜付着量は45mg/m2であった。
 そして、得られたものの数枚を用いて耐食性試験、塗膜密着性試験および塗装付き廻り性試験を行った結果、耐食性:1.5mm、塗膜密着性:1.2mm、塗装付き廻り性:2μm、スラッジ観察を行った結果は透明液体であり、環境性は◎との評価結果を得た。
塗装性能も環境性は良好であるが、前述の如く、塗装付き廻り性が極めて悪かった。
<比較例3>
 比較例1と同一の化成処理条件であるが、塗装を溶剤塗装とした条件である。具体的には、比較例1と同様の方法でSPCに対し、表面調整剤(日本パーカライジング社製「プレパレンX」)の3.0g/L水溶液中に30秒間常温にて浸漬処理し、次いでリン酸亜鉛系化成処理剤(日本パーカライジング社製「パルボンドSX35」)の50g/L水溶液中に120秒間35℃にて浸漬処理を行い、処理液から取り出した後、水洗し、80℃×10分の乾燥を行い、2.2g/m2のリン酸亜鉛系化成処理皮膜を有する金属板を得た。得たりん酸亜鉛金属材料に、溶剤塗料(関西ペイント株式会社製クリーンアミラック)を塗布して,130℃×25分乾燥し,30μmの塗膜を形成した。そして、得られたものの数枚を用いて耐食性試験を行った結果、耐食性:1.8mmとなる評価結果を得た。
 塗装性能は良好であるが、前述の如く多量の重金属やリン酸を含有し、スラッジも大量に発生するなどの問題を有していた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<ビスマス皮膜付き金属材料の表面状態、および、処理時間と皮膜付着量との関係>
 実施例34~38のビスマス皮膜付き金属材料の表面状態を電界放射走査型電子顕微鏡(FE-SEM)にて30000倍に拡大して観察した。実施例34~38の各ビスマス皮膜付き金属材料表面のFE-SEM写真と、処理時間と皮膜付着量との関係を示すグラフを図3に示す。
<実施例36~40>
 実施例11で使用した表面処理液のpHを3.7とし、処理時間をそれぞれ15秒(実施例36)、30秒(実施例37)、45秒(実施例38)、120秒(実施例39)、300秒(実施例40)とした以外は、実施例11と同様の方法で、ビスマス皮膜付き金属材料を作製した。各実施例の皮膜付着量および金属材料の表面積に対するBi皮膜の表面積の比率(被覆率)を下記第2表に示す。
Figure JPOXMLDOC01-appb-T000003
 10 4枚ボックス
 11 穴
 12、13、14、15 金属板
 16、17、18 塩化ビニル板
 21 対極
 22 塗料
 23 塗膜

Claims (17)

  1.  金属材料と、前記金属材料の表面の少なくとも一部にビスマスを含む層を有するビスマス皮膜付き金属材料であって、
     前記ビスマス皮膜付き金属材料の表層におけるビスマス原子の原子数比率が10%以上である、ビスマス皮膜付き金属材料。
  2.  前記金属材料が、袋構造部を有する請求項1に記載のビスマス皮膜付き金属材料。
  3.  前記ビスマスを含む層は、金属ビスマスを含む層が前記金属材料の表面に島状に形成されている請求項1または2に記載のビスマス皮膜付き金属材料。
  4.  請求項1~3のいずれかに記載のビスマス皮膜付き金属材料の前記皮膜上にカチオン電着塗装により形成させた塗膜を有するカチオン電着塗装金属材料。
  5.  塗装の前処理として金属材料の表面を化成処理する場合に用いる表面処理液であって、
     ビスマスと、ビスマスに対する配位子(L1)とを含有する表面処理液。
  6.  前記塗装が、カチオン電着塗装である請求項5に記載の表面処理液。
  7.  更に、光沢剤を含有する請求項5または6に記載の表面処理液。
  8.  前記光沢剤が、芳香環、スルホン基、ホルミル基、カルボキシ基およびアミノ基からなる群から選択される少なくとも1つを有する有機化合物である請求7に記載の表面処理液。
  9.  表面処理に用いられる時の前記光沢剤の質量濃度が、10~10000ppmである請求項7または8に記載の表面処理液。
  10.  前記配位子(L1)が、アミノポリカルボン酸および/またはカルボン酸であり、ビスマスに対する安定度が前記金属材料を構成する金属イオンに対する安定度よりも高い配位子を少なくとも1つ含む請求項5~9のいずれかに記載の表面処理液。
  11.  前記配位子(L1)が、アミノポリカルボン酸および/またはカルボン酸であり、ビスマスに対する安定度が前記金属材料を構成する金属のイオンに対する安定度よりも高い配位子であり、
     さらに、前記金属材料を構成する金属のイオンに対する安定度が、前記配位子(L1)のビスマスに対する安定度よりも高い配位子(L2)を含有する請求項5~9のいずれかに記載の表面処理液。
  12.  表面処理に用いられる時の前記ビスマスの質量濃度が、5~1000ppmである請求項5~11のいずれかに記載の表面処理液。
  13.  表面処理に用いられる時の前記配位子の質量濃度が、5~25000ppmである請求項12に記載の表面処理液。
  14.  pHが2以上10.5未満である請求項5~13のいずれかに記載の表面処理液。
  15.  金属材料を、請求項5~14のいずれかに記載の表面処理液で表面処理し、前記金属材料の表面の少なくとも一部にビスマスを含む層を形成する、ビスマス皮膜付き金属材料の製造方法。
  16.  請求項1~3のいずれかに記載のビスマス皮膜付き金属材料を製造する請求項15に記載のビスマス皮膜付き金属材料の製造方法。
  17.  請求項15または16に記載のビスマス皮膜付き金属材料の製造方法によって得られたビスマス皮膜付き金属材料の表面をカチオン電着塗装して塗膜を形成する、カチオン電着塗装金属材料の製造方法。
PCT/JP2009/059255 2008-05-29 2009-05-20 ビスマス皮膜付き金属材料およびその製造方法、それに用いる表面処理液ならびにカチオン電着塗装金属材料およびその製造方法 WO2009145088A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN200980129676.8A CN102112664B (zh) 2008-05-29 2009-05-20 带有铋被膜的金属材料及其制造方法、在其中所使用的表面处理液以及阳离子电沉积涂覆金属材料及其制造方法
EP09754596.6A EP2280096A4 (en) 2008-05-29 2009-05-20 METAL MATERIAL WITH BISMUTH FILM ATTACHED THERETO AND METHOD OF MANUFACTURING THE SAME, SURFACE TREATING LIQUID USED IN SAID PROCESS AND CATIONIC ELECTROLYTIC DEPOSITION COATED METAL MATERIAL AND METHOD FOR MANUFACTURING THE SAME
MX2010012956A MX2010012956A (es) 2008-05-29 2009-05-20 Material metalico con pelicula de bismuto adherida y metodo para producir el mismo, tratamiento superficial utilizado en el metodo, y material metalico recubierto por electrodeposicion cationica y metodo para producir el mismo.
KR1020137015697A KR101330878B1 (ko) 2008-05-29 2009-05-20 비스무트 피막 부착 금속재료 및 그의 제조방법, 그것에 사용하는 표면처리액 및 양이온 전착도장 금속재료 및 그의 제조방법
KR1020107026297A KR101330987B1 (ko) 2008-05-29 2009-05-20 비스무트 피막 부착 금속재료 및 그의 제조방법, 그것에 사용하는 표면처리액 및 양이온 전착도장 금속재료 및 그의 제조방법
JP2010514448A JP5421251B2 (ja) 2008-05-29 2009-05-20 ビスマス皮膜付き金属材料およびその製造方法、それに用いる表面処理液ならびにカチオン電着塗装金属材料およびその製造方法
BRPI0912295A BRPI0912295A2 (pt) 2008-05-29 2009-05-20 material metálico com uma película de bismuto aplicada e método para a produção do mesmo, líquido para o tratamento da superfície usado no método, e material metálico revestido por eletrodeposição catiônica e método para a produção do mesmo
CA2725108A CA2725108C (en) 2008-05-29 2009-05-20 Metal material with a bismuth film attached and method for producing same, surface treatment liquid used in said method, and cationic electrodeposition coated metal material and method for producing same
US12/736,958 US20110073484A1 (en) 2008-05-29 2009-05-20 Metal material with a bismuth film attached and method for producing same, surface treatment liquid used in said method, and cationic electrodeposition coated metal material and method for producing same
US14/491,419 US9039882B2 (en) 2008-05-29 2014-09-19 Metal material with a bismuth film attached and method for producing same, surface treatment liquid used in said method, and cationic electrodeposition coated metal material and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008140955 2008-05-29
JP2008-140955 2008-05-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/736,958 A-371-Of-International US20110073484A1 (en) 2008-05-29 2009-05-20 Metal material with a bismuth film attached and method for producing same, surface treatment liquid used in said method, and cationic electrodeposition coated metal material and method for producing same
US14/491,419 Division US9039882B2 (en) 2008-05-29 2014-09-19 Metal material with a bismuth film attached and method for producing same, surface treatment liquid used in said method, and cationic electrodeposition coated metal material and method for producing same

Publications (1)

Publication Number Publication Date
WO2009145088A1 true WO2009145088A1 (ja) 2009-12-03

Family

ID=41376967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059255 WO2009145088A1 (ja) 2008-05-29 2009-05-20 ビスマス皮膜付き金属材料およびその製造方法、それに用いる表面処理液ならびにカチオン電着塗装金属材料およびその製造方法

Country Status (10)

Country Link
US (2) US20110073484A1 (ja)
EP (1) EP2280096A4 (ja)
JP (1) JP5421251B2 (ja)
KR (2) KR101330987B1 (ja)
CN (2) CN104790014B (ja)
BR (1) BRPI0912295A2 (ja)
CA (1) CA2725108C (ja)
MX (1) MX2010012956A (ja)
TW (1) TWI435949B (ja)
WO (1) WO2009145088A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026661A (ja) * 2009-07-24 2011-02-10 Nippon Parkerizing Co Ltd 金属表面処理液および金属材料の表面処理方法
JP2011089187A (ja) * 2009-10-26 2011-05-06 Mazda Motor Corp 金属部材の表面処理方法
US8506728B2 (en) 2009-09-03 2013-08-13 Mazda Motor Corporation Surface treatment method of metal material
WO2014024282A1 (ja) 2012-08-08 2014-02-13 日本パーカライジング株式会社 金属表面処理液、金属基材の表面処理方法及びそれにより得られた金属基材
JP2015209585A (ja) * 2014-04-30 2015-11-24 新日鐵住金株式会社 耐遅れ破壊化成処理鋼材及びそれを用いた構造体
WO2017038430A1 (ja) * 2015-09-04 2017-03-09 日本パーカライジング株式会社 化成処理剤、皮膜の製造方法、皮膜付き金属材料及び塗装金属材料

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5325610B2 (ja) * 2009-03-02 2013-10-23 日本パーカライジング株式会社 金属表面処理用組成物、これを用いた金属表面処理方法およびこれらを用いた金属表面処理皮膜
JP5718753B2 (ja) * 2011-07-19 2015-05-13 日本パーカライジング株式会社 金属表面処理用水性組成物、これを用いた金属表面処理方法及び皮膜付金属材料の製造方法並びにこれらを用いた金属表面処理皮膜
JP6325124B2 (ja) * 2013-11-18 2018-05-16 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツングBASF Coatings GmbH 溶解のビスマスを含む導電性基材のための水性ディップコーティング組成物
KR102115548B1 (ko) 2013-12-16 2020-05-26 삼성전자주식회사 유기물 세정 조성물 및 이를 이용하는 반도체 장치의 제조 방법
KR102153745B1 (ko) * 2014-04-16 2020-09-09 삼성전자주식회사 세정액 조성물 및 이를 이용한 반도체 소자의 세정 방법
US20160101600A1 (en) * 2014-10-09 2016-04-14 Baker Hughes Incorporated Methods of forming structures for downhole applications, and related downhole structures and assemblies
JP2018512719A (ja) * 2015-03-19 2018-05-17 プリマス パワー コーポレイション キレート剤および金属めっき促進剤を含むフロー電池電解質組成物
CN108028412A (zh) * 2015-07-21 2018-05-11 普里默斯电力公司 含有有机硫酸盐湿润剂的流动电池组电解质组合物和包含其的流动电池组
CN108439547A (zh) * 2018-03-12 2018-08-24 扈佳玉 用于制备活性氧的改性钛基阳极板及制备方法
CN108754583B (zh) * 2018-06-13 2020-09-04 中国科学院海洋研究所 一种纳米钒酸铋-锌电镀层及其制备方法和应用
US11372730B2 (en) 2019-07-31 2022-06-28 Dell Products L.P. Method and system for offloading a continuous health-check and reconstruction of data in a non-accelerator pool
WO2021163476A1 (en) * 2020-02-14 2021-08-19 Henkel Ag & Co. Kgaa Bismuth compositions for metal pretreatment applications

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346447A (en) * 1976-10-09 1978-04-26 Kawasaki Steel Co Colddrolled steel plate having good tentative anticorrosion strength
JPH10501027A (ja) * 1994-05-27 1998-01-27 ヘルバーツ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング ホスフェート化された金属基体のコーティング方法
JP2003105553A (ja) * 2001-09-27 2003-04-09 Ishihara Chem Co Ltd 置換ビスマスメッキ浴
JP2004218073A (ja) 2002-12-24 2004-08-05 Nippon Paint Co Ltd 化成処理剤及び表面処理金属
JP2004218075A (ja) 2002-12-24 2004-08-05 Nippon Paint Co Ltd 化成処理剤及び表面処理金属
JP2006183079A (ja) * 2004-12-27 2006-07-13 Ishihara Chem Co Ltd 銅系素材用置換ビスマスメッキ浴
JP2008150654A (ja) * 2006-12-15 2008-07-03 Nippon Paint Co Ltd 金属基材、金属前処理方法及び複合被膜形成方法
WO2009081807A1 (ja) * 2007-12-21 2009-07-02 Kansai Paint Co., Ltd. 表面処理された金属基材の製造方法及び該製造方法により得られた表面処理された金属基材、並びに金属基材処理方法及び該方法によって処理された金属基材
JP2009174049A (ja) * 2007-12-27 2009-08-06 Kansai Paint Co Ltd 複層皮膜を有する金属基材の製造方法、該製造方法により得られる複層皮膜を有する金属基材及び塗装物品

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2881121A (en) * 1957-03-14 1959-04-07 Hanson Van Winkle Munning Co Electroplating
US3932198A (en) * 1974-05-24 1976-01-13 Amchem Products, Inc. Coating solution having trivalent chromium and manganese for coating metal surfaces
CA1188796A (en) * 1981-04-14 1985-06-11 Kenji Yazawa Magnetic recording medium
JPH05214549A (ja) * 1992-02-05 1993-08-24 Murata Mfg Co Ltd 無電解ビスマスめっき膜の形成方法および無電解ビスマスめっき浴
AT398987B (de) * 1993-09-07 1995-02-27 Vianova Kunstharz Ag Verfahren zur herstellung von wismutsalze enthaltenden zubereitungen und deren verwendung als katalysatorkomponente in kathodisch abscheidbaren elektrotauchlacken
US5554211A (en) * 1995-11-15 1996-09-10 Mcgean-Rohco, Inc. Aqueous electroless plating solutions
WO1998049367A1 (en) * 1997-04-28 1998-11-05 Fry's Metals, Inc. Bismuth coating protection for copper
EP1041125B2 (en) * 1997-12-12 2012-08-15 Kansai Paint Co., Ltd. Cationic electrodeposition paint composition
JPH11279461A (ja) * 1998-01-29 1999-10-12 Kansai Paint Co Ltd カチオン電着塗料
JP4099684B2 (ja) 1998-09-14 2008-06-11 石原薬品株式会社 無電解スズ−ビスマス合金メッキ浴
TW200417419A (en) * 2002-12-24 2004-09-16 Nippon Paint Co Ltd Chemical conversion coating agent and surface-treated metal
EP1433878B1 (en) * 2002-12-24 2008-10-29 Chemetall GmbH Chemical conversion coating agent and surface-treated metal
US7351319B2 (en) * 2003-01-24 2008-04-01 E. I. Du Pont De Nemours & Co. Cathodic electrodeposition coating compositions containing bismuth compounds and dicarboxylic acids, production and use thereof
DE10337029B4 (de) * 2003-08-12 2009-06-04 Federal-Mogul Wiesbaden Gmbh Schichtverbundwerkstoff, Herstellung und Verwendung
JP4402991B2 (ja) * 2004-03-18 2010-01-20 日本パーカライジング株式会社 金属表面処理用組成物、金属表面処理用処理液、金属表面処理方法および金属材料
DE102005059314B4 (de) * 2005-12-09 2018-11-22 Henkel Ag & Co. Kgaa Saure, chromfreie wässrige Lösung, deren Konzentrat, und ein Verfahren zur Korrosionsschutzbehandlung von Metalloberflächen
EP1889952B1 (en) * 2006-08-08 2012-05-30 Kansai Paint Co., Ltd. Method for forming surface-treating film
CN101139707A (zh) * 2006-09-04 2008-03-12 新井卓 锌或锌合金制品用表面处理剂
JP5060796B2 (ja) * 2007-02-16 2012-10-31 関西ペイント株式会社 表面処理皮膜の形成方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346447A (en) * 1976-10-09 1978-04-26 Kawasaki Steel Co Colddrolled steel plate having good tentative anticorrosion strength
JPH10501027A (ja) * 1994-05-27 1998-01-27 ヘルバーツ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング ホスフェート化された金属基体のコーティング方法
JP2003105553A (ja) * 2001-09-27 2003-04-09 Ishihara Chem Co Ltd 置換ビスマスメッキ浴
JP2004218073A (ja) 2002-12-24 2004-08-05 Nippon Paint Co Ltd 化成処理剤及び表面処理金属
JP2004218075A (ja) 2002-12-24 2004-08-05 Nippon Paint Co Ltd 化成処理剤及び表面処理金属
JP2006183079A (ja) * 2004-12-27 2006-07-13 Ishihara Chem Co Ltd 銅系素材用置換ビスマスメッキ浴
JP2008150654A (ja) * 2006-12-15 2008-07-03 Nippon Paint Co Ltd 金属基材、金属前処理方法及び複合被膜形成方法
WO2009081807A1 (ja) * 2007-12-21 2009-07-02 Kansai Paint Co., Ltd. 表面処理された金属基材の製造方法及び該製造方法により得られた表面処理された金属基材、並びに金属基材処理方法及び該方法によって処理された金属基材
JP2009174049A (ja) * 2007-12-27 2009-08-06 Kansai Paint Co Ltd 複層皮膜を有する金属基材の製造方法、該製造方法により得られる複層皮膜を有する金属基材及び塗装物品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2280096A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026661A (ja) * 2009-07-24 2011-02-10 Nippon Parkerizing Co Ltd 金属表面処理液および金属材料の表面処理方法
US8506728B2 (en) 2009-09-03 2013-08-13 Mazda Motor Corporation Surface treatment method of metal material
JP2011089187A (ja) * 2009-10-26 2011-05-06 Mazda Motor Corp 金属部材の表面処理方法
WO2014024282A1 (ja) 2012-08-08 2014-02-13 日本パーカライジング株式会社 金属表面処理液、金属基材の表面処理方法及びそれにより得られた金属基材
JP2015209585A (ja) * 2014-04-30 2015-11-24 新日鐵住金株式会社 耐遅れ破壊化成処理鋼材及びそれを用いた構造体
WO2017038430A1 (ja) * 2015-09-04 2017-03-09 日本パーカライジング株式会社 化成処理剤、皮膜の製造方法、皮膜付き金属材料及び塗装金属材料
JP2017048448A (ja) * 2015-09-04 2017-03-09 日本パーカライジング株式会社 化成処理剤、皮膜の製造方法、皮膜付き金属材料及び塗装金属材料

Also Published As

Publication number Publication date
TW201002863A (en) 2010-01-16
CN104790014B (zh) 2017-08-25
CN102112664A (zh) 2011-06-29
KR101330987B1 (ko) 2013-11-18
KR20110000755A (ko) 2011-01-05
JPWO2009145088A1 (ja) 2011-10-06
CN102112664B (zh) 2016-06-01
JP5421251B2 (ja) 2014-02-19
CA2725108C (en) 2016-09-13
CA2725108A1 (en) 2009-12-03
KR101330878B1 (ko) 2013-11-18
BRPI0912295A2 (pt) 2015-10-20
KR20130072274A (ko) 2013-07-01
EP2280096A1 (en) 2011-02-02
US20110073484A1 (en) 2011-03-31
TWI435949B (zh) 2014-05-01
US20150013566A1 (en) 2015-01-15
US9039882B2 (en) 2015-05-26
EP2280096A4 (en) 2013-11-06
MX2010012956A (es) 2010-12-20
CN104790014A (zh) 2015-07-22

Similar Documents

Publication Publication Date Title
JP5421251B2 (ja) ビスマス皮膜付き金属材料およびその製造方法、それに用いる表面処理液ならびにカチオン電着塗装金属材料およびその製造方法
JP4205939B2 (ja) 金属の表面処理方法
JP5007469B2 (ja) 緑色三価クロム化成皮膜
US20080286470A1 (en) Chemical conversion coating agent and surface-treated metal
WO2010001861A1 (ja) 金属構造物用化成処理液および表面処理方法
US20090032145A1 (en) Method of forming a multilayer, corrosion-resistant finish
JP2010090407A (ja) 金属表面処理液、および金属表面処理方法
WO2003074761A1 (fr) Liquide de traitement pour le traitement de surface de metal a base d'aluminium ou de magnesium et procede de traitement de surface
JP2003171778A (ja) 金属の保護皮膜形成方法及び金属の保護皮膜
JP5215043B2 (ja) 金属の表面処理用処理液及び表面処理方法
JP2005171296A (ja) アルミニウム又はアルミニウム合金用3価クロメート液及びそれを用いたアルミニウム又はアルミニウム合金表面に耐食性皮膜を形成する方法
KR20070103492A (ko) 표면처리 금속재료
JP2010090409A (ja) 表面処理金属材料、金属表面処理用処理液、塗装金属材料、およびそれらの製造方法
JP5605632B2 (ja) 六価クロムを含まない化成皮膜の仕上げ剤
JP5671210B2 (ja) 金属表面処理方法
JP2011127141A (ja) 電着塗装用表面処理金属材料、および化成処理方法
JPWO2008105052A1 (ja) 金属材料の表面処理用組成物および処理液ならびに表面処理金属材料、塗装金属材料およびそれらの製造方法
JP2006144065A (ja) アルミニウム系金属の表面処理方法
JP2015052168A (ja) 表面処理金属材料
Eaves A study of novel filiform corrosion phenomena on hot dip organically coated Zn-Al-Mg steel
JPH05156498A (ja) 耐食性、密着性、溶接性に優れた金属表面処理鋼板の黒色クロメート皮膜形成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980129676.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754596

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010514448

Country of ref document: JP

Ref document number: 4096/KOLNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009754596

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2725108

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20107026297

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12736958

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/012956

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0912295

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101129