WO2009144911A1 - 光ディスク装置、フォーカスエラー信号調整方法、プログラムおよび集積回路 - Google Patents

光ディスク装置、フォーカスエラー信号調整方法、プログラムおよび集積回路 Download PDF

Info

Publication number
WO2009144911A1
WO2009144911A1 PCT/JP2009/002299 JP2009002299W WO2009144911A1 WO 2009144911 A1 WO2009144911 A1 WO 2009144911A1 JP 2009002299 W JP2009002299 W JP 2009002299W WO 2009144911 A1 WO2009144911 A1 WO 2009144911A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
optical disc
focus
gain value
Prior art date
Application number
PCT/JP2009/002299
Other languages
English (en)
French (fr)
Inventor
丸山徹
山元猛晴
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US12/668,764 priority Critical patent/US20100195455A1/en
Priority to JP2009549327A priority patent/JPWO2009144911A1/ja
Priority to CN200980000575A priority patent/CN101790760A/zh
Publication of WO2009144911A1 publication Critical patent/WO2009144911A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0945Methods for initialising servos, start-up sequences

Definitions

  • the present invention relates to an optical disc apparatus that shortens the time required for adjusting the signal symmetry of a focus error signal (FE signal).
  • the present invention relates to an optical disc apparatus that can calculate a high-speed signal correction value by using an FE plus signal and an FE minus signal.
  • FIG. 10 is a diagram showing a schematic configuration of a conventional optical disc apparatus 900.
  • FIG. 11 is a graph showing the relationship between the gain value of the balance circuit 40 and the symmetry of the FE signal (focus error signal) in the conventional optical disc apparatus 900.
  • FE signal a focus error signal
  • the optical disc device 900 includes an optical head 10, a balance circuit 40, a differential circuit 41, an FE signal measurement unit 42, a symmetry calculation unit 43, an approximate calculation unit 44, and a controller 45. And comprising.
  • the “FE signal” is a signal indicating an error between the position of the information surface of the optical disc 1 and the position of the light beam spot, and is perpendicular to the disc surface (information surface) of the optical disc 1 (the method of the disc surface of the optical disc 1). This is a signal representing a tracking error in the line direction (an error in the vertical direction between the position of the information surface of the optical disc 1 and the position of the light beam spot).
  • the optical head 10 mainly includes a laser light source 30, a beam splitter 31, an objective lens 32, a focus actuator 33, and a light receiving unit 34.
  • the laser light source 30 irradiates the optical beam toward the optical disc 1 with a predetermined power.
  • the irradiated light beam passes through the beam splitter 31 and is converged on the information surface of the optical disc 1 by the objective lens 32.
  • the light beam reflected by the optical disc 1 is reflected by the beam splitter 31 and irradiated on the light receiving unit 34.
  • the light receiving unit 34 converts the amount of light of the received light beam into an electrical signal, and outputs the converted electrical signal to the balance circuit 40 and the differential circuit 41 as an FE plus signal and an FE minus signal.
  • the differential circuit 41 generates an FE signal based on the FE plus signal output from the light receiving unit 34 and the signal obtained by performing a predetermined gain correction on the FE minus signal output from the light receiving unit 34 by the balance circuit 40. Then, the differential circuit 41 outputs the generated FE signal to the FE signal measurement unit 42.
  • the controller 45 sets several different predetermined gain values for the balance circuit 40. Then, the controller 45 generates a focus drive command for UP / DOWN driving the objective lens 32 with respect to the optical disc 1 for each gain setting. Then, the controller 45 sends the generated focus drive command to the focus actuator 33.
  • the objective lens 32 is driven by the focus actuator 33, so that the focal point of the light beam converged by the objective lens 32 passes through the surface of the optical disc 1 and the information surface.
  • the FE signal from the differential circuit 41 has an S-shaped waveform (hereinafter referred to as “S-shaped FE signal”).
  • the FE signal measuring unit 42 is configured to detect the S-shaped level of each FE signal from the differential circuit 41 in the UP / DOWN driving of the objective lens 32 for each gain value setting of the balance circuit 40 by the controller 45 (FE signal having an S-shaped waveform). Signal level).
  • the symmetry calculating unit 43 calculates the S-shaped symmetry of the FE signal (the symmetry of the signal level of the FE signal that forms an S-shaped waveform). Calculate.
  • the controller 45 causes the objective lens 32 to be UP / DOWN driven with respect to the gain value setting of the balance circuit 40 having a predetermined number of points via the focus actuator 33. After that, the controller 45 sends a command to execute the linear approximation calculation to the approximation calculation unit 44.
  • the approximate calculation unit 44 receives a command from the controller 45, and sets the S-shape symmetry of the FE signal to substantially zero by linear approximation calculation from the output from the symmetry calculation unit 43 in each gain value setting of the balance circuit 40.
  • the gain value of the balance circuit 40 is calculated, and the gain value of the calculation result is set in the balance circuit 40.
  • “S-shaped symmetry” of the FE signal is evaluated by physical quantities other than those described above (for example, physical quantities based on the absolute values of A and B, the ratio of A and B, the difference between A and B, etc.) It may be.
  • the controller 45 performs these series of operations on the gain G2, the gain G3, the gain G4, and the gain G5, and calculates the symmetry SY2, symmetry SY3, symmetry SY4, and symmetry SY5 of the FE signal, respectively. Get by.
  • the relationship between the gain G1, the gain G2, the gain G3, the gain G4, and the gain G5 and the symmetry SY1, symmetry SY2, symmetry SY3, symmetry SY4, and symmetry SY5 is as shown in FIG. It becomes.
  • an approximate straight line is calculated by the linear approximation method with respect to the characteristics shown in FIG. 11, and the gain value G6 of the balance circuit 40 in which the S-shape symmetry of the FE signal is substantially 0 is calculated from the approximate straight line. Then, the calculated gain value G6 is set in the balance circuit 40.
  • the present invention provides an optical disc apparatus and a focus error signal adjustment method capable of accurately adjusting the symmetry (S-shape symmetry) of the FE signal even when the number of UP / DOWN operations of the objective lens is small.
  • An object is to realize a program and an integrated circuit.
  • a first invention is an apparatus that performs at least one of recording and reproduction with respect to an optical disc having an information surface, and includes an irradiation unit, a converging unit, a focus driving unit, a light receiving unit, a measuring unit, and signal correction
  • An optical disc device comprising a unit, a focus error signal generation unit, and a signal ratio calculation unit.
  • the irradiation unit irradiates the optical disk with a light beam.
  • a converging part converges the light beam irradiated by the irradiation part.
  • the focus driving unit drives the converging unit so as to move the light beam spot converged by the converging unit in a direction perpendicular to the disc surface of the optical disc.
  • the light receiving unit has a detector divided into a plurality of parts, receives the reflected light from the optical disc with the detector divided into a plurality of parts, and acquires an electrical signal corresponding to the received light quantity as an FE plus signal and an FE minus signal.
  • the measurement unit measures the signal levels of the FE plus signal and the FE minus signal acquired by the light receiving unit.
  • the signal correction unit performs signal level correction on at least one of the FE plus signal and the FE minus signal by multiplying at least one of the FE plus signal and the FE minus signal by a predetermined gain value.
  • the focus error signal generation unit generates a focus error signal based on the output from the signal correction unit, and outputs the generated focus error signal.
  • the signal ratio calculation unit is a predetermined gain value to be applied to at least one of the FE plus signal and the FE minus signal based on the output from the measurement unit, and is the absolute value of the maximum value of the focus error signal and the minimum value of the focus signal.
  • a predetermined gain value that makes the absolute value equal is derived.
  • the signal correction unit corrects the signal level for at least one of the FE plus signal and the FE minus signal based on the predetermined gain value derived by the signal ratio calculation unit.
  • the FE plus signal and the FE minus signal are signals corresponding to, for example, the sum of the received light amounts of two detectors that are in a diagonal relationship with a light receiving unit having four divided detectors. That is, assuming that the received light amounts at the four-divided detectors are A, B, C, and D, A and D are on one diagonal line, and B and C are on the other diagonal line, the FE plus signal Is a signal corresponding to (B + C), and the FE minus signal is a signal corresponding to (A + D). Needless to say, this is merely an example, and the present invention is not limited to this. Further, “equalize” is a concept including “substantially equal” and is a concept that allows measurement error, design error, and the like.
  • the signal level of the FE plus signal and the FE minus signal acquired by the light receiving unit is measured by the measuring unit, and the absolute value of the maximum value of the focus error signal and the minimum value of the focus signal are measured by the signal ratio calculating unit.
  • a predetermined gain value that equalizes the absolute value of the signal is derived, and the signal correction unit corrects the signal level of at least one of the FE plus signal and the FE minus signal based on the gain value.
  • a second aspect of the invention is the first aspect of the invention, wherein the signal ratio calculation unit has a point that the signal level of the focus error signal takes an extreme value when the light beam spot is in the vicinity of an arbitrary information surface of the optical disc, or the light
  • a predetermined gain value is derived based on the output from the measurement unit at the point where the signal level of the FE plus signal and the signal level of the FE minus signal take extreme values when the beam spot is in the vicinity of an arbitrary information surface of the optical disc.
  • the optical disk device (1) Deriving (calculating) a predetermined gain value based on the signal level of the focus error signal when the light beam spot is in the vicinity of an arbitrary information surface of the optical disk, or (2) A predetermined gain value may be derived (calculated) based on the extreme values of the signal level of the FE plus signal and the signal level of the FE minus signal when the light beam spot is in the vicinity of an arbitrary information surface of the optical disc. it can. Therefore, in this optical disc apparatus, the S-shaped symmetry adjustment of the focus error signal can be appropriately performed. As a result, this optical disc apparatus can perform stable focus control on an arbitrary information surface of the optical disc.
  • the “extreme value” is a concept including a maximum value, a minimum value, a maximum value, and a minimum value.
  • 3rd invention is 2nd invention, Comprising: A focus control part and a focus drawing-in part are further provided.
  • the focus control unit performs control so that the light beam spot is positioned on the information surface of the optical disc in accordance with a signal from the focus error signal generation unit.
  • the focus pull-in unit moves the light beam spot in a direction perpendicular to the disc surface of the optical disc by the focus drive unit, and when the position of the light beam spot coincides with a position on an arbitrary information surface of the optical disc, the focus control unit Start the control operation by.
  • the signal ratio calculation unit derives a predetermined gain value used by the signal correction unit based on the output from the measurement unit at least once before the focus control unit starts operation by the focus pull-in unit.
  • the signal ratio calculation unit derives (calculates) a predetermined gain value used in the signal correction unit based on the output from the measurement unit at least once before the focus control unit is started. It is possible to perform stable focus pull-in on the information surface.
  • the 4th invention is 2nd invention, Comprising:
  • amends the spherical aberration of the light beam spot on the arbitrary information surfaces of an optical disk is further provided.
  • the signal ratio calculation unit derives a predetermined gain value used in the signal correction unit based on the output from the measurement unit after the spherical aberration correction by the spherical aberration correction unit.
  • a predetermined gain value used in the signal correction unit is derived (calculated) based on the output from the measurement unit, and therefore, the influence of the signal symmetry shift of the focus error signal due to the spherical aberration. Can be effectively removed.
  • 5th invention is 4th invention, Comprising: A focus control part and a focus drawing-in part are further provided.
  • the focus control unit performs control so that the light beam spot is positioned on the information surface of the optical disc in accordance with a signal from the focus error signal generation unit.
  • the focus pull-in unit moves the light beam spot in a direction perpendicular to the disc surface of the optical disc by the focus drive unit, and when the position of the light beam spot coincides with a position on an arbitrary information surface of the optical disc, the focus control unit Start the control operation by.
  • the signal ratio calculation unit derives a predetermined gain value used in the signal correction unit based on the output from the measurement unit when the light beam spot is brought close to the optical disc by the focus pull-in unit.
  • the focus pull-in unit performs focus control by the focus control unit so that the light beam spot is positioned on an arbitrary information surface of the optical disc after the predetermined gain value is derived by the signal ratio calculation unit.
  • the signal ratio calculation unit derives (calculates) a predetermined gain value used in the signal correction unit based on the output from the measurement unit. Therefore, in this optical disc apparatus, the startup time can be shortened by absorbing the time required for adjusting the signal symmetry of the focus error signal in the focus pull-in processing time.
  • 6th invention is 4th invention, Comprising: In order to discriminate
  • the signal ratio calculation unit obtains a predetermined gain value used for the signal correction unit based on the output from the measurement unit during the operation of bringing the light beam spot by the disc determination unit closer to or away from the optical disc. To derive. As a result, the startup time can be shortened by absorbing the time required for adjusting the signal symmetry of the focus error signal in the disc discrimination processing time.
  • a seventh invention is the sixth invention, wherein a predetermined gain value derived by the signal ratio calculation unit is acquired as the first gain value during the operation of bringing the light beam spot closer to the optical disc, and the optical gain is obtained.
  • the predetermined gain value derived by the signal ratio calculation unit during the operation of moving the beam spot away from the optical disc is acquired as the second gain value, and the signal correction unit uses the first gain value and the second gain value.
  • a signal ratio optimization unit for deriving a predetermined gain value to be used is further provided.
  • the predetermined gain value used in the signal correction unit is derived (calculated) from the first gain value and the second gain value, the accuracy of adjusting the signal symmetry of the focus error signal is further improved. be able to.
  • the eighth invention is the first invention, wherein when the optical disk has a plurality of information surfaces, the signal ratio calculation unit has the light beam spot on the optical disk for all of the plurality of information surfaces.
  • the signal level of the focus error signal when in the vicinity of the information surface takes an extreme value, or the signal level of the FE plus signal and the FE minus signal when the light beam spot is in the vicinity of the information surface on the optical disc takes an extreme value.
  • a predetermined gain value used in the signal correction unit is derived.
  • the focus pull-in unit moves the light beam spot in a direction perpendicular to the disc surface of the optical disc by the focus drive unit, and when the position of the light beam spot coincides with a position on an arbitrary information surface of the optical disc, the focus control unit Start the control operation by.
  • the signal ratio calculation unit derives a predetermined gain value used by the signal correction unit based on the output from the measurement unit at least once before the focus control unit starts operation by the focus pull-in unit.
  • the tenth invention is the eighth invention, further comprising a focus control unit and a focus pull-in unit.
  • the focus control unit performs control so that the light beam spot is positioned on the information surface of the optical disc in accordance with a signal from the focus error signal generation unit.
  • the focus pull-in unit moves the light beam spot in a direction perpendicular to the disc surface of the optical disc by the focus drive unit, and when the position of the light beam spot coincides with a position on an arbitrary information surface of the optical disc, the focus control unit Start the control operation by.
  • the signal ratio calculation unit derives a predetermined gain value that can be used by the signal correction unit based on the output from the measurement unit when the light beam spot is brought close to the optical disk by the focus pull-in unit.
  • the focus pull-in unit performs focus control by the focus control unit so that the light beam spot is positioned on an arbitrary information surface of the optical disc after the predetermined gain value is derived by the signal ratio calculation unit.
  • the eleventh aspect of the present invention is the eighth aspect of the present invention, further comprising a disk discriminating unit that performs an operation of moving the light beam spot toward and away from the optical disc by the focus driving unit in order to discriminate the type of the loaded optical disc. .
  • the signal ratio calculation unit obtains a predetermined gain value used for the signal correction unit based on the output from the measurement unit during the operation of bringing the light beam spot by the disc determination unit closer to or away from the optical disc. To derive.
  • the startup time can be shortened by absorbing the time required to adjust the signal symmetry of the focus error signal of all information surfaces in the disc discrimination processing time.
  • the twelfth invention is the eleventh invention, wherein a predetermined gain value derived by the signal ratio calculation unit is acquired as the first gain value during the operation of bringing the light beam spot closer to the optical disk, During the operation of moving the beam spot away from the optical disc, the predetermined gain value derived by the signal ratio calculation unit is acquired as the second gain value, and the signal correction unit is obtained from the first gain value and the second gain value. Is further provided with a signal ratio optimization unit for deriving a predetermined gain value used in the above. Thereby, the adjustment accuracy of the signal symmetry of the focus error signal of all information surfaces can be improved.
  • a thirteenth aspect of the invention is the eighth aspect of the invention, wherein the light beam spot covers all information surfaces of the optical disk during at least one of the operation of moving the light beam spot toward the optical disk by the focus driving unit or the operation of moving it away from the optical disk.
  • a spherical aberration correction unit that corrects the spherical aberration in parallel with the operation of the focus driving unit so that the spherical aberration of the light beam spot on an arbitrary information surface through which the light beam spot passes becomes substantially zero when passing; Prepare.
  • the fourteenth invention is the eighth invention, further comprising a spherical aberration correction unit and an all-layer signal ratio calculation unit.
  • the spherical aberration correction unit corrects the spherical aberration of the light beam spot on an arbitrary information surface of the optical disc.
  • the all-layer signal ratio calculation unit operates at least one of the operation of moving the optical beam spot closer to or away from the optical disk by the focus driving unit after operating the spherical aberration correction unit on an arbitrary information surface of the optical disk.
  • a process for deriving a predetermined gain value by the signal ratio calculation unit is operated, and a series of operations is performed on each information surface of all information surfaces of the optical disc.
  • a fifteenth aspect of the present invention is the first aspect of the present invention, wherein the apparatus performs at least one of recording and reproduction with respect to an optical disc having a plurality of information surfaces, and is a predetermined gain value used in the signal correction unit.
  • the apparatus further includes a multiple information plane signal ratio calculation unit for deriving a multiple layer common gain value that is a predetermined gain value that is commonly used for a plurality of information planes of the optical disc.
  • the signal ratio calculation unit derives a predetermined gain value for each of the plurality of information surfaces.
  • the multiple information surface signal ratio calculation unit derives a multiple layer common gain value from a plurality of predetermined gain values derived by the signal ratio calculation unit for each of the multiple information surfaces.
  • a predetermined gain value is calculated for each of the plurality of information planes by the signal ratio calculation unit, and the signal ratio calculation unit is configured for each of the plurality of information planes by the plurality of information plane signal ratio calculation units.
  • a multi-layer common gain value is derived (calculated) from a plurality of predetermined gain values derived for. Therefore, in this optical disc apparatus, the focus control is stable over a plurality of information surfaces, and the stability of the focus control before and after the focus jump can be ensured.
  • the “multilayer common gain value” includes, for example, an average value of predetermined gain values calculated for each information surface.
  • the sixteenth invention is the fifteenth invention, further comprising a focus control unit and a focus pull-in unit.
  • the focus control unit performs control so that the light beam spot is positioned on the information surface of the optical disc in accordance with a signal from the focus error signal generation unit.
  • the focus pull-in unit moves the light beam spot in a direction perpendicular to the disk surface of the optical disk by the focus driving unit, and when the position of the light beam spot is located at an arbitrary information surface of the optical disk, the focus control unit Start the control action by.
  • the multiple information surface signal ratio calculation unit derives the multi-layer common gain value based on the output from the measurement unit at least once before the focus control unit is operated by the focus pull-in unit. Accordingly, stable focus pull-in can be performed using the focus error signal that stabilizes the focus control over a plurality of information surfaces.
  • a seventeenth aspect of the invention is an optical disc apparatus that performs at least one of recording and reproduction on an optical disc having an information surface, and irradiates a light beam to the optical disc, and converges the light beam emitted by the irradiation unit
  • a focus error signal adjusting method used in an optical disc apparatus comprising: a light receiving unit that receives a reflected light of a plurality of times by a detector divided into a plurality of parts and acquires an electric signal corresponding to the received light quantity as an FE plus signal and an FE minus signal; is there.
  • the focus error signal adjustment method includes a measurement step, a signal correction step, a focus error signal generation step, and a signal ratio calculation step.
  • the signal correction step corrects the signal level of at least one of the FE plus signal and the FE minus signal by multiplying at least one of the FE plus signal and the FE minus signal by a predetermined gain value.
  • the focus error signal generation step generates a focus error signal based on the output from the signal correction unit, and outputs the generated focus error signal.
  • the signal ratio calculation step is a predetermined gain value to be applied to at least one of the FE plus signal and the FE minus signal based on the output from the measurement step. A predetermined gain value that makes the absolute value equal is derived.
  • the signal level is corrected for at least one of the FE plus signal and the FE minus signal based on the predetermined gain value derived in the signal ratio calculating step.
  • An eighteenth aspect of the invention is an optical disc apparatus that performs at least one of recording and reproduction with respect to an optical disc having an information surface, and irradiates a light beam to the optical disc, and converges the light beam emitted by the irradiation unit
  • a focus error signal adjusting method used in an optical disc apparatus comprising: a light receiving unit that receives a reflected light of a plurality of times by a detector divided into a plurality of parts and acquires an electrical signal corresponding to the received light quantity as an FE plus signal and an FE minus signal.
  • a program to be executed by a computer includes a measurement step, a signal correction step, a focus error signal generation step, and a signal ratio calculation step.
  • the signal correction step corrects the signal level of at least one of the FE plus signal and the FE minus signal by multiplying at least one of the FE plus signal and the FE minus signal by a predetermined gain value.
  • the focus error signal generation step generates a focus error signal based on the output from the signal correction unit, and outputs the generated focus error signal.
  • the signal ratio calculation step is a predetermined gain value to be applied to at least one of the FE plus signal and the FE minus signal based on the output from the measurement step. A predetermined gain value that makes the absolute value equal is derived.
  • the signal level is corrected for at least one of the FE plus signal and the FE minus signal based on the predetermined gain value derived in the signal ratio calculating step.
  • an apparatus for performing at least one of recording and reproduction on an optical disc having an information surface an irradiation unit for irradiating the optical disc with a light beam, and a convergence for converging the light beam irradiated by the irradiation unit
  • a focus driving unit that drives the converging unit so as to move the light beam spot converged by the converging unit in a direction perpendicular to the disc surface of the optical disc, and a detector divided into a plurality of parts.
  • It is an integrated circuit used in an optical disc apparatus including a light receiving unit that receives reflected light with a detector divided into a plurality of parts and acquires an electrical signal corresponding to the received light amount as an FE plus signal and an FE minus signal.
  • the integrated circuit includes a measurement unit, a signal correction unit, a focus error signal generation unit, and a signal ratio calculation unit.
  • the measurement unit measures the signal levels of the FE plus signal and the FE minus signal acquired by the light receiving unit.
  • the signal correction unit performs signal level correction on at least one of the FE plus signal and the FE minus signal by multiplying at least one of the FE plus signal and the FE minus signal by a predetermined gain value.
  • the focus error signal generation unit generates a focus error signal based on the output from the signal correction unit, and outputs the generated focus error signal.
  • the signal ratio calculation unit is a predetermined gain value to be applied to at least one of the FE plus signal and the FE minus signal based on the output from the measurement unit, and is the absolute value of the maximum value of the focus error signal and the minimum value of the focus signal. A predetermined gain value that makes the absolute value equal is derived.
  • the signal correction unit corrects the signal level for at least one of the FE plus signal and the FE minus signal based on the predetermined gain value derived by the signal ratio calculation unit.
  • an optical disc apparatus a focus error signal adjustment method, a program, and an integration that can accurately adjust the symmetry (S-shape symmetry) of the FE signal even when the number of UP / DOWN operations of the objective lens is small.
  • a circuit can be realized.
  • FIG. 5B is a diagram showing the position signal of the objective lens during the focus control pull-in operation by the focus pull-in unit.
  • C The FE signal during the focus control pull-in operation by the focus pull-in unit with the vertical axis as the signal level.
  • C Focus with the horizontal axis in the second embodiment as the time and the vertical axis as the signal level
  • FIG. 4D shows the FE plus signal during the focus control pull-in operation by the pull-in unit.
  • FIG. 8C shows a correction level signal of the spherical aberration correction unit during the disc discrimination operation by the disc discrimination control unit with time as the vertical axis and signal level as the vertical axis.
  • FIG. 4D shows the FE signal during the disc discrimination operation by the disc discrimination control unit with the signal level.
  • D Disc discrimination operation by the disc discrimination control unit with the horizontal axis as time and the vertical axis as the signal level in the second embodiment.
  • E shows the FE plus signal in the second embodiment. The FE minus signal during the disc discrimination operation by the disc discrimination control unit with the horizontal axis as time and the vertical axis as the signal level is shown.
  • A The horizontal axis in the third embodiment shows the position signal of the objective lens during the focus control pull-in operation by the focus pull-in unit with the horizontal axis as time and the vertical axis as the signal level.
  • FIG. 4C shows the FE signal during the focus control pull-in operation by the focus pull-in portion with time as the vertical axis and the signal level as the signal level.
  • FIG. 4D shows the FE plus signal during the focus control pull-in operation by the pull-in unit.
  • FIG. 4D shows the FE negative signal during the focus control pull-in operation by the focus pull-in unit with the horizontal axis as time and the vertical axis as the signal level in the third embodiment.
  • Figure showing The figure for demonstrating the S-shaped symmetry of a FE signal Schematic configuration diagram of a part of an optical disc apparatus according to another embodiment
  • Signal waveform diagram for explaining the operation of an optical disc apparatus according to another embodiment The figure which shows the block configuration in background art
  • FIG. 1 is a block diagram showing a schematic configuration of an optical disc apparatus 100 according to the present embodiment.
  • an optical disc device 100 is a device for recording / reproducing information with respect to an optical disc 1, and includes an optical head 20, a balance adjustment unit (balance circuit) 40, and a subtraction unit (differential circuit). ) 41, a pre-differential FE measuring unit 50, and a symmetry calculating unit 51.
  • the optical disc apparatus 100 includes a controller 56, a spherical aberration control unit 52, a focus pull-in unit 55, a focus filter unit 54, and a switching unit (focus drive output switching unit) 53.
  • the optical head 20 includes a laser light source 30, a beam splitter 31, an objective lens 32, a focus actuator 33, a light receiving unit 34, and a spherical aberration correction unit 35.
  • the laser light source 30, the beam splitter 31, the objective lens 32, the focus actuator 33, the light receiving unit 34, the balance adjusting unit (balance circuit) 40, and the subtracting unit (differential circuit) 41 are equivalent to those of the optical disc apparatus 900 of the background art. Since it has a function, detailed explanation is omitted.
  • the optical disk device 100 differs from the background art (optical disk device 900) in that the optical head 20, the spherical aberration correction unit 35, the pre-differential FE measurement unit 50, the symmetry calculation unit 51, the spherical aberration control unit 52, and the switching unit ( By using the focus drive output switching unit 53, the focus filter unit 54, the focus pull-in unit 55 and the controller 56, the objective lens 32 is only once driven up before the focus is pulled in (before the focus control is turned on). Thus, the symmetry of the S-shape of the FE signal can be adjusted.
  • the irradiation unit is configured by, for example, a laser light source 30.
  • the converging unit is configured by an objective lens 32, for example.
  • the focus driving unit is configured by, for example, a focus actuator 33.
  • the light receiving unit is configured by, for example, the light receiving unit 34.
  • the measurement unit is configured by the pre-differential FE measurement unit 50, for example.
  • the signal correction unit is configured by a balance circuit 40, for example.
  • the focus error signal generation unit is configured by a differential circuit 41, for example.
  • the signal ratio calculation unit includes, for example, a symmetry calculation unit 51.
  • the focus control unit includes, for example, a focus filter unit 54.
  • the focus pull-in unit includes, for example, a focus pull-in unit 55 and a focus drive output switch 53.
  • the spherical aberration correction unit includes, for example, a spherical aberration control unit 52 and a spherical aberration correction unit 35.
  • the optical head 20 of the optical disc apparatus 100 has a configuration in which a spherical aberration correction unit 35 is added to the optical head 10 of the conventional optical disc apparatus 900.
  • the spherical aberration correction unit 35 corrects the amount of spherical aberration generated in the light beam emitted from the laser light source 30.
  • the controller 56 sends a correction command for spherical aberration generated in the light beam to the spherical aberration control unit 52.
  • the spherical aberration controller 52 receives a correction command from the controller 56 and sends a drive signal for correcting the spherical aberration generated in the light beam to the spherical aberration corrector 35. Further, the controller 56 commands to cause the spot of the light beam converged by the objective lens 32 to follow the direction perpendicular to the information surface of the optical disc 1 (normal direction of the information surface of the optical disc 1), that is, information A command to search for a surface is sent to the focus pull-in unit 55.
  • the focus pull-in unit 55 receives the output of the controller 56 and the output of the subtracting unit (differential circuit) 41 as inputs.
  • the focus pull-in unit 55 receives a command from the controller 56 and performs switching control of the switching unit (focus drive output switching unit) 53. Specifically, the focus pull-in unit 55 is output from the focus pull-in unit 55 when receiving an instruction to search for an information surface from the controller 56 (this may be referred to as “information surface search mode”). The input of the switching unit (focus drive output switch) 53 is switched (selected) so that the signal is output to the focus actuator 33. On the other hand, when the focus pull-in unit 55 receives an instruction to perform focus control from the controller 56 (this may be referred to as “focus control mode”), a signal output from the focus filter unit 54 is a focus actuator. The input of the switching unit (focus drive output switching unit) 53 is switched (selected) so as to be output to 33.
  • the switching unit (focus drive output switching unit) 53 selects the output (focus drive signal) from the focus pull-in unit 55 and outputs it to the focus actuator 33. That is, in the information surface search mode, a focus drive signal (output from the focus pull-in unit 55) for UP / DOWN driving the spot of the light beam converged by the objective lens 32 to the optical disc 1 is supplied to the focus actuator 33. Sent. Then, the focus actuator 33 that drives the objective lens 32 is driven by the focus drive signal. When the objective lens 32 is driven by the focus actuator 33, the focal point of the light beam converged by the objective lens 32 passes through the surface of the optical disc 1 and the information surface. In the vicinity of the focal point of the light beam passing through the surface or information surface of the optical disc 1, the signal waveform of the FE signal output from the differential circuit 41 is an S-shaped waveform.
  • the pre-differential FE measurement unit 50 performs a subtraction unit (differential) while the objective lens 32 is being UP driven by the focus pull-in unit 55 (while the objective lens 32 is being driven closer to the optical disc 1 (the UP direction shown in FIG. 1)).
  • the level of the FE plus signal and the FE minus signal output from the light receiving unit 34 is measured at a point where the S-shaped signal level of the FE signal from the circuit) 41 is maximized or minimized.
  • the pre-differential FE measurement unit 50 outputs the measurement result to the symmetry calculation unit 51.
  • the symmetry calculation unit 51 receives the output from the pre-differential FE measurement unit, and inputs the S-level of the FE plus signal and the FE minus signal measured by the pre-differential FE measurement unit 50 (the signal level of the S-shaped FE signal).
  • the gain value of the balance circuit 40 is calculated on the basis of the signal level of the FE plus signal and the FE minus signal at the point where becomes maximum or minimum, and the gain value of the calculation result is set in the balance circuit 40.
  • the S-shape of the FE signal in the direction in which the objective lens 32 is being driven down crosses 0 level.
  • the switching unit (focus drive output switching unit) 53 is switched so that the input of the switching unit (focus drive output switching unit) 53 becomes a signal from the focus filter unit 54.
  • focus filter unit 54 receives the FE signal output from the subtraction unit (differential circuit) 41, generates a focus drive signal so that the level of the FE signal becomes substantially 0, and switches the generated focus drive signal to the switching unit. (Focus drive output switching unit) 53.
  • the focus filter unit 54 is preferably realized by a phase compensation filter (PID (Proportional Integral Derivative) filter).
  • FIG. 2A shows a position signal of the objective lens 32 during the focus control pull-in operation by the focus pull-in unit 55 with the horizontal axis as time and the vertical axis as signal level.
  • FIG. 2B shows the FE signal during the focus control pull-in operation by the focus pull-in unit 55 with the horizontal axis representing time and the vertical axis representing signal level.
  • FIG. 2C shows an FE plus signal during the focus control pull-in operation by the focus pull-in unit 55 with the horizontal axis representing time and the vertical axis representing signal level.
  • FIG. 2D shows the FE minus signal during the focus control pull-in operation by the focus pull-in unit 55 with the horizontal axis representing time and the vertical axis representing the signal level.
  • the spherical aberration control unit 52 Based on the correction command output from the controller 56, the spherical aberration control unit 52 outputs a drive signal for correcting the spherical aberration generated in the light beam to the spherical aberration correction unit 35. Then, the spherical aberration correction unit 35 corrects the spherical aberration of the light beam on the information surface of the optical disc 1 to be reduced.
  • T100 Next, at timing T ⁇ b> 100, the controller 56 causes the focus pull-in unit 55 to start the focus control pull-in operation, thereby starting the UP driving of the objective lens 32. When the level of the FE signal exceeds the level L1 shown in FIG.
  • the pre-differential FE measurement unit 50 starts detecting the maximum point of the FE signal.
  • T101 the pre-differential FE measurement unit 50 measures the level L4 of the FE plus signal at the timing when the maximum point of the FE signal is determined.
  • the pre-differential FE measurement unit 50 starts detecting the minimum point of the FE signal when the level of the FE signal falls below the level L2.
  • T102 the pre-differential FE measurement unit 50 measures the level L5 of the FE minus signal at the timing when the minimum point of the FE signal is determined.
  • the symmetry calculator 51 obtains the level ratio between the level L4 of the FE plus signal at the maximum point of the FE signal and the level L5 of the FE minus signal at the minimum point of the FE signal, which is obtained by the FE measuring unit 50 before differential.
  • a gain adjustment unit that adjusts the gain of the FE plus signal is provided between the light receiving unit 34 and the subtraction unit 41, and further, a gain adjustment that performs gain adjustment of the FE minus signal between the balance circuit 40 and the subtraction unit 41.
  • the FE plus signal output from the light receiving unit 34 and the FE plus signal output from the balance circuit 40 may be multiplied by a predetermined gain K1.
  • the FE plus signal and the FE minus signal input to the subtracting unit 41 are as follows.
  • the focus pull-in unit 55 starts timing detection that crosses the 0 level of the FE signal.
  • T104 a point where the S-shaped waveform of the FE signal crosses 0 level (0 cross point) is detected, and focus control is started.
  • the point where the S-shaped waveform of the FE signal crosses the 0 level is detected at the timing TT shown in FIG. 2, it is ideal to start the focus control from this timing TT. Since there is a response delay of the actuator 33, in this embodiment, focus control is started from timing T104 in FIG. Therefore, the focus control may be started from the timing TT using an actuator with good response characteristics. Further, in order to detect the zero cross point with certainty, it is determined that the zero cross point has been detected by confirming that the signal level of the FE signal has changed from minus to plus, so as to reduce false detection of the zero cross point. It may be.
  • the spherical aberration of the light beam on the information surface of the optical disc 1 on which focus control is performed before focus pull-in is optimally matched, and the FE plus signal before differential and Based on the FE minus signal, the gain value of the balance circuit 40 is calculated and set.
  • the symmetry (S-shape symmetry) of the FE signal can be accurately adjusted by performing the UP operation of the objective lens 32 only once.
  • an example of the symmetry adjustment of the FE signal using the UP driving of the objective lens 32 in the focus control pull-in operation has been described.
  • the present invention is not limited to this example.
  • the symmetry of the FE signal (S-shaped symmetry) using the operation of performing at least one of UP driving or DOWN driving of the objective lens 32, such as UP / DOWN driving of the objective lens 32 for discriminating the type of the optical disk 1 Adjustments may be made.
  • the example of the symmetry adjustment of the FE signal based on the FE plus signal and the FE minus signal only during the UP driving of the objective lens 32 has been shown.
  • the symmetry (S-shape symmetry) of the FE signal may be adjusted only during the DOWN driving of the objective lens 32 or during both the UP / DOWN driving.
  • the FE signal obtained by averaging the result of the symmetry adjustment of the FE signal during UP driving of the objective lens 32 and the result of the symmetry adjustment of the FE signal during DOWN driving.
  • an optimum gain value to be set in the balance circuit 40 based on the data relating to the symmetry of the above and set the gain value as the gain value of the balance circuit 40. Further, in the optical disc apparatus 100, the result of the symmetry adjustment of the FE signal during the UP driving of the objective lens 32 and the result of the symmetry adjustment of the FE signal during the DOWN driving are acquired, and one of them is selected, An optimum gain value set in the balance circuit 40 may be calculated from the result of the symmetry (S-shape symmetry) adjustment of the selected FE signal, and the gain value may be set as the gain value of the balance circuit 40. .
  • the present invention is not limited to this.
  • setting of the gain value of the balance circuit 40 (adjustment of S-shape symmetry of the FE signal) may be performed.
  • the pre-differential FE measurement unit 50 detects the maximum value of the FE signal, measures the signal level maxP1 of the FE plus signal and the signal level maxM1 of the FE minus signal at that time, and measures the measured FE plus signal.
  • the signal level maxP1 and the signal level maxM1 of the FE minus signal are held.
  • the pre-differential FE measurement unit 50 detects the minimum value of the FE signal, measures the signal level minP2 of the FE plus signal and the signal level minM2 of the FE minus signal, and measures the measured FE plus signal. The signal level minP2 and the signal level minM2 of the FE minus signal are held. (3) The pre-differential FE measurement unit 50 calculates an optimum gain value to be set in the balance circuit 40 based on the four signal levels maxP1, maxM1, minP2, and minM2 acquired in (1) and (2). The gain value is set as the gain value of the balance circuit 40.
  • the present invention is not limited to this.
  • the level L1 is determined after the determination at the level L2.
  • the present invention may be applied to an FE signal whose polarity is opposite to that of the present embodiment.
  • the symmetry of the FE signal may be adjusted by detecting the maximum point and the minimum point of the FE signal without performing level determination based on the level L1 and the level L2 of the FE signal.
  • the signal polarity of the FE plus signal and the FE minus signal may be opposite to the signal polarity shown in the present embodiment.
  • the phase relationship between the FE plus signal and the FE minus signal may be opposite to the phase relationship shown in the present embodiment.
  • the level of the FE plus signal at the maximum point of the FE signal is adjusted to be substantially equal to the level of the FE minus signal at the minimum point.
  • the symmetry of the FE signal is adjusted by adjusting the level difference between the FE plus signal and the FE minus signal at the maximum point of the signal and the level difference between the FE plus signal and the FE minus signal at the minimum point of the FE signal. You may make it perform (S-shaped symmetry) adjustment. Further, in the present embodiment, an example in which the signal correction by the balance circuit 40 is performed on the FE minus signal side is shown, but the present invention is not limited to this.
  • the balance circuit 40 may be on the FE plus signal side. Good. Further, the balance circuit 40 may be provided on both the FE plus signal side and the FE minus signal side. In this case, the symmetry calculation unit 51 performs the gain setting of the balance circuit installed on the FE plus signal side and the gain setting of the balance circuit installed on the FE minus side, whereby the symmetry of the FE signal (S-symmetric) Adjustment) can be made.
  • FIG. 3 is a block diagram showing a schematic configuration of the optical disc apparatus 200 according to the present embodiment.
  • the optical disc device 200 is a device for recording / reproducing information with respect to the optical disc 1, and includes an optical head 20, a balance adjustment unit (balance circuit) 40, and a subtraction unit (differential circuit). ) 41, a pre-differential FE measurement unit 50, a symmetry calculation unit 60, a temporary memory 61, and a layered average unit 62.
  • the optical disc apparatus 200 includes a controller 64, a spherical aberration control unit 52, and a disc discrimination control unit 63.
  • the optical disk device 200 includes a symmetry calculation unit 60, a temporary memory 61, a layered average unit 62, a disk discrimination control unit 63, and a controller 64.
  • the S-shaped symmetry of the FE signal on the entire information surface of the optical disc 1 can be adjusted with high accuracy by performing UP / DOWN driving of the objective lens 32 once during the disc discrimination operation.
  • the function will be described below.
  • the irradiation unit is configured by, for example, a laser light source 30.
  • the converging unit is configured by an objective lens 32, for example.
  • the focus driving unit is configured by, for example, a focus actuator 33.
  • the light receiving unit is configured by, for example, the light receiving unit 34.
  • the measurement unit is configured by the pre-differential FE measurement unit 50, for example.
  • the signal correction unit is configured by a balance circuit 40, for example.
  • the focus error signal generation unit is configured by a differential circuit 41, for example.
  • the signal ratio calculation unit is configured by a symmetry calculation unit 60, for example.
  • the disc discrimination unit is configured by, for example, a disc discrimination control unit 63.
  • the signal ratio optimization unit includes, for example, a temporary memory 61 and a layered average unit 62.
  • the spherical aberration correction unit includes, for example, a spherical aberration control unit 52 and a spherical aberration correction unit 35.
  • the controller 64 sends an operation start command for discriminating the type of the optical disc 1 loaded in the optical disc apparatus 200 to the disc discrimination control unit 63.
  • the disc discrimination control unit 63 receives a command from the controller 64 and sends a drive signal to the focus actuator 33 for UP / DOWN driving the spot of the light beam converged by the objective lens 32 with respect to the optical disc 1.
  • the focus actuator 33 When the objective lens 32 is driven by the focus actuator 33, the focal point of the light beam converged by the objective lens 32 passes through the surface of the optical disc 1 and the information surface.
  • the signal waveform of the FE signal output from the differential circuit 41 becomes an S-shaped waveform near the focal point of the light beam passing through the surface or information surface of the optical disc 1.
  • the pre-differential FE measurement unit 50 the signal level of the S-shaped waveform of the FE signal from the subtraction unit (differential circuit) 41 during the UP / DOWN driving of the objective lens 32 by the disc discrimination control unit 63 is maximized or minimized. At the point, the levels of the FE plus signal and the FE minus signal output from the light receiving unit 34 are measured. Then, the pre-differential FE measurement unit 50 outputs the measurement value to the symmetry calculation unit 60.
  • the symmetry calculation unit 60 is configured such that the S-level of the FE plus signal and the FE minus signal measured by the pre-differential FE measuring unit 50 (the FE plus signal and the FE at the point where the signal level of the S-shape of the FE signal is maximized or minimized). Based on the signal level of the minus signal), the optimal gain value of the balance circuit 40 is calculated, and the gain value of the calculation result is output to the temporary memory 61.
  • the temporary memory 61 holds the gain value output from the symmetry calculation unit 60 in the memory.
  • a series of operations (processing) of (1) measurement by the pre-differential FE measurement unit 50, (2) calculation by the symmetry calculation unit 60, and (3) holding the calculation result by the temporary memory 61 are as follows: For all information surfaces of the optical disc 1 detected during UP / DOWN driving of the objective lens 32 by the disc discrimination control unit 63, it is executed for the S-shaped (S-shaped waveform) of the FE signal for each information surface. The Then, the gain value of the balance circuit 40 calculated by the symmetry calculator 60 in each information plane is held in separate memories (in the temporary memory 61, each is held as independent data). As a result, for each information surface of the entire information surface of the optical disc 1, two gain values obtained when the objective lens 32 is UP driven and two gain values obtained when the objective lens 32 is DOWN driven. The gain value is stored in the temporary memory 61.
  • the controller 64 parallels the UP / DOWN driving of the objective lens 32 so that the spherical aberration of the light beam on each information surface decreases when the focus of the light beam passes through each information surface of the optical disc 1.
  • a correction command for performing spherical aberration correction at a constant correction speed is sent to the spherical aberration control unit 52.
  • the spherical aberration control unit 52 receives a correction command from the controller 64 and sends a drive signal for correcting the spherical aberration generated in the light beam to the spherical aberration correction unit 35.
  • the controller 64 sends an averaging command to the layered averaging unit 62.
  • the stratified averaging unit 62 receives all the memories (all data) held in the temporary memory 61 from the temporary memory 61 and obtains them during UP driving of the objective lens 32.
  • the average value of the gain value obtained during the DOWN driving of the objective lens 32 is calculated for the memories for all information planes. Then, the stratified average unit 62 sets the gain of the balance circuit 40 based on the gain value obtained by the calculation.
  • FIG. 4A shows a position signal of the objective lens 32 during the disc discrimination operation by the disc discrimination control unit 63 with the horizontal axis representing time and the vertical axis representing signal level.
  • FIG. 4B shows a correction level signal of the spherical aberration correction unit 35 during the disc discrimination operation by the disc discrimination control unit 63 with the horizontal axis representing time and the vertical axis representing signal level.
  • FIG. 4C shows an FE signal during the disc discrimination operation by the disc discrimination control unit 63 with the horizontal axis representing time and the vertical axis representing signal level.
  • FIG. 4D shows an FE plus signal during the disc discrimination operation by the disc discrimination control unit 63 with the horizontal axis representing time and the vertical axis representing signal level.
  • FIG. 4E shows the FE minus signal during the disc discrimination operation by the disc discrimination control unit 63 with the horizontal axis representing time and the vertical axis representing signal level.
  • T200 At timing T ⁇ b> 200, the controller 64 causes the disc discrimination control unit 63 to start a disc discrimination operation, so that UP driving of the objective lens 32 is started.
  • the pre-differential FE measurement unit 50 starts detecting the maximum point of the FE signal.
  • T201 At timing T201, the pre-differential FE measurement unit 50 measures the level L203 of the FE plus signal at the timing when the maximum point of the FE signal is determined.
  • the pre-differential FE measurement unit 50 starts detecting the minimum point of the FE signal when the level of the FE signal falls below the level L202.
  • T202 the pre-differential FE measurement unit 50 measures the level L204 of the FE minus signal at the timing when the minimum point of the FE signal is determined.
  • the symmetry calculator 51 obtains the level between the level L203 of the FE plus signal at the maximum point of the FE signal and the level L204 of the FE minus signal at the minimum point of the FE signal, acquired by the FE measuring unit 50 before differential.
  • the gain value of the balance circuit 40 to be multiplied by the FE minus signal is calculated, and the calculation result is stored in the temporary memory 61 as the gain value for the first information surface.
  • T203, T204 The pre-differential FE measurement unit 50 starts detection of the maximum and minimum points of the FE signal by comparing and determining the level of the FE signal and the level L201 and by comparing and determining the level of the FE signal and L202. The measurement result of the FE plus signal or the FE minus signal at the point and the minimum point is acquired.
  • the symmetry calculation unit 60 calculates the gain value of the balance circuit 40 based on the measurement result acquired by the pre-differential FE measurement unit 50. In the optical disc apparatus 200, this series of operations (processing) is repeated until the UP driving and DOWN driving of the objective lens 32 are completed.
  • the optical disk apparatus 200 can measure the level L205 of the FE plus signal and the level L206 of the FE minus signal at the timing T203 and the timing T204 during the UP driving of the objective lens 32, and the level L205 and the FE minus of the FE plus signal.
  • the gain value for the second information surface can be obtained by calculation from the level ratio with the signal level L206.
  • the FE minus signal level L207 and the FE plus signal level L208 can be measured at the timing T206 and the timing T207, and the FE minus signal level L207 and the FE plus signal level.
  • the gain value for the second information surface can be obtained by calculation from the level ratio with L208. (T208, T209): Further, at the timing T208 and the timing T209, the optical disc apparatus 200 can measure the level L209 of the FE minus signal and the level L210 of the FE plus signal, and the level ratio between the level L209 of the FE minus signal and the level L210 of the FE plus signal is the first.
  • a gain value for one information plane can be obtained by calculation.
  • the spherical aberration controller 52 and the spherical aberration corrector 35 allow the spherical aberration of the light beam on the first information surface to be reduced when the focal point of the light beam passes through the first information surface. (2) Further, when the focal point of the light beam passes through the second information surface, the spherical aberration of the light beam on the second information surface is reduced. In parallel with UP / DOWN driving of the objective lens 32, spherical aberration correction is performed. (T210): At timing T210, the DOWN driving of the objective lens 32 is completed.
  • the temporary memory 61 stores two gain values for the first information surface, that is, when the objective lens 32 is UP driven and when it is DOWN driven, and the gain value for the second information surface is also stored. Two of the objective lens 32 during the UP drive and the one during the DOWN drive are stored. Based on the gain value information stored in the temporary memory 61 in accordance with a command from the controller 64, the stratified average unit 62 determines the gain value for the first information surface as the gain value during UP driving of the objective lens 32 and the DOWN driving. The gain value for the second information surface is calculated as the average value of the gain value during UP driving and the gain value during DOWN driving of the objective lens 32, and the balance circuit 40 is calculated. Set as the gain value.
  • the spherical aberration of the light beam is adjusted so as to be reduced with respect to all the information surfaces, and at the same time (in parallel), UP / DOWN of the objective lens 32 during the disc discrimination operation is performed.
  • the gain value of the balance circuit 40 is calculated based on the pre-differentiation FE plus signal and FE minus signal being driven.
  • the optical disc apparatus 200 averages the gain value during UP driving of the objective lens 32 and the gain value during DOWN driving for each information surface, so that the optical disc can be obtained by performing UP / DOWN driving of the objective lens 32 only once.
  • the gain value of the balance circuit 40 for all the information planes can be adjusted with high accuracy.
  • the symmetry (S-shape symmetry) of the FE signal can be accurately adjusted by performing the UP / DOWN operation of the objective lens 32 once.
  • the example of the symmetry adjustment of the FE signal using the UP / DOWN drive of the objective lens 32 in the disc discrimination operation has been shown.
  • the symmetry (S-shape symmetry) of the FE signal may be adjusted using an operation in which the objective lens 32 performs at least one of UP driving and DOWN driving.
  • the example in which the symmetry adjustment of the FE signal is performed both during the UP driving and the DOWN driving of the objective lens 32 is shown.
  • the present embodiment is not limited to this, and for example, only during the UP driving.
  • the symmetry adjustment of the FE signal may be performed only during DOWN driving.
  • an example in which the average value of the gain value during UP driving and the gain value during DOWN driving of the objective lens 32 is shown as an optimal gain value is not limited to this.
  • the gain value during UP driving may be set as an optimal gain value
  • the gain value during DOWN driving may be set as an optimal gain value.
  • the optical disc apparatus 200 selects either the result of the symmetry adjustment of the FE signal during UP driving of the objective lens 32 or the result of the symmetry adjustment of the FE signal during DOWN driving, and selects the selected FE signal.
  • the gain value of the balance circuit 40 may be set with the gain value calculated based on the result of the symmetry adjustment as the optimum gain value.
  • the present invention is not limited to this.
  • setting of the gain value of the balance circuit 40 (adjustment of S-shape symmetry of the FE signal) may be performed.
  • the pre-differential FE measurement unit 50 detects the maximum value of the FE signal, measures the signal level maxP1 of the FE plus signal and the signal level maxM1 of the FE minus signal at that time, and measures the measured FE plus signal.
  • the signal level maxP1 and the signal level maxM1 of the FE minus signal are held.
  • the pre-differential FE measurement unit 50 detects the minimum value of the FE signal, measures the signal level minP2 of the FE plus signal and the signal level minM2 of the FE minus signal, and measures the measured FE plus signal. The signal level minP2 and the signal level minM2 of the FE minus signal are held. (3) The pre-differential FE measurement unit 50 calculates an optimum gain value to be set in the balance circuit 40 based on the four signal levels maxP1, maxM1, minP2, and minM2 acquired in (1) and (2). The gain value is set as the gain value of the balance circuit 40.
  • the polarity of the FE signal may be opposite to the polarity of the FE signal shown in the present embodiment.
  • the maximum point and the minimum point of the signal level of the FE signal may be detected without performing the level determination based on the level L201 and the level L202 of the FE signal.
  • the signal polarity of the FE plus signal and the FE minus signal may be opposite to the signal polarity shown in the present embodiment.
  • the phase relationship between the FE plus signal and the FE minus signal may be opposite to the phase relationship shown in the present embodiment.
  • the level of the FE plus signal at the maximum point of the FE signal is adjusted to be substantially equal to the level of the FE minus signal at the minimum point.
  • the symmetry of the FE signal is adjusted by adjusting the level difference between the FE plus signal and the FE minus signal at the maximum point of the signal and the level difference between the FE plus signal and the FE minus signal at the minimum point of the FE signal. You may make it perform (S-shaped symmetry) adjustment.
  • the present invention is not limited to this.
  • the balance circuit 40 may be on the FE plus signal side.
  • the balance circuit 40 may be provided on both the FE plus signal side and the FE minus signal side.
  • the symmetry calculation unit 51 performs the gain setting of the balance circuit installed on the FE plus signal side and the gain setting of the balance circuit installed on the FE minus side, whereby the symmetry of the FE signal (S-symmetric) Adjustment) can be made.
  • the spherical aberration correction and the UP / DOWN driving of the objective lens 32 are performed in parallel has been shown.
  • the present invention is not limited to this.
  • a series of independent operations of UP / DOWN driving of the objective lens 32 may be performed on all information surfaces of the optical disc 1.
  • the present invention is not limited to this.
  • an intermediate value of spherical aberration amounts on a plurality of information surfaces is used.
  • the spherical aberration correction process may be performed, and the spherical aberration correction process on the information surface is not necessarily performed.
  • an example is shown in which the gain value on each information surface is averaged after the UP / DOWN driving of the objective lens 32 is completed.
  • the gain values on each information surface may be averaged when the gain value during UP driving and the gain value during DOWN driving for the surface are aligned.
  • the gain value obtained as a result of calculation is stored in the memory.
  • the FE before calculating and calculating the gain value set in the balance circuit 40 is not limited thereto.
  • the plus signal level and the FE minus signal level are stored in the memory, and the gain is based on the FE plus signal level and the FE minus signal level which are memory information. Calculation (gain value calculation) and gain value averaging processing may be performed.
  • the optical disc 1 may be an optical disc 1 having two or more information surfaces.
  • the example in which the objective lens 32 is UP / DOWN-driven while correcting the spherical aberration correction at a constant correction speed is shown.
  • the present invention is not limited to this. If the spherical aberration on each information surface can be corrected when passing through the information surfaces, the correction speed may not be constant.
  • the gain value for each information surface of the entire information surface of the optical disc 1 has been described.
  • the present invention is not limited to this. For example, the gain for each information surface
  • One or more gain values common to a plurality of information planes may be further calculated from the value.
  • the optical disk 1 has two information surfaces L0 and L1
  • the gain value for the information surface L0 is GL0
  • the gain value for the information surface L1 is GL1
  • the common gain value is (GL0 + GL1) / 2. It is good.
  • FIG. 5 is a block diagram showing a schematic configuration of the optical disc apparatus 300 according to the present embodiment.
  • an optical disc apparatus 300 is an apparatus for recording / reproducing information with respect to the optical disc 1, and includes an optical head 10, a balance adjustment unit (balance circuit) 40, and a subtraction unit (differential circuit). ) 41, a pre-differential FE measurement unit 50, a symmetry calculation unit 60, a temporary memory 61, and a multi-layer averaging unit 71.
  • the optical disc apparatus 300 includes a controller 70, a focus pull-in unit 55, a focus filter unit 54, and a switching unit (focus drive output switching unit) 53.
  • the optical head 10 includes a laser light source 30, a beam splitter 31, an objective lens 32, a focus actuator 33, and a light receiving unit 34.
  • symbol is attached
  • the controller 70 and the multi-layer average unit 71 are used to perform UP driving of the objective lens 32 once before focus pull-in.
  • the irradiation unit is configured by, for example, a laser light source 30.
  • the converging unit is configured by an objective lens 32, for example.
  • the focus driving unit is configured by, for example, a focus actuator 33.
  • the light receiving unit is configured by, for example, the light receiving unit 34.
  • the measurement unit is configured by the pre-differential FE measurement unit 50, for example.
  • the signal correction unit is configured by a balance circuit 40, for example.
  • the focus error signal generation unit is configured by a differential circuit 41, for example.
  • the signal ratio calculation unit is configured by a symmetry calculation unit 60, for example.
  • the focus control unit includes, for example, a focus filter unit 54.
  • the focus pull-in unit includes, for example, a focus pull-in unit 55 and a focus drive output switch 53.
  • the multiple information surface signal ratio calculation unit includes a temporary memory 61 and a layered average unit 62.
  • the controller 70 sends a command (command for searching for the information surface) for causing the spot of the light beam converged by the objective lens 32 to follow the information surface of the optical disc 1 in the vertical direction to the focus pull-in unit 55.
  • the focus pull-in unit 55 receives the output of the controller 70 and the output of the subtracting unit (differential circuit) 41 as inputs.
  • the focus pull-in unit 55 receives a command from the controller 70 and performs switching control of the switching unit (focus drive output switching unit) 53.
  • the focus pull-in unit 55 outputs a signal output from the focus pull-in unit 55 to the focus actuator 33 when receiving an instruction to search for an information plane from the controller 70 (in the information plane search mode). As described above, the input of the switching unit (focus drive output switching unit) 53 is switched (selected). On the other hand, when the focus pull-in unit 55 receives a command to perform focus control from the controller 70 (in the focus control mode), the signal output from the focus filter unit 54 is output to the focus actuator 33. The input of the switching unit (focus drive output switching unit) 53 is switched (selected).
  • the switching unit (focus drive output switching unit) 53 selects the output (focus drive signal) from the focus pull-in unit 55 and outputs it to the focus actuator 33. That is, in the information surface search mode, a focus drive signal (output from the focus pull-in unit 55) for UP / DOWN driving the spot of the light beam converged by the objective lens 32 to the optical disc 1 is supplied to the focus actuator 33. Sent. Then, the focus actuator 33 that drives the objective lens 32 is driven by the focus drive signal.
  • the pre-differential FE measurement unit 50 receives light at a point where the S-shaped signal level of the FE signal from the subtraction unit (differential circuit) 41 during the UP driving of the objective lens 32 by the focus pull-in unit 55 becomes maximum or minimum. The levels of the FE plus signal and the FE minus signal output from the unit 34 are measured. Then, the pre-differential FE measurement unit 50 sends the measurement value to the symmetry calculation unit 60.
  • the symmetry calculating unit 60 receives the output from the pre-differential FE measuring unit as an input, and based on the S-shaped levels of the FE plus signal and the FE minus signal measured by the pre-differential FE measuring unit 50, the optimal balance circuit 40 And the gain value of the calculation result is sent to the temporary memory 61.
  • the temporary memory 61 holds the gain value from the symmetry calculation unit 60 in the memory.
  • a series of operations (processing) of (1) measurement by the pre-differential FE measurement unit 50, (2) calculation by the symmetry calculation unit 60, and (3) holding the calculation result by the temporary memory 61 are as follows: It is executed for the S-shape (S-shape waveform) of the FE signal of all information surfaces of the optical disc 1 detected during the UP driving of the objective lens 32 by the focus pull-in unit 55.
  • the controller 70 sends an averaging command to the multi-layer average unit 71.
  • the multi-layer averaging unit 71 receives from the temporary memory 61 all the memory (all data stored in the memory) held in the temporary memory 61, and An average value of gain values for all information surfaces obtained during UP driving is calculated by calculation, and the calculated gain value is set in the balance circuit 40.
  • FIG. 6A shows a position signal of the objective lens 32 during the focus control pull-in operation by the focus pull-in unit 55 with the horizontal axis as time and the vertical axis as signal level.
  • FIG. 6B shows an FE signal during the focus control pull-in operation by the focus pull-in unit 55 with the horizontal axis representing time and the vertical axis representing signal level.
  • FIG. 6C shows an FE plus signal during the focus control pull-in operation by the focus pull-in unit 55 with the horizontal axis representing time and the vertical axis representing signal level.
  • FIG. 6D shows an FE minus signal during the focus control pull-in operation by the focus pull-in unit 55 with the horizontal axis representing time and the vertical axis representing signal level.
  • T300 At timing T300, the controller 70 causes the focus pull-in unit 55 to start the focus control pull-in operation, whereby the UP driving of the objective lens 32 is started.
  • the pre-differential FE measurement unit 50 starts detecting the maximum point of the FE signal.
  • T301 At timing T301, the pre-differential FE measurement unit 50 measures the level L304 of the FE plus signal at the timing when the maximum point of the FE signal is determined.
  • the pre-differential FE measurement unit 50 starts detecting the minimum point of the FE signal when the level of the FE signal falls below the level L302.
  • T302 the pre-differential FE measurement unit 50 measures the level L305 of the FE minus signal at the timing when the minimum point of the FE signal is determined.
  • the symmetry calculator 51 obtains the level between the level L304 of the FE plus signal at the maximum point of the FE signal and the level L305 of the FE minus signal at the minimum point of the FE signal, acquired by the FE measuring unit 50 before differential. Based on the ratio, the gain value of the balance circuit 40 to be multiplied by the FE minus signal is calculated.
  • the pre-differential FE measurement unit 50 starts detection of the maximum and minimum points of the FE signal by comparing and determining the level of the FE signal and the level L301 and comparing and determining the level of the FE signal and L302.
  • the measurement result of the FE plus signal or the FE minus signal at the point and the minimum point is acquired.
  • the symmetry calculation unit 60 calculates the gain value of the balance circuit 40 based on the measurement result acquired by the pre-differential FE measurement unit 50. In the optical disc apparatus 300, this series of operations (processing) is repeated until the UP driving of the objective lens 32 is completed.
  • the optical disk apparatus 300 can measure the level L306 of the FE plus signal and the level L307 of the FE minus signal at the timing T303 and the timing T304 during the UP driving of the objective lens 32, and the level L306 and the FE minus of the FE plus signal.
  • the gain value can be obtained by calculation from the level ratio with the signal level L307. (T305): At timing T305, the UP driving of the objective lens 32 is completed. At this time, the temporary memory 61 stores a plurality of gain values obtained during UP driving of the objective lens 32.
  • the multi-layer averaging unit 71 calculates one gain value obtained by averaging a plurality of gain values stored in the temporary memory 61 according to a command from the controller 70, and calculates the calculated gain value of the balance circuit 40. Set as a gain value.
  • the focus pull-in unit 55 starts DOWN driving of the objective lens 32.
  • the focus pull-in unit 55 starts timing detection that crosses the 0 level of the FE signal.
  • T306 At timing T306, a point where the S-shape of the FE signal crosses 0 level is detected, and focus control is started.
  • the gain value of the balance circuit 40 is calculated based on the FE plus signal and FE minus signal before differential during the UP driving of the objective lens 32 before pulling in the focus. By averaging a plurality of gain values obtained, a gain value to be set in the balance circuit 40 is acquired, and the gain value is set in the balance circuit 40.
  • the symmetry of the FE signal (S-shape symmetry) can be appropriately adjusted using a common gain value over a plurality of layers by performing UP driving of the objective lens 32 only once. it can.
  • the example of the symmetry adjustment of the FE signal using the UP driving of the objective lens 32 in the focus control pull-in operation is shown.
  • the present invention is not limited to this.
  • the optical disk device 300 is loaded.
  • the symmetry adjustment process of the FE signal is performed using an operation of performing at least one of UP driving or DOWN driving of the objective lens 32, such as UP / DOWN driving of the objective lens 32 for discriminating the type of the optical disc 1 that has been performed. It may be.
  • the example of the symmetry adjustment of the FE signal based on the FE plus signal and the FE minus signal only during the UP driving of the objective lens 32 is shown, but the present invention is not limited to this.
  • the symmetry of the FE signal may be adjusted only during DOWN driving of the objective lens 32 or during both UP / DOWN driving.
  • an average value obtained from the result of the symmetry adjustment of the FE signal during the UP driving of the objective lens 32 and the result of the symmetry adjustment of the FE signal during the DOWN driving may be used as the optimum gain value of the balance circuit 40.
  • either the result of the symmetry adjustment of the FE signal during UP driving of the objective lens 32 or the result of the symmetry adjustment of the FE signal during DOWN driving is selected, and the result of the symmetry adjustment of the selected FE signal.
  • the gain value of the balance circuit 40 may be set with the gain value calculated based on the optimal gain value. In the present embodiment, the example of measuring the FE plus signal and the FE minus signal at the local maximum point and the local minimum point of the FE signal has been described.
  • the present invention is not limited to this.
  • setting of the gain value of the balance circuit 40 (adjustment of S-shape symmetry of the FE signal) may be performed.
  • the pre-differential FE measurement unit 50 detects the maximum value of the FE signal, measures the signal level maxP1 of the FE plus signal and the signal level maxM1 of the FE minus signal at that time, and measures the measured FE plus signal.
  • the signal level maxP1 and the signal level maxM1 of the FE minus signal are held.
  • the pre-differential FE measurement unit 50 detects the minimum value of the FE signal, measures the signal level minP2 of the FE plus signal and the signal level minM2 of the FE minus signal, and measures the measured FE plus signal. The signal level minP2 and the signal level minM2 of the FE minus signal are held. (3) The pre-differential FE measurement unit 50 calculates an optimum gain value to be set in the balance circuit 40 based on the four signal levels maxP1, maxM1, minP2, and minM2 acquired in (1) and (2). The gain value is set as the gain value of the balance circuit 40.
  • the present invention is not limited to this.
  • the present invention may be applied to an FE signal whose polarity is opposite to that of the present embodiment.
  • the maximum point and the minimum point may be detected without performing level determination based on the level L301 and the level L302 of the FE signal.
  • the signal polarity of the FE plus signal and the FE minus signal may be opposite to the signal polarity shown in the present embodiment.
  • the phase relationship between the FE plus signal and the FE minus signal may be opposite to the phase relationship shown in the present embodiment.
  • the level of the FE plus signal at the maximum point of the FE signal is adjusted to be substantially equal to the level of the FE minus signal at the minimum point.
  • the level difference between the FE plus signal and the FE minus signal at the maximum point of the signal and the level difference between the FE plus signal and the FE minus signal at the minimum point of the FE signal may be adjusted to be substantially equal.
  • the signal correction by the balance circuit 40 is performed on the FE minus signal side is shown.
  • the present invention is not limited to this.
  • the balance circuit 40 may be on the FE plus signal side. .
  • the balance circuit 40 may be provided on both the FE plus signal side and the FE minus signal side.
  • the multi-layer averaging unit 71 performs the gain setting of the balance circuit installed on the FE plus signal side and the gain setting of the balance circuit installed on the FE minus side, so that the symmetry of the FE signal (S-symmetric) Adjustment) can be made.
  • the gain value obtained as a result of calculation is stored in the memory.
  • the FE before calculating and calculating the gain value set in the balance circuit 40 is not limited thereto.
  • the plus signal level and the FE minus signal level (the FE plus signal level and the FE minus signal level used for calculating the gain value) are stored in the memory, and the gain is based on the FE plus signal level and the FE minus signal level which are memory information.
  • Calculation (gain value calculation) and gain value averaging processing may be performed.
  • the optical disk 1 may be an optical disk 1 having two or more information surfaces. In the present embodiment, an example is shown in which gain values for all information surfaces of the optical disc 1 are averaged. However, the present invention is not limited to this. For example, gain values for any two or more information surfaces are averaged. There may be two or more gain value averaging results.
  • FIG. 8 shows a light receiving unit, a differential pre-measurement unit, a symmetry calculation unit, a balance adjustment unit (balance circuit), and an optical disc apparatus 100 according to the first embodiment when an FE signal based on the differential astigmatism method is used. It is the schematic block diagram which extracted the part of the subtraction part (differential circuit).
  • the light receiving unit 34A includes a main light receiving unit 340 for acquiring a mainFE plus signal and a mainFE minus signal, and sub light receiving units 341 and 342 for acquiring a subFE plus signal and a subFE minus signal. .
  • the main light receiver 340 and the sub light receivers 341 and 342 are light receivers for acquiring an FE signal by the differential astigmatism method.
  • the main light receiving unit 34A is a light receiving unit that mainly receives reflected light corresponding to the light spot on the track of the optical disc 1, and the sub light receiving units 341 and 342 cross the track with the light spot mainly received by the main light receiving unit 34. It is a light receiving unit that receives reflected light corresponding to a light spot at a position sandwiched in the direction.
  • the “position that sandwiches the track in the cross direction” may be a position that sandwiches the track.
  • the concept includes a position that sandwiches the track diagonally, and sandwiches the track in the normal direction. Needless to say, it does not mean just the position.
  • the main light receiving unit 340 and the sub light receiving units 341 and 342 are assumed to be formed of four divided light receiving regions (four light receiving detectors), and are acquired in the A region of the main light receiving unit 340.
  • the received light amount is A
  • the received light amount acquired in the B region is B
  • the received light amount acquired in the C region is C
  • the received light amount acquired in the D region is D.
  • the received light amount acquired in the a1 region of the sub light receiving unit 341 is a1
  • the received light amount acquired in the b1 region is b1
  • the received light amount acquired in the c1 region is c1
  • the received light amount acquired in the d1 region is d1.
  • the received light amount acquired in the a2 region of the sub light receiving unit 342 is a2
  • the received light amount acquired in the b2 region is b2
  • the received light amount acquired in the c2 region is c2
  • the received light amount acquired in the d2 region is d2.
  • the basic operation of the pre-differential FE measurement unit 50A is the same as that of the pre-differential FE measurement unit 50.
  • the point is different.
  • the basic operation of the symmetry calculator 51A is the same as that of the symmetry calculator 51. However, the difference is that the processing object is a mainFE plus signal, a mainFE minus signal, a subFE plus signal, and a subFE minus signal.
  • the symmetry calculation unit 51A performs a balance adjustment process on the mainFE plus signal and the mainFE minus signal, and sets the gain value of the balance adjustment unit (balance circuit) 40A. Similarly to the above-described embodiment, the symmetry calculation unit 51A performs a balance adjustment process for the subFE plus signal and the subFE minus signal, and sets the gain value of the balance adjustment unit (balance circuit) 40B.
  • the subtraction unit 41A performs a subtraction process corresponding to the following expression on the mainFE plus signal and the mainFE minus signal output from the balance adjustment unit 40A, and obtains the mainFE signal.
  • (MainFE signal) (mainFE plus signal) ⁇ (mainFE minus signal)
  • the subtraction unit 41A outputs the acquired mainFE signal to the subtraction unit 41C.
  • the subtraction unit 41B performs a subtraction process corresponding to the following expression on the subFE plus signal and the subFE minus signal output from the balance adjustment unit 40B, and acquires the subFE signal.
  • (SubFE signal) (subFE plus signal) ⁇ (subFE minus signal)
  • the subtraction unit 41B outputs the acquired subFE signal to the subtraction unit 41C.
  • the subtraction unit 41C performs a subtraction process corresponding to the following expression to acquire an FE signal.
  • (FE signal) (mainFE signal) ⁇ (subFE signal)
  • FE signal (mainFE signal) ⁇ (subFE signal)
  • the signal level of the main FE plus signal at timing T101 is L4A
  • the signal level of the main FE minus signal at timing T102 is L5A
  • the signal level of the subFE plus signal at timing T101 is L6
  • the signal level of the subFE minus signal at timing T102 is L7.
  • a specific method for adjusting the S-shape symmetry of the FE signal is the same as the method described with reference to FIG. 2, and thus detailed description thereof is omitted.
  • the FE signal based on the differential astigmatism method can be used in the present invention. It should be noted that the FE signal based on the differential astigmatism method can be used in the present invention by similarly applying to the embodiments other than the first embodiment. Needless to say, the contents described in the above-described embodiments can be applied to the present invention using the FE signal by the differential astigmatism method (the contents described above).
  • each block may be individually made into one chip by a semiconductor device such as an LSI, or may be made into one chip so as to include a part or all of the blocks.
  • LSI semiconductor device
  • IC system LSI
  • super LSI super LSI
  • ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology. Biotechnology can be applied as a possibility.
  • each process of the said embodiment may be implement
  • the present invention can be used for an optical disk apparatus that performs signal symmetry adjustment of a focus error signal in an apparatus that performs at least one of recording and reproduction with respect to an optical disk having an information surface. Therefore, the present invention is useful in the optical disc equipment related industrial field, and the present invention can be implemented in this field.
  • Optical disk device 100, 200, 300, 900 Optical disk device 1 Optical disk 10 Optical head 20 Optical head 30 Laser light source 31 Beam splitter 32 Objective lens 33 Focus actuator 34, 340, 341, 342 Light receiving unit 35 Spherical aberration correcting unit 40, 40A, 40B Balance circuit 41, 41A, 41B Differential circuit 42 FE signal measurement unit 43 Symmetry calculation unit 44 Approximation calculation unit 45 Controller 50, 50A FE measurement unit before differential 51, 51A Symmetry calculation unit 52 Spherical aberration control unit 53 Focus drive output switching Device 54 Focus filter 55 Focus pull-in unit 56 Controller 60 Symmetry calculation unit 61 Temporary memory 62 Layered average unit 63 Disk discrimination control unit 64 Controller 70 Controller 71 Multi-layer average unit

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)
  • Optical Head (AREA)

Abstract

 フォーカスエラー信号の信号対称性の調整を行うには、フォーカスエラー信号の信号補正ゲイン値を変えて設定しながら、設定値ごとに対物レンズをUP/DOWN駆動させてフォーカスエラー信号の信号対称性を測定する必要があるため、調整にかかる時間が長くなる。光ディスク装置(100)では、フォーカスエラー信号の極大点および極小点におけるフォーカス差動前信号を差動前FE測定部(50)により測定し、対称性演算部(51)によりフォーカスエラー信号のS字対称性を演算し、演算結果に基づいてバランス調整を行うことで一度の対物レンズのUP/DOWN動作で高速なフォーカスエラー信号の信号対称性の調整ができる。

Description

光ディスク装置、フォーカスエラー信号調整方法、プログラムおよび集積回路
 本発明は、フォーカスエラー信号(FE信号)の信号対称性の調整にかかる時間を短縮する光ディスク装置に関する。特に、FEプラス信号とFEマイナス信号とを用いることで高速な信号補正値を演算することができる光ディスク装置に関する。
 従来の光ディスク装置の構成および動作について、図10および図11を参照して説明する。
 図10は、従来の光ディスク装置900の概略構成を示す図である。
 図11は、従来の光ディスク装置900におけるバランス回路40のゲイン値とFE信号(フォーカス・エラー信号)の対称性との関係を示すグラフである。
 まず、図10を用いて、光ディスク装置900におけるフォーカスエラー信号(以下、「FE信号」と称す)の対称性調整を行うための構成について説明する。
 図10に示すように、光ディスク装置900は、光ヘッド10と、バランス回路40と、差動回路41と、FE信号測定部42と、対称性演算部43と、近似演算部44と、コントローラ45と、を備える。
 「FE信号」とは、光ディスク1の情報面の位置と光ビームスポットの位置との誤差を示す信号であって、光ディスク1のディスク面(情報面)に対する垂直方向(光ディスク1のディスク面の法線方向)の追従誤差(光ディスク1の情報面の位置と光ビームスポットの位置との垂直方向の誤差)を表す信号である。
 光ヘッド10は、主に、レーザ光源30と、ビームスプリッタ31と、対物レンズ32と、フォーカスアクチュエータ33と、受光部34と、から構成される。
 レーザ光源30は、光ビームを光ディスク1に向けて所定のパワーで照射する。照射された光ビームは、ビームスプリッタ31を通過し、対物レンズ32によって光ディスク1の情報面上に収束される。光ディスク1によって反射した光ビームは、ビームスプリッタ31で反射して受光部34に照射される。
 受光部34は、受光した光ビームの光量を電気信号に変換し、変換した電気信号をFEプラス信号およびFEマイナス信号としてバランス回路40および差動回路41に出力する。
 差動回路41は、受光部34から出力されたFEプラス信号と、受光部34から出力されたFEマイナス信号にバランス回路40により所定のゲイン補正された信号と、に基づきFE信号を生成する。そして、差動回路41は、生成したFE信号をFE信号測定部42に出力する。
 コントローラ45は、バランス回路40に対して数点の異なる所定のゲイン値を設定する。そして、コントローラ45は、それぞれのゲイン設定ごとに、対物レンズ32を光ディスク1に対してUP/DOWN駆動するためのフォーカス駆動指令を生成する。そして、コントローラ45は、生成したフォーカス駆動指令をフォーカスアクチュエータ33に送る。
 コントローラから出力されたフォーカス駆動指令に基づいて、対物レンズ32がフォーカスアクチュエータ33により駆動されることで、対物レンズ32により収束された光ビームの焦点が光ディスク1の表面および情報面を通過する。光ビームの焦点が光ディスク1の表面または情報面を通過する近傍において、差動回路41からのFE信号がS字のような波形(以下、「FE信号のS字」と称す)となる。
 FE信号測定部42は、コントローラ45によるバランス回路40のゲイン値設定ごとの対物レンズ32のUP/DOWN駆動における差動回路41からの各FE信号のS字のレベル(S字波形となるFE信号の信号レベル)を測定する。
 対称性演算部43は、FE信号測定部42で測定したFE信号のS字のレベルに基づいて、FE信号のS字の対称性(S字波形となるFE信号の信号レベルの対称性)を演算する。
 さらに、コントローラ45は、フォーカスアクチュエータ33を介して、所定点数のバランス回路40のゲイン値設定に対して、対物レンズ32をUP/DOWN駆動させる。そして、その後、コントローラ45は、近似演算部44に対して、直線近似演算を実施する指令を送る。
 近似演算部44は、コントローラ45からの指令を受け、バランス回路40の各ゲイン値設定における対称性演算部43からの出力から、直線近似演算によりFE信号のS字の対称性を略0にするバランス回路40のゲイン値を演算し、演算結果のゲイン値をバランス回路40に設定する。なお、FE信号の「S字の対称性」は、例えば、図7に示すFE信号のプラス側の振幅Aおよびマイナス側の振幅Bを用いて、
  (S字の対称性)=(A-B)/(A+B)
により求めることができる。FE信号の「S字の対称性」は、上記以外の物理量(例えば、AおよびBの絶対値や、AとBとの比、AとBとの差分等に基づく物理量)により評価されるものであってもよい。
 ≪FE信号の対称性調整の動作≫
 次に、図11の特性図を用いて、従来の光ディスク装置900のFE信号の対称性調整の動作について説明する。
 図11は、横軸をバランス回路40のゲイン値とし、縦軸をFE信号のS字の対称性とした、バランス回路40のゲイン値に対するFE信号のS字の対称性の特性および近似直線を示している。
 コントローラ45は、バランス回路40のゲイン値をゲインG1に設定し、対物レンズ32を光ディスク1に対してUP/DOWN駆動させる。そのときに得られたFE信号の対称性SY1を演算により取得する。
 さらに、コントローラ45は、これら一連の動作を、ゲインG2、ゲインG3、ゲインG4およびゲインG5に対して行い、それぞれ、FE信号の対称性SY2、対称性SY3、対称性SY4および対称性SY5を演算により取得する。ゲインG1、ゲインG2、ゲインG3、ゲインG4およびゲインG5と、対称性SY1、対称性SY2、対称性SY3、対称性SY4および対称性SY5との関係は、図11に示すような関係(特性)となる。
 光ディスク装置900では、図11に示す特性に対して直線近似法により近似直線を演算し、近似直線からFE信号のS字の対称性が略0となるバランス回路40のゲイン値G6を演算により算出され、算出されたゲイン値G6がバランス回路40に設定される。
特開平8-212567号公報
 しかしながら、従来の光ディスク装置900では、バランス回路40のゲイン値ごとにFE信号の対称性調整のために対物レンズ32をUP/DOWN駆動させる必要があるため、FE信号の対称性調整に時間がかかるという問題点がある。
 本発明は、上記問題点に鑑み、対物レンズのUP/DOWN動作の回数が少なくてもFE信号の対称性(S字対称性)を精度よく調整することができる光ディスク装置、フォーカスエラー信号調整方法、プログラムおよび集積回路を実現することを目的とする。
 第1の発明は、情報面を有する光ディスクに対して記録および再生の少なくとも一方を行う装置であって、照射部と、収束部と、フォーカス駆動部と、受光部と、測定部と、信号補正部と、フォーカスエラー信号生成部と、信号比演算部と、を備える光ディスク装置である。
 照射部は、光ディスクに光ビームを照射する。収束部は、照射部によって照射された光ビームを収束させる。フォーカス駆動部は、収束部により収束された光ビームスポットを光ディスクのディスク面に対して垂直方向に移動させるように収束部を駆動する。受光部は、複数に分割されたディテクタを有し、光ディスクからの反射光を複数に分割されたディテクタで受光し、受光した光量に対応する電気信号をFEプラス信号およびFEマイナス信号として取得する。測定部は、受光部により取得されたFEプラス信号およびFEマイナス信号の信号レベルを測定する。信号補正部は、FEプラス信号とFEマイナス信号の少なくとも一方に所定のゲイン値を掛けることで、FEプラス信号とFEマイナス信号の少なくとも一方に対して信号レベルの補正を行う。フォーカスエラー信号生成部は、信号補正部からの出力に基づきフォーカスエラー信号を生成し、生成したフォーカスエラー信号を出力する。信号比演算部は、測定部からの出力に基づき、FEプラス信号とFEマイナス信号の少なくとも一方に掛ける所定のゲイン値であって、フォーカスエラー信号の極大値の絶対値とフォーカス信号の極小値の絶対値とを等しくする所定のゲイン値を導出する。
 そして、信号補正部は、信号比演算部により導出された所定のゲイン値に基づいて、FEプラス信号とFEマイナス信号の少なくとも一方に対して信号レベルの補正を行う。
 なお、FEプラス信号およびFEマイナス信号は、例えば、4分割されたディテクタを有する受光部の対角関係になる2つのディテクタの受光量の和に対応する信号である。すなわち、4分割されたディテクタでの受光量をA、B、C、Dとし、A、Dが一方の対角線上にあり、B、Cがもう一方の対角線上にあるものとすると、FEプラス信号は、(B+C)に対応する信号であり、FEマイナス信号は、(A+D)に対応する信号である。なお、これは一例であり、これに限定されないことは言うまでもない。
 また、「等しくする」とは、「略等しくする」を含む概念であり、測定誤差、設計誤差等を許容する概念である。
 この光ディスク装置では、測定部により、受光部により取得されたFEプラス信号およびFEマイナス信号の信号レベルが測定され、信号比演算部により、フォーカスエラー信号の極大値の絶対値とフォーカス信号の極小値の絶対値とを等しくする所定のゲイン値が導出され、そのゲイン値により、信号補正部が、FEプラス信号とFEマイナス信号の少なくとも一方に対して信号レベルの補正を行う。これにより、この光ディスク装置では、フォーカス駆動部による光ビームスポットの駆動の回数が少ない場合であっても、FE信号の対称性(S字対称性)を精度よく調整することができる。
 つまり、この光ディスク装置では、フォーカスエラー信号の差動前信号を1度測定するだけで信号対称性を高速に調整することができる。
 第2の発明は、第1の発明であって、信号比演算部は、光ビームスポットが光ディスクの任意の情報面近傍にあるときのフォーカスエラー信号の信号レベルが極値をとる点、あるいは光ビームスポットが光ディスクの任意の情報面近傍にあるときのFEプラス信号の信号レベルおよびFEマイナス信号の信号レベルが極値をとる点、における測定部からの出力に基づき所定のゲイン値を導出する。
 この光ディスク装置では、
(1)光ビームスポットが光ディスクの任意の情報面近傍にあるときのフォーカスエラー信号の信号レベルが極値に基づいて所定のゲイン値を導出(算出)する、あるいは、
(2)光ビームスポットが光ディスクの任意の情報面近傍にあるときのFEプラス信号の信号レベルおよびFEマイナス信号の信号レベルが極値に基づいて、所定のゲイン値を導出(算出)することができる。
 したがって、この光ディスク装置では、フォーカスエラー信号のS字対称性調整を適切に行うことができる。その結果、この光ディスク装置では、光ディスクの任意の情報面に対して安定なフォーカス制御ができる。
 なお、「極値」とは、最大値、最小値、極大値および極小値を含む概念である。
 第3の発明は、第2の発明であって、フォーカス制御部と、フォーカス引込部と、をさらに備える。
 フォーカス制御部は、フォーカスエラー信号生成部からの信号に応じて光ビームスポットが光ディスクの情報面上に位置するように制御する。フォーカス引込部は、フォーカス駆動部により光ビームスポットを光ディスクのディスク面に対して垂直な方向に移動させ、光ビームスポットの位置が光ディスクの任意の情報面上の位置に一致したとき、フォーカス制御部による制御動作を開始させる。そして、信号比演算部は、フォーカス引込部によりフォーカス制御部が動作を開始する前に、少なくとも一度は、測定部からの出力に基づき信号補正部で用いる所定のゲイン値を導出する。
 この光ディスク装置では、信号比演算部により、フォーカス制御部が開始される前に、少なくとも一度、測定部からの出力に基づき信号補正部で用いる所定のゲイン値を導出(算出)されるので、任意の情報面に対して安定なフォーカス引き込みを行うことができる。
 第4の発明は、第2の発明であって、光ディスクの任意の情報面上における光ビームスポットの球面収差を補正する球面収差補正部をさらに備える。信号比演算部は、球面収差補正部による球面収差補正後に、測定部からの出力に基づき、信号補正部で用いられる所定のゲイン値を導出する。
 この光ディスク装置では、球面収差補正後に、測定部からの出力に基づき、信号補正部で用いられる所定のゲイン値が導出(算出)されるので、球面収差によるフォーカスエラー信号の信号対称性ズレの影響を効果的に除去することができる。その結果、この光ディスク装置では、フォーカスエラー信号のS字対称性調整をより適切に行うことができ、光ディスクの任意の情報面に対してより安定なフォーカス制御ができる。
 第5の発明は、第4の発明であって、フォーカス制御部と、フォーカス引込部と、をさらに備える。
 フォーカス制御部は、フォーカスエラー信号生成部からの信号に応じて光ビームスポットが光ディスクの情報面上に位置するように制御する。フォーカス引込部は、フォーカス駆動部により光ビームスポットを光ディスクのディスク面に対して垂直な方向に移動させ、光ビームスポットの位置が光ディスクの任意の情報面上の位置に一致したとき、フォーカス制御部による制御動作を開始させる。そして、信号比演算部は、フォーカス引込部により光ビームスポットを光ディスクに対して近づけた際に、測定部からの出力に基づき信号補正部で用いられる所定のゲイン値を導出する。フォーカス引込部は、信号比演算部による所定のゲイン値の導出後に、光ビームスポットが光ディスクの任意の情報面上に位置するようにフォーカス制御部によるフォーカス制御を行う。
 この光ディスク装置では、信号比演算部により、光ビームスポットが光ディスクに対して近づけられた際に、測定部からの出力に基づき信号補正部で用いられる所定のゲイン値を導出(算出)される。したがって、この光ディスク装置では、フォーカスエラー信号の信号対称性調整に要する時間をフォーカス引き込み処理時間に吸収することで起動時間が短縮できる。
 第6の発明は、第4の発明であって、装填された光ディスクの種類を判別するためにフォーカス駆動部により光ビームスポットを光ディスクに対して近づける動作および遠ざける動作を行うディスク判別部をさらに備える。
 信号比演算部は、ディスク判別部による光ビームスポットを光ディスクに対して近づける動作中あるいは遠ざける動作中の少なくとも一方の動作中に測定部からの出力に基づき信号補正部に用いられる所定のゲイン値を導出する。
 これにより、フォーカスエラー信号の信号対称性調整に要する時間をディスク判別処理時間に吸収することで起動時間が短縮できる。
 第7の発明は、第6の発明であって、光ビームスポットを光ディスクに対して近づける動作中に、信号比演算部により導出された所定のゲイン値を第1のゲイン値として取得し、光ビームスポットを光ディスクに対して遠ざける動作中に信号比演算部により導出された所定のゲイン値を第2のゲイン値として取得し、第1のゲイン値および第2のゲイン値から、信号補正部で用いられる所定のゲイン値を導出する信号比最適化部をさらに備える。
 この光ディスク装置では、第1のゲイン値および第2のゲイン値から、信号補正部で用いられる所定のゲイン値を導出(算出)するので、フォーカスエラー信号の信号対称性の調整精度をさらに向上させることができる。
 なお、信号比最適化部により求められる所定のゲイン値は、FE信号の信号対称性(S字対称性)を
  (S字の対称性)=(A-B)/(A+B)
により表す場合、-10%≦(S字対称性)≦10%となるように設定することが好ましく。また、-5%≦(S字対称性)≦5%となるように所定のゲイン値が設定されることがより好ましい。
 第8の発明は、第1の発明であって、光ディスクが複数の情報面を有している場合、信号比演算部は、複数の情報面の全てに対して、光ビームスポットが光ディスク上の情報面近傍にあるときのフォーカスエラー信号の信号レベルが極値をとる点、あるいは光ビームスポットが光ディスク上の情報面近傍にあるときのFEプラス信号およびFEマイナス信号の信号レベルが極値をとる点、における測定部からの信号に基づき、信号補正部で用いられる所定のゲイン値を導出する。
 この光ディスク装置では、光ディスクが複数の情報面を有している場合であっても、全ての情報面についてのゲイン値が算出され、全情報面に対してFE信号のS字対称性の調整を適切に行うことができる。その結果、光ディスクが複数の情報面を有している場合であっても、安定なフォーカス制御ができる。
 第9の発明は、第8の発明であって、フォーカス制御部と、フォーカス引込部と、をさらに備える。
 フォーカス制御部は、フォーカスエラー信号生成部からの信号に応じて光ビームスポットが光ディスクの情報面上に位置するように制御する。フォーカス引込部は、フォーカス駆動部により光ビームスポットを光ディスクのディスク面に対して垂直な方向に移動させ、光ビームスポットの位置が光ディスクの任意の情報面上の位置に一致したとき、フォーカス制御部による制御動作を開始させる。そして、信号比演算部は、フォーカス引込部によりフォーカス制御部が動作を開始する前に、少なくとも一度は、測定部からの出力に基づき信号補正部で用いる所定のゲイン値を導出する。
 これにより、全情報面に対して安定なフォーカス引き込みができ、更に任意の情報面への安定なフォーカスジャンプができる。
 第10の発明は、第8の発明であって、フォーカス制御部と、フォーカス引込部と、をさらに備える。
 フォーカス制御部は、フォーカスエラー信号生成部からの信号に応じて光ビームスポットが光ディスクの情報面上に位置するように制御する。フォーカス引込部は、フォーカス駆動部により光ビームスポットを光ディスクのディスク面に対して垂直な方向に移動させ、光ビームスポットの位置が光ディスクの任意の情報面上の位置に一致したとき、フォーカス制御部による制御動作を開始させる。
 そして、信号比演算部は、フォーカス引込部により光ビームスポットを光ディスクに対して近づけた際に、測定部からの出力に基づき信号補正部できる用いられる所定のゲイン値を導出する。フォーカス引込部は、信号比演算部による所定のゲイン値の導出後に、光ビームスポットが光ディスクの任意の情報面上に位置するようにフォーカス制御部によるフォーカス制御を行う。
 これにより、全情報面のフォーカスエラー信号の信号対称性調整に要する時間をフォーカス引き込み処理時間に吸収することで起動時間が短縮できる。
 第11の発明は、第8の発明であって、装填された光ディスクの種類を判別するためにフォーカス駆動部により光ビームスポットを光ディスクに対して近づける動作および遠ざける動作を行うディスク判別部をさらに備える。
 信号比演算部は、ディスク判別部による光ビームスポットを光ディスクに対して近づける動作中あるいは遠ざける動作中の少なくとも一方の動作中に測定部からの出力に基づき信号補正部に用いられる所定のゲイン値を導出する。
 これにより、全情報面のフォーカスエラー信号の信号対称性調整に要する時間をディスク判別処理時間に吸収することで起動時間が短縮できる。
 第12の発明は、第11の発明であって、光ビームスポットを光ディスクに対して近づける動作中に、信号比演算部により導出された所定のゲイン値を第1のゲイン値として取得し、光ビームスポットを光ディスクに対して遠ざける動作中に、信号比演算部により導出された所定のゲイン値を第2のゲイン値として取得し、第1のゲイン値および第2のゲイン値から、信号補正部で用いられる所定のゲイン値を導出する信号比最適化部をさらに備える。
 これにより、全情報面のフォーカスエラー信号の信号対称性の調整精度を向上できる。
 第13の発明は、第8の発明であって、フォーカス駆動部による光ビームスポットの光ディスクに対して近づける動作あるいは遠ざける動作の少なくとも一方の動作中に、光ビームスポットが光ディスクの全情報面をそれぞれ通過する際に、光ビームスポットが通過する任意の情報面上における光ビームスポットの球面収差が略0となるようにフォーカス駆動部の動作に並行して球面収差を補正する球面収差補正部をさらに備える。
 この光ディスク装置では、球面収差補正処理と並行して、FE信号のS字対称性調整を行うことができる。
 これにより、全情報面に対して球面収差によるフォーカスエラー信号の信号対称性ズレの影響を除去した信号対称性調整に要する時間を短縮できる。
 第14の発明は、第8の発明であって、球面収差補正部と、全層信号比演算部と、をさらに備える。
 球面収差補正部は、光ディスクの任意の情報面上における光ビームスポットの球面収差を補正する。全層信号比演算部は、光ディスクの任意の情報面に対して球面収差補正部を動作させた後に、フォーカス駆動部による光ビームスポットの光ディスクに対して近づける動作あるいは遠ざける動作の少なくとも一方の動作中に、信号比演算部による所定のゲイン値の導出処理を動作させ、一連の動作を光ディスクの全情報面の1つずつの情報面に対して行う。
 この光ディスク装置では、各情報面(情報層)に対して球面収差補正をした後、FE信号のS字対称性調整を行う。
 これにより、全情報面に対して球面収差によるフォーカスエラー信号の信号対称性ズレの影響を精度良く除去できる。
 第15の発明は、第1の発明であって、複数の情報面を有する光ディスクに対して記録および再生の少なくとも一方を行う装置であって、信号補正部で用いられる所定のゲイン値であって、光ディスクの複数の情報面に対して共通して用いられる所定のゲイン値である複数層共通ゲイン値を導出する複数情報面信号比演算部をさらに備える。
 信号比演算部は、複数の情報面のそれぞれに対して、所定のゲイン値を導出する。複数情報面信号比演算部は、信号比演算部が、複数の情報面のそれぞれに対して導出した複数の所定のゲイン値から、複数層共通ゲイン値を導出する。
 この光ディスク装置では、信号比演算部により、複数の情報面のそれぞれに対して、所定のゲイン値が算出され、複数情報面信号比演算部により、信号比演算部が、複数の情報面のそれぞれに対して導出した複数の所定のゲイン値から、複数層共通ゲイン値が導出(算出)される。したがって、この光ディスク装置では、複数の情報面に渡ってフォーカス制御が安定となり、フォーカスジャンプ前後でのフォーカス制御の安定性が確保できる。
 なお、「複数層共通ゲイン値」としては、例えば、各情報面に対して算出された所定のゲイン値の平均値が挙げられる。
 第16の発明は、第15の発明であって、フォーカス制御部と、フォーカス引込部と、をさらに備える。
 フォーカス制御部は、フォーカスエラー信号生成部からの信号に応じて光ビームスポットが光ディスクの情報面上に位置するように制御する。フォーカス引込部は、フォーカス駆動部により光ビームスポットを光ディスクのディスク面に対して垂直な方向に移動させ、光ビームスポットの位置が光ディスクの任意の情報面上の位置に位置したとき、フォーカス制御部による制御動作を開始させる。
 そして、複数情報面信号比演算部は、フォーカス引込部によりフォーカス制御部が動作する前に、少なくとも一度は、測定部からの出力に基づき複数層共通ゲイン値を導出する。
 これにより、複数の情報面に渡ってフォーカス制御が安定となるフォーカスエラー信号を用いて安定なフォーカス引き込みを行うことができる。
 第17の発明は、情報面を有する光ディスクに対して記録および再生の少なくとも一方を行う光ディスク装置であって、光ディスクに光ビームを照射する照射部と、照射部によって照射された光ビームを収束させる収束部と、収束部により収束された光ビームスポットを光ディスクのディスク面に対して垂直方向に移動させるように収束部を駆動するフォーカス駆動部と、複数に分割されたディテクタを有し、光ディスクからの反射光を複数に分割されたディテクタで受光し、受光した光量に対応する電気信号をFEプラス信号およびFEマイナス信号として取得する受光部と、を備える光ディスク装置に用いられるフォーカスエラー信号調整方法である。フォーカスエラー信号調整方法は測定ステップと、信号補正ステップと、フォーカスエラー信号生成ステップと、信号比演算ステップと、を備える。
 測定ステップは、受光部により取得されたFEプラス信号およびFEマイナス信号の信号レベルを測定する。信号補正ステップは、FEプラス信号とFEマイナス信号の少なくとも一方に所定のゲイン値を掛けることで、FEプラス信号とFEマイナス信号の少なくとも一方に対して信号レベルの補正を行う。フォーカスエラー信号生成ステップは、信号補正部からの出力に基づきフォーカスエラー信号を生成し、生成したフォーカスエラー信号を出力する。信号比演算ステップは、測定ステップからの出力に基づき、FEプラス信号とFEマイナス信号の少なくとも一方に掛ける所定のゲイン値であって、フォーカスエラー信号の極大値の絶対値とフォーカス信号の極小値の絶対値とを等しくする所定のゲイン値を導出する。
 そして、信号補正ステップでは、信号比演算ステップにより導出された所定のゲイン値に基づいて、FEプラス信号とFEマイナス信号の少なくとも一方に対して信号レベルの補正を行う。
 これにより、第1の発明と同様の効果を奏するフォーカスエラー信号調整方法を実現することができる。
 第18の発明は、情報面を有する光ディスクに対して記録および再生の少なくとも一方を行う光ディスク装置であって、光ディスクに光ビームを照射する照射部と、照射部によって照射された光ビームを収束させる収束部と、収束部により収束された光ビームスポットを光ディスクのディスク面に対して垂直方向に移動させるように収束部を駆動するフォーカス駆動部と、複数に分割されたディテクタを有し、光ディスクからの反射光を複数に分割されたディテクタで受光し、受光した光量に対応する電気信号をFEプラス信号およびFEマイナス信号として取得する受光部と、を備える光ディスク装置に用いられるフォーカスエラー信号調整方法をコンピュータに実行させるプログラムである。フォーカスエラー信号調整方法は測定ステップと、信号補正ステップと、フォーカスエラー信号生成ステップと、信号比演算ステップと、を備える。
 測定ステップは、受光部により取得されたFEプラス信号およびFEマイナス信号の信号レベルを測定する。信号補正ステップは、FEプラス信号とFEマイナス信号の少なくとも一方に所定のゲイン値を掛けることで、FEプラス信号とFEマイナス信号の少なくとも一方に対して信号レベルの補正を行う。フォーカスエラー信号生成ステップは、信号補正部からの出力に基づきフォーカスエラー信号を生成し、生成したフォーカスエラー信号を出力する。信号比演算ステップは、測定ステップからの出力に基づき、FEプラス信号とFEマイナス信号の少なくとも一方に掛ける所定のゲイン値であって、フォーカスエラー信号の極大値の絶対値とフォーカス信号の極小値の絶対値とを等しくする所定のゲイン値を導出する。
 そして、信号補正ステップでは、信号比演算ステップにより導出された所定のゲイン値に基づいて、FEプラス信号とFEマイナス信号の少なくとも一方に対して信号レベルの補正を行う。
 これにより、第1の発明と同様の効果を奏するプログラムを実現することができる。
 第19の発明は、情報面を有する光ディスクに対して記録および再生の少なくとも一方を行う装置であって、光ディスクに光ビームを照射する照射部と、照射部によって照射された光ビームを収束させる収束部と、収束部により収束された光ビームスポットを光ディスクのディスク面に対して垂直方向に移動させるように収束部を駆動するフォーカス駆動部と、複数に分割されたディテクタを有し、光ディスクからの反射光を複数に分割されたディテクタで受光し、受光した光量に対応する電気信号をFEプラス信号およびFEマイナス信号として取得する受光部と、を備える光ディスク装置に用いられる集積回路である。この集積回路は、測定部と、信号補正部と、フォーカスエラー信号生成部と、信号比演算部と、を備える。
 測定部は、受光部により取得されたFEプラス信号およびFEマイナス信号の信号レベルを測定する。信号補正部は、FEプラス信号とFEマイナス信号の少なくとも一方に所定のゲイン値を掛けることで、FEプラス信号とFEマイナス信号の少なくとも一方に対して信号レベルの補正を行う。フォーカスエラー信号生成部は、信号補正部からの出力に基づきフォーカスエラー信号を生成し、生成したフォーカスエラー信号を出力する。信号比演算部は、測定部からの出力に基づき、FEプラス信号とFEマイナス信号の少なくとも一方に掛ける所定のゲイン値であって、フォーカスエラー信号の極大値の絶対値とフォーカス信号の極小値の絶対値とを等しくする所定のゲイン値を導出する。
 そして、信号補正部は、信号比演算部により導出された所定のゲイン値に基づいて、FEプラス信号とFEマイナス信号の少なくとも一方に対して信号レベルの補正を行う。
 これにより、第1の発明と同様の効果を奏する集積回路を実現することができる。
 本発明によれば、対物レンズのUP/DOWN動作の回数が少なくてもFE信号の対称性(S字対称性)を精度よく調整することができる光ディスク装置、フォーカスエラー信号調整方法、プログラムおよび集積回路を実現することができる。
第1実施形態におけるブロック構成を示す図 (a)第2実施形態における横軸を時間に、縦軸を信号レベルとした、フォーカス引込部によるフォーカス制御引込動作中の対物レンズの位置信号を示す図(b)第2実施形態における横軸を時間に、縦軸を信号レベルとした、フォーカス引込部によるフォーカス制御引込動作中のFE信号を示す図(c)第2実施形態における横軸を時間に、縦軸を信号レベルとした、フォーカス引込部によるフォーカス制御引込動作中のFEプラス信号を示す図(d)第2実施形態における横軸を時間に、縦軸を信号レベルとした、フォーカス引込部によるフォーカス制御引込動作中のFEマイナス信号を示す図 第2実施形態におけるブロック構成を示す図 (a)第2実施形態における横軸を時間に、縦軸を信号レベルとした、ディスク判別制御部によるディスク判別動作中の対物レンズの位置信号を示す図(b)第2実施形態における横軸を時間に、縦軸を信号レベルとした、ディスク判別制御部によるディスク判別動作中の球面収差補正部の補正レベル信号を示す図(c)第2実施形態における横軸を時間に、縦軸を信号レベルとした、ディスク判別制御部によるディスク判別動作中のFE信号を示す図(d)第2実施形態における横軸を時間に、縦軸を信号レベルとした、ディスク判別制御部によるディスク判別動作中のFEプラス信号を示す図(e)第2実施形態における横軸を時間に、縦軸を信号レベルとした、ディスク判別制御部によるディスク判別動作中のFEマイナス信号を示す図 第3実施形態におけるブロック構成を示す図 (a)第3実施形態における横軸を時間に、縦軸を信号レベルとした、フォーカス引込部によるフォーカス制御引込動作中の対物レンズの位置信号を示す図(b)第3実施形態における横軸を時間に、縦軸を信号レベルとした、フォーカス引込部によるフォーカス制御引込動作中のFE信号を示す図(c)第3実施形態における横軸を時間に、縦軸を信号レベルとした、フォーカス引込部によるフォーカス制御引込動作中のFEプラス信号を示す図(d)第3実施形態における横軸を時間に、縦軸を信号レベルとした、フォーカス引込部によるフォーカス制御引込動作中のFEマイナス信号を示す図 FE信号のS字対称性を説明するための図 他の実施形態に係る光ディスク装置の一部の概略構成図 他の実施形態に係る光ディスク装置の動作を説明するための信号波形図 背景技術におけるブロック構成を示す図 背景技術における横軸をバランス回路のゲイン値に、縦軸をFE信号のS字の対称性とした、バランス回路のゲイン値に対するFE信号のS字の対称性の特性および近似直線を示す図
 以下、本発明の実施形態について説明する。
 [第1実施形態]
 第1実施形態について、図1、図2を用いて説明する。
 <1.1:光ディスク装置の構成>
 図1は、本実施形態に係る光ディスク装置100の概略構成を示すブロック図である。
 図1に示すように、光ディスク装置100は、光ディスク1に対して情報の記録/再生を行う装置であって、光ヘッド20と、バランス調整部(バランス回路)40と、減算部(差動回路)41と、差動前FE測定部50と、対称性演算部51と、を備える。また、光ディスク装置100は、コントローラ56と、球面収差制御部52と、フォーカス引込部55と、フォーカスフィルタ部54と、切替部(フォーカス駆動出力切替器)53と、を備える。
 光ヘッド20は、レーザ光源30と、ビームスプリッタ31と、対物レンズ32と、フォーカスアクチュエータ33と、受光部34と、球面収差補正部35と、を備える。
 レーザ光源30、ビームスプリッタ31、対物レンズ32、フォーカスアクチュエータ33、受光部34、バランス調整部(バランス回路)40および減算部(差動回路)41は、背景技術の光ディスク装置900のものと同等な機能を有するものであり、詳しい説明を省略する。
 光ディスク装置100において、背景技術(光ディスク装置900)と異なるのは、光ヘッド20、球面収差補正部35、差動前FE測定部50、対称性演算部51、球面収差制御部52、切替部(フォーカス駆動出力切替器)53、フォーカスフィルタ部54、フォーカス引込部55およびコントローラ56、を用いることで、フォーカス引込前に(フォーカス制御をONにする前に)対物レンズ32のUP駆動を一度行うだけで、FE信号のS字の対称性調整が出来るところである。
 以下、光ディスク装置100の機能について、説明する。
 照射部は、例えば、レーザ光源30により構成される。
 収束部は、例えば、対物レンズ32により構成される。
 フォーカス駆動部は、例えば、フォーカスアクチュエータ33により構成される。
 受光部は、例えば、受光部34により構成される。
 測定部は、例えば、差動前FE測定部50により構成される。
 信号補正部は、例えば、バランス回路40により構成される。
 フォーカスエラー信号生成部は、例えば、差動回路41により構成される。
 信号比演算部は、例えば、対称性演算部51により構成される。
 フォーカス制御部は、例えば、フォーカスフィルタ部54により構成される。
 フォーカス引込部は、例えば、フォーカス引込部55およびフォーカス駆動出力切替器53により構成される。
 球面収差補正部は、例えば、球面収差制御部52および球面収差補正部35により構成される。
 光ディスク装置100の光ヘッド20は、従来の光ディスク装置900の光ヘッド10に、球面収差補正部35を加えた構成である。
 球面収差補正部35は、レーザ光源30から照射される光ビームに発生する球面収差量を補正する。
 コントローラ56は、光ビームに発生する球面収差の補正指令を球面収差制御部52に送る。
 球面収差制御部52は、コントローラ56からの補正指令を受け、光ビームに発生する球面収差を補正するための駆動信号を球面収差補正部35に送る。
 さらに、コントローラ56は、対物レンズ32により収束された光ビームのスポットを光ディスク1の情報面上に対して垂直方向(光ディスク1の情報面の法線方向)に追従させるための指令、すなわち、情報面を探索する指令を、フォーカス引込部55に送る。
 フォーカス引込部55は、コントローラ56の出力および減算部(差動回路)41の出力を入力とする。フォーカス引込部55は、コントローラ56からの指令を受け、切替部(フォーカス駆動出力切替器)53の切替制御を行う。具体的には、フォーカス引込部55は、コントローラ56から情報面を探索する指令を受けている場合(これを「情報面探索モード」の場合ということがある)、フォーカス引込部55から出力される信号が、フォーカスアクチュエータ33に出力されるように、切替部(フォーカス駆動出力切替器)53の入力を切り替える(選択する)。一方、フォーカス引込部55は、コントローラ56からフォーカス制御を行う指令を受けている場合(これを「フォーカス制御モード」の場合ということがある)、フォーカスフィルタ部54から出力される信号が、フォーカスアクチュエータ33に出力されるように、切替部(フォーカス駆動出力切替器)53の入力を切り替える(選択する)。
 情報面探索モードの場合、切替部(フォーカス駆動出力切替器)53では、フォーカス引込部55からの出力(フォーカス駆動信号)が選択され、フォーカスアクチュエータ33に出力される。すなわち、情報面探索モードの場合、対物レンズ32により収束された光ビームのスポットを光ディスク1に対してUP/DOWN駆動するためのフォーカス駆動信号(フォーカス引込部55からの出力)がフォーカスアクチュエータ33に送られる。
 そして、対物レンズ32を駆動するフォーカスアクチュエータ33が、フォーカス駆動信号により駆動される。
 対物レンズ32がフォーカスアクチュエータ33により駆動されることで、対物レンズ32により収束された光ビームの焦点が光ディスク1の表面および情報面を通過する。光ビームの焦点が光ディスク1の表面または情報面を通過する近傍において、差動回路41から出力されるFE信号の信号波形がS字波形となる。
 差動前FE測定部50は、フォーカス引込部55により対物レンズ32のUP駆動中(対物レンズ32を光ディスク1に近づける方向(図1に示したUP方向)に駆動中)における減算部(差動回路)41からのFE信号のS字の信号レベルが極大あるいは極小となる点において、受光部34から出力されたFEプラス信号およびFEマイナス信号のレベルを測定する。そして、差動前FE測定部50は、測定結果を対称性演算部51に出力する。
 対称性演算部51は、差動前FE測定部からの出力を入力とし、差動前FE測定部50で測定したFEプラス信号およびFEマイナス信号のS字レベル(FE信号のS字の信号レベルが極大あるいは極小となる点におけるFEプラス信号およびFEマイナス信号の信号レベル)に基づいて、バランス回路40のゲイン値を演算し、演算結果のゲイン値をバランス回路40に設定する。
 さらに、フォーカス引込部55は、対物レンズ32のDOWN駆動中(対物レンズ32を光ディスク1に遠ざける方向(図1に示したDOWN方向)に駆動中)のFE信号のS字が0レベルをクロスする点で、切替部(フォーカス駆動出力切替器)53の入力をフォーカスフィルタ部54からの信号となるよう切替部(フォーカス駆動出力切替器)53を切り替える。これにより、光ディスク装置100において、光ディスク1の情報面上に対するフォーカス制御が開始される。
 フォーカスフィルタ部54は、減算部(差動回路)41から出力されるFE信号を入力とし、FE信号のレベルが略0になるようにフォーカス駆動信号を生成し、生成したフォーカス駆動信号を切替部(フォーカス駆動出力切替器)53に出力する。なお、フォーカスフィルタ部54は、位相補償フィルタ(PID(Proportional Integral Derivative)フィルタ)により実現されることが好ましい。
 そして、対物レンズ32を駆動するフォーカスアクチュエータ33が、フォーカスフィルタ部54から出力されるフォーカス駆動信号により駆動されることで、光ディスク装置100において、フォーカス制御が実行される。
 <1.2:光ディスク装置の動作>
 次に、図2の波形図を用いて、本実施形態の光ディスク装置100の動作について詳細に説明する。
 図2(a)は、横軸を時間とし、縦軸を信号レベルとした、フォーカス引込部55によるフォーカス制御引込動作中の対物レンズ32の位置信号を示す。
 図2(b)は、横軸を時間とし、縦軸を信号レベルとした、フォーカス引込部55によるフォーカス制御引込動作中のFE信号を示す。
 図2(c)は、横軸を時間とし、縦軸を信号レベルとした、フォーカス引込部55によるフォーカス制御引込動作中のFEプラス信号を示す。
 図2(d)は、横軸を時間とし、縦軸を信号レベルとした、フォーカス引込部55によるフォーカス制御引込動作中のFEマイナス信号を示す。
(球面収差補正処理):
 まず、コントローラ56は、フォーカス制御をかける目的となる光ディスク1の情報面上における光ビームの球面収差が少なくなるように補正する。具体的には、コントローラ56から出力された補正指令に基づいて、球面収差制御部52が、光ビームに発生する球面収差を補正するための駆動信号を球面収差補正部35に出力する。そして、球面収差補正部35により、光ディスク1の情報面上における光ビームの球面収差が少なくなるように補正される。
(T100):
 次に、タイミングT100において、コントローラ56は、フォーカス引込部55にフォーカス制御引込動作を開始させることで、対物レンズ32のUP駆動が開始される。FE信号のレベルが、図2に示すレベルL1を上回ったとき、差動前FE測定部50は、FE信号の極大点の検出を開始する。
(T101):
 タイミングT101において、差動前FE測定部50は、FE信号の極大点が確定したタイミングで、FEプラス信号のレベルL4を測定する。
 その後、差動前FE測定部50は、FE信号のレベルがレベルL2を下回ったとき、FE信号の極小点の検出を開始する。
(T102):
 タイミングT102において、差動前FE測定部50は、FE信号の極小点が確定したタイミングで、FEマイナス信号のレベルL5を測定する。
 次に、対称性演算部51は、差動前FE測定部50により取得された、FE信号の極大点におけるFEプラス信号のレベルL4とFE信号の極小点におけるFEマイナス信号のレベルL5のレベル比に基づき、FEマイナス信号に掛けるバランス回路40のゲイン値を演算し、演算したゲイン値G(例えば、G=(L4/L5))をバランス回路40に設定する。この場合、バランス回路40に設定するゲイン値Gは、例えば、
  G=(L4/L5)
とすればよい。なお、受光部34と減算部41との間にFEプラス信号のゲイン調整を行うゲイン調整部を設け、さらに、バランス回路40と減算部41との間にFEマイナス信号のゲイン調整を行うゲイン調整部を設け、受光部34から出力されるFEプラス信号およびバランス回路40から出力されるFEプラス信号に、所定のゲインK1を乗ずるようにしてもよい。この場合、減算部41に入力されるFEプラス信号およびFEマイナス信号は、下記のようになる。
  (減算部41に入力されるFEプラス信号)=(受光部34から出力されるFEプラス信号)×K1
  (減算部41に入力されるFEマイナス信号)=(受光部34から出力されるFEマイナス信号)×(L4/L5)×K1
 これにより、S字波形におけるFEプラス信号とFEマイナス信号の信号レベルが略同一になるので、減算部41で、FEプラス信号とFEマイナス信号とに対して減算処理を行うことで、S字の対称性の良いFE信号を取得することが可能となる。
 なお、上記は、FEプラス信号およびFEマイナス信号のゲイン調整の一例であり、これに限定されないことは言うまでもない。
(T103):
 さらに、タイミングT103において、コントローラ56からの指令に基づいて、フォーカス引込部55が対物レンズ32のDOWN駆動を開始する。
 FE信号のレベルがレベルL3を下回ったとき、フォーカス引込部55は、FE信号の0レベルをクロスするタイミング検出を開始する。
(T104):
 タイミングT104において、FE信号のS字波形が0レベルをクロスする点(0クロス点)を検出し、フォーカス制御を開始する。なお、図2に示すタイミングTTにおいて、FE信号のS字波形が0レベルをクロスする点が検出されているので、このタイミングTTからフォーカス制御を開始するのが理想であるが、実際には、アクチュエータ33の応答遅延があるので、本実施形態では、図2のタイミングT104からフォーカス制御が開始される。したがって、応答特性の良いアクチュエータを用いて、タイミングTTからフォーカス制御を開始するようにしてもよい。また、0クロス点を確実に検出するために、FE信号の信号レベルがマイナスからプラスに変化したことを確認して0クロスポイントを検出したと判断し、0クロス点の誤検出を少なくするようにしてもよい。
 以上のように、光ディスク装置100では、フォーカス引込前にフォーカス制御をかける光ディスク1の情報面における光ビームの球面収差を最適に合わせ、対物レンズ32のUP駆動中において差動前のFEプラス信号およびFEマイナス信号に基づいてバランス回路40のゲイン値を演算および設定する。これにより、光ディスク装置100では、対物レンズ32のUP動作を一度行うだけでFE信号の対称性(S字対称性)を精度よく調整することができる。
 尚、本実施形態では、フォーカス制御引込動作における対物レンズ32のUP駆動を利用したFE信号の対称性調整の例を示したが、これに限定されることなく、例えば、光ディスク装置100に装填された光ディスク1の種類を判別するための対物レンズ32のUP/DOWN駆動など、対物レンズ32をUP駆動あるいはDOWN駆動の少なくとも一方を行う動作を利用してFE信号の対称性(S字対称性)調整を行うようにしてもよい。
 また、本実施形態では、対物レンズ32のUP駆動中にのみのFEプラス信号およびFEマイナス信号に基づいたFE信号の対称性調整の例を示したが、これに限定されることなく、例えば、対物レンズ32のDOWN駆動中のみ、あるいはUP/DOWN両駆動中にFE信号の対称性(S字対称性)調整を実施してもよい。
 また、光ディスク装置100において、対物レンズ32のUP駆動中のFE信号の対称性調整の結果と、DOWN駆動中のFE信号の対称性調整の結果と、を平均化することで取得されるFE信号の対称性に関するデータに基づいて、バランス回路40に設定する最適なゲイン値を算出し、当該ゲイン値をバランス回路40のゲイン値として設定するようにしてもよい。
 また、光ディスク装置100において、対物レンズ32のUP駆動中のFE信号の対称性調整の結果とDOWN駆動中のFE信号の対称性調整の結果とを取得し、そのどちらか一方を選択して、選択されたFE信号の対称性(S字対称性)調整の結果からバランス回路40に設定する最適なゲイン値を算出し、当該ゲイン値をバランス回路40のゲイン値として設定するようにしてもよい。
 また、本実施形態では、FE信号の極大点および極小点におけるFEプラス信号およびFEマイナス信号の測定を行う例を示したが、これに限定されることはなく、例えば、以下の(1)~(3)により、バランス回路40のゲイン値の設定(FE信号のS字対称性の調整)を行うようにしてもよい。つまり、
(1)差動前FE測定部50が、FE信号の極大値を検出し、そのときのFEプラス信号の信号レベルmaxP1と、FEマイナス信号の信号レベルmaxM1を測定し、その測定したFEプラス信号の信号レベルmaxP1およびFEマイナス信号の信号レベルmaxM1を保持する。
(2)差動前FE測定部50が、FE信号の極小値を検出し、そのときのFEプラス信号の信号レベルminP2と、FEマイナス信号の信号レベルminM2を測定し、その測定したFEプラス信号の信号レベルminP2およびFEマイナス信号の信号レベルminM2を保持する。
(3)差動前FE測定部50が、(1)(2)で取得した4つの信号レベルmaxP1、maxM1、minP2、minM2に基づいて、バランス回路40に設定する最適なゲイン値を算出し、当該ゲイン値をバランス回路40のゲイン値として設定する。
 また、本実施形態では、FE信号のレベルをレベルL1で判定した後に、レベルL2で判定する例を示したが、これに限定されることはなく、例えば、レベルL2で判定した後に、レベルL1で判定することでFE信号の極性が本実施形態と逆極性であるFE信号に対して、本発明を適用するようにしてもよい。
 また、光ディスク装置100において、FE信号のレベルL1およびレベルL2によるレベル判定をせずに、FE信号の極大点および極小点を検出することで、FE信号の対称性調整を行うようにしてもよい。
 また、FEプラス信号およびFEマイナス信号の信号極性は、本実施形態で示した信号極性と逆極性であってもよい。
 また、FEプラス信号およびFEマイナス信号の位相関係は、本実施形態で示した位相関係と逆の関係であってもよい。
 また、本実施形態では、FE信号の極大点におけるFEプラス信号と極小点におけるFEマイナス信号のレベルが略等しくなるよう調整する例を示したが、これに限定されることはなく、例えば、FE信号の極大点におけるFEプラス信号およびFEマイナス信号のレベル差と、FE信号の極小点におけるFEプラス信号およびFEマイナス信号のレベル差とが略等しくなるように調整することで、FE信号の対称性(S字対称性)調整を行うようにしてもよい。
 また、本実施形態では、FEマイナス信号側にバランス回路40による信号補正を行う例を示したが、これに限定されることはなく、例えば、バランス回路40は、FEプラス信号側にあってもよい。
 また、FEプラス信号側およびFEマイナス信号側の両方にバランス回路40があってもよい。この場合、対称性演算部51が、FEプラス信号側に設置されたバランス回路のゲイン設定およびFEマイナス側に設置されたバランス回路のゲイン設定を行うことで、FE信号の対称性(S字対称性)調整を行うことができる。
 また、光ディスク1は複数の情報面をもつ光ディスク1であってもよい。
 [第2実施形態]
 第2実施形態について、図3、図4を用いて説明する。
 <2.1:光ディスク装置の構成>
 図3は、本実施形態に係る光ディスク装置200の概略構成を示すブロック図である。
 図3に示すように、光ディスク装置200は、光ディスク1に対して情報の記録/再生を行う装置であって、光ヘッド20と、バランス調整部(バランス回路)40と、減算部(差動回路)41と、差動前FE測定部50と、対称性演算部60と、一時メモリ61と、層別平均部62と、を備える。また、光ディスク装置200は、コントローラ64と、球面収差制御部52と、ディスク判別制御部63と、を備える。
 なお、上述の実施形態と同様の部分については、同一符号を付し、詳細な説明を省略する。
 背景技術および第1実施形態と異なるのは、第2実施形態に係る光ディスク装置200では、対称性演算部60、一時メモリ61、層別平均部62、ディスク判別制御部63、およびコントローラ64、を用いることで、ディスク判別動作中に対物レンズ32のUP/DOWN駆動を一度行うだけで、精度よく光ディスク1の全情報面におけるFE信号のS字の対称性調整が出来るところである。以下、その機能を説明する。
 照射部は、例えば、レーザ光源30により構成される。
 収束部は、例えば、対物レンズ32により構成される。
 フォーカス駆動部は、例えば、フォーカスアクチュエータ33により構成される。
 受光部は、例えば、受光部34により構成される。
 測定部は、例えば、差動前FE測定部50により構成される。
 信号補正部は、例えば、バランス回路40により構成される。
 フォーカスエラー信号生成部は、例えば、差動回路41により構成される。
 信号比演算部は、例えば、対称性演算部60により構成される。
 ディスク判別部は、例えば、ディスク判別制御部63により構成される。
 信号比最適化部は、例えば、一時メモリ61および層別平均部62により構成される。
 球面収差補正部は、例えば、球面収差制御部52および球面収差補正部35により構成される。
 コントローラ64は、光ディスク装置200に装填されている光ディスク1の種類を判別するための動作開始指令をディスク判別制御部63に送る。
 ディスク判別制御部63は、コントローラ64からの指令を受け、対物レンズ32により収束された光ビームのスポットを光ディスク1に対してUP/DOWN駆動させるための駆動信号をフォーカスアクチュエータ33に送る。対物レンズ32がフォーカスアクチュエータ33により駆動されることで、対物レンズ32により収束された光ビームの焦点が光ディスク1の表面および情報面を通過する。光ビームの焦点が光ディスク1の表面または情報面を通過する近傍において差動回路41から出力されるFE信号の信号波形がS字波形となる。
 差動前FE測定部50は、ディスク判別制御部63による対物レンズ32のUP/DOWN駆動中における減算部(差動回路)41からのFE信号のS字波形の信号レベルが極大あるいは極小となる点において、受光部34から出力されたFEプラス信号およびFEマイナス信号のレベルを測定する。そして、差動前FE測定部50は、その測定値を対称性演算部60に出力する。
 対称性演算部60は、差動前FE測定部50で測定したFEプラス信号およびFEマイナス信号のS字レベル(FE信号のS字の信号レベルが極大あるいは極小となる点におけるFEプラス信号およびFEマイナス信号の信号レベル)に基づいて、最適なバランス回路40のゲイン値を演算し、演算結果のゲイン値を一時メモリ61に出力する。
 一時メモリ61は、対称性演算部60から出力されるゲイン値をメモリに保持する。
 光ディスク装置200において、(1)差動前FE測定部50による測定、(2)対称性演算部60による演算、および(3)一時メモリ61による演算結果保持、の一連の動作(処理)は、ディスク判別制御部63による対物レンズ32のUP/DOWN駆動中に検出される光ディスク1の全情報面に対して、情報面1つずつのFE信号のS字(S字波形)に対して実行される。そして、それぞれの情報面において対称性演算部60で演算したバランス回路40のゲイン値を別々のメモリに保持する(一時メモリ61において、それぞれ独立したデータとして保持する)。その結果、光ディスク1の全情報面の1つずつの情報面に対して、対物レンズ32のUP駆動時に得られたゲイン値と対物レンズ32のDOWN駆動時に得られたゲイン値の2つずつのゲイン値が一時メモリ61にメモリ保持される。
 また、コントローラ64は、光ビームの焦点が光ディスク1の各情報面を通過するときに、それぞれの情報面における光ビームの球面収差が少なくなるように対物レンズ32のUP/DOWN駆動と並行して一定補正スピードで球面収差補正を行うための補正指令を球面収差制御部52に送る。
 球面収差制御部52は、コントローラ64からの補正指令を受け、光ビームに発生する球面収差を補正するための駆動信号を球面収差補正部35に送る。
 ディスク判別制御部63による対物レンズ32のUP/DOWN駆動が終了すると、コントローラ64は、平均化指令を層別平均部62に送る。
 層別平均部62は、コントローラ64からの平均化指令を受けると、一時メモリ61から、一時メモリ61がメモリ保持している全メモリ(全データ)を受け取り、対物レンズ32のUP駆動中に得たゲイン値と対物レンズ32のDOWN駆動中に得たゲイン値との平均値を全情報面分のメモリに対して演算する。そして、層別平均部62は、演算により取得したゲイン値によりバランス回路40のゲインを設定する。
 <2.2:光ディスク装置の動作>
 次に、図4の波形図を用いて、本実施形態の光ディスク装置200の動作について詳細に説明する。
 図4(a)は、横軸を時間とし、縦軸を信号レベルとした、ディスク判別制御部63によるディスク判別動作中の対物レンズ32の位置信号を示す。
 図4(b)は、横軸を時間とし、縦軸を信号レベルとした、ディスク判別制御部63によるディスク判別動作中の球面収差補正部35の補正レベル信号を示す。
 図4(c)は、横軸を時間とし、縦軸を信号レベルとした、ディスク判別制御部63によるディスク判別動作中のFE信号を示す。
 図4(d)は、横軸を時間とし、縦軸を信号レベルとした、ディスク判別制御部63によるディスク判別動作中のFEプラス信号を示す。
 図4(e)は、横軸を時間とし、縦軸を信号レベルとした、ディスク判別制御部63によるディスク判別動作中のFEマイナス信号を示す。
(T200):
 タイミングT200において、コントローラ64は、ディスク判別制御部63にディスク判別動作を開始させることで、対物レンズ32のUP駆動が開始される。
 FE信号のレベルが、図4に示すレベルL201を上回ったとき、差動前FE測定部50は、FE信号の極大点の検出を開始する。
(T201):
 タイミングT201において、差動前FE測定部50は、FE信号の極大点が確定したタイミングで、FEプラス信号のレベルL203を測定する。
 その後、差動前FE測定部50は、FE信号のレベルがレベルL202を下回ったとき、FE信号の極小点の検出を開始する。
(T202):
 タイミングT202において、差動前FE測定部50は、FE信号の極小点が確定したタイミングで、FEマイナス信号のレベルL204を測定する。
 次に、対称性演算部51は、差動前FE測定部50により取得された、FE信号の極大点におけるFEプラス信号のレベルL203とFE信号の極小点におけるFEマイナス信号のレベルL204とのレベル比に基づき、FEマイナス信号に掛けるバランス回路40のゲイン値を演算し、演算結果を第1情報面に対するゲイン値として一時メモリ61に保存する。
(T203、T204):
 差動前FE測定部50は、FE信号のレベルとレベルL201との比較判定およびFE信号のレベルとL202との比較判定によりFE信号の極大点および極小点の検出を開始し、FE信号の極大点および極小点におけるFEプラス信号あるいはFEマイナス信号の測定結果を取得する。対称性演算部60は、差動前FE測定部50により取得された測定結果に基づき、バランス回路40のゲイン値を演算する。光ディスク装置200では、この一連の動作(処理)が、対物レンズ32のUP駆動およびDOWN駆動が完了するまで繰返し行なわれる。
 従って、光ディスク装置200では、対物レンズ32のUP駆動中にさらに、タイミングT203およびタイミングT204において、FEプラス信号のレベルL205およびFEマイナス信号のレベルL206が測定でき、FEプラス信号のレベルL205とFEマイナス信号のレベルL206とのレベル比から第2情報面に対するゲイン値を演算により取得することができる。
(T205~T207):
 タイミングT205において、ディスク判別制御部63は、コントローラ64の指令に基づいて、対物レンズ32のUP駆動を停止し、DOWN駆動を開始する。
 光ディスク装置200において、対物レンズ32のDOWN駆動中は、タイミングT206およびタイミングT207において、FEマイナス信号のレベルL207およびFEプラス信号のレベルL208が測定でき、FEマイナス信号のレベルL207とFEプラス信号のレベルL208とのレベル比から第2情報面に対するゲイン値を演算により取得することができる。
(T208、T209):
 また、タイミングT208およびタイミングT209において、光ディスク装置200では、FEマイナス信号のレベルL209およびFEプラス信号のレベルL210が測定でき、FEマイナス信号のレベルL209とFEプラス信号のレベルL210とのレベル比から第1情報面に対するゲイン値を演算により取得することができる。
(球面収差補正処理):
 また、コントローラ64は、
(1)球面収差制御部52および球面収差補正部35により、光ビームの焦点が第1情報面を通過するときには、第1情報面における光ビームの球面収差が少なくなるように、
(2)さらに、光ビームの焦点が第2情報面を通過するときには、第2情報面における光ビームの球面収差が少なくなるように、
対物レンズ32のUP/DOWN駆動と並行して球面収差補正を行う。
(T210):
 タイミングT210において、対物レンズ32のDOWN駆動が完了する。
 このとき一時メモリ61には、第1情報面に対するゲイン値が対物レンズ32のUP駆動中のものとDOWN駆動中のものとの2つ保存されており、また、第2情報面に対するゲイン値が対物レンズ32のUP駆動中のものとDOWN駆動中のものとの2つ保存されている。
 層別平均部62は、コントローラ64からの指令に従い、一時メモリ61にメモリ保存されているゲイン値情報に基づき、第1情報面に対するゲイン値を対物レンズ32のUP駆動中のゲイン値とDOWN駆動中のゲイン値との平均値として演算し、また、第2情報面に対するゲイン値を対物レンズ32のUP駆動中のゲイン値とDOWN駆動中のゲイン値との平均値として演算し、バランス回路40のゲイン値として設定する。
 以上のように、光ディスク装置200では、光ビームの球面収差を全情報面それぞれに対して少なくなるように合わせながら、同時に(並行して)、ディスク判別動作の際の対物レンズ32のUP/DOWN駆動中の差動前のFEプラス信号およびFEマイナス信号に基づいてバランス回路40のゲイン値を演算する。そして、光ディスク装置200では、各情報面に対する対物レンズ32のUP駆動中のゲイン値とDOWN駆動中のゲイン値とを平均化することで、対物レンズ32のUP/DOWN駆動を一度行うだけで光ディスク1の全情報面に対するバランス回路40のゲイン値を精度良く調整することができる。
 これにより、光ディスク装置200では、対物レンズ32のUP/DOWN動作を一度行うだけでFE信号の対称性(S字対称性)を精度よく調整することができる。
 尚、本実施形態の光ディスク装置200では、ディスク判別動作における対物レンズ32のUP/DOWN駆動を利用したFE信号の対称性調整の例を示したが、これに限定されることはなく、その他の対物レンズ32をUP駆動あるいはDOWN駆動の少なくとも一方を行う動作を利用してFE信号の対称性(S字対称性)の調整を行うようにしてもよい。
 また、本実施形態では、対物レンズ32のUP駆動中およびDOWN駆動中の両方でFE信号の対称性調整を行う例を示したが、これに限定されることはなく、例えば、UP駆動中のみあるいはDOWN駆動中のみにFE信号の対称性調整を行ってもよい。
 また、本実施形態では、対物レンズ32のUP駆動中のゲイン値とDOWN駆動中のゲイン値との平均値を最適なゲイン値とする例を示したが、これに限定されることはなく、例えば、UP駆動中のゲイン値を最適なゲイン値としてもよいし、DOWN駆動中のゲイン値を最適なゲイン値としてもよい。
 また、光ディスク装置200では、対物レンズ32のUP駆動中のFE信号の対称性調整の結果とDOWN駆動中のFE信号の対称性調整の結果とのいずれか一方を選択し、選択したFE信号の対称性調整の結果に基づいて算出したゲイン値を最適ゲイン値としてバランス回路40のゲイン値を設定するようにしてもよい。
 また、本実施形態では、FE信号の極大点および極小点におけるFEプラス信号およびFEマイナス信号の測定を行う例を示したが、これに限定されることはなく、例えば、以下の(1)~(3)により、バランス回路40のゲイン値の設定(FE信号のS字対称性の調整)を行うようにしてもよい。つまり、
(1)差動前FE測定部50が、FE信号の極大値を検出し、そのときのFEプラス信号の信号レベルmaxP1と、FEマイナス信号の信号レベルmaxM1を測定し、その測定したFEプラス信号の信号レベルmaxP1およびFEマイナス信号の信号レベルmaxM1を保持する。
(2)差動前FE測定部50が、FE信号の極小値を検出し、そのときのFEプラス信号の信号レベルminP2と、FEマイナス信号の信号レベルminM2を測定し、その測定したFEプラス信号の信号レベルminP2およびFEマイナス信号の信号レベルminM2を保持する。
(3)差動前FE測定部50が、(1)(2)で取得した4つの信号レベルmaxP1、maxM1、minP2、minM2に基づいて、バランス回路40に設定する最適なゲイン値を算出し、当該ゲイン値をバランス回路40のゲイン値として設定する。
 また、FE信号の極性が本実施形態で示したFE信号の極性と逆極性であってもよい。
 また、光ディスク装置200において、FE信号のレベルL201およびレベルL202によるレベル判定をせずに、FE信号の信号レベルの極大点および極小点を検出してもよい。
 また、FEプラス信号およびFEマイナス信号の信号極性は、本実施形態で示した信号極性とは逆極性でもよい。
 また、FEプラス信号およびFEマイナス信号の位相関係は、本実施形態で示した位相関係と逆の関係でもよい。
 また、本実施形態では、FE信号の極大点におけるFEプラス信号と極小点におけるFEマイナス信号のレベルが略等しくなるよう調整する例を示したが、これに限定されることはなく、例えば、FE信号の極大点におけるFEプラス信号およびFEマイナス信号のレベル差と、FE信号の極小点におけるFEプラス信号およびFEマイナス信号のレベル差とが略等しくなるように調整することで、FE信号の対称性(S字対称性)調整を行うようにしてもよい。
 また、本実施形態では、FEマイナス信号側にバランス回路40による信号補正を行う例を示したが、これに限定されることはなく、例えば、バランス回路40はFEプラス信号側にあってもよい。
 また、FEプラス信号側およびFEマイナス信号側の両方にバランス回路40があってもよい。この場合、対称性演算部51が、FEプラス信号側に設置されたバランス回路のゲイン設定およびFEマイナス側に設置されたバランス回路のゲイン設定を行うことで、FE信号の対称性(S字対称性)調整を行うことができる。
 また、本実施形態では、球面収差補正と対物レンズ32のUP/DOWN駆動とを並行して行う例を示したが、これに限定されることはなく、例えば、球面収差補正を行った後に、対物レンズ32のUP/DOWN駆動という独立した一連の動作を光ディスク1の全情報面に対して行ってもよい。
 また、本実施形態では、光ディスク1の情報面における光ビームの球面収差補正を行う例を示したが、これに限定されることはなく、例えば、複数の情報面における球面収差量の中間値で球面収差補正処理を行うようにしてもよく、必ずしも、情報面における球面収差補正処理を実行しなくてもよい。
 また、本実施形態では、対物レンズ32のUP/DOWN駆動が完了した後に、各情報面におけるゲイン値を平均化する例を示したが、これに限定されることはなく、例えば、任意の情報面に対するUP駆動時のゲイン値とDOWN駆動時のゲイン値とがそろった時点で各情報面におけるゲイン値を平均化してもよい。
 また、本実施形態では、演算結果のゲイン値をメモリ保存する例を示したが、これに限定されることはなく、例えば、バランス回路40に設定するゲイン値を演算して算出する前のFEプラス信号レベルおよびFEマイナス信号レベル(ゲイン値を算出するために用いるFEプラス信号レベルおよびFEマイナス信号レベル)をメモリに保存し、メモリ情報であるFEプラス信号レベルおよびFEマイナス信号レベルに基づいてゲイン演算(ゲイン値の算出)およびゲイン値の平均化処理を行うようにしてもよい。
 また、光ディスク1は、情報面を2層以上もつ光ディスク1であってもよい。
 また、本実施形態では、球面収差補正を一定の補正スピードで補正しながら対物レンズ32をUP/DOWN駆動する例を示したが、これに限定されることはなく、例えば、光ビームスポットがそれぞれの情報面を通過するときに、それぞれの情報面における球面収差が補正されている状態が実現できれば、補正スピードは、一定でなくてもよい。
 また、本実施形態では、光ディスク1の全情報面の1つずつの情報面に対するゲイン値を求める例を示したが、これに限定されることはなく、例えば、1つずつの情報面に対するゲイン値から更に複数の情報面に対して共通の1つ以上のゲイン値を演算してもよい。例えば、光ディスク1に2つの情報面L0およびL1があり、情報面L0についてのゲイン値がGL0であり、情報面L1についてのゲイン値がGL1である場合、共通のゲイン値を(GL0+GL1)/2としてもよい。
 [第3実施形態]
 第3実施形態について、図5、図6を用いて説明する。
 <3.1:光ディスク装置の構成>
 図5は、本実施形態に係る光ディスク装置300の概略構成を示すブロック図である。
 図5に示すように、光ディスク装置300は、光ディスク1に対して情報の記録/再生を行う装置であって、光ヘッド10と、バランス調整部(バランス回路)40と、減算部(差動回路)41と、差動前FE測定部50と、対称性演算部60と、一時メモリ61と、複数層平均部71と、を備える。また、光ディスク装置300は、コントローラ70と、フォーカス引込部55と、フォーカスフィルタ部54と、切替部(フォーカス駆動出力切替器)53と、を備える。
 光ヘッド10は、レーザ光源30と、ビームスプリッタ31と、対物レンズ32と、フォーカスアクチュエータ33と、受光部34と、を備える。
 なお、上述の実施形態と同様の部分については、同一符号を付し、詳細な説明を省略する。
 背景技術および前述の実施形態と異なるのは、第3実施形態に係る光ディスク装置300では、コントローラ70、複数層平均部71、を用いることで、フォーカス引込前に対物レンズ32のUP駆動を一度行うだけで、光ディスク1の複数情報面に対して最適な1つのゲイン値を演算により算出し、算出したゲイン値によりFE信号のS字の対称性調整を行うことが出来るところである。以下、その機能を説明する。
 照射部は、例えば、レーザ光源30により構成される。
 収束部は、例えば、対物レンズ32により構成される。
 フォーカス駆動部は、例えば、フォーカスアクチュエータ33により構成される。
 受光部は、例えば、受光部34により構成される。
 測定部は、例えば、差動前FE測定部50により構成される。
 信号補正部は、例えば、バランス回路40により構成される。
 フォーカスエラー信号生成部は、例えば、差動回路41により構成される。
 信号比演算部は、例えば、対称性演算部60により構成される。
 フォーカス制御部は、例えば、フォーカスフィルタ部54により構成される。
 フォーカス引込部は、例えば、フォーカス引込部55およびフォーカス駆動出力切替器53により構成される。
 複数情報面信号比演算部は、一時メモリ61および層別平均部62により構成される。
 コントローラ70は、対物レンズ32により収束された光ビームのスポットを光ディスク1の情報面上に対して垂直方向に追従させるための指令(情報面を探索する指令)をフォーカス引込部55に送る。
 フォーカス引込部55は、コントローラ70の出力および減算部(差動回路)41の出力を入力とする。フォーカス引込部55は、コントローラ70からの指令を受け、切替部(フォーカス駆動出力切替器)53の切替制御を行う。具体的には、フォーカス引込部55は、コントローラ70から情報面を探索する指令を受けている場合(情報面探索モードの場合)、フォーカス引込部55から出力される信号が、フォーカスアクチュエータ33に出力されるように、切替部(フォーカス駆動出力切替器)53の入力を切り替える(選択する)。一方、フォーカス引込部55は、コントローラ70からフォーカス制御を行う指令を受けている場合(フォーカス制御モードの場合)、フォーカスフィルタ部54から出力される信号が、フォーカスアクチュエータ33に出力されるように、切替部(フォーカス駆動出力切替器)53の入力を切り替える(選択する)。
 情報面探索モードの場合、切替部(フォーカス駆動出力切替器)53では、フォーカス引込部55からの出力(フォーカス駆動信号)が選択され、フォーカスアクチュエータ33に出力される。すなわち、情報面探索モードの場合、対物レンズ32により収束された光ビームのスポットを光ディスク1に対してUP/DOWN駆動するためのフォーカス駆動信号(フォーカス引込部55からの出力)がフォーカスアクチュエータ33に送られる。
 そして、対物レンズ32を駆動するフォーカスアクチュエータ33が、フォーカス駆動信号により駆動される。
 差動前FE測定部50は、フォーカス引込部55による対物レンズ32のUP駆動中における減算部(差動回路)41からのFE信号のS字の信号レベルが極大あるいは極小となる点において、受光部34から出力されたFEプラス信号およびFEマイナス信号のレベルを測定する。そして、差動前FE測定部50は、その測定値を対称性演算部60に送る。
 対称性演算部60は、差動前FE測定部からの出力を入力とし、差動前FE測定部50で測定したFEプラス信号およびFEマイナス信号のS字レベルに基づいて、最適なバランス回路40のゲイン値を演算し、演算結果のゲイン値を一時メモリ61に送る。
 一時メモリ61は、対称性演算部60からのゲイン値をメモリに保持する。
 光ディスク装置300において、(1)差動前FE測定部50による測定、(2)対称性演算部60による演算、および(3)一時メモリ61による演算結果保持、の一連の動作(処理)は、フォーカス引込部55による対物レンズ32のUP駆動中に検出される光ディスク1の全情報面のFE信号のS字(S字波形)に対して実行される。
 フォーカス引込部55による対物レンズ32のUP駆動が終了すると、コントローラ70は、平均化指令を複数層平均部71に送る。
 複数層平均部71は、コントローラ70からの平均化指令を受けると、一時メモリ61から、一時メモリ61がメモリ保持している全メモリ(メモリ保持されている全データ)を受け取り、対物レンズ32のUP駆動中に得た全情報面についてのゲイン値の平均値を演算により算出し、算出したゲイン値をバランス回路40に設定する。
 <3.2:光ディスク装置の動作>
 次に、図6の波形図を用いて、本実施形態の光ディスク装置300の動作について詳細に説明する。
 図6(a)は、横軸を時間とし、縦軸を信号レベルとした、フォーカス引込部55によるフォーカス制御引込動作中の対物レンズ32の位置信号を示す。
 図6(b)は、横軸を時間とし、縦軸を信号レベルとした、フォーカス引込部55によるフォーカス制御引込動作中のFE信号を示す。
 図6(c)は、横軸を時間とし、縦軸を信号レベルとした、フォーカス引込部55によるフォーカス制御引込動作中のFEプラス信号を示す。
 図6(d)は、横軸を時間とし、縦軸を信号レベルとした、フォーカス引込部55によるフォーカス制御引込動作中のFEマイナス信号を示す。
(T300):
 タイミングT300において、コントローラ70は、フォーカス引込部55にフォーカス制御引込動作を開始させることで、対物レンズ32のUP駆動が開始される。
 FE信号のレベルが、図6に示すレベルL301を上回ったとき、差動前FE測定部50は、FE信号の極大点の検出を開始する。
(T301):
 タイミングT301において、差動前FE測定部50は、FE信号の極大点が確定したタイミングで、FEプラス信号のレベルL304を測定する。
 その後、差動前FE測定部50は、FE信号のレベルがレベルL302を下回ったとき、FE信号の極小点の検出を開始する。
(T302):
 タイミングT302において、差動前FE測定部50は、FE信号の極小点が確定したタイミングで、FEマイナス信号のレベルL305を測定する。
 次に、対称性演算部51は、差動前FE測定部50により取得された、FE信号の極大点におけるFEプラス信号のレベルL304とFE信号の極小点におけるFEマイナス信号のレベルL305とのレベル比に基づき、FEマイナス信号に掛けるバランス回路40のゲイン値を演算する。そして、対称性演算部51により演算された演算結果は、一時メモリ61に保存される。
(T303、T304):
 差動前FE測定部50は、FE信号のレベルとレベルL301との比較判定およびFE信号のレベルとL302との比較判定によりFE信号の極大点および極小点の検出を開始し、FE信号の極大点および極小点におけるFEプラス信号あるいはFEマイナス信号の測定結果を取得する。対称性演算部60は、差動前FE測定部50により取得された測定結果に基づき、バランス回路40のゲイン値を演算する。光ディスク装置300では、この一連の動作(処理)が、対物レンズ32のUP駆動が完了するまで繰返し行なわれる。
 従って、光ディスク装置300では、対物レンズ32のUP駆動中にさらに、タイミングT303およびタイミングT304において、FEプラス信号のレベルL306およびFEマイナス信号のレベルL307が測定でき、FEプラス信号のレベルL306とFEマイナス信号のレベルL307とのレベル比からゲイン値を演算により取得することができる。
(T305):
 タイミングT305において、対物レンズ32のUP駆動が完了する。
 このとき、一時メモリ61には、対物レンズ32のUP駆動中に得られた複数のゲイン値が保存されている。
 複数層平均部71は、コントローラ70からの指令に従い、一時メモリ61にメモリ保存されている複数のゲイン値を平均化した1つのゲイン値を演算により算出し、算出したゲイン値をバランス回路40のゲイン値として設定する。
 さらに、タイミングT305において、フォーカス引込部55が対物レンズ32のDOWN駆動を開始する。
 FE信号のレベルがレベルL303を下回ったとき、フォーカス引込部55は、FE信号の0レベルをクロスするタイミング検出を開始する。
(T306):
 タイミングT306において、FE信号のS字が0レベルをクロスする点を検出し、フォーカス制御を開始する。
 以上のように、光ディスク装置300では、フォーカス引込前に対物レンズ32のUP駆動中における差動前のFEプラス信号およびFEマイナス信号に基づいてバランス回路40のゲイン値を演算し、複数情報面から得られる複数のゲイン値を平均化することで、バランス回路40に設定するゲイン値を取得し、当該ゲイン値をバランス回路40に設定する。
 これにより、光ディスク装置300では、対物レンズ32のUP駆動を一度行うだけでFE信号の対称性(S字対称性)を複数層に渡って共通のゲイン値を用いて、適切に調整することができる。
 尚、本実施形態では、フォーカス制御引込動作における対物レンズ32のUP駆動を利用したFE信号の対称性調整の例を示したが、これに限定されることはなく、例えば、光ディスク装置300に装填された光ディスク1の種類を判別するための対物レンズ32のUP/DOWN駆動など、対物レンズ32をUP駆動あるいはDOWN駆動の少なくとも一方を行う動作を利用してFE信号の対称性調整処理を行うようにしてもよい。
 また、本実施形態では、対物レンズ32のUP駆動中にのみのFEプラス信号およびFEマイナス信号に基づいたFE信号の対称性調整の例を示したが、これに限定されることはなく、例えば、対物レンズ32のDOWN駆動中のみあるいはUP/DOWN両駆動中にFE信号の対称性調整を実施してもよい。
 また、対物レンズ32のUP駆動中のFE信号の対称性調整の結果とDOWN駆動中のFE信号の対称性調整の結果から平均化したものを最適なバランス回路40のゲイン値としてもよい。
 また、対物レンズ32のUP駆動中のFE信号の対称性調整の結果とDOWN駆動中のFE信号の対称性調整の結果とのいずれか一方を選択し、選択したFE信号の対称性調整の結果に基づいて算出したゲイン値を最適ゲイン値としてバランス回路40のゲイン値を設定するようにしてもよい。
 また、本実施形態では、FE信号の極大点および極小点におけるFEプラス信号およびFEマイナス信号の測定を行う例を示したが、これに限定されることはなく、例えば、以下の(1)~(3)により、バランス回路40のゲイン値の設定(FE信号のS字対称性の調整)を行うようにしてもよい。つまり、
(1)差動前FE測定部50が、FE信号の極大値を検出し、そのときのFEプラス信号の信号レベルmaxP1と、FEマイナス信号の信号レベルmaxM1を測定し、その測定したFEプラス信号の信号レベルmaxP1およびFEマイナス信号の信号レベルmaxM1を保持する。
(2)差動前FE測定部50が、FE信号の極小値を検出し、そのときのFEプラス信号の信号レベルminP2と、FEマイナス信号の信号レベルminM2を測定し、その測定したFEプラス信号の信号レベルminP2およびFEマイナス信号の信号レベルminM2を保持する。
(3)差動前FE測定部50が、(1)(2)で取得した4つの信号レベルmaxP1、maxM1、minP2、minM2に基づいて、バランス回路40に設定する最適なゲイン値を算出し、当該ゲイン値をバランス回路40のゲイン値として設定する。
 また、本実施形態では、FE信号のレベルをレベルL301で判定した後にレベルL302で判定する例を示したが、これに限定されることはなく、例えば、レベルL302で判定した後にレベルL301で判定することでFE信号の極性が本実施形態と逆極性であるFE信号に対して、本発明を適用するようにしてもよい。
 また、FE信号のレベルL301およびレベルL302によるレベル判定をせずに極大点および極小点を検出してもよい。
 また、FEプラス信号およびFEマイナス信号の信号極性は、本実施形態で示した信号極性とは逆極性でもよい。
 また、FEプラス信号およびFEマイナス信号の位相関係は、本実施形態で示した位相関係と逆の関係でもよい。
 また、本実施形態では、FE信号の極大点におけるFEプラス信号と極小点におけるFEマイナス信号のレベルが略等しくなるよう調整する例を示したが、これに限定されることはなく、例えば、FE信号の極大点におけるFEプラス信号およびFEマイナス信号のレベル差と、FE信号の極小点におけるFEプラス信号およびFEマイナス信号のレベル差とが略等しくなるように調整してもよい。
 また、本実施形態では、FEマイナス信号側にバランス回路40による信号補正を行う例を示したが、これに限定されることはなく、例えば、バランス回路40はFEプラス信号側にあってもよい。
 また、FEプラス信号側およびFEマイナス信号側の両方にバランス回路40があってもよい。この場合、複数層平均部71が、FEプラス信号側に設置されたバランス回路のゲイン設定およびFEマイナス側に設置されたバランス回路のゲイン設定を行うことで、FE信号の対称性(S字対称性)調整を行うことができる。
 また、本実施形態では、演算結果のゲイン値をメモリ保存する例を示したが、これに限定されることはなく、例えば、バランス回路40に設定するゲイン値を演算して算出する前のFEプラス信号レベルおよびFEマイナス信号レベル(ゲイン値を算出するために用いるFEプラス信号レベルおよびFEマイナス信号レベル)をメモリに保存し、メモリ情報であるFEプラス信号レベルおよびFEマイナス信号レベルに基づいてゲイン演算(ゲイン値の算出)およびゲイン値の平均化処理を行うようにしてもよい。
 また、光ディスク1は情報面を2層以上もつ光ディスク1であってもよい。
 また、本実施形態では、光ディスク1の全情報面に対するゲイン値を平均化する例を示したが、これに限定されることはなく、例えば、任意の2つ以上の情報面に対するゲイン値を平均化してもよく、ゲイン値の平均化結果は2つ以上あってもよい。
 また、本実施形態ではゲイン値を平均化する例を示したが、これに限定されることはなく、例えば、任意の情報面に対するゲイン値から任意のゲイン値を任意の2つ以上の情報面に対する共通のゲイン値として選択してもよい。
 また、本実施形態では、対物レンズ32のUP駆動からDOWN駆動に切替わるタイミングにおいてゲイン値を平均化する例を示したが、これに限定されることはなく、例えば、任意の2つ以上の情報面に対するゲイン値を演算したタイミングでゲイン値の平均化を行ってもよい。
 [他の実施形態]
 なお、上記実施形態の光ディスク装置では、いわゆる非点収差法によるFE信号による処理を行う場合について説明したが、これに限定されることはなく、例えば、差動非点収差法、スポットサイズディテクション法によるFE信号を用いるようにしてもよい。
 第1実施形態の光ディスク装置100に差動非点収差法によるFE信号を用いる場合の一例について、図8を用いて説明する。
 図8は、第1実施形態の光ディスク装置100に差動非点収差法によるFE信号を用いる場合の、受光部、差動前測定部、対称性演算部、バランス調整部(バランス回路)、および減算部(差動回路)、の部分を抽出した概略構成図である。
 図8に示すように、受光部34Aは、mainFEプラス信号およびmainFEマイナス信号を取得するためのメイン受光部340と、subFEプラス信号およびsubFEマイナス信号を取得するためのサブ受光部341および342を有する。メイン受光部340およびサブ受光部341および342は、差動非点収差法によりFE信号を取得するための受光部である。メイン受光部34Aは、主として、光ディスク1のトラック上の光スポットに対応する反射光を受光する受光部であり、サブ受光部341および342は、メイン受光部34が主として受光する光スポットをトラック横断方向に挟むような位置にある光スポットに対応する反射光を受光する受光部である。なお、「トラック横断方向に挟むような位置」とは、トラックを挟む位置であれば良く、例えば、トラックを斜めに挟むような位置をも含む概念であり、トラックに対して法線方向に挟む位置のみを意味するのではないことは言うまでもない。
 なお、図8に示すように、メイン受光部340およびサブ受光部341および342は、4分割された受光領域(4つの受光ディテクタ)からなるものとし、メイン受光部340のA領域で取得される受光量をA、B領域で取得される受光量をB、C領域で取得される受光量をC、D領域で取得される受光量をD、とする。
 また、サブ受光部341のa1領域で取得される受光量をa1、b1領域で取得される受光量をb1、c1領域で取得される受光量をc1、d1領域で取得される受光量をd1、とする。
 また、サブ受光部342のa2領域で取得される受光量をa2、b2領域で取得される受光量をb2、c2領域で取得される受光量をc2、d2領域で取得される受光量をd2、とする。
 差動前FE測定部50Aは、基本的な動作は、差動前FE測定部50と同様である。ただし、測定対象とする信号が、図8に示すように、mainFEプラス信号(=B+C)、mainFEマイナス信号(=A+D)、subFEプラス信号(=b1+c1+b2+c2)、およびsubFEマイナス信号(=a1+d1+a2+d2)である点が異なる。
 対称性演算部51Aは、基本的な動作は、対称性演算部51と同様である。ただし、処理対象が、mainFEプラス信号、mainFEマイナス信号、subFEプラス信号、およびsubFEマイナス信号である点が異なる。
 対称性演算部51Aは、上記実施形態同様に、mainFEプラス信号およびmainFEマイナス信号についてのバランス調整処理を行い、バランス調整部(バランス回路)40Aのゲイン値を設定する。また、対称性演算部51Aは、上記実施形態同様に、subFEプラス信号およびsubFEマイナス信号についてのバランス調整処理を行い、バランス調整部(バランス回路)40Bのゲイン値を設定する。
 減算部41Aは、バランス調整部40Aから出力されるmainFEプラス信号およびmainFEマイナス信号に対して、下式に相当する減算処理を行い、mainFE信号を取得する。
  (mainFE信号)=(mainFEプラス信号)-(mainFEマイナス信号)
 そして、減算部41Aは、取得したmainFE信号を減算部41Cに出力する。
 減算部41Bは、バランス調整部40Bから出力されるsubFEプラス信号およびsubFEマイナス信号に対して、下式に相当する減算処理を行い、subFE信号を取得する。
  (subFE信号)=(subFEプラス信号)-(subFEマイナス信号)
 そして、減算部41Bは、取得したsubFE信号を減算部41Cに出力する。
 減算部41Cは、下式に相当する減算処理を行い、FE信号を取得する。
  (FE信号)=(mainFE信号)-(subFE信号)
 このように、光ディスク装置100に対して、図8に示した構成を採用することで、差動非点収差法により取得されるFE信号を用いて、FE信号のS字対称性の調整を適切に行うことができる。
 なお、図9に、光ディスク装置100において、図8に示した構成を採用し、差動非点収差法により取得されるFE信号を用いて、FE信号のS字対称性の調整を行う場合の信号波形図を示す。図9の波形図は、第1実施形態で説明した図2に相当するものであり、FEプラス信号およびFEマイナス信号の代わりに、mainFEプラス信号(図9(c))、mainFEマイナス信号(図9(d))、subFEプラス信号(図9(e))、subFEマイナス信号(図9(f))の信号波形を示している。
 なお、図9の波形図において、タイミングT101のmainFEプラス信号の信号レベルは、L4Aであり、タイミングT102のmainFEマイナス信号の信号レベルは、L5Aであり、タイミングT101のsubFEプラス信号の信号レベルは、L6であり、タイミングT102のsubFEマイナス信号の信号レベルは、L7である。
 具体的なFE信号のS字対称性の調整方法については、図2を用いて説明した方法と同様であるので、詳細な説明は、省略する。
 以上のように、本発明に差動非点収差法によるFE信号を用いることができる。
 なお、第1実施形態以外の実施形態についても同様に適用することで、本発明に差動非点収差法によるFE信号を用いることができる。また、上記各実施形態のなお書きで記載した内容を、差動非点収差法によるFE信号を用いた本発明(上記で説明した内容)に適用できることは言うまでもない。
 また、上記実施形態で説明した光ディスク装置において、各ブロックは、LSIなどの半導体装置により個別に1チップ化されても良いし、一部又は全部を含むように1チップ化されても良い。
 なお、ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用しても良い。
 さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてあり得る。
 また、上記実施形態の各処理をハードウェアにより実現してもよいし、ソフトウェアにより実現してもよい。さらに、ソフトウェアおよびハードウェアの混在処理により実現しても良い。なお、上記実施形態に係る光ディスク装置をハードウェアにより実現する場合、各処理を行うためのタイミング調整を行う必要があるのは言うまでもない。上記実施形態においては、説明便宜のため、実際のハードウェア設計で生じる各種信号のタイミング調整の詳細については省略している。
 また、上記実施形態において、「略0」、「略等しい」等の表現があるが、これらは、目標値(あるいは設計値)として「0」に、あるいは「等し」くなるように制御等を行ったときに生じる誤差や設計誤差、あるいは、分解能によって決まる誤差等を含むものであり、当業者が「0」である、あるいは、「等しい」と判断(認識)する範囲を含む概念である。
 なお、本発明の具体的な構成は、前述の実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で種々の変更および修正が可能である。
 本発明は、情報面を有する光ディスクに対して記録および再生の少なくとも一方を行う装置において、フォーカスエラー信号の信号対称性調整を行う光ディスク装置に利用可能である。したがって、本発明は、光ディスク機器関連産業分野において、有用であり、本発明を当該分野において実施することができる。
 100、200、300、900 光ディスク装置
 1  光ディスク
 10  光ヘッド
 20  光ヘッド
 30  レーザ光源
 31  ビームスプリッタ
 32  対物レンズ
 33  フォーカスアクチュエータ
 34、340、341、342  受光部
 35  球面収差補正部
 40、40A、40B  バランス回路
 41、41A、41B  差動回路
 42  FE信号測定部
 43  対称性演算部
 44  近似演算部
 45  コントローラ
 50、50A  差動前FE測定部
 51、51A  対称性演算部
 52  球面収差制御部
 53  フォーカス駆動出力切替器
 54  フォーカスフィルタ
 55  フォーカス引込部
 56  コントローラ
 60  対称性演算部
 61  一時メモリ
 62  層別平均部
 63  ディスク判別制御部
 64  コントローラ
 70  コントローラ
 71  複数層平均部

Claims (19)

  1.  情報面を有する光ディスクに対して記録および再生の少なくとも一方を行う装置であって、
     前記光ディスクに光ビームを照射する照射部と、
     前記照射部によって照射された光ビームを収束させる収束部と、
     前記収束部により収束された光ビームスポットを前記光ディスクのディスク面に対して垂直方向に移動させるように前記収束部を駆動するフォーカス駆動部と、
     複数に分割されたディテクタを有し、前記光ディスクからの反射光を前記複数に分割されたディテクタで受光し、受光した光量に対応する電気信号をFEプラス信号およびFEマイナス信号として取得する受光部と、
     前記受光部により取得されたFEプラス信号およびFEマイナス信号の信号レベルを測定する測定部と、
     FEプラス信号とFEマイナス信号の少なくとも一方に所定のゲイン値を掛けることで、前記FEプラス信号とFEマイナス信号の少なくとも一方に対して信号レベルの補正を行う信号補正部と、
     前記信号補正部からの出力に基づきフォーカスエラー信号を生成し、生成した前記フォーカスエラー信号を出力するフォーカスエラー信号生成部と、
     前記測定部からの出力に基づき、前記FEプラス信号と前記FEマイナス信号の少なくとも一方に掛ける前記所定のゲイン値であって、前記フォーカスエラー信号の極大値の絶対値と前記フォーカス信号の極小値の絶対値とを等しくする前記所定のゲイン値を導出する信号比演算部と、
    を備え、
     前記信号補正部は、前記信号比演算部により導出された前記所定のゲイン値に基づいて、前記FEプラス信号とFEマイナス信号の少なくとも一方に対して信号レベルの補正を行う、
     光ディスク装置。
  2.  信号比演算部は、前記光ビームスポットが光ディスクの任意の情報面近傍にあるときのフォーカスエラー信号の信号レベルが極値をとる点、あるいは前記光ビームスポットが光ディスクの任意の情報面近傍にあるときのFEプラス信号の信号レベルおよびFEマイナス信号の信号レベルが極値をとる点、における前記測定部からの出力に基づき前記所定のゲイン値を導出する、
     請求項1に記載の光ディスク装置。
  3.  前記フォーカスエラー信号生成部からの信号に応じて前記光ビームスポットが光ディスクの情報面上に位置するように制御するフォーカス制御部と、
     前記フォーカス駆動部により前記光ビームスポットを光ディスクのディスク面に対して垂直な方向に移動させ、前記光ビームスポットの位置が光ディスクの任意の情報面上の位置に一致したとき、前記フォーカス制御部による制御動作を開始させるフォーカス引込部と、
    をさらに備え、
     信号比演算部は、前記フォーカス引込部により前記フォーカス制御部が動作を開始する前に、少なくとも一度は、前記測定部からの出力に基づき信号補正部で用いる前記所定のゲイン値を導出する、
     請求項2に記載の光ディスク装置。
  4.  光ディスクの任意の情報面上における前記光ビームスポットの球面収差を補正する球面収差補正部をさらに備え、
     前記信号比演算部は、前記球面収差補正部による球面収差補正後に、前記測定部からの出力に基づき、前記信号補正部で用いられる前記所定のゲイン値を導出する、
     請求項2に記載の光ディスク装置。
  5.  前記フォーカスエラー信号生成部からの信号に応じて前記光ビームスポットが光ディスクの情報面上に位置するように制御するフォーカス制御部と、
     前記フォーカス駆動部により前記光ビームスポットを光ディスクのディスク面に対して垂直な方向に移動させ、前記光ビームスポットの位置が光ディスクの任意の情報面上の位置に一致したとき、前記フォーカス制御部による制御動作を開始させるフォーカス引込部と、
    をさらに備え、
     信号比演算部は、前記フォーカス引込部により前記光ビームスポットを光ディスクに対して近づけた際に、前記測定部からの出力に基づき前記信号補正部で用いられる前記所定のゲイン値を導出し、
     前記フォーカス引込部は、前記信号比演算部による前記所定のゲイン値の導出後に、前記光ビームスポットが光ディスクの任意の情報面上に位置するように前記フォーカス制御部によるフォーカス制御を行う、
     請求項4に記載の光ディスク装置。
  6.  装填された光ディスクの種類を判別するために前記フォーカス駆動部により前記光ビームスポットを光ディスクに対して近づける動作および遠ざける動作を行うディスク判別部をさらに備え、
     信号比演算部は、前記ディスク判別部による前記光ビームスポットを光ディスクに対して近づける動作中あるいは遠ざける動作中の少なくとも一方の動作中に前記測定部からの出力に基づき信号補正部に用いられる前記所定のゲイン値を導出する、
     請求項4に記載の光ディスク装置。
  7.  前記光ビームスポットを光ディスクに対して近づける動作中に、前記信号比演算部により導出された前記所定のゲイン値を第1のゲイン値として取得し、前記光ビームスポットを光ディスクに対して遠ざける動作中に前記信号比演算部により導出された前記所定のゲイン値を第2のゲイン値として取得し、前記第1のゲイン値および前記第2のゲイン値から、前記信号補正部で用いられる前記所定のゲイン値を導出する信号比最適化部をさらに備える、
     請求項6に記載の光ディスク装置。
  8.  光ディスクが複数の情報面を有している場合、
     前記信号比演算部は、前記複数の情報面の全てに対して、前記光ビームスポットが光ディスク上の情報面近傍にあるときのフォーカスエラー信号の信号レベルが極値をとる点、あるいは前記光ビームスポットが光ディスク上の情報面近傍にあるときのFEプラス信号およびFEマイナス信号の信号レベルが極値をとる点、における前記測定部からの信号に基づき、前記信号補正部で用いられる前記所定のゲイン値を導出する、
     請求項1に記載の光ディスク装置。
  9.  前記フォーカスエラー信号生成部からの信号に応じて前記光ビームスポットが光ディスクの情報面上に位置するように制御するフォーカス制御部と、
     前記フォーカス駆動部により前記光ビームスポットを光ディスクのディスク面に対して垂直な方向に移動させ、前記光ビームスポットの位置が光ディスクの任意の情報面上の位置に一致したとき、前記フォーカス制御部による制御動作を開始させるフォーカス引込部と、
    をさらに備え、
     信号比演算部は、前記フォーカス引込部により前記フォーカス制御部が動作を開始する前に、少なくとも一度は、前記測定部からの出力に基づき信号補正部で用いる前記所定のゲイン値を導出する、
     請求項8に記載の光ディスク装置。
  10.  前記フォーカスエラー信号生成部からの信号に応じて前記光ビームスポットが光ディスクの情報面上に位置するように制御するフォーカス制御部と、
     前記フォーカス駆動部により前記光ビームスポットを光ディスクのディスク面に対して垂直な方向に移動させ、前記光ビームスポットの位置が光ディスクの任意の情報面上の位置に一致したとき、前記フォーカス制御部による制御動作を開始させるフォーカス引込部と、
    をさらに備え、
     信号比演算部は、前記フォーカス引込部により前記光ビームスポットを光ディスクに対して近づけた際に、前記測定部からの出力に基づき前記信号補正部できる用いられる前記所定のゲイン値を導出し、
     前記フォーカス引込部は、前記信号比演算部による前記所定のゲイン値の導出後に、前記光ビームスポットが光ディスクの任意の情報面上に位置するように前記フォーカス制御部によるフォーカス制御を行う、
     請求項8に記載の光ディスク装置。
  11.  装填された光ディスクの種類を判別するために前記フォーカス駆動部により前記光ビームスポットを光ディスクに対して近づける動作および遠ざける動作を行うディスク判別部をさらに備え、
     信号比演算部は、前記ディスク判別部による前記光ビームスポットを光ディスクに対して近づける動作中あるいは遠ざける動作中の少なくとも一方の動作中に前記測定部からの出力に基づき信号補正部に用いられる前記所定のゲイン値を導出する、
     請求項8に記載の光ディスク装置。
  12.  前記光ビームスポットを光ディスクに対して近づける動作中に、前記信号比演算部により導出された前記所定のゲイン値を第1のゲイン値として取得し、前記光ビームスポットを光ディスクに対して遠ざける動作中に、前記信号比演算部により導出された前記所定のゲイン値を第2のゲイン値として取得し、前記第1のゲイン値および前記第2のゲイン値から、前記信号補正部で用いられる前記所定のゲイン値を導出する信号比最適化部をさらに備える、
     請求項11に記載の光ディスク装置。
  13.  前記フォーカス駆動部による前記光ビームスポットの光ディスクに対して近づける動作あるいは遠ざける動作の少なくとも一方の動作中に、前記光ビームスポットが光ディスクの全情報面をそれぞれ通過する際に、前記光ビームスポットが通過する任意の情報面上における前記光ビームスポットの球面収差が略0となるように前記フォーカス駆動部の動作に並行して球面収差を補正する球面収差補正部をさらに備える、
     請求項8に記載の光ディスク装置。
  14.  光ディスクの任意の情報面上における光ビームスポットの球面収差を補正する球面収差補正部と、
     光ディスクの任意の情報面に対して前記球面収差補正部を動作させた後に、前記フォーカス駆動部による光ビームスポットの光ディスクに対して近づける動作あるいは遠ざける動作の少なくとも一方の動作中に、前記信号比演算部による前記所定のゲイン値の導出処理を動作させ、前記一連の動作を光ディスクの全情報面の1つずつの情報面に対して行う全層信号比演算部と、
    をさらに備える、
     請求項8に記載の光ディスク装置。
  15.  複数の情報面を有する光ディスクに対して記録および再生の少なくとも一方を行う装置であって、
     前記信号補正部で用いられる前記所定のゲイン値であって、光ディスクの前記複数の情報面に対して共通して用いられる前記所定のゲイン値である複数層共通ゲイン値を導出する複数情報面信号比演算部をさらに備え、
     前記信号比演算部は、前記複数の情報面のそれぞれに対して、前記所定のゲイン値を導出し、
     前記複数情報面信号比演算部は、前記信号比演算部が、前記複数の情報面のそれぞれに対して導出した複数の前記所定のゲイン値から、前記複数層共通ゲイン値を導出する、
     請求項1に記載の光ディスク装置。
  16.  前記フォーカスエラー信号生成部からの信号に応じて前記光ビームスポットが光ディスクの情報面上に位置するように制御するフォーカス制御部と、
     前記フォーカス駆動部により前記光ビームスポットを光ディスクのディスク面に対して垂直な方向に移動させ、前記光ビームスポットの位置が光ディスクの任意の情報面上の位置に位置したとき、前記フォーカス制御部による制御動作を開始させるフォーカス引込部と、
    をさらに備え、
     前記複数情報面信号比演算部は、前記フォーカス引込部により前記フォーカス制御部が動作する前に、少なくとも一度は、前記測定部からの出力に基づき前記複数層共通ゲイン値を導出する、
     請求項15に記載の光ディスク装置。
  17.  情報面を有する光ディスクに対して記録および再生の少なくとも一方を行う光ディスク装置であって、
     前記光ディスクに光ビームを照射する照射部と、
     前記照射部によって照射された光ビームを収束させる収束部と、
     前記収束部により収束された光ビームスポットを前記光ディスクのディスク面に対して垂直方向に移動させるように前記収束部を駆動するフォーカス駆動部と、
     複数に分割されたディテクタを有し、前記光ディスクからの反射光を前記複数に分割されたディテクタで受光し、受光した光量に対応する電気信号をFEプラス信号およびFEマイナス信号として取得する受光部と、
    を備える光ディスク装置に用いられるフォーカスエラー信号調整方法であって、
     前記受光部により取得されたFEプラス信号およびFEマイナス信号の信号レベルを測定する測定ステップと、
     FEプラス信号とFEマイナス信号の少なくとも一方に所定のゲイン値を掛けることで、前記FEプラス信号とFEマイナス信号の少なくとも一方に対して信号レベルの補正を行う信号補正ステップと、
     前記信号補正部からの出力に基づきフォーカスエラー信号を生成し、生成した前記フォーカスエラー信号を出力するフォーカスエラー信号生成ステップと、
     前記測定ステップからの出力に基づき、前記FEプラス信号と前記FEマイナス信号の少なくとも一方に掛ける前記所定のゲイン値であって、前記フォーカスエラー信号の極大値の絶対値と前記フォーカス信号の極小値の絶対値とを等しくする前記所定のゲイン値を導出する信号比演算ステップと、
    を備え、
     前記信号補正ステップでは、前記信号比演算ステップにより導出された前記所定のゲイン値に基づいて、前記FEプラス信号とFEマイナス信号の少なくとも一方に対して信号レベルの補正を行う、
     フォーカスエラー信号調整方法。
  18.  情報面を有する光ディスクに対して記録および再生の少なくとも一方を行う光ディスク装置であって、
     前記光ディスクに光ビームを照射する照射部と、
     前記照射部によって照射された光ビームを収束させる収束部と、
     前記収束部により収束された光ビームスポットを前記光ディスクのディスク面に対して垂直方向に移動させるように前記収束部を駆動するフォーカス駆動部と、
     複数に分割されたディテクタを有し、前記光ディスクからの反射光を前記複数に分割されたディテクタで受光し、受光した光量に対応する電気信号をFEプラス信号およびFEマイナス信号として取得する受光部と、
    を備える光ディスク装置に用いられるフォーカスエラー信号調整方法をコンピュータに実行させるプログラムであって、
     前記受光部により取得されたFEプラス信号およびFEマイナス信号の信号レベルを測定する測定ステップと、
     FEプラス信号とFEマイナス信号の少なくとも一方に所定のゲイン値を掛けることで、前記FEプラス信号とFEマイナス信号の少なくとも一方に対して信号レベルの補正を行う信号補正ステップと、
     前記信号補正部からの出力に基づきフォーカスエラー信号を生成し、生成した前記フォーカスエラー信号を出力するフォーカスエラー信号生成ステップと、
     前記測定ステップからの出力に基づき、前記FEプラス信号と前記FEマイナス信号の少なくとも一方に掛ける前記所定のゲイン値であって、前記フォーカスエラー信号の極大値の絶対値と前記フォーカス信号の極小値の絶対値とを等しくする前記所定のゲイン値を導出する信号比演算ステップと、
    を備え、
     前記信号補正ステップでは、前記信号比演算ステップにより導出された前記所定のゲイン値に基づいて、前記FEプラス信号とFEマイナス信号の少なくとも一方に対して信号レベルの補正を行う、
     フォーカスエラー信号調整方法をコンピュータに実行させるプログラム。
  19.  情報面を有する光ディスクに対して記録および再生の少なくとも一方を行う装置であって、
     前記光ディスクに光ビームを照射する照射部と、
     前記照射部によって照射された光ビームを収束させる収束部と、
     前記収束部により収束された光ビームスポットを前記光ディスクのディスク面に対して垂直方向に移動させるように前記収束部を駆動するフォーカス駆動部と、
     複数に分割されたディテクタを有し、前記光ディスクからの反射光を前記複数に分割されたディテクタで受光し、受光した光量に対応する電気信号をFEプラス信号およびFEマイナス信号として取得する受光部と、
    を備える光ディスク装置に用いられる集積回路であって、
     前記受光部により取得されたFEプラス信号およびFEマイナス信号の信号レベルを測定する測定部と、
     FEプラス信号とFEマイナス信号の少なくとも一方に所定のゲイン値を掛けることで、前記FEプラス信号とFEマイナス信号の少なくとも一方に対して信号レベルの補正を行う信号補正部と、
     前記信号補正部からの出力に基づきフォーカスエラー信号を生成し、生成した前記フォーカスエラー信号を出力するフォーカスエラー信号生成部と、
     前記測定部からの出力に基づき、前記FEプラス信号と前記FEマイナス信号の少なくとも一方に掛ける前記所定のゲイン値であって、前記フォーカスエラー信号の極大値の絶対値と前記フォーカス信号の極小値の絶対値とを等しくする前記所定のゲイン値を導出する信号比演算部と、
    を備え、
     前記信号補正部は、前記信号比演算部により導出された前記所定のゲイン値に基づいて、前記FEプラス信号とFEマイナス信号の少なくとも一方に対して信号レベルの補正を行う、
     集積回路。
PCT/JP2009/002299 2008-05-27 2009-05-25 光ディスク装置、フォーカスエラー信号調整方法、プログラムおよび集積回路 WO2009144911A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/668,764 US20100195455A1 (en) 2008-05-27 2009-05-25 Optical disc apparatus, focus error signal adjustment method, program, and integrated circuit
JP2009549327A JPWO2009144911A1 (ja) 2008-05-27 2009-05-25 光ディスク装置、フォーカスエラー信号調整方法、プログラムおよび集積回路
CN200980000575A CN101790760A (zh) 2008-05-27 2009-05-25 光盘装置、聚焦误差信号调整方法、程序以及集成电路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-137593 2008-05-27
JP2008137593 2008-05-27

Publications (1)

Publication Number Publication Date
WO2009144911A1 true WO2009144911A1 (ja) 2009-12-03

Family

ID=41376801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002299 WO2009144911A1 (ja) 2008-05-27 2009-05-25 光ディスク装置、フォーカスエラー信号調整方法、プログラムおよび集積回路

Country Status (4)

Country Link
US (1) US20100195455A1 (ja)
JP (1) JPWO2009144911A1 (ja)
CN (1) CN101790760A (ja)
WO (1) WO2009144911A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015022782A (ja) * 2013-07-22 2015-02-02 船井電機株式会社 光ディスク装置及びフォーカスジャンプ方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320068A (ja) * 1996-06-03 1997-12-12 Alpine Electron Inc デジタルディスクプレーヤのサーボゲイン制御方法
JPH10320792A (ja) * 1997-05-22 1998-12-04 Kenwood Corp 光ディスク装置
JPH11203691A (ja) * 1997-12-29 1999-07-30 Sony Corp 光ディスク装置及びフォーカスサーボの引き込み方法
JP2000100059A (ja) * 1998-09-18 2000-04-07 Mitsumi Electric Co Ltd 光ディスク装置
JP2003248942A (ja) * 2002-02-25 2003-09-05 Funai Electric Co Ltd 光ディスク装置
JP2005332558A (ja) * 2004-04-23 2005-12-02 Matsushita Electric Ind Co Ltd フォーカス検出手段またはトラッキング検出手段の調整方法および光ディスク装置
JP2005346867A (ja) * 2004-06-04 2005-12-15 Sharp Corp 光ディスク装置のディスク判別方法、信号ゲイン調整方法及び光ディスク装置
JP2007226893A (ja) * 2006-02-23 2007-09-06 Matsushita Electric Ind Co Ltd 光ディスク装置およびそのフォーカス制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5859824A (en) * 1996-06-03 1999-01-12 Alpine Electronics, Inc. Digital disk player
DE60025892T2 (de) * 1999-09-21 2006-08-10 Matsushita Electric Industrial Co., Ltd., Kadoma Optisches Abtastgerät mit verbesserten optischen Eigenschaften, und Herstellungsverfahren des Optischen Abtastgerätes
KR20030060139A (ko) * 2002-01-07 2003-07-16 삼성전자주식회사 스플리트 게이트형 비휘발성 메모리 소자 및 그 제조방법
CN100452190C (zh) * 2004-04-23 2009-01-14 松下电器产业株式会社 对焦检测机构、跟踪检测机构以及光盘装置
JP4129463B2 (ja) * 2005-06-21 2008-08-06 東芝サムスン ストレージ・テクノロジー株式会社 光ディスク装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320068A (ja) * 1996-06-03 1997-12-12 Alpine Electron Inc デジタルディスクプレーヤのサーボゲイン制御方法
JPH10320792A (ja) * 1997-05-22 1998-12-04 Kenwood Corp 光ディスク装置
JPH11203691A (ja) * 1997-12-29 1999-07-30 Sony Corp 光ディスク装置及びフォーカスサーボの引き込み方法
JP2000100059A (ja) * 1998-09-18 2000-04-07 Mitsumi Electric Co Ltd 光ディスク装置
JP2003248942A (ja) * 2002-02-25 2003-09-05 Funai Electric Co Ltd 光ディスク装置
JP2005332558A (ja) * 2004-04-23 2005-12-02 Matsushita Electric Ind Co Ltd フォーカス検出手段またはトラッキング検出手段の調整方法および光ディスク装置
JP2005346867A (ja) * 2004-06-04 2005-12-15 Sharp Corp 光ディスク装置のディスク判別方法、信号ゲイン調整方法及び光ディスク装置
JP2007226893A (ja) * 2006-02-23 2007-09-06 Matsushita Electric Ind Co Ltd 光ディスク装置およびそのフォーカス制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015022782A (ja) * 2013-07-22 2015-02-02 船井電機株式会社 光ディスク装置及びフォーカスジャンプ方法

Also Published As

Publication number Publication date
JPWO2009144911A1 (ja) 2011-10-06
US20100195455A1 (en) 2010-08-05
CN101790760A (zh) 2010-07-28

Similar Documents

Publication Publication Date Title
JP2007271919A (ja) 荷電粒子ビーム装置、da変換装置の異常検出方法、荷電粒子ビーム描画方法及びマスク
JPH0765389A (ja) サーボループの自動利得制御装置
WO2009144911A1 (ja) 光ディスク装置、フォーカスエラー信号調整方法、プログラムおよび集積回路
JP4466544B2 (ja) 光情報媒体の検査方法および光情報媒体検査装置
US7948835B2 (en) Optical disc device, method for activating optical disc device, and control circuit
US7643388B2 (en) Optical disc apparatus and optical-pickup movement control method installed in optical disc apparatus
WO2005104108A1 (ja) 光ディスク装置および光ディスク半導体
JP4287471B2 (ja) 光ディスク装置および光ディスク装置の集積回路
JP2008084417A (ja) 光ディスク装置
US8208353B2 (en) Disk apparatus
JP2009230781A (ja) 記録層切替方法及び光ディスク装置
US20090213704A1 (en) Optical disk apparatus and servo control method
JP2000331355A (ja) トラッキング誤差信号生成装置及びトラッキング調整方法
CN104637503A (zh) 光盘设备、其控制方法、程序和信息存储介质
JP2008269719A (ja) フォーカスサーボ制御方法および光ディスク装置
US20050122859A1 (en) Method and apparatus of mirror signal auto-calibration for optical disk drive
US8437233B2 (en) Optical recording/reproduction method and optical recording/reproduction device
JP2004259380A (ja) トラッキングエラー生成装置および方法、トラッキングエラー生成用半導体、トラッキングエラー生成処理を実行するコンピュータプログラム
JP2006120214A (ja) 光ディスク装置
US20110164486A1 (en) Optical disc apparatus
JP2014154179A (ja) 光ディスク装置
KR20090024955A (ko) 광디스크 장치의 서보 제어 방법 및 그 방법을 이용하는서보 제어 장치
JP2002304751A (ja) フォーカス制御装置及びフォーカス制御方法
JPH05314507A (ja) 光記録再生装置のフォーカスサーボ回路
JP2009205758A (ja) 光学的情報記録再生装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000575.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009549327

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12668764

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09754420

Country of ref document: EP

Kind code of ref document: A1