WO2009142221A1 - 抗原を結合した抗体と抗原を結合していない抗体の構造変化を識別する抗体とその取得法 - Google Patents
抗原を結合した抗体と抗原を結合していない抗体の構造変化を識別する抗体とその取得法 Download PDFInfo
- Publication number
- WO2009142221A1 WO2009142221A1 PCT/JP2009/059228 JP2009059228W WO2009142221A1 WO 2009142221 A1 WO2009142221 A1 WO 2009142221A1 JP 2009059228 W JP2009059228 W JP 2009059228W WO 2009142221 A1 WO2009142221 A1 WO 2009142221A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antibody
- antigen
- antibodies
- binding
- hybridoma
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/42—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/44—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material not provided for elsewhere, e.g. haptens, metals, DNA, RNA, amino acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/32—Immunoglobulins specific features characterized by aspects of specificity or valency specific for a neo-epitope on a complex, e.g. antibody-antigen or ligand-receptor
Definitions
- the present invention relates to an antibody for distinguishing structural changes between an antibody bound to an antigen and an antibody not bound to an antigen, and a method for obtaining the antibody.
- Antibody is expressed by specificity and binding power for recognizing an antigen. Monoclonal technology has been developed, and protein chemistry analysis and application technology of antibodies have progressed dramatically.
- the antigen / antibody complex has an effector function such as activation of a complement cascade having no free antibody. This suggests that the structural change of the antibody due to antigen binding is induced in the constant domain to which complement binds, but the complement cascade is also activated by antibody aggregates. Effector function has been interpreted as agglutination.
- Higashi et al. Analyzed the binding reaction between S. aureus protein A and the antibody in detail, and found that the antigen-bound antibody and the non-antigen-bound antibody had different reactivity to protein A. (Non-Patent Document 2, 3). However, the difference in structure between the free antibody detected by protein A and the antigen / antibody complex was small, and it was difficult to detect this difference by ELISA or the like.
- An object of the present invention is to provide an antibody and a method for producing the same that facilitate structural changes that occur in the constant domain of the antibody.
- the present invention provides the following antibodies and methods for producing the same.
- Item 1. An antibody that recognizes a first antibody and specifically recognizes one of a free first antibody and an antigen-binding first antibody.
- Item 2. The antibody (Domino antibody) according to Item 1, wherein the specific recognition antibody specifically recognizes and binds to an antigen-binding first antibody.
- Item 3. Item 2. The antibody (unlocked antibody) according to Item 1, wherein the specific recognition antibody specifically recognizes and binds to a free first antibody.
- the specific recognition antibody recognizes one selected from the group consisting of the light chain part of the first antibody or the partial peptide of the light chain part, Fd (heavy chain variable region + CH1 region) and the partial peptide thereof The antibody according to any one of 1 to 3.
- Item 5. A hybridoma that produces the antibody according to any one of Items 1 to 4.
- Item 6. The hybridoma according to Item 5, wherein the ATCC accession number is PTA-9167 or PTA-9168.
- Item 7. A method for obtaining a domino antibody or an unlocking antibody, comprising immunizing with gamma globulin as an antigen and selecting the domino antibody or the unlocking antibody from the obtained monoclonal antibody produced by the hybridoma.
- Item 8 The method according to Item 7, wherein the antigen is a light chain of gamma globulin or a fragment thereof.
- Item 9 After the hapten antibody captures the hapten or antigen, the hapten or antigen is chemically fixed or bound to the antibody, and an antigen-antibody complex in which the antigen does not dissociate from the antibody is prepared. How to get.
- the result obtained by the assay method of the L series antibody is shown.
- the result obtained by the assay method of the L series antibody is shown.
- the result obtained by the assay method of the L series antibody is shown.
- the result obtained by the assay method of the L series antibody is shown.
- the result obtained by the assay method of the L series antibody is shown.
- the result obtained by the assay method of the L series antibody is shown.
- the result obtained by the assay method of the L series antibody is shown.
- the result obtained by the assay method of the L series antibody is shown.
- the result obtained by the assay method of the L series antibody is shown.
- the result obtained by the assay method of the L series antibody is shown.
- the result obtained by the assay method of the F series antibody is shown.
- the result obtained by the assay method of the F series antibody is shown.
- the result obtained by the assay method of the F series antibody is shown.
- the result obtained by the assay method of the F series antibody is shown.
- the result obtained by the assay method of the F series antibody is shown.
- the result obtained by the assay method of the F series antibody is shown.
- the result obtained by the assay method of the F series antibody is shown.
- the result obtained by the assay method of the F series antibody is shown.
- the result obtained by the assay method of the F series antibody is shown.
- the result obtained by the assay method of the F series antibody is shown.
- CFA Complete Freund's adjuvant
- CGG Chicken gamma globulin
- NP 4-hydroxy-3-nitrophenyl acetyl
- C ⁇ 1 is an epitope. Binding characteristics of anti-NP mAb and anti- ⁇ 1 mAb # 0806-12 in the presence or absence of NP-Ag (specimen: 9T13mAb, 9T13mAb + NP-Cap or 9T13mAb + DNP-Cap).
- the “first antibody” means an antibody that is recognized by an antibody that specifically recognizes one of the free first antibody and the antigen-binding first antibody of the present invention (specific recognition antibody). To do.
- the first antibody recognizes an antigen, which may be an antibody or a non-antibody.
- “First antibody” includes both free and antigen-binding first antibodies.
- “specific recognition of one antibody of the free primary antibody and the antigen-binding primary antibody” means that the primary antibody that is not bound to the antigen (free primary antibody) and the antigen are bound. It means that either one of the first antibodies (antigen-binding first antibodies) specifically recognizes and binds, and the other does not bind at all or does not substantially bind.
- the binding to the other free primary antibody or antigen-binding primary antibody that is not recognized by the specific recognition antibody of the present invention is at a level equivalent to that of an antigen unrelated to antibody recognition, such as the antigen recognized by the primary antibody. Ground level).
- Free first antibody means a first antibody not bound to an antigen
- antigen-bound first antibody means a first antibody bound to an antigen
- the specific recognition antibody of the present invention is a domino antibody (Domino antibody) or an unlocked antibody (Antibody Unlocking Antibody: AUA). Includes both.
- domino antibody means an antibody that specifically recognizes a first antibody bound to an antigen.
- the domino antibody is an antibody that recognizes an antibody such as a primary antibody or a secondary antibody, and the antibody recognized by the domino antibody may be a complex with an antibody (for example, a secondary antibody, a tertiary antibody, etc.) Any antibody (eg, primary antibody) bound to an antigen other than an antibody may be used.
- the second domino antibody Domino II antibody
- Domino III antibody the third domino antibody
- the second domino antibody and the third domino antibody are successively bound to each other. Therefore, in the present specification, such an antibody is named a domino antibody (FIG. 14).
- Antibodies Antibodies: Antibodies: AUA
- An unlocked antibody was named this way because it can extract (unlock) the antigen or antibody from the antibody bound antigen when it has a high affinity.
- a preferable unlocking antibody of the present invention is an antibody capable of extracting (unlocking) an antigen or an antibody from an antibody bound to the antigen.
- antibody is used in the broadest sense and includes monoclonal antibodies (including full-length or intact monoclonal antibodies), polyclonal antibodies, multivalent antibodies, multispecific antibodies (eg, bispecific antibodies), and the like Antibody fragments are also included so long as they exhibit the biological activity.
- multivalent antibody is used throughout this specification to refer to an antibody comprising three or more antigen binding sites. Multivalent antibodies are preferably genetically engineered to have 3 or more antigen binding sites and are generally not native sequence IgM or IgA antibodies.
- Antibody fragments comprise a portion of an antibody that retains the ability to bind to an antigen.
- Examples of antibody fragments encompassed by this definition include: (i) a Fab fragment having a VL, CL, VH and CH1 domain; (ii) a Fab fragment having one or more cysteine residues at the C-terminus of the CH1 domain.
- the term “monoclonal antibody” as used herein refers to an antibody obtained from a substantially homogeneous population of antibodies. That is, the individual antibodies that make up the population are identical except for naturally occurring possible mutations that may be present in small amounts. Monoclonal antibodies are highly specific and are directed against a single antigenic site. Furthermore, unlike polyclonal antibody preparations that typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant of the antigen. The modifier “monoclonal” does not imply that the antibody must be produced in any specific manner.
- monoclonal antibodies used in the present invention can be made by the hybridoma method first described in Kohler et al., Nature, 256: 495 (1975), or can be made by recombinant DNA methods (eg, US No. 4,816,567).
- the “monoclonal antibody” is a phage antibody using the technique described in, for example, Clackson et al., Nature, 624352: 624-628 (1991) or Marks et al., J. Mol. Biol. 222: 581-597 (1991). It can also be isolated from a library.
- the monoclonal antibodies described herein are particularly those in which a portion of the heavy and / or light chain is derived from a particular species or is identical or homologous to the corresponding sequence of an antibody belonging to a particular antibody class or subclass.
- Such antibody fragments US Pat. No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA 81: 6851-6855 (1984)).
- “Humanized” forms of non-human (eg, murine) antibodies are chimeric antibodies that contain minimal sequence derived from non-human immunoglobulin.
- humanized antibodies are of non-human species, such as mice, rats, rabbits or non-human primates with the desired specificity, affinity and ability, from the recipient hypervariable region.
- Human immunoglobulin (recipient antibody) replaced by residues from the hypervariable region (donor antibody).
- donor antibody residues from the hypervariable region
- framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues.
- humanized antibodies may contain residues that are found neither in the recipient antibody nor in the donor antibody. These modifications are made to further refine antibody properties.
- a humanized antibody has at least one, wherein all or substantially all hypervariable loops correspond to those of non-human immunoglobulin, and all or substantially all FRs are of human immunoglobulin sequences. Typically comprising substantially all of the two variable domains.
- a humanized antibody optionally comprises at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.
- Fc immunoglobulin constant region
- Human antibodies are those having an amino acid sequence corresponding to the amino acid sequence of an antibody produced by a human and / or produced using any technique for producing a human antibody disclosed herein. Is. Human antibodies can be produced by using various techniques known in the art. In one embodiment, the human antibody is selected from a phage library, wherein the phage library expresses a human antibody (Vaughan et al., Nature Biotechnology 14: 309-314 (1996): Sheets et al., PNAS, (USA) 95). : 6157-6162 (1998); Hoogenboom and Winter, J. Mol. Biol., 227: 381 1991 (1991); Marks et al., J. Mol. Biol., 222: 581 1991 (1991)).
- Human antibodies can also be produced by introducing human immunoglobulin into transgenic animals, such as mice in which endogenous immunoglobulin genes have been partially or completely inactivated. Upon exposure, production of human antibodies is observed that closely resembles that seen in humans in all respects, including gene rearrangement, assembly and antibody repertoire. This approach is described, for example, in U.S. Pat. Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; and 5,661,016, and the following scientific literature: Marks et al., Bio / Technology 10: 779-783.
- human antibodies may be prepared by immortalization of human B lymphocytes that produce antibodies against the target antigen (such B lymphocytes may be recovered from the individual and immunized in vitro. May be).
- B lymphocytes may be recovered from the individual and immunized in vitro. May be).
- Cole et al. ⁇ Monoclonal> Antibodies> and ⁇ Cancer> Therapy, ⁇ Alan> R. Liss. P.77 (1985); Boerner et al., J. Immunol., 147 (1): 86-95 (1991); and US Pat. See
- Disease is any symptom that can benefit from treatment with antibodies. This includes chronic and acute diseases or conditions, including pathological conditions that predispose mammals to the disease in question.
- diseases to be treated by the antibodies of the present invention include benign and malignant tumors; leukemias and lymphoid malignancies; neurons, glia, astrocytes, hypothalamus and other glands, macrophages , Epithelial, stromal and split cavity diseases; and inflammation, angiogenesis and immune diseases.
- terapéuticaally effective amount means the amount of a drug effective to treat a mammal disease or disorder.
- Treatment refers to both therapeutic treatment and prophylactic or protective measures. Those in need of treatment include those already with the disease as well as those in which the disease is to be prevented.
- label refers to a detectable compound or composition that binds directly or indirectly to a polypeptide (eg, an antigen or antibody).
- the label may itself be detectable (eg, a radioisotope label or a fluorescent label) or, in the case of an enzyme label, may catalyze chemical conversion of the detectable substrate compound or composition.
- the expressions “cell”, “cell line” and “cell culture” are used interchangeably and all terms include progeny.
- the phrases “transformants” and “transformed cells” include those derived from the first subject cell and the first, regardless of how many times the culture has been passaged.
- Monoclonal antibody preparation Means for preparing and characterizing antibodies are well known in the art. Exemplary techniques for the production of antibodies used in the present invention are now described.
- the antigen used for the production of the antibody can be an antibody or a part thereof, preferably an antibody light chain or a fragment thereof.
- the preparation of the antibody of the present invention is characterized by using a light chain.
- a domino antibody that recognizes only the antibody complex and does not recognize a free antibody seems to be prepared by administering the antigen-antibody complex to the host.
- the present inventors actually used such a method Only antibodies recognizing both free and complexed antibodies were obtained.
- a domino antibody that specifically recognizes the antigen-antibody complex or an unlocked antibody that specifically recognizes the free antibody could be obtained by producing an antibody using the light chain.
- the hapten or antigen is chemically fixed or bound to the antibody to produce an antigen-antibody complex in which the antigen does not dissociate from the antibody, and then the complex is immunized to domino.
- Antibodies can be obtained.
- haptens include steroid hormones such as testosterone, estradiol, estriol and cortisol, and compounds having a mononitrophenyl group, a dinitrophenyl group, a trinitrophenyl group, a fluorescein group, etc.
- a hapten antibody is an antibody that specifically recognizes these haptens.
- the chemical immobilization or binding of the hapten or antigen and the antibody can be performed using a crosslinking agent, for example, dialdehydes such as glutaraldehyde, formaldehyde and paraformaldehyde, and diisocyanates such as tolylene-2,4-diisocyanate.
- the domino antibody and unlocking antibody of the present invention can be prepared using the light chain or fragments thereof, using the hybridoma method first described by Kohler et al., Nature, 256: 495 (1975), or by the recombinant DNA method ( U.S. Pat. No. 4,816,567).
- a hybridoma in which a light chain of an antibody recognized by a domino antibody or an unlocking antibody is obtained and administered to a host (mouse, rat, rabbit, hamster, macaque, etc.) using this light chain as an immunogen. It can be produced by the method.
- the host is immunized as described above to produce or derive lymphocytes that can produce antibodies that specifically bind to the light chain or fragment thereof used for immunization.
- lymphocytes can be immunized in vitro.
- lymphocytes are then fused with myeloma cells using a suitable fusing agent such as polyethylene glycol to form hybridoma cells (Goding, Monoclonal Antibodies: Principles and Practice, pages 59-103 (Academic Press, 1986) ).
- a suitable fusing agent such as polyethylene glycol
- the light chain is used as an antigen.
- the antigen is an H chain fragment containing the H chain and the variable region of the H chain and the C1H region, the target antibody is similarly obtained. Production hybridomas can be obtained.
- the antibody captures the antigen with a divalent Fab portion
- the Fab is composed of a light chain (VL + CL) and a heavy chain Fd (heavy chain variable region VH + CH1 region).
- the light chain (VL + CL) and Fd (VH + CH1) in Fab are a pair of functionally symmetric proteins. Three regions (hypervariable region) divided into VL of this pair of proteins, VH However, similarly, there are three regions (hypervariable regions) divided at positions corresponding to VL, and antigens are captured by these regions.
- the L chain and the H chain are a pair of functionally symmetric proteins. There are also three portions where antigens are captured in regions of approximately the same position and length.
- light chain immunity is superior in the following ways: (i) Fd is first purified through Fab and F (ab ′) 2. In this respect, the light chain is easier to purify and is advantageous in terms of yield; (ii) The light chain is easier to handle in terms of physical properties.
- the H chain is a hydrophobic protein and tends to precipitate during purification.
- the disadvantages of the above H chain are, for example, 1) immunization with a chemically synthesized Fd partial peptide, and 2) obtaining a recombinant protein containing only Fd in Escherichia coli or yeast. 3) It can be avoided by immunizing with KO mice lacking a specific Fd portion.
- the hybridoma cells thus prepared are seeded and grown in a suitable medium that preferably contains one or more substances that inhibit the growth or survival of the unfused parent myeloma cells.
- a suitable medium that preferably contains one or more substances that inhibit the growth or survival of the unfused parent myeloma cells.
- the parent myeloma cells lack the enzyme hypoxanthine anidine phosphoribosyltransferase (HGPRT or HPRT)
- the culture medium for hybridomas is typically hypopoxia, a substance that prevents the growth of HGPRT-deficient cells. It will contain xanthine, aminopterin and thymidine (HAT medium).
- Preferred myeloma cells are cells that fuse efficiently, support stable high level production of antibodies by selected antibody-producing cells, and are sensitive to a medium such as HAT medium.
- preferred myeloma cell lines are mouse myeloma lines, such as MOPC-21 and MPC-11 mouse tumors available from Souk Institute Cell Distribution Center, San Diego, California, USA, and American type. • Derived from SP-2 or X63-Ag8-653 cells available from Culture Collection, Rockville, Maryland, USA. Human myeloma and mouse-human heteromyeloma cell lines have also been disclosed for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133: 3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, 51 -63 (Marcel Dekker, Inc., New York, 1987)).
- the medium in which the hybridoma cells are growing is assayed for production of monoclonal antibodies against the antigen (free antibody or antibody bound to the antigen).
- the binding specificity of monoclonal antibodies produced by hybridoma cells is measured by immunoprecipitation or in vitro binding assays, such as radioimmunoassay (RIA) or enzyme-linked immunosorbent assay (ELISA). .
- RIA radioimmunoassay
- ELISA enzyme-linked immunosorbent assay
- hybridoma cell After a hybridoma cell that produces an antibody having a desired specificity, affinity, and / or activity as a domino antibody or an unlocking antibody is identified, the clone is subcloned by a limiting dilution method and grown by a standard method.
- Suitable culture media for this purpose include, for example, D-MEM or RPMI-1640 medium.
- hybridoma cells can be grown in vivo as ascites tumors in animals.
- Monoclonal antibodies secreted by the subclone are suitable from medium, ascites fluid or serum by conventional immunoglobulin purification methods such as protein A-sepharose, hydroxyapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography. Separated.
- the DNA encoding the monoclonal antibody is immediately isolated and sequenced by conventional methods (eg, by using oligonucleotide probes capable of specifically binding to the genes encoding the heavy and light chains of the monoclonal antibody). Is done. Hybridoma cells are a preferred source of such DNA.
- the DNA is placed in an expression vector, which is then transformed into an E. coli cell, monkey COS cell, Chinese hamster ovary (CHO) cell, or myeloma cell that otherwise does not produce immunoglobulin protein. It can be transfected into host cells to achieve the synthesis of monoclonal antibodies in recombinant host cells. Recombinant production of antibodies is described in further detail below.
- antibodies or antibody fragments can be isolated from antibody phage libraries produced using the techniques described in McCafferty et al., Nature, 348: 552-554 (1990). Clackson et al., Nature, 352: 624-628 (1991) and Marks et al., J. Mol. Biol., 222: 581-5971991 (1991) describe the isolation of mouse and human antibodies using phage libraries. ing. Another reference is the production of high affinity (nM range) human antibodies by chain shuffling (Marks et al., Bio / Technology, 10: 779-783 (1992)), as well as for constructing very large phage libraries.
- DNA can also be obtained, for example, by replacing the coding sequences of human heavy and light chain constant domains in place of homologous mouse sequences (US Pat. No. 4,816,567; Morrison et al., Proc. Natl. Acad. Sci., USA, 81: 6851 (1984)), or can be modified by covalently linking all or part of the coding sequence of the non-immunoglobulin polypeptide to the immunoglobulin coding sequence.
- non-immunoglobulin polypeptide is substituted with a constant domain of an antibody or substituted with a variable domain of one antigen-binding site of an antibody and has one antigen-binding site with specificity for an antigen.
- a chimeric bivalent antibody is created comprising another antigen binding site with specificity for a different antigen.
- Humanized and human antibodies have one or more amino acid residues derived from non-human origin. These non-human amino acid residues are often referred to as “import” residues, which are typically taken from an “import” variable domain. Humanization essentially involves the method of Winter and co-workers (Jones et al., Nature, 321: 522-525 (1986), Riechmann, by replacing rodent CDRs or CDR sequences with the corresponding sequences of human antibodies. Et al., Nature, 332: 323-327 (1988), Verhoeyen et al., Science, 239: 1534-1536 (1988)). Accordingly, such “humanized” antibodies are chimeric antibodies (US Pat. No.
- humanized antibodies are typically humans in which some hypervariable region residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies. Antibody.
- the same framework can be used for several different humanized antibodies (Carter et al., Proc. Natl. Acad. Sci. USA, 89: 4285 (1992); Presta et al., J. Immunol., 151: 2623 (1993)) .
- a preferred method uses a three-dimensional model of the parent and humanized sequences to prepare the humanized antibody through an analysis step of the parent sequence and various conceptual humanized products.
- Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art.
- Computer programs that illustrate and display the putative three-dimensional conformational structure of selected candidate immunoglobulin sequences are available for purchase. Examining these representations allows analysis of the possible role of residues in the function of candidate immunoglobulin sequences, ie, analysis of residues that affect the ability of candidate immunoglobulins to bind antigen.
- FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen (s), is achieved.
- the CDR residues directly and most substantially affect antigen binding.
- transgenic animals eg, mice
- transgenic animals can be made that can be produced by immunizing the entire repertoire of human antibodies without endogenous immunoglobulin production.
- J H antibody heavy chain joining region
- homozygous removal of the antibody heavy chain joining region (J H ) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production.
- Transfer of human germline immunoglobulin gene sequences in such germline mutant mice results in the production of human antibodies upon challenge.
- Human antibodies can also be derived from phage-display libraries (Hoogenboom et al., J. Mol. Biol., 227: 381 (1991); Marks et al., J. Mol. Biol., 222: 581-597 (1991). Vaughan et al. Nature Biotech 14: 309 (1996)).
- Antibody Fragments Various techniques have been developed to produce antibody fragments. Traditionally, these fragments have been derived through proteolytic digestion of intact antibodies (e.g. Morimoto et al., Journal of Biochemical and Biophysical Methods 24: 107-117 (1992) and Brennan et al., Science , 229: 81 (1985)). However, these fragments can now be produced directly by recombinant host cells. For example, antibody fragments can be isolated from the antibody phage libraries discussed above. Alternatively, Fab′-SH fragments can be recovered directly from E. coli and chemically coupled to form F (ab ′) 2 fragments (Carter et al., Bio / Technology 10: 163-167 (1992)). ).
- F (ab ′) 2 fragments can be isolated directly from recombinant host cell culture.
- Other methods for the production of antibody fragments will be apparent to those skilled in the art.
- the selection antibody is a single chain Fv fragment (scFV). See WO 93/16185.
- a cysteine residue may be introduced into the Fc region, thereby forming an interchain disulfide bond in this region.
- the homodimeric antibody thus generated may have improved internalization capability and / or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp. Med. 176: 1191-1195 (1992) and Shopes, B. J. Immunol. 148: 2918-2922 (1992).
- homodimeric antibodies with improved antitumor activity can be prepared using heterobifunctional cross-linking agents described in Wolff et al., “Cancer Research 53”: 2560-2565 (1993).
- the antibody can be engineered to have two Fc regions, thereby improving complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design 3: 219-230 (1989).
- the antibodies disclosed herein can also be formulated as immunoliposomes.
- Liposomes containing antibodies are described in, for example, Epstein et al., Proc. Natl. Acad. Sci. USA 82: 3688 (1985); Hwang et al. Proc. Natl. Acad. Sci. USA 77: 4030 (1980); and US Pat. And by methods known in the art as described in US Pat. Liposomes with increased circulation time are disclosed in US Pat. No. 5,013,556.
- Particularly useful liposomes can be prepared by the reverse phase evaporation method using a lipid composition containing phosphatidylcholine, cholesterol and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through a filter with a defined pore size to obtain liposomes having a desired diameter.
- Fab ′ fragments of the antibodies of the invention can be conjugated to liposomes via a disulfide exchange reaction as described in Martin et al., J. Biol. Chem. 257: 286-288 (1982). .
- a chemotherapeutic agent such as doxorubicin
- Covalent modifications of antibodies are within the scope of the present invention. They can be made by chemical synthesis, as appropriate, or by enzymatic or chemical cleavage of antibodies. Another type of covalent modification of the antibody is introduced into the molecule by reacting the target amino acid region with an organic derivatizing agent capable of reacting with a selected side chain or N- or C-terminal residue. .
- Covalent modification involves chemically or enzymatically coupling glycosides to the antibody. These procedures are advantageous in that they do not require production of antibodies in a host cell that has glycosylation capabilities for N- or O-linked glycosylation.
- the sugar (s) can be (a) arginine and histidine, (b) a free carboxyl group, (c) a free sulfhydryl group such as cysteine, (d) serine.
- a free hydroxyl group such as that of threonine or hydroxyproline, (e) an aromatic residue such as phenylalanine, tyrosine or tryptophan, or (f) an amide group of glutamine.
- Removal of any carbohydrate moieties present in the antibody can be done chemically or enzymatically.
- Chemical deglycosylation requires exposure of the antibody to the compound trifluoromethanesulfonic acid, or an equivalent compound. This treatment results in cleavage of most or all sugars except the conjugated sugar (N-acetylglucosamine or N-acetylgalactosamine) while leaving the antibody intact.
- Chemical deglycosylation is described by Hakimuddin et al., Arch. Biochem. Biophys., 259: 52 (1987), and Edge et al., Anal. Biochem., 118: 131 (1981).
- Enzymatic cleavage of the carbohydrate moiety on the antibody can be achieved by using various endo and exoglycosidases as described in Thotakura et al., Meth. Enzymol. 138: 350 (1987).
- Another type of covalent modification of the antibody is to convert the antibody to one of a variety of non-proteinaceous polymers, such as polyethylene glycol, polypropylene glycol, or polyoxyalkylene, US Pat. Nos. 4,640,835; 4,496,689; No. 4670417; 4791192 or 4179337.
- the antibody of the present invention can be produced recombinantly.
- the nucleic acid encoding it is isolated and inserted into a replicable vector for further cloning (DNA amplification) or expression.
- the DNA encoding the monoclonal antibody is immediately isolated and sequenced using conventional techniques (e.g., using oligonucleotide probes capable of specifically binding to the genes encoding the heavy and light chains of the antibody).
- Vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence. It is.
- the therapeutic formulations of antibodies used in the present invention are obtained by mixing an optional pharmaceutically acceptable carrier, excipient or stabilizer with an antibody having the desired purity (Remington's Pharmaceutical Sciences, 16th edition, Osol , A [1980]), prepared for storage in the form of a lyophilized formulation or an aqueous solution. Typically, an appropriate amount of a pharmaceutically acceptable salt is used in the carrier to make the formulation isotonic.
- Acceptable carriers, excipients or stabilizers are nontoxic to cells at the dosages and concentrations used and are buffers such as phosphate, citrate and other organic acids; antioxidants including ascorbic acid and methionine Preservatives (eg octadecyldimethylbenzylammonium chloride; hexamethonium chloride; benzalkonium chloride; benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propylparaben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than 10 residues) polypeptide; protein such as serum albumin, gelatin or immunoglobulin; hydrophilic polymer such as polyvinylpyrrolidone; glycine, glutamine, asparagine, Histidine, a Amino acids such as ginine or
- the formulation may also contain one or more active compounds necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other.
- the active ingredient can also be incorporated into colloidal drug delivery systems (e.g. liposomes, microcapsules prepared by coacervation or interfacial polymerization, e.g. hydroxymethylcellulose or gelatin-microcapsules and poly- (methyl methacrylate) microcapsules, respectively.
- Albumin microspheres, microemulsions, nanoparticles and nanocapsules or macroemulsions.
- sustained release preparations may be prepared. Suitable examples of sustained release preparations include solid hydrophobic polymer semipermeable matrices containing antibodies, which are in the form of shaped articles such as films or microcapsules. Examples of sustained release matrices include polyesters, hydrogels (eg poly (2-hydroxyethyl-methacrylate) or poly (vinyl alcohol)), polylactides (US Pat. No.
- the encapsulated antibody When the encapsulated antibody remains in the body for a long time, it may be denatured or aggregated as a result of exposure to moisture at 37 ° C., thereby eliminating biological activity and changing immunogenicity. Rational strategies can be devised depending on the mechanism involved. For example, rational measures can be devised to obtain stability depending on the mechanism involved. For example, if the aggregation mechanism is found to be the formation of intermolecular SS bonds by thio-disulfide exchange, the sulfhydryl residue is modified, lyophilized from an acidic solution, the water content is adjusted, and appropriate additives are added. Stabilization can be achieved by using and developing specific polymer matrix compositions.
- the antibodies of the present invention can be administered in a known manner, for example, intravenously as a bolus or by continuous infusion over a period of time, intramuscular, intraperitoneal, intracerebral spinal, subcutaneous, intraarticular, intrasynovial, subarachnoid space It is administered to human patients by internal, oral, topical, or inhalation routes. Intravenous or subcutaneous administration of the antibody is preferred.
- the antibodies of the invention are administered every 2 to 3 weeks at a dose ranging from about 5 mg / kg to about 15 mg / kg. The progress of the therapy of the invention is easily monitored by conventional techniques and assays.
- the antibody of the present invention may be administered as a single antibody, but can be administered in combination with other antibody drugs.
- the antibody of the present invention is useful in immunoassays such as ELISA because it distinguishes and recognizes a free primary antibody and an antigen-binding primary antibody.
- the present invention is made with an antibody, but the subject of the present invention may be a nucleic acid (aptamer) or peptide instead of an antibody. That is, an aptamer that recognizes an antibody that recognizes an antigen and a peptide, or an antibody that recognizes an aptamer that recognizes an antigen, an aptamer, and a peptide are also synonymous. Aptamers can be obtained by SELEX method and peptides can be obtained by phage library.
- Anti-FITC rat monoclonal antibody # 55 (IgG2a ⁇ ) was established by a conventional method.
- an anti-FITC rat monoclonal antibody # 7 (IgG2a ⁇ ) was independently established by a conventional method.
- CGG Chicken gamma globulin
- BSA Bovine serum albumin
- the light chain was purified from anti-FITC rat monoclonal antibody # 55 obtained by the above operation.
- the method for separating and purifying the light chain was performed according to Azuma, T et al. PNAS (1981) 78 pp569-573. That is, the purified antibody # 55 is dissolved in a final concentration of 0.01 M Dithiothreitol, 0.2 M Tris-HCl (pH 8.2). Warm the solution at 37 ° C. for 30 minutes. After the reaction, the reaction mixture was returned to room temperature (standing for about 10 minutes) and added to a final concentration of 0.3 M Iodoacetoamide and allowed to stand for 30 minutes to perform an alkylation reaction. HPLC was used to separate heavy and light chains.
- alkylation # 55 was applied to a column equilibrated with PBS (pH 7.2) in which 5 M Guanidine-HCl was dissolved to obtain a light chain fraction.
- the fraction contaminated with the heavy chain was again subjected to HPLC to obtain a light chain fraction.
- the light chain fraction was dialyzed against PBS and then aliquoted and stored frozen.
- the culture supernatant of Hybridoma is applied to each of the above three types of plates with 100 ⁇ l of the culture supernatant of Hybridoma and allowed to stand at room temperature for 2 hours. After washing the plate, the plate was washed after reacting with HRP-labeled anti-mouse IgG (rat IgG non-crossing) (Jackson Laboratories) for 1 hour at room temperature, and 100 ⁇ l of coloring solution TMB substrate solution (KPL, MD, USA) was added. After reaction for 50 minutes, color development is stopped with 50 ⁇ l of 2N sulfuric acid, and a wavelength of 450 nm is read with a plate reader.
- HRP-labeled anti-mouse IgG rat IgG non-crossing
- TMB substrate solution KPL, MD, USA
- antibodies appearing in the sera of immunized animals include those that react with antibody A, antibodies that react with antigen B, and those that recognize AB conjugates, regardless of antibody structural changes.
- An antibody that recognizes the structural change of antibody A accompanying AB binding, such as the target antibody, is presumed to have a very low frequency of appearance.
- the fluorescent substance FITC fluorescein isothiocyanate
- FITC fluorescein isothiocyanate
- the inventors first obtained two types of high-affinity anti-FITC antibodies using this property (the above-mentioned # 55 (IgG2a ⁇ ) and # 7 (IgG2a ⁇ )).
- FITC capture # 55 1) FITC dissolved in DMSO was added at a molar ratio of about 1: 5 to purified # 55 antibody solubilized in PBS (pH 6.8). Immediately, it was applied to a desalting PD-10 column (GE Healthcare Bio-Science Corp, NJ, USA) that had been equilibrated in advance with PBS (pH 6.8), and a high molecular weight fraction was fractionated. Immediately thereafter, 0.5 volume of 1M sodium carbonate buffer (pH 8.3) was added to make the solution weakly alkaline. Light-shielded and left at room temperature for 1 hour.
- FITC 1: 2.
- FITC bound to FITC anti-affinity antibody # 55 forms a covalent bond with a charged amino acid in the vicinity of the binding with the antibody and continues to stably bind FITC.
- FITC capture # 55 immunization and hybridoma preparation FITC capture # 55 (30 ⁇ g / 100 ⁇ l in PBS) was made into an emulsion with the same volume of adjuvant Titer Max Gold (CytRx Corp, GA, USA) and Balb / c mouse ( ⁇ ) Immunization was carried out intraperitoneally 3 times every 2 weeks at 7 weeks of age. Two weeks later, the same amount of FITC-captured # 55 (80 ⁇ g / 100 ⁇ l in PBS) was immunized intraperitoneally without adjuvant. Three days later, the spleen was isolated from the mouse, and the spleen cells were isolated. Cells (P3U1) were fused with polyethylene glycol, and HAT medium was used as a cell selection medium in 10 96-well plates (F series).
- the culture supernatant of Hybridoma is applied to each of the above three types of plates with 100 ⁇ l of the culture supernatant of Hybridoma and allowed to stand at room temperature for 2 hours. After washing the plate, the plate was washed after reacting with HRP-labeled anti-mouse IgG (rat IgG non-crossing) (Jackson Laboratories) for 1 hour at room temperature, and 100 ⁇ l of coloring solution TMB substrate solution (KPL, MD, USA) was added. After reaction for 50 minutes, color development was stopped with 50 ⁇ l of 2N sulfuric acid, and a wavelength of 450 nm was read with a plate reader.
- HRP-labeled anti-mouse IgG rat IgG non-crossing
- TMB substrate solution KPL, MD, USA
- the target antibody production wells are indicated by A (Domino antibody) or S (Unlocked antibody). Reactivity of 6 types of domino antibodies (L-1A to 6A) and 3 types of unlocked antibodies (L-1S to 3S) from the L series, and 1 type of domino antibody (F-1A) from the F series A clone was obtained.
- the domino antibody (F-1A, L-6A) -producing hybridoma obtained by cloning a hybridoma producing the target antibody was deposited with the ATCC on April 23, 2008, and the following ATCC numbers were assigned.
- mAb monoclonal antibody
- hybridomas were prepared by cell fusion with the myeloma cell line SP2 / 0. Screening for hybridomas that secrete useful mAbs was performed by ELISA using a culture medium and using the binding ability to E11 as an index.
- clone # 0806-12 with a large amount of antibody production was cultured in large quantities, and affinity purified using a column in which E11 was covalently bound to agarose beads.
- a yeast strain expressing the Ig domains of E11 (VH, CH1, CH2, CH3, VL, CL domains) on the surface was prepared and biotinylated # 0806-12 When the yeast surface was stained with streptavidin-PE and analyzed by FACS, it bound only to the yeast strain that expressed the CL domain. This shows that Ab # 0806-12 binds with the ⁇ 1 light chain constant region as an epitope (FIG. 12).
- the unlocked antibody (0806-12) -producing hybridoma obtained by cloning the hybridoma producing the target antibody was deposited with the ATCC on April 16, 2009, and the following ATCC numbers were assigned.
- mAb # 0806-12 It was analyzed using Biacore whether mAb # 0806-12 can detect an antigen-antibody reaction. Purified mAb # 0806-12 was immobilized on a Biacore® CM5 sensor chip by about 2000 RU by an amine coupling method, and binding to 9T13 (IgG1® / ⁇ 1), an anti-NP® mAb, was examined (FIG. 13).
- the anti- ⁇ 1 light chain monoclonal antibody # 0806-12 obtained this time specifically binds to an anti-NP mAb having a ⁇ 1 light chain and has an affinity when the anti-NP mAb binds to an NP antigen. It can be said that the antigen-antibody reaction can be discriminated because of a marked decrease in.
- Application example 1 of antibody recognizing antibody recognizing antigen 1 As means of measuring method (i) Biosensor: detection of trace antigens (realization of ultra-high sensitivity)
- Biosensor detection of trace antigens (realization of ultra-high sensitivity)
- a rat monoclonal antibody (A) that recognizes only a mouse antibody bound to an antigen.
- the hamster monoclonal antibody (B) reacts only when the rat antibody recognizes the antigen, and is assembled by changing the antibody recognition site (Fc part, light chain) and antibody species so that such a chain reaction occurs. Can do. That is, it is considered that a very small signal can be greatly amplified, and a highly sensitive sensor can be provided.
- a primary antibody that recognizes an antigen is labeled with a fluorescent protein CFP, and for example, the antibody is labeled with another type of fluorescent protein YFP.
- FRET fluorescence resonance energy transfer
- This measurement method does not require antigen purification, does not require antigen labeling, and can be applied to any measurement as long as a primary antibody that reacts with the antigen exists.
- the antibody can be labeled with an anticancer agent or radioactivity and can be widely used as an enhancer for antibody drugs.
- This antibody can be used as a potentiator regardless of the type of antibody drug provided that it is a human antibody that can react with the antibody. Moreover, since it reacts only with the pharmaceutical antibody couple
- Natural antibody enhancer acquired at the time of infection or cancer-bearing The living body responds at least upon the invasion of foreign bodies (viruses, recent), onset and growth of tumors, and the elimination of foreign bodies and tumor growth Encourage inhibition. That is, although it may not be sufficient, it is thought that the antibody is produced with respect to a foreign material or a tumor in the case of the said response. Therefore, in order to enhance the antibody supplementing the foreign substance or tumor cell, it is possible to administer the antibody to assist the biological reaction. That is, in the above (i), it is enhancement of the administered pharmaceutical antibody, but in this case, it can be said that it is a more effective globulin preparation that is applied as enhancement of innate immunity in vivo.
- Antigen-antibody complex removal column The antibody can be immobilized on a column and used. In certain diseases, large amounts of immune complexes are known to contribute to disease progression (eg, rheumatoid arthritis, SLE, etc.).
- This antibody column can be used as an extracorporeal circulation column to circulate blood in a patient and remove an immune complex antibody bound with an antigen.
- antibodies that are not involved in the immune complex return to the body without being adsorbed on the column. That is, only the immune complex causing the disease state can be removed.
- (ii) Trace poison removal column As in the case of (i) above, the column can be used to remove a poison that has entered the body by mistake. In this case, an antibody that binds to the poison is prepared. The antibody that reacts when the antibody is bound is bound to the column. In order to remove the toxic substance, a primary antibody that binds to the toxic substance is intravenously injected into the toxic body. Immediately, the column efficiently removes only the antibody bound to the toxin that initiates extracorporeal circulation.
- the antibody is tasteless and odorless and easily dissolved in water
- in order to remove the poison mixed in tap water, drinking water, etc. drop the primary antibody that binds to the poison in drinking water and then pass it through a filter with this antibody immobilized. Detoxification is possible.
- a similar application can also be applied to removing poisons in the air.
- the antibody having high affinity is presumed to have a function of dissociating the antigen from the antibody that recognizes the antibody.
- the antibody that reacts strongly in a state where IgE is not bound to an antigen is used as an antiallergic drug, the antibody binds to the antigen from the IgE antibody even if IgE binds the antigen allergen. Dissociates and IgE bound to allergen (antigen) can be prevented from inducing an allergic reaction.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
項1. 第一抗体を認識する抗体であって、遊離第一抗体と抗原結合第一抗体の一方の抗体を特異的に認識する抗体。
項2. 前記特異的認識抗体が、抗原結合第一抗体を特異的に認識し結合する項1記載の抗体(ドミノ抗体)。
項3. 前記特異的認識抗体が、遊離第一抗体を特異的に認識し結合する、項1記載の抗体(開錠抗体)。
項4. 前記特異的認識抗体が、第一抗体の軽鎖部分或いは軽鎖部分の部分ペプチドおよびFd(重鎖可変領域+CH1領域)およびその部分ペプチドからなる群から選ばれるいずれかを認識するものである項1~3のいずれかに記載の抗体。
項5. 項1~4のいずれかに記載の抗体を産生するハイブリドーマ。
項6. ATCCの受託番号がPTA-9167またはPTA-9168である、項5に記載のハイブリドーマ。
項7. ガンマグロブリンを抗原として免疫し、得られたハイブリドーマの産生するモノクローナル抗体から、ドミノ抗体もしくは開錠抗体を選別することを特徴とするドミノ抗体もしくは開錠抗体の取得方法。
項8. 前記抗原がガンマグロブリンの軽鎖又はその断片である項7に記載の方法。
項9. ハプテン抗体にハプテン又は抗原を捕捉させた後、ハプテン又は抗原を抗体に化学的に固定または結合し、抗原が抗体から解離しない抗原抗体複合物を作成した後、当該複合物を免疫しドミノ抗体を得る方法。
抗体を調製し特徴付ける手段は当該分野でよく知られている。本発明において使用される抗体の生産のための例示的な技術について次に説明する。抗体の産生に使用される抗原は抗体又はその一部であり得、好ましくは抗体の軽鎖又はその断片が挙げられる。
(i)Fdは、先ずFab, F(ab’)2を経て精製を行うことになる。この点、軽鎖の方が精製が簡単であり、収量の点で有利である;
(ii)軽鎖の方が物性の点で扱いやすい。H鎖は疎水性蛋白質であり精製の際沈殿しやすい。
ヒト化抗体には非ヒトである由来の一又は複数のアミノ酸残基が導入されている。これら非ヒトアミノ酸残基は、しばしば、典型的には「移入」可変ドメインから得られる「移入」残基と呼ばれる。ヒト化は、本質的にはヒト抗体の対応する配列に齧歯類CDRs又はCDR配列を置換することによりウィンターと共同研究者の方法(Jones等, Nature, 321:522-525 (1986)、Riechmann等, Nature, 332:323-327 (1988)、Verhoeyen等, Science, 239:1534-1536(1988))を使用して実施することができる。よって、このような「ヒト化」抗体は、無傷のヒト可変ドメインより実質的に少ない分が非ヒト種由来の対応する配列で置換されたキメラ抗体(米国特許第4816567号)である。実際には、ヒト化抗体は、典型的には幾らかの高頻度可変領域残基及び場合によっては幾らかのFR残基が齧歯類抗体の類似部位からの残基によって置換されているヒト化抗体である。
抗体断片を生産するために様々な技術が開発されている。伝統的には、これらの断片は、無傷の抗体のタンパク分解性消化を介して誘導されていた(例えば、Morimoto等, Journal of Biochemical and Biophysical Methods 24:107-117 (1992)及びBrennan等, Science, 229:81(1985)を参照)。しかし、これらの断片は今は組換え宿主細胞により直接生産することができる。例えば、抗体断片は上において検討した抗体ファージライブラリーから分離することができる。別法として、Fab'-SH断片は大腸菌から直接回収し、化学的に結合させてF(ab')2断片を形成することができる(Carter等, Bio/Technology 10:163-167(1992))。他のアプローチ法では、F(ab')2断片を組換え宿主細胞培養から直接分離することができる。抗体断片の生産のための他の方法は当業者には明らかであろう。他の実施態様では、選択抗体は単鎖Fv断片(scFV)である。国際公開第93/16185号を参照。
本発明の抗体は、公知の方法、例えばボーラスとしてもしくは一定時間にわたる連続注入による静脈内投与、筋肉内、腹腔内、脳脊髄内、皮下、関節内、滑液包内、くも膜下腔内、経口、局所的、又は吸入経路によりヒト患者に投与される。抗体の静脈内又は皮下投与が好ましい。
次の3つのハイブリドーマ細胞株を合衆国バージニア州マナッサスのアメリカン・タイプ・カルチャー・コレクション(ATCC)にブタペスト条約の規定に従って寄託した:
(1) Identification Reference by Depositor:Hybridoma Cell Line F-1A
ATCC Patent Deposit Designation:PTA-9167
Date of Receipt of Cultures by the ATCC: April 23, 2008;
(2) Identification Reference by Depositor:Hybridoma Cell Line L-6A
ATCC Patent Deposit Designation:PTA-9168
Date of Receipt of Cultures by the ATCC: April 23, 2008;
(3) Identification Reference by Depositor:Hybridoma Cell Line 0806-12
ATCC Patent Deposit Designation: PTA-9967
Date of Receipt of Cultures by the ATCC: April 16, 2009。
抗原となるラットモノクローナル抗体の作成
抗FITCラットモノクローナル抗体#55(IgG2aκ)を常法により樹立した。また、一方で独立して抗FITCラットモノクローナル抗体#7(IgG2aκ)を常法により樹立した。詳しくは、Chicken gamma globulin (CGG) (Rockland, Immunochemicals, Inc., PA, USA)と、Bovine serum albumin(BSA) (Sigma, Mo, USA) をFITC labeling kit(Dojindo, Kumamoto, Japan) にてFITCで標識した。FITC標識CGG(80μg/100μl in PBS)を同容量のアジュバントTiter Max Gold(CytRx Corp, GA, USA)でエマルジョンを作成し、Fischer Rat(♀)7週齢に二週間毎に3回腹腔内に免疫した。さらにその二週間後同量のFITC標識CGG(80μg/100μl in PBS)をアジュバント無しで腹腔内に免疫しその3日後、ラットより脾臓を摘出し脾細胞を分離し、常法に従い、マウスミエローマ細胞(P3U1)とポリエチレングリコールを用いて融合し、HAT培地を細胞選択培地として96Wellプレート10枚に撒き込んだ。14日後、各Wellの培養上清を採取し、FITC標識BSAをELISAプレートにコートしBSAでBlockingしたプレートを用いて抗FITC抗体を産生するミエローマを選択した。上記融合を二回繰り返し、各々の融合からそれぞれ抗FITCラットモノクローナル抗体#55(IgG2aκ)、抗FITCラットモノクローナル抗体#7(IgG2aκ)産生ハイブリドーマを樹立した。それぞれのハイブリドーマを大量に培養し培養上清からHiTrap ProteinG HP(GE Healthcare, NJ, USA)カラムを用いてラットモノクローナル抗体を精製した。
上記操作により得られた抗FITCラットモノクローナル抗体#55より、軽鎖を精製した。軽鎖の分離精製法は、Azuma、Tら PNAS(1981) 78 pp569-573に準じて行った。即ち、精製#55抗体を最終濃度0.01M Dithiothreitol、0.2M Tris-HCl (pH8.2)に溶解する。溶液を37℃、30分間加温する。反応後室温に戻し(約10分静置)最終濃度0.3M Iodoacetoamideとなるように加え30分間静置し、アルキレーション反応を行った。重鎖と軽鎖の分離にはHPLCを用いた。アルキレーション反応後、5M Guanidine-HClの溶解したPBS(pH 7.2) で平衡化したカラムにアルキル化#55を供し、軽鎖分画を得た。重鎖が混入する分画は再度HPLCに供し軽鎖分画を得た。軽鎖分画をPBSに対し透析した後小分けして凍結保存した。
#55の軽鎖(30μg/100μl in PBS)を同容量のアジュバントTiter Max Gold(CytRx Corp, GA, USA)でエマルジョンを作成し、Balb/c mouse(♀)7週齢に二週間毎に3回腹腔内に免疫した。さらにその二週間後同量の#55の軽鎖を(80μg/100μl in PBS)をアジュバント無しで腹腔内に免疫しその3日後、マウスより脾臓を摘出し脾細胞を分離し、常法に従い、マウスミエローマ細胞(P3U1)とポリエチレングリコールを用い融合し、HAT培地を細胞選択培地として96Wellプレート10枚に撒き込んだ(Lシリーズ)。
14日後、各Wellの培養上清を採取し、(i)FITC標識BSAをELISAプレートにコートしBSAでBlockingしたプレート(ii)FITC標識BSAをELISAプレートにコートしBSAでBlockingしたプレートに#7抗体(1μg/ml in PBS)を100μl/Well 添加し4℃で一晩反応させ洗浄したプレート(iii)#7抗体(1μg/ml in PBS)を100μl/Well 添加しELISAプレートにコートしBSAでBlockingしたプレート、以上3種類のプレートを用いアッセイを行った。即ち、Hybridomaの培養上清を上記三種類のプレートに各々100μlのHybridomaの培養上清を供し2時間室温で静置する。プレートを洗浄後、HRP標識抗マウスIgG(ラットIgG非交差)(Jackson Laboratories)と1時間室温で反応後プレートを洗浄し、発色液TMB基質溶液(KPL社, MD, USA)を100μl添加し10分間反応後50μlの2N硫酸で発色を停止しプレートリーダーで450nmの波長を読み取る。
(ii)と(iii)のプレートのODを比較し、いずれかに強く反応する抗体を産生するHybridomaを目的の抗体産生Hybridomaと判定した。適宜(i)のプレートを用いたAssayも行いBSAやBSA-FITCに反応しないことを確認した。
理論的には、抗体Aが抗原としてタンパク質Bを認識する場合、その抗原抗体複合物(A-B)-抗体Aの構造変化が生体内で長時間保たれるよう架橋化剤を用いて固定しても良い-をマウス等の動物に免疫して抗体Aが抗原Bを認識した際に生ずる抗体Aの構造変化を認識する抗体を取得できる。
1)PBS (pH6.8) に可溶化した精製#55抗体に対し、DMSOに溶解したFITCをモル比で約1:5になるように加えた。直ちに、予めPBS (pH6.8)で平衡化した脱塩用PD-10カラム(GE Healthcare Bio-Science Corp, NJ, USA)に供し、高分子量分画を分取した。直ちに1M炭酸ナトリウム緩衝液(pH8.3)を0.5容量加え溶液を弱アルカリ性とした。遮光し1時間室温で放置した。分光光度計で波長280nmと495nmを測定し抗体1分子に対するFITC分子の結合数を計算式から導き出し、ほぼ抗体分子:FITC=1:2であることを確認した。本過程により、FITCに対する抗親和性抗体#55に結合したFITCが抗体との結合近傍で荷電しているアミノ酸と共有結合を形成しFITCを安定に結合し続けると考えた。
FITC捕捉#55(30μg/100μl in PBS)を同容量のアジュバントTiter Max Gold(CytRx Corp, GA, USA)でエマルジョンを作成し、Balb/c mouse(♀)7週齢に二週間毎に3回腹腔内に免疫した。さらにその二週間後同量のFITC捕捉#55(80μg/100μl in PBS)をアジュバント無しで腹腔内に免疫しその3日後、マウスより脾臓を摘出し脾細胞を分離し、常法に従い、マウスミエローマ細胞(P3U1)とポリエチレングリコールを用い融合し、HAT培地を細胞選択培地として96Wellプレート10枚に撒き込んだ(Fシリーズ)。
14日後、各Wellの培養上清を採取し、(i)FITC標識BSAをELISAプレートにコートしBSAでBlockingしたプレート(ii)FITC標識BSAをELISAプレートにコートしBSAでBlockingしたプレートに#7抗体(1μg/ml in PBS)を100μl/Well 添加し4℃で一晩反応させ洗浄したプレート(iii)#7抗体(1μg/ml in PBS)を100μl/Well 添加しELISAプレートにコートしBSAでBlockingしたプレート、以上3種類のプレートを用いアッセイを行った。即ち、Hybridomaの培養上清を上記三種類のプレートに各々100μlのHybridomaの培養上清を供し2時間室温で静置する。プレートを洗浄後、HRP標識抗マウスIgG(ラットIgG非交差)(Jackson Laboratories) と1時間室温で反応後プレートを洗浄し、発色液TMB基質溶液(KPL社, MD, USA)を100μl添加し10分間反応後50μlの2N硫酸で発色を停止しプレートリーダーで450nmの波長を読み取った。
(ii)と(iii)のプレートのODを比較し、いずれかに強く反応する抗体を産生するHybridomaを目的の抗体産生Hybridomaと判定した。適宜(i)のプレートを用いたAssayも行いBSAやBSA-FITCに反応しないことを確認した。
(1) Identification Reference by Depositor:Hybridoma Cell Line F-1A
ATCC Patent Deposit Designation:PTA-9167
(2) Identification Reference by Depositor:Hybridoma Cell Line L-6A
ATCC Patent Deposit Designation:PTA-9168
抗原抗体反応を検出する分子の開発を目的として、抗体の構造変化を認識するモノクローナル抗体(mAb)の作製を試みた。戦略として、ハプテンであるNP((4-Hydroxy-3-Nitrophenyl)Acetyl)に対して特異性を有するmAbをモデル抗体として選択した。SJLマウスはλ1軽鎖定常領域に存在する1塩基の変異により、血清中にλ1軽鎖がほとんど検出できないことから、λ1軽鎖を有する抗NP mAbをSJLマウスに免疫することで、λ1軽鎖をエピトープとして結合し、かつ、抗原抗体反応を検出できるmAbクローンの単離が可能であると考え試みた。抗NP mAbとしてアフィニティーが高いE11(IgG2a/λ1)を用い、NP14-CGGと3:1のモル比で混合し、抗体抗原複合体を形成させた状態で免疫した。詳細な免疫スケジュールを図11に示す。2週間おき、4回の免疫後に脾臓を摘出し、ミエローマ細胞SP2/0株と細胞融合することでハイブリドーマを作製した。有用なmAbを分泌するハイブリドーマのスクリーニングは培養上製を用いたELISAにより E11への結合能を指標に行った。
Identification Reference by Depositor:Hybridoma Cell Line 0806-12
ATCC Patent Deposit Designation: PTA-9967
1)測定方法の手段として
(i)バイオセンサー:微量抗原の検出(超高感度実現)
例えば、抗原を結合したマウス抗体のみを認識するラットモノクローナル抗体(A)が存在する。また、ラット抗体が抗原を認識した時にのみ反応するハムスターモノクローナル抗体(B)、このような連鎖反応が生じるように抗体の認識部位(Fc部分、軽鎖)や抗体の種を変えることにより組み立てることができる。つまり、非常に小さなシグナルを大きく増幅できることが考えられ高感度なセンサーを提供できる。
例えば抗原を認識する一次抗体に蛍光タンパク質CFPでラベルをし、例えば当該抗体を別の種類の蛍光タンパク質YFPでラベルする。抗原の存在する溶液に一定量の一次抗体と、当該抗体を添加すると、その抗原量に応じて蛍光共鳴エネルギー移動(Fluorescence resonance energy transfer: FRET)が観察される。
(i)抗体医薬品のUniversalなEnhancer抗体
すでに医薬品として認可実用されている医薬品抗体が、体内で抗原に結合して懸かるADCC反応やCDCC反応を惹起する際に本抗体がその反応を増強できる。たとえば、癌抗原を認識する抗体医薬品が投与されて、投与された抗体の一部が病巣部位に到達する。そこで、当該抗体を投与すると、本抗体は、病巣部において抗原と結合している医薬品抗体に反応して結合する。
異物(ウイルス、最近)の侵入に際して、また腫瘍の発症、増殖に際して少なからず生体は応答し、異物の排除や腫瘍の増殖の阻害を働きかける。つまり、十分ではないかもしれないが上記応答に際し、異物や腫瘍に対して抗体が産生されていると考えられる。そこで、異物や腫瘍細胞を補足している抗体を増強するために当該抗体を投与して生体の反応を補助することが可能である。つまり、上記(i)では、投与された医薬品抗体の増強であるがこの場合には、生体内の自然免疫力の増強として応用する、より有効なグロブリン製剤とも言える。
(i)抗原抗体複合体除去カラム
当該抗体をカラムに固定化して用いることができる。ある種の疾患では、多量の免疫複合体が病気の進展に寄与していることが知られている(例えば、慢性関節リウマチ、SLEなど)。本抗体カラムは、体外循環カラムとして患者中の血液を循環させ抗原を結合した免疫複合抗体を除去することができる。また、免疫複合体に関与してない抗体は本カラムに吸着することなく体内に戻ることになる。即ち、病態を悪化させている原因の免疫複合体のみを除去できるのが特徴である。
上記(i)と同様に誤って体内に入った毒物を除去するために用いることができる。この場合、毒物に結合する抗体を準備しておく。この抗体が結合した時に反応する当該抗体をカラムに結合させる。毒物を除去する目的で毒物の混入した体内に毒物に結合する一次抗体を静脈注射する。直ちに、体外循環を開始する毒物に結合した抗体のみをカラムが効率的に除去する。
(i)抗アレルギー医薬品として
IgEが抗原に結合していない状態で強く反応する当該抗体を使用すれば、IgEが抗原であるアレルゲンを結合していても当該抗体が結合することによりIgE抗体から抗原が解離し、アレルゲン(抗原)を結合したIgEがアレルギー性の反応を惹起することを抑制することを可能にする。
上記と同様の観点より、抗体を投与することにより生ずるショックの対処として、抗体が結合したことを解除したい場合がある。例えば、アゴニスト性の抗体投与により生じたTegeneroが英国で行った臨床試験のように今後開発され、臨床試験される抗体でまれにそのような事件が起きないとは限らない。当該抗体は、投与された抗体の抗原への結合を解除し、ショック症状からの離脱に効果を示すと考えられる。
本適応も基本的に上記二点と同じである。上記A.3)(i)で行っている体外循環で除いている抗原抗体複合体を、当該抗体を体内に注射し体内で抗原と抗体の解離を行うものが挙げられる。
PTA-9168
PTA-9967
Claims (9)
- 第一抗体を認識する抗体であって、遊離第一抗体と抗原結合第一抗体の一方の抗体を特異的に認識する抗体。
- 前記特異的認識抗体が、抗原結合第一抗体を特異的に認識し結合する請求項1記載の抗体。
- 前記特異的認識抗体が、遊離第一抗体を特異的に認識し結合する、請求項1記載の抗体。
- 前記特異的認識抗体が第一抗体の軽鎖部分を認識するものである請求項1~3のいずれかに記載の抗体。
- 請求項1~4のいずれかに記載の抗体を産生するハイブリドーマ。
- ATCCの受託番号がPTA-9167またはPTA-9168である、請求項5に記載のハイブリドーマ。
- ガンマグロブリンを抗原として免疫し、得られたハイブリドーマの産生するモノクローナル抗体から、ドミノ抗体もしくは開錠抗体を選別することを特徴とするドミノ抗体もしくは開錠抗体の取得方法。
- 前記抗原がガンマグロブリンの軽鎖又はその断片である請求項7に記載の方法。
- ハプテン抗体にハプテン又は抗原を捕捉させた後、ハプテン又は抗原を抗体に化学的に固定または結合し、抗原が抗体から解離しない抗原抗体複合物を作成した後、当該複合物を免疫しドミノ抗体を得る方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980118370.2A CN102037018B (zh) | 2008-05-20 | 2009-05-19 | 识别结合了抗原的抗体与没有结合抗原的抗体的结构变化的抗体及其获得方法 |
KR1020107028395A KR101772231B1 (ko) | 2008-05-20 | 2009-05-19 | 항원이 결합된 항체와 항원이 결합되어 있지 않은 항체의 구조 변화를 식별하는 항체와 그의 취득법 |
JP2010513033A JP5995402B2 (ja) | 2008-05-20 | 2009-05-19 | 抗原を結合した抗体と抗原を結合していない抗体の構造変化を識別する抗体とその取得法 |
EP09750583A EP2289943A4 (en) | 2008-05-20 | 2009-05-19 | ON THE DISTINCTION OF THE STRUCTURAL CHANGE BETWEEN ANTIBODY WITH ANTIBODY OF ANTIBODY AND ANTIBODY WITH ANTIBODY OF ANGUED ANTIBODY AND METHOD FOR THE PREPARATION OF THE ANTIBODY |
CA2723618A CA2723618A1 (en) | 2008-05-20 | 2009-05-19 | Antibody capable of discriminating the change in structure between antibody conjugated with antibody and antibody unconjugated with antibody, and method for production of the antibody |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US5463308P | 2008-05-20 | 2008-05-20 | |
US61/054633 | 2008-05-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009142221A1 true WO2009142221A1 (ja) | 2009-11-26 |
Family
ID=41340149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/059228 WO2009142221A1 (ja) | 2008-05-20 | 2009-05-19 | 抗原を結合した抗体と抗原を結合していない抗体の構造変化を識別する抗体とその取得法 |
Country Status (7)
Country | Link |
---|---|
US (2) | US8093018B2 (ja) |
EP (2) | EP2289943A4 (ja) |
JP (1) | JP5995402B2 (ja) |
KR (1) | KR101772231B1 (ja) |
CN (1) | CN102037018B (ja) |
CA (1) | CA2723618A1 (ja) |
WO (1) | WO2009142221A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101832999A (zh) * | 2010-04-29 | 2010-09-15 | 山东莱博生物科技有限公司 | 一种抗原抗体复合物解离液试剂盒及应用 |
JP2015531762A (ja) * | 2012-08-17 | 2015-11-05 | モルフォシス・アー・ゲー | 複合体特異的抗体及び抗体断片並びにその使用 |
WO2019160007A1 (ja) | 2018-02-14 | 2019-08-22 | 中外製薬株式会社 | 抗原結合分子および組合せ |
JP2021520777A (ja) * | 2018-03-28 | 2021-08-26 | アクソン ニューロサイエンス エスエー | アルツハイマー病を検出および処置するための抗体に基づく方法 |
US12054544B2 (en) | 2017-02-24 | 2024-08-06 | Chugai Seiyaku Kabushiki Kaisha | Compositions comprising antigen-binding molecules |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8093018B2 (en) * | 2008-05-20 | 2012-01-10 | Otsuka Pharmaceutical Co., Ltd. | Antibody identifying an antigen-bound antibody and an antigen-unbound antibody, and method for preparing the same |
US20130231462A1 (en) * | 2012-02-27 | 2013-09-05 | Bio-Rad Laboratories, Inc. | Anti-immune complex antibodies |
CN109991411B (zh) * | 2017-12-29 | 2023-01-20 | 上海索昕生物科技有限公司 | 一种检测待测样本中目标抗体的免疫测定方法及其应用 |
CN109991405B (zh) * | 2017-12-29 | 2023-01-24 | 上海索昕生物科技有限公司 | 一种免疫检测试剂盒及其应用 |
WO2022032184A1 (en) * | 2020-08-05 | 2022-02-10 | The Administrators Of The Tulane Educational Fund | Method of detecting tb in bodily fluid samples |
Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3773919A (en) | 1969-10-23 | 1973-11-20 | Du Pont | Polylactide-drug mixtures |
US4179337A (en) | 1973-07-20 | 1979-12-18 | Davis Frank F | Non-immunogenic polypeptides |
US4301144A (en) | 1979-07-11 | 1981-11-17 | Ajinomoto Company, Incorporated | Blood substitute containing modified hemoglobin |
JPS58177921A (ja) * | 1982-04-09 | 1983-10-18 | Fujirebio Inc | 抗免疫複合体抗体およびその製法 |
US4485045A (en) | 1981-07-06 | 1984-11-27 | Research Corporation | Synthetic phosphatidyl cholines useful in forming liposomes |
US4496689A (en) | 1983-12-27 | 1985-01-29 | Miles Laboratories, Inc. | Covalently attached complex of alpha-1-proteinase inhibitor with a water soluble polymer |
US4544545A (en) | 1983-06-20 | 1985-10-01 | Trustees University Of Massachusetts | Liposomes containing modified cholesterol for organ targeting |
US4640835A (en) | 1981-10-30 | 1987-02-03 | Nippon Chemiphar Company, Ltd. | Plasminogen activator derivatives |
US4670417A (en) | 1985-06-19 | 1987-06-02 | Ajinomoto Co., Inc. | Hemoglobin combined with a poly(alkylene oxide) |
WO1987005330A1 (en) | 1986-03-07 | 1987-09-11 | Michel Louis Eugene Bergh | Method for enhancing glycoprotein stability |
US4791192A (en) | 1986-06-26 | 1988-12-13 | Takeda Chemical Industries, Ltd. | Chemically modified protein with polyethyleneglycol |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
EP0404097A2 (de) | 1989-06-22 | 1990-12-27 | BEHRINGWERKE Aktiengesellschaft | Bispezifische und oligospezifische, mono- und oligovalente Rezeptoren, ihre Herstellung und Verwendung |
US5013556A (en) | 1989-10-20 | 1991-05-07 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
WO1993011161A1 (en) | 1991-11-25 | 1993-06-10 | Enzon, Inc. | Multivalent antigen-binding proteins |
WO1993016185A2 (en) | 1992-02-06 | 1993-08-19 | Creative Biomolecules, Inc. | Biosynthetic binding protein for cancer marker |
US5545807A (en) | 1988-10-12 | 1996-08-13 | The Babraham Institute | Production of antibodies from transgenic animals |
US5545806A (en) | 1990-08-29 | 1996-08-13 | Genpharm International, Inc. | Ransgenic non-human animals for producing heterologous antibodies |
US5569825A (en) | 1990-08-29 | 1996-10-29 | Genpharm International | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
WO1997004801A1 (en) | 1995-07-27 | 1997-02-13 | Genentech, Inc. | Stabile isotonic lyophilized protein formulation |
US5625126A (en) | 1990-08-29 | 1997-04-29 | Genpharm International, Inc. | Transgenic non-human animals for producing heterologous antibodies |
US5633425A (en) | 1990-08-29 | 1997-05-27 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5641870A (en) | 1995-04-20 | 1997-06-24 | Genentech, Inc. | Low pH hydrophobic interaction chromatography for antibody purification |
US5661016A (en) | 1990-08-29 | 1997-08-26 | Genpharm International Inc. | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
US5750373A (en) | 1990-12-03 | 1998-05-12 | Genentech, Inc. | Enrichment method for variant proteins having altered binding properties, M13 phagemids, and growth hormone variants |
JP2004131419A (ja) * | 2002-10-10 | 2004-04-30 | Chemicals Evaluation & Research Institute | センシング抗体及び受容体コンホメーションセンシングアッセイ |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4983530A (en) * | 1988-01-29 | 1991-01-08 | E. I. Du Pont De Nemours And Company | Sandwich immunoassay for determination of total monoclonal IGG |
FR2652163B1 (fr) * | 1989-09-20 | 1994-04-15 | Bio Merieux | Procede de detection d'une substance biologique a l'aide de ligands. |
GB2246780B (en) * | 1990-05-25 | 1994-04-27 | Nat Res Dev | Immunodiagnostic assay for rheumatoid arthritis |
US5480974A (en) * | 1993-06-18 | 1996-01-02 | The Scripps Research Institute | Antibodies to human C5a receptor |
JPH10511846A (ja) * | 1994-12-28 | 1998-11-17 | ユニバーシティ オブ ケンタッキー | ヒトガン胎児性抗原に関連する組換えモノクローナル抗イディオタイプ抗体3h1配列 |
JPH11153599A (ja) * | 1997-11-21 | 1999-06-08 | Dai Ichi Pure Chem Co Ltd | 免疫学的測定方法 |
WO2002076384A2 (en) * | 2001-03-21 | 2002-10-03 | Altarex Corp. | Therapeutic compositions that alter the immune response |
US20060177439A1 (en) * | 2004-12-15 | 2006-08-10 | Scott Koenig | FcgammaRIIB-specific antibodies and methods of use thereof |
EP1495324A4 (en) * | 2002-10-10 | 2006-01-25 | Univ | USE OF MONOCLONAL ANTIBODIES FOR THE DISTINCTION OF PROTEIN INFORMATION FORMS |
FI20022048A0 (fi) | 2002-11-18 | 2002-11-18 | Valtion Teknillinen | Ei-kompetetiivinen immunomääritys pienille analyyteille |
CN1865281B (zh) | 2006-06-02 | 2012-08-22 | 北京大学人民医院 | 卵巢癌抗独特型抗体6b11 t细胞表位肽及其应用 |
EP2164511A1 (en) * | 2007-05-22 | 2010-03-24 | Baylor College Of Medicine | Immune complex vaccination as a strategy to enhance immunity in the elderly and other immune compromised populations |
US8093018B2 (en) * | 2008-05-20 | 2012-01-10 | Otsuka Pharmaceutical Co., Ltd. | Antibody identifying an antigen-bound antibody and an antigen-unbound antibody, and method for preparing the same |
-
2009
- 2009-05-18 US US12/467,853 patent/US8093018B2/en not_active Expired - Fee Related
- 2009-05-19 KR KR1020107028395A patent/KR101772231B1/ko active IP Right Grant
- 2009-05-19 EP EP09750583A patent/EP2289943A4/en not_active Withdrawn
- 2009-05-19 JP JP2010513033A patent/JP5995402B2/ja not_active Expired - Fee Related
- 2009-05-19 CN CN200980118370.2A patent/CN102037018B/zh not_active Expired - Fee Related
- 2009-05-19 CA CA2723618A patent/CA2723618A1/en not_active Abandoned
- 2009-05-19 EP EP12177816A patent/EP2530092A1/en not_active Ceased
- 2009-05-19 WO PCT/JP2009/059228 patent/WO2009142221A1/ja active Application Filing
-
2011
- 2011-08-24 US US13/217,050 patent/US8759489B2/en not_active Expired - Fee Related
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3773919A (en) | 1969-10-23 | 1973-11-20 | Du Pont | Polylactide-drug mixtures |
US4179337A (en) | 1973-07-20 | 1979-12-18 | Davis Frank F | Non-immunogenic polypeptides |
US4301144A (en) | 1979-07-11 | 1981-11-17 | Ajinomoto Company, Incorporated | Blood substitute containing modified hemoglobin |
US4485045A (en) | 1981-07-06 | 1984-11-27 | Research Corporation | Synthetic phosphatidyl cholines useful in forming liposomes |
US4640835A (en) | 1981-10-30 | 1987-02-03 | Nippon Chemiphar Company, Ltd. | Plasminogen activator derivatives |
JPS58177921A (ja) * | 1982-04-09 | 1983-10-18 | Fujirebio Inc | 抗免疫複合体抗体およびその製法 |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US4544545A (en) | 1983-06-20 | 1985-10-01 | Trustees University Of Massachusetts | Liposomes containing modified cholesterol for organ targeting |
US4496689A (en) | 1983-12-27 | 1985-01-29 | Miles Laboratories, Inc. | Covalently attached complex of alpha-1-proteinase inhibitor with a water soluble polymer |
US4670417A (en) | 1985-06-19 | 1987-06-02 | Ajinomoto Co., Inc. | Hemoglobin combined with a poly(alkylene oxide) |
WO1987005330A1 (en) | 1986-03-07 | 1987-09-11 | Michel Louis Eugene Bergh | Method for enhancing glycoprotein stability |
US4791192A (en) | 1986-06-26 | 1988-12-13 | Takeda Chemical Industries, Ltd. | Chemically modified protein with polyethyleneglycol |
US5545807A (en) | 1988-10-12 | 1996-08-13 | The Babraham Institute | Production of antibodies from transgenic animals |
EP0404097A2 (de) | 1989-06-22 | 1990-12-27 | BEHRINGWERKE Aktiengesellschaft | Bispezifische und oligospezifische, mono- und oligovalente Rezeptoren, ihre Herstellung und Verwendung |
US5013556A (en) | 1989-10-20 | 1991-05-07 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
US5545806A (en) | 1990-08-29 | 1996-08-13 | Genpharm International, Inc. | Ransgenic non-human animals for producing heterologous antibodies |
US5569825A (en) | 1990-08-29 | 1996-10-29 | Genpharm International | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
US5625126A (en) | 1990-08-29 | 1997-04-29 | Genpharm International, Inc. | Transgenic non-human animals for producing heterologous antibodies |
US5633425A (en) | 1990-08-29 | 1997-05-27 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5661016A (en) | 1990-08-29 | 1997-08-26 | Genpharm International Inc. | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
US5750373A (en) | 1990-12-03 | 1998-05-12 | Genentech, Inc. | Enrichment method for variant proteins having altered binding properties, M13 phagemids, and growth hormone variants |
WO1993011161A1 (en) | 1991-11-25 | 1993-06-10 | Enzon, Inc. | Multivalent antigen-binding proteins |
WO1993016185A2 (en) | 1992-02-06 | 1993-08-19 | Creative Biomolecules, Inc. | Biosynthetic binding protein for cancer marker |
US5641870A (en) | 1995-04-20 | 1997-06-24 | Genentech, Inc. | Low pH hydrophobic interaction chromatography for antibody purification |
WO1997004801A1 (en) | 1995-07-27 | 1997-02-13 | Genentech, Inc. | Stabile isotonic lyophilized protein formulation |
JP2004131419A (ja) * | 2002-10-10 | 2004-04-30 | Chemicals Evaluation & Research Institute | センシング抗体及び受容体コンホメーションセンシングアッセイ |
Non-Patent Citations (63)
Title |
---|
APLIN; WRISTON, CRC CRIT. REV. BIOCHEM., 1981, pages 259 - 306 |
AZUMA, T. ET AL., PNAS, vol. 78, 1981, pages 569 - 573 |
BIRD ET AL., SCIENCE, vol. 242, 1988, pages 423 - 426 |
BOERNER ET AL., J. IMMUNOL., vol. 147, no. 1, 1991, pages 86 - 95 |
BRENNAN ET AL., SCIENCE, vol. 229, 1985, pages 81 |
BRODEUR ET AL.: "Monoclonal Antibody Production Techniques and Applications", 1987, MARCEL DEKKER, INC, pages: 51 - 63 |
BRUGGERMANN ET AL., YEAR IN IMMUNO., vol. 7, 1993, pages 33 |
CARON ET AL., J. EXP. MED., vol. 176, 1992, pages 1191 - 1195 |
CARTER ET AL., BIO/TECHNOLOGY, vol. 10, 1992, pages 163 - 167 |
CARTER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 89, 1992, pages 4285 |
CHOTHIA ET AL., J. MOL. BIOL., vol. 196, 1987, pages 901 |
CLACKSON ET AL., NATURE, vol. 352, 1991, pages 624 - 628 |
COLE ET AL.: "Monoclonal Antibodies and Cancer Therapy", 1985, ALAN R. LISS, pages: 77 |
DUCHOSAL ET AL., NATURE, vol. 355, 1992, pages 258 |
EDGE ET AL., ANAL. BIOCHEM., vol. 118, 1981, pages 131 |
EPSTEIN ET AL., PROC. NATL. ACAD. SCI. USA, vol. 82, 1985, pages 3688 |
FISHWILD ET AL., NATURE, vol. 14, 1996, pages 845 - 51 |
GABIZON ET AL., J. NATIONAL CANCER INST., vol. 81, no. 19, 1989, pages 1484 |
GODING: "Monoclonal Antibodies: Principles and Practice", 1986, ACADEMIC PRESS, pages: 59 - 103 |
HAKIMUDDIN ET AL.: "Chemical deglycosylation", ARCH. BIOCHEM. BIOPLIYS., vol. 259, 1987, pages 52 |
HOLLINGER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 6444 - 6448 |
HOOGENBOOM ET AL., J. MOL. BIOL., vol. 227, 1991, pages 381 |
HOOGENBOOM; WINTER, J. MOL. BIOL., vol. 227, 1991, pages 381 |
HUSTON ET AL., PNAS (USA), vol. 85, 1988, pages 5879 - 5883 |
HWANG ET AL., PROC. NATL. ACAD. SCI. USA, vol. 77, 1980, pages 4030 |
JAKOBOVITS ET AL., NATURE, vol. 362, 1993, pages 255 - 258 |
JAKOBOVITS ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 2551 |
JAMES M. RINI; URSULA SCHULZE-GAHMEN; IAN A. WILSON: "Structural evidence for induced fit as a mechanism for antibody-antigen recognition", SCIENCE, vol. 255, 1992, pages 959 - 965 |
JONES ET AL., NATURE, vol. 321, 1986, pages 522 - 525 |
KOHLER ET AL., NATURE, vol. 256, 1975, pages 495 |
KOZBOR, J. IMMUNOL., vol. 133, 1984, pages 3001 |
LONBERG ET AL., NATURE, vol. 368, 1994, pages 856 - 859 |
LONBERG; HUSZAR, INTERN. REV. IMMUNOL., vol. 13, 1995, pages 65 - 93 |
MARKS ET AL., BIO/TECHNOLOGY, vol. 10, 1992, pages 779 - 783 |
MARKS ET AL., J. MOL. BIOL., vol. 222, 1991, pages 581 |
MARKS ET AL., J. MOL. BIOL., vol. 222, 1991, pages 581 - 597 |
MARTIN ET AL., J. BIOL. CHEM., vol. 257, 1982, pages 286 - 288 |
MASAYUKI ODA; HARUO KOZONO; HISAYUKI MORI; TAKACHIKA AZUMA: "Evidence of allosteric conformational changes in the antibody constant region upon antigen binding", INTERNATIONAL IMMUNOLOGY, vol. 15, 2003, pages 417 - 426, XP009041684, DOI: doi:10.1093/intimm/dxg036 |
MCCAFFERTY ET AL., NATURE, vol. 348, 1990, pages 552 - 554 |
MORIMOTO ET AL., JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS, vol. 24, 1992, pages 107 - 117 |
MORRISON ET AL., NATURE, vol. 368, 1994, pages 812 - 13 |
MORRISON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 81, 1984, pages 6851 |
MORRISON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 81, 1984, pages 6851 - 6855 |
NEUBERGER, NATURE BIOTECHNOLOGY, vol. 14, 1996, pages 826 |
PRESTA ET AL., J. IMMUNOL., vol. 151, 1993, pages 2623 |
PRESTA, CURR. OP. STRUCT. BIOL., vol. 2, 1992, pages 593 - 596 |
REMINGTON: "Pharmaceutical Sciences", 1980 |
RIECHMANN ET AL., NATURE, vol. 332, 1988, pages 323 - 327 |
RIECHMANN ET AL., NATURE, vol. 332, 1988, pages 323 - 329 |
See also references of EP2289943A4 * |
SHEETS ET AL., PNAS (USA), vol. 95, 1998, pages 6157 - 6162 |
SHOPES, B. J. IMMUNOL., vol. 148, 1992, pages 2918 - 2922 |
SIMS ET AL., J. IMMUNOL., vol. 151, 1993, pages 2296 |
STEVENSON ET AL., ANTI-CANCER DRUG DESIGN, vol. 3, 1989, pages 219 - 230 |
TAKUMA SAGAWA; MASAYUKI ODA; MISAYUKI MORII; HISAO TAKIZAWA; HARUO KOZONO; TAKACHIKA AZUMA: "Conformational changes in the antibody constant domains upon hapten-binding", MOLECULAR IMMUNOLOGY, vol. 42, 2005, pages 9 - 18 |
THOTAKURA ET AL.: "Enzymatic cleavage of carbohydrate moieties on antibodies", METH. ENZYMOL, vol. 138, 1987, pages 350 |
VAUGHAN ET AL., NATURE BIOTECH, vol. 14, 1996, pages 309 |
VAUGHAN ET, NATURE BIOTECHNOLOGY, vol. 14, 1996, pages 309 - 314 |
VERHOEYEN ET AL., SCIENCE, vol. 239, 1988, pages 1534 - 1536 |
WARD ET AL., NATURE, vol. 341, 1989, pages 544 - 546 |
WATERHOUSE ET AL., NUC. ACIDS. RES., vol. 21, 1993, pages 2265 - 2266 |
WOLFF ET AL., CANCER RESEARCH, vol. 53, 1993, pages 2560 - 2565 |
ZAPATA ET AL., PROTEIN ENG., vol. 8, no. 10, 1995, pages 1057 - 1062 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101832999A (zh) * | 2010-04-29 | 2010-09-15 | 山东莱博生物科技有限公司 | 一种抗原抗体复合物解离液试剂盒及应用 |
JP2015531762A (ja) * | 2012-08-17 | 2015-11-05 | モルフォシス・アー・ゲー | 複合体特異的抗体及び抗体断片並びにその使用 |
US10774154B2 (en) | 2012-08-17 | 2020-09-15 | Morphosys Ag | Complex-specific antibodies and antibody fragments and its use |
US12054544B2 (en) | 2017-02-24 | 2024-08-06 | Chugai Seiyaku Kabushiki Kaisha | Compositions comprising antigen-binding molecules |
WO2019160007A1 (ja) | 2018-02-14 | 2019-08-22 | 中外製薬株式会社 | 抗原結合分子および組合せ |
JPWO2019160007A1 (ja) * | 2018-02-14 | 2021-02-04 | 中外製薬株式会社 | 抗原結合分子および組合せ |
JP7466442B2 (ja) | 2018-02-14 | 2024-04-12 | 中外製薬株式会社 | 抗原結合分子および組合せ |
JP2021520777A (ja) * | 2018-03-28 | 2021-08-26 | アクソン ニューロサイエンス エスエー | アルツハイマー病を検出および処置するための抗体に基づく方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2289943A4 (en) | 2011-09-14 |
EP2289943A1 (en) | 2011-03-02 |
KR101772231B1 (ko) | 2017-08-28 |
EP2530092A1 (en) | 2012-12-05 |
CN102037018B (zh) | 2015-12-02 |
CA2723618A1 (en) | 2009-11-26 |
US8759489B2 (en) | 2014-06-24 |
US8093018B2 (en) | 2012-01-10 |
US20120157663A1 (en) | 2012-06-21 |
KR20110007621A (ko) | 2011-01-24 |
JPWO2009142221A1 (ja) | 2011-09-29 |
JP5995402B2 (ja) | 2016-09-21 |
US20100040605A1 (en) | 2010-02-18 |
CN102037018A (zh) | 2011-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5995402B2 (ja) | 抗原を結合した抗体と抗原を結合していない抗体の構造変化を識別する抗体とその取得法 | |
ES2973870T3 (es) | Anticuerpos de función doble específicos para PD-L1 glucosilado y métodos de uso de los mismos | |
AU783484B2 (en) | Prion protein peptides and uses thereof | |
KR102508933B1 (ko) | 알파-시누클레인에 대한 항체 및 그 용도 | |
CN106255702B (zh) | 基于抗体的对转甲状腺素蛋白(ttr)淀粉样变性的疗法及其人源抗体 | |
JP7071349B2 (ja) | ピログルタメートアミロイド-βに対する抗体及びその使用 | |
JP2022526528A (ja) | ピログルタメートアミロイド-βに対する抗体及びその使用 | |
AU677221B2 (en) | A monoclonal antibody to a human MDR1 multidrug resistance gene product, and uses | |
CN112955548A (zh) | 叶酸受体α特异性抗体 | |
US7041807B1 (en) | Antibodies to a YYX epitope of a mammalian prion protein | |
US20130330275A1 (en) | Misfolded proteins in cancer treatment and diagnosis | |
CN113365697A (zh) | 抗tlr9药剂和组合物及其制备方法和使用方法 | |
TW202302650A (zh) | 針對dll3的結合分子及其應用 | |
WO2011010717A1 (ja) | 抗psk抗体 | |
EP4296279A1 (en) | Anti-transthyretin (ttr) binding proteins and uses thereof | |
CN116829951A (zh) | SARS-CoV-2核衣壳抗体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980118370.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09750583 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010513033 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 7697/DELNP/2010 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2723618 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009750583 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20107028395 Country of ref document: KR Kind code of ref document: A |