WO1987005330A1 - Method for enhancing glycoprotein stability - Google Patents

Method for enhancing glycoprotein stability Download PDF

Info

Publication number
WO1987005330A1
WO1987005330A1 PCT/US1986/000495 US8600495W WO8705330A1 WO 1987005330 A1 WO1987005330 A1 WO 1987005330A1 US 8600495 W US8600495 W US 8600495W WO 8705330 A1 WO8705330 A1 WO 8705330A1
Authority
WO
WIPO (PCT)
Prior art keywords
gt
glcnac
method
gal
galβ1
Prior art date
Application number
PCT/US1986/000495
Other languages
French (fr)
Inventor
Michel Louis Eugene Bergh
Catherine S. Hubbard
James R. Rasmussen
Original Assignee
Michel Louis Eugene Bergh
Hubbard Catherine S
Rasmussen James R
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michel Louis Eugene Bergh, Hubbard Catherine S, Rasmussen James R filed Critical Michel Louis Eugene Bergh
Priority to PCT/US1986/000495 priority Critical patent/WO1987005330A1/en
Publication of WO1987005330A1 publication Critical patent/WO1987005330A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/1072General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups
    • C07K1/1077General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups by covalent attachment of residues other than amino acids or peptide residues, e.g. sugars, polyols, fatty acids

Abstract

A method for modifiying eukaryotic and prokaryotic proteins to extend their in vivo circulatory lifetimes. In the preferred embodiment, enzymatic and/or chemical treatments are used to produce a modified protein carrying one or more covalently attached trisaccharide, sialic acid-->galactose-->N-acetylglucosamine--> (SA-->Gal-->GlcNAc-->), or tetrasaccharide (SA-->Gal-->GlcNAc-->GlcNAc-->)moieties. The method can be applied to any natural or recombinant protein possessing asparagine-linked oligosaccharides or to any non-glycosylated protein that can be chemically or enzymatically derivatized with the appropriate carbohydrate units. Following injection into an animal, the modified glycoproteins are protected from premature clearence by cells of the liver and reticulo-endothelial system which recognize and rapidly internalize circulating glycoproteins with carbohydrate containing terminal Gal, GlcNAc, fucose or mannose residues. The method can also be used to mask antigenic determinants on foreign proteins which would otherwise produce an immune response or to ''target'' a protein for recognition by sugar-specific cell surface receptors.

Description

METHOD FOR ENHANCING GIYCOPROTEIN STABILITY

BACKGROUND OF THE INVENTION

The United States Government has certain rights in this invention by virtue of National Institutes of Health grants No. CA26712, GN31318, and CA14051.

Glycoproteins, proteins with covalently bound sugars, are found in plants, animals, insects, and even many unicellular eukaryotes such as yeast. They occur within cells in both soluble and membrane-bound forms, in the intercellular matrix, and in extracellular fluids. The carbohydrate moieties of these glycoproteins can participate directly in the biological activity of the glycoproteins in a variety of ways: protection from proteolytic degradation, stabilization of protein conformation, and mediation of inter- and intracellular recognition. Examples of glycoproteins include enzymes, serum proteins such as immunoglobulins and blood clotting factors, cell surface receptors for growth factors and infectious agents, hormones, toxins, lectins and structural proteins.

Natural and recombinant proteins are being used as tnerapeutic agents in humans and animals. In many cases a therapeutic protein will be most efficacious if it has an appreciable circulatory lifetime. At least four general mechanisms can contribute to a shortened circulatory lifetime for an exogenous protein: proteolytic degradation, clearance by the immune system if the protein is antigenie or immunogenic, clearance by cells of the liver or reticulo-endothelial system that recognize specific exposed sugar units on a glycoprotein, and clearance through the glomerular basement membrane of the kidney if the protein is of low molecular weight. The oligosaccharides of a glycoprotein can exert a strong effect on the first three of these clearance mechanisms.

The oligosaccharide chains of glycoproteins are attached to the polypeptide backbone by either N- or O-glycosidic linkages. In the case of N-linked glycans, there is an amide bond connecting the anomeric carbon (C-1) of a reducing-terminal N-acetylglucosamine (GlcNAc) residue of the oligosaccharide and a nitrogen of an aspara gine (Asn) residue of the polypeptide. In animal cells, O-linked glyeans are attached via a glycosidic bond between N-acetylgalactosamine (GalNAc), galactose (Gal), or xylose and one of several hydroxyamino acids, most commonly serine (Ser) or threonine (Thr), but also hydroxyproline or hydroxylysine in some cases. The O-linked glycans in the yeast Saccharomyces cerevisiae are also attached to serine or threonine residues, but, unlike the glycans of animals, they consist of one to several α-linked mannose (Man) residues. Mannose residues have not been found in the O-linked oligosaccharides of animal cells.

The biosynthetic pathways of N- and O-linked oligosaccharides are quite different. O-Linked glycan synthesis is relatively simple, consisting of a step-by-step transfer of single sugar residues from nucleotide sugars by a series of specific glycosyltransferases. The nucleotide sugars which function as the monosaccharide donors are uridine-diphospho-GalNAc (UDP-GalNAc), UDP-GlcNAc, UDP-Gal , guanidinediphospho-fucose (GDP-Fuc), and cytidine-monophospho-sialic acid (CMP-SA). N-Linked oligosaccharide synthesis, which is much more complex, is described below.

The initial steps in the biosynthesis of N-l inked glycans have been preserved with little change through evolution from the level of unicellular eukaryotes such as yeast to higher plants and man. For all of these organisms, initiation of N-linked oligosaccharide assembly does not occur directly on the Asn residues of the protein, but rather involves preassembly of a lipid-linked precursor oligosaccharide which is then transferred to the protein during or very soon after its translation from mRNA. This precursor oligosaccharide, which has the composition Glc3Man9GlcNAc2 and the structure shown in Fig. 1A, is synthesized while attached via a pyrophosphate bridge to a polyisoprenoid carrier lipid, a dolichol. This assembly is a complex process involving at least six distinct membrane-bound glycosyltransferases. Some of these enzymes transfer monosaccharides from nucleotide sugars, while others utilize dolichol-linked monosaccharides as sugar donors. After assembly of the lipid-linked precursor is complete, another membrane-bound enzyme transfers it to sterically accessible Asn residues which occur as part of the sequence -Asn-X-Ser/Thr-. The requirement for steric accessibility is presumably responsible for the observation that denaturation is usually required for in vi tro transfer of precursor ol igosaccharide to exogenous protei ns.

Glycosylated Asn residues of newly-synthesized glycoproteins transiently carry only one type of oligosaccharide, Glc3Man9GlcNAc2. Modification, or "processing," of this structure generates the great diversity of structures found on mature glycoproteins, and it is the variation in the type or extent of this processing which accounts for the observation that different cell types often glycosylate even the same polypeptide differently.

The processing of N-linked oligosaccharides is accomplished by the sequential action of a number of membrane-bound enzymes and begins immediately after transfer of the precursor oligosaccharide Glc,Man9-GlcNAc2 to the protein. In broad terms, N-linked oligosaccharide processing can be divided into three stages: removal of the three glucose residues, removal of a variable number of mannose residues, and addition of various sugar residues to the resulting trimmed "core," i.e., the Man3GlcNAc2 portion of the original oligosaccharide closest to the polypeptide backbone. A simplified outline of the processing pathway is shown in Fig. 2.

Like the assembly of the precursor oligosaccharide, the removal of the glucose residues in the first stage of processing has been preserved through evolution. In yeast and in vertebrates, all three glucose residues are trimmed to generate N-linked Man9GlcNAC2. Processing sometimes stops with this structure, but usually it continues to the second stage with removal of mannose residues. Here the pathway for yeast diverges from that in vertebrate cells.

As shown in Fig. 1B, four of tne mannose residues of the Man9GlcNAc2 moiety are bound by α1—>2 linkages. By convention the arrow points toward the reducing terminus of an oligosaccharide, or in this case, toward the protein-bound end of the glycan; α or β indicate the anomeric configuration of the glycosidic bond; and the two numbers indicate which carbon atoms on each monosaccharide are involved in the bond. The four αl—>2-linked mannose residues can be removed by Mannosidase I to generate N-linked Man5-8GlcNAc2, all of which are commonly found on vertebrate glycoproteins. Oligosaccharides with the composition Man5-9GlcNAc2 are said to be of the "high-mannose" type.

As shown in Fig. 2, protein-linked Man5GlcNAc2 (Structure M-c) can serve as a substrate for GlcNAc transferase I, which transfers a 01—>2-linked GlcNAc residue from UDP-GlcNAc to the αl—>3-linked mannose residue to form GlcNAcMan5GlcNAc2 (Structure M-d) . Mannosidase II can then complete the trimming phase of the processing pathway by removing two mannose residues to generate a protein-linked oligosaccharide with the composition GlcNAcMan3GlcNAc2 (Structure M-e). This structure is a substrate for GlcNAc transferase II, which can transfer a β1—>2-linked GlcNAc residue to the α1—>6-linked mannose residue (not shown) .

It is at this stage that the true complexity of the processing pathway begins to unfold. Simply stated, monosaccharides are sequentially added to the growing oligosaccharide chain by a series of membrane-bound Golgi glycosyltransferases, each of which is highly specific with respect to the acceptor oligosaccharide, the donor sugar, and the type of linkage formed between the sugars. Each type of cell has an extensive but discrete set of these glycosyltransferases. These can include at least four more distinct GlcNAc transferases (producing β1—>3, β1 —>4, or β1—>6 linkages); three gal actosyl transferases (producing βl—>4, β1—>3, and α1—>3 linkages); two sialyl transferases (one producing α2—>3 and another, α2—>6 linkages); three fucosyl transferases (producing α1—>2, α1—>3, αl —>4 or α1 —>6 linkages); and a growing list of other enzymes responsible for a variety of unusual linkages. The cooperative action of these glycosyl transferases produces a diverse family of structures collectively referred to as "complex" oligosaccharides. These may contain two (for example, Structure M-f in Fig. 2), three (for example, Fig. 1C or Structure M-g in Fig. 2), or four outer branches attached to the invariant core pentasaccharide, Man,GlcNAc2. These structures are referred to in terms of the number of their outer branches: biantennary (two branches), triantennary (three branches) or tetraantennary (four branches). The size of these complex glycans varies from a hexasaccharide (on rhodopsin) to very large polylactosaminylglycans, which contain one or more outer branches with repeating (Galβ1—>4GlcNAcβ1—>3) units (on several cell surface glycoproteins such as the erythrocyte glycoprotein Band 3 and the macrophage antigen Mac-2). Despite this diversity, the specificities of the glycosyltransferases do produce some frequently recurring structures. For example, the outer branches of many complex N-linked oligosaccharides consist of all or part of the sequence

SAα2— >3 ( 6 )Gal βl— >4Gl cNAcβl— > . One or two of these trisaccharide moieties may be attached to each of the two α-linked mannose residues of the core pentasaccharide, as in Structures M-f and M-g of Fig. 2.

Unlike transcription of DNA or translation of mRNA, which are highly reproducible events, oligosaccharide biosynthesis does not take place on a template. As a consequence, considerable heterogeneity is usually observed in the oligosaccharide structures of every giycoprotein. The differences are most commonly due to variations in the extent of processing. The single glycosylation site of the chicken egg glycoprotein ovalbumin, for example, contains a structurally related "family" of at least 18 different oligosaccharides, the great majority of which are of the high-mannose or related "hybrid" type (for example, Structure M-h in Fig. 2). Many glycoproteins contain multiple glycosylated Asn residues, and each of these may carry a distinct family of oligosaccnarides. For example, one site may carry predominantly high-mannose glycans, another may carry mostly fucosylated biantennary complex chains, and a third may carry fucose-free tri- and tetraantennary complex structures. Again, all of these glycans will contain the invariant Man3GlcNAc2 core.

As discussed above, the initial stages of N-linked oligosaccharide synthesis in the yeast Saccharomyces cerevisiae closely resemble those occurring in vertebrate cells. As in higher organisms, lipid-linked Glc3Man9GlcNAc2 is assembled, its oligosaccharide chain transferred to acceptor Asn residues of proteins, and its three glucose residues are removed soon after transfer. Yeast cells can remove only a single mannose residue, however, so that the smallest and least-processed N-linked glycans have the composition Man8-9GlcNAc2. Processing can stop at this stage or continue with the addition of as many as 50 or more α-linked mannose residues to Man8GlcNAc2 (Fig. 2, Structure Y-c) to generate a mannan (for example, Structure Y-d). Just as glycoproteins in mammalian cells may have predominantly high-mannose oligosaccharides at one glycosylated Asn residue and highly processed complex glycans at another, yeast glycoproteins such as external invertase commonly have some glycosylation sites with Man8-9GlcNAc2 chains, while other sites carry mannans.

Unlike eukaryotic cells, bacteria lack the enzymatic machinery to assemble lipid-linked Glc3Man9GlcNAc2 or transfer it to proteins. Thus, although proteins synthesized in E. coli contain many -Asn-X-Ser/Thr- sequences, they are not glycosylated.

From the foregoing discussion, it is apparent that the glycosylation status of a glycoprotein will depend on the cell in which it is produced. The glycans of a protein synthesized in cultured mammalian cells will resemble those of the same protein isolated from a natural animal source such as a tissue but are unlikely to be identical. Proteins glycosylated by yeast contain high-mannose oligosaccharides and mannans, and proteins synthesized in a bacterium such as E. coli will not be glycosylated because the necessary enzymes are absent.

The precise composition and structure of the carbohydrate chain(s) on a glycoprotein can directly influence its serum lifetime, since cells in the liver and reticulo-endothelial system can bind and internalize circulating glycoproteins with specific carbohydrates. Hepatocytes have receptors on their surfaces that recognize oligosaccharide chains with terminal (i.e., at the outermost end(s) of glycans relative to the polypeptide) Gal residues, macrophages contain receptors for terminal Man or GlcNAc residues, and hepatocytes and lymphocytes have receptors for exposed fucose residues. No sialic acid-specific receptors have been found, however. Although somewhat dependent on the spatial arrangement of the oligosaccharides, as a general rule, the greater the number of exposed sugar residues recognized by cell surface receptors in the liver and reticulo-endothelial system, the more rapidly a glycoprotein will be cleared from the serum. Because of the absence of sialic acid-specific receDtors, however, oligosaccharides with all branches terminated, or "capped," with sialic acid will not promote the clearance of the protein to which they are attached.

The presence and nature of the oligosaccharide chain(s) on a glycoprotein can also affect important biochemical properties in addition to its recognition by sugar-specific receptors on liver and reticulo-endothelial cells. Removal of the carbohydrate from a glycoprotein will usually decrease its solubility, and it may also increase its susceptibility to proteolytic degradation by destabi lizing the correct polypeptide folding pattern and/or unmasking protease-sensitive sites. For similar reasons, the glycosylation status of a protein can affect its recognition by the immune system.

It is therefore an objective of the present invention to provide a method for modifying oligosaccharide chains of glycoproteins isolated from natural sources or produced from recombinant DNA in yeast, insect, plant or vertebrate cells in a manner that increases serum lifetime or targets the protein to specific cell types.

It is another objective of the invention to provide an in vitro method for glycosylating proteins produced from bacterial, yeast, plant, viral or animal DNA in a manner that enhances stability and effective biological activity.

It is a further objective of the invention to provide a method for glycosylation of proteins or modification of oligosaccharide chains on glycoproteins which is efficient, reproducible and cost-effective.

SUMMARY OF THE INVENTION

A method for modifying eukaryotic and prokaryotic proteins to extend their in vivo circulatory lifetimes or to control their site of cellular uptake in the body. In preferred embodiments, enzymatic and/or chemical treatments are used to produce a modified protein carrying one or more covalently attached trisaccharide

SAα2-->6(3)Galβ1-->4(3)GlcNAc--> or tetrasaccharide

SAα2-->6 (3 )Gal β1-->4(3 )Gl cNAcβ1-->4Gl cNAc--> moieties. In alternative embodiments, one or two GlcNAc residues bound to the protein are used as a basis for construction of other oligosaccharides by elongation with the appropriate glycosyl transferases. The method can be applied to any natural or recombinant protein possessing Asn-linked oligosaccharides or to any non-glycosylated protein that can be chemically or enzymatically derivatized with the appropriate carbohydrate residues.

Generation of glycoproteins containing Asn-linked SA—>Gal—>GlcNAc—>

The preferred oligosaccharide modification scheme consists of the following steps wherein all but the Asn-linked GlcNAc of the N-linked oligosaccharide chains are enzymatically or chemically removed from the protein and a trisaccharide constructed in its place:

Step 1. Generation of GlcNAc-->Asn(protein). The initial step is cleavage of the glycosidic bond connecting tne two innermost core GlcNAc residues of some or all N-linked oligosaccharide chains of a glycoprotein with an appropriate endo-β-N-acetylglucosaminidase such as Endo H or Endo F. Endo H cleaves the high-mannose and hybrid oligosaccharide chains of glycoproteins produced in eukaryotic cells as well as the mannans produced in yeast such as Saccharomyces cerevisiae, removing all but a single GlcNAc residue attached to each glycosylated Asn residue of the polypeptide backbone. Endo F can cleave both high-mannose and biantennary complex chains of N-linked oligosaccharides, again leaving a single GlcNAc residue attached at each glycosylation site. If a given glycoprotein contains complex oligosaccharides such as tri- or tetraantennary chains which are inefficiently cleaved by known endoglycosidases, these chains can be trimmed with exoglycosidases such as sialidase, β- and α-galactosidase, α-fucosidase and β-hexosaminidase. The innermost GlcNAc residue of the resulting core can be then be exposed by any of several procedures. One procedure is digestion with Endo F or other endo-B-N-acetylglucosaminidases such as Endo D. A second procedure is digestion with α-mannosidase followed by digestion with either Endo L or with β-mannosidase and β-hexosaminidase.

Alternatively, glycoproteins normally bearing complex Asn-linked oligosaccharides can be produced in mammalian cell culture in the presence of a processing inhibitor such as swainsonine or deoxymannojirimycin. The resulting glycoprotein will bear hybrid or highmannose chains susceptible to cleavage by Endo H, thereby eliminating the need for an initial treatment of the glycoprotein with exoglycosidases. In a related variation, the glycoprotein may be produced in a mutant cell line tnat is incapable of synthesizing complex N-linked chains resistant to endoglycosidases such as Endo H or Endo F.

All sugars other than the N-linked GlcNAc residues may also be removed chemically rather than enzymatically by treatment with trifluoromethanesulfonic acid or hydrofluoric acid. In general, chemical cleavage can be expected to be less useful than enzymatic methods because of the denaturing effects of the relatively harsh conditions used.

Step 2. Attachment of Gal to GlcNAc-->Asn( protein). The second step is the enzymatic addition of a Gal residue to the residual GlcNAc on the protein by the action of a galactosyltransferase. The preferred galactosyltransferase is a bovine milk enzyme which transfers Gal to GlcNAc in the presence of the sugar donor UDP-Gal to form a β1-->4 linkage. In another variation, galactose can be added to the GlcNAc residue with a β1-->3 linkage by the use of a galactosyltransferase from a source such as pig trachea.

Step 3. Attachment of SA to Gal-->GlcNAc-->Asn(protein). The final step is the enzymatic addition of a sialic acid residue to Galβ1-->4(3)GlcNAc-->Asn(protein). This reaction can be carried out with an α2-->6-sialyltransferase isolated, for example, from bovine colostrum or rat liver, which transfers SA from CMP-SA to form an α2-->6 linkage to the terminal galactose residue of Galβ1-->4(3)-GlcNAc-->Asn( protein). Alternatively, an α2-->3-sialyltransferase may be used to form an α2—>3 linkage to each terminal Gal residue. Although the preferred sialic acid is N-acetylneuraminic acid (NeuAc), any naturally occurring or chemically synthesized sialic acid which the sialyltransferase can transfer from the CPM-SA derivative to galactose may be used, for exapmole, N-glycolyl neuraminic acid, 9-0-acetyl-N-acetyl neuraminic acid, and 4-0-acetyl-N-acetyl neuraminic acid.

Generation of glycoproteins containing Asn-1 inked SA—>Gal—>GlcNAc—>G1cNAc—>

In a second embodiment, the oligosaccharide chains of the glycoprotein, whether natural or produced in the presence of a processing inhibitor or in a mutant cell line, are trimmed back to the two, rather than one, innermost core GlcNAc residues by the use of appropriate exoglycosidases. For example, α and β-mannosidase would be used to trim a high-mannose oligosaccharide. The product of this treatment, GlcNAcβ1—>4GlcNAc—>Asn( protein), is then converted to the tetrasaccharide SAo2—>6(3 )Gal β1-->4(3 )GlcNAcβ1—>4G1 cNAc—>Asn(protein) by sequential treatment with galactosyl- and sialyl transferases.

Attachment of oligosaccharides to non-glycosylated amino acid residues of proteins.

In a third embodiment, an oligosaccharide such as the trisaccharide SA—>Gal—>GlcNAc—> or disaccharide SA—>Gal—> is attached at non-glycosylated amino acid residues of a protein expressed eitner in a eukarykotic system or in a bacterial system. For example, to attach the trisaccharide SA—>Gal—>GlcN'Ac, the protein is treated with a chemically reactive glycoside derivative of GlcNAc—>, Gal-->GlcNAc-->, or SA-->Gal—>GlcNAc-->. In the first two cases, the mono- or disaccharide is then extended to the trisaccharide by the appropriate glycosyltransferase(s). The initial carbohydrate moieties can be attached to the protein by a chemical reaction between a suitable amino acid and a glycoside derivative of the carbohydrate containing an appropriately activated chemical group. Depending on the activation group present in the glycoside, the carbohydrate will be attached to amino acids with free amino groups, carboxyl groups, sulfhydryl groups, or hydroxyl groups or to aromatic amino acids.

Generation of other oligosaccharides by elongation of protein-linked GlcNAc residues.

Variations of the disclosed procedures can be used to produce glycoproteins with oligosaccharides other than the tri- or tetrasaccharides described above. For example, extended oligosaccharide chains consisting of

SAα2-->6(3)Galβ1-->4(GlcNAcβ1-->3Galβ1-->4)nGlcNAc--> or

SAα2-->6(3)Galβ1-->4(GlcNAcβ1-->3Galβ1—>4)nGlcNAcβ1—>4GlcNAc-->, where n is 1-10, can be constructed by subjecting a glycoprotein carrying one or two core GlcNAc residues to alternate rounds of β1-->4 galactosyltransferase and β1-->3 N-acetylglucosaminyltransferase treatments. The resulting extended oligosaccharide chain can be useful for increasing solubility or masking protease-sensitive or antigenic sites of the Dolypeptide.

Many other useful oligosaccharide structures can be constructed by elongation of protein-linked monosaccharides or disaccharides with the use of appropriate glycosyltransferases. An example is the branched fucosylated trisaccharide

Gal β1-->4 (Fucα1-->3)G1 cNAc-->. These and other structures could be useful in preferenti al ly "targeting" a glycoprotein to a specific tissue known to contain receptors for a specific mono- or oligosaccharide.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows the structures of (A), the lipid-linked precursor oligosaccharide, Glc3Man9GlcNAc2; (B), a high-mannose Asn-linked oligosaccharide, Man9GlcNAc2; and (C), a typical triantennary complex Asn-linked oligosaccharide. The anomeric configurations and linkage positions of the sugar residues are indicated, and dotted lines enclose the invariant pentasaccharide core shared by all known eukaryotic Asn-linked oligosaccharides.

Fig. 2 is a simplified biosynthetic pathway for Asn-linked oligosaccharide biosynthesis in yeast and higher organisms. For clarity, anomeric configurations and linkage positions are not shown, but the arrangement of the branches is the same as in Fig. 1.

Fig. 3 is a Coomassie blue-stained gel prepared by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of yeast external invertase before and after treatment with glycosidases. The acrylamide concentration was 6%. (A) untreated invertase; (B) invertase after treatment with Endo H under non-denaturing conditions; (C) invertase after Endo H treatment under denaturing conditions (0.7% SDS); and (D) an aliquot of a sample first treated with Endo H under non-denaturing conditions and subsequently treated with jack bean α-mannosidase.

Fig. 4 is a fluorogram of a 6% SDS-PAGE gel of samples of yeast external invertase removed at intervals (5 min, 1 hr, 2 hr, 3 hr, 5 hr, 9 hr and 19 hr) during galactosylation of Endo H-treated, SDS-denatured invertase (Fig. 3B) with UDP-[3H]Gal and bovine milk β1-->4 galactosyltransferase.

Fig. 5 shows the rate of incorporation of acid-precipitable radioactivity into Endo H-treated, SDS-denatured yeast external invertase during treatment with UDP-[3H]Gal and bovine milk β1-->4 galactosyltransferase.

Fig. 6 is an autoradiogram of a 5% SDS-PAGE gel of various yeast external invertase derivatives that have been sialylated using CMP- [14C]NeuAc and bovine colostrum α2 -->6 sialyltransferase . (A) Sialylation product derived from galactosylated, Endo H-treated, SDS-denatured invertase; (B) sialylation product derived from a galactosylated sample of Endo H- and jack bean α-mannos idase-treated, non- denatured invertase; (C) sialylation product derived from untreated invertase.

Fig. 7 is a Coomassie blue-stained 6% SDS-PAGE gel of (A) untreated bovine serum albumin (BSA); (B) BSA converted to GlcNAc-BSA containing approximately 48 GlcNAc residues per molecule of protein by incubation with 2-imino-2-methoxyethyl-1-thio-N-acetylglucosaminide in 0.25 M sodium borate pH 8.5 for 24 hr at room temperature; (C) gal actosyl ated BSA formed by treatment of GlcNAc-BSA with UDP-[3H]Gal and bovine milk β1-->4 galactosyltransferase; and (D) sialylated BSA formed by treatment of Gal-->GlcNAc-BSA with CMP-[14C]NeuAc and bovine colostrum α2-->6 sialyltransferase. Fig. 8 is a graph of specific uptake (ng/2 x 105 cells) of

Gal-->GlcNAc-[125I]BSA (□) and GlcNAc-[125I]BSA (■) by the Man/GlcNAc receptor of thioglycollate-eli cited mouse peritoneal macrophages as a function of the concentration of glycosylated BSA (ug/ml), where specific uptake is equal to total uptake (uptake in the absence of mannan) minus non-specific uptake (value obtained in the presence of mannan).

Fig. 9 is a graph of specific uptake (ng/mg cellular protein) of Gal-->GlcNAc[125I]BSA (■) and NeuAc-->Gal-->GlcNAc-[125I]BSA (•) by the Gal/GalNAc receptor of HepG2 cells vs. protein concentration (0.5 to 7.5 μg protein/ml), where specific uptake is equal to total uptake (uptake in the absence of asialo-orosomucoid) minus non-specific uptake (value obtained in the presence of asialo-orosomucoid).

Fig. 10 Analysis of [3H]Gal-->GlcNAc-RNase by fast protein liquid chromatography (FPLC) on a Mono S column before (o-----o ) and after

(Δ-Δ ) sialylation with CMP-NeuAc and rat liver α2-->6 sialyltransferase, where the column was eluted with a linear gradient as described below. DETAILED DESCRIPTION OF THE INVENTION

The present invention is a method for modifying proteins wherein oligosaccharide chains are bound to the protein to enhance in vivo stability or to target the protein to cells having specific receptors for an exposed saccharide in the attached oligosaccharide chain(s). The method has two principal embodiments. The first is to cleave the existing Asn-linked oligosaccharide chains on a glycoprotein to leave one or two GlcNAc residues attached to the protein at Asn and then enzymatically extend the terminal GlcNAc to attach Gal and SA. The second is to chemically or enzymatically attach a GlcNAc or Gal residue to the protein at any of a number of different amino acids and then enzymatically extend the terminal GlcNAc or Gal to form an oligosaccharide chain capped with sialic acid. There are a number of variations of the methods and enzymes used at each step of the methods, depending on the substrate and desired oligosaccharide structure.

A. Generation of glycoproteins containing SA-->Gal-->GlcNAc-->Asn¬(protein)

Step 1. Generation of GlcNAc-->Asn(protein). There are several methods for preparing glycoproteins containing a single GlcNAc residue attached to glycosylated asparagine residues. Six methods are as follows . a. Cleavage by Endo H. To generate GlcNAc-->Asn( protein) enzymatically on glycoproteins having one or more oligosaccharides of the high-mannose or mannan type, the glycoprotein is incubated with an endo-β-N-acetylglucosaminidase capable of cleaving these oligosaccharide structures. The enzyme hydrolyzes the bond between the two core GlcNAc residues of susceptible N-linked oligosaccharides, leaving behind a single GlcNAc residue attached to the glycosylated Asn residues. The preferred enzyme for this purpose is Endo H, which has been isolated from Streptomyces plicatus. The enzyme is available either as the naturally occurring protein or as the recombinant DNA product expressed in E. coli or Streptomyces lividans.

Endo H cleaves all susceptible oligosaccharide structures of denatured glycoproteins and many of those on native glycoproteins. However, in native glycoprotei ns the GlcNAc2 cores of some highmannose glycans may be protected from cleavage by Endo H due to steric factors such as polypeptide folding. This can frequently be overcome by the use of one of several mild denaturing agents that promote partial polypeptide unfolding. Examples of such mild denaturants include detergent such as Triton X-100, NP-40, octyl glucoside, deoxycholate and dilute sodium dodecyl sulfate; disulfide bond reducing agents such as dithiothreitol and β-mercaptoethanol; chaotropic agents such as urea, guanidinium hydrochloride and sodium isothiocyanate; and low concentrations of organic solvents such as alcohols (methanol, ethanol, propanol or butanol), DMSO or acetone. Endo H is a very stable enzyme, active over a pH range of about 5 to 6.5, in low- or highionic strength buffers, and in the presence of the above-mentioned denaturing agents or protease inhibitors such as phenylmethanesul fonyl fluoride, EDTA, aprotinin, leupeptide and pepstatin. Protocols for the use of Endo H have been published by Trimble and Maley in Anal. Biochem. 141, 515-522 (1984). The precise set of reaction conditions which will optimize the cleavage of oligosaccharides by Endo H while preserving biological activity will most likely vary depending on the glycoprotein being modified and can be determined routinely by someone of ordinary skill in this field.

In situations where one or more intact high-mannose glycans persist even after incubation under the most stringent Endo H reaction conditions judged safe to use, exposed mannose residues can be trimmed away by the use of an α-mannosidase such as the cornmercially available α-mannosidase from jack bean. While high-mannose oligosaccharides modified in this way will not serve as substrates for the further modification reactions described below, this treatment should reduce the possibility that mannose-specific receptors on macrophages or other cells might bind to residual high-mannose glycan(s) on the glycoprotein and cause its premature clearance from the circulation.

As mentioned earlier, yeast glycoproteins sometimes contain O-linked oligosaccharides consisting of one to four α-linked mannose residues. Because these could bind to a mannose-specific receptor and shorten the serum lifetime of a glycoprotein, it is advisable to treat any protein found to contain such oligosaccharides with an α-mannosi dase such as the enzyme from jack bean. This would remove all but the innermost, protein-linked mannose residue from the 0-1 inked chains. Because α-mannosidase treatment could interfere with subsequent cleavage by Endo H or Endo CII, it should be performed after digestion with these enzymes.

A common O-linked oligosaccharide in animal cells is Gal-->GalNAc¬-->Ser/Thr(protein). These glycans can be removed with the enzyme endo-α-N-acetylgalactosaminidase, which is commercially available from Genzyme Corp., Boston MA. Many other mammalian O-linked oligosaccharides can be converted to Gal -->GalNAc-->Ser/Thr(protein) by treatment with exoglycosidases such as sialidase, β-hexosaminiαase and α-fucosidase. The resulting protein-linked disaccharides could then be removed from the polypeptide with endo-α-N-acetylgalactosaminidase. b. Cleavage by other endo-8-N-acetylglucosaminidases. Several other endo-β-N-acetylglucosaminidases are also capable of cleaving between the two innermost GlcNAc residues of various N-linked oligosaccharides. The oligosaccharide specificities of these enzymes vary and are summarized in Table I. Two of these endoglycosidases, Endo CII and Endo F, can be used in place of Endo H to cleave high-mannose glycans. Unlike Endo H, however, Endo F is also active with biantennary complex N-linked oligosaccnarides. Although the N-linked oligosaccharides of vertebrates are not substrates for Endo D, this enzyme would be active with glycoproteins produced by insect cells, which produce significant quantities of N-linked Man3GlcNAc2 in addition to high-mannose oligosaccharides, as reported by Hsieh and Robbins in J. Biol. Chem. 259, 2375-82 (1984). In situations where the target glycoprotein contains multiple oligosaccharides sensitive to different endo-β-N-acetylglucosaminidases, the glycoprotein can be incubated with the enzymes either sequentially or in combination to maximize cleavage. c. Cleavage by Endo H after incubation of cultured cells with oligosaccharide processing inhibitors. Mammalian cells often syntnesize glycoproteins carrying oligosaccharides with structures that are resistant to all of the above-mentioned endo-β-N-acetylglucosaminidases, e.g., tri- or tetraantennary complex oligosaccharides. If such a glycoprotein is being produced in a cultured cell system, it is possible to block the later stages of oligosaccharide processing by adding oligosaccharide processing inhibitors to the culture medium. Two preferred processing inhibitors are deoxymannojirimycin and swainsonine. Cells treated with one of these inhibitors will preferentially synthesize N-linked oligosaccharides with Endo H-sensitive structures. Deoxymannojirimycin inhibits Mannosidase I, thereby blocking further modification of high-mannose N-linked oligosaccharides. Swainsonine is a Mannosidase II inhibitor, blocking the removal of the two α-linked mannose residues on the α1-->6-linked mannose residue of the Man3GlcNAc2 core (i.e., conversion of structure M-d to structure M-e in Fig. 2). As a result, glycosylated Asn residues which would normally carry Endo H-resistant complex type glycans will carry Endo H-sensitive "hybrid" oligosaccharides instead. Swainsonine and deoxymannojirimycin are both comrnercially available, for example from Genzyme Corp., Boston MA, or Boehringer Mannheim, Indianapolis IN . In most cases, the altered glycoproteins produced in tne presence of deoxymannojirimycin or swainsonine will still be secreted in biologically active form. The use and properties of swainsonine and deoxymannojirimycin, as well as those of other oligosaccnaride processing inhibitors, have been reviewed by Schwartz and Datema, Adv . Carbohyd. Chem. Biocnem. 40, 287-379 (1982) and by Fuhrmann et al., Biochim. Biophys. Acta 825, 95-110 (1985).

Oligosaccharide processing inhibitors that block Glucosidases I or II, such as deoxynojirimycin or castanospermine, which are both available from Genzyme Corp., Boston MA, will also generate Endo H-sensitive structures, but these inhibitors are less preferred because they sometimes block secretion. Many other oligosaccharide processing inhibitors, described in the two reviews cited in the previous paragraph, will also serve the same purpose. d. Cleavage by endo-β-N-acetylglucosaminidases after production of a glycoprotein in a mutant cell line. Another approach for manipulating the structures of the N-linked oligosaccharides of a giycoprotein is to express it in cells with one or more mutations in the oligosaccharide processing pathways. Such mutations are readily selected for in mammalian cells. A number of techniques have been used to generate processing mutants, but selection for resistance or hypersensitivity to one or more of a variety of lectins, as an indicator of the presence of a processing mutation, has been one useful approach. DNA coding for a glycoprotein(s) can be introduced into such a mutant cell line using conventional methods (e.g., transformation with an expression vector containing the DNA). Alternatively, a mutant subline with defective processing can be selected from a line already capable of producing a desired glycoprotein.

Depending on the desired phenotype, any of a wide variety of mutant cell lines can be used. For example, there are perfectly viable, fast-growing GlcNAc transferase I mutants of both CHO cells (an established Chinese hamster ovary cell line long used for mutational studies and mammalian protein expression) and BHK-21 cells (an established line of baby hamster kidney origin). Both CHO and BHK-21 cells are available from the American Type Culture Collection, Rockville MD. Because of the missing enzyme activity, the mutant cells are unable to synthesize any complex or hybrid N-linked oligosaccharides; glycosylated Asn residues which would normally carry sucn glycans carry Man5GlcNAc2 instead. Thus, glycosylated Asn residues carry only Man5-9GlcNAc2, all structures which are sensitive to Endo H. Many other mutant cell lines have also been characterized, examples of which include lines with various defects in fucosylation, a defect in galactosylation resulting in failure to extend the outer branches past the GlcNAc residues, an inability to add extra branches to produce tri- and tetraantennary complex oligosaccharides, and various defects in Ser/Thr-linked glycan synthesis. The subject of processing-defective animal cell mutants has been reviewed by Stanley, in The Biochemistry of Glycoproteins and Proteoglyeans, edited by Lennarz, Plenum Press, New York, 1980.

A series of yeast mutants with various defects in mannan synthesis has also been produced, as described by Ballou, in The Molecular Biology of the Yeast Saccharomyces, edited by Strathern et al., Cold Spring Harbor Laboratory, 1982. Thus, it is possible to produce a glycoprotein in a mutant S. cerevisiae strain which cannot elongate high-mannose oligosaccharides into large mannans. e. Sequential exoglycosidase digestion with or without subsequent cleavage by Endo L or Endo D. An alternative, but less preferred method for generating GlcNAc-->Asn( protein) in cases where the giycoprotein contains high-mannose or mannan-type oligosaccharides is to remove monosaccharide units by exoglycosidase digestion with or without subsequent use of Endo L. The first step is digestion with an α-mannosidase to remove all α-linked mannose residues. In the case of mannans from some yeast strains, it may be desirable to include other exoglycosidases or phosphatases if other sugars or phosphate residues are present in the outer portion of the mannan structure. In the second digestion step, the last mannose residue is removed with a β-mannosidase. The product, GlcNAc2-->Asn(protein), is then subjected to the third digestion step, which is carried out with β-hexosaminidase. This enzyme removes the terminal GlcNAc residue to generate GlcNAc-->Asn(protein); since the last GlcNAc is linked to the protein by an amide rather than a glycosidic bond, the hexosaminidase cannot remove the innermost GlcNAc residue from the asparagine.

Alternatively, α-mannosidase treatment of high-mannose or mannantype oligosaccharides can be followed by incubation with Endo L, which can be purified from Streptomyces plicatus. This enzyme can cleave between the Gl cNAc resi dues of Manβ1 -- >4Gl cNAcβ1 -- >4Gl cNAc .

In the case of a glycoprotein containing complex or hybrid-type oligosaccharides, sequential (or, when the requirements of the enzymes make it possible, siimultaneous) incubation with the appropriate exoglycosidases, such as sialidase, β- and/or α-galactosidase, β-hexosaminidase, and α-fucosidase, will trim the oligosaccharides back to Man3GlcNAc2. This oligosaccharide can be cleaved by Endo D or Endo F. Alternatively, it can be treated with α-mannosidase to generate protein-linked Manβ1-->4GlcNAcβ1-->4GlcNAc. This can be cleaved either with Endo L or with digestions with α-mannosidase, β-mannosidase, and β-hexosaminidase.

Sialidase can be purified from a variety of sources, including E. coli, Clostridium perfringens, Vi bri o cholerae, and Arthrobacter urefaciens, and is commercially available from a number of sources such as Calbiochem-Behring, San Diego CA, or Sigma Chemical Corp., St. Louis MO. β-Galactosidase can be purified from Asperaillus niger, C. perfringens, jack bean, or other suitable sources and is commercially available from Sigma Chemical Corp., St. Louis MO. α-Galactosidase from E. coli or green coffee beans is available from Boehringer Mannheim, Indianapolis IN. β-Hexosaminidase can be purifed from jack bean, bovine liver or testis, or other suitable sources and is also commercially available from Sigma Chemical Corp., St. Louis MO. β- Mannosidase has been purified from the snail Achatina fulica, as described by Sugahara and Yamashima in Meth. Enzymol. 28, 769-772 (1972), and from hen oviduct, as described by Sukeno et al. in Meth. Enzymol . 28, 777-782 (1972). α-Mannosidase from jack bean is preferred and is commercially available from Sigma Chem. Corp., St. Louis MO. Endo H, Endo D, and Endo F are commercially available from Genzyme Corp., Boston MA; from New England Nuclear, Boston MA; from Miles Scientific, Naperville IL; or from Boehringer Mannheim, Indianapolis IN. Conditions for the use of these and the other endo-β-N-acetylglucosaminidases Endo CII and Endo L are described in the publications cited in Table I. f. Chemical removal of all sugars except N-linked GlcNAc. It is also possible to generate protein-linked GlcNAc chemically. For example, as described by Kalyan and Bah! in J. Biol. Chem. 258, 67-74 (1983), hydrolysis with trifluoromethane sulfonic acid (TFMS) has been used to remove all sugars except the M-linked GlcNAc residues while leaving the protein backbone intact. Similar results have been obtained using hydrofluoric acid, as described by Mort and Lamport in Anal. Biochem. 82, 289-309 (1977).

Step 2. Attachment of galactose to GlcNAc-->Asn(protein).

In Step 2, the terminal GlcNAc residue generated in Step 1 serves as a site for the attachment of galactose. Either of two galactosyltransferases may be used: UDP-Gal :GlcNAc-R β1-->4 galactosyltransferase or UDP-Gal :GlcNAc-R β1-->3 galactosyltransferase. In tne first variation of this step, a β1-->4-linked galactose residue is added to GlcNAc-->Asn( protein). UDP-Gal :GlcNAc-R β1-->4 galactosyltransferase can be obtained from a variety of sources, the most common and costeffective one being bovine milk. Enzyme from this source is commercially available from Sigma Chem. Corp., St. Louis MC. The reaction conditions for using the bovine milk galactosyltransferase to transfer galactose from UDP-Gal to GlcNAc-->Asn( protein) are similar to those described by Trayer and Hill in J. Biol. Chem. 246, 6666-75 (1971) for natural substrates. The preferred reaction pH is 6.0 to 6.5. Most buffers can be used with the exception of phosphate, which inhibits enyzme activity, and a broad range of salt concentrations can be used. It is preferable to have 5-20 mM Mn+2 or Mg+2 present. Peptidase inhibitors such as phenylmethanesulfonyl fluoride, TPCK, aprotinin, leupeptin, and pepstatin and exoglycosidase inhibitors such as galactono-1,4-lactone can be added without interfering with the activity of the galactosyltransferase.

Since the removal of the carbohydrate from the protein can cause solubility problems, it is sometimes necessary to use relatively high concentrations of a non-ionic detergent such as 2-3% Triton X-10C, other suitable solubilizers such as DMSO, or denaturing agents such as 2-3 M urea to keep the protein in solution. We have found that this does not interfere with the galactosylation step, the bovine milk β1-->4 galactosyltransferase apparently remaining sufficiently active under these conditions.

In the second variation of this step, a β1-->3-linked galactose residue is transferred to GlcNAc-->Asn(protein). UDP-Gal: GlcNAc -R β1-->3 galactosyltransferase has been purified from pig trachea. Conditions for the use of this enzyme to transfer galactose from UDP-Gal to GlcNAc-R have been described by Sheares and Carlson in J. Biol. Chem. 258, 9893-98 (1983).

Step 3. Attachment of sialic acid to Galβ1-->4(3)GlcNAc-->Asn(protein)

The term "sialic acid" (SA) includes any naturally occurring or chemically synthesized sialic acid or sialic acid derivative. The preferred naturally occurring sialic acid is N-acetyl neuraminic acid (NeuAc). As discussed by Schauer in Adv. Carb. Chem. Biochem. 40, 131-234 (1982), other sialic acids can also be transferred from CMP-SA to galactose, for example, N-glycolyl neuraminic acid, 9-0-acetyl neuraminic acid, and 4-0-acetyl-N-acetyl neuraminic acid. Many other sialic acids such as those described in Sialic Acids: Chemistry, Metabolism and Function, edited by R. Schauer (Springer-Verlag, New York, (1982), are potential substrates. There are two variations of the method for attaching sialic acid tc the substrate generated in Steps 1 and 2, Galβ1-->4(3)GlcNAc-->Asn(protein).

In the first of the two variations, the sialic acid is attached to Galβ1-->4GlcNAc-->Asn(protein) in an α2-->6 linkage. The CMP-SA: Galβ1—>4GlcNAc-R α2-->6 sialyltransferase used in this step can be obtained from a variety of sources, the more usual ones being bovine colostrum and rat liver. The rat liver enzyme has recently become commerciany available from Genzyme Corp., Boston MA.

The reaction conditions for using the bovine colostrum and rat liver α2-->6 sialyltransferases to transfer sialic acid from CMP-SA to Galβ1-->4GlcNAc-->Asn(protein) are similar to those described by Paulson et al. in J. Biol. Chem. 252, 2356-62 (1977) for natural substrates, except that it may be desirable to add additional enzyme to accelerate the rate of the reaction. The preferred pH is 6.5-7.0. Although most buffers, with the exception of phosphate, can be employed, preferred buffers are Tris-maleate or cacodylate. The enzyme is functional in the presence of mild detergents such as NP-40 and Triton X-100; peptidase inhibitors such as phenylmethanesulfonyl fluoride, TPCK, aprotinin, leupeptin and pepstatin; and exoglycosidase inhibitors such as galactono-1,4-lactone.

In the second variation of this step, the sialic acid is attached to the Galβl— >4(3)GlcNAc— >Asn(protein) by an α2-->3 linkage. Two sialyl transferases producing this linkage have been described. The first, CMP-SA: Gal β1-->4GlcNAc α2-->3 sialyltransferase, has been identified in human placenta by van den Eijnden and Schiphorst as described in J. Biol. Chem. 256, 3159-3162 (1981). This enzyme, although not yet purified, can be purified using conventional methods. The second enzyme, CMP-SA:Galβ1-->3(4)GlcNAc α2-->3 sialyltransferase, has been purified from rat liver by Weinstein et al. as described in J. Biol . Chem. 257, 13835-^4 (1982). The rat liver enzyme has a somewhat relaxed specificity and is able to transfer sialic acid from CMP-sialic acid to the C-3 position of galactose in both Galβ1-->4GlcNAc and Galβ1-->3GlcNAc sequences. Conditions for the use of the α2—>3 sialyltransferases are described in the two publications just cited.

B. Method for preparing glycoproteins containing SA-->Gal-->GlcNAc-->GlcNAc-->Asn(protein)

The method used to generate SA-->Gal-->GlcNAc-->GlcNAc-->Asn (protein) is similar to the method described above for generating modified glycoproteins containing the trisaccharide sequence SA-->Gal-->GlcNAc-->Asn(protein). In the preferred embodiment, both core GlcNAc residues of the original N-linked oligosaccharide are left attached to the protein and a tetrasaccharide sequence, SA-->Gal-->GlcNAc-—- >GlcNAc--> is constructed enzymatically.

Step 1. Generation of GlcNAcβ1-->4GlcNAc-->Asn(protein)

The intact N-linked oligosaccharide cnain is treated with exoglycosidases selected to remove all carbohydrate exterior to the two innermost GlcNAc residues. In the case of high-mannose or mannan-type oligosaccharides, α- and β-mannosidase are used. In the case of complex or hybrid-type oligosaccharides, additional exoglycosidases are required, the specific enzymes used depending on the structures of the carbohydrate chains being modified. In most cases, treatments with sialidase, β- and/or α-galactosidase, β-hexosaminidase, and if necessary, α-fucosidase, are carried out in addition to treatment with α- and β-mannosioase. The 6-hexcsaminidase treatment is intended to remove GlcNAc residues only from the outer branches of the oligosaccharides, not from the core, and care snould be taken that no β-hexosaminidase is present during or after β-mannosidase treatment. The reaction conditions and sources of the exoglycosidases are identical to those described above for Step 1 in the generation of SA-->Gal-->GlcNAc-->Asn(protein).

The methods used to attach galactose to GlcNAcβ1-- >4GlcNAc-->Asn¬(protein) and sialic acid to Galβ1-->4(3)GlcNAcβ1-->4GlcNAc-->Asn(protein) are the same as those described earlier for the preparation of modified glycoproteins containing N-linked SAα2-->3(6)Galβ1-->4(3)¬GlcNAc-->Asn(protein).

C. Method for attaching oligosaccharides to nonglycosylated amino acid residues of proteins

The principal method for attaching oligosaccharides such as SA-->Gal-->GlcNAc--> to non-glycosylated amino acid residues is to react an activated glycoside derivative of what is to be the innermost sugar residue, in this case GlcNAc, with the protein and then to use glycosyltransferases to extend the ol igosaccharide chain. Chemical and/or enzymatic coupling of glycosides to proteins can be accomplished using a variety of activated groups, for example, as described by Aplin and Wriston in CRC Crit. Rev. Biochem., pp. 259-306 (1981). The advantages of the chemical coupling techniques are that they are relatively simple and do not need the complicated enzymatic machinery required for natural N-linked glycosylation. Depending on the coupling mode used, the sugar(s) can be attach arginine, histidine, or the ami no-terminal amino acid of the polypeptide; (b) free carboxyl groups, such as those of glutamic acid or aspartic acid or the carboxyterminal amino acid of the polypeptide; (c) free sulfhydryl groups, such as those of cysteine; (d) free hydroxyl groups, such as those of serine, threonine, or hydroxyproline; (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan; or (f) the amide group of glutamine.

As shown below, the aglycone, R, is the chemical moiety that combines with the sugar to form a glycosi de and which is reacted with the amino acid to bind the sugar to the protein.

Figure imgf000026_0001

GlcNAc residues can be attached to the β-amino groups of lysine residues of a nonglycosyl ated protein by treating the protein with 2-imino-2-methyoxyethyl-1-thio-β-N-acetylglucosaminide as described by Stowell and Lee in Meth. Enzymol . 83, 278-288 (1982). Other coupling procedures can be used as well, such as treatment of the protein with a glycoside or thioglycoside derivative of GlcNAc in which the aglycone contains an activated carboxylic acid, for example R1 or R2.

GlcNAc residues can be attached to the carboxyl groups of aspartic acid and glutamic acid residues of a nonglycosylated protein by treatment of the protein with a glycoside or thioglycoside derivative of GlcNAc in which the aglycone contains a free amino group, for example R3 or R4, in the presence of a coupling reagent such as a carbodiimide.

Compounds which contain free amino groups, for example GlcNAc derivatives containing the aglycones R3 or R4, can also be used to derivatize the amide groups of glutamine through the action of transglutaminase as described by Yan and Wold in Biochemistry 23, 3759-3765 (1984).

Attachment of GlcNAc residues to the thiol groups of the cysteine residues of a nonglycosylated protein can be accomplished by treating the protein with a GlcNAc glycoside or thioglycoside in which the aglycone contains an electrophilic site such as an acrylate unit, for example the aglycones R5 or R6.

The glycosylation of aromatic amino acid residues of a protein with a monosaccharide such as GlcNAc can be accomplished by treatment with a glycoside or thioglycoside in which the aglycone contains a diazo group, for example aglycones R7 or R8.

A large number of other coupling methods and aglycone structures can be employed to derivatize a protein with a GlcNAc derivative.

After chemical derivatization of the protein with GlcNAc residues, the trisaccharide sequence SAα2-->3(6)Galβ1-->4(3)GlcNAc--> is constructed by sequential enzymatic attachment of galactose and sialic acid residues, as described for Asn-linked GlcNAc residues.

In other variations, the protein is derivatized with: Galβ1-->4(3)GlcNAc-X, Galβ1-->4(3)GlcNAcβ1-->4GlcNAc-X, SAα2-->3(6)Galβ1-->4(3)GlcNAc-X, or SAα2-->3(6)Galβ1-->4(3)GlcNAcβ1-->4GlcNAc-X, where X is an aglycone containing a free amino group , an activated ester of a carboxy lic aci d, a diazo group , or other groups described above.

The same procedures may be used to chemically attach galactose, rather than GlcNAc, directly to an amino acid. The galactose may then be enzymatically extended or capped with sialic acid, as previously described.

D. Generation of additional protein-linked oligosaccharides by elongation of GlcNAc-protein or GlcNAc-->GlcNAc-protein.

Procedures similar to those used to extend GlcNAc-protein or GlcNAc-->GlcNAc-protein to a protein-linked oligosaccharide resembling the outer branch of a complex oligosaccharide can be employed to construct other carbohydrate structures found on GlcNAc residues attached to the terminal mannose units of the core pentasaccharide.

Example 1. Generation of proteins containing repeating units of (GlcNAcβ1-->3Galβ1-->4). After preparation of either GlcNAc-protein or GlcNAcβ1-->4GlcNAc-protein using the methods described above, a long carbohydrate chain may be generated by several rounds of alternating UDP-Gal :G!cNAc-R β1-->4 galactosyltransferase and UDP-GlcNAc: Galβ1-->4GlcNAc-R β1-->3 N-acetylglucosaminyltransferase incubations. This will generate a polylactosaminyl-type structure of the type (GlcNAcβ1-->3Galβ1-->4)n attached to the GlcNAc-protein or GlcNAcβ1-->4GlcNAc-protein starting material. Kaur, Turco and Laine reported in Biochemistry International 4, 345-351 (1982) that bovine milk UDP-Gal : GlcNAc β1-->4 galactosyltransferase can transfer the β1-->4-linked galactosyl residues to polylactosaminyl oligosaccharides, and a β1-->3 N-acetylglucosaminyltransferase has Deen identified in Novikoff ascites tumor cells by van den Eijnden et al., J. Biol. Chem. 258, 3435-37 (1983). The number of repeating GlcNAc-->Gal units in the structure can be varied depending on the desired length; 1-10 such units should suffice for most applications. The essential element is that, after attachment of the disaccharide units, an exposed galactose residue is present so that the carbohydrate chain can be capped with α2-->3- or α2-->6-linked sialic acid, as described above. Thus, the final structure would be

SAα2-->6(3)Galβ1-->4[GlcNAcβ1-->3Galβ1-->4]nGlcNAc-protein, or

SAα2-->6(3) Galβ1-->4[GlcNAcβ1-->3Galβ1-->4l GlcNAcβ1-->4GlcNAc- protein, where n is 1-10.

The advantages of introducing such a polylactosaminyl structure would be to increase solubility or to better mask the protein backbone to protect it from recognition by the immune system or from degradation by proteases.

Example 2. Generation of glycoproteins containing terminal

Galβ1-->4(3)[Fucα1-->3(4)GlcNAc or

SAα2-->3Galβ1-->3(Fucα1-->4)GlcNAc structures. After preparation of

Galβ1-->4(3)GlcNAc-protein,

Galβ1-->3 (4) [Gl cNAcβ1-->3Galβ1-->4]nGl cNAc-protei n ,

Galβ1-->4(3)GlcNAcβ1-->4GlcNAc-protein,

Galβ1-->3(4)[GlcNAcβ1-->3Galβ1-->4]nGlcNAcβ1-->4GlcNAc-protein,

SAα2-->3Gal β1-->3GlcNAc-protein,

SAα2-->3Galβ1-->3[GlcNAcβ1-->3Galβ1-->4]nGlcNAc-protein,

SAα2-->3Galβ1-->3GlcNAcβ1-->4GlcNAc-protein or

SAα2-->3Galβ1-->3[GlcNAcβ1-->3Galβ1-->4]nGlcNAcβ1-->4GlcNAc-protein where n is between 1 and 10, using the methods described above, a fucose can be attached to any of the acceptor GlcNAc residues by treatment with GDP- FUC and a GDP-Fuc: GlcNAc α1—>3(4) fucosyl transferase. The purification of this fucosyl transferase, its substrate specificity and preferred reaction conditions have been reported by Prieels et al in J. Biol. Chem. 256, 104456-63 (1981). The activity of this enzyme with sialyl ateα substrates has been described by Jonnson and Watkiπs in Proc. Vlllth Int. Symp. Glycoconjugates (1985), eds. E.A. Davidson, J.C. Williams and N.M. Di Ferrante. If it is desired to attach fucose only in an α1—>3 linkage to the appropriate acceptor GlcNAc residues, the GDP-Fuc: GlcNAc α1—>3 fucosyltransferase can be used. This enzyme has been described by Johnson and Watkins in Proc. VIIIth Int. Symp. Glycoconjugates (1985), eds. E.A. Davidson, J.C. Williams and N.M. Di Ferrante.

E. Targeting of glycosylated proteins to specific cells

Cells with sugar-specific cell surface receptors are able to recognize and internalize glycoproteins bearing appropriate carbohydrate structures. The best characterized sugar-specific cell surface receptors are the Gal receptor of hepatocytes, the Man/GlcNAc receptor of reticulo-endothelial cells and the fucose receptor found on hepatocytes, lymphocytes and teratocarcinoma cells. The subject of sugar-specific cell surface receptors has been reviewed by Neufeld and Ashwell in The Biochemistry of Glycoproteins and Proteoglycans, edited by Lennarz, Plenum Press, New York (1980), pp. 241-266.

Proteins can be targeted to cells with sugar-specific cell surface receptors by generating glycoproteins that contain the appropriate sugar at nonreducing terminal positions. Several procedures are used to expose the desired terminal sugars. One procedure, in general, involves the treatment of a native glycoprotein with exoglycosidases, as described by Ashwell and Morel! in Adv. Enzymol . 41, 99-128 (1974). Another procedure is the attachment of monosaccharides to the protein, as described by Stahl et al . in Proc. Natl. Acad. Sci. USA 75, 1399-1403 (1978). A third approach is the attachment of derivatives of ol igosacchari des i so lated from natura l sources such as ovalbumin , as reported by Yan and Wold in Biochemistry 23, 3759-3765 (1984). The glycosylated proteins that are the subject of the present invention can be targeted to specific cells, depending on the specific sugars attached.

Gal-->GlcNAc-protein,

Gal-->GlcNAc-->G1 cNAc-protein,

(Gal-->GlcNAc)n-->Gal-->GlcNAc-protein and

(Gal-->GlcNAc)n-->Gal-->GlcNAc-->GlcNAc-protein, where n is 1-10, are directed to hepatocytes.

GlcNAc-protein,

GlcNAc-->GlcNAc-protein,

(GlcNAc-->Gal)n -->GlcNAc-protein and

(Gl cNAc-->Gal )n-->Gl cNAc-->Gl cNAc-protein, where n i s 1-10, are targeted to macrophages . Fi nal ly ,

Gal--> (Fuc--> )GlcNAc-protein,

Gal --> ( Fuc--> ) Gl cNAc-->Gl cNAc-protei n ,

Gal -->(Fuc--> )Gl cNAc-->[Gal--> (Fuc --> )m Gl cNAc]n -Drotei n , and

Gal--> ( Fuc --> ) Gl cNAc-->[Gal --> ( Fuc--> )m Gl cNAc]n-->Gl cNAc-protei n, where n is 1-10 and m is 0 or 1, are targeted to hepatocytes, lymphocytes and teratocarcinoma cells. One application of targeting is for enzyme replacement therapy. For example, glucocerebrosidase can be targeted to macrophages for the treatment of Gaucher's disease. A second application is to target drugs or toxins to teratocarcinoma cells.

The following non-limiting example demonstrates the method of the present invention on a yeast glycoprotein possessing multiple high-mannose and mannan oligosaccharides.

Step 1. Endo H treatment of yeast external invertase.

Yeast external invertase is a glycoprotein containing approximately two high mannose and seven mannan oligosaccharides. External invertase of a commercial preparation from Saccharomyces cerevisiae, obtained from Sigma Chem. Corp, St. Louis MO, was purified as described by Trimble and Maley in J. Biol . Chem. 252, 4409-12 (1977), and treated with Endo H essentially as described by Trimble et al. in J. Biol. Chem. 258, 2562-67 (1983). The purified invertase was denatured by placing a 1% SDS solution of the glycoprotein in a boiling water bath for 5 minutes. The denatured invertase (250 μg) was then incubated with Endo H (C.3 μg, from Miles Scientific, Naperville ID for 20 hours at 37°C in 175 ul of 0.1 M sodium citrate buffer, pH 5.5. After Endo H treatment, the reaction mixture was desalted on a Bio-Gel P-4 column (1 x 10 cm) equilibrated and eluted with 50 mM ammonium acetate, pH 6.5. The method of desalting is not critical. Dialysis or protein precipitation can also be used. The material eluting in the void volume of the column was pooled and lyophilized.

Analysis of the Endo H-treated preparation of SDS-denatured invertase by SDS-PAGE, shown in Fig. 3c, indicated that the glycoprotein had been converted to a form consistent with an invertase possessing only a single GlcNAc residue at each glycosylation site.

In a parallel experiment, native invertase was treated with Endo H in the same manner as the SDS-denatured invertase. Analysis of the desalted reaction product by SDS-PAGE, shown in Fig. 3b, indicated that 2-3 oligosaccharide chains of native invertase were resistant to cleavage by Endo H. To remove exposed mannose residues on the resistant chains, 250 μg Endo H-treated invertase was desalted, lyophilized, and incubated in 100 μl of 50 mM sodium acetate, pH 5.C, containing 50 mM NaCl, 4 mM ZnCl2, and 20 mU of jack bean α-mannosidase (a gift from Dr. R. Trimble at State University of New York, Albany NY) for 17 hours at 37°C. Analysis of the reaction mixture by SDS-PAGE, shown in Fig. 3d, demonstrated through a shift to lower molecular weight that the α-mannosidase treatment removed additional mannose residues.

Step 2. Galactosylation of the Endo H-treated samples of native and denatured yeast external invertase.

An Endo H-treated sample of denatured yeast external invertase [85 μg, containing approximately 15 nmol of GlcNAc-->Asn( protein) sites] was incubated at 37ºC in 180 μl of 50 mM 2-(N-morphol ino)ethanesulfonic acid (MES), pH 6.3, containing 0.8% Triton X-100, 25 mM MnCl2,

1.25 mM UDP-C H]Gal (specific activity, 8 Ci/mol) and bovine milk

UDP-Gal : GlcNAc β1-->4 galactosyltransferase (100 mU, Sigma Chem. Corp., St. Louis MO). Aliquots were removed at selected times and analyzed by SDS-PAGE, as shown in Fig. 4. A gradual increase in apparent molecular weight was apparent up to a reaction time of one hour. This result was confirmed by measuring the incorporation of tritium into material precipitable by 0.5 M HCl/1% phosphotungstic acid, which gave the result shown in Fig. 5.

Nonradiolabeled galactosylated samples of native and denatured yeast external invertase were prepared as substrates for the sialylation reaction. Endo H-treated denatured invertase and Endo H plus α-mannosidase- treated native invertase were galactosylated with nonradioactive UDP-Gal using the procedures described above.

Step 3. Sialylation of the galactosylated samples of native and denatured yeast external invertase.

The native and denatured samples of nonradioactive galactosylated yeast external invertase (50 μg of protein) were incubated at 37ºC for 17 hours in 70 μl of 0.1 M Tris-maleate, pH 6.7, containing 0.7 % Triton X-100, 2 mM CMP-[14C]NeuAc (specific activity, 1.1 Ci/mmol) and bovine colostrum CMP-SA:Galβ1-->4GlcNAc-R α2--->6 sialyltransferase [1.1 mU, purified according to Paulson et al. in J. Biol. Chem. 252, 2356-2362 (1977)]. The reaction mixtures were analyzed by SDS-PAGE and autoradiography, as shown in Fig. 6. The radioactivity associated with the invertase band demonstrates that sialic acid has been attached to the galactose residues of the invertase by the α2-->6 sialyltransferase.

The following non-limiting example demonstrates the method of the present invention using chemical and enzymatic techniques on a protein that is not glycosylated in its native form.

Step 1. Chemical attachment of a thioglycoside derivative of GlcNAc to bovine serum albumin (BSA).

BSA was derivatized by treatment with 2-imino-2-methoxyethyl-1-thio-N-acetylglucosaminide by Dr. R. Schnaar at Johns Hopkins University according to the procedure described by Lee et al. in Biochemistry 15, 3956-63 (1976). The glycosylated BSA contained, on the average, 48 lysine-linked GlcNAc residues per molecule.

Step 2. Galactosylation of GlcNAc48-BSA.

GlcNAc48-BSA (0.9 mg) was incubated at 37°C for 17 hours in 600 μl of 0.12 M MFS, pH 6.3, containing 0.6% Triton X-100, 20 mM MnCl2, 5 mM

UDP-[3 H]Gal (specific activity, 1 Ci/mol), 1 mM galactono-1,4-lactone,

1 mM phenylmethanesulfonyl fluoride, TPCK (21 μg), aprotinin (12 μTIU), leupeptin (0.6 μg), oepstatin (0.6 μg) and bovine milk UDP-Gal:GlcNAc-R β1-->4 galactosyltransferase. The glycosylated BSA was partially purified from other reaction components by Bio-Gel P-4 gel filtration. After measurement of the amount of radioactivity incorporated into the BSA, it was calculated that 46% of the available GlcNAc residues were galactosylated. A second incubation of tne gal actosylated BSA under identical conditions increased the extent of reaction from 46 to 51%. The galactosylated BSA was Durified with an anti-BSA antibody column obtained from Cooper Biomedical, Malvern PA.

Step 3. Sialylation of galactosylated BSA.

The galactosylated BSA (240 μg) was incubated for 16 hours at 37°C in 120 μl of 0.1 M Tris-maleate, pH 6.7, containing 3 mM CMP-[14 C]NeuAc (specific activity 0.55 Ci/mol) and bovine colostrum CMP-SA: Galβ1-->4GlcNAc-R α2-->6 sialyltransferase (2.1 mU). The glycosylated BSA was partially purified from other reaction components by gel filtration. After measurement of the ratio of 14C to 3H radioactivity incorporated into the samples, it was calculated that 42% of the Gal-->GlcNAc-->protein residues were sialylated. A second incubation of the sialylated BSA with 25 mU of sialyltransferase increased the extent of sialylation to 51%. The glycoprotein was isolated by immunoaffinity chromatography on an anti-BSA antibody column. Analysis of the three glycosylated forms of BSA by SDS-PAGE demonstrated a significant increase in apparent molecular weight after each step of the procedure, as shown in Fig. 7. This evidence confirms that SA-->Gal-->GlcNAc--> moieties have been constructed on the protein.

The following nonlimiting example demonstrates the differential uptake of GlcNAc-BSA and Galβ1-->4GlcNAc-BSA by GlcNAc/Man-specific receptors of macrophages.

Mouse peritoneal macrophages, which possess cell surface receptors that recognize terminal GlcNAc and Man residues, were obtained from mice 4-5 days after intraperitoneal injection of thioglycollate broth (1.5 ml per mouse). The peritoneal cells were washed with Dulbecco's modified minimal essential medium (DME) containing 10% fetal calf serum (FCS) and plated in 96-well tissue culture trays at a density of 2 x 105 cells per well. After 4 hours the wells were washed twice with phosphate-buffered saline (PBS) to remove nonadherent cells. The adherent cells remaining in the wells were used for uptake experiments with GlcNAc-[125I]BSA and Galβ1-->4GlcNAc-[125I]BSA which had been radiolabeled with 125I by the chloramine T method. The radiolabeled protein preparations were added at a concentration of 0.1-1.2 μg/ml to 100 μl of DME containing 10% FCS and 10 mM HEPES [4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid], pH 7.4. Parallel experiments were run in the presence of yeast mannan (1 mg/ml ) to measure nonspecific uptake of the glycosylated BSA samples. The cells were incubated with the samples for 30 min at 37°C and then washed five times with PBS to remove residual protein not taken up by the cells. The washed cells were dissolved in 200 μl of 1% SDS and the radioactivity determined. Nonspecific uptake (CPM in the presence of yeast mannan) was subtracted from the total uptake (CPM in the absence of yeast mannan) to determine Man/GlcNAc receptor-specific uptake by the mouse peritoneal macrophages.

The specific uptake of GlcNAc-[125I]BSA and Galβ1-->4GlcNAc-[125I]BSA is presented as a function of ESA concentration in Fig. 8.

The results demonstrate that GlcNAc-BSA, Dut not GalB1-->4GlcNAc-BSA, is recognized and endocytosed by mouse peritoneal macrophages. The following non-limiting example demonstrates the differential uptake of Galβ1-->4GlcNAc-BSA and SAα2-->6Galβ1-->4GlcNAc-BSA by galactose-specific receptors of hepatoma cell line HepG2.

Samples of GlcNAc-BSA and Gal-->GlcNAc-BSA were radiolabeled with 125I by the chloramine T method. HepG2 cells were cultured in DME containing 10% fetal calf serum. Uptake experiments were performed on cells plated in 35 mm tissue culture dishes at approximately 70% confluency. The cells were washed with protein-free medium and incubated with 1 ml of DME containing 20 mM HEPES, pH 7.3, containing cytochrome c (0.2 mg/ml ) and 0.5-7.5 μg of Galβ1-->4GlcNAc-[125I]BSA or SAα2-->6Galβ1-->4GlcNAc-[125I]BSA. Parallel experiments were performed in the presence of nonradioactive asialo-orosomucoid (0.2 mg/ml) to determine nonspecific uptake. The cells were incubated with the radiolabeled protein solutions for 2.5 hours at 37°C in a 5% CO2 atmosphere, and then rinsed five times with chilled PBS containing 1.7 mM Ca++. The washed cells were solubilized with 1 ml of 1 M NaOH/10% SDS. Separate aliquots were used to measure radioactivity and the amount of protein per culture dish. It is assumed that the amount of protein in each dish is proportional to the number of cells. Non-specific uptake (CPM in tne presence of asialo-orosomucoid) was subtracted from the total uptake (CPM in the absence of asialoorosomucoid) to determine the galactose receptor-specific uptake by the HepG2 cells.

The galactose receptor-specific uptake is shown as a function of glycosylated BSA concentration in Fig. 9. The results demonstrate that Galβ1-->4GlcNAc-BSA, but not SAα2— >6Galβ1-->4GlcNAc-BSA, is recognized and endocytosed by HepG2 cells.

The following non-limiting example demonstrates the method of the present invention on a mammalian glycoprotein having one oligosaccharide chain of the high-mannose type.

Step 1. Deglycosylation of ribonuclease B, a glycoprotein having a single high-mannose oligosaccharide.

Native ribonuclease B (490 μg), obtained from Sigma Chem. Corp., St. Louis MO, and further purified by concanavalin A affinity chromatography as described by Baynes and Wold in J. Biol. Chem. 251, 6016-24 (1976) was incubated with Endo H (50 mU, obtained from Genzyme Corp., Boston MA) in 100 μl of 50 mM sodium acetate, pH 5.5, for 24 hours at 37°C. SDS-PAGE indicated complete conversion of the giycoprotein to a form containing a single GlcNAc residue. The modified ribonuclease B was desalted on a Bio-Gel P6DG column and the ribonuclease fractions were freeze-dried.

Step 2. Galactosylation of Endo H-treated ribonuclease B.

Endo H-treated ribonuclease B (400 μg) was incubated for 3 hours at 37° in 250 μl of 0.1 M MES, pH 6.3, containing 0.1% Triton X-100, 0.01 M MnCl2, 100 mU bovine milk UDP-Gal :GlcNAc-R β1-->4 galactosyltransferase and 300 nmol UDP-[3H]Ga! (specific activity 17.3 Ci/mmol). The ga! actosyl ated ribonuclease was analyzed by FPLC on a Mono S column. A linear gradient from 20 mM sodium phosphate, pH 7.95 to 20 mM sodium phosphate containing 1 M NaCl was run. The galactosyl ated ribonuclease eluted at a NaCl concentration of 0.13 M. The protein peak measured by UV absorbance (A280) coincided with a peak of radioactivity, as shown in Fig. 10 ( o ----o ). The protein peak eluting at 0.13 M NaCl was collected and analyzed by SDS-PAGE. The only protein band detected after staining with Coomassie blue co-migrated with Endo H-treated ribonuclease B (not shown).

Step 3. Sialylation of gal actosylated ribonuclease.

A 40 μl aliquot of the reaction mixture from Step 2 was mixed with 10 μl of 6.5 mM CMP-NeuAc and 10 ul of rat liver CMP-NeuAc :Gal-R α2-->6 sialyltransferase (1.6 mU, obtained from Genzyme Corp., Boston MA) and incubated at 37°C for 18 hours. The sialylated ribonuclease was analyzed by FPLC on a Mono S column using the conditions described in Step 2. The sialylated ribonuclease eluted at a NaCl concentration of 0.18 M, as judged by the profiles of both A280 and radioactivity. The profile of radioactivity is shown in Fig 10, (Δ—Δ). The conversion of Gal-->GlcNAc-RNAse to SA-->Gal-->RNAse appeared to be quantitative. Al though this invention has been described with reference to specific embodiments, it is understood that modifications and variations of the methods for modifying or glycosylating proteins, and the glycosylated proteins, may occur to those skilled in the art. It is intended that all such modifications and variations be included within the scope of the appended claims.

Table I. Oligosaccharide Specificities of Endo-β-N-acetylglucosaminidases

Enzyme and Susceptible N-linked oligosaccharides (Ref.) Source

Endo H Yeast mannans, all high-mannose oligosac(1,2)

(Streptomyces charides, and hybrid oligosaccharides. plicams) (The enzyme requires an α1-->3-linked mannose residue attached to the α1-->6 mannose residue of the Man3G!cNAc2 core and we have found that the enzyme is not inhibited by an α1-->6 linked fucose attached to the innermost GlcNAc residue.)

Endo CII Certain high-mannose oligosaccharides. (3)

(Clostridium (Similar to Endo H except that it will not perfringens) cleave substrates if the mannose linked α1-->3 to the β-linked mannose is substituted at C-4 with another sugar or if the β-linked mannose residue is substituted with a β1-->4- linked GlcNAc residue.)

Endo D Man3-5GlcNAc2, with or without a fucose (4)

(Diplococcus residue linked a1-->6 to the innermost pneumoniae) GlcNAc residue

Endo L ManGlcNAc, (5)

(S. plicatus)

Endo F High-mannose and biantennary complex (6)

(Flavobacterium oligosaccharides meningosepticum)

References:

1. Tarentino et al., Meth. Enzymol. 50, 574-580 (1978).

2. Tai and KoData, Biocnem . Biopnys. Res. Commun. 78, 434-441 (1977)

3. Kobata, Meth. Enzymol. 50, 567-574 (1978). 4. Muramats , Meth. Enzymol. 50 , 555-559 (1978). 5. Trimble et al., J. Biol Chem. 254, 9708-13 (1979). 6. Plummer et al., J. Biol. Chem. 259, 10700-4 (1984)

Claims

We claim:
1. A method for modifying a giycoprotein comprising: attaching a gal actose residue to a core N-acetyl gl ucosamine to form a Gal-GlcNAc sequence; and attaching a sial ic acid residue to the galactose to form a SA- Gal -GlcNAc sequence.
2. The method of cl aim 1 further comprising fi rst cleaving asparagine-1 inked ol igosaccharide chai ns of the giycoprotein to remove all sugars other than core N-acetyl gl ucosamine residues bound to the giycoprotein.
3. The method of claim 2 wherein the ol igosaccharide chains are cleaved by an endoglycosidase.
4. The method of cl aim 3 wherein the endoglycosidase is sel ected from the group consisting of endo-β-N-acetyl gl ucosaminidase H, endo-β-N-acetyl glucosaminidase F, endo-β-N-acetyl gl ucosaminidase CII, endo-β- N-acetylglucosaminidase D, endo-β-N-acetylgl ucosaminidase L, and combinations thereof.
5. The method of claim 4 further comprising cleaving 0-1 inked ol igosaccharide chains with an enzyme selected from the group consisting of α-mannosidase, endo-α-N-acetyl gal actosaminidase, and combinations thereof.
6. The method of cl aim 1 further comprising cleaving 0-1 inked ol igosaccharide chains with an enzyme selected from the group consisting of α-mannosidase, eπdo-α-N-acetyl gal actosaminidase, and combinations thereof.
7. The method of claim 2 wherein the oligosaccharide chain is cleaved by digestion with an exoglycosidase.
8. The method of claim 7 wherein the exoglycosidase is selected from the group consisting of sialidase, α-mannosidase, β-mannosidase, α-galactosidase, β-galactosidase, α-fucosidase, β-hexosaminidase, and combi nati ons thereof.
9. The method of claim 8 wherein the oligosaccharide chains are sequentially cleaved by:
1) digesting the glycoprotein with α-mannosidase to remove α-mannose residues;
2) digesting the product of step 1) with β-mannosidase to remove β-mannose residues.
10. The method of claim 9 further comprising digesting the glycoprotein with an additional enzyme selected from the group consisting of exoglycosidases and phosphatases.
11. The method of claim 10 wherein the product of step 2 is digested with β-hexosaminidase.
12. The method of claim 2 wherein the oligosaccharide chains are cleaved by sequentially digesting the giycoprotein first with an exoglycosidase and secondly with an endoglycosidase.
13. The method of claim 12 wherein the oligosaccharide chains are cleaved by
1) digesting the glycoprotein with α-mannosidase to remove α-mannose residues; and
2) digesting the product of step 1) with an endoglycosidase selected from the group consisting of endo-β-N-acetylglucosaminidase L and endo-β-N-acetylglucosaminidase D.
14. The method of claim 12 for modifying glycoproteins wherein the oligosaccharide chains are cleaved by digesting the glycoprotein with an enzyme selected from the group consisting of sialidase, α-galactosidase, β-galactosidase, β-hexosaminidase, α-fucosidase, and combinations thereof followed by digestion with an enzyme selected from the group consisting of endo-β-N-acetyl glucosaminidase D and endo-β-N-acetylglucosaminidase F.
15. The method of claim 2 further comprising cleaving high-mannose oligosaccharide chains with α-mannosidase to remove mannose residues.
16. The method of claim 2 wherein the oligosaccharide chains are cleaved by chemical treatment.
17. The method of claim 16 wherein the oligosaccharide chains are cleaved with a compound selected from the group consisting of trifluoromethane sulfonic acid and hydrofluoric acid.
18. The method of claim 1 further comprising first producing the glycoproteins in cells in the presence of a glycosidase inhibitor.
19. The method of claim 18 wherein the glycosidase inhibitor is selected from the group consisting of deoxymannojirimycin, swainsonine, castanospermine and deoxynojirimycin.
20. The method of claim 1 further comprising first producing the glycoprotein in cells with one or more mutations in the oligosaccharide processing pathway.
21. A method for modifying proteins comprising: derivatizing amino acids on the protein with a glycoside or thioglycoside S-X, wherein S is a first saccharide selected from the group consisting of N-acetylglucosamine and galactose and X is an aglycone, and enzymatically attaching a second saccharide selected from the group consisting of galactose, N-acetylglucosamine, fucose, and sialic acid.
22. The method of claim 21 wherein said aglycone comprises an activation group selected from the group consisting of an activated carboxylic acid; a free amino group; an electrophilic site; and a diazo grouping.
23. The method of claim 21 comprising reacting a glycoside or thioglycosid having an aglycone containing an activated carboxylic acid with a amino acid of the protein selected from the group consisting of lysine, arginine, histidine, the amino-terminal amino acid of the protein; and other amino acids containing free amino groups.
24. The method of claim 21 comprising reacting a glycoside or thioglycoside having an aglycone containing a free amino group with an amino acid of the protein selected from the group consisting of glutamic acid, aspartic acid, the carboxy-terminal amino acid of the protein, and other amino acids containing free carboxy! groups.
25. The method of claim 21 comprising reacting a glycoside or thioglycoside having an aglycone containing an electrophilic site with an amino acid of the protein selected from the group consisting of cysteine and other amino acids containing free sulfhydryl groups.
26. The method of claim 21 comprising reacting a glycoside or thioglycoside having an aglycone containing a free amino group with an amino acid of the protein selected from the group consisting of hydroxyproline, serine, threonine, and other amino acids with free hydroxy! groups.
27. The method of claim 21 comprising reacting a glycoside or thioglycoside having an aglycone containing a diazo grouping with an amino acid of the protein selected from the group consisting of phenylalanine, tyrosine, tryptophan, and other aromatic amino acids.
28. The method of claim 22 comprising reacting a glycoside or thioglycoside having an aglycone containing a free amino group with glutamine using a transglutaminase.
29. The method of claim 21, wherein the first saccharide is GlcNAc, and wherein said enzymatic attachment comprises: attaching a galactose residue to the N-acetylglucosamine to form a Gal -GlcNAc—> sequence; and attaching a sialic acid residue to the galactose to form a SA-Gal -GlcNAc—> sequence.
30. The method of claim 21, wherein the first saccharide is galactose, and wherein said enzymatic attachment comprises: attaching a sialic acid residue to the galactose to form a SA-Gal sequence.
31. The method of claim 1 or 29 wherein the galactose residue is attached to the N-acetylglucosamine residue by a galactosyltransferase.
32. The method of claim 31 wherein the gal actosyltransferase is selected from the group consisting of UDP-Gal :GlcNAc-R β1-->4 galactosyltransferase and UDP-Gal :GlcNAc-R β1-->3 galactosyltransferase.
33. The method of claim 1 or 29 wherein the galactose is attached to the N-acetylglucosamine by:
1) incubating UDP-Gal :GlcNAc-R β1-->4 galactosyltransferase with the derivatized protein to attach a terminal galactose to the GlcNAc;
2) incubating the product of step 1 with UDP-GlcNAc:-Galβ1-->4GlcNAc-R β1-->3 N-acetylglucosaminyltransferase to attach a terminal GlcNAc to the terminal galactose;
3) incubating the product of step 2 with UDP-Gal : GlcNAc -R1-->4 galactosyltransferase to attach a terminal galactose to the terminal GlcNAc; and
4) repeating steps 2 and 3 until an oligosaccharide chain (Galβ1-->4GlcNAcβ1-->3) units, wherein n is between 1 and 10, is produced.
34. The method of claim 1 or 29 or 33 further comprising attaching fucose to a Gal-->GlcNAc--> sequence.
35. The method of claim 34 wherein the fucose is attached to the Gal-GlcNAc--> sequence with GDP-Fuc: GlcNAc α1-->3 fucosyltransferase.
36. The method of claim 1 or 29 further comprising attaching the galactose residues to the N-acetylglucosamine in a solution containing a non-ionic detergent, a chaotropic agent, an organic solvent, urea, a protease inhibitor, an exoglycosidase inhibitor, a disulfide bond reducing agent, or a combination thereof.
37. The method of claim 1 wherein the sialic acid residue is attached to the Gal -GlcNAc sequence in an α linkage by a sialyltransferase.
38. The method of claim 37 wherein the sialyltransferase is selected from the group consisting of CMP-SA: Gal β1-->4GlcNAc-R β2-->6 sialyltransferase, CMP-SA:Galβ1-->3(4)GlcNAc α2-- >3 sialyltransferase, and CMP-SA:Galβ1-->4GlcNAc α2-->3 sialyltransferase
39. A method for targeting a protein to a cell having a specific surface receptor for a saccharide, said method comprising: attaching to the protein an oligosaccharide chain, said oligosaccharide chain having an exposed saccharide and a Gal-->GlcNAc sequence, wherein said exposed saccharide is recognized by the cell surface receptor and said oligosaccharide chain is attached to the protein with a Gal-->GlcNAc sequence.
40. The method of claim 39 wherein the oligosaccharide chain is a disaccharide consisting of Galβ1-- >4 GlcNAc.
41. The method of claim 39 wherein the oligosaccharide chain is a branched oligosaccharide selected from the group of Galβ1-->3(4)[Fucα1-->4(3)]GlcNAc, SAα2-->3Galβ1-->3(Fucα1-->4)GlcNAc, Galβ1-->3(4)[Fucα1-->4(3)]GlcNAcβ1-->4GlcNAc, and SAα2-- >3Galβ1-->3(Fucα1-->4)GlcNAcβ1-->4GlcNAc.
42. A protein comprising an oligosaccharide sequence consisting of any of
Galβ1-->4GlcNAc-->;
Galβ1-->3GlcNAc-->:
SAα2-->6Gal β1-->4G1 cNAc--> ;
SAα2-->3Galβ1-->4GlcNAc—>;
SAα2-->3Galβ1--->3GlcNAc-->:
Gal β1-->4( Fucα1-->3 ) GlcNAc—> ;
Galβ1-->3(Fucα1-->4)GlcNAc-->;
SAα2-->3Galβ1-->3 (Fucα1—>4)GlcMAc—>;
Galβ1-->4GlcNAcβ1-->4GlcNAc—>;
Galβ1-->3G1 cNAcβ1-->4G1 cNAc—>;
SAα2-->6Galβ1-->4GlcNAcβ1—>4G! cNAc--> :
SAα2-->3Galβ1-->4Gl cNAcβ1—>4GlcNAc—> ;
SAα2-->3Galβ1-->3Gl cNAcβ1—>4GlcNAc-->:
Galβ1-->4(Fucα1-->3) GlcNAcβ1—>4G1 cNAc-- > ;
Galβ1-->3 (Fucα1-->4)GlcNAcβ1—>4GlcNAc-->;
SAα2-->3Galβ1-->3(Fucα1-->4)GlcNAcβ1-->4GlcNAc-->;
[GlcNAcβ1-->3Galβ1-->4]nGιcNAc-->, wherein n is between 1 and 10; [GlcNAcβ1—>3Galβ1—>4]n GlcNAcβ1-->4GlcNAc-->, wherein n is between 1 and 10;
Galβ1-->4[GlcNAcβ1—>3Galβ1-->4]nGlcNAc-->, wherein n is between 1 and
10;
Galβ1-->3[GlcNAcβ1-- 3Galβ1-->4]nGlcNAc—>, wherein n is between 1 and
10:
SAα2-->6Galβ1—>4[GlcNAcβ1-->3Galβ1-->4]nGlcNAc-->, wherein n is between 1 and 10:
SAα2-->3Galβ1—>4[Gl cNAcβ1-->3Galβ1-->4]nGlcNAc-->, wherein n is between 1 and 10;
SAα2-->3Galβ1—>3[GlcNAcβ1-->3GalβI—>4]nGlcNAc—>, wherein n is between 1 and 10;
Galβ1-->4(Fucα1—>3)GlcNAcβ1-->3[Galβ1—>4(Fucα1-->3)mGlcNAcβ1-->3]n-
Galβ1-->4GlcNAc-->, wherein m is between 0 and 1, and n is between
1 and 10; Galβ1-->3(Fucα1-->4)Gl cNAcβ1-->3[Gal β1-->4(Fucα1-->3 )mGl cNAcβ1-- >3]n- Galβ1-->4GlcNAc-->, wherein m is between 0 and 1, and n is between 1 and 10;
SAα2-->3Galβ1-->3(Fucα1-->4)GlcNAcβ1-->3[Galβ1-->4GlcNAcβ-->3]n- Galβ1-->4GlcNAc-->, wherein n is between 1 and 10;
Galβ1-->4[GlcNAcβ1-->3Galβ1-->4]nGlcNAcβ1—>4GlcNAc—>, wherein n is between 1 and 10;
Galβ1-->3[GlcNAcβ1-->3Galβ1-->4]nGlcNAcβ1-->4GlcNAc-->, wherein n is between 1 and 10; SAα2-->6Galβ1-->4[GlcNAcβ1-->3Galβ1-->4]nGlcNAcβ1-->4GlcNAc-->, wherein n is between 1 and 10; SAα2—>3Galβ1—>4[Gl cNAcβ1—>3Galβ1—>4]nG! cNAcβ1— >4GlcNAc—>, wherein n is between 1 and 10; SAα2-->3Galβ1-->3[GlcNAcβ1-->3Galβ1—>4]nGlcNAcβ1—>4GlcNAc—>, wherein n is between 1 and 10; Galβ1-->4(Fucα1-->3)GlcNAcβ1-->3[Galβ1-->4(Fucα1-->3)mGlcNAcβ1-->3]n- Galβ1-->4Gl cNAcβ1-->4GlcNAc-->, wherein m is oetween 0 and 1, and n is between 1 and 10; GaTβ1-->3(Fucα1-->4)GlcNAcβ1-->3[Galβ1-->4(Fucα1-->3)m GlcNAcβ1-->3]n- Galβ1—>4GlcNAcSi— 4GlcNAc-->, wherein m is between 0 and 1, and n is between 1 and 10; SAα2-->3Galβ1-->3(Fucα1-->4)GlcNAcβ1-->3 [Galβ1-->4GlcNAcβ-->3]n- Galβ1—>4GlcNAcβ1-->4GlcNAc-->, wherein n is between 1 and 10;
43. A protein comprising an ol igosaccnaride sequence consisting of any of:
(GlcNAcβ1-->3Galβ1-->4)nGlcNAcβ1-->3Gal-->, wherein n is between 1 and 10; SAα2-->6Gal-->;
SAα2—>6Galβ1-->4(GlcNAcβ1-->3Galβ1-->4)nGlcNAcβ1-->3Gal, wherein n is between 1 and 10; SAα2-->3Gal-->; and
SAα2-->3Galβ1-->4(Gl cNAcβ1-->3Galβ1-->4)nGlcNAcβ1-->3Gal-->, wherein n is between 1 and 10.
44. A glycosylated protein comprising Gal-GlcNAc-protein, wherein the Gal is attached to the GlcNAc by an enzyme selected from the group consisting of UDP-Gal :GlcNAc-R β1-- >4 gal actosyltransferase and UDP-Gal :GlcNAc-R β1-- >3 gal actosyltransferase.
45. A glycosylated protein comprising SA-Gal -GlcNAc-protein, wherein the SA is attached to the Gal by an enzyme selected from the group consisting of CMP-SA:Galβ1-- >4GlcNAc-R α2-->6 sialyltransferase; CMP-SA:Galβ1-->3(4)GlcNAc-R α2-->3 sialyltransferase; and CMP-SA:-Galβ1-->4GlcNAc-R α2-->3 sialyltransferase.
PCT/US1986/000495 1986-03-07 1986-03-07 Method for enhancing glycoprotein stability WO1987005330A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US1986/000495 WO1987005330A1 (en) 1986-03-07 1986-03-07 Method for enhancing glycoprotein stability

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP50174686A JPS63502716A (en) 1986-03-07 1986-03-07
EP19860902150 EP0272253A4 (en) 1986-03-07 1986-03-07 Method for enhancing glycoprotein stability.
AU56271/86A AU597574B2 (en) 1986-03-07 1986-03-07 Method for enhancing glycoprotein stability
PCT/US1986/000495 WO1987005330A1 (en) 1986-03-07 1986-03-07 Method for enhancing glycoprotein stability
DK583087A DK583087A (en) 1986-03-07 1987-11-06 PROCEDURE TO INCREASE glycoproteinstabilitet
AU51336/90A AU624487B2 (en) 1986-03-07 1990-03-14 Method for enhancing glycoprotein stability

Publications (1)

Publication Number Publication Date
WO1987005330A1 true WO1987005330A1 (en) 1987-09-11

Family

ID=22195409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1986/000495 WO1987005330A1 (en) 1986-03-07 1986-03-07 Method for enhancing glycoprotein stability

Country Status (5)

Country Link
EP (1) EP0272253A4 (en)
JP (1) JPS63502716A (en)
AU (2) AU597574B2 (en)
DK (1) DK583087A (en)
WO (1) WO1987005330A1 (en)

Cited By (407)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989007641A1 (en) * 1988-02-10 1989-08-24 Genzyme Corporation Enhancement of the therapeutic properties of glycoprotein
EP0414171A2 (en) * 1989-08-23 1991-02-27 Hoechst Aktiengesellschaft Process for the enzymatic synthesis of components of galactosylated glycoproteins
US5851984A (en) * 1996-08-16 1998-12-22 Genentech, Inc. Method of enhancing proliferation or differentiation of hematopoietic stem cells using Wnt polypeptides
US5990281A (en) * 1996-09-30 1999-11-23 Genentech, Inc. Vertebrate smoothened proteins
US6020473A (en) * 1995-08-25 2000-02-01 Genentech, Inc. Nucleic acids encoding variants of vascular endothelial cell growth factor
US6030945A (en) * 1996-01-09 2000-02-29 Genentech, Inc. Apo-2 ligand
US6130318A (en) * 1994-07-01 2000-10-10 Bayer Aktiengellschaft hIL-4 mutant proteins used as antagonists or partial agonists of human interleukin 4
US6136958A (en) * 1996-09-30 2000-10-24 Genentech, Inc. Antibodies to vertebrate smoothened proteins
US6159462A (en) * 1996-08-16 2000-12-12 Genentech, Inc. Uses of Wnt polypeptides
US6270987B1 (en) 1997-01-31 2001-08-07 Genentech, Inc. O-fucosyltransferase
US6291643B1 (en) 1997-06-05 2001-09-18 Board Of Reports, The University Of Texas System Apaf-1 an activator of caspase-3
US6319695B1 (en) * 1991-10-15 2001-11-20 The Scripps Research Insitute Production of fucosylated carbohydrates by enzymatic fucosylation synthesis of sugar nucleotides; and in situ regeneration of GDP-fucose
US6342369B1 (en) 1997-05-15 2002-01-29 Genentech, Inc. Apo-2-receptor
US6462176B1 (en) 1996-09-23 2002-10-08 Genentech, Inc. Apo-3 polypeptide
US6469144B1 (en) 1996-04-01 2002-10-22 Genentech, Inc. Apo-2LI and Apo-3 polypeptides
WO2003033720A2 (en) 2001-10-15 2003-04-24 Xencor Protein based tnf-alpha variants for the treatment of tnf-alpha related disorders
WO2003046150A2 (en) 2001-11-28 2003-06-05 Neose Technologies, Inc. Glycoprotein remodeling using endoglycanases
US6576452B1 (en) 2000-10-04 2003-06-10 Genencor International, Inc. 2,5-diketo-L-gluconic acid reductases and methods of use
WO2003072714A2 (en) 2002-02-21 2003-09-04 Wyeth Follistatin domain containing proteins
US6673580B2 (en) 2000-10-27 2004-01-06 Genentech, Inc. Identification and modification of immunodominant epitopes in polypeptides
WO2004004649A2 (en) 2002-07-08 2004-01-15 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
US6727079B1 (en) 1998-02-25 2004-04-27 The United States Of America As Represented By The Department Of Health And Human Services cDNA encoding a gene BOG (B5T Over-expressed Gene) and its protein product
US6740739B1 (en) 1998-01-15 2004-05-25 Genentech, Inc. Substitutional variants of APO-2 ligand
US6746668B2 (en) 1996-01-09 2004-06-08 Genentech, Inc. Apo-2 ligand
US6764679B2 (en) 1997-09-18 2004-07-20 Genentech, Inc. Antibodies to DcR3 Polypeptide, a TNFR Homolog
FR2851471A1 (en) * 2003-02-24 2004-08-27 Synt Em Compound comprising active agent coupled to vector through a linker, useful in human or veterinary medicine, where the linker includes a hydroxyproline residue
WO2004100898A2 (en) 2003-05-08 2004-11-25 Protein Design Labs, Inc. Therapeutic use of anti-cs1 antibodies
JP2005521635A (en) * 2001-10-10 2005-07-21 ネオス・テクノロジーズ・インコーポレーテツド Modifications and glycoconjugation of peptide
WO2005100402A1 (en) 2004-04-13 2005-10-27 F.Hoffmann-La Roche Ag Anti-p-selectin antibodies
US7005505B1 (en) 1995-08-25 2006-02-28 Genentech, Inc. Variants of vascular endothelial cell growth factor
EP1659131A2 (en) 1997-09-17 2006-05-24 Genentech, Inc. Polypeptides and nucleic acids encoding the same
WO2006074467A2 (en) 2005-01-10 2006-07-13 Neose Technologies, Inc. Glycopegylated granulocyte colony stimulating factor
WO2006089133A2 (en) 2005-02-15 2006-08-24 Duke University Anti-cd19 antibodies and uses in oncology
EP1698351A2 (en) * 2005-03-04 2006-09-06 Taiwan Hopax Chems. Mfg. Co., Ltd Glycopeptide compositions
WO2006103100A2 (en) 2005-04-01 2006-10-05 F. Hoffmann-La Roche Ag Antibodies against ccr5 and uses thereof
US7125843B2 (en) 2001-10-19 2006-10-24 Neose Technologies, Inc. Glycoconjugates including more than one peptide
US7157277B2 (en) 2001-11-28 2007-01-02 Neose Technologies, Inc. Factor VIII remodeling and glycoconjugation of Factor VIII
US7173115B2 (en) 2000-01-13 2007-02-06 Genentech, Inc. Stra6 polypeptides
US7173003B2 (en) 2001-10-10 2007-02-06 Neose Technologies, Inc. Granulocyte colony stimulating factor: remodeling and glycoconjugation of G-CSF
US7179617B2 (en) 2001-10-10 2007-02-20 Neose Technologies, Inc. Factor IX: remolding and glycoconjugation of Factor IX
US7214660B2 (en) 2001-10-10 2007-05-08 Neose Technologies, Inc. Erythropoietin: remodeling and glycoconjugation of erythropoietin
US7226903B2 (en) 2001-10-10 2007-06-05 Neose Technologies, Inc. Interferon beta: remodeling and glycoconjugation of interferon beta
US7265084B2 (en) 2001-10-10 2007-09-04 Neose Technologies, Inc. Glycopegylation methods and proteins/peptides produced by the methods
US7265085B2 (en) 2001-10-10 2007-09-04 Neose Technologies, Inc. Glycoconjugation methods and proteins/peptides produced by the methods
US7297511B2 (en) 2001-10-10 2007-11-20 Neose Technologies, Inc. Interferon alpha: remodeling and glycoconjugation of interferon alpha
EP1865061A2 (en) 1998-05-15 2007-12-12 Genentech, Inc. IL-17 homologous polypeptides and therapeutic uses thereof
US7335500B2 (en) 1991-10-15 2008-02-26 The Scripps Research Institute Production of fucosylated carbohydrates by enzymatic fucosylation synthesis of sugar nucleotides; and in situ regeneration of GDP-fucose
US7338933B2 (en) 2004-01-08 2008-03-04 Neose Technologies, Inc. O-linked glycosylation of peptides
EP1897944A2 (en) 1999-12-23 2008-03-12 Genentech, Inc. IL-17 homologous polypeptides and therapeutic uses thereof
WO2008037419A1 (en) 2006-09-29 2008-04-03 F. Hoffmann-La Roche Ag Antibodies against ccr5 and uses thereof
US7364870B2 (en) 2002-08-02 2008-04-29 Wyeth MK2 interacting proteins
WO2008054603A2 (en) 2006-10-02 2008-05-08 Amgen Inc. Il-17 receptor a antigen binding proteins
WO2008060780A2 (en) 2006-10-04 2008-05-22 Novo Nordisk A/S Glycerol linked pegylated sugars and glycopeptides
US7378503B2 (en) 2003-04-02 2008-05-27 Hoffmann-La Roche Inc. Antibodies against insulin-like growth factor 1 receptor and uses thereof
WO2008067223A2 (en) 2006-11-29 2008-06-05 Genentech, Inc. Il-17a/f heterodimeric polypeptides and therapeutic uses thereof
US7399613B2 (en) 2001-10-10 2008-07-15 Neose Technologies, Inc. Sialic acid nucleotide sugars
EP1944317A2 (en) 2000-09-01 2008-07-16 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US7405198B2 (en) 2003-11-24 2008-07-29 Neose Technologies, Inc. Glycopegylated erythropoietin
EP1953173A1 (en) 1999-06-15 2008-08-06 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids endoding the same
EP1967587A1 (en) 1997-10-10 2008-09-10 Genentech, Inc. APO-3 Ligand
EP1980618A2 (en) 1995-02-24 2008-10-15 Genentech, Inc. Human DNASE I variants
US7439043B2 (en) 2001-10-10 2008-10-21 Neose Technologies, Inc. Galactosyl nucleotide sugars
EP1982732A2 (en) 2000-02-11 2008-10-22 Maxygen Holdings Ltd. Factor VII or VIIA-like molecules
EP1992643A2 (en) 2001-06-20 2008-11-19 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP1995321A2 (en) 2005-08-15 2008-11-26 Genentech, Inc. Gene disruptions, compositions and methods relating thereto
EP2002714A1 (en) 2005-11-21 2008-12-17 Genentech, Inc. Novel gene disruptions, compositions and methods relating thereto
US7473680B2 (en) 2001-11-28 2009-01-06 Neose Technologies, Inc. Remodeling and glycoconjugation of peptides
EP2011886A2 (en) 2002-04-16 2009-01-07 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP2011873A2 (en) 1994-05-27 2009-01-07 Genentech, Inc. Tumor necrosis factor receptor-associated factors
EP2014669A2 (en) 2002-03-01 2009-01-14 Sagres Discovery, Inc. Compositions and methods for cancer
EP2014770A2 (en) 1997-10-29 2009-01-14 Genentech, Inc. WNT-1 Iinduced secreted polypeptide WISP-2
EP2014677A1 (en) 1997-11-21 2009-01-14 Genentech, Inc. A-33 related antigens and their pharmacological uses
EP2014298A2 (en) 2000-08-24 2009-01-14 Genentech, Inc. Interleukin-22 polypeptides, nucleic acids encoding the same and methods for the treatment of pancreatic disorders
EP2014675A1 (en) 2003-08-11 2009-01-14 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
WO2009007848A2 (en) 2007-07-12 2009-01-15 Compugen Ltd. Bioactive peptides and method of using same
EP2016951A1 (en) 1998-03-17 2009-01-21 Genentech, Inc. Polypeptides homologous to VEGF and BMP1
WO2009019531A2 (en) 2006-09-18 2009-02-12 Compugen Ltd Bioactive peptides and method of using same
US7495085B2 (en) 2003-03-14 2009-02-24 Wyeth Antibodies against human or mouse IL-21 receptor
EP2031076A1 (en) 2002-02-27 2009-03-04 Sagres Discovery, Inc. Novel compositions and methods for cancer
EP2034030A2 (en) 2001-12-26 2009-03-11 Sagres Discovery, Inc. Novel compositions and methods for cancer
EP2033970A2 (en) 1997-10-29 2009-03-11 Genentech, Inc. WNT-1 inducible genes
WO2009032845A2 (en) 2007-09-04 2009-03-12 Compugen, Ltd. Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
EP2042597A1 (en) 2000-06-23 2009-04-01 Genentech, Inc. Compositions and methods for the diagnosis and treatment of disorders involving angiogenesis
EP2050335A1 (en) 2006-02-17 2009-04-22 Genentech, Inc. Gene disruptions, compositions and methods relating thereto
EP2050762A2 (en) 1998-03-10 2009-04-22 Genentech, Inc. Novel polypeptides and nucleic acids encoding the same
EP2055189A1 (en) 2003-04-09 2009-05-06 Neose Technologies, Inc. Glycopegylation methods and proteins/peptides produced by the methods
WO2009058734A1 (en) 2007-10-30 2009-05-07 Indiana University Research And Technology Corporation Compounds exhibiting glucagon antagonist and glp-1 agonist activity
EP2058408A2 (en) 2003-02-14 2009-05-13 Sagres Discovery, Inc. Therapeutic GPCR targets in cancer
EP2062591A1 (en) 2005-04-07 2009-05-27 Novartis Vaccines and Diagnostics, Inc. CACNA1E in cancer diagnosis detection and treatment
EP2067472A1 (en) 2002-01-02 2009-06-10 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
US7553930B2 (en) 2003-01-06 2009-06-30 Xencor, Inc. BAFF variants and methods thereof
EP2075253A1 (en) 2000-06-23 2009-07-01 Genentech, Inc. Compositions and methds for the diagnosis and treatment of disorders involving angiogensis
EP2075335A2 (en) 1998-12-22 2009-07-01 Genentech, Inc. Methods and compositions for inhibiting neoplastic cell growth
EP2075334A1 (en) 2000-06-23 2009-07-01 Genentech, Inc. EG-VEGF nucleic acids and polypeptides and methods of use
WO2009085200A2 (en) 2007-12-21 2009-07-09 Amgen Inc. Anti-amyloid antibodies and uses thereof
EP2080771A2 (en) 2001-02-27 2009-07-22 Maxygen Aps New interferon beta-like molecules
EP2082645A1 (en) 2006-04-19 2009-07-29 Genentech, Inc. Novel gene disruptions, compositions and methods relating thereto
EP2083088A2 (en) 2005-04-07 2009-07-29 Novartis Vaccines and Diagnostics, Inc. Cancer-related genes
EP2083018A2 (en) 2003-04-16 2009-07-29 Genentech, Inc. Compositions and methods relating to STOP-1
EP2083079A1 (en) 1997-06-18 2009-07-29 Genentech, Inc. Apo-2DcR
WO2009094551A1 (en) 2008-01-25 2009-07-30 Amgen Inc. Ferroportin antibodies and methods of use
EP2085096A2 (en) 2002-09-11 2009-08-05 Genentech, Inc. Novel composition and methods for the treatment of immune related diseases
US7572897B2 (en) 2003-07-10 2009-08-11 Hoffman-La Roche Inc. Antibodies against insulin-like growth factor I receptor and uses thereof
EP2093233A1 (en) 2002-03-21 2009-08-26 Sagres Discovery, Inc. Novel compositions and methods in cancer
US7582291B2 (en) 2005-06-30 2009-09-01 The Rockefeller University Bacteriophage lysins for Enterococcus faecalis, Enterococcus faecium and other bacteria
EP2110434A1 (en) 2002-02-25 2009-10-21 Genentech, Inc. Type-1 cytokine receptor GLM-R
EP2116551A1 (en) 2002-09-11 2009-11-11 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
WO2009139822A1 (en) 2008-05-01 2009-11-19 Amgen Inc. Anti-hepcidin antibodies and methods of use
WO2009142221A1 (en) 2008-05-20 2009-11-26 大塚製薬株式会社 Antibody capable of discriminating the change in structure between antibody conjugated with antibody and antibody unconjugated with antibody, and method for production of the antibody
EP2133098A1 (en) 2000-01-10 2009-12-16 Maxygen Holdings Ltd G-CSF conjugates
WO2009155258A2 (en) 2008-06-17 2009-12-23 Indiana University Research And Technology Corporation Glucagon/glp-1 receptor co-agonists
WO2009155257A1 (en) 2008-06-17 2009-12-23 Indiana University Research And Technology Corporation Glucagon analogs exhibiting enhanced solubility and stability physiological ph buffers
US7645441B2 (en) 2000-12-22 2010-01-12 Sagres Discovery Inc. Compositions and methods in cancer associated with altered expression of PRLR
EP2143438A1 (en) 2001-09-18 2010-01-13 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
WO2010011439A2 (en) 2008-06-17 2010-01-28 Indiana University Research And Technology Corporation Gip-based mixed agonists for treatment of metabolic disorders and obesity
WO2010019261A1 (en) 2008-08-14 2010-02-18 Acceleron Pharma Inc. Use of gdf traps to increase red blood cell levels
EP2161283A1 (en) 2003-11-17 2010-03-10 Genentech, Inc. Compositions comprising antibodies against CD79b conjugated to a growth inhibitory agent or cytotoxic agent and methods for the treatment of tumor of hematopoietic origin
WO2010027364A1 (en) 2008-09-07 2010-03-11 Glyconex Inc. Anti-extended type i glycosphingolipid antibody, derivatives thereof and use
US7691603B2 (en) 2003-04-09 2010-04-06 Novo Nordisk A/S Intracellular formation of peptide conjugates
US7696163B2 (en) 2001-10-10 2010-04-13 Novo Nordisk A/S Erythropoietin: remodeling and glycoconjugation of erythropoietin
WO2010040766A1 (en) 2008-10-07 2010-04-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Neutralizing antibodies and fragments thereof directed against platelet factor-4 variant 1 (pf4v1)
US7700274B2 (en) 2000-12-22 2010-04-20 Sagres Discovery, Inc. Compositions and methods in cancer associated with altered expression of KCNJ9
US7705195B2 (en) 2002-06-07 2010-04-27 Genentech, Inc. Screening method
EP2186402A1 (en) 2005-06-06 2010-05-19 Genentech, Inc. Knock-out animal models for novel genes and methods of use
WO2010056804A1 (en) 2008-11-12 2010-05-20 Medimmune, Llc Antibody formulation
WO2010067308A2 (en) 2008-12-08 2010-06-17 Compugen Ltd. Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
WO2010075238A1 (en) 2008-12-23 2010-07-01 Amgen Inc. Human cgrp receptor binding proteins
EP2204376A2 (en) 2004-07-20 2010-07-07 Sagres Discovery, Inc. Novel therapeutic targets in cancer
WO2010080609A1 (en) 2008-12-19 2010-07-15 Indiana University Research And Technology Corporation Amide-based insulin prodrugs
US7767387B2 (en) 2003-06-13 2010-08-03 Sagres Discovery, Inc. Therapeutic targets in cancer
EP2221316A1 (en) 2005-05-05 2010-08-25 Duke University Anti-CD19 antibody therapy for autoimmune disease
WO2010099219A2 (en) 2009-02-24 2010-09-02 The Salk Institute For Biological Studies Designer ligands of tgf-beta superfamily
US7795210B2 (en) * 2001-10-10 2010-09-14 Novo Nordisk A/S Protein remodeling methods and proteins/peptides produced by the methods
EP2228446A1 (en) 1999-12-01 2010-09-15 Genentech, Inc. Secreted and transmembrane polypeptieds and nucleic acids encoding the same
WO2010106180A2 (en) 2009-03-20 2010-09-23 Lfb Biotechnologies Optimized fc variants
WO2010106051A1 (en) 2009-03-17 2010-09-23 Universite De La Mediterranee Btla antibodies and uses thereof
US7803777B2 (en) 2003-03-14 2010-09-28 Biogenerix Ag Branched water-soluble polymers and their conjugates
WO2010111617A2 (en) 2009-03-27 2010-09-30 Van Andel Research Institute Parathyroid hormone peptides and parathyroid hormone-related protein peptides and methods of use
EP2236519A1 (en) 2007-09-18 2010-10-06 Amgen, Inc Human GM-CSF antigen binding proteins
WO2010114860A1 (en) 2009-03-30 2010-10-07 Acceleron Pharma Inc. Bmp-alk3 antagonists and uses for promoting bone growth
US7816076B2 (en) 2003-02-14 2010-10-19 Sagres Discovery, Inc. Therapeutic targets in cancer
EP2241622A2 (en) 1994-03-18 2010-10-20 Genentech, Inc. Human trk receptors and their derivatives
WO2010120561A1 (en) 2009-04-01 2010-10-21 Genentech, Inc. Anti-fcrh5 antibodies and immunoconjugates and methods of use
EP2248829A1 (en) 2003-05-30 2010-11-10 Genentech, Inc. Treatment with anti-VEGF antibodies
EP2248903A1 (en) 2009-04-29 2010-11-10 Universitat Autònoma De Barcelona Methods and reagents for efficient and targeted gene transfer to monocytes and macrophages
US7842661B2 (en) 2003-11-24 2010-11-30 Novo Nordisk A/S Glycopegylated erythropoietin formulations
US7846724B2 (en) 2006-04-11 2010-12-07 Hoffmann-La Roche Inc. Method for selecting CHO cell for production of glycosylated antibodies
WO2010148089A1 (en) 2009-06-16 2010-12-23 Indiana University Research And Technology Corporation Gip receptor-active glucagon compounds
EP2277908A2 (en) 2003-07-08 2011-01-26 Genentech, Inc. IL-17A/F heterologous polypeptides, antibodies and therapeutic uses thereof
WO2011020045A1 (en) 2009-08-13 2011-02-17 Acceleron Pharma Inc. Combined use of gdf traps and erythropoietin receptor activators to increase red blood cell levels
WO2011032099A1 (en) 2009-09-11 2011-03-17 The Board Of Trustees Of The University Of Illinois Methods of treating diastolic dysfunction and related conditions
WO2011031901A1 (en) 2009-09-09 2011-03-17 Acceleron Pharma Inc. Actriib antagonists and dosing and uses thereof
EP2298354A2 (en) 2001-10-10 2011-03-23 BioGeneriX AG Remodelling and glycoconjugation of interferon-beta
EP2301576A1 (en) 2004-03-29 2011-03-30 Abbott Biotherapeutics Corp. Therapeutic use of Anti-CS1 Antibodies
WO2011038301A2 (en) 2009-09-25 2011-03-31 Xoma Technology Ltd. Screening methods
WO2011038302A2 (en) 2009-09-25 2011-03-31 Xoma Technology Ltd. Novel modulators
EP2305716A2 (en) 2004-11-30 2011-04-06 Curagen Corporation Antibodies directed to gpnmb and uses thereof
EP2308968A1 (en) 2002-11-26 2011-04-13 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2311960A2 (en) 2001-08-29 2011-04-20 Genentech, Inc. Bv8 nucleic acids and polypeptides with mitogenic activity
EP2311873A1 (en) 2004-01-07 2011-04-20 Novartis Vaccines and Diagnostics, Inc. M-CSF-specific monoclonal antibody and uses thereof
WO2011046958A1 (en) 2009-10-12 2011-04-21 Amgen Inc. Use of il-17 receptor a antigen binding proteins
US7932364B2 (en) 2003-05-09 2011-04-26 Novo Nordisk A/S Compositions and methods for the preparation of human growth hormone glycosylation mutants
EP2314617A2 (en) 2004-07-23 2011-04-27 Acceleron Pharma Inc. ActRII receptor polypeptides
WO2011050194A1 (en) 2009-10-22 2011-04-28 Genentech, Inc. Methods and compositions for modulating hepsin activation of macrophage-stimulating protein
EP2316851A1 (en) 2001-09-26 2011-05-04 Wyeth LLC Antibody inhibitors of GDF-8 and uses thereof
EP2319929A1 (en) 1998-12-23 2011-05-11 Genentech, Inc. IL-1 related polypeptides
WO2011056896A1 (en) 2009-11-03 2011-05-12 Acceleron Pharma Inc. Methods for treating fatty liver disease
WO2011056497A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Activin receptor type iib compositions and methods of use
WO2011056600A1 (en) 2009-10-26 2011-05-12 Amgen Inc. Human il-23 antigen binding proteins
WO2011056572A1 (en) 2009-10-27 2011-05-12 The Board Of Trustees Of The University Of Illinois Methods of diagnosing diastolic dysfunction
WO2011056502A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Bone morphogenetic protein receptor type ii compositions and methods of use
WO2011056494A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Activin receptor-like kinase-1 antagonist and vegfr3 antagonist combinations
EP2322201A2 (en) 2002-10-29 2011-05-18 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2325206A2 (en) 2004-11-12 2011-05-25 Xencor, Inc. FC variants with altered binding to FCRN
WO2011063018A1 (en) 2009-11-17 2011-05-26 Acceleron Pharma Inc. Actriib proteins and variants and uses therefore relating to utrophin induction for muscular dystrophy therapy
WO2011063277A1 (en) 2009-11-20 2011-05-26 Amgen Inc. Anti-orai1 antigen binding proteins and uses thereof
EP2327723A2 (en) 2003-10-10 2011-06-01 Xencor, Inc. Protein based tnf-alpha variants for the treatment of tnf-alpha related disorders
EP2327423A2 (en) 2006-02-21 2011-06-01 Wyeth LLC Human antibodies against human interleukin-22 (IL-22)
WO2011066503A2 (en) 2009-11-30 2011-06-03 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
US7956032B2 (en) 2003-12-03 2011-06-07 Novo Nordisk A/S Glycopegylated granulocyte colony stimulating factor
EP2329837A1 (en) 2005-11-23 2011-06-08 Acceleron Pharma Inc. Promoting bone growth
WO2011067711A2 (en) 2009-12-01 2011-06-09 Compugen Ltd Novel heparanase splice variant
WO2011068993A1 (en) 2009-12-02 2011-06-09 Acceleron Pharma Inc. Compositions and methods for increasing serum half-life of fc fusion proteins.
EP2333069A2 (en) 1998-05-15 2011-06-15 Genentech, Inc. Therapeutic uses of IL-17 homologous polypeptides
WO2011071783A1 (en) 2009-12-07 2011-06-16 Amgen Inc. Human antigen binding proteins that bind beta-klotho, fgf receptors and complexes thereof
WO2011075393A2 (en) 2009-12-18 2011-06-23 Indiana University Research And Technology Corporation Glucagon/glp-1 receptor co-agonists
US7968342B2 (en) 2002-08-12 2011-06-28 Danisco Us Inc. Mutant E. coli appa phytase enzymes and natural variants thereof, nucleic acids encoding such phytase enzymes, vectors and host cells incorporating same and methods of making and using same
WO2011094337A1 (en) 2010-01-27 2011-08-04 Indiana University Research And Technology Corporation Glucagon antagonist - gip agonist conjugates and compositions for the treatment of metabolic disorders and obesity
WO2011097527A2 (en) 2010-02-04 2011-08-11 Xencor, Inc. Immunoprotection of therapeutic moieties using enhanced fc regions
EP2360248A1 (en) 2005-08-24 2011-08-24 The Rockefeller University Ply-GBS mutant lysins
US8008252B2 (en) 2001-10-10 2011-08-30 Novo Nordisk A/S Factor VII: remodeling and glycoconjugation of Factor VII
EP2361931A1 (en) 2004-07-20 2011-08-31 Genentech, Inc. Inhibitors of angiopoietin-like 4 protein, combinations, and their use
WO2011104604A2 (en) 2010-02-23 2011-09-01 Glenmark Pharmaceuticals S.A. Anti-alpha2 integrin antibodies and their uses
WO2011106297A2 (en) 2010-02-23 2011-09-01 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP2364716A2 (en) 2002-11-08 2011-09-14 Genentech, Inc. Compositions and methods for the treatment of natural killer cell related diseases
WO2011130417A2 (en) 2010-04-15 2011-10-20 Amgen Inc. HUMAN FGF RECEPTOR AND β-KLOTHO BINDING PROTEINS
WO2011139985A1 (en) 2010-05-03 2011-11-10 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP2386571A2 (en) 2005-04-08 2011-11-16 BioGeneriX AG Compositions and methods for the preparation of protease resistant human growth hormone glycosylation mutants
WO2011143274A1 (en) 2010-05-10 2011-11-17 Perseid Therapeutics Polypeptide inhibitors of vla4
WO2011143209A1 (en) 2010-05-13 2011-11-17 Indiana University Research And Technology Corporation Glucagon superfamily peptides exhibiting nuclear hormone receptor activity
EP2388265A1 (en) 2002-02-22 2011-11-23 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
WO2011160062A2 (en) 2010-06-17 2011-12-22 The Usa As Represented By The Secretary, National Institutes Of Health Compositions and methods for treating inflammatory conditions
WO2011163462A2 (en) 2010-06-24 2011-12-29 Indiana University Research And Technology Corporation Amide-based insulin prodrugs
WO2011163012A2 (en) 2010-06-24 2011-12-29 Indiana University Research And Technology Corporation Amide based glucagon superfamily peptide prodrugs
WO2012001647A2 (en) 2010-06-30 2012-01-05 Compugen Ltd. Polypeptides and uses thereof as a drug for treatment of multiple sclerosis, rheumatoid arthritis and other autoimmune disorders
WO2012010696A1 (en) 2010-07-23 2012-01-26 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for cancer management targeting co-029
WO2012016227A2 (en) 2010-07-29 2012-02-02 Xencor, Inc. Antibodies with modified isoelectric points
EP2423231A2 (en) 2006-08-18 2012-02-29 Novartis AG PRLR-specific antibody and uses thereof
EP2431392A1 (en) 2006-02-21 2012-03-21 Wyeth LLC Antibodies against human IL-22 and uses therefor
WO2012035518A1 (en) 2010-09-17 2012-03-22 Compugen Ltd. Compositions and methods for treatment of drug resistant multiple myeloma
EP2434022A2 (en) 2002-10-03 2012-03-28 Genentech, Inc. Use of A33 antigens and JAM-IT
WO2012040518A2 (en) 2010-09-22 2012-03-29 Amgen Inc. Carrier immunoglobulins and uses thereof
EP2436781A1 (en) 2007-02-22 2012-04-04 Genentech, Inc. Methods for detecting inflammatory bowel disease
WO2012045085A1 (en) 2010-10-01 2012-04-05 Oxford Biotherapeutics Ltd. Anti-rori antibodies
US8158763B2 (en) 2002-12-24 2012-04-17 Yasuhiro Kajihara Sugar chain asparagine derivatives, sugar chain asparagine, sugar chain and processes for producing these
EP2444409A2 (en) 2002-09-16 2012-04-25 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2444423A1 (en) 2007-10-31 2012-04-25 Xencor Inc. Fc variants with altered binding to FcRn
EP2460831A2 (en) 2005-05-27 2012-06-06 Biogen Idec MA Inc. Tweak binding antibodies
WO2012080351A1 (en) 2010-12-15 2012-06-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-cd277 antibodies and uses thereof
US8207112B2 (en) 2007-08-29 2012-06-26 Biogenerix Ag Liquid formulation of G-CSF conjugate
WO2012088116A2 (en) 2010-12-22 2012-06-28 Indiana University Research And Technology Corporation Glucagon analogs exhibiting gip receptor activity
WO2012085132A1 (en) 2010-12-22 2012-06-28 Orega Biotech Antibodies against human cd39 and use thereof
WO2012092612A1 (en) 2010-12-30 2012-07-05 Takeda Pharmaceutical Company Limited Anti-cd38 antibodies
WO2012090150A2 (en) 2010-12-27 2012-07-05 Compugen Ltd New cell-penetrating peptides and uses thereof
EP2474557A2 (en) 2007-07-16 2012-07-11 Genentech, Inc. Anti-CD79b antibodies and immunoconjugates and methods of use
EP2481415A1 (en) 2007-02-09 2012-08-01 Acceleron Pharma, Inc. Activin-ActRIIa Antagonists and Uses for Promoting Bone Growth in Cancer Patients
WO2012101125A1 (en) 2011-01-24 2012-08-02 INSERM (Institut National de la Santé et de la Recherche Médicale) Specific antibodies against human cxcl4 and uses thereof
EP2494988A1 (en) 2006-12-07 2012-09-05 Novartis AG Antagonist antibodies against EPHB3
US8268967B2 (en) 2004-09-10 2012-09-18 Novo Nordisk A/S Glycopegylated interferon α
EP2500438A2 (en) 2002-09-25 2012-09-19 Genentech, Inc. Novel compositions and methods for the treatment of psoriasis
US8278421B2 (en) 2006-03-20 2012-10-02 Xoma Techolology Ltd. Human antibodies specific for gastrin materials and methods
WO2012131004A2 (en) 2011-03-31 2012-10-04 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies directed against icos and uses thereof
WO2012140627A1 (en) 2011-04-15 2012-10-18 Compugen Ltd. Polypeptides and polynucleotides, and uses thereof for treatment of immune related disorders and cancer
WO2012145539A1 (en) 2011-04-20 2012-10-26 Acceleron Pharma, Inc. Endoglin polypeptides and uses thereof
US8298531B2 (en) 2008-11-06 2012-10-30 Glenmark Pharmaceuticals, S.A. Treatment with anti-alpha2 integrin antibodies
WO2012156532A1 (en) 2011-05-19 2012-11-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-human-her3 antibodies and uses thereof
EP2526960A1 (en) 2003-03-12 2012-11-28 Genentech, Inc. Use of BV8 and/or EG-VEGF to promote hematopoiesis
WO2012177443A2 (en) 2011-06-22 2012-12-27 Indiana University Research And Technology Corporation Glucagon/glp-1 receptor co-agonists
EP2540741A1 (en) 2006-03-06 2013-01-02 Aeres Biomedical Limited Humanized anti-CD22 antibodies and their use in treatment of oncology, transplantation and autoimmune disease
WO2013001517A1 (en) 2011-06-30 2013-01-03 Compugen Ltd. Polypeptides and uses thereof for treatment of autoimmune disorders and infection
EP2543677A1 (en) 2011-07-08 2013-01-09 INSERM (Institut National de la Santé et de la Recherche Medicale) Antibodies for the treatment and prevention of thrombosis
EP2543679A1 (en) 2011-07-08 2013-01-09 INSERM (Institut National de la Santé et de la Recherche Medicale) Antibodies for the treatment and prevention of thrombosis
EP2543678A1 (en) 2011-07-08 2013-01-09 INSERM (Institut National de la Santé et de la Recherche Medicale) Antibodies for the treatment and prevention of thrombosis
WO2013016220A1 (en) 2011-07-22 2013-01-31 Amgen Inc. Il-17 receptor a is required for il-17c biology
WO2013022855A1 (en) 2011-08-05 2013-02-14 Xencor, Inc. Antibodies with modified isoelectric points and immunofiltering
US8389469B2 (en) 2005-06-06 2013-03-05 The Rockefeller University Bacteriophage lysins for Bacillus anthracis
US8388965B2 (en) 2007-10-15 2013-03-05 Sanofi Antibodies that bind IL-4 and/or IL-13 and their uses
US8399618B2 (en) 2004-10-21 2013-03-19 Xencor, Inc. Immunoglobulin insertions, deletions, and substitutions
WO2013043933A2 (en) 2011-09-22 2013-03-28 Amgen Inc. Cd27l antigen binding proteins
WO2013052933A2 (en) 2011-10-06 2013-04-11 The Board Of Trustees Of The University Of Illinois Myosin binding protein-c for use in methods relating to diastolic heart failure
WO2013055809A1 (en) 2011-10-10 2013-04-18 Xencor, Inc. A method for purifying antibodies
WO2013059347A1 (en) 2011-10-17 2013-04-25 Acceleron Pharma, Inc. Methods and compositions for treating ineffective erythropoiesis
EP2586456A1 (en) 2004-10-29 2013-05-01 BioGeneriX AG Remodeling and glycopegylation of fibroblast growth factor (FGF)
EP2589610A1 (en) 2007-08-21 2013-05-08 Amgen, Inc Human c-fms antigen binding proteins
WO2013074910A1 (en) 2011-11-17 2013-05-23 Indiana University Research And Technology Corporation Glucagon superfamily peptides exhibiting glucocorticoid receptor activity
WO2013086443A1 (en) 2011-12-08 2013-06-13 Amgen Inc. Agonistic human lcat antigen binding proteins and their use in therapy
WO2013090931A2 (en) 2011-12-16 2013-06-20 Kalos Therapeutics, Inc. Methods and uses of anp (atrial natriuretic peptide), bnp (brain natriuretic peptide) and cnp (c-type natriuretic peptide)-related peptides and derivatives thereof for treatment of retinal disorders and diseases
EP2607379A1 (en) 2007-02-02 2013-06-26 Acceleron Pharma, Inc. Variants derived from ActRIIB and uses therefor
WO2013096386A1 (en) 2011-12-20 2013-06-27 Indiana University Research And Technology Corporation Ctp-based insulin analogs for treatment of diabetes
WO2013116781A1 (en) 2012-02-02 2013-08-08 Acceleron Pharma Inc. Alk1 antagonists and their uses in treating renal cell carcinoma
US8535912B2 (en) 2009-10-15 2013-09-17 Genentech, Inc. Chimeric fibroblast growth factors with altered receptor specificity
WO2013136193A2 (en) 2012-03-16 2013-09-19 University Health Network Methods and compositions for modulating toso activity
EP2641618A2 (en) 2007-07-16 2013-09-25 Genentech, Inc. Humanized anti-CD79B antibodies and immunoconjugates and methods of use
EP2657253A2 (en) 2008-01-31 2013-10-30 Genentech, Inc. Anti-CD79b antibodies and immunoconjugates and methods of use
WO2013163377A1 (en) 2012-04-27 2013-10-31 Novo Nordisk A/S Human cd30 ligand antigen binding proteins
US8580732B2 (en) 2009-04-07 2013-11-12 Duke University Peptide therapy for hyperglycemia
WO2013169734A1 (en) 2012-05-07 2013-11-14 Amgen Inc. Anti-erythropoietin antibodies
US8586716B2 (en) 2006-08-04 2013-11-19 Novartis Ag EPHB3-specific antibody and uses thereof
EP2671891A2 (en) 2008-06-27 2013-12-11 Amgen Inc. Ang-2 inhibition to treat multiple sclerosis
WO2013188740A1 (en) 2012-06-14 2013-12-19 Ambrx, Inc. Anti-psma antibodies conjugated to nuclear receptor ligand polypeptides
WO2013192130A1 (en) 2012-06-21 2013-12-27 Indiana University Research And Technology Corporation Analogs of glucagon exhibiting gip receptor activity
WO2013192129A1 (en) 2012-06-21 2013-12-27 Indiana University Research And Technology Corporation Glucagon analogs exhibiting gip receptor activity
WO2014001368A1 (en) 2012-06-25 2014-01-03 Orega Biotech Il-17 antagonist antibodies
US8633157B2 (en) 2003-11-24 2014-01-21 Novo Nordisk A/S Glycopegylated erythropoietin
US8647622B2 (en) 2007-08-29 2014-02-11 Sanofi Humanized anti-CXCR5 antibodies, derivatives thereof and their use
EP2703011A2 (en) 2007-05-07 2014-03-05 MedImmune, LLC Anti-icos antibodies and their use in treatment of oncology, transplantation and autoimmune disease
WO2014033327A1 (en) 2012-09-03 2014-03-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies directed against icos for treating graft-versus-host disease
WO2014079886A1 (en) 2012-11-20 2014-05-30 Sanofi Anti-ceacam5 antibodies and uses thereof
WO2014089335A2 (en) 2012-12-07 2014-06-12 Amgen Inc. Bcma antigen binding proteins
WO2014093396A1 (en) 2012-12-10 2014-06-19 Biogen Idec Ma Inc. Anti-blood dendritic cell antigen 2 antibodies and uses thereof
US8791066B2 (en) 2004-07-13 2014-07-29 Novo Nordisk A/S Branched PEG remodeling and glycosylation of glucagon-like peptide-1 [GLP-1]
WO2014114801A1 (en) 2013-01-25 2014-07-31 Amgen Inc. Antibodies targeting cdh19 for melanoma
WO2014114800A1 (en) 2013-01-25 2014-07-31 Amgen Research (Munich) Gmbh Antibody constructs for cdh19 and cd3
WO2014145806A2 (en) 2013-03-15 2014-09-18 Xencor, Inc. Heterodimeric proteins
WO2014144466A1 (en) 2013-03-15 2014-09-18 Biogen Idec Ma Inc. Anti-alpha v beta 6 antibodies and uses thereof
WO2014140358A1 (en) 2013-03-15 2014-09-18 Amgen Research (Munich) Gmbh Single chain binding molecules comprising n-terminal abp
WO2014144553A1 (en) 2013-03-15 2014-09-18 Amgen Inc. Secreted frizzle-related protein 5 (sfrp5) binding proteins and methods of treatment
WO2014143739A2 (en) 2013-03-15 2014-09-18 Biogen Idec Ma Inc. Anti-alpha v beta 6 antibodies and uses thereof
WO2014144632A2 (en) 2013-03-15 2014-09-18 Amgen Inc. Human pac1 antibodies
WO2014144911A2 (en) 2013-03-15 2014-09-18 Capon Daniel J Hybrid immunoglobulin containing non-peptidyl linkage
WO2014145016A2 (en) 2013-03-15 2014-09-18 Genentech, Inc. Il-22 polypeptides and il-22 fc fusion proteins and methods of use
WO2014140368A1 (en) 2013-03-15 2014-09-18 Amgen Research (Munich) Gmbh Antibody constructs for influenza m2 and cd3
US8841439B2 (en) 2005-11-03 2014-09-23 Novo Nordisk A/S Nucleotide sugar purification using membranes
WO2014153063A1 (en) 2013-03-14 2014-09-25 Amgen Inc. AGLYCOSYLATED Fc-CONTAINING POLYPEPTIDES
WO2014151680A1 (en) 2013-03-15 2014-09-25 Biogen Idec Ma Inc. Treatment and prevention of acute kidney injury using anti-alpha v beta 5 antibodies
WO2014159764A1 (en) 2013-03-14 2014-10-02 Amgen Inc. Chrdl-1 antigen binding proteins and methods of treatment
US8883147B2 (en) 2004-10-21 2014-11-11 Xencor, Inc. Immunoglobulins insertions, deletions, and substitutions
WO2014183885A1 (en) 2013-05-17 2014-11-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Antagonist of the btla/hvem interaction for use in therapy
EP2808343A1 (en) 2007-12-26 2014-12-03 Xencor Inc. Fc variants with altered binding to FcRn
US8911967B2 (en) 2005-08-19 2014-12-16 Novo Nordisk A/S One pot desialylation and glycopegylation of therapeutic peptides
US8916360B2 (en) 2003-11-24 2014-12-23 Novo Nordisk A/S Glycopegylated erythropoietin
WO2015026846A1 (en) 2013-08-19 2015-02-26 Biogen Idec Ma Inc. Control of protein glycosylation by culture medium supplementation and cell culture process parameters
US8969532B2 (en) 2006-10-03 2015-03-03 Novo Nordisk A/S Methods for the purification of polypeptide conjugates comprising polyalkylene oxide using hydrophobic interaction chromatography
WO2015036583A2 (en) 2013-09-13 2015-03-19 Amgen Inc. Combination of epigenetic factors and bispecific compounds targeting cd33 and cd3 in the treatment of myeloid leukemia
US9005625B2 (en) 2003-07-25 2015-04-14 Novo Nordisk A/S Antibody toxin conjugates
WO2015052537A1 (en) 2013-10-11 2015-04-16 Oxford Biotherapeutics Ltd Conjugated antibodies against ly75 for the treatment of cancer
WO2015057939A1 (en) 2013-10-18 2015-04-23 Biogen Idec Ma Inc. Anti-s1p4 antibodies and uses thereof
US9023992B2 (en) 2004-05-04 2015-05-05 Novo Nordisk Healthcare Ag Hydrophobic interaction chromatography purification of factor VII polypeptides
WO2015066550A1 (en) 2013-10-31 2015-05-07 Resolve Therapeutics, Llc Therapeutic nuclease-albumin fusions and methods
US9050304B2 (en) 2007-04-03 2015-06-09 Ratiopharm Gmbh Methods of treatment using glycopegylated G-CSF
WO2015095809A1 (en) 2013-12-20 2015-06-25 Biogen Idec Ma Inc. Use of perfusion seed cultures to improve biopharmaceutical fed-batch production capacity and product quality
WO2015127134A2 (en) 2014-02-20 2015-08-27 Allergan, Inc. Complement component c5 antibodies
WO2015130826A1 (en) 2014-02-27 2015-09-03 Allergan, Inc. COMPLEMENT FACTOR Bb ANTIBODIES
WO2015149077A1 (en) 2014-03-28 2015-10-01 Xencor, Inc. Bispecific antibodies that bind to cd38 and cd3
US9150848B2 (en) 2008-02-27 2015-10-06 Novo Nordisk A/S Conjugated factor VIII molecules
WO2015158851A1 (en) 2014-04-16 2015-10-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies for the prevention or the treatment of bleeding episodes
WO2015159253A1 (en) 2014-04-16 2015-10-22 Gamamabs Pharma Anti-her4 human antibody
US9187532B2 (en) 2006-07-21 2015-11-17 Novo Nordisk A/S Glycosylation of peptides via O-linked glycosylation sequences
WO2015187977A1 (en) 2014-06-04 2015-12-10 Acceleron Pharma, Inc. Methods and compositions for treatment of disorders with follistatin polypeptides
EP2975135A1 (en) 2005-05-25 2016-01-20 Novo Nordisk A/S Glycopegylated factor IX
WO2016016859A1 (en) 2014-07-31 2016-02-04 Amgen Research (Munich) Gmbh Optimized cross-species specific bispecific single chain antibody constructs
WO2016016412A1 (en) 2014-07-31 2016-02-04 Amgen Research (Munich) Gmbh Antibody constructs for cdh19 and cd3
WO2016016415A1 (en) 2014-07-31 2016-02-04 Amgen Research (Munich) Gmbh Bispecific single chain antibody construct with enhanced tissue distribution
US9260527B2 (en) 2013-03-15 2016-02-16 Sdix, Llc Anti-human CXCR4 antibodies and methods of making same
WO2016040767A2 (en) 2014-09-12 2016-03-17 Amgen Inc. Chrdl-1 epitopes and antibodies
WO2016050822A2 (en) 2014-09-30 2016-04-07 Neurimmune Holding Ag Human-derived anti-dipeptide repeats (dprs) antibody
WO2016061424A1 (en) 2014-10-17 2016-04-21 Biogen Ma Inc. Copper supplementation for control of glycosylation in mammalian cell culture process
WO2016069889A1 (en) 2014-10-31 2016-05-06 Resolve Therapeutics, Llc Therapeutic nuclease-transferrin fusions and methods
WO2016070152A1 (en) 2014-10-31 2016-05-06 Biogen Ma Inc. Hypotaurine, gaba, beta-alanine, and choline for control of waste byproduct accumulation in mammalian cell culture process
EP3023497A1 (en) 2005-11-18 2016-05-25 Glenmark Pharmaceuticals S.A. Anti-alpha2 integrin antibodies and their uses
WO2016141387A1 (en) 2015-03-05 2016-09-09 Xencor, Inc. Modulation of t cells with bispecific antibodies and fc fusions
EP3075385A1 (en) 2008-12-19 2016-10-05 Indiana University Research and Technology Corporation Amide based glucagon superfamily peptide prodrugs
WO2016161410A2 (en) 2015-04-03 2016-10-06 Xoma Technology Ltd. Treatment of cancer using inhibitors of tgf-beta and pd-1
US9464139B2 (en) 2013-08-30 2016-10-11 Amgen Inc. GITR antigen binding proteins and methods of use thereof
WO2016164937A2 (en) 2015-04-10 2016-10-13 Amgen Inc. Interleukin-2 muteins for the expansion of t-regulatory cells
WO2016166360A1 (en) 2015-04-17 2016-10-20 Bayer Pharma Aktiengesellschaft Bispecific antibody constructs for cdh3 and cd3
US9493499B2 (en) 2007-06-12 2016-11-15 Novo Nordisk A/S Process for the production of purified cytidinemonophosphate-sialic acid-polyalkylene oxide (CMP-SA-PEG) as modified nucleotide sugars via anion exchange chromatography
US9493578B2 (en) 2009-09-02 2016-11-15 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
WO2016189124A1 (en) 2015-05-28 2016-12-01 Medimmune Limited Therapeutic combinations and methods for treating neoplasia
EP3112468A1 (en) 1998-05-15 2017-01-04 Genentech, Inc. Il-17 homologous polypeptides and therapeutic uses thereof
RU2607452C2 (en) * 2010-11-04 2017-01-10 Академиа Синика Methods of producing viral particles with simplified surface proteins' glycosylation
WO2017009712A1 (en) 2015-07-13 2017-01-19 Compugen Ltd. Hide1 compositions and methods
WO2017021349A1 (en) 2015-07-31 2017-02-09 Amgen Research (Munich) Gmbh Bispecific antibody constructs binding dll3 and cd3
WO2017021354A1 (en) 2015-07-31 2017-02-09 Amgen Research (Munich) Gmbh Antibody constructs for cd70 and cd3
WO2017021362A1 (en) 2015-07-31 2017-02-09 Amgen Research (Munich) Gmbh Antibody constructs for flt3 and cd3
WO2017021370A1 (en) 2015-07-31 2017-02-09 Amgen Research (Munich) Gmbh Bispecific antibody constructs binding egfrviii and cd3
WO2017021356A1 (en) 2015-07-31 2017-02-09 Amgen Research (Munich) Gmbh Bispecific antibody constructs binding mesothelin and cd3
US9574002B2 (en) 2011-06-06 2017-02-21 Amgen Inc. Human antigen binding proteins that bind to a complex comprising β-Klotho and an FGF receptor
US9592289B2 (en) 2012-03-26 2017-03-14 Sanofi Stable IgG4 based binding agent formulations
US9605084B2 (en) 2013-03-15 2017-03-28 Xencor, Inc. Heterodimeric proteins
US9617336B2 (en) 2012-02-01 2017-04-11 Compugen Ltd C10RF32 antibodies, and uses thereof for treatment of cancer
EP3153526A1 (en) 2008-01-31 2017-04-12 INSERM - Institut National de la Santé et de la Recherche Médicale Antibodies against human cd39 and use thereof for inhibiting t regulatory cells activity
WO2017066561A2 (en) 2015-10-16 2017-04-20 President And Fellows Of Harvard College Regulatory t cell pd-1 modulation for regulating t cell effector immune responses
US9650446B2 (en) 2013-01-14 2017-05-16 Xencor, Inc. Heterodimeric proteins
US9657098B2 (en) 2013-03-15 2017-05-23 Intrinsic Lifesciences, Llc Anti-hepcidin antibodies and uses thereof
EP3181580A1 (en) 2006-11-02 2017-06-21 Acceleron Pharma Inc. Alk1 receptor and ligand antagonists and uses thereof
US9701759B2 (en) 2013-01-14 2017-07-11 Xencor, Inc. Heterodimeric proteins
WO2017129585A1 (en) 2016-01-25 2017-08-03 Amgen Research (Munich) Gmbh Pharmaceutical composition comprising bispecific antibody constructs
US9738722B2 (en) 2013-01-15 2017-08-22 Xencor, Inc. Rapid clearance of antigen complexes using novel antibodies
EP3208612A1 (en) 2008-04-09 2017-08-23 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
WO2017182427A1 (en) 2016-04-19 2017-10-26 Amgen Research (Munich) Gmbh Administration of a bispecific construct binding to cd33 and cd3 for use in a method for the treatment of myeloid leukemia
US9809653B2 (en) 2012-12-27 2017-11-07 Sanofi Anti-LAMP1 antibodies and antibody drug conjugates, and uses thereof
EP3243524A1 (en) 2007-09-18 2017-11-15 Acceleron Pharma Inc. Activin-actriia antagonists and uses for decreasing or inhibiting fsh secretion
US9850320B2 (en) 2014-11-26 2017-12-26 Xencor, Inc. Heterodimeric antibodies to CD3 X CD20
US9856327B2 (en) 2014-11-26 2018-01-02 Xencor, Inc. Heterodimeric antibodies to CD3 X CD123
WO2018005954A2 (en) 2016-07-01 2018-01-04 Resolve Therapeutics, Llc Optimized binuclease fusions and methods
WO2018013917A1 (en) 2016-07-15 2018-01-18 Takeda Pharmaceutical Company Limited Methods and materials for assessing response to plasmablast- and plasma cell-depleting therapies
WO2018015340A1 (en) 2016-07-18 2018-01-25 Sanofi Bispecific antibody-like binding proteins specifically binding to cd3 and cd123
WO2018022479A1 (en) 2016-07-25 2018-02-01 Biogen Ma Inc. Anti-hspa5 (grp78) antibodies and uses thereof
WO2018026748A1 (en) 2016-08-01 2018-02-08 Xoma (Us) Llc Parathyroid hormone receptor 1 (pth1r) antibodies and uses thereof
EP3284825A1 (en) 2006-11-02 2018-02-21 Daniel J. Capon Methods of producing hybrid polypeptides with moving parts
EP3290439A1 (en) 2009-06-12 2018-03-07 Acceleron Pharma Inc. Truncated actriib-fc fusion proteins
WO2018064098A1 (en) 2016-09-28 2018-04-05 Cohbar, Inc. Therapeutic mots-c related peptides
WO2018064255A2 (en) 2016-09-28 2018-04-05 Xoma (Us) Llc Antibodies that bind interleukin-2 and uses thereof
US9944968B2 (en) 2013-08-19 2018-04-17 Biogen Ma Inc. Control of protein glycosylation by culture medium supplementation and cell culture process parameters
EP3308796A1 (en) 2012-11-02 2018-04-18 Celgene Corporation Activin-actrii antagonists and uses for treating bone and other disorders
WO2018073387A1 (en) 2016-10-20 2018-04-26 Sanofi Anti-chikv antibodies and uses thereof
EP3345921A1 (en) 2009-06-08 2018-07-11 Acceleron Pharma Inc. Use of anti-actriib antibodies for increasing thermogenic adipocytes
EP3351260A1 (en) 2012-04-06 2018-07-25 Acceleron Pharma Inc. Methods and compositions for increasing red blood cells
WO2018141910A1 (en) 2017-02-02 2018-08-09 Amgen Research (Munich) Gmbh Low ph pharmaceutical composition comprising t cell engaging antibody constructs
WO2018152496A1 (en) 2017-02-17 2018-08-23 The Usa, As Represented By The Secretary, Dept. Of Health And Human Services Compositions and methods for the diagnosis and treatment of zika virus infection
WO2018156892A1 (en) 2017-02-23 2018-08-30 Adrx, Inc. Peptide inhibitors of transcription factor aggregation
EP3385279A1 (en) 2009-03-20 2018-10-10 Amgen Inc. Carrier immunoglobulins and uses thereof
US10100121B2 (en) 2012-06-27 2018-10-16 Amgen Inc. Anti-mesothelin binding proteins
US10106624B2 (en) 2013-03-15 2018-10-23 Xencor, Inc. Heterodimeric proteins
WO2018200742A1 (en) 2017-04-25 2018-11-01 The Usa, As Represented By The Secretary, Dept. Of Health And Human Services Antibodies and methods for the diagnosis and treatment of epstein barr virus infection
EP3398966A1 (en) 2008-05-02 2018-11-07 Acceleron Pharma, Inc. Methods and compositions for modulating angiogenesis and pericyte composition
WO2018204907A1 (en) 2017-05-05 2018-11-08 Amgen Inc. Pharmaceutical composition comprising bispecific antibody constructs for improved storage and administration
US10131710B2 (en) 2013-01-14 2018-11-20 Xencor, Inc. Optimized antibody variable regions
WO2018226992A1 (en) 2017-06-07 2018-12-13 Adrx, Inc. Tau aggregation inhibitors
EP3421495A2 (en) 2013-03-15 2019-01-02 Xencor, Inc. Modulation of t cells with bispecific antibodies and fc fusions
WO2019018629A1 (en) 2017-07-19 2019-01-24 The Usa, As Represented By The Secretary, Dept. Of Health And Human Services Antibodies and methods for the diagnosis and treatment of hepatitis b virus infection
WO2019028316A1 (en) 2017-08-03 2019-02-07 Amgen Inc. Interleukin-21 muteins and methods of treatment
WO2019036725A2 (en) 2017-08-18 2019-02-21 Adrx, Inc. Tau aggregation peptide inhibitors
WO2019040674A1 (en) 2017-08-22 2019-02-28 Sanabio, Llc Soluble interferon receptors and uses thereof
US10227410B2 (en) 2015-12-07 2019-03-12 Xencor, Inc. Heterodimeric antibodies that bind CD3 and PSMA
EP3453724A1 (en) 2006-04-24 2019-03-13 Amgen Inc. Humanized c-kit antibody
EP3456743A1 (en) 2013-05-30 2019-03-20 Kiniksa Pharmaceuticals, Ltd. Oncostatin m receptor antigen binding proteins
US10287340B2 (en) 2008-01-07 2019-05-14 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-HIV domain antibodies and method of making and using same
US10301391B2 (en) 2016-02-03 2019-05-28 Amgen Research (Munich) Gmbh BCMA and CD3 bispecific T cell engaging antibody constructs
US10307475B2 (en) 2009-03-27 2019-06-04 Academia Sinica Methods and compositions for immunization against virus
US10316088B2 (en) 2016-06-28 2019-06-11 Xencor, Inc. Heterodimeric antibodies that bind somatostatin receptor 2
US10323088B2 (en) 2014-09-22 2019-06-18 Intrinsic Lifesciences Llc Humanized anti-hepcidin antibodies and uses thereof
WO2019118426A1 (en) 2017-12-11 2019-06-20 Amgen Inc. Continuous manufacturing process for bispecific antibody products
WO2019133961A1 (en) 2017-12-29 2019-07-04 Amgen Inc. Bispecific antibody construct directed to muc17 and cd3
WO2019140196A1 (en) 2018-01-12 2019-07-18 Amgen Inc. Anti-pd-1 antibodies and methods of treatment
US10358497B2 (en) 2016-09-28 2019-07-23 Amgen Inc. Methods of treating cardiovascular disease with an ASGR inhibitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL80973A (en) * 1985-12-20 1992-08-18 Sanofi Sa Modified ribosome-inactivating glycoproteins,their preparation,immunotoxins containing them and pharmaceutical compositions containing such immunotoxins

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847890A (en) * 1971-11-01 1974-11-12 A Green Acidic monosaccharide-substituted proteins

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Biochemical and Biophysical Research Communications, Volume 78, Number 1, issued 9 September 1977 (Academic Press, New York), T. TAI et al, "The Substrate Specificities of Endo-B-N-acetylglucosaminidases C II and H" see pages 434-441. *
Methods in Enzymology, Volume 50, issued 1978 (Academic Press, New York) A. KOBATA, "Endo-B-N-Acetylglucosaminidases C I and C II from Clostridium Perfringens" see pages 567-574. *
Methods in Enzymology, Volume 50, issued 1978 (Academic Press, New York) A.L. TARENTINO et al, "Endo-B-N-Acetylglucosaminidase from Streptomyces Plicatus" see pages 574-580. *
Methods in Enzymology, Volume 50, issued 1978 (Academic Press, New York) T. MURAMATSU", Endo-B-N-Acetylglucosaminidase D from Diplococcus Pheumonia" see pages 555-559. *
Methods in Enzymology, Volume 83, issued 1982 (Academic Press, New York) I. TABAS, et al, "N-Aspargine-Linked Oligosaccharides: Processing", see pages 416-429. *
Methods in Enzymology, Volume 83, issued 1982 (Academic Press, New York) J.J. ELTING et al, "N-Asparagine-Linked Oligosaccharides: Transfer of Oligosaccharides to Peptides and Proteins in Vitro" see pages 408-415. *
See also references of EP0272253A4 *

Cited By (636)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989007641A1 (en) * 1988-02-10 1989-08-24 Genzyme Corporation Enhancement of the therapeutic properties of glycoprotein
EP0414171A2 (en) * 1989-08-23 1991-02-27 Hoechst Aktiengesellschaft Process for the enzymatic synthesis of components of galactosylated glycoproteins
EP0414171A3 (en) * 1989-08-23 1991-09-04 Hoechst Aktiengesellschaft Process for the enzymatic synthesis of components of galactosylated glycoproteins
US7335500B2 (en) 1991-10-15 2008-02-26 The Scripps Research Institute Production of fucosylated carbohydrates by enzymatic fucosylation synthesis of sugar nucleotides; and in situ regeneration of GDP-fucose
US6319695B1 (en) * 1991-10-15 2001-11-20 The Scripps Research Insitute Production of fucosylated carbohydrates by enzymatic fucosylation synthesis of sugar nucleotides; and in situ regeneration of GDP-fucose
EP2241622A2 (en) 1994-03-18 2010-10-20 Genentech, Inc. Human trk receptors and their derivatives
EP2011873A2 (en) 1994-05-27 2009-01-07 Genentech, Inc. Tumor necrosis factor receptor-associated factors
US6130318A (en) * 1994-07-01 2000-10-10 Bayer Aktiengellschaft hIL-4 mutant proteins used as antagonists or partial agonists of human interleukin 4
EP1980618A2 (en) 1995-02-24 2008-10-15 Genentech, Inc. Human DNASE I variants
US6020473A (en) * 1995-08-25 2000-02-01 Genentech, Inc. Nucleic acids encoding variants of vascular endothelial cell growth factor
US6057428A (en) * 1995-08-25 2000-05-02 Genentech, Inc. Variants of vascular endothelial cell growth factor
US7427596B2 (en) 1995-08-25 2008-09-23 Genentech, Inc. Variants of vascular endothelial cell growth factor, their uses, and processes for their production
US7005505B1 (en) 1995-08-25 2006-02-28 Genentech, Inc. Variants of vascular endothelial cell growth factor
US6998116B1 (en) 1996-01-09 2006-02-14 Genentech, Inc. Apo-2 ligand
US6030945A (en) * 1996-01-09 2000-02-29 Genentech, Inc. Apo-2 ligand
US6746668B2 (en) 1996-01-09 2004-06-08 Genentech, Inc. Apo-2 ligand
US7285533B2 (en) 1996-01-09 2007-10-23 Genentech, Inc. Apo-2 ligand
US6469144B1 (en) 1996-04-01 2002-10-22 Genentech, Inc. Apo-2LI and Apo-3 polypeptides
US5851984A (en) * 1996-08-16 1998-12-22 Genentech, Inc. Method of enhancing proliferation or differentiation of hematopoietic stem cells using Wnt polypeptides
US6159462A (en) * 1996-08-16 2000-12-12 Genentech, Inc. Uses of Wnt polypeptides
US6462176B1 (en) 1996-09-23 2002-10-08 Genentech, Inc. Apo-3 polypeptide
US6136958A (en) * 1996-09-30 2000-10-24 Genentech, Inc. Antibodies to vertebrate smoothened proteins
US6407216B1 (en) 1996-09-30 2002-06-18 Genentech, Inc. Vertebrate smoothened antibodies
US5990281A (en) * 1996-09-30 1999-11-23 Genentech, Inc. Vertebrate smoothened proteins
US6492139B1 (en) 1996-09-30 2002-12-10 Genentech, Inc. Vertebrate smoothened proteins
US6270987B1 (en) 1997-01-31 2001-08-07 Genentech, Inc. O-fucosyltransferase
US8092799B2 (en) 1997-05-15 2012-01-10 Genentech, Inc. Antibodies to Apo-2 receptor polypeptides
US7314619B2 (en) 1997-05-15 2008-01-01 Genentech, Inc. Inducing apoptosis using anti-Apo-2 antibodies
US7807153B2 (en) 1997-05-15 2010-10-05 Genentech, Inc. Apo-2 receptor agonist antibodies
US7595046B2 (en) 1997-05-15 2009-09-29 Genentech, Inc. Treatment of cancer using anti-Apo-2 antibodies
US7749755B2 (en) 1997-05-15 2010-07-06 Genentech, Inc. Apo-2 receptor polynucleotides
US7750118B2 (en) 1997-05-15 2010-07-06 Genentech, Inc. Apo-2 receptor polypeptides
US7939631B2 (en) 1997-05-15 2011-05-10 Genentech, Inc. APO-2 receptor polypeptides
US6342369B1 (en) 1997-05-15 2002-01-29 Genentech, Inc. Apo-2-receptor
US6291643B1 (en) 1997-06-05 2001-09-18 Board Of Reports, The University Of Texas System Apaf-1 an activator of caspase-3
EP2083079A1 (en) 1997-06-18 2009-07-29 Genentech, Inc. Apo-2DcR
EP1659131A2 (en) 1997-09-17 2006-05-24 Genentech, Inc. Polypeptides and nucleic acids encoding the same
US6764679B2 (en) 1997-09-18 2004-07-20 Genentech, Inc. Antibodies to DcR3 Polypeptide, a TNFR Homolog
EP1967587A1 (en) 1997-10-10 2008-09-10 Genentech, Inc. APO-3 Ligand
EP2014770A2 (en) 1997-10-29 2009-01-14 Genentech, Inc. WNT-1 Iinduced secreted polypeptide WISP-2
EP2033970A2 (en) 1997-10-29 2009-03-11 Genentech, Inc. WNT-1 inducible genes
EP2014677A1 (en) 1997-11-21 2009-01-14 Genentech, Inc. A-33 related antigens and their pharmacological uses
EP2017341A2 (en) 1998-01-15 2009-01-21 Genentech, Inc. Apo-2 ligand
US6740739B1 (en) 1998-01-15 2004-05-25 Genentech, Inc. Substitutional variants of APO-2 ligand
US6727079B1 (en) 1998-02-25 2004-04-27 The United States Of America As Represented By The Department Of Health And Human Services cDNA encoding a gene BOG (B5T Over-expressed Gene) and its protein product
US7342099B2 (en) 1998-02-25 2008-03-11 The United States Of America As Represented By The Secretary, Department Of Health And Human Services cDNA encoding a gene BOG (B5T over-expressed gene) and its protein product
EP2050762A2 (en) 1998-03-10 2009-04-22 Genentech, Inc. Novel polypeptides and nucleic acids encoding the same
EP2016951A1 (en) 1998-03-17 2009-01-21 Genentech, Inc. Polypeptides homologous to VEGF and BMP1
EP2333069A2 (en) 1998-05-15 2011-06-15 Genentech, Inc. Therapeutic uses of IL-17 homologous polypeptides
EP3112468A1 (en) 1998-05-15 2017-01-04 Genentech, Inc. Il-17 homologous polypeptides and therapeutic uses thereof
EP1865061A2 (en) 1998-05-15 2007-12-12 Genentech, Inc. IL-17 homologous polypeptides and therapeutic uses thereof
EP2075335A2 (en) 1998-12-22 2009-07-01 Genentech, Inc. Methods and compositions for inhibiting neoplastic cell growth
EP2319929A1 (en) 1998-12-23 2011-05-11 Genentech, Inc. IL-1 related polypeptides
EP2330198A1 (en) 1998-12-23 2011-06-08 Genentech, Inc. IL-1 related polypeptides
EP1953173A1 (en) 1999-06-15 2008-08-06 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids endoding the same
EP1956030A1 (en) 1999-06-15 2008-08-13 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids endoding the same
EP2228446A1 (en) 1999-12-01 2010-09-15 Genentech, Inc. Secreted and transmembrane polypeptieds and nucleic acids encoding the same
EP1897944A2 (en) 1999-12-23 2008-03-12 Genentech, Inc. IL-17 homologous polypeptides and therapeutic uses thereof
EP2290081A2 (en) 1999-12-23 2011-03-02 Genentech, Inc. IL-17 homologous polypeptide and therapeutic uses thereof
EP2258848A1 (en) 1999-12-23 2010-12-08 Genentech, Inc. Il-17 homologous polypeptide and therapeutic uses thereof
EP2133098A1 (en) 2000-01-10 2009-12-16 Maxygen Holdings Ltd G-CSF conjugates
US7939650B2 (en) 2000-01-13 2011-05-10 Genentech, Inc. Stra6 polypeptides
US7741439B2 (en) 2000-01-13 2010-06-22 Genentech, Inc. Isolated stra6 polypeptides
US7173115B2 (en) 2000-01-13 2007-02-06 Genentech, Inc. Stra6 polypeptides
US7855278B2 (en) 2000-01-13 2010-12-21 Genentech, Inc. Antibodies to Stra6 polypeptides
EP2319541A1 (en) 2000-02-11 2011-05-11 Bayer HealthCare LLC Factor VII or VIIA-like conjugates
EP1982732A2 (en) 2000-02-11 2008-10-22 Maxygen Holdings Ltd. Factor VII or VIIA-like molecules
EP2042597A1 (en) 2000-06-23 2009-04-01 Genentech, Inc. Compositions and methods for the diagnosis and treatment of disorders involving angiogenesis
EP2075334A1 (en) 2000-06-23 2009-07-01 Genentech, Inc. EG-VEGF nucleic acids and polypeptides and methods of use
EP2075253A1 (en) 2000-06-23 2009-07-01 Genentech, Inc. Compositions and methds for the diagnosis and treatment of disorders involving angiogensis
EP2275549A1 (en) 2000-06-23 2011-01-19 Genentech, Inc. Compositions and methods for the diagnosis and treatment of disorders involving angiogenesis
EP2077276A1 (en) 2000-06-23 2009-07-08 Genentech, Inc. Compositions and methods for the diagnosis and treatment of disorders involving angiogensis
EP2792747A1 (en) 2000-06-23 2014-10-22 Genentech, Inc. Compositions and methods for the diagnosis and treatment of disorders involving angiogenesis
EP2168980A1 (en) 2000-06-23 2010-03-31 Genentech, Inc. Compositions and methods for the diagnosis and treatment of disorders involving angiogensis
EP2014298A2 (en) 2000-08-24 2009-01-14 Genentech, Inc. Interleukin-22 polypeptides, nucleic acids encoding the same and methods for the treatment of pancreatic disorders
EP1944317A2 (en) 2000-09-01 2008-07-16 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US6576452B1 (en) 2000-10-04 2003-06-10 Genencor International, Inc. 2,5-diketo-L-gluconic acid reductases and methods of use
US8216811B2 (en) 2000-10-04 2012-07-10 Danisco Us Inc. Methods for converting glucose to ascorbic acid
US7374917B2 (en) 2000-10-04 2008-05-20 Genencor International, Inc. Mutant 2.5-diketo-L-gluconic acid reductases
US7563609B2 (en) 2000-10-04 2009-07-21 Genencor International, Inc. Mutant 2,5-diketo-L-gluconic acid reductases
US8597901B2 (en) 2000-10-04 2013-12-03 Danisco Us Inc. 2,5-diketo-L-gluconic acid reductases and methods of use
US7922483B2 (en) 2000-10-04 2011-04-12 Danisco Us Inc. Method of using a polynucleotide encoding 2.5-diketo-D-gluconic acid reductase
US6864075B2 (en) 2000-10-04 2005-03-08 Genencor International, Inc. 2,5-diketo-L-gluconic acid reductases and methods of use
US6673580B2 (en) 2000-10-27 2004-01-06 Genentech, Inc. Identification and modification of immunodominant epitopes in polypeptides
US7892730B2 (en) 2000-12-22 2011-02-22 Sagres Discovery, Inc. Compositions and methods for cancer
US7700274B2 (en) 2000-12-22 2010-04-20 Sagres Discovery, Inc. Compositions and methods in cancer associated with altered expression of KCNJ9
US7820447B2 (en) 2000-12-22 2010-10-26 Sagres Discovery Inc. Compositions and methods for cancer
US7645441B2 (en) 2000-12-22 2010-01-12 Sagres Discovery Inc. Compositions and methods in cancer associated with altered expression of PRLR
EP2080771A2 (en) 2001-02-27 2009-07-22 Maxygen Aps New interferon beta-like molecules
EP2000545A1 (en) 2001-06-20 2008-12-10 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP2000482A1 (en) 2001-06-20 2008-12-10 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP2000148A1 (en) 2001-06-20 2008-12-10 Genentech, Inc. Compositions and methods for the diagnosis and treatment of prostate cancer
EP1992643A2 (en) 2001-06-20 2008-11-19 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP2311960A2 (en) 2001-08-29 2011-04-20 Genentech, Inc. Bv8 nucleic acids and polypeptides with mitogenic activity
EP2143438A1 (en) 2001-09-18 2010-01-13 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP2153843A1 (en) 2001-09-18 2010-02-17 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP2151244A1 (en) 2001-09-18 2010-02-10 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP2316851A1 (en) 2001-09-26 2011-05-04 Wyeth LLC Antibody inhibitors of GDF-8 and uses thereof
US7226903B2 (en) 2001-10-10 2007-06-05 Neose Technologies, Inc. Interferon beta: remodeling and glycoconjugation of interferon beta
US7795210B2 (en) * 2001-10-10 2010-09-14 Novo Nordisk A/S Protein remodeling methods and proteins/peptides produced by the methods
EP2305311A2 (en) 2001-10-10 2011-04-06 BioGeneriX AG Glycoconjugation of peptides
US8076292B2 (en) 2001-10-10 2011-12-13 Novo Nordisk A/S Factor VIII: remodeling and glycoconjugation of factor VIII
US7265085B2 (en) 2001-10-10 2007-09-04 Neose Technologies, Inc. Glycoconjugation methods and proteins/peptides produced by the methods
US7276475B2 (en) 2001-10-10 2007-10-02 Neose Technologies, Inc. Remodeling and glycoconjugation of peptides
US7297511B2 (en) 2001-10-10 2007-11-20 Neose Technologies, Inc. Interferon alpha: remodeling and glycoconjugation of interferon alpha
EP2042196A2 (en) 2001-10-10 2009-04-01 Neose Technologies, Inc. Remodelling and glycoconjugation of Granulocyte Colony Stimulating Factor (G-CSF)
JP2005521635A (en) * 2001-10-10 2005-07-21 ネオス・テクノロジーズ・インコーポレーテツド Modifications and glycoconjugation of peptide
EP2305313A2 (en) 2001-10-10 2011-04-06 BioGeneriX AG Remodelling and glycoconjugation of interferon-alpha (IFNa)
EP2305312A2 (en) 2001-10-10 2011-04-06 BioGeneriX AG Remodelling and glycoconjugation of follicle-stimulating hormone (FSH)
EP2305314A3 (en) * 2001-10-10 2011-09-14 BioGeneriX AG Remodelling and glycoconjugation of antibodies
EP1578771A2 (en) * 2001-10-10 2005-09-28 Neose Technologies, Inc. Remodeling and glycoconjugation of peptides
JP2009108087A (en) * 2001-10-10 2009-05-21 Neose Technologies Inc Remodeling and glycoconjugation of peptide
EP2292271A3 (en) * 2001-10-10 2011-09-14 BioGeneriX AG Remodelling and glycoconjugation of an antibody
EP2305314A2 (en) 2001-10-10 2011-04-06 BioGeneriX AG Remodelling and glycoconjugation of antibodies
US8008252B2 (en) 2001-10-10 2011-08-30 Novo Nordisk A/S Factor VII: remodeling and glycoconjugation of Factor VII
US8716239B2 (en) 2001-10-10 2014-05-06 Novo Nordisk A/S Granulocyte colony stimulating factor: remodeling and glycoconjugation G-CSF
US7214660B2 (en) 2001-10-10 2007-05-08 Neose Technologies, Inc. Erythropoietin: remodeling and glycoconjugation of erythropoietin
EP2322229A3 (en) * 2001-10-10 2012-03-07 Novo Nordisk A/S Remodelling and glycoconjugation of Granulocyte Colony Stimulating Factor (G-CSF)
US7416858B2 (en) 2001-10-10 2008-08-26 Neose Technologies, Inc. Pharmaceutical compositions of glycoconjugates
US7179617B2 (en) 2001-10-10 2007-02-20 Neose Technologies, Inc. Factor IX: remolding and glycoconjugation of Factor IX
US7696163B2 (en) 2001-10-10 2010-04-13 Novo Nordisk A/S Erythropoietin: remodeling and glycoconjugation of erythropoietin
US7439043B2 (en) 2001-10-10 2008-10-21 Neose Technologies, Inc. Galactosyl nucleotide sugars
EP2080525A1 (en) 2001-10-10 2009-07-22 BioGeneriX AG Remodeling and Glycoconjugation of Peptides
EP2322229A2 (en) 2001-10-10 2011-05-18 Novo Nordisk A/S Remodelling and glycoconjugation of Granulocyte Colony Stimulating Factor (G-CSF)
US8716240B2 (en) 2001-10-10 2014-05-06 Novo Nordisk A/S Erythropoietin: remodeling and glycoconjugation of erythropoietin
EP2279754A3 (en) * 2001-10-10 2011-06-22 BioGeneriX AG Remodelling and glycoconjugation of human growth hormone (hGH)
EP2305312A3 (en) * 2001-10-10 2011-06-15 BioGeneriX AG Remodelling and glycoconjugation of follicle-stimulating hormone (FSH)
US7173003B2 (en) 2001-10-10 2007-02-06 Neose Technologies, Inc. Granulocyte colony stimulating factor: remodeling and glycoconjugation of G-CSF
EP2279755A3 (en) * 2001-10-10 2011-06-15 BioGeneriX AG Remodelling and glycoconjugation of Fibroblast Growth Factor (FGF)
EP2298354A2 (en) 2001-10-10 2011-03-23 BioGeneriX AG Remodelling and glycoconjugation of interferon-beta
EP2279753A2 (en) 2001-10-10 2011-02-02 Novo Nordisk A/S Remodeling and glycoconjugation of peptides
EP2279754A2 (en) 2001-10-10 2011-02-02 BioGeneriX AG Remodelling and glycoconjugation of human growth hormone (hGH)
EP1578771A4 (en) * 2001-10-10 2007-02-21 Neose Technologies Inc Remodeling and glycoconjugation of peptides
US7399613B2 (en) 2001-10-10 2008-07-15 Neose Technologies, Inc. Sialic acid nucleotide sugars
EP2279755A2 (en) 2001-10-10 2011-02-02 BioGeneriX AG Remodelling and glycoconjugation of Fibroblast Growth Factor (FGF)
US7138371B2 (en) 2001-10-10 2006-11-21 Neose Technologies, Inc Remodeling and glycoconjugation of peptides
EP2305313A3 (en) * 2001-10-10 2011-06-08 BioGeneriX AG Remodelling and glycoconjugation of interferon-alpha (IFNa)
EP2298354A3 (en) * 2001-10-10 2011-06-08 BioGeneriX AG Remodelling and glycoconjugation of interferon-beta
US7265084B2 (en) 2001-10-10 2007-09-04 Neose Technologies, Inc. Glycopegylation methods and proteins/peptides produced by the methods
WO2003033720A2 (en) 2001-10-15 2003-04-24 Xencor Protein based tnf-alpha variants for the treatment of tnf-alpha related disorders
US7125843B2 (en) 2001-10-19 2006-10-24 Neose Technologies, Inc. Glycoconjugates including more than one peptide
WO2003046150A2 (en) 2001-11-28 2003-06-05 Neose Technologies, Inc. Glycoprotein remodeling using endoglycanases
US7157277B2 (en) 2001-11-28 2007-01-02 Neose Technologies, Inc. Factor VIII remodeling and glycoconjugation of Factor VIII
US7473680B2 (en) 2001-11-28 2009-01-06 Neose Technologies, Inc. Remodeling and glycoconjugation of peptides
EP2034030A2 (en) 2001-12-26 2009-03-11 Sagres Discovery, Inc. Novel compositions and methods for cancer
EP2067472A1 (en) 2002-01-02 2009-06-10 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
WO2003072714A2 (en) 2002-02-21 2003-09-04 Wyeth Follistatin domain containing proteins
EP2388265A1 (en) 2002-02-22 2011-11-23 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2110434A1 (en) 2002-02-25 2009-10-21 Genentech, Inc. Type-1 cytokine receptor GLM-R
EP2031076A1 (en) 2002-02-27 2009-03-04 Sagres Discovery, Inc. Novel compositions and methods for cancer
EP2014669A2 (en) 2002-03-01 2009-01-14 Sagres Discovery, Inc. Compositions and methods for cancer
EP2253643A1 (en) 2002-03-20 2010-11-24 Sagres Discovery, Inc. Novel compositions and methods in cancer associated with altered expression of PRLR
EP2093233A1 (en) 2002-03-21 2009-08-26 Sagres Discovery, Inc. Novel compositions and methods in cancer
EP2011886A2 (en) 2002-04-16 2009-01-07 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
US7705195B2 (en) 2002-06-07 2010-04-27 Genentech, Inc. Screening method
WO2004004649A2 (en) 2002-07-08 2004-01-15 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2332956A1 (en) 2002-07-08 2011-06-15 Genentech, Inc. Antibody binding to PRO71238
US7364870B2 (en) 2002-08-02 2008-04-29 Wyeth MK2 interacting proteins
US7968342B2 (en) 2002-08-12 2011-06-28 Danisco Us Inc. Mutant E. coli appa phytase enzymes and natural variants thereof, nucleic acids encoding such phytase enzymes, vectors and host cells incorporating same and methods of making and using same
EP2085096A2 (en) 2002-09-11 2009-08-05 Genentech, Inc. Novel composition and methods for the treatment of immune related diseases
EP2116551A1 (en) 2002-09-11 2009-11-11 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2444409A2 (en) 2002-09-16 2012-04-25 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2500438A2 (en) 2002-09-25 2012-09-19 Genentech, Inc. Novel compositions and methods for the treatment of psoriasis
EP2434022A2 (en) 2002-10-03 2012-03-28 Genentech, Inc. Use of A33 antigens and JAM-IT
EP2322201A2 (en) 2002-10-29 2011-05-18 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2322203A2 (en) 2002-10-29 2011-05-18 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2322200A2 (en) 2002-10-29 2011-05-18 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2322202A2 (en) 2002-10-29 2011-05-18 Genentech, Inc. Compositions and methods for the treatment of immune diseases
EP2364716A2 (en) 2002-11-08 2011-09-14 Genentech, Inc. Compositions and methods for the treatment of natural killer cell related diseases
EP2314676A1 (en) 2002-11-26 2011-04-27 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2308968A1 (en) 2002-11-26 2011-04-13 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2311868A1 (en) 2002-11-26 2011-04-20 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2311870A1 (en) 2002-11-26 2011-04-20 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
US8158763B2 (en) 2002-12-24 2012-04-17 Yasuhiro Kajihara Sugar chain asparagine derivatives, sugar chain asparagine, sugar chain and processes for producing these
US7553930B2 (en) 2003-01-06 2009-06-30 Xencor, Inc. BAFF variants and methods thereof
US7816076B2 (en) 2003-02-14 2010-10-19 Sagres Discovery, Inc. Therapeutic targets in cancer
EP2058408A2 (en) 2003-02-14 2009-05-13 Sagres Discovery, Inc. Therapeutic GPCR targets in cancer
FR2851471A1 (en) * 2003-02-24 2004-08-27 Synt Em Compound comprising active agent coupled to vector through a linker, useful in human or veterinary medicine, where the linker includes a hydroxyproline residue
EP2526960A1 (en) 2003-03-12 2012-11-28 Genentech, Inc. Use of BV8 and/or EG-VEGF to promote hematopoiesis
US8143385B2 (en) 2003-03-14 2012-03-27 Wyeth Llc Nucleic acids coding for antibodies against human IL-21 receptor and uses therefor
EP2184298A1 (en) 2003-03-14 2010-05-12 Wyeth a Corporation of the State of Delaware Antibodies against human IL-21 receptor and uses therefor
US7803777B2 (en) 2003-03-14 2010-09-28 Biogenerix Ag Branched water-soluble polymers and their conjugates
US8247381B2 (en) 2003-03-14 2012-08-21 Biogenerix Ag Branched water-soluble polymers and their conjugates
US7495085B2 (en) 2003-03-14 2009-02-24 Wyeth Antibodies against human or mouse IL-21 receptor
US7378503B2 (en) 2003-04-02 2008-05-27 Hoffmann-La Roche Inc. Antibodies against insulin-like growth factor 1 receptor and uses thereof
US7691603B2 (en) 2003-04-09 2010-04-06 Novo Nordisk A/S Intracellular formation of peptide conjugates
EP2338333A2 (en) 2003-04-09 2011-06-29 BioGeneriX AG Glycopegylation methods and proteins/peptides produced by the methods
US8853161B2 (en) 2003-04-09 2014-10-07 Novo Nordisk A/S Glycopegylation methods and proteins/peptides produced by the methods
US8063015B2 (en) 2003-04-09 2011-11-22 Novo Nordisk A/S Glycopegylation methods and proteins/peptides produced by the methods
EP2055189A1 (en) 2003-04-09 2009-05-06 Neose Technologies, Inc. Glycopegylation methods and proteins/peptides produced by the methods
EP2083018A2 (en) 2003-04-16 2009-07-29 Genentech, Inc. Compositions and methods relating to STOP-1
EP2371391A1 (en) 2003-05-08 2011-10-05 Abbott Biotherapeutics Corp. Therapeutic use of anti-CS1 antibodies
WO2004100898A2 (en) 2003-05-08 2004-11-25 Protein Design Labs, Inc. Therapeutic use of anti-cs1 antibodies
EP3275463A1 (en) 2003-05-08 2018-01-31 AbbVie Biotherapeutics Inc. Therapeutic use of anti-cs1 antibodies
EP2853272A1 (en) 2003-05-08 2015-04-01 AbbVie Biotherapeutics Inc. Therapeutic use of anti-CS1 antibodies
US7932364B2 (en) 2003-05-09 2011-04-26 Novo Nordisk A/S Compositions and methods for the preparation of human growth hormone glycosylation mutants
EP2251355A1 (en) 2003-05-30 2010-11-17 Genentech, Inc. Treatment with anti-VEGF antibodies
EP2311875A1 (en) 2003-05-30 2011-04-20 Genentech, Inc. Treatment with anti-VEGF antibodies
EP2248829A1 (en) 2003-05-30 2010-11-10 Genentech, Inc. Treatment with anti-VEGF antibodies
US7767387B2 (en) 2003-06-13 2010-08-03 Sagres Discovery, Inc. Therapeutic targets in cancer
EP2784084A1 (en) 2003-07-08 2014-10-01 Genentech, Inc. IL-17 A/F heterologous polypeptides and therapeutics uses thereof
EP2277908A2 (en) 2003-07-08 2011-01-26 Genentech, Inc. IL-17A/F heterologous polypeptides, antibodies and therapeutic uses thereof
EP2272873A2 (en) 2003-07-10 2011-01-12 F. Hoffmann-La Roche AG Antibodies against insulin-like growth factor I receptor and uses thereof
US7579157B2 (en) 2003-07-10 2009-08-25 Hoffmann-La Roche Inc. Antibody selection method against IGF-IR
US7572897B2 (en) 2003-07-10 2009-08-11 Hoffman-La Roche Inc. Antibodies against insulin-like growth factor I receptor and uses thereof
US9005625B2 (en) 2003-07-25 2015-04-14 Novo Nordisk A/S Antibody toxin conjugates
EP2014675A1 (en) 2003-08-11 2009-01-14 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2327723A2 (en) 2003-10-10 2011-06-01 Xencor, Inc. Protein based tnf-alpha variants for the treatment of tnf-alpha related disorders
EP2301568A1 (en) 2003-11-17 2011-03-30 Genentech, Inc. Antibody against IRTA2 for the treatment of tumour of hematopoietic origin
EP2295073A1 (en) 2003-11-17 2011-03-16 Genentech, Inc. Antibody against CD22 for the treatment of tumour of hematopoietic origin
EP2161283A1 (en) 2003-11-17 2010-03-10 Genentech, Inc. Compositions comprising antibodies against CD79b conjugated to a growth inhibitory agent or cytotoxic agent and methods for the treatment of tumor of hematopoietic origin
US7842661B2 (en) 2003-11-24 2010-11-30 Novo Nordisk A/S Glycopegylated erythropoietin formulations
US8916360B2 (en) 2003-11-24 2014-12-23 Novo Nordisk A/S Glycopegylated erythropoietin
US8633157B2 (en) 2003-11-24 2014-01-21 Novo Nordisk A/S Glycopegylated erythropoietin
US7405198B2 (en) 2003-11-24 2008-07-29 Neose Technologies, Inc. Glycopegylated erythropoietin
US7956032B2 (en) 2003-12-03 2011-06-07 Novo Nordisk A/S Glycopegylated granulocyte colony stimulating factor
EP2311873A1 (en) 2004-01-07 2011-04-20 Novartis Vaccines and Diagnostics, Inc. M-CSF-specific monoclonal antibody and uses thereof
EP3476861A1 (en) 2004-01-07 2019-05-01 Novartis Vaccines and Diagnostics, Inc. M-csf-specific monoclonal antibody and uses thereof
US7338933B2 (en) 2004-01-08 2008-03-04 Neose Technologies, Inc. O-linked glycosylation of peptides
EP2301576A1 (en) 2004-03-29 2011-03-30 Abbott Biotherapeutics Corp. Therapeutic use of Anti-CS1 Antibodies
EP2357201A1 (en) 2004-04-13 2011-08-17 F. Hoffmann-La Roche AG Anti-P-selectin antibodies
WO2005100402A1 (en) 2004-04-13 2005-10-27 F.Hoffmann-La Roche Ag Anti-p-selectin antibodies
EP2360186A1 (en) 2004-04-13 2011-08-24 F.Hoffmann-La Roche Ag Anti-P-selectin antibodies
EP2374817A1 (en) 2004-04-13 2011-10-12 F. Hoffmann-La Roche AG Anti-P-selectin antibodies
EP2067789A1 (en) 2004-04-13 2009-06-10 F. Hoffmann-La Roche Ag Anti-P selectin antibodies
US9023992B2 (en) 2004-05-04 2015-05-05 Novo Nordisk Healthcare Ag Hydrophobic interaction chromatography purification of factor VII polypeptides
US8791066B2 (en) 2004-07-13 2014-07-29 Novo Nordisk A/S Branched PEG remodeling and glycosylation of glucagon-like peptide-1 [GLP-1]
EP2204376A2 (en) 2004-07-20 2010-07-07 Sagres Discovery, Inc. Novel therapeutic targets in cancer
EP2361931A1 (en) 2004-07-20 2011-08-31 Genentech, Inc. Inhibitors of angiopoietin-like 4 protein, combinations, and their use
EP2314617A2 (en) 2004-07-23 2011-04-27 Acceleron Pharma Inc. ActRII receptor polypeptides
EP3489257A1 (en) 2004-07-23 2019-05-29 Acceleron Pharma Inc. Actrii receptor polypeptides, methods and compositions
EP2332977A2 (en) 2004-07-23 2011-06-15 Acceleron Pharma Inc. ActRII receptor polypeptides
EP3059245A1 (en) 2004-07-23 2016-08-24 Acceleron Pharma Inc. Actrii receptor polypeptides, methods and compositions
US8268967B2 (en) 2004-09-10 2012-09-18 Novo Nordisk A/S Glycopegylated interferon α
US8883147B2 (en) 2004-10-21 2014-11-11 Xencor, Inc. Immunoglobulins insertions, deletions, and substitutions
US8399618B2 (en) 2004-10-21 2013-03-19 Xencor, Inc. Immunoglobulin insertions, deletions, and substitutions
EP2586456A1 (en) 2004-10-29 2013-05-01 BioGeneriX AG Remodeling and glycopegylation of fibroblast growth factor (FGF)
EP3061461A1 (en) 2004-10-29 2016-08-31 ratiopharm GmbH Remodeling and glycopegylation of fibroblast growth factor (fgf)
US9200049B2 (en) 2004-10-29 2015-12-01 Novo Nordisk A/S Remodeling and glycopegylation of fibroblast growth factor (FGF)
EP2325206A2 (en) 2004-11-12 2011-05-25 Xencor, Inc. FC variants with altered binding to FCRN
EP2332985A2 (en) 2004-11-12 2011-06-15 Xencor, Inc. Fc variants with altered binding to FcRn
EP2845865A1 (en) 2004-11-12 2015-03-11 Xencor Inc. Fc variants with altered binding to FcRn
EP2305716A2 (en) 2004-11-30 2011-04-06 Curagen Corporation Antibodies directed to gpnmb and uses thereof
EP2842571A1 (en) 2004-11-30 2015-03-04 Celldex Therapeutics, Inc. Antibodies directed to GPNMB and uses thereof
EP2514757A2 (en) 2005-01-10 2012-10-24 BioGeneriX AG Glycopegylated granulocyte colony stimulating factor
US9029331B2 (en) 2005-01-10 2015-05-12 Novo Nordisk A/S Glycopegylated granulocyte colony stimulating factor
WO2006074467A2 (en) 2005-01-10 2006-07-13 Neose Technologies, Inc. Glycopegylated granulocyte colony stimulating factor
EP2548575A1 (en) 2005-02-15 2013-01-23 Duke University Anti-CD19 antibodies that mediate ADCC for use in treating autoimmune diseases
WO2006089133A2 (en) 2005-02-15 2006-08-24 Duke University Anti-cd19 antibodies and uses in oncology
US9820986B2 (en) 2005-03-04 2017-11-21 Taiwan Hopaz Chems, Mfg. Co., Ltd. Glycopeptide compositions
EP1698351A3 (en) * 2005-03-04 2006-12-27 Taiwan Hopax Chems. Mfg. Co., Ltd Glycopeptide compositions
EP1698351A2 (en) * 2005-03-04 2006-09-06 Taiwan Hopax Chems. Mfg. Co., Ltd Glycopeptide compositions
US7615216B2 (en) 2005-04-01 2009-11-10 Roche Palo Alto Llc Antibodies against CCR5 and uses thereof
WO2006103100A2 (en) 2005-04-01 2006-10-05 F. Hoffmann-La Roche Ag Antibodies against ccr5 and uses thereof
EP2062591A1 (en) 2005-04-07 2009-05-27 Novartis Vaccines and Diagnostics, Inc. CACNA1E in cancer diagnosis detection and treatment
EP2083088A2 (en) 2005-04-07 2009-07-29 Novartis Vaccines and Diagnostics, Inc. Cancer-related genes
EP2386571A2 (en) 2005-04-08 2011-11-16 BioGeneriX AG Compositions and methods for the preparation of protease resistant human growth hormone glycosylation mutants
US9187546B2 (en) 2005-04-08 2015-11-17 Novo Nordisk A/S Compositions and methods for the preparation of protease resistant human growth hormone glycosylation mutants
EP2221316A1 (en) 2005-05-05 2010-08-25 Duke University Anti-CD19 antibody therapy for autoimmune disease
EP2975135A1 (en) 2005-05-25 2016-01-20 Novo Nordisk A/S Glycopegylated factor IX
EP2460832A2 (en) 2005-05-27 2012-06-06 Biogen Idec MA Inc. TWEAK binding antibodies
EP2460831A2 (en) 2005-05-27 2012-06-06 Biogen Idec MA Inc. Tweak binding antibodies
US8389469B2 (en) 2005-06-06 2013-03-05 The Rockefeller University Bacteriophage lysins for Bacillus anthracis
EP2186402A1 (en) 2005-06-06 2010-05-19 Genentech, Inc. Knock-out animal models for novel genes and methods of use
US7582291B2 (en) 2005-06-30 2009-09-01 The Rockefeller University Bacteriophage lysins for Enterococcus faecalis, Enterococcus faecium and other bacteria
EP1995321A2 (en) 2005-08-15 2008-11-26 Genentech, Inc. Gene disruptions, compositions and methods relating thereto
US8911967B2 (en) 2005-08-19 2014-12-16 Novo Nordisk A/S One pot desialylation and glycopegylation of therapeutic peptides
EP2360248A1 (en) 2005-08-24 2011-08-24 The Rockefeller University Ply-GBS mutant lysins
US8105585B2 (en) 2005-08-24 2012-01-31 The Rockefeller Universtiy Ply-GBS mutant lysins
US8841439B2 (en) 2005-11-03 2014-09-23 Novo Nordisk A/S Nucleotide sugar purification using membranes
EP3023497A1 (en) 2005-11-18 2016-05-25 Glenmark Pharmaceuticals S.A. Anti-alpha2 integrin antibodies and their uses
EP2002714A1 (en) 2005-11-21 2008-12-17 Genentech, Inc. Novel gene disruptions, compositions and methods relating thereto
EP2329837A1 (en) 2005-11-23 2011-06-08 Acceleron Pharma Inc. Promoting bone growth
EP3269381A1 (en) 2005-11-23 2018-01-17 Acceleron Pharma, Inc. Activin-actriia antagonists in use for promoting bone growth
EP2050335A1 (en) 2006-02-17 2009-04-22 Genentech, Inc. Gene disruptions, compositions and methods relating thereto
EP2327423A2 (en) 2006-02-21 2011-06-01 Wyeth LLC Human antibodies against human interleukin-22 (IL-22)
EP3020729A1 (en) 2006-02-21 2016-05-18 Wyeth LLC Antibodies against human il-22 and uses therefor
EP2431392A1 (en) 2006-02-21 2012-03-21 Wyeth LLC Antibodies against human IL-22 and uses therefor
EP2540741A1 (en) 2006-03-06 2013-01-02 Aeres Biomedical Limited Humanized anti-CD22 antibodies and their use in treatment of oncology, transplantation and autoimmune disease
US8278421B2 (en) 2006-03-20 2012-10-02 Xoma Techolology Ltd. Human antibodies specific for gastrin materials and methods
US8703919B2 (en) 2006-04-11 2014-04-22 Hoffmann-La Roche Inc. Glycosylated antibodies
US7846724B2 (en) 2006-04-11 2010-12-07 Hoffmann-La Roche Inc. Method for selecting CHO cell for production of glycosylated antibodies
EP2082645A1 (en) 2006-04-19 2009-07-29 Genentech, Inc. Novel gene disruptions, compositions and methods relating thereto
EP3453724A1 (en) 2006-04-24 2019-03-13 Amgen Inc. Humanized c-kit antibody
US9187532B2 (en) 2006-07-21 2015-11-17 Novo Nordisk A/S Glycosylation of peptides via O-linked glycosylation sequences
US9006398B2 (en) 2006-08-04 2015-04-14 Novartis Ag EPHB3-specific antibody and uses thereof
US8586716B2 (en) 2006-08-04 2013-11-19 Novartis Ag EPHB3-specific antibody and uses thereof
EP3415532A1 (en) 2006-08-18 2018-12-19 XOMA Technology Ltd. Prlr-specific antibody and uses thereof
US9005614B2 (en) 2006-08-18 2015-04-14 Novartis Ag PRLR-specific antibody and uses thereof
EP3018144A1 (en) 2006-08-18 2016-05-11 XOMA Technology Ltd. Prlr-specific antibody and uses thereof
EP2423231A2 (en) 2006-08-18 2012-02-29 Novartis AG PRLR-specific antibody and uses thereof
WO2009019531A2 (en) 2006-09-18 2009-02-12 Compugen Ltd Bioactive peptides and method of using same
US8828940B2 (en) 2006-09-18 2014-09-09 Compugen Ltd. Method of treating an ischemia-reperfusion injury-related disorder by administering GPCR ligands
US8349801B2 (en) 2006-09-18 2013-01-08 Compugen Ltd. Peptide ligands for G-protein coupled receptors
US7884180B2 (en) 2006-09-18 2011-02-08 Compugen Ltd Peptides which bind to G protein-coupled receptors
EP2752423A2 (en) 2006-09-18 2014-07-09 Compugen Ltd. GPCR ligands and method of using same
EP2492278A1 (en) 2006-09-18 2012-08-29 Compugen Ltd. Antibodies against an agonist of G-protein coupled receptors and its use indiagnosis and therapy
WO2008037419A1 (en) 2006-09-29 2008-04-03 F. Hoffmann-La Roche Ag Antibodies against ccr5 and uses thereof
EP3165539A1 (en) 2006-10-02 2017-05-10 Kirin-Amgen, Inc. Il-17 receptor a antigen binding proteins
WO2008054603A2 (en) 2006-10-02 2008-05-08 Amgen Inc. Il-17 receptor a antigen binding proteins
US8969532B2 (en) 2006-10-03 2015-03-03 Novo Nordisk A/S Methods for the purification of polypeptide conjugates comprising polyalkylene oxide using hydrophobic interaction chromatography
WO2008060780A2 (en) 2006-10-04 2008-05-22 Novo Nordisk A/S Glycerol linked pegylated sugars and glycopeptides
EP3284825A1 (en) 2006-11-02 2018-02-21 Daniel J. Capon Methods of producing hybrid polypeptides with moving parts
EP3181580A1 (en) 2006-11-02 2017-06-21 Acceleron Pharma Inc. Alk1 receptor and ligand antagonists and uses thereof
WO2008067223A2 (en) 2006-11-29 2008-06-05 Genentech, Inc. Il-17a/f heterodimeric polypeptides and therapeutic uses thereof
EP2450050A1 (en) 2006-11-29 2012-05-09 Genentech, Inc. IL-17A/F heterodimeric polypeptides and therapeutic uses thereof
EP3181147A1 (en) 2006-11-29 2017-06-21 Genentech, Inc. Il-17a/f heterodimeric polypeptides and therapeutic thereof
EP2494988A1 (en) 2006-12-07 2012-09-05 Novartis AG Antagonist antibodies against EPHB3
EP3053933A1 (en) 2007-02-02 2016-08-10 Acceleron Pharma, Inc. Variants derived from actriib and uses therefor
EP2805967A1 (en) 2007-02-02 2014-11-26 Acceleron Pharma, Inc. Variants derived from ActRIIB and uses therefor
EP2607379A1 (en) 2007-02-02 2013-06-26 Acceleron Pharma, Inc. Variants derived from ActRIIB and uses therefor
EP3293198A1 (en) 2007-02-02 2018-03-14 Acceleron Pharma Inc. Variants derived from actriib and uses therefor
EP2484372A1 (en) 2007-02-09 2012-08-08 Acceleron Pharma, Inc. Activin-ActRIIa Antagonists and Uses for Promoting Bone Growth in Cancer Patients
EP2481415A1 (en) 2007-02-09 2012-08-01 Acceleron Pharma, Inc. Activin-ActRIIa Antagonists and Uses for Promoting Bone Growth in Cancer Patients
EP2436781A1 (en) 2007-02-22 2012-04-04 Genentech, Inc. Methods for detecting inflammatory bowel disease
US9050304B2 (en) 2007-04-03 2015-06-09 Ratiopharm Gmbh Methods of treatment using glycopegylated G-CSF
EP2703011A2 (en) 2007-05-07 2014-03-05 MedImmune, LLC Anti-icos antibodies and their use in treatment of oncology, transplantation and autoimmune disease
EP2737907A2 (en) 2007-05-07 2014-06-04 MedImmune, LLC Anti-icos antibodies and their use in treatment of oncology, transplantation and autoimmune disease
US9493499B2 (en) 2007-06-12 2016-11-15 Novo Nordisk A/S Process for the production of purified cytidinemonophosphate-sialic acid-polyalkylene oxide (CMP-SA-PEG) as modified nucleotide sugars via anion exchange chromatography
WO2009007848A2 (en) 2007-07-12 2009-01-15 Compugen Ltd. Bioactive peptides and method of using same
EP2474557A2 (en) 2007-07-16 2012-07-11 Genentech, Inc. Anti-CD79b antibodies and immunoconjugates and methods of use
EP2641618A2 (en) 2007-07-16 2013-09-25 Genentech, Inc. Humanized anti-CD79B antibodies and immunoconjugates and methods of use
EP2502937A2 (en) 2007-07-16 2012-09-26 Genentech, Inc. Anti-CD 79b Antibodies And Immunoconjugates And Methods Of Use
EP2592093A1 (en) 2007-08-21 2013-05-15 Amgen, Inc Human c-fms antigen binding proteins
EP3330292A1 (en) 2007-08-21 2018-06-06 Amgen, Inc Human c-fms antigen binding proteins
EP2589610A1 (en) 2007-08-21 2013-05-08 Amgen, Inc Human c-fms antigen binding proteins
US8207112B2 (en) 2007-08-29 2012-06-26 Biogenerix Ag Liquid formulation of G-CSF conjugate
US9175087B2 (en) 2007-08-29 2015-11-03 Sanofi Humanized anti-CXCR5 antibodies, derivatives thereof and their use
US9815902B2 (en) 2007-08-29 2017-11-14 Sanofi Humanized anti-CXCR5 antibodies, derivatives thereof and their uses
US8980262B2 (en) 2007-08-29 2015-03-17 Sanofi Humanized anti-CXCR5 antibodies, derivatives thereof and their use
US9243067B2 (en) 2007-08-29 2016-01-26 Sanofi Humanized anti-CXCR5 antibodies, derivatives thereof and their use
US9228019B2 (en) 2007-08-29 2016-01-05 Sanofi Humanized anti-CXCR5 antibodies, derivatives thereof and their use
US8647622B2 (en) 2007-08-29 2014-02-11 Sanofi Humanized anti-CXCR5 antibodies, derivatives thereof and their use
US9555087B2 (en) 2007-09-04 2017-01-31 Compugen Ltd Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
US9375466B2 (en) 2007-09-04 2016-06-28 Compugen Ltd Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
US9107862B2 (en) 2007-09-04 2015-08-18 Compugen Ltd. Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
EP2769728A1 (en) 2007-09-04 2014-08-27 Compugen Ltd. Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
US10098934B2 (en) 2007-09-04 2018-10-16 Compugen Ltd Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
WO2009032845A2 (en) 2007-09-04 2009-03-12 Compugen, Ltd. Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
EP2769729A1 (en) 2007-09-04 2014-08-27 Compugen Ltd. Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
EP3243524A1 (en) 2007-09-18 2017-11-15 Acceleron Pharma Inc. Activin-actriia antagonists and uses for decreasing or inhibiting fsh secretion
EP2236519A1 (en) 2007-09-18 2010-10-06 Amgen, Inc Human GM-CSF antigen binding proteins
EP2573118A1 (en) 2007-10-15 2013-03-27 Sanofi Antibodies that bind IL-4 and/or IL-13 and their uses
EP2573116A1 (en) 2007-10-15 2013-03-27 Sanofi Antibodies that bind IL-4 and/or IL-13 and their uses
EP2573121A1 (en) 2007-10-15 2013-03-27 Sanofi Antibodies that bind il-4 and/or il-13 and their uses
EP2573117A1 (en) 2007-10-15 2013-03-27 Sanofi Antibodies that bind IL-4 and/or IL-13 and their uses
EP2574629A1 (en) 2007-10-15 2013-04-03 Sanofi Antibodies that bind il-4 and/or il-13 and their uses
EP2573119A1 (en) 2007-10-15 2013-03-27 Sanofi Antibodies that bind IL-4 and/or IL-13 and their uses
US9738728B2 (en) 2007-10-15 2017-08-22 Sanofi Antibodies that bind IL-4 and/or IL-13 and their uses
US9732162B2 (en) 2007-10-15 2017-08-15 Sanofi Antibodies that bind IL-4 and/or IL-13 and their uses
US8388965B2 (en) 2007-10-15 2013-03-05 Sanofi Antibodies that bind IL-4 and/or IL-13 and their uses
EP2573115A1 (en) 2007-10-15 2013-03-27 Sanofi Antibodies that bind IL-4 and/or IL-13 and their uses
EP2574626A1 (en) 2007-10-15 2013-04-03 Sanofi Antibodies that bind IL-4 and/or IL-13 and their uses
EP2574630A1 (en) 2007-10-15 2013-04-03 Sanofi Antibodies that bind il-4 and/or il-13 and their uses
WO2009058734A1 (en) 2007-10-30 2009-05-07 Indiana University Research And Technology Corporation Compounds exhibiting glucagon antagonist and glp-1 agonist activity
EP2444423A1 (en) 2007-10-31 2012-04-25 Xencor Inc. Fc variants with altered binding to FcRn
EP3138853A1 (en) 2007-10-31 2017-03-08 Xencor, Inc. Fc variants with altered binding to fcrn
EP2937361A2 (en) 2007-10-31 2015-10-28 Xencor Inc. Fc variants with altered binding to fcRn
EP2261254A2 (en) 2007-12-21 2010-12-15 Amgen, Inc Anti-amyloid antibodies and uses thereof
WO2009085200A2 (en) 2007-12-21 2009-07-09 Amgen Inc. Anti-amyloid antibodies and uses thereof
EP2808343A1 (en) 2007-12-26 2014-12-03 Xencor Inc. Fc variants with altered binding to FcRn
US10287340B2 (en) 2008-01-07 2019-05-14 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-HIV domain antibodies and method of making and using same
EP2803675A2 (en) 2008-01-25 2014-11-19 Amgen, Inc Ferroportin antibodies and methods of use
WO2009094551A1 (en) 2008-01-25 2009-07-30 Amgen Inc. Ferroportin antibodies and methods of use
EP2574628A1 (en) 2008-01-25 2013-04-03 Amgen Inc. Ferroportin antibodies and methods of use
US9688759B2 (en) 2008-01-25 2017-06-27 Amgen, Inc. Ferroportin antibodies and methods of use
US9175078B2 (en) 2008-01-25 2015-11-03 Amgen Inc. Ferroportin antibodies and methods of use
EP3153526A1 (en) 2008-01-31 2017-04-12 INSERM - Institut National de la Santé et de la Recherche Médicale Antibodies against human cd39 and use thereof for inhibiting t regulatory cells activity
EP2657253A2 (en) 2008-01-31 2013-10-30 Genentech, Inc. Anti-CD79b antibodies and immunoconjugates and methods of use
US9150848B2 (en) 2008-02-27 2015-10-06 Novo Nordisk A/S Conjugated factor VIII molecules
EP3208612A1 (en) 2008-04-09 2017-08-23 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2816059A1 (en) 2008-05-01 2014-12-24 Amgen, Inc Anti-hepcidin antibodies and methods of use
EP2620448A1 (en) 2008-05-01 2013-07-31 Amgen Inc. Anti-hepcidin antibodies and methods of use
WO2009139822A1 (en) 2008-05-01 2009-11-19 Amgen Inc. Anti-hepcidin antibodies and methods of use
EP3398966A1 (en) 2008-05-02 2018-11-07 Acceleron Pharma, Inc. Methods and compositions for modulating angiogenesis and pericyte composition
WO2009142221A1 (en) 2008-05-20 2009-11-26 大塚製薬株式会社 Antibody capable of discriminating the change in structure between antibody conjugated with antibody and antibody unconjugated with antibody, and method for production of the antibody
WO2009155258A2 (en) 2008-06-17 2009-12-23 Indiana University Research And Technology Corporation Glucagon/glp-1 receptor co-agonists
EP2676673A2 (en) 2008-06-17 2013-12-25 Indiana University Research and Technology Corporation Glucagon/glp-1 receptor co-agonists
WO2009155257A1 (en) 2008-06-17 2009-12-23 Indiana University Research And Technology Corporation Glucagon analogs exhibiting enhanced solubility and stability physiological ph buffers
WO2010011439A2 (en) 2008-06-17 2010-01-28 Indiana University Research And Technology Corporation Gip-based mixed agonists for treatment of metabolic disorders and obesity
EP2952202A1 (en) 2008-06-17 2015-12-09 Indiana University Research and Technology Corporation Gip-based mixed agonists for treatment of metabolic disorders and obesity
EP2671891A2 (en) 2008-06-27 2013-12-11 Amgen Inc. Ang-2 inhibition to treat multiple sclerosis
WO2010019261A1 (en) 2008-08-14 2010-02-18 Acceleron Pharma Inc. Use of gdf traps to increase red blood cell levels
EP3494986A1 (en) 2008-08-14 2019-06-12 Acceleron Pharma Inc. Gdf traps for use to treat anemia
WO2010027364A1 (en) 2008-09-07 2010-03-11 Glyconex Inc. Anti-extended type i glycosphingolipid antibody, derivatives thereof and use
WO2010040766A1 (en) 2008-10-07 2010-04-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Neutralizing antibodies and fragments thereof directed against platelet factor-4 variant 1 (pf4v1)
US8298531B2 (en) 2008-11-06 2012-10-30 Glenmark Pharmaceuticals, S.A. Treatment with anti-alpha2 integrin antibodies
WO2010056804A1 (en) 2008-11-12 2010-05-20 Medimmune, Llc Antibody formulation
EP2865689A1 (en) 2008-12-08 2015-04-29 Compugen Ltd. FAM26F polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
WO2010067308A2 (en) 2008-12-08 2010-06-17 Compugen Ltd. Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
WO2010080609A1 (en) 2008-12-19 2010-07-15 Indiana University Research And Technology Corporation Amide-based insulin prodrugs
EP3075385A1 (en) 2008-12-19 2016-10-05 Indiana University Research and Technology Corporation Amide based glucagon superfamily peptide prodrugs
EP3184546A1 (en) 2008-12-23 2017-06-28 Amgen, Inc Human cgrp receptor binding proteins
WO2010075238A1 (en) 2008-12-23 2010-07-01 Amgen Inc. Human cgrp receptor binding proteins
WO2010099219A2 (en) 2009-02-24 2010-09-02 The Salk Institute For Biological Studies Designer ligands of tgf-beta superfamily
US8952130B2 (en) 2009-02-24 2015-02-10 The Salk Institute For Biological Studies Designer ligands of TGF-β superfamily
WO2010106051A1 (en) 2009-03-17 2010-09-23 Universite De La Mediterranee Btla antibodies and uses thereof
EP3002296A1 (en) 2009-03-17 2016-04-06 Université d'Aix-Marseille Btla antibodies and uses thereof
EP3395831A1 (en) 2009-03-20 2018-10-31 Laboratoire Français du Fractionnement et des Biotechnologies Optimized fc variants
EP2233500A1 (en) 2009-03-20 2010-09-29 LFB Biotechnologies Optimized Fc variants
WO2010106180A2 (en) 2009-03-20 2010-09-23 Lfb Biotechnologies Optimized fc variants
EP3385279A1 (en) 2009-03-20 2018-10-10 Amgen Inc. Carrier immunoglobulins and uses thereof
WO2010111617A2 (en) 2009-03-27 2010-09-30 Van Andel Research Institute Parathyroid hormone peptides and parathyroid hormone-related protein peptides and methods of use
US10307475B2 (en) 2009-03-27 2019-06-04 Academia Sinica Methods and compositions for immunization against virus
EP3384964A1 (en) 2009-03-30 2018-10-10 Acceleron Pharma Inc. Bmp-alk3 antagonists and uses for promoting bone growth
WO2010114860A1 (en) 2009-03-30 2010-10-07 Acceleron Pharma Inc. Bmp-alk3 antagonists and uses for promoting bone growth
EP3058986A1 (en) 2009-03-30 2016-08-24 Acceleron Pharma Inc. Bmp-alk3 antagonists and uses for promoting bone growth
WO2010120561A1 (en) 2009-04-01 2010-10-21 Genentech, Inc. Anti-fcrh5 antibodies and immunoconjugates and methods of use
US8580732B2 (en) 2009-04-07 2013-11-12 Duke University Peptide therapy for hyperglycemia
EP2248903A1 (en) 2009-04-29 2010-11-10 Universitat Autònoma De Barcelona Methods and reagents for efficient and targeted gene transfer to monocytes and macrophages
EP2695945A1 (en) 2009-04-29 2014-02-12 Universitat Autònoma De Barcelona Methods and reagents for efficient and targeted gene transfer to cells of monocyte-macrophage lineage
EP3345921A1 (en) 2009-06-08 2018-07-11 Acceleron Pharma Inc. Use of anti-actriib antibodies for increasing thermogenic adipocytes
EP3290439A1 (en) 2009-06-12 2018-03-07 Acceleron Pharma Inc. Truncated actriib-fc fusion proteins
WO2010148089A1 (en) 2009-06-16 2010-12-23 Indiana University Research And Technology Corporation Gip receptor-active glucagon compounds
WO2011020045A1 (en) 2009-08-13 2011-02-17 Acceleron Pharma Inc. Combined use of gdf traps and erythropoietin receptor activators to increase red blood cell levels
EP3117829A1 (en) 2009-08-13 2017-01-18 Acceleron Pharma Inc. Combined use of gdf traps and erythropoietin receptor activators to increase red blood cell levels
US9493578B2 (en) 2009-09-02 2016-11-15 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
EP3202459A1 (en) 2009-09-09 2017-08-09 Acceleron Pharma Inc. Actriib antagonists and dosing and uses thereof for regulating body fat content
WO2011031901A1 (en) 2009-09-09 2011-03-17 Acceleron Pharma Inc. Actriib antagonists and dosing and uses thereof
WO2011032099A1 (en) 2009-09-11 2011-03-17 The Board Of Trustees Of The University Of Illinois Methods of treating diastolic dysfunction and related conditions
WO2011038302A2 (en) 2009-09-25 2011-03-31 Xoma Technology Ltd. Novel modulators
WO2011038301A2 (en) 2009-09-25 2011-03-31 Xoma Technology Ltd. Screening methods
EP3187877A1 (en) 2009-09-25 2017-07-05 XOMA Technology Ltd. Screening methods
EP2957296A1 (en) 2009-09-25 2015-12-23 Xoma (Us) Llc Insulin receptor binding antibodies
WO2011046958A1 (en) 2009-10-12 2011-04-21 Amgen Inc. Use of il-17 receptor a antigen binding proteins
US8535912B2 (en) 2009-10-15 2013-09-17 Genentech, Inc. Chimeric fibroblast growth factors with altered receptor specificity
WO2011050194A1 (en) 2009-10-22 2011-04-28 Genentech, Inc. Methods and compositions for modulating hepsin activation of macrophage-stimulating protein
WO2011056600A1 (en) 2009-10-26 2011-05-12 Amgen Inc. Human il-23 antigen binding proteins
WO2011056502A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Bone morphogenetic protein receptor type ii compositions and methods of use
US9487580B2 (en) 2009-10-26 2016-11-08 Amgen Inc. Human IL-23 antigen binding proteins
US9951129B2 (en) 2009-10-26 2018-04-24 Amgen Inc. Human IL-23 antigen binding proteins
US8722033B2 (en) 2009-10-26 2014-05-13 Amgen Inc. Human IL-23 antigen binding proteins
EP3181586A1 (en) 2009-10-26 2017-06-21 Amgen, Inc Human il-23 antigen binding proteins
WO2011056497A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Activin receptor type iib compositions and methods of use
WO2011056494A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Activin receptor-like kinase-1 antagonist and vegfr3 antagonist combinations
WO2011056572A1 (en) 2009-10-27 2011-05-12 The Board Of Trustees Of The University Of Illinois Methods of diagnosing diastolic dysfunction
WO2011056896A1 (en) 2009-11-03 2011-05-12 Acceleron Pharma Inc. Methods for treating fatty liver disease
EP3260130A2 (en) 2009-11-03 2017-12-27 Acceleron Pharma Inc. Methods for treating fatty liver disease
EP3332796A1 (en) 2009-11-17 2018-06-13 Acceleron Pharma Inc. Actriib proteins and variants and uses therefore relating to utrophin induction for muscular dystrophy therapy
WO2011063018A1 (en) 2009-11-17 2011-05-26 Acceleron Pharma Inc. Actriib proteins and variants and uses therefore relating to utrophin induction for muscular dystrophy therapy
WO2011063277A1 (en) 2009-11-20 2011-05-26 Amgen Inc. Anti-orai1 antigen binding proteins and uses thereof
WO2011066503A2 (en) 2009-11-30 2011-06-03 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP3002297A2 (en) 2009-11-30 2016-04-06 F. Hoffmann-La Roche AG Antibodies for treating and diagnosing tumors expressing slc34a2 (tat211)
WO2011067711A2 (en) 2009-12-01 2011-06-09 Compugen Ltd Novel heparanase splice variant
WO2011068993A1 (en) 2009-12-02 2011-06-09 Acceleron Pharma Inc. Compositions and methods for increasing serum half-life of fc fusion proteins.
EP3202787A1 (en) 2009-12-07 2017-08-09 Amgen, Inc Human antigen binding proteins that bind beta-klotho, fgf receptors and complexes thereof
EP2711375A1 (en) 2009-12-07 2014-03-26 Amgen Inc. Human Antigen Binding Proteins that bind Beta-Klotho, FGF Receptors and complexes thereof
WO2011071783A1 (en) 2009-12-07 2011-06-16 Amgen Inc. Human antigen binding proteins that bind beta-klotho, fgf receptors and complexes thereof
WO2011075393A2 (en) 2009-12-18 2011-06-23 Indiana University Research And Technology Corporation Glucagon/glp-1 receptor co-agonists
WO2011094337A1 (en) 2010-01-27 2011-08-04 Indiana University Research And Technology Corporation Glucagon antagonist - gip agonist conjugates and compositions for the treatment of metabolic disorders and obesity
WO2011097527A2 (en) 2010-02-04 2011-08-11 Xencor, Inc. Immunoprotection of therapeutic moieties using enhanced fc regions
WO2011104604A2 (en) 2010-02-23 2011-09-01 Glenmark Pharmaceuticals S.A. Anti-alpha2 integrin antibodies and their uses
WO2011106297A2 (en) 2010-02-23 2011-09-01 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP2848632A1 (en) 2010-02-23 2015-03-18 Sanofi Anti-alpha2 integrin antibodies and their uses
WO2011130417A2 (en) 2010-04-15 2011-10-20 Amgen Inc. HUMAN FGF RECEPTOR AND β-KLOTHO BINDING PROTEINS
WO2011139985A1 (en) 2010-05-03 2011-11-10 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
WO2011143274A1 (en) 2010-05-10 2011-11-17 Perseid Therapeutics Polypeptide inhibitors of vla4
WO2011143209A1 (en) 2010-05-13 2011-11-17 Indiana University Research And Technology Corporation Glucagon superfamily peptides exhibiting nuclear hormone receptor activity
WO2011160062A2 (en) 2010-06-17 2011-12-22 The Usa As Represented By The Secretary, National Institutes Of Health Compositions and methods for treating inflammatory conditions
WO2011163462A2 (en) 2010-06-24 2011-12-29 Indiana University Research And Technology Corporation Amide-based insulin prodrugs
WO2011163012A2 (en) 2010-06-24 2011-12-29 Indiana University Research And Technology Corporation Amide based glucagon superfamily peptide prodrugs
WO2012001647A2 (en) 2010-06-30 2012-01-05 Compugen Ltd. Polypeptides and uses thereof as a drug for treatment of multiple sclerosis, rheumatoid arthritis and other autoimmune disorders
EP3202415A2 (en) 2010-06-30 2017-08-09 Compugen Ltd. C1orf32 fused to the fc fragment for the treatment of multiple sclerosis, rheumatoid arthritis and other autoimmune disorders
WO2012010696A1 (en) 2010-07-23 2012-01-26 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for cancer management targeting co-029
US9605061B2 (en) 2010-07-29 2017-03-28 Xencor, Inc. Antibodies with modified isoelectric points
WO2012016227A2 (en) 2010-07-29 2012-02-02 Xencor, Inc. Antibodies with modified isoelectric points
EP3029066A2 (en) 2010-07-29 2016-06-08 Xencor, Inc. Antibodies with modified isoelectric points
WO2012035518A1 (en) 2010-09-17 2012-03-22 Compugen Ltd. Compositions and methods for treatment of drug resistant multiple myeloma
WO2012040518A2 (en) 2010-09-22 2012-03-29 Amgen Inc. Carrier immunoglobulins and uses thereof
WO2012045085A1 (en) 2010-10-01 2012-04-05 Oxford Biotherapeutics Ltd. Anti-rori antibodies
EP3219731A1 (en) 2010-10-01 2017-09-20 Oxford BioTherapeutics Ltd Anti-ror1 antibodies
RU2607452C2 (en) * 2010-11-04 2017-01-10 Академиа Синика Methods of producing viral particles with simplified surface proteins' glycosylation
US9920347B2 (en) 2010-11-04 2018-03-20 Academia Sinica Methods for producing virus particles with simplified glycosylation of surface proteins
WO2012080769A1 (en) 2010-12-15 2012-06-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-cd277 antibodies and uses thereof
WO2012080351A1 (en) 2010-12-15 2012-06-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-cd277 antibodies and uses thereof
WO2012088116A2 (en) 2010-12-22 2012-06-28 Indiana University Research And Technology Corporation Glucagon analogs exhibiting gip receptor activity
WO2012085132A1 (en) 2010-12-22 2012-06-28 Orega Biotech Antibodies against human cd39 and use thereof
WO2012090150A2 (en) 2010-12-27 2012-07-05 Compugen Ltd New cell-penetrating peptides and uses thereof
EP3284754A1 (en) 2010-12-30 2018-02-21 Takeda Pharmaceutical Company Limited Anti-cd38 antibodies
WO2012092616A1 (en) 2010-12-30 2012-07-05 Takeda Pharmaceutical Company Limited Conjugated anti-cd38 antibodies
WO2012092612A1 (en) 2010-12-30 2012-07-05 Takeda Pharmaceutical Company Limited Anti-cd38 antibodies
EP3284755A1 (en) 2010-12-30 2018-02-21 Takeda Pharmaceutical Company Limited Conjugated anti-cd38 antibodies
WO2012101125A1 (en) 2011-01-24 2012-08-02 INSERM (Institut National de la Santé et de la Recherche Médicale) Specific antibodies against human cxcl4 and uses thereof
WO2012131004A2 (en) 2011-03-31 2012-10-04 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies directed against icos and uses thereof
WO2012140627A1 (en) 2011-04-15 2012-10-18 Compugen Ltd. Polypeptides and polynucleotides, and uses thereof for treatment of immune related disorders and cancer
WO2012145539A1 (en) 2011-04-20 2012-10-26 Acceleron Pharma, Inc. Endoglin polypeptides and uses thereof
WO2012156532A1 (en) 2011-05-19 2012-11-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-human-her3 antibodies and uses thereof
EP3447074A2 (en) 2011-06-06 2019-02-27 Amgen, Inc Human antigen binding proteins that bind to a complex comprising beta-klotho and an fgf receptor
US9574002B2 (en) 2011-06-06 2017-02-21 Amgen Inc. Human antigen binding proteins that bind to a complex comprising β-Klotho and an FGF receptor
WO2012177443A2 (en) 2011-06-22 2012-12-27 Indiana University Research And Technology Corporation Glucagon/glp-1 receptor co-agonists
WO2013001517A1 (en) 2011-06-30 2013-01-03 Compugen Ltd. Polypeptides and uses thereof for treatment of autoimmune disorders and infection
US9428574B2 (en) 2011-06-30 2016-08-30 Compugen Ltd. Polypeptides and uses thereof for treatment of autoimmune disorders and infection
EP2543678A1 (en) 2011-07-08 2013-01-09 INSERM (Institut National de la Santé et de la Recherche Medicale) Antibodies for the treatment and prevention of thrombosis
WO2013008098A1 (en) 2011-07-08 2013-01-17 Inserm ( Institut National De La Sante Et De La Recherche Medicale) Antibodies for the treatment and prevention of thrombosis
WO2013008100A1 (en) 2011-07-08 2013-01-17 Inserm (Institut National De La Sante Et De La Recherche Medicale) Methods for the treatment and prevention of thrombosis
EP2543679A1 (en) 2011-07-08 2013-01-09 INSERM (Institut National de la Santé et de la Recherche Medicale) Antibodies for the treatment and prevention of thrombosis
EP2543677A1 (en) 2011-07-08 2013-01-09 INSERM (Institut National de la Santé et de la Recherche Medicale) Antibodies for the treatment and prevention of thrombosis
WO2013008099A1 (en) 2011-07-08 2013-01-17 Inserm ( Institut National De La Sante Et De La Recherche Medicale) Antibodies for the treatment and prevention of thrombosis
WO2013016220A1 (en) 2011-07-22 2013-01-31 Amgen Inc. Il-17 receptor a is required for il-17c biology
WO2013022855A1 (en) 2011-08-05 2013-02-14 Xencor, Inc. Antibodies with modified isoelectric points and immunofiltering
WO2013043933A2 (en) 2011-09-22 2013-03-28 Amgen Inc. Cd27l antigen binding proteins
WO2013052933A2 (en) 2011-10-06 2013-04-11 The Board Of Trustees Of The University Of Illinois Myosin binding protein-c for use in methods relating to diastolic heart failure
WO2013055809A1 (en) 2011-10-10 2013-04-18 Xencor, Inc. A method for purifying antibodies
WO2013059347A1 (en) 2011-10-17 2013-04-25 Acceleron Pharma, Inc. Methods and compositions for treating ineffective erythropoiesis
WO2013074910A1 (en) 2011-11-17 2013-05-23 Indiana University Research And Technology Corporation Glucagon superfamily peptides exhibiting glucocorticoid receptor activity
WO2013086443A1 (en) 2011-12-08 2013-06-13 Amgen Inc. Agonistic human lcat antigen binding proteins and their use in therapy
WO2013090931A2 (en) 2011-12-16 2013-06-20 Kalos Therapeutics, Inc. Methods and uses of anp (atrial natriuretic peptide), bnp (brain natriuretic peptide) and cnp (c-type natriuretic peptide)-related peptides and derivatives thereof for treatment of retinal disorders and diseases
WO2013096386A1 (en) 2011-12-20 2013-06-27 Indiana University Research And Technology Corporation Ctp-based insulin analogs for treatment of diabetes
US9617336B2 (en) 2012-02-01 2017-04-11 Compugen Ltd C10RF32 antibodies, and uses thereof for treatment of cancer
WO2013116781A1 (en) 2012-02-02 2013-08-08 Acceleron Pharma Inc. Alk1 antagonists and their uses in treating renal cell carcinoma
WO2013136193A2 (en) 2012-03-16 2013-09-19 University Health Network Methods and compositions for modulating toso activity
US9592289B2 (en) 2012-03-26 2017-03-14 Sanofi Stable IgG4 based binding agent formulations
EP3351260A1 (en) 2012-04-06 2018-07-25 Acceleron Pharma Inc. Methods and compositions for increasing red blood cells
WO2013163377A1 (en) 2012-04-27 2013-10-31 Novo Nordisk A/S Human cd30 ligand antigen binding proteins
EP3431492A1 (en) 2012-04-27 2019-01-23 Novo Nordisk A/S Human cd30 ligand antigen binding proteins
WO2013169734A1 (en) 2012-05-07 2013-11-14 Amgen Inc. Anti-erythropoietin antibodies
US9441039B2 (en) 2012-05-07 2016-09-13 Amgen Inc. Anti-erythropoietin antibodies
WO2013188740A1 (en) 2012-06-14 2013-12-19 Ambrx, Inc. Anti-psma antibodies conjugated to nuclear receptor ligand polypeptides
WO2013192129A1 (en) 2012-06-21 2013-12-27 Indiana University Research And Technology Corporation Glucagon analogs exhibiting gip receptor activity
WO2013192130A1 (en) 2012-06-21 2013-12-27 Indiana University Research And Technology Corporation Analogs of glucagon exhibiting gip receptor activity
WO2014001368A1 (en) 2012-06-25 2014-01-03 Orega Biotech Il-17 antagonist antibodies
US10100121B2 (en) 2012-06-27 2018-10-16 Amgen Inc. Anti-mesothelin binding proteins
WO2014033327A1 (en) 2012-09-03 2014-03-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies directed against icos for treating graft-versus-host disease
EP3308796A1 (en) 2012-11-02 2018-04-18 Celgene Corporation Activin-actrii antagonists and uses for treating bone and other disorders
US9617345B2 (en) 2012-11-20 2017-04-11 Sanofi Anti-CEACAM5 antibodies and uses thereof
WO2014079886A1 (en) 2012-11-20 2014-05-30 Sanofi Anti-ceacam5 antibodies and uses thereof
WO2014089335A2 (en) 2012-12-07 2014-06-12 Amgen Inc. Bcma antigen binding proteins
WO2014093396A1 (en) 2012-12-10 2014-06-19 Biogen Idec Ma Inc. Anti-blood dendritic cell antigen 2 antibodies and uses thereof
US9809653B2 (en) 2012-12-27 2017-11-07 Sanofi Anti-LAMP1 antibodies and antibody drug conjugates, and uses thereof
US9650446B2 (en) 2013-01-14 2017-05-16 Xencor, Inc. Heterodimeric proteins
US10131710B2 (en) 2013-01-14 2018-11-20 Xencor, Inc. Optimized antibody variable regions
US9701759B2 (en) 2013-01-14 2017-07-11 Xencor, Inc. Heterodimeric proteins
US9738722B2 (en) 2013-01-15 2017-08-22 Xencor, Inc. Rapid clearance of antigen complexes using novel antibodies
WO2014114801A1 (en) 2013-01-25 2014-07-31 Amgen Inc. Antibodies targeting cdh19 for melanoma
WO2014114800A1 (en) 2013-01-25 2014-07-31 Amgen Research (Munich) Gmbh Antibody constructs for cdh19 and cd3
WO2014159764A1 (en) 2013-03-14 2014-10-02 Amgen Inc. Chrdl-1 antigen binding proteins and methods of treatment
WO2014153111A2 (en) 2013-03-14 2014-09-25 Amgen Inc. Interleukin-2 muteins for the expansion of t-regulatory cells
WO2014153063A1 (en) 2013-03-14 2014-09-25 Amgen Inc. AGLYCOSYLATED Fc-CONTAINING POLYPEPTIDES
US9260527B2 (en) 2013-03-15 2016-02-16 Sdix, Llc Anti-human CXCR4 antibodies and methods of making same
EP3385277A1 (en) 2013-03-15 2018-10-10 F. Hoffmann-La Roche AG Il-22 polypeptides and il-22 fc fusion proteins and methods of use
WO2014144466A1 (en) 2013-03-15 2014-09-18 Biogen Idec Ma Inc. Anti-alpha v beta 6 antibodies and uses thereof
US10087227B2 (en) 2013-03-15 2018-10-02 Genentech, Inc. Nucleic acids encoding IL-22 Fc fusion proteins
WO2014145806A2 (en) 2013-03-15 2014-09-18 Xencor, Inc. Heterodimeric proteins
WO2014140358A1 (en) 2013-03-15 2014-09-18 Amgen Research (Munich) Gmbh Single chain binding molecules comprising n-terminal abp
US10106624B2 (en) 2013-03-15 2018-10-23 Xencor, Inc. Heterodimeric proteins
WO2014144553A1 (en) 2013-03-15 2014-09-18 Amgen Inc. Secreted frizzle-related protein 5 (sfrp5) binding proteins and methods of treatment
WO2014143739A2 (en) 2013-03-15 2014-09-18 Biogen Idec Ma Inc. Anti-alpha v beta 6 antibodies and uses thereof
WO2014144632A2 (en) 2013-03-15 2014-09-18 Amgen Inc. Human pac1 antibodies
US9657098B2 (en) 2013-03-15 2017-05-23 Intrinsic Lifesciences, Llc Anti-hepcidin antibodies and uses thereof
US9605084B2 (en) 2013-03-15 2017-03-28 Xencor, Inc. Heterodimeric proteins
US10160793B2 (en) 2013-03-15 2018-12-25 Genentech, Inc. Methods of treating inflammatory bowel disease using IL-22 Fc fusion proteins
EP3421495A2 (en) 2013-03-15 2019-01-02 Xencor, Inc. Modulation of t cells with bispecific antibodies and fc fusions
WO2014144911A2 (en) 2013-03-15 2014-09-18 Capon Daniel J Hybrid immunoglobulin containing non-peptidyl linkage
WO2014145016A2 (en) 2013-03-15 2014-09-18 Genentech, Inc. Il-22 polypeptides and il-22 fc fusion proteins and methods of use
US10287364B2 (en) 2013-03-15 2019-05-14 Xencor, Inc. Heterodimeric proteins
US9803011B2 (en) 2013-03-15 2017-10-31 Intrinsic Lifesciences Llc Anti-hepcidin antibodies and uses thereof
WO2014151680A1 (en) 2013-03-15 2014-09-25 Biogen Idec Ma Inc. Treatment and prevention of acute kidney injury using anti-alpha v beta 5 antibodies
US9815880B2 (en) 2013-03-15 2017-11-14 Genentech, Inc. IL-22 Fc fusion proteins
WO2014140368A1 (en) 2013-03-15 2014-09-18 Amgen Research (Munich) Gmbh Antibody constructs for influenza m2 and cd3
US10239941B2 (en) 2013-03-15 2019-03-26 Intrinsic Lifesciences Llc Anti-hepcidin antibodies and uses thereof
WO2014183885A1 (en) 2013-05-17 2014-11-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Antagonist of the btla/hvem interaction for use in therapy
EP3456743A1 (en) 2013-05-30 2019-03-20 Kiniksa Pharmaceuticals, Ltd. Oncostatin m receptor antigen binding proteins
US9944968B2 (en) 2013-08-19 2018-04-17 Biogen Ma Inc. Control of protein glycosylation by culture medium supplementation and cell culture process parameters
WO2015026846A1 (en) 2013-08-19 2015-02-26 Biogen Idec Ma Inc. Control of protein glycosylation by culture medium supplementation and cell culture process parameters
EP3427751A1 (en) 2013-08-30 2019-01-16 Amgen, Inc Gitr antigen binding proteins
US9464139B2 (en) 2013-08-30 2016-10-11 Amgen Inc. GITR antigen binding proteins and methods of use thereof
WO2015036583A2 (en) 2013-09-13 2015-03-19 Amgen Inc. Combination of epigenetic factors and bispecific compounds targeting cd33 and cd3 in the treatment of myeloid leukemia
WO2015052537A1 (en) 2013-10-11 2015-04-16 Oxford Biotherapeutics Ltd Conjugated antibodies against ly75 for the treatment of cancer
WO2015057939A1 (en) 2013-10-18 2015-04-23 Biogen Idec Ma Inc. Anti-s1p4 antibodies and uses thereof
WO2015066550A1 (en) 2013-10-31 2015-05-07 Resolve Therapeutics, Llc Therapeutic nuclease-albumin fusions and methods
WO2015066557A1 (en) 2013-10-31 2015-05-07 Resolve Therapeutics, Llc Therapeutic nuclease molecules with altered glycosylation and methods
WO2015095809A1 (en) 2013-12-20 2015-06-25 Biogen Idec Ma Inc. Use of perfusion seed cultures to improve biopharmaceutical fed-batch production capacity and product quality
US9701743B2 (en) 2014-02-20 2017-07-11 Allergan, Inc. Complement component C5 antibodies
WO2015127134A2 (en) 2014-02-20 2015-08-27 Allergan, Inc. Complement component c5 antibodies
US9932395B2 (en) 2014-02-20 2018-04-03 Allergan, Inc. Nucleic acids encoding complement component C5 antibodies
WO2015130826A1 (en) 2014-02-27 2015-09-03 Allergan, Inc. COMPLEMENT FACTOR Bb ANTIBODIES
WO2015149077A1 (en) 2014-03-28 2015-10-01 Xencor, Inc. Bispecific antibodies that bind to cd38 and cd3
US9822186B2 (en) 2014-03-28 2017-11-21 Xencor, Inc. Bispecific antibodies that bind to CD38 and CD3
WO2015158851A1 (en) 2014-04-16 2015-10-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies for the prevention or the treatment of bleeding episodes
WO2015159253A1 (en) 2014-04-16 2015-10-22 Gamamabs Pharma Anti-her4 human antibody
WO2015187977A1 (en) 2014-06-04 2015-12-10 Acceleron Pharma, Inc. Methods and compositions for treatment of disorders with follistatin polypeptides
WO2016016412A1 (en) 2014-07-31 2016-02-04 Amgen Research (Munich) Gmbh Antibody constructs for cdh19 and cd3
WO2016016859A1 (en) 2014-07-31 2016-02-04 Amgen Research (Munich) Gmbh Optimized cross-species specific bispecific single chain antibody constructs
US9765157B2 (en) 2014-07-31 2017-09-19 Amgen Research (Munich) Gmbh Antibody constructs for CDH19 and CD3
WO2016016415A1 (en) 2014-07-31 2016-02-04 Amgen Research (Munich) Gmbh Bispecific single chain antibody construct with enhanced tissue distribution
WO2016040767A2 (en) 2014-09-12 2016-03-17 Amgen Inc. Chrdl-1 epitopes and antibodies
US10323088B2 (en) 2014-09-22 2019-06-18 Intrinsic Lifesciences Llc Humanized anti-hepcidin antibodies and uses thereof
WO2016050822A2 (en) 2014-09-30 2016-04-07 Neurimmune Holding Ag Human-derived anti-dipeptide repeats (dprs) antibody
WO2016061424A1 (en) 2014-10-17 2016-04-21 Biogen Ma Inc. Copper supplementation for control of glycosylation in mammalian cell culture process
WO2016070152A1 (en) 2014-10-31 2016-05-06 Biogen Ma Inc. Hypotaurine, gaba, beta-alanine, and choline for control of waste byproduct accumulation in mammalian cell culture process
WO2016069889A1 (en) 2014-10-31 2016-05-06 Resolve Therapeutics, Llc Therapeutic nuclease-transferrin fusions and methods
US10259887B2 (en) 2014-11-26 2019-04-16 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
US9856327B2 (en) 2014-11-26 2018-01-02 Xencor, Inc. Heterodimeric antibodies to CD3 X CD123
US9850320B2 (en) 2014-11-26 2017-12-26 Xencor, Inc. Heterodimeric antibodies to CD3 X CD20
US10227411B2 (en) 2015-03-05 2019-03-12 Xencor, Inc. Modulation of T cells with bispecific antibodies and FC fusions
WO2016141387A1 (en) 2015-03-05 2016-09-09 Xencor, Inc. Modulation of t cells with bispecific antibodies and fc fusions
WO2016161410A2 (en) 2015-04-03 2016-10-06 Xoma Technology Ltd. Treatment of cancer using inhibitors of tgf-beta and pd-1
US10167334B2 (en) 2015-04-03 2019-01-01 Xoma Technology Ltd. Treatment of cancer using anti-TGF-BETA and PD-1 antibodies
WO2016164937A2 (en) 2015-04-10 2016-10-13 Amgen Inc. Interleukin-2 muteins for the expansion of t-regulatory cells
WO2016166360A1 (en) 2015-04-17 2016-10-20 Bayer Pharma Aktiengesellschaft Bispecific antibody constructs for cdh3 and cd3
WO2016189124A1 (en) 2015-05-28 2016-12-01 Medimmune Limited Therapeutic combinations and methods for treating neoplasia
WO2017009712A1 (en) 2015-07-13 2017-01-19 Compugen Ltd. Hide1 compositions and methods
WO2017021356A1 (en) 2015-07-31 2017-02-09 Amgen Research (Munich) Gmbh Bispecific antibody constructs binding mesothelin and cd3
US10294300B2 (en) 2015-07-31 2019-05-21 Amgen Research (Munich) Gmbh Antibody constructs for DLL3 and CD3
WO2017021349A1 (en) 2015-07-31 2017-02-09 Amgen Research (Munich) Gmbh Bispecific antibody constructs binding dll3 and cd3
WO2017021362A1 (en) 2015-07-31 2017-02-09 Amgen Research (Munich) Gmbh Antibody constructs for flt3 and cd3
WO2017021370A1 (en) 2015-07-31 2017-02-09 Amgen Research (Munich) Gmbh Bispecific antibody constructs binding egfrviii and cd3
WO2017021354A1 (en) 2015-07-31 2017-02-09 Amgen Research (Munich) Gmbh Antibody constructs for cd70 and cd3
WO2017066561A2 (en) 2015-10-16 2017-04-20 President And Fellows Of Harvard College Regulatory t cell pd-1 modulation for regulating t cell effector immune responses
US10227410B2 (en) 2015-12-07 2019-03-12 Xencor, Inc. Heterodimeric antibodies that bind CD3 and PSMA
WO2017129585A1 (en) 2016-01-25 2017-08-03 Amgen Research (Munich) Gmbh Pharmaceutical composition comprising bispecific antibody constructs
US10301391B2 (en) 2016-02-03 2019-05-28 Amgen Research (Munich) Gmbh BCMA and CD3 bispecific T cell engaging antibody constructs
WO2017182427A1 (en) 2016-04-19 2017-10-26 Amgen Research (Munich) Gmbh Administration of a bispecific construct binding to cd33 and cd3 for use in a method for the treatment of myeloid leukemia
US10316088B2 (en) 2016-06-28 2019-06-11 Xencor, Inc. Heterodimeric antibodies that bind somatostatin receptor 2
WO2018005954A2 (en) 2016-07-01 2018-01-04 Resolve Therapeutics, Llc Optimized binuclease fusions and methods
WO2018013917A1 (en) 2016-07-15 2018-01-18 Takeda Pharmaceutical Company Limited Methods and materials for assessing response to plasmablast- and plasma cell-depleting therapies
WO2018015340A1 (en) 2016-07-18 2018-01-25 Sanofi Bispecific antibody-like binding proteins specifically binding to cd3 and cd123
WO2018022479A1 (en) 2016-07-25 2018-02-01 Biogen Ma Inc. Anti-hspa5 (grp78) antibodies and uses thereof
WO2018026748A1 (en) 2016-08-01 2018-02-08 Xoma (Us) Llc Parathyroid hormone receptor 1 (pth1r) antibodies and uses thereof
US10358497B2 (en) 2016-09-28 2019-07-23 Amgen Inc. Methods of treating cardiovascular disease with an ASGR inhibitor
WO2018064255A2 (en) 2016-09-28 2018-04-05 Xoma (Us) Llc Antibodies that bind interleukin-2 and uses thereof
WO2018064098A1 (en) 2016-09-28 2018-04-05 Cohbar, Inc. Therapeutic mots-c related peptides
WO2018073387A1 (en) 2016-10-20 2018-04-26 Sanofi Anti-chikv antibodies and uses thereof
WO2018141910A1 (en) 2017-02-02 2018-08-09 Amgen Research (Munich) Gmbh Low ph pharmaceutical composition comprising t cell engaging antibody constructs
WO2018152496A1 (en) 2017-02-17 2018-08-23 The Usa, As Represented By The Secretary, Dept. Of Health And Human Services Compositions and methods for the diagnosis and treatment of zika virus infection
WO2018156892A1 (en) 2017-02-23 2018-08-30 Adrx, Inc. Peptide inhibitors of transcription factor aggregation
WO2018200742A1 (en) 2017-04-25 2018-11-01 The Usa, As Represented By The Secretary, Dept. Of Health And Human Services Antibodies and methods for the diagnosis and treatment of epstein barr virus infection
WO2018204907A1 (en) 2017-05-05 2018-11-08 Amgen Inc. Pharmaceutical composition comprising bispecific antibody constructs for improved storage and administration
WO2018226992A1 (en) 2017-06-07 2018-12-13 Adrx, Inc. Tau aggregation inhibitors
WO2019018629A1 (en) 2017-07-19 2019-01-24 The Usa, As Represented By The Secretary, Dept. Of Health And Human Services Antibodies and methods for the diagnosis and treatment of hepatitis b virus infection
WO2019028316A1 (en) 2017-08-03 2019-02-07 Amgen Inc. Interleukin-21 muteins and methods of treatment
WO2019036725A2 (en) 2017-08-18 2019-02-21 Adrx, Inc. Tau aggregation peptide inhibitors
WO2019040674A1 (en) 2017-08-22 2019-02-28 Sanabio, Llc Soluble interferon receptors and uses thereof
WO2019118426A1 (en) 2017-12-11 2019-06-20 Amgen Inc. Continuous manufacturing process for bispecific antibody products
WO2019133961A1 (en) 2017-12-29 2019-07-04 Amgen Inc. Bispecific antibody construct directed to muc17 and cd3
WO2019140196A1 (en) 2018-01-12 2019-07-18 Amgen Inc. Anti-pd-1 antibodies and methods of treatment

Also Published As

Publication number Publication date
JPS63502716A (en) 1988-10-13
AU5133690A (en) 1990-08-23
AU624487B2 (en) 1992-06-11
AU597574B2 (en) 1990-06-07
DK583087A (en) 1987-11-06
EP0272253A1 (en) 1988-06-29
EP0272253A4 (en) 1990-02-05
AU5627186A (en) 1987-09-28
DK583087D0 (en) 1987-11-06

Similar Documents

Publication Publication Date Title
Hart Glycosylation
Cummings et al. The distribution of repeating [Gal beta 1, 4GlcNAc beta 1, 3] sequences in asparagine-linked oligosaccharides of the mouse lymphoma cell lines BW5147 and PHAR 2.1.
Marquardt et al. Congenital disorders of glycosylation: review of their molecular bases, clinical presentations and specific therapies
Gawlitzek et al. Ammonium alters N‐glycan structures of recombinant TNFR‐IgG: degradative versus biosynthetic mechanisms
Grabenhorst et al. Genetic engineering of recombinant glycoproteins and the glycosylation pathway in mammalian host cells
Seitz et al. Chemoenzymatic solution-and solid-phase synthesis of O-glycopeptides of the mucin domain of MAdCAM-1. A general route to O-LacNAc, O-sialyl-LacNAc, and O-sialyl-Lewis-X peptides
Merkle et al. Relationship of the terminal sequences to the length of poly-N-acetyllactosamine chains in asparagine-linked oligosaccharides from the mouse lymphoma cell line BW5147. Immobilized tomato lectin interacts with high affinity with glycopeptides containing long poly-N-acetyllactosamine chains.
Paulson et al. Enzymatic properties of beta-D-galactoside alpha2 leads to 6 sialytransferase from bovine colostrum.
DuRAND et al. Protein glycosylation and diseases: blood and urinary oligosaccharides as markers for diagnosis and therapeutic monitoring
Schachter Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharides
Struck et al. Evidence for the participation of saccharide-lipids in the synthesis of the oligosaccharide chain of ovalbumin.
Li et al. Highly efficient endoglycosidase-catalyzed synthesis of glycopeptides using oligosaccharide oxazolines as donor substrates
US5432059A (en) Assay for glycosylation deficiency disorders
Buskas et al. Glycopeptides as versatile tools for glycobiology
Fernández et al. Purification to homogeneity of UDP-glucose: glycoprotein glucosyltransferase from Schizosaccharomyces pombe and apparent absence of the enzyme fro Saccharomyces cerevisiae.
Wymer et al. Enzyme-catalyzed synthesis of carbohydrates
Nilsson Enzymatic synthesis of oligosaccharides
DE69635948T3 (en) Methods for modification of carbohydrate shares
Eckhardt et al. Isolation and characterization of a family of. alpha.-D-galactosyl-containing glycopeptides from Ehrlich ascites tumor cells
Spooncer et al. Isolation and characterization of polyfucosylated lactosaminoglycan from human granulocytes.
US6338955B2 (en) β1-4 N-acetylglucosaminyltransferase and gene encoding
Rudd et al. Glycosylation: heterogeneity and the 3D structure of proteins
Imperiali et al. Effect of N-linked glycosylation on glycopeptide and glycoprotein structure
EP0432157B1 (en) A method for synthesis of oligosaccharides
Beyer et al. Glycosyltransferases and their use in assessing oligosaccharide structure and structure-function relationships

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU DK FI HU JP KR MC NO RO SU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1986902150

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1986902150

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1986902150

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1986902150

Country of ref document: EP