WO2009139026A1 - ガルバノスキャナシステムの駆動パターン作成方法 - Google Patents

ガルバノスキャナシステムの駆動パターン作成方法 Download PDF

Info

Publication number
WO2009139026A1
WO2009139026A1 PCT/JP2008/001237 JP2008001237W WO2009139026A1 WO 2009139026 A1 WO2009139026 A1 WO 2009139026A1 JP 2008001237 W JP2008001237 W JP 2008001237W WO 2009139026 A1 WO2009139026 A1 WO 2009139026A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive pattern
galvano scanner
laser beam
positioning
axis
Prior art date
Application number
PCT/JP2008/001237
Other languages
English (en)
French (fr)
Inventor
谷岡望
Original Assignee
株式会社ハーモニック・ドライブ・システムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ハーモニック・ドライブ・システムズ filed Critical 株式会社ハーモニック・ドライブ・システムズ
Priority to US12/992,937 priority Critical patent/US8780406B2/en
Priority to JP2010511793A priority patent/JPWO2009139026A1/ja
Priority to DE112008003863.5T priority patent/DE112008003863B4/de
Priority to PCT/JP2008/001237 priority patent/WO2009139026A1/ja
Publication of WO2009139026A1 publication Critical patent/WO2009139026A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0031Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration for scanning purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/02Scanning details of television systems; Combination thereof with generation of supply voltages by optical-mechanical means only
    • H04N3/08Scanning details of television systems; Combination thereof with generation of supply voltages by optical-mechanical means only having a moving reflector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/10Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical

Definitions

  • the present invention relates to a drive pattern creation method for a galvano scanner system that creates a drive pattern for scanning main laser light by scanning visible laser light via each positioning point on the workpiece surface.
  • the galvano scanner system is used for scanning laser light in accordance with a fixed drive pattern in a laser processing apparatus or the like.
  • a galvano scanner system including an X-axis galvano scanner and a Y-axis galvano scanner is mounted, and laser light emitted from a laser light source is applied to the surface of a workpiece according to a fixed drive pattern by these scanners.
  • a predetermined marking is applied to the surface of the workpiece.
  • a drive pattern input command to a conventional galvano scanner system is obtained from coordinate data representing a plurality of positioning points for defining a drive pattern from a host device equipped with a personal computer that controls the galvano scanner system, and the order of each positioning point.
  • the scanning speed between each positioning point is input like a timing chart, and then a lot of information designed in advance including the distance to the surface of the workpiece, distortion correction data by the optical system, response characteristics of the galvano scanner, etc. It is created by adding. Therefore, in order to create the drive pattern input command, it is necessary to input a lot of information, and it is necessary to set these information in advance. Therefore, it takes time to create a drive pattern input command, and some preparation time and related knowledge are required.
  • Patent Document 1 discloses a laser marking apparatus having a function of projecting a guide image corresponding to a pattern to be printed by a guide laser beam onto a work via a galvano mirror.
  • the irradiation point of the laser beam for guide is scanned on the workpiece by rotating the galvanometer mirror based on the same coordinate data as in the printing operation, and a guide image of the printing pattern is projected onto the workpiece surface. ing.
  • the error between the projected position of the guide image on the workpiece and the desired position can be confirmed, and the print position can be adjusted before the start of printing. Therefore, it is not necessary to prepare a sample work as compared with the case where the print position adjustment is performed by actually printing on the sample work, and there is an advantage that the print position adjustment can be performed relatively easily.
  • Japanese Patent Laid-Open No. 2003-220485 Japanese Patent Laid-Open No. 2003-220485
  • An object of the present invention is to make it possible to easily create a drive pattern for scanning a main laser beam such as a marking laser beam by scanning the workpiece surface with a visible laser beam (guide laser beam).
  • the object is to propose a drive pattern creation method for a galvano scanner system.
  • the present invention includes a galvano scanner capable of scanning main laser light and visible laser light in a predetermined direction, a scanner driver for driving the galvano scanner, and a controller for controlling the scanner driver.
  • a drive pattern creation method for a galvano scanner system comprising: Preparing a master work in which a plurality of positioning points defining a scanning locus by the main laser beam are displayed on the surface; The surface of the master work is irradiated with the visible laser light, the galvano scanner is manually operated via the scanner driver, and the irradiation position of the visible laser light on the surface is visually checked. The position information of the positioned galvano scanner is obtained from a position sensor attached to the galvano scanner and recorded for each positioning point sequentially.
  • the position information obtained for each positioning point is expanded in the order of acquisition of each position information to determine the movement locus of the visible laser beam, Set the movement time of each movement section on the movement locus individually or uniformly, Set on / off of the main laser beam at each movement position on the movement locus, An input command for a drive pattern of the main laser light is generated based on the movement locus, the movement time, and on / off information of the main laser light.
  • the surface of the master work is irradiated with visible laser light scanned by a galvano scanner system, and the position information of the galvano scanner is recorded at the position where the positioning point and the irradiation spot of the visible laser light overlap. Since the operation of the galvano scanner system at this time is performed by teaching by the controller, a drive pattern inputted in advance is not required. By repeating the positioning of the irradiation spot of the visible laser beam as many times as necessary, the position and order of each positioning point are recorded.
  • the positional information acquired in this way includes the influence of distortion caused by the optical system. Therefore, the drive pattern input command created based on the acquired position information has already eliminated errors caused by error factors, scales, offsets, etc. of the optical system, including focus errors (pin cushion errors) and mounting errors. . Further, it is not necessary to input the distance to the surface of the workpiece. Therefore, it is possible to easily create a drive pattern input command from which the error component is removed.
  • the galvano scanner system can scan the main laser beam and the visible laser beam in the X-axis direction and the Y-axis direction, respectively.
  • X-axis galvano scanner and Y-axis galvano scanner X-axis scanner driver for driving the X-axis galvano scanner
  • Y-axis scanner driver for driving the Y-axis galvano scanner
  • a controller for controlling the driver.
  • the drive pattern can be created in the same manner.
  • a master work is prepared in which a plurality of positioning points that define the scanning locus by the main laser beam are displayed on the surface.
  • a master work is prepared in which a plurality of positioning points that define the scanning locus by the main laser beam are displayed on the surface.
  • irradiating the surface of the master work with the visible laser light and manually operating the X-axis galvano scanner and the Y-axis galvano scanner via the X-axis scanner driver and the Y-axis scanner driver, respectively.
  • the irradiation position on the surface of the visible laser beam is visually positioned at one of the positioning points, and the X-axis position information and the Y-axis position information of the X-axis galvano scanner and the Y-axis galvano scanner in the positioning state
  • the positioning point and teaching operation for acquiring and storing from the X-axis position sensor and the Y-axis position sensor attached to the X-axis galvano scanner and the Y-axis galvano scanner is sequentially performed for each positioning point.
  • the X-axis position information and the Y-axis position information obtained for each positioning point are expanded into XY coordinates in the order of acquisition to obtain the movement locus of the visible laser beam, and the movement of each movement section on the movement locus
  • the time is set individually or uniformly, and ON / OFF of the main laser light at each movement position on the movement locus is set. Then, based on the movement locus, the movement time, and the on / off information of the main laser beam, an input command for the drive pattern of the main laser beam is generated.
  • the drive pattern creation method of the galvano scanner system of the present invention is: Obtaining a difference between a design coordinate value representing each of the plurality of positioning points defining the scanning locus of the main laser beam and a measurement coordinate value representing each positioning point obtained by the teaching operation; Based on the difference, calculate a correction map or a correction formula representing an error correction amount at each design coordinate position, The design coordinate value for positioning the main laser beam at a predetermined positioning point is corrected using the correction map or the correction formula, A drive input command corresponding to the corrected coordinate value is generated.
  • the design input value for driving is corrected by using a correction map or a correction formula obtained by the teaching operation using the master work to remove the error. Accordingly, when performing scanning of laser light on a different workpiece, scanning of laser light with a different drive pattern, etc., it is possible to save the trouble of performing a teaching operation each time.
  • the distortion of the optical system is complicated, for example, when many error factors are included, it is possible to perform highly accurate error correction on the design input value by increasing the teaching quantity of the positioning points. It becomes possible.
  • the drive pattern creation method of the galvano scanner system of the present invention is: Extract a moving section in which overshoot may occur in the scanning of the main laser light at the positioning completion point of each moving section in the generated drive pattern, Before the extracted positioning completion point of the movement section, insert an auxiliary movement section having a driving condition capable of suppressing overshoot, and match the end point of the auxiliary movement section with the positioning completion point, The correction drive pattern after the auxiliary movement section is inserted is adopted as an input command for the main laser beam.
  • FIG. 1 It is a schematic block diagram which shows the galvano scanner system to which this invention is applied. It is explanatory drawing which shows a master work.
  • (A) shows the table which shows the recording data taken in by teaching
  • (b) is explanatory drawing which shows the movement locus which is developed. It is a table which shows the created drive pattern.
  • (A) is explanatory drawing which shows the X-axis movement locus
  • (b) is explanatory drawing which shows the Y-axis movement locus
  • (c) is explanatory drawing which shows the drive pattern of the laser on / off.
  • An explanatory diagram showing a master work for reading correction values an explanatory diagram showing a situation where a rectangular shape is distorted due to an error in an input command, a graph showing coordinate data acquired by teaching, a graph showing design coordinate data, and a calculated error correction amount
  • FIG. 1 is a schematic configuration diagram of a galvano scanner system according to the first embodiment.
  • the galvano scanner system 1 includes an X-axis galvano scanner 2, a Y-axis galvano scanner 3, an X-axis scanner driver 4 and a Y-axis scanner driver 5 for driving these, an X-axis and Y-axis scanner driver 4, And a command generator 8 including an analog controller 6 for controlling 5 and a personal computer 7.
  • the galvano scanner system 1 is used, for example, as a laser marking device, and includes a marking laser light source 11 and a visible laser light source 12.
  • the marking laser light L (11) generated by driving the marking laser light source 11 via the driver 10 is an X-axis scanning mirror of the X-axis galvano scanner 2 via a half mirror 13 used as an optical path synthesis element. 21 is irradiated.
  • the marking laser beam L (11) is reflected by the X-axis scanning mirror 21 and then irradiated to the Y-axis scanning mirror 31 of the Y-axis galvano scanner 3, and after being reflected here, the marking laser beam L ( 11) is irradiated to the surface 16a of the work 16 installed on the work table 15 through a condenser lens such as the f ⁇ lens 14.
  • the visible laser beam L (12) emitted from the visible laser beam source 12 is reflected by the half mirror 13 at a right angle, the visible laser beam L (11) is guided along the same optical path as the marking laser beam L (11).
  • the surface 16a is irradiated.
  • a dedicated command generation program is installed in the personal computer 7 of the command generator 8 and supplies digital position commands for the X-axis and Y-axis galvano scanners 4 and 5 to the analog controller 6.
  • the analog controller 6 D / A converts the digital position command into a command voltage which is an analog position command, and supplies the command voltage to the X-axis and Y-axis scanner drivers 4 and 5, respectively.
  • X-axis and Y-axis scanner drivers 4 and 5 generate a scanner drive voltage based on the command voltage and apply it to the X-axis and Y-axis galvano scanners 2 and 3 to specify the X-axis and Y-axis galvano scanners 2 and 3. Drive to a different position.
  • an input operation unit 6a is connected to the analog controller 6, and a command for driving the X-axis and Y-axis galvano scanners 2 and 3 can be manually input from the input operation unit 6a.
  • the X-axis and Y-axis galvano scanners 2 and 3 include, for example, finite rotation motors 20 and 30 and X-axis and Y-axis scanning mirrors 21 and 31 attached to these motor rotation shafts 20a and 30a. .
  • the X-axis and Y-axis galvano scanners 2 and 3 are attached with position sensors 22 and 32 for detecting the rotational angle positions of the motor rotation shafts 20a and 30a.
  • the analog position detection outputs of the position sensors 22 and 32 are supplied to the analog controller 6 via the X-axis and Y-axis scanner drivers 4 and 5.
  • the analog controller 6 A / D converts the analog position detection output into digital position information.
  • the digital position information is supplied to the personal computer 7. Based on the detected positions of the X-axis and Y-axis galvano scanners 2 and 3, the X-axis and Y-axis galvano scanners 2 and 3 are feedback-controlled in accordance with a preset drive pattern.
  • a master work 17 is prepared in which a plurality of positioning points defining the scanning locus of the marking laser beam L (11), for example, positioning points P1 to P14 are displayed on the surface 17a.
  • This master work 17 is set on the work table 15 of the galvano scanner system 1.
  • the command generator 8 is set to the teaching operation mode.
  • the visible laser light source 12 is driven, the visible laser beam L (12) is emitted, and the visible laser beam L (12) irradiates the surface 17a of the master work 17.
  • the operator observes the light spot of the visible laser beam L (12) formed on the surface 17a of the master work 17 and manually operates the X-axis galvano scanner 2 and the Y-axis galvano from the operation unit 6a of the analog controller 6.
  • the scanner 3 is driven to position the light spot at the positioning point P1.
  • the operation unit 6a When the positioning state is formed, the operation unit 6a is operated to read the sensor signal values of the position sensors 22 and 32 of the X-axis and Y-axis galvano scanners 2 and 3, and to the internal memory 6b or the external memory 6c attached externally. Record the sensor signal value along with the reading order. The reading of the sensor signal value is performed only when the operation unit 6a is operated and a reading command is input, and information such as position information indicating the movement trajectory during positioning and elapsed time is not recorded. Further, the on / off information of the marking laser beam between the positioning points, that is, in each moving section, is also input by operating the operation unit 6a and recorded in the memory 6b or 6c. The on / off information can also be set after the position information is recorded. The information to be recorded is recorded in the form of a digital signal.
  • the sensor signal value is read and recorded in the memory 6b or 6c. Also, the on / off information of the marking laser beam is recorded.
  • the recorded content is taken into the personal computer 7 of the command generator 8, and a drive pattern is created based on the taken-in information.
  • FIG. 3A is a table showing the captured recording data
  • FIG. 3B shows the developed movement trajectory. At this time, the trajectory coordinates of the movement trajectory can be corrected.
  • FIG. 4 is a table showing data contents after setting the travel time.
  • FIGS. 5A to 5C are explanatory diagrams showing an X-axis drive pattern, a Y-axis drive pattern, and an on / off drive pattern for marking laser light.
  • the drive pattern thus created (X-axis drive pattern, Y-axis drive pattern, marking laser light on / off drive pattern) is stored and held in the memory of the personal computer 7.
  • the command generation program of the personal computer 7 is activated to generate an input command based on the drive pattern held in the memory.
  • the data is transferred to the X-axis and Y-axis scanner drivers 4 and 5 via the analog controller 6. Synchronous control of the X-axis and Y-axis galvano scanners 2 and 3 is performed between the host analog controller side or between the X-axis and Y-axis scanner drivers 4 and 5.
  • the drive pattern created as described above is one in which errors due to effects such as focus error (pin cushion error), error factors of the optical system including mounting errors, scale, offset, distance to the work surface, etc. are removed. Therefore, the light spot of the marking laser beam can be scanned along each positioning point on the surface 16a of the workpiece 16 with high accuracy.
  • focus error pin cushion error
  • error factors of the optical system including mounting errors, scale, offset, distance to the work surface, etc.
  • a master work with positioning points set at representative positions on the surface is prepared as a master work, and a light spot of visible laser light is manually positioned at each positioning point of the master work. Then, a sensor position signal from the position sensor is acquired, the acquired sensor position signal is taken into the personal computer 7, and measurement coordinate position data for positioning the marking laser beam at each positioning point is calculated. Thereafter, an error between the design coordinate position data representing each positioning point and the actually obtained measurement coordinate position is calculated. A correction map in which the calculated error is associated with each positioning point is created. Alternatively, an error correction function that can eliminate an error at each positioning point is created.
  • the design coordinate data input from the input unit of the personal computer 7 is corrected using a correction map or an error correction function, and the corrected design coordinate data is supplied to the analog controller 6 as an input command.
  • the number of teachings at the positioning points may be increased.
  • FIG. 6 (a) As the master work 18, a row of positioning points arranged in the Y-axis direction at regular intervals is arranged on the surface 18a at regular intervals in the X-axis direction. Prepare something. Each positioning point of the master work 18 is irradiated with visible laser light, the light spot is sequentially positioned at each positioning point, and sensor position signals obtained from the position sensors 22 and 32 are read at each positioning point.
  • the straight line of the visible laser beam drawn on the surface 18a of the workpiece 18 increases in the degree of non-linearity with respect to the scanner angle as the distance from the optical origin O increases, as shown in FIG. Therefore, since the measurement coordinate data calculated based on the sensor position signal representing each positioning point arranged in a straight line includes the influence of the distortion caused by such an optical system, as shown in FIG. It will swell in the opposite direction.
  • the difference between the measurement coordinate data shown in FIG. 6C and the design coordinate data not considering the error shown in FIG. 6D is an error amount.
  • FIG. 6E shows the error amount.
  • an input command for driving is created by correcting the input design coordinate data so as to remove the error amount.
  • correction as shown in FIG. 6F is applied.
  • the marking laser light moves along a linear movement locus on the workpiece, and marking can be performed accurately without being affected by errors caused by distortion of the optical system.
  • FIG. 7A shows an example of driving (actual movement) by a driving pattern (command input value) having a small amplitude according to a preset adjustment condition
  • FIG. 7B shows a large value exceeding the adjustment condition.
  • An example of driving by an amplitude driving pattern is shown.
  • the created drive pattern is corrected as follows to reduce the positioning time while reducing the movement time. Since the method for creating the drive pattern is the same as that in the first embodiment described above, description thereof is omitted.
  • the movement section of the driving condition that satisfies the adjustment condition is inserted, and the end point of this movement section is the initial positioning completion point To match.
  • the moving section A between the positioning point 1 and the positioning point 2 is driven at a high speed of 400 rad / s in the laser off state.
  • vibrations associated with overshoot occur at the positioning completion points of each movement section, that is, the positioning points 2, 9, and 12.
  • the time axis of the moving section C is enlarged.
  • a movement section A1 between the positioning point 1a and the positioning point 2 consisting of a slight movement amount is added before the positioning completion point 2 in the movement section A.
  • the moving speed in the moving section A1 is set to a low speed of 10 rad / s, and the moving distance is also slight.
  • the movement section B1 from the positioning point 8a to the positioning point 9 is added before the positioning completion point 9 in the movement section B, and the movement section C1 from the positioning point 11a to the positioning point 12 is added.
  • the newly inserted movement section is conditioned by parameters such as amplitude, speed, responsiveness, etc., and can be configured by a straight line or a series of straight lines with different speeds.

Abstract

 ガルバノスキャナシステム(1)によって走査される可視レーザ光L(12)を、手動操作によって、マスターワーク(17)の表面(17a)上の各位置決めポイントP1~P14に位置決めし、ガルバノスキャナ(2、3)の位置センサ(22、32)のセンサ位置信号を記録する。各位置決めポイントについてセンサ位置信号を記録し、これに基づき駆動パターンを作成する。駆動パターンは、フォーカスエラーおよび取り付け誤差を含む光学系の誤差要因、スケール、オフセット等に起因する誤差が既に除去されており、ワーク表面までの距離を入力する必要もない。よって、簡単に、誤差成分が除去された駆動パターンを作成できる。

Description

ガルバノスキャナシステムの駆動パターン作成方法
 本発明は、可視レーザ光をワーク表面上の各位置決めポイントを経由させて走査することにより主レーザ光を走査するための駆動パターンを作成するガルバノスキャナシステムの駆動パターン作成方法に関する。
 ガルバノスキャナシステムは、レーザ加工装置などにおいてレーザ光を一定の駆動パターンに従って走査するために用いられている。例えば、レーザマーキング装置では、X軸ガルバノスキャナおよびY軸ガルバノスキャナを備えたガルバノスキャナシステムが搭載されており、レーザ光源から射出されたレーザ光が、これらのスキャナによって一定の駆動パターンに従ってワーク表面に沿って二次元的に走査されて、ワーク表面に所定のマーキングが施される。
 従来のガルバノスキャナシステムへの駆動パターン入力指令は、当該ガルバノスキャナシステムを制御するパーソナルコンピュータを備えた上位機器から、駆動パターンを規定するための複数の位置決めポイントを表す座標データ、各位置決めポイントの順序、各位置決めポイント間の走査速度を、タイミングチャートのように入力し、しかる後に、ワークの表面までの距離、光学系による歪み補正データ、ガルバノスキャナの応答特性などを含む予め設計された多数の情報を付加することによって作成される。したがって、駆動パターン入力指令の作成には、多数の情報を入力する必要があり、また、これらの情報を事前に設定しておく必要がある。よって、駆動パターン入力指令の作成には時間が掛かり、ある程度の準備時間と関連知識が必要である。
 特許文献1には、ガイド用レーザ光により印字すべきパターンに応じたガイド像をガルバノミラーを介してワーク上に投射する機能を備えたレーザマーキング装置が開示されている。このレーザマーキング装置では、ガルバノミラーを印字動作時と同じ座標データに基づいて回動させることによりワーク上でガイド用レーザ光の照射点を走査して、印字パターンのガイド像をワーク表面に投射している。これにより、ワーク上におけるガイド像の投射位置と所望の位置との誤差を確認して、印字開始前に印字位置調整を行うことができるようになっている。したがって、サンプル用のワークに実際に印字して印字位置調整を行う場合に比べて、サンプル用ワークを用意する必要がなく、印字位置調整を比較的簡単に行うことができるという利点がある。
特開2003-220485号公報
 本発明の課題は、可視レーザ光(ガイド用レーザ光)を用いてワーク表面を走査することにより、マーキング用レーザ光などの主レーザ光を走査するための駆動パターンを簡単に作成できるようにしたガルバノスキャナシステムの駆動パターン作成方法を提案することにある。
 上記の課題を解決するために、本発明は、主レーザ光および可視レーザ光を所定方向に走査可能なガルバノスキャナと、このガルバノスキャナを駆動するスキャナドライバと、このスキャナドライバを制御するコントローラとを有するガルバノスキャナシステムの駆動パターン作成方法であって、
 前記主レーザ光による走査軌跡を規定する複数の位置決めポイントが表面に表示されているマスターワークを用意し、
 前記可視レーザ光を当該マスターワークの前記表面に照射し、前記スキャナドライバを介して前記ガルバノスキャナを手動操作して、目視により、前記可視レーザ光の前記表面上の照射位置を前記位置決めポイントの一つに位置決めし、位置決めされた前記ガルバノスキャナの位置情報を、当該ガルバノスキャナに取り付けられている位置センサから取得して記録するティーチング動作を各位置決めポイントについて順次に行い、
 各位置決めポイントについて得られた前記位置情報を各位置情報の取得順に展開して前記可視レーザ光の移動軌跡を求め、
 前記移動軌跡上における各移動区間の移動時間を個別に、あるいは一律に設定し、
 前記移動軌跡上における各移動位置における前記主レーザ光のオンオフを設定し、
 前記移動軌跡、前記移動時間および前記主レーザ光のオンオフ情報に基づき、前記主レーザ光の駆動パターンの入力指令を生成することを特徴としている。
 本発明では、マスターワークの表面上に、ガルバノスキャナシステムによって走査される可視レーザ光を照射し、位置決めポイントと可視レーザ光の照射スポットが重なった位置において、ガルバノスキャナの位置情報を記録する。このときのガルバノスキャナシステムの操作は、コントローラによるティーチングによって行われるので、予め入力された駆動パターンを必要としない。可視レーザ光の照射スポットの位置決めを必要回数繰り返すことにより、各位置決めポイントの位置および順序が記録される。このようにして取得された位置情報には、光学系による歪みの影響が含まれている。したがって、取得された位置情報に基づき作成した駆動パターンの入力指令は、フォーカスエラー(ピンクッションエラー)および取り付け誤差を含む光学系の誤差要因、スケール、オフセット等に起因する誤差が既に除去されている。また、ワークの表面までの距離を入力する必要もない。よって、簡単に、誤差成分が除去された駆動パターン入力指令を作成することができる。
 ここで、高い応答性、高い位置決め精度を必要としない用途に用いる場合には、主レーザ光の走査速度を一定とすることにより、数値を入力して走査速度を設定する操作を必要とすることなく、ガルバノスキャナシステムの駆動パターンを作成することができる。逆に、高い位置決め精度を必要とするレーザ加工などの用途に用いる場合には、数値入力によって走査速度を設定する操作を行えば良い。
 次に、一般的には、ワーク表面に沿って主レーザ光を二次元的に走査するために、ガルバノスキャナシステムは、主レーザ光および可視レーザ光をそれぞれX軸方向およびY軸方向に走査可能なX軸ガルバノスキャナおよびY軸ガルバノスキャナと、前記X軸ガルバノスキャナを駆動するX軸スキャナドライバと、前記Y軸ガルバノスキャナを駆動するY軸スキャナドライバと、前記X軸スキャナドライバおよび前記Y軸スキャナドライバを制御するコントローラとを有している。
 この場合においても同様にして駆動パターンを作成することができる。まず、前記主レーザ光による走査軌跡を規定する複数の位置決めポイントが表面に表示されているマスターワークを用意する。次に、前記可視レーザ光を当該マスターワークの前記表面に照射し、前記X軸スキャナドライバおよび前記Y軸スキャナドライバをそれぞれ介して前記X軸ガルバノスキャナおよび前記Y軸ガルバノスキャナを手動操作することにより、前記可視レーザ光の前記表面上の照射位置を目視により前記位置決めポイントの一つに位置決めして、位置決め状態における前記X軸ガルバノスキャナおよび前記Y軸ガルバノスキャナのX軸位置情報およびY軸位置情報を、これらX軸ガルバノスキャナおよびY軸ガルバノスキャナに取り付けられているX軸位置センサおよびY軸位置センサから取得して記憶保持する位置決めポイント・ティーチング動作を各位置決めポイントについて順次に行う。各位置決めポイントについて得られた前記X軸位置情報および前記Y軸位置情報を、これらの取得順にXY座標に展開して前記可視レーザ光の移動軌跡を求め、前記移動軌跡上における各移動区間の移動時間を個別に、あるいは一律に設定し、前記移動軌跡上における各移動位置における前記主レーザ光のオンオフを設定する。そして、前記移動軌跡、前記移動時間および前記主レーザ光のオンオフ情報に基づき、前記主レーザ光の駆動パターンの入力指令を生成する。
 次に、本発明のガルバノスキャナシステムの駆動パターン作成方法は、
 前記主レーザ光の走査軌跡を規定する複数の前記位置決めポイントのそれぞれを表す設計座標値と、前記ティーチング動作によって得られた各位置決めポイントを表す測定座標値との差分を求め、
 前記差分に基づき、各設計座標位置における誤差補正量を表す補正マップあるいは補正式を算出し、
 前記主レーザ光を所定の位置決めポイントに位置決めするための設計座標値に対して、前記補正マップあるいは前記補正式を用いて補正を施し、
 補正後の座標値に対応する駆動入力指令を生成することを特徴としている。
 本発明では、駆動用の設計入力値に対して、マスターワークを用いたティーチング動作によって得られた補正マップあるいは補正式を用いて補正を施して、誤差を除去するようにしている。したがって、異なるワークにレーザ光の走査を行う場合、異なる駆動パターンでレーザ光を走査する場合などにおいて、その都度、ティーチング動作を行う手間を省くことができる。なお、光学系の歪みが複雑な場合、例えば、多数の誤差要因が含まれる場合には、位置決めポイントのティーチング数量を増加させることにより、設計入力値に対して精度の高い誤差補正を施すことが可能になる。
 次に、本発明のガルバノスキャナシステムの駆動パターン作成方法は、
 生成した駆動パターンにおける各移動区間の位置決め完了ポイントにおいて前記主レーザ光の走査においてオーバーシュートが発生するおそれのある移動区間を抽出し、
 抽出した前記移動区間の位置決め完了ポイントの手前に、オーバーシュートを抑制可能な駆動条件を備えた補助移動区間を挿入し、当該補助移動区間の終点を前記位置決め完了ポイントに一致させ、
 前記補助移動区間が挿入された後の修正駆動パターンを前記主レーザ光の入力指令として採用することを特徴としている。
 このように駆動パターンを修正することによって、位置決め完了ポイントでのガルバノスキャナのオーバーシュート、それに伴う振動を抑制できる。
 本発明のガルバノスキャナシステムの駆動パターン作成方法によれば、可視レーザ光をマスターワークの表面に表示した各位置決めポイントに沿って走査し、各位置決めポイントに位置決めされた状態でのガルバノスキャナの位置情報を取得し、これに基づき、主レーザ光を走査するための駆動パターンを作成している。したがって、ガルバノスキャナの光学系による歪み、その応答特性、ワーク表面までの距離などに起因する誤差が除去された駆動パターンを、これらの影響を除去するための補正データなどを操作入力することなく簡単かつ短時間で作成することができる。
本発明を適用したガルバノスキャナシステムを示す概略構成図である。 マスターワークを示す説明図である。 (a)はティーチングによって取り込まれた記録データを示すテーブルを示し、(b)は展開された移動軌跡を示す説明図である。 作成した駆動パターンを示すテーブルである。 (a)は図4の駆動パターンのX軸移動軌跡を示す説明図であり、(b)はそのY軸移動軌跡を示す説明図であり、(c)はそのレーザオンオフの駆動パターンを示す説明図である。 補正値読取用のマスターワークを示す説明図、入力指令が誤差によって矩形形状が歪む状況を示す説明図、ティーチングによって取得した座標データを示すグラフ、設計座標データを示すグラフ、算出した誤差補正量を示すグラフ、誤差を考慮した入力指令によって歪みなく形成される矩形形状を示す説明図である。 オーバーシュートの発生しない駆動状態およびオーバーシュートが発生する駆動状態を示すグラフである。 オーバーシュートの発生する移動区間を含む駆動パターンを示すテーブル、X軸駆動パターンを示すグラフ、Y軸駆動パターンを示すグラフである。 オーバーシュートの発生する移動区間の位置決め完了ポイントの手前に移動区間を追加した場合の駆動パターンを示すテーブル、X軸駆動パターンを示すグラフ、Y軸駆動パターンを示すグラフである。
 以下に、図面を参照して、本発明を適用したガルバノスキャナシステムの実施の形態を説明する。
(実施の形態1)
 図1は実施の形態1に係るガルバノスキャナシステムの概略構成図である。ガルバノスキャナシステム1は、X軸ガルバノスキャナ2と、Y軸ガルバノスキャナ3と、これらを駆動するためのX軸スキャナドライバ4およびY軸スキャナドライバ5と、これらのX軸およびY軸スキャナドライバ4、5を制御するためのアナログコントローラ6およびパーソナルコンピュータ7などから構成される指令発生機8とを有している。
 ガルバノスキャナシステム1は例えばレーザマーキング装置として用いられるものであり、マーキング用レーザ光源11と可視レーザ光源12を備えている。ドライバ10を介してマーキング用レーザ光源11を駆動することにより発生するマーキング用レーザ光L(11)は、光路合成素子として用いたハーフミラー13を介してX軸ガルバノスキャナ2のX軸走査用ミラー21に照射される。マーキング用レーザ光L(11)はX軸走査用ミラー21によって反射された後に、Y軸ガルバノスキャナ3のY軸走査用ミラー31に照射され、ここで反射された後に、マーキング用レーザ光L(11)はfθレンズ14などの集光レンズを介してワークテーブル15に設置されたワーク16の表面16aに照射される。可視光レーザ光源12から射出される可視レーザ光L(12)はハーフミラー13によって直角に反射された後は、マーキング用レーザ光L(11)と同一の光路を導かれて、同じくワーク16の表面16aに照射される。
 ここで、指令発生機8のパーソナルコンピュータ7には専用の指令発生用プログラムがインストールされており、X軸およびY軸ガルバノスキャナ4、5のデジタル位置指令をアナログコントローラ6に供給する。アナログコントローラ6はデジタル位置指令をアナログ位置指令である指令電圧にD/A変換し、指令電圧をX軸およびY軸スキャナドライバ4、5にそれぞれ供給する。X軸およびY軸スキャナドライバ4、5は指令電圧に基づきスキャナ駆動電圧を生成してX軸およびY軸ガルバノスキャナ2、3に印加して、X軸およびY軸ガルバノスキャナ2、3を指定された位置に駆動する。また、アナログコントローラ6には入力操作部6aが接続されており、入力操作部6aからX軸およびY軸ガルバノスキャナ2、3を駆動するための指令を手動入力可能となっている。
 X軸およびY軸ガルバノスキャナ2、3は、例えば、有限回転型モータ20、30と、これらのモータ回転軸20a、30aに取り付けたX軸およびY軸走査用ミラー21、31とを備えている。また、X軸およびY軸ガルバノスキャナ2、3には、モータ回転軸20a、30aの回転角度位置を検出するための位置センサ22、32が取り付けられている。位置センサ22、32のアナログ位置検出出力は、X軸およびY軸スキャナドライバ4、5を介してアナログコントローラ6に供給される。アナログコントローラ6は、アナログ位置検出出力をデジタル位置情報にA/D変換する。デジタル位置情報はパーソナルコンピュータ7に供給される。検出されたX軸およびY軸ガルバノスキャナ2、3の位置に基づき、予め設定入力されている駆動パターンに従ってX軸およびY軸ガルバノスキャナ2、3がフィードバック制御される。
(駆動パターン作成手順)
 ガルバノスキャナシステム1のマーキング用レーザ光L(11)の駆動パターンの作成手順を説明する。
 まず、図2に示すように、マーキング用レーザ光L(11)の走査軌跡を規定する複数の位置決めポイント、例えば位置決めポイントP1~P14が表面17aに表示されているマスターワーク17を用意する。このマスターワーク17をガルバノスキャナシステム1のワークテーブル15に設置する。
 次に、指令発生機8をティーチング動作モードに設定する。これにより、可視レーザ光源12が駆動され可視レーザ光L(12)が射出され、可視レーザ光L(12)がマスターワーク17の表面17aを照射する。操作者は、マスターワーク17の表面17a上に形成された可視レーザ光L(12)の光スポットを目視しながら、アナログコントローラ6の操作部6aから手動操作によってX軸ガルバノスキャナ2およびY軸ガルバノスキャナ3を駆動して、光スポットを位置決めポイントP1に位置決めする。
 位置決め状態が形成されると、操作部6aを操作して、X軸およびY軸ガルバノスキャナ2、3の位置センサ22、32のセンサ信号値を読み取り、内蔵メモリ6bあるいは外付けの外部メモリ6cにセンサ信号値を読み取り順と共に記録する。センサ信号値の読み取りは、操作部6aを操作して読取指令を入力した場合だけ行われ、位置決め途中の移動軌跡を表す位置情報、経過時間などの情報は記録されない。また、各位置決めポイント間、すなわち、各移動区間のマーキング用レーザ光のオンオフ情報も、操作部6aを操作して入力してメモリ6bあるいは6cに記録する。オンオフ情報の設定は、位置情報を記録した後に行うことも可能である。記録される情報はデジタル信号の形態で記録される。
 同様に、次の位置決めポイントP2に光スポットを手動操作によって移動させ、当該位置決めポイントP2に光スポットが位置決めされると、センサ信号値を読み取ってメモリ6bあるいは6cに記録する。また、マーキング用レーザ光のオンオフ情報も記録する。
 以下、位置決めポイントP3~P14まで順次に同様な記録動作を行う。なお、記録の開始位置および終了位置においては、その旨を示す入力操作を行う。
 このようにして、各位置決めポイントP1~P14について記録が終了した後に、記録内容を指令発生機8のパーソナルコンピュータ7に取り込み、取り込み情報に基づき、駆動パターンを作成する。
 次に、高応答、高い位置決め精度が要求される用途においては、メモリ6b、6cに記録されたデータを、メモリ6b、6cからパーソナルコンピュータ7に取り込んだ後に、XY座標軸上に展開して可視レーザ光の移動軌跡を求める。図3(a)は取り込まれた記録データを示すテーブルであり、図3(b)は展開された移動軌跡を示す。なお、この時点において、移動軌跡の軌跡座標を修正することもできる。
 次に、移動軌跡のX軸軌跡およびY軸軌跡に対して、各移動区間(隣接する位置決めポイント間)の移動時間を個別に入力して、各軸の駆動パターンへ展開する。各移動区間の移動時間を同一の値として設定してもよい。図4は移動時間を設定した後のデータ内容を示すテーブルである。また、図5(a)~(c)は、X軸駆動パターン、Y軸駆動パターン、およびマーキング用レーザ光のオンオフ駆動パターンを示す説明図である。
 このようにして作成された駆動パターン(X軸駆動パターン、Y軸駆動パターン、マーキング用レーザ光のオンオフ駆動パターン)は、パーソナルコンピュータ7のメモリに記憶保持される。そして、ワーク16に対するマーキングを行う場合には、ワーク16をワークテーブル15にセットした後に、パーソナルコンピュータ7の指令発生用プログラムを起動させて、メモリに保持されている駆動パターンに基づき入力指令を生成して、アナログコントローラ6を介してX軸およびY軸スキャナドライバ4、5に転送する。X軸およびY軸のガルバノスキャナ2、3の同期制御は、上位のアナログコントローラの側、あるいはX軸およびY軸スキャナドライバ4、5の間で行われる。
 上記のように作成した駆動パターンは、フォーカスエラー(ピンクッションエラー)、取り付け誤差を含む光学系の誤差要因、スケール、オフセット、ワーク面までの距離などの影響による誤差が除去されたものである。したがって、精度良く、マーキング用レーザ光の光スポットをワーク16の表面16a上における各位置決めポイントに沿って走査させることができる。
 なお、以上の説明は、2軸のガルバノスキャナシステム1についての例であるが、本発明は3軸のガルバノスキャナシステムの駆動パターンの作成にも同様に適用可能なことは勿論である。
(実施の形態2)
 ここで、上記の駆動パターンの作成方法では、ワーク毎にマスターワークを用意して、可視レーザ光を各位置決めポイントに沿って走査させて駆動パターンを作成する必要がある。各種のワークにマーキングなどのレーザ加工を施す場合には、駆動パターンを作成するための可視レーザ光によるティーチングをワーク毎に行う必要があるので煩雑である。
 そこで、マスターワークを用いた位置決めポイントのティーチング動作を1回のみ行い、それによって誤差補正マップあるいは誤差補正関数を作成し、これに基づき、入力される設計座標データを補正することが望ましい。
 この場合には、マスターワークとして、その表面における代表的な位置に、位置決めポイントが設定されているマスターワークを用意し、このマスターワークの各位置決めポイントに可視レーザ光の光スポットを手動操作によって位置決めして位置センサによるセンサ位置信号を取得し、取得したセンサ位置信号をパーソナルコンピュータ7に取り込み、各位置決めポイントにマーキング用レーザ光を位置決めするための測定座標位置データを算出する。しかる後に、各位置決めポイントを表す設計座標位置データと、実際に得られた測定座標位置との誤差を算出する。算出した誤差を各位置決めポイントに対応させた補正マップを作成する。あるいは、各位置決めポイントにおける誤差を解消可能な誤差補正関数を作成する。
 ワークに対するマーキング作業時には、パーソナルコンピュータ7の入力部から入力される設計座標データを、補正マップあるいは誤差補正関数を用いて補正し、補正後の設計座標データを入力指令としてアナログコントローラ6に供給する。なお、誤差補正の精度を高めるためには、位置決めポイントのティーチング数を増加させればよい。
 図6を参照して誤差補正マップの作成手順を説明する。まず、図6(a)に示すように、マスターワーク18として、その表面18aに、一定の間隔でY軸方向に配列された位置決めポイントの列が、X軸方向に一定の間隔で多数配列されたものを用意する。このマスターワーク18の各位置決めポイントに可視レーザ光を照射し、その光スポットを各位置決めポイントに順次に位置決めし、各位置決めポイントにおいて位置センサ22、32から得られるセンサ位置信号を読み取る。
 ワーク18の表面18a上に描く可視レーザ光の直線は、図6(b)に示すように、光学原点Oから離れる程、スキャナ角度に対して非直線の度合いが高くなる。したがって、直線状に並んでいる各位置決めポイントを表すセンサ位置信号に基づき算出した測定座標データは、このような光学系による歪みによる影響を含んでいるので、図6(c)に示すように、逆方向に膨らんだものとなる。図6(c)に示す測定座標データと、図6(d)に示す誤差を考慮しない設計座標データとの差分が誤差量となる。図6(e)には誤差量を示してある。
 したがって、入力された設計座標データに対して、誤差量を除去するように補正を加えることにより、駆動用の入力指令が作成される。この結果、図6(f)に示すような補正が加えられる。これにより、マーキング用レーザ光はワーク上において直線状の移動軌跡に沿って移動し、光学系の歪みなどに起因する誤差の影響を受けずに、マーキングを正確に行うことができる。
(実施の形態3)
 次に、ガルバノスキャナシステム1では、予め設定された調整条件に従う駆動パターンによって駆動することにより、最大限の応答性、位置精度を得ることができるのが一般的である。調整条件よりも厳しい条件の駆動パターンに従って駆動された場合には、多くの場合において、位置決めポイントに位置決めする際にオーバーシュートが発生し、位置決めポイントを中心として振動し、位置決めの応答性、精度が低下してしまう。図7(a)には予め設定された調整条件に従った小さな振幅の駆動パターン(指令入力値)による駆動(実際の動き)の例を示し、図7(b)には調整条件を超える大きな振幅の駆動パターンによる駆動の例を示してある。
 ここで、タクトタイムを向上させるためには、レーザ照射以外の移動時間は極力短縮するために、レーザオフ状態で移動速度を速くすることが求められる。しかし、移動速度を高めると、高速移動直後における位置決めポイントへの位置決め時にオーバーシュートが発生し、その静定時間が必要になる。したがって、移動速度と位置決め精度はトレードオフの関係にあり、双方を同時に改善することが困難である。
 本実施の形態3では、次のようにして、作成された駆動パターンに修正を施し、移動時間を短縮しつつ、位置決め精度の低下を抑制できるようにしている。駆動パターンの作成方法は先に述べた実施の形態1における場合と同様であるので、説明を省略する。
 駆動パターンを作成した後に、例えば、一定の条件に基づき抽出した移動区間の位置決め完了ポイントの手前に、調整条件を満たす駆動条件の移動区間を挿入し、この移動区間の終点を当初の位置決め完了ポイントと一致させる。
 例えば、図8に示す各位置決めポイント(Step1~14)に沿って駆動する場合を例に説明する。この場合には、位置決めポイント1から位置決めポイント2の間の移動区間Aは、レーザオフ状態で400rad/sの高速駆動が行われる。同様に、位置決めポイント8から位置決めポイント9までの間の移動区間B、位置決めポイント11から位置決めポイント12までの間の移動区間Cにおいても同様である。このような高速の移動区間においては、各移動区間の位置決め完了ポイント、すなわち、位置決めポイント2、9、12においてオーバーシュートに伴う振動が発生する。なお、図8の右側には、移動区間Cの部分について時間軸を拡大して示してある。
 そこで、図9に示すように、移動区間Aにおける位置決め完了ポイント2の手前に、僅かな移動量からなる位置決めポイント1aから位置決めポイント2までの間の移動区間A1を追加する。この移動区間A1における移動速度を低速の10rad/sにし、その移動距離も僅かなものとする。同様の条件で、移動区間Bにおける位置決め完了ポイント9の手前において、位置決めポイント8aから位置決めポイント9までの移動区間B1を追加し、位置決めポイント11aから位置決めポイント12までの移動区間C1を追加する。
 ここで、新たに挿入される移動区間は、振幅、速度、応答性等のパラメータによって条件付けされ、直線、または速度の異なる直線の連続によって構成することができる。
 これにより、無駄な待ち時間を入れることなく、位置決め完了ポイント2、9、12での振動を抑制できる。また、レーザオフ時の移動は、レーザのエネルギー密度を考慮する必要がないので、従来と同様の制御で問題ない。

Claims (4)

  1.  主レーザ光および可視レーザ光を所定方向に走査可能なガルバノスキャナと、このガルバノスキャナを駆動するスキャナドライバと、このスキャナドライバを制御するコントローラとを有するガルバノスキャナシステムの駆動パターン作成方法であって、
     前記主レーザ光による走査軌跡を規定する複数の位置決めポイントが表面に表示されているマスターワークを用意し、
     前記可視レーザ光を当該マスターワークの前記表面に照射し、前記スキャナドライバを介して前記ガルバノスキャナを手動操作して、目視により、前記可視レーザ光の前記表面上の照射位置を前記位置決めポイントの一つに位置決めし、位置決めされた前記ガルバノスキャナの位置情報を、当該ガルバノスキャナに取り付けられている位置センサから取得して記録するティーチング動作を各位置決めポイントについて順次に行い、
     各位置決めポイントについて得られた前記位置情報を各位置情報の取得順に展開して前記可視レーザ光の移動軌跡を求め、
     前記移動軌跡上における各移動区間の移動時間を個別に、あるいは一律に設定し、
     前記移動軌跡上における各移動位置における前記主レーザ光のオンオフを設定し、
     前記移動軌跡、前記移動時間および前記主レーザ光のオンオフ情報に基づき、前記主レーザ光の駆動パターンを生成することを特徴とするガルバノスキャナシステムの駆動パターン作成方法。
  2.  請求項1に記載のガルバノスキャナシステムの駆動パターン作成方法において、
     前記ガルバノスキャナには、少なくとも、前記主レーザ光および前記可視レーザ光をそれぞれX軸方向およびY軸方向に走査可能なX軸ガルバノスキャナおよびY軸ガルバノスキャナが含まれていることを特徴とするガルバノスキャナシステムの駆動パターン作成方法。
  3.  請求項1または2に記載のガルバノスキャナシステムの駆動パターン作成方法において、
     前記主レーザ光の走査軌跡を規定する複数の前記位置決めポイントのそれぞれを表す設計座標値と、前記ティーチング動作によって得られた各位置決めポイントを表す測定座標値との差分を求め、
     前記差分に基づき、各設計座標位置における誤差補正量を表す補正マップあるいは補正式を算出し、
     前記主レーザ光を所定の位置決めポイントに位置決めするための設計座標値に対して、前記補正マップあるいは前記補正式を用いて補正を施し、
     補正後の座標値に対応する駆動指令を生成することを特徴とするガルバノスキャナシステムの駆動パターン作成方法。
  4.  請求項1または2に記載のガルバノスキャナシステムの駆動パターン作成方法において、
     生成した駆動パターンにおける各移動区間の位置決め完了ポイントにおいて前記主レーザ光の走査においてオーバーシュートが発生するおそれのある移動区間を抽出し、
     抽出した前記移動区間の位置決め完了ポイントの手前に、オーバーシュートを抑制可能な駆動条件を備えた補助移動区間を挿入し、当該補助移動区間の終点を前記位置決め完了ポイントに一致させ、
     前記補助移動区間が挿入された後の修正駆動パターンを前記主レーザ光の前記駆動パターンとして採用することを特徴とするガルバノスキャナシステムの駆動パターン作成方法。
PCT/JP2008/001237 2008-05-16 2008-05-16 ガルバノスキャナシステムの駆動パターン作成方法 WO2009139026A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/992,937 US8780406B2 (en) 2008-05-16 2008-05-16 Method for creating drive pattern for galvano-scanner system
JP2010511793A JPWO2009139026A1 (ja) 2008-05-16 2008-05-16 ガルバノスキャナシステムの駆動パターン作成方法
DE112008003863.5T DE112008003863B4 (de) 2008-05-16 2008-05-16 Verfahren zum Erzeugen eines Antriebsmusters für ein Galvano-Scannersystem
PCT/JP2008/001237 WO2009139026A1 (ja) 2008-05-16 2008-05-16 ガルバノスキャナシステムの駆動パターン作成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/001237 WO2009139026A1 (ja) 2008-05-16 2008-05-16 ガルバノスキャナシステムの駆動パターン作成方法

Publications (1)

Publication Number Publication Date
WO2009139026A1 true WO2009139026A1 (ja) 2009-11-19

Family

ID=41318410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/001237 WO2009139026A1 (ja) 2008-05-16 2008-05-16 ガルバノスキャナシステムの駆動パターン作成方法

Country Status (4)

Country Link
US (1) US8780406B2 (ja)
JP (1) JPWO2009139026A1 (ja)
DE (1) DE112008003863B4 (ja)
WO (1) WO2009139026A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5715113B2 (ja) * 2012-12-14 2015-05-07 株式会社片岡製作所 レーザ加工機
US20170014945A1 (en) * 2015-07-17 2017-01-19 Laserax Inc. Methods and systems for laser marking an identifier on an industrial product
JP6575350B2 (ja) * 2015-12-24 2019-09-18 ブラザー工業株式会社 レーザ加工装置
JP7201534B2 (ja) * 2019-05-27 2023-01-10 ファナック株式会社 実測装置及びプログラム
DE102019119270A1 (de) * 2019-07-16 2021-01-21 Smart Move Gmbh Vorrichtung zum Bearbeiten eines Werkstücks mit UV-Licht

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005262311A (ja) * 2004-03-22 2005-09-29 Fine Device:Kk レーザ加工装置及びレーザ加工方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052142A (ja) * 1991-06-24 1993-01-08 Dainippon Screen Mfg Co Ltd 光ビームの走査線偏位量検出方法および光ビーム走査装置
JP3154938B2 (ja) * 1996-03-21 2001-04-09 株式会社東芝 ビーム光走査装置および画像形成装置
JP3172092B2 (ja) * 1996-06-03 2001-06-04 株式会社東芝 ビーム光走査装置および画像形成装置
US6381356B1 (en) * 1996-10-23 2002-04-30 Nec Corporation Method and apparatus for inspecting high-precision patterns
JPH10301052A (ja) * 1997-05-02 1998-11-13 Sumitomo Heavy Ind Ltd レーザ加工装置の加工位置ずれ補正方式
JPH11254172A (ja) * 1998-03-16 1999-09-21 Hoya Shot Kk レーザ加工装置
JP3614308B2 (ja) * 1998-10-09 2005-01-26 松下電器産業株式会社 レーザ加工方法
JP2003220485A (ja) * 2002-01-25 2003-08-05 Sunx Ltd レーザマーキング装置、及びそのガイド像の投射位置調整方法
JP2004195473A (ja) * 2002-12-16 2004-07-15 Sumitomo Heavy Ind Ltd レーザ加工方法及びレーザ加工装置
JP4174420B2 (ja) * 2003-12-15 2008-10-29 キヤノン株式会社 光偏向器
JP2005220485A (ja) * 2004-02-06 2005-08-18 Toray Ind Inc 繊維用ポリエステル組成物
JP2005338450A (ja) * 2004-05-27 2005-12-08 Harmonic Drive Syst Ind Co Ltd ガルバノ型スキャナの駆動方法およびシステム
JP2007237199A (ja) * 2006-03-06 2007-09-20 Sumitomo Heavy Ind Ltd レーザ加工装置及びレーザ加工方法
JP2008073782A (ja) * 2006-09-19 2008-04-03 Shibuya Kogyo Co Ltd 加工装置の位置ずれ補正装置およびその方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005262311A (ja) * 2004-03-22 2005-09-29 Fine Device:Kk レーザ加工装置及びレーザ加工方法

Also Published As

Publication number Publication date
US8780406B2 (en) 2014-07-15
DE112008003863T5 (de) 2011-04-28
US20110304836A1 (en) 2011-12-15
JPWO2009139026A1 (ja) 2011-09-08
DE112008003863B4 (de) 2017-04-13

Similar Documents

Publication Publication Date Title
JP5385356B2 (ja) レーザ加工機
JP5383920B2 (ja) レーザ加工装置および基板位置検出方法
WO2009139026A1 (ja) ガルバノスキャナシステムの駆動パターン作成方法
JP6382897B2 (ja) レーザ溶接システム
JP3283534B2 (ja) 圧胴の彫刻方法
JP5519123B2 (ja) レーザ加工機
EP4198448A1 (en) System and method for calibrating laser processing parameters
JPH06122230A (ja) スキャナ・システムの精度を向上させる方法および装置
JP2005211979A (ja) レーザマーキング装置及びレーザマーキング方法
JP2020019071A (ja) ロボットシステムおよびキャリブレーション方法
KR101722916B1 (ko) 레이저 스캐너 기반 5축 표면 연속 가공 장치 및 그 제어 방법
US8054521B2 (en) Method for adjusting galvano scanner system
JP4194458B2 (ja) レーザマーキング装置及びレーザマーキング装置のワークディスタンス調整方法
JP4615238B2 (ja) レーザ加工装置
KR101545391B1 (ko) 레이저 가공기
US20200376593A1 (en) Measurement device and recording medium encoding a program
JP4891567B2 (ja) レーザマーキング装置、レーザマーキングシステム並びにガルバノミラーの制御方法
JP2002090682A (ja) ガルバノメータ、ガルバノメータの位置補正方法、ガルバノメータを用いたレーザ加工装置、及びガルバノメータを用いたレーザ加工方法
WO2017130412A1 (ja) 加工装置の補正方法および加工装置
JP2008055480A (ja) レーザマーキング方法及びレーザマーキングシステム
JP3463798B2 (ja) 光学スキャナ装置
JPH09308978A (ja) テーブル移動誤差測定装置およびテーブル移動誤差測定装置を有するレーザ加工装置
IL158118A (en) Method of determining the distance of projection points on the surface of a printing form
JP7192758B2 (ja) 加工装置および加工方法
JP2004017101A (ja) レーザ加工制御方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08751755

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010511793

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12992937

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112008003863

Country of ref document: DE

Date of ref document: 20110428

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08751755

Country of ref document: EP

Kind code of ref document: A1