WO2017130412A1 - 加工装置の補正方法および加工装置 - Google Patents

加工装置の補正方法および加工装置 Download PDF

Info

Publication number
WO2017130412A1
WO2017130412A1 PCT/JP2016/052825 JP2016052825W WO2017130412A1 WO 2017130412 A1 WO2017130412 A1 WO 2017130412A1 JP 2016052825 W JP2016052825 W JP 2016052825W WO 2017130412 A1 WO2017130412 A1 WO 2017130412A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
machining
unit
workpiece
tool
Prior art date
Application number
PCT/JP2016/052825
Other languages
English (en)
French (fr)
Inventor
山田 智明
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2017563656A priority Critical patent/JP6642593B2/ja
Priority to PCT/JP2016/052825 priority patent/WO2017130412A1/ja
Publication of WO2017130412A1 publication Critical patent/WO2017130412A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia

Definitions

  • the present invention relates to a correction method for a machining apparatus and a machining apparatus.
  • Patent Document 1 A 5-axis combined machining apparatus is known (see Patent Document 1).
  • a correction method for a machining apparatus includes a position changing unit that changes a relative position between a workpiece and a tool, and a correction for the machining apparatus that includes a control unit that controls the position changing unit. Applied to the method. And while moving the tool relatively by the position changing unit, each processing trace is formed, based on the difference between the relative positional relationship of the processing trace and the relative positional relationship of the processing shape instructed by the control unit The control value output to the position changing unit is corrected.
  • a machining apparatus includes a position changing unit that relatively changes a position of a workpiece and a tool, a control amount is output to the position changing unit, and the workpiece and the tool
  • a control unit that controls the relative position of the workpiece, a shape measuring unit that measures the positions of a plurality of calibration traces processed at different positions on the workpiece by the tool, and a plurality of targets targeted by the control unit
  • the control value is corrected by the correction value of the control amount obtained based on the difference between the relative positional relationship of the target machining shape and the relative positional relationship of the plurality of calibration machining traces measured by the shape measuring unit.
  • a correction unit that corrects a control amount given from the unit to the position changing unit.
  • FIG. 2A is a diagram illustrating an example of a workpiece
  • FIG. 2B is a diagram illustrating a machining trace forming portion.
  • It is a block diagram which illustrates the principal part structure of a processing apparatus. It is a flowchart explaining the flow of a calibration process. It is a flowchart explaining the flow of a process.
  • FIG. 1 is a diagram illustrating a machining apparatus 1 configured as a 5-axis composite machine tool according to an embodiment.
  • the embodiments described below are specifically illustrated for understanding of the invention, and do not limit the invention unless otherwise specified.
  • the column 2 is erected with respect to the column bed 9.
  • a slide rail 9a is formed on the column bed 9 in the Y-axis direction.
  • a turning table 15 is slidably provided in the Y-axis direction (front-rear direction) with respect to the column bed 9.
  • the turning table 15 (also referred to as a work table) is a mounting table for a work W that is a workpiece.
  • the turning table 15 can be moved by a Y-axis drive mechanism (not shown) provided so as to be driven in the Y-axis direction along the slide rail 9 a of the column bed 9. Further, the turning table 15 is rotatable about the work spindle C.
  • the workpiece W is centered, positioned and fixed on the turning table 15.
  • the turning table 15 provided to be rotatable in the indexing direction of the work spindle C is provided to be movable on the column bed 9 in the Y-axis direction.
  • the workpiece W placed on the column 2 is translationally movable relative to the column 2 (Y-axis direction).
  • the turning table 15 is also provided with a turning table rotating mechanism for rotating the slide rail 9a around the work spindle C.
  • the column 2 is provided with, for example, a horizontal rail 3 in the X-axis direction (left-right direction) orthogonal to the Y-axis direction.
  • a vertical rail 4 that cross-engages with the horizontal rail 3 and is capable of translational movement along the horizontal rail 3 in the X-axis direction extends in the Z-axis direction (vertical direction) perpendicular to the Y-axis direction. Is provided.
  • the vertical rail 4 is further provided with a tool post 5 that engages with the vertical rail 4 and is movable in the Z-axis direction along the vertical rail 4.
  • the workpiece (not shown) placed on the turning table 15 can be translated in the X-axis direction and the Z-axis direction relative to the tool post 5.
  • the horizontal rail 3 is provided with the X-axis drive mechanism 11, the vertical rail 4 and the tool post 5 can be freely controlled in the X direction.
  • the Z-axis drive mechanism 13 is provided on the vertical rail 4, the tool post 5 can be freely controlled in the Z direction.
  • the movement mechanism composed of the X-axis drive mechanism 11 and the horizontal rail 3 is the X-axis movement mechanism
  • the movement mechanism composed of the Z-axis drive mechanism 13 and the vertical rail 4 is the Z-axis movement mechanism
  • the slide rails 9a and Y A movement mechanism including an axis drive mechanism is referred to as a Y-axis movement mechanism
  • the X-axis movement mechanism, the Y-axis movement mechanism, and the Z-axis movement mechanism are collectively referred to as a translation movement mechanism.
  • the tool mount 5 is provided with a tool mounting portion 6 so that the tool spindle A can turn in a plane parallel to the YZ plane (front-rear direction). That is, the tool attachment portion 6 is provided so as to be able to turn around a turning axis B parallel to the X axis.
  • a tool 7 such as a cutting tool or a drill is chucked on the chuck portion at the lower end of the tool mounting portion 6. The chucked tool 7 is rotated about the tool spindle A as a rotation axis by a motor (not shown).
  • the tool attachment part 6 comprises the universal head provided with the turning mechanism. That is, the tool mounting portion 6 is pivotally supported around the turning axis B, and the tool mounting portion 6 is configured to be turnable around the turning axis B by a turning shaft drive mechanism (not shown). With such a configuration, the tool 7 chucked on the chuck portion of the tool attachment portion 6 is controlled by swinging the tool attachment portion 6 turning around the turning axis B by controlling the turning shaft drive mechanism, and turning. The angle (posture) of the tool 7 or the shape measuring unit 20 with respect to the workpiece W placed on the table 15 is freely adjusted.
  • the position changing unit includes the above-described translational movement mechanism, the turning mechanism and the turning shaft drive mechanism configured in the tool mounting portion 6, the turning table 15, and the turning table drive mechanism. It is configured.
  • the processing apparatus 1 in the present embodiment changes the relative position between the workpiece placed on the turning table 15 and the tool 7 held on the tool rest 5 by this position changing unit.
  • the shape measurement unit 20 is a unit that is attached to the tool attachment unit 6 and obtains image data for measuring the three-dimensional shape of the workpiece W placed on the turning table 15, for example.
  • the shape measuring unit 20 is a unit that can measure the three-dimensional shape of the workpiece W by, for example, the light cutting method described in Japanese Patent Application Laid-Open No. 2008-256484 filed by the applicant of the present application.
  • the shape measuring unit 20 projects a specific pattern of light (for example, slit-shaped slit light) onto a test object (work W in this example), and the pattern projected onto the work W is in a direction different from the projection direction. It is a unit that takes pictures with an image sensor. The photographed image is sent to a control unit (not shown). The control unit obtains the position of the pattern image on the image from the photographed image, and the shape measurement unit for the obtained pattern position and the turning table 15. By calculating the shape of the workpiece W based on the position and angle (attitude) of 20, the three-dimensional position of the workpiece W at the position irradiated with the slit light can be obtained.
  • a specific pattern of light for example, slit-shaped slit light
  • the three-dimensional shape of the workpiece W can be obtained by scanning the position irradiated with the slit light while moving each drive mechanism and acquiring an image every time the irradiated position changes.
  • the shape measuring unit 20 is scanned relative to the object while measuring a three-dimensional shape such as a machining mark.
  • the position information of B needs to be acquired from the encoder. Therefore, the shape measurement accuracy can be improved by synchronizing the signal acquisition timing from the encoder provided in the translation mechanism of the position changing unit and the imaging timing by the shape measurement unit 20. Specifically, it is preferable to employ a synchronization method as disclosed in US Pat. No. 6611617.
  • the shape measurement unit 20 and the control unit that calculates the three-dimensional shape based on the data obtained from the shape measurement unit 20 are the same as the shape measurement unit and the control unit disclosed in JP-A-2015-129665. It may be used.
  • This shape measurement unit can obtain a three-dimensional shape without relative movement between the machining trace and the shape measurement unit in a certain region. Therefore, by using such a shape measuring unit, it is possible to calculate the relative positional relationship between a plurality of machining marks without using encoder information from the position changing unit.
  • the position of the shape measuring unit 20 is moved relative to the workpiece W, and the workpiece W is scanned with slit light.
  • the workpiece W placed on the turning table 15 is translated in the X axis direction, the Y axis direction, or the Z axis direction relative to the tool rest 5 (that is, the shape measuring unit 20). Do.
  • the shape measurement error due to the positioning error caused by the pivot axis B and the workpiece spindle C does not occur.
  • the shape of the machining trace can be measured.
  • the workpiece W placed on the turning table 15 is relative to the tool rest 5 (that is, the shape measurement unit 20).
  • the respective processing traces may be accommodated in the visual field range by the shape measuring unit 20 by translational movement. At this time, it is preferable not to turn the tool attachment portion 6 around the turning axis B or the work spindle C.
  • FIG. 2A is an example of the workpiece W.
  • machining trace forming portions W1 and W2 for forming a plurality of machining traces in advance are integrally formed.
  • the processing mark forming portions W1 and W2 have a rectangular shape, and each surface is a flat surface.
  • FIG. 2B is an enlarged view of the machining mark forming portion W1 of the workpiece W.
  • the machining marks formed for correction by the machining apparatus 1 are a plurality of machining marks formed on the same surface as shown in FIG.
  • the positioning angle error of the swivel axis B has more influence on the shape measurement result than the error caused by the translational movement positioning in the X-axis, Y-axis, and Z-axis directions.
  • the error is large. This is because, due to the positioning angle error of the turning axis B, the amount of displacement of the measurement position is proportionally increased according to the distance from the turning axis B to the measurement position of the workpiece W. Similarly, the amount of deviation of the measurement position is proportionally increased by the positioning angle error of the turning table 15 according to the distance from the workpiece spindle C to the machining position on the workpiece W.
  • the processing mark forming portion W1 illustrated in FIG. 2B has a plurality of processing marks 101 and processing marks 102.
  • the machining marks 101 and 102 are respectively machined with different postures by the same tool 7.
  • the machining trace may be a machining trace formed on the workpiece W by trial machining or the like, not a machining trace formed for creating a certain target shape. Therefore, the shape of the processing mark may be any shape.
  • the shape may be any shape as long as the relative positional relationship between the plurality of processing marks can be easily obtained.
  • the shapes of the plurality of machining marks 101 and 102 are measured by the shape measurement unit 20, when both the machining marks 101 and 102 are within the visual field range of the shape measurement unit 20 (the shape measurement of the machining marks 101 is performed).
  • the processing mark 102 is also included in the image to be processed)
  • the shape measurement error by the positioning error which arises at the time of the translational movement of the processing apparatus can be eliminated.
  • the processing marks 101 are first stored in the field of view.
  • the shape measuring unit 20 that is, the tool post 5
  • the shape measuring unit 20 is moved relative to the workpiece W placed on the turning table 15 in the X-axis direction, the Y-axis direction, or the Z-axis direction. Translate to.
  • the shape of the processing mark 102 is measured with the processing mark 102 in the visual field range.
  • the relative positional relationship between the shape measurement data of the machining mark 101 and the shape measurement data of the machining mark 102 is based on the distance and the direction of translation performed during the shape measurement of the machining mark 102 from the measurement of the shape of the machining mark 101. Can be calculated.
  • the machining trace 101 and the machining trace 102 measured by performing the translational movement in the Y-axis direction.
  • the measurement accuracy of the relative distance is approximately the same as the measurement accuracy of the relative distance between the machining mark 102 and the machining mark 101 measured in a state where both of the machining marks 101 and 102 are simultaneously accommodated in the visual field range of the shape measuring unit 20. .
  • the processing mark forming portions W1 and W2 may be members that are scraped off when the workpiece W is processed into a product shape.
  • the following calibration processing is performed in order to improve the accuracy of the shape formed on the workpiece W by the 5-axis control processing apparatus 1 as described above. That is, as illustrated in FIG. 2, a plurality of test processing (calibration processing) is performed on the workpiece W placed at a predetermined position on the turning table 15, and the workpiece W is processed with a plurality of processing marks 101 and processing. Leave a mark 102.
  • the set angle of the turning angle around the turning axis B of the tool 7 is set to ⁇ 1
  • the workpiece W is translated so that the position of the cutting edge of the tool 7 on the workpiece W is the target position P101.
  • the workpiece W is processed by being transferred, and the machining mark 101 shown on the left side of FIG.
  • a target position P102 that is separated from the target position P101 by a predetermined distance in the Y-axis minus direction is set.
  • the set angle of the turning angle around the turning axis B is set to ⁇ 2, and the workpiece W is translated and moved relative to the workpiece W so that the calculated position of the cutting edge of the tool 7 on the workpiece W becomes the target position P102.
  • Processing is performed to form a processing mark 102 shown on the right side of FIG.
  • the shape measurement unit 20 acquires the image data of the plurality of processing marks 101 and the processing marks 102 of the workpiece W, and the control unit 30 uses the acquired image data to determine the plurality of processing marks 101 and the processing marks 102 of the workpiece W. Calculate shape and position. If the turning angle accuracy of the tip of the tool 7 is ideal, the measured shape and position of the machining mark 101 and the machining mark 102 are a plurality of calibration machining shapes and positions targeted by the machining device 1 during calibration machining. Exists within the allowable range.
  • the formation position of the machining mark may not be within the allowable range.
  • a correction value to be applied to is obtained.
  • the rotation angle of the tool attachment portion 6 (that is, the cutting edge of the chucked tool 7) with respect to the workpiece W is changed to a plurality of different values, and calibration processing is performed a plurality of times.
  • a plurality of processing marks 101 and processing marks 102 for calibration are formed.
  • the processing trace for calibration is processed into a shape that can be observed on any surface of the workpiece W so that the diameter and length of the tool 7 and the axial direction of the tool 7 can be acquired.
  • the surface shape data of the machining trace is obtained from the three-dimensional shape data obtained by the machining trace shape data acquisition unit.
  • the surface shape data and the machining locus data of the tool 7 may be calculated.
  • the machining mark 101 and the machining mark 102 are formed so as to be concave on the X axis minus side with respect to a plane parallel to the YZ plane.
  • the angle of the tool 7 with respect to the workpiece W (the axial direction of the tool 7), the diameter of the tool 7, and the processed length (depth), respectively.can be obtained. Further, the relative positional relationship between the machining mark 101 and the machining mark 102 can be measured.
  • FIG. 3 is a block diagram illustrating the main configuration of the processing apparatus 1.
  • the processing apparatus 1 includes an input unit 10, a shape measurement unit 20, a control unit 30, an X-axis drive mechanism 11, a Y-axis drive mechanism 50, a Z-axis drive mechanism 13, and a swing axis drive mechanism. 70 and a work spindle driving mechanism 80.
  • the input unit 10 is configured by an operation panel operated by an operator, for example.
  • the machining start point position (three-dimensional coordinates), end point position (three-dimensional coordinates) of the workpiece 7 and the tool 7 for the workpiece W are processed.
  • An operation for inputting data indicating the angle of the blade edge is performed.
  • the input unit 10 transfers information input by the operator to the position information calculation unit 31.
  • the processing start point position three-dimensional coordinates
  • end point position three-dimensional coordinates
  • workpiece W by the target calibration tool 7
  • An operation of inputting data indicating the angle of the cutting edge of the tool 7 with respect to (the angle in the axial direction of the tool spindle A with respect to the workpiece W) is performed.
  • the operator inputs data so that the plurality of processing marks 101 and 102 are formed at positions close to each other on the workpiece W that forms the processing marks.
  • the “close position” may satisfy any of the following.
  • the position of the machining marks 101, 102 formed on the workpiece W can measure at least a part of the machining marks 101, 102 without moving the shape measuring unit 20 relative to the machining marks 101, 102. Be.
  • the positions of the machining marks 101 and 102 formed on the workpiece W are formed at positions where it is not necessary to change the measurement direction of the shape measuring unit 20 with respect to the workpiece W.
  • the positions of the machining marks 101 and 102 formed on the workpiece W are in a positional relationship in which the shape data of each of the machining marks 101 and 102 acquired by the processing mark shape data acquisition unit 32 described later can be separated at least partially. There is.
  • the machining marks 101 and 102 formed on the workpiece W may be provided as follows.
  • machining is performed at a position where there is no need for a rotational movement that rotates at least about the turning axis B that is the turning axis. Scratches 101 and 102 are formed.
  • the operator when the operator causes the processing apparatus 1 to perform processing for a product, the operator indicates the target processing shape (three-dimensional coordinates) for the product and the angle of the cutting edge of the tool 7 with respect to the workpiece W for each processing position. Perform data input operations.
  • preset information (a start point position (three-dimensional coordinates) of an entry path of the target tool 7 to the workpiece W, an end point position (three-dimensional) The coordinates) and the angle of the tool 7 or the angle of the tool spindle A)) with respect to the workpiece W or the turning table 15) may be transferred to the position information calculation unit 31.
  • the shape measuring unit 20 measures the shapes and positions of the plurality of machining marks 101 and the machining marks 102 of the workpiece W as described above according to the measurement instruction from the control unit 30.
  • the shape measurement unit 20 sends the measurement result to the control unit 30.
  • the control unit 30 includes a position information calculation unit 31, a machining trace shape data acquisition unit 32, a comparison unit / correction data creation unit 33, a 5-axis NC data generation unit 34, and a correction data storage unit 35.
  • the position information calculation unit 31 is based on the angle of the tool 7 with respect to the workpiece W or the turning table 15 input from the input unit 10 or the angle of the tool spindle A, and the turning angle (predetermined) of the tool attachment unit 6 turning around the turning axis B. The angle of the tool spindle A with respect to the reference axis. Further, the position information calculation unit 31 calculates three-dimensional position data indicating the machining shape (target machining shape) to be formed based on each turning angle based on the information input from the input unit 10. . The position information calculation unit 31 further obtains nominal relative position information (a plurality of calibration processing shapes) from a plurality of calibration processing shapes serving as a reference from data indicating a plurality of calibration processing shapes to be used in the calibration process. The relative position of the shape is calculated.
  • the machining trace shape data acquisition unit 32 obtains the position of the slit light image from the image information of the machining trace 101 and the machining trace 102 sent from the shape measurement unit 20, and the obtained pattern position and the shape with respect to the turning table 15. Based on the position and angle (posture) of the measurement unit 20, the three-dimensional shapes and positions of the machining mark 101 and the machining mark 102 are obtained.
  • the comparison unit / correction data creation unit 33 acquires the relative position information from the three-dimensional position information of the processing mark 101 and the processing mark 102 by the processing mark shape data acquisition unit 32. During the calibration process, the nominal relative position information of the machining mark 101 and the machining mark 102 calculated by the position information calculation unit 31 and the relative position acquired by the machining mark shape data acquisition unit 32 for each turning angle ⁇ . The information is compared with each other, and difference information ( ⁇ x, ⁇ y, ⁇ z) of relative positions that are different between the two is acquired. The comparison unit / correction data creation unit 33 further performs correction data ( ⁇ x ( ⁇ ), ⁇ y ( ⁇ ), ⁇ z ( ⁇ ) with the turning angle ⁇ as an argument based on the difference information ( ⁇ x, ⁇ y, ⁇ z). ).
  • the comparison unit / correction data creation unit 33 is different in the turning angles between the respective turning angles when the processing trace for calibration is actually formed, with respect to the plurality of turning angles subjected to the processing for calibration. By interpolating the information, correction data corresponding to the turning angle is calculated. For a turning angle larger than the turning angle for which the calibration processing has been performed, the correction data corresponding to the turning angle is calculated by extrapolating the difference information about the plurality of turning angles.
  • the correction data storage unit 35 stores correction data ( ⁇ x ( ⁇ ), ⁇ y ( ⁇ ), ⁇ z ( ⁇ )) using the turning angle ⁇ as an argument.
  • the correction data ( ⁇ x ( ⁇ ), ⁇ y ( ⁇ ), ⁇ z ( ⁇ ) is recorded in the correction data storage unit 35 according to an instruction from the control unit 30 during the calibration process.
  • the correction data ( ⁇ x ( ⁇ ), ⁇ y ( ⁇ ), ⁇ z ( ⁇ )) stored in 35 is a correction corresponding to the turning angle ⁇ designated by the control unit 30 when processing for a product is performed. Data is read out.
  • the 5-axis NC data generation unit 34 is based on the information input from the input unit 10 and the information on the tool 7 (blade shape, tool diameter, tool length, chucked position), and the 5-axis control amount. (For example, NC (Numerical Control) data) is generated. Further, the 5-axis NC data generation unit 34 further performs correction data ( ⁇ x ( ⁇ ), ⁇ y ( ⁇ )) obtained by reading out the generated control amount of the 5-axis from the correction data storage unit 35 when performing machining for a product. , ⁇ z ( ⁇ )). It also has a function as a correcting unit that corrects the control amount of the position changing unit described in the specification of the present application. That is, the X-axis, Y-axis, and Z-axis control amounts of the generated 5-axis control amounts are corrected by the correction data.
  • the 5-axis NC data generation unit 34 When the machining apparatus 1 performs calibration machining, the 5-axis NC data generation unit 34, based on the generated 5-axis control amount, the turning axis drive mechanism 70, the work spindle drive mechanism 80, and the X-axis drive mechanism 11 , Output to the Y-axis drive mechanism 50 and the Z-axis drive mechanism 13, respectively. Further, when machining the product by the machining apparatus 1, the 5-axis NC data generation unit 34 uses the generated 5-axis control amount as the correction data ( ⁇ x ( ⁇ ), ⁇ y ( ⁇ ), ⁇ z). It is corrected by ( ⁇ ) and output to the turning axis driving mechanism 70, the work spindle driving mechanism 80, the X axis driving mechanism 11, the Y axis driving mechanism 50, and the Z axis driving mechanism 13, respectively.
  • the turning axis drive mechanism 70 controls the turning angle (the angle of the tool spindle A with respect to the reference axis) of the tool mounting part 6 turning around the turning axis B based on the control amount from the 5-axis NC data generation unit 34.
  • the workpiece spindle driving mechanism 80 controls the rotation angle of the turning table 15 (with the workpiece spindle C as the rotation axis) based on the control amount from the 5-axis NC data generator 34.
  • the X-axis drive mechanism 11 controls the translational movement amount of the tool rest 5 in the X-axis direction based on the control amount from the 5-axis NC data generation unit 34.
  • the Y-axis drive mechanism 50 controls the translational movement amount of the workpiece W in the Y-axis direction based on the control amount from the 5-axis NC data generation unit 34.
  • the Z-axis drive mechanism 13 controls the translational movement amount of the tool rest 5 in the Z-axis direction based on the control amount from the 5-axis NC data generation unit 34.
  • FIG. 4 is a flowchart for explaining the flow of the calibration process.
  • the control unit 30 activates the process of FIG. 4 when performing the calibration process.
  • step S10 of FIG. 4 the position information calculation unit 31 of the control unit 30 turns based on the angle information (set angles ⁇ 1, ⁇ 2) input from the input unit 10 and the starting point position and end point position information of the machining by the tool 7.
  • the turning angle of the tool spindle A around the axis B is determined, and the process proceeds to step S20.
  • the angle of the turning axis B is set based on the elevation angle corresponding to the direction based on the direction connecting the start point position and the end point position with a straight line.
  • step S ⁇ b> 20 the position information calculation unit 31 of the control unit 30 selects a plurality of calibration machining shapes (target machining shapes) to be formed at each turning angle based on the information input from the input unit 10. The data shown is generated and the process proceeds to step S30.
  • step S30 the position information calculation unit 31 of the control unit 30 calculates the nominal relative position information of the plurality of machining shapes from the data indicating the plurality of machining shapes targeted, and proceeds to step S40.
  • step S40 the 5-axis NC data generation unit 34 of the control unit 30 generates NC data based on the target machining shape and the information of the tool 7, and proceeds to step S50.
  • step S50 the control unit 30 sends the turning axis drive mechanism 70, the work spindle drive mechanism 80, the X axis drive mechanism 11, the Y axis drive mechanism 50, and the Z axis drive mechanism 13 to each of the five axes NC data.
  • the control data is output and the process proceeds to step S60.
  • a processing mark 101 and a processing mark 102 for calibration are formed on the workpiece W.
  • step S60 the control unit 30 sends an instruction to the shape measurement unit 20, and acquires image information necessary for calculating the shapes and positions of the processing marks 101 and the processing marks 102. Then, the processing trace shape data acquisition unit 32 calculates the three-dimensional shape and position information of the processing trace 101 and the processing trace 102 based on necessary image information, position information of each drive shaft, and angle information. From the calculated three-dimensional shape and position information, the relative position information of the machining mark 101 and the machining mark 102 is acquired, and the process proceeds to step S70.
  • step S70 the comparison unit / correction data creation unit 33 of the control unit 30 calculates the relative position information calculated in step S30 (the nominal relative position information of the target processing trace for calibration) and the relative position acquired in step S60.
  • the information (relative position information of the machining mark 101 and the machining mark 102) is compared to obtain relative position difference information ( ⁇ x, ⁇ y, ⁇ z), and the process proceeds to step S80.
  • step S80 the comparison unit / correction data creation unit 33 of the control unit 30 corrects the correction data ( ⁇ x ( ⁇ ), ⁇ y ( ⁇ ), ⁇ for each turning angle ⁇ based on the difference information ( ⁇ x, ⁇ y, ⁇ z). - ⁇ z ( ⁇ )) is generated, and the process proceeds to step S90.
  • step S90 the control unit 30 records the correction data ( ⁇ x ( ⁇ ), ⁇ y ( ⁇ ), ⁇ z ( ⁇ )) with the turning angle ⁇ as an argument in the correction data storage unit 35, as shown in FIG. The process ends.
  • the shape of the product workpiece W is changed to a shape different from the shape used up to the previous time.
  • this calibration processing is preferably performed by forming a calibration work mark on the same workpiece W before creating a workpiece from the workpiece W.
  • the work W used for the calibration process may be a work W dedicated to calibration, or may be a product work W.
  • FIG. 5 is a flowchart for explaining the flow of processing.
  • the control unit 30 activates the processing shown in FIG. 5 when processing is performed by the processing apparatus 1.
  • step S210 of FIG. 5 the control unit 30 determines whether or not to perform calibration processing.
  • the control unit 30 receives a calibration processing instruction from the operator, the control unit 30 makes a positive determination in step S210 and proceeds to step S220, and performs the above-described calibration processing (FIG. 4) in step S220.
  • the control unit 30 makes a negative determination in step S210 and proceeds to step S230.
  • step S230 the position information calculation unit 31 of the control unit 30 extracts the turning angle of the tool spindle A based on the information input from the input unit 10, and proceeds to step S240.
  • step S240 the position information calculation unit 31 of the control unit 30 is based on the information input from the input unit 10, and indicates data indicating the processing shape (target processing shape) for the product to be formed at each turning angle. And proceeds to step S250.
  • step S250 the 5-axis NC data generation unit 34 of the control unit 30 generates 5-axis NC data based on the target machining shape and the information on the tool 7, and proceeds to step S260.
  • step S260 the control unit 30 determines whether correction data exists.
  • the control unit 30 makes a positive determination in step S260 when the calibration process has been completed and the correction data ( ⁇ x ( ⁇ ), ⁇ y ( ⁇ ), ⁇ z ( ⁇ )) is recorded in the correction data storage unit 35. Then, the process proceeds to step S270. If the correction data ( ⁇ x ( ⁇ ), ⁇ y ( ⁇ ), ⁇ z ( ⁇ )) is not recorded in the correction data storage unit 35 before the calibration process, the control unit 30 performs step S260. Is negatively determined, and the process proceeds to step S300.
  • step S270 the control unit 30 reads the corresponding correction data ( ⁇ x ( ⁇ ), ⁇ y ( ⁇ ), ⁇ z ( ⁇ )) from the correction data storage unit 35 for each turning angle extracted in step S230. Then, the process proceeds to step S280.
  • step S280 the 5-axis NC data generation unit 34 of the control unit 30 reads the correction data (5) read from the correction data storage unit 35 for each turning angle extracted in step S230.
  • the correction is made by - ⁇ x ( ⁇ ), - ⁇ y ( ⁇ ), - ⁇ z ( ⁇ )), and the process proceeds to step S290.
  • step S290 the control unit 30 sends the corrected 5-axis NC data to the turning axis drive mechanism 70, the work spindle drive mechanism 80, the X-axis drive mechanism 11, the Y-axis drive mechanism 50, and the Z-axis drive mechanism 13, respectively.
  • the process shown in FIG. 5 is terminated. Thereby, the workpiece W is processed for the product.
  • step S300 which proceeds after making a negative determination in step S260, the control unit 30 converts the uncorrected 5-axis NC data into the turning axis driving mechanism 70, the work spindle driving mechanism 80, the X axis driving mechanism 11, and the Y axis driving mechanism 50. , And the Z-axis drive mechanism 13, respectively, and the process shown in FIG. In this case, the workpiece W is processed using NC data without correction.
  • the correction method used in the processing apparatus 1 includes the turning axis B that changes the relative posture between the workpiece W and the tool 7, and the drive mechanism 11 that changes the relative position between the workpiece W and the tool 7. , 13, 50, 70, and the machining apparatus 1 including the control shaft 30 for controlling the positions of the pivot axis B of the drive mechanisms 11, 13, 50, 70 and other X, Y, and Z axes.
  • the And the correction method forms the processing traces 101 and 102 for calibration on the workpiece W at different set angles ⁇ 1 and ⁇ 2 respectively in the swivel axis B at close positions before processing the product for the workpiece W, Based on the difference between the relative positional relationship between the processing marks 101 and 102 and the processing shape instructed by the control unit 30, that is, the nominal relative positional relationship between the target processing marks for calibration, a correction value is acquired and acquired. Based on the correction value, the control value output to the drive mechanisms 11, 13, and 50 is corrected. According to this correction method, it is possible to suppress a decrease in accuracy of the shape formed on the workpiece W after processing.
  • the “proximity position” indicating that the processing marks 101 and 102 for calibration are formed on the workpiece W at the adjacent positions is the position of the processing marks 101 and 102 formed on the workpiece W as described above.
  • the position may be a position where at least a part of the processing marks 101 and 102 can be measured without moving the shape measuring unit 20 relative to the processing marks 101 and 102.
  • the positions of the machining marks 101 and 102 formed on the workpiece W may be formed at positions where it is not necessary to change the measurement direction of the shape measuring unit 20 with respect to the workpiece W. Furthermore, even if the positions of the machining marks 101 and 102 formed on the workpiece W are such that the shape data of the respective machining marks acquired by the processing mark shape data acquisition unit 32 can be separated at least in part. Good.
  • the processing apparatus 1 includes a shape measuring unit 20 having an image sensor.
  • the control unit 30 includes the three-dimensional shape data and the three-dimensional position information of the processing marks 101 and 102 formed in the field of view that can be acquired by the image sensor, or the field of view of the image sensor.
  • the translational movement mechanism is controlled so that images of the respective processing marks can be taken, and the images of the processing marks 101 and 102 and the position information obtained from the encoder of the translational movement mechanism when each image is acquired are obtained.
  • a correction value to the control value for example, correction data ( ⁇ x ( ⁇ ), ⁇ y ( ⁇ ), ⁇ z ( ⁇ )) To get.
  • the shape measurement unit 20 having the image sensor acquires image data of the plurality of processing marks 101 and 102, and calculates the shape data based on the image data, so that the workpiece W remains placed on the processing apparatus 1. In this state, the relative positional relationship between the plurality of calibration processing marks 101 and 102 can be obtained. For this reason, it is possible to obtain the relative positional relationship between the machining marks 101 and 102 with less measurement error as compared with the case where the workpiece W is removed from the machining apparatus 1 and the shapes of the plurality of machining marks 101 and 102 are measured.
  • the set angle when forming the respective machining marks 101 and 102 is set to be included in the turning angle range of the setting angle of the turning axis B set at the time of machining for the product.
  • the angle difference is set to be smaller than the difference between the maximum value and the minimum value of the turning angle range set at the time of processing for the product.
  • the correction value corresponding to the setting angles is obtained by extrapolating the difference information in the plurality of setting angles ⁇ 1 and ⁇ 2.
  • correction values corresponding to the set angle set during the product processing for example, correction data ( ⁇ x ( ⁇ ), ⁇ y ( ⁇ ), ⁇ ⁇ z ( ⁇ )) can be obtained.
  • the shape measuring unit 20 of the above (2) is provided on the moving axes (X axis, Y axis, Z axis) provided in the drive mechanisms 40-60. Accordingly, when the workpiece W is scanned with the slit light by the shape measuring unit 20, or when the processing mark 101 (or 102) to be measured is placed in the field of view range by the shape measuring unit 20, the translational movement has sufficiently high accuracy. Therefore, the relative positional relationship between the machining marks 101 and 102 with less error can be obtained.
  • the shape measuring unit 20 of the above (4) is a light cutting sensor, and the light cutting sensor is provided on a movement axis (X axis, Y axis, Z axis), and the light cutting sensor is turned. While the axis B is fixed, by performing relative movement by the movement axes (X axis, Y axis, Z axis), the portion where the processing marks 101 and 102 are formed is scanned, and the shape measurement unit 20 performs optical cutting. Based on the information acquired from the sensor, the three-dimensional shapes of the respective processing marks 101 and 102 are acquired. Thereby, the relative positional relationship between the machining marks 101 and 102 with a small error can be obtained.
  • the processing apparatus 1 described above includes a drive mechanism 11, 13, 50 that changes the position of the workpiece W and the tool 7 in the direction of the translational movement axis (X axis, Y axis, Z axis), and the workpiece.
  • a turning axis drive mechanism 70 that changes the relative posture between W and the tool 7 is provided.
  • These drive mechanisms 11, 13, 50 and the turning shaft drive mechanism 70 constitute a position changing unit.
  • the processing device 1 further outputs a control amount to the position changing unit, and controls the relative position between the workpiece W and the tool 7 and a plurality of calibrations processed at different positions on the workpiece W by the tool 7.
  • the shape measurement unit 20 that measures the shape and position of the machining traces 101 and 102, the relative positional relationship between a plurality of target machining shapes targeted by the control unit 30, and a plurality of calibrations measured by the shape measurement unit 20 Based on the difference in the relative positional relationship between the machining marks 101 and 102, the control unit 30 calculates a control value correction value, for example, correction data ( ⁇ x ( ⁇ ), ⁇ y ( ⁇ ), ⁇ z ( ⁇ )).
  • the comparison unit / correction data creation unit 33 is provided. According to this processing apparatus 1, it is possible to suppress a decrease in accuracy of the shape formed on the workpiece W after processing.
  • control amount correction value calculated based on the difference between the relative positional relationship between the two target machining shapes targeted by the control unit 30 and the measured relative positional relationship between the calibration machining marks 101 and 102 is obtained.
  • the relative posture between the workpiece W and the tool 7 can be changed by changing the turning angle around the turning axis B of the turning axis drive mechanism 70.
  • the control unit 30 controls the translational movement amount by the drive mechanisms 11, 13, and 50 and the turning angle by the turning shaft drive mechanism 70. By this control, a plurality of calibration traces 101 and 102 are formed.
  • the shape measuring unit 20 measures the shapes and positions of a plurality of calibration processing marks 101 and 102 each processed at different turning angles. This is particularly effective when it is desired to suppress the influence of the positional accuracy of the tip of the tool 7 when the tool 7 is turned around the turning axis B by the turning axis drive mechanism 70.
  • the comparison unit / correction data creation unit 33 which is the control unit 30, has a relative positional relationship between a plurality of target processing shapes and a plurality of calibration processing marks 101 measured by the shape measurement unit 20. , 102 based on the difference from the shape information indicating the relative positional relationship, the correction value of the translational movement amount in the direction of the translational movement axis (X axis, Y axis, Z axis) as a correction value for each of a plurality of turning angles, for example, Correction data ( ⁇ x ( ⁇ ), ⁇ y ( ⁇ ), ⁇ z ( ⁇ )) is calculated.
  • the tip position accuracy of the tool 7 when the tool 7 is swung around the swivel axis B by the swivel axis drive mechanism 70 is changed in the direction of the translational movement axis (X axis, Y axis, Z axis) for each swivel angle.
  • the amount of translational movement can be corrected.
  • the control unit 30 calculates the turning angle and the translational movement amount generated to form a plurality of target machining shapes before the correction value is calculated by the comparison unit / correction data creation unit 33. After the correction value is calculated by the comparison unit / correction data creation unit 33 as the control amount, the translation angle and the translation amount corrected based on the translation value and the rotation angle generated based on the target shape information are corrected by the correction value. And Thereby, an appropriate control amount can be obtained before and after the correction value is calculated.
  • the shape measuring unit 20 changes the amount of translational movement in the direction of the translational movement axis (X axis, Y axis, Z axis) with the drive mechanisms 11, 13, 50.
  • the relative position with respect to the processing traces 101 and 102 for calibration was changed.
  • the rotation axis B around the shape measurement unit 20 is measured. Compared with the case where the turning angle is changed, it is possible to obtain the relative positional relationship between the machining marks 101 and 102 with less error.
  • the shape measuring unit 20 acquires at least the diameter of the tool 7, the length of the tool 7, and the axial direction of the tool 7 based on the shape measurement results of the calibration processing marks 101 and 102. Thereby, the relative positional relationship of the processing marks 101 and 102 can be obtained appropriately.
  • the shape measuring unit 20 measures the shape and position of the plurality of calibration processing marks 101 and 102 in a state where the processed workpiece W is placed on the processing apparatus 1. did. Thereby, it is possible to obtain the relative positional relationship between the machining marks 101 and 102 with less measurement error compared to the case where the workpiece W is removed from the machining apparatus 1 and the shapes of the plurality of machining marks 101 and 102 are measured.
  • the processing apparatus 1 may be a processing apparatus having a three-axis configuration position changing portion only by the translational axis moving means having only the slide rail 9a, the vertical rail 4, and the horizontal rail 3.
  • the tool is moved by at least one translational movement mechanism to form a plurality of machining traces at close positions, and the relative positional relationship between the plurality of machining traces and the machining shape instructed by the control unit.
  • the control value output to the position changing unit may be corrected based on the difference from the relative positional relationship.
  • the relative movement distance is shortened as much as possible, and each machining is performed. It is preferable to form a plurality of processing marks at positions where a part of the shape of the marks can be separated. In particular, it is possible to reduce the shape measurement error caused by the positioning error by the translational movement mechanism because the movement distance of the shape measurement unit 20 at the time of measurement is shorter than the movement distance of the tool performed when forming a plurality of machining marks. Can do.
  • correction data ( ⁇ x ( ⁇ ), ⁇ y ( ⁇ ), ⁇ z ( ⁇ )) is created for each turning angle ⁇ as correction data. Instead, it may be created as correction data for each turning angle to the control data supplied to the turning axis drive mechanism of the turning axis B. In addition to the correction data corresponding to the turning angle of the turning axis B, correction data corresponding to the turning angle of the work spindle C and correction data corresponding to the rotation angle of the tool spindle A may be similarly generated.
  • the comparison unit / correction data creation unit 33 performs the calibration process, for each turning angle ⁇ , the three-dimensional position calculated by the position information calculation unit 31, and the machining trace shape data acquisition unit 32. Is compared with the three-dimensional position calculated by the above, and difference information ( ⁇ ) that differs between the two is acquired.
  • the comparison unit / correction data creation unit 33 further creates correction data ( ⁇ ( ⁇ )) using the turning angle ⁇ as an argument based on the difference information ( ⁇ ).
  • the 5-axis NC data generation unit 34 uses, as correction data ( ⁇ ), the control amount to be output to the turning axis drive mechanism 70 among the generated 5-axis control amounts when performing machining for a product. ( ⁇ )).
  • the two processing marks 101 and 102 are formed as calibration processing, but three or more processing may be performed. That is, in addition to the machining trace 101 that is processed with the set angle set to ⁇ 1 and the machining trace 102 that is processed with the set angle set to ⁇ 2, a machining trace that is processed with the set angle set to ⁇ 3 is formed. .
  • the plurality of processing marks may not be completely separated as long as the three-dimensional shape can be measured by separating each processing mark by the shape measuring unit 20.
  • the shape measuring unit 20 may be detachably attached to the tool attachment position of the tool attachment portion 6 instead of the tool.
  • the shape measuring unit 20 may be attached to the exterior part of the tool post 5 instead of the tool attachment part 6. In this case, since the shape measuring unit 20 is not attached to the side movable by the swivel axis B, it is possible to prevent a measurement error caused by a deviation of the measurement position due to the rotation of the swivel axis B.
  • Modification 7 It should be noted that all of the plurality of processing marks formed before processing the workpiece to create a predetermined target shape are not limited to those formed by the same processing apparatus.
  • One of the common workpieces is formed with a processing mark by the processing device A, and the other is formed with a processing mark by the processing device B, whereby the deviation amount between the processing positions of the processing device A and the processing device B can be obtained. .
  • correction is performed in the following steps.
  • a first processing device having a first position changing unit that changes the relative position between the workpiece and the first tool first and a first control unit that controls the first position changing unit, At least one processing mark is formed on the workpiece.
  • a second processing having a second position changing unit for changing the relative position between the same workpiece and the second tool and a second control unit for controlling the second position changing unit.
  • At least one second processing mark is further formed on the workpiece by the apparatus in the vicinity of the processing mark formed by the first processing apparatus.
  • the control value output to either the first or second position changing unit is corrected based on the difference from the relative positional relationship with the machining shape instructed by the second control unit.
  • the control value to be corrected may be corrected.
  • the processing apparatus A and the processing apparatus B use a common mounting table. As a result, the amount of misalignment caused by repositioning the workpiece that forms the machining trace between the machining apparatus A and the machining apparatus B hardly affects the control value output to the position changing unit.
  • the shape measuring unit 20 may be detachable. At that time, when forming the machining trace, the shape measuring unit 20 is not necessarily attached. Any shape measuring unit that can be attached when measuring a plurality of processing marks in a processing apparatus that forms at least one of the processing marks may be used.
  • Machining instruction diagram When the machining instruction diagram is output, a machining instruction diagram that takes the correction data into consideration is output. 2. Design drawing When creating a design drawing, the correction data is used as production error information.
  • the tolerance of the product surface is expressed by the correction data.
  • the surface of a product is often expressed based on dimensions from the reference surface of the product.
  • the correction data calculated for each turning angle around the turning axis B of the processing apparatus 1 is used as the tolerance of the shape formed by the processing apparatus 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)

Abstract

加工装置の補正方法は、被加工物と工具との相対的な位置を変更する位置変更部と、前記位置変更部を制御する制御部とを備える加工装置の補正方法に適用される。そして、前記被加工物の加工前に、複数の加工痕を形成し、前記複数の加工痕の相対位置関係と、前記制御部が指示する加工形状の相対位置関係との差に基づいて、前記位置変更部へ出力される制御値を補正する。

Description

加工装置の補正方法および加工装置
 本発明は、加工装置の補正方法および加工装置に関する。
 5軸の複合加工装置が知られている(特許文献1参照)。
日本国特開2007-75995号
 従来技術では、形状測定ユニットを加工装置に取り付けて測定を行う場合、測定時に加工装置の位置決め精度の影響を受けてしまう問題があった。このような誤差が、ワークに形成される形状の精度を低下させるという問題があった。
 本発明の第1の態様による加工装置の補正方法は、被加工物と工具との相対的な位置を変更する位置変更部と、前記位置変更部を制御する制御部とを備える加工装置の補正方法に適用される。そして、前記位置変更部により工具を相対的に移動しながら、それぞれ加工痕を形成し、前記加工痕の相対位置関係と、前記制御部が指示する加工形状の相対位置関係との差に基づいて、前記位置変更部へ出力される制御値を補正する。
 本発明の第2の態様による加工装置は、被加工物と工具とを相対的に位置を変更する位置変更部と、前記位置変更部へ制御量を出力し、前記被加工物と前記工具との相対的な位置を制御する制御部と、前記工具によって前記被加工物の異なる位置に加工された複数の校正用加工痕の位置を測定する形状測定部と、前記制御部が目標とする複数の目標加工形状の相対的位置関係と、前記形状測定部によって測定された前記複数の校正用加工痕の相対的位置関係との差に基づいて得られた、前記制御量の補正値により前記制御部から前記位置変更部へ与えられる制御量を補正する補正部とを備える。
一実施の形態による加工装置を例示する図である。 図2(a)はワークの一例を示す図、図2(b)は加工痕形成部を例示する図である。 加工装置の要部構成を例示するブロック図である。 校正処理の流れを説明するフローチャートである。 加工処理の流れを説明するフローチャートである。
 図1は、一実施の形態による5軸複合工作機械として構成した加工装置1を例示する図である。なお、以下に説明する実施の形態は、発明の理解のために具体的に例示するものであり、特に指定の無い限り、発明を限定するものではない。
 図1において、コラム2がコラムベッド9に対して立設されている。コラムベッド9にY軸方向にスライドレール9aが形成されている。コラムベッド9に対して、ターニングテーブル15がY軸方向(前後方向)にスライド自在に設けられている。ターニングテーブル15(ワークテーブルとも称する)は、被加工物であるワークWの載置台である。ターニングテーブル15は、コラムベッド9のスライドレール9aに沿ってY軸方向に駆動できるように設けられた不図示のY軸駆動機構により、移動することができる。また、ターニングテーブル15は、ワーク主軸Cを中心に回動可能である。ワークWは、このターニングテーブル15上に芯出し位置決めし、固定される。
 本実施の形態では、上記のように、ワーク主軸Cの割出し方向に回動自在に設けたターニングテーブル15を、コラムベッド9上でY軸方向に移動自在に設けたので、ターニングテーブル15上に載置されたワークWが、コラム2に対して相対的に並進移動自在(Y軸方向)である。
 また、ターニングテーブル15にはスライドレール9aに対してワーク主軸Cを中心に回転駆動させるターニングテーブル回転機構も備えられている。
 一方、コラム2には、例えば横レール3がY軸方向と直交するX軸方向(左右方向)に設けられている。また、横レール3には、横レール3と交叉係合し、横レール3に沿ってX軸方向に並進移動自在な縦レール4が、Y軸方向と直交するZ軸方向(上下方向)に設けられている。
 縦レール4にはさらに、縦レール4と係合し、縦レール4に沿ってZ軸方向に並進移動自在な刃物台5が設けられている。以上の構成により、ターニングテーブル15上に載置されたワーク(不図示)が、刃物台5に対して相対的に、X軸方向およびZ軸方向に並進移動自在である。
 なお、横レール3にはX軸駆動機構11が設けられているので、縦レール4および刃物台5をX方向に自在に移動制御が可能である。また、縦レール4にはZ軸駆動機構13が設けられているので、刃物台5をZ方向に自在に移動制御が可能である。
 なお、本明細書では、X軸駆動機構11と横レール3からなる移動機構をX軸移動機構、Z軸駆動機構13と縦レール4からなる移動機構をZ軸移動機構、スライドレール9aとY軸駆動機構からなる移動機構をY軸移動機構と称し、X軸移動機構、Y軸移動機構およびZ軸移動機構をまとめて並進移動機構と称す。
 刃物台5には、工具取り付け部6が、工具主軸AがYZ平面と平行な面内(前後方向)に旋回可能に設けられる。すなわち、工具取り付け部6はX軸に平行な旋回軸Bの周りに旋回可能に設けられる。工具取り付け部6の下部先端のチャック部には、例えばバイト、ドリルなどの工具7がチャックされる。チャックされた工具7は、不図示のモータによって工具主軸Aを回転軸として回転する。
 工具取り付け部6は、旋回機構を備えたユニバーサルヘッドを構成する。すなわち、旋回軸Bの周りに旋回自在に工具取り付け部6を軸支し、不図示の旋回軸駆動機構により、旋回軸Bの周りに工具取り付け部6を旋回制御自在に構成する。このような構成により、旋回軸Bの周りに旋回する工具取り付け部6に対して、旋回軸駆動機構を制御することによって工具取り付け部6のチャック部にチャックした工具7を首振り制御し、ターニングテーブル15に載置されたワークWに対する工具7または形状測定ユニット20の角度(姿勢)を自在に調整する。
 なお、スライドレール9a、縦レール4、横レール3のそれぞれにはリニアエンコーダが設けられており、ターニングテーブル15の位置および刃物台5の位置を求めることができる。また、旋回軸B、ワーク主軸Cおよび工具主軸Aにもロータリーエンコーダが設けられており、それぞれの回動角度を求めることができる。
 なお、本実施の形態における加工装置1は、上述の並進移動機構と、工具取付け部6に構成された旋回機構および旋回軸駆動機構と、ターニングテーブル15とターニングテーブル駆動機構とで位置変更部が構成されている。本実施の形態における加工装置1は、この位置変更部により、ターニングテーブル15に載置された被加工物と刃物台5に保持された工具7との相対的な位置を変更する。
 形状測定ユニット20は、例えば、工具取り付け部6に取り付けられており、ターニングテーブル15に載置されたワークWの三次元形状を測定するための画像データを取得するユニットである。形状測定ユニット20は、例えば、本願出願人により出願された特開2008-256484号公報に記載されている光切断法により、ワークWの三次元形状を測定することができるユニットである。
 この形状測定ユニット20は、被検物(本例ではワークW)に特定のパターンの光(例えばスリット状のスリット光)を投影して、ワークWに投影されたパターンを投影方向とは別方向から画像センサーにより撮影するユニットである。なお、撮影した画像は不図示の制御部に送出され、この制御部により、撮影した画像から画像上におけるパターンの像の位置を求め、かつ求めたパターンの位置と、ターニングテーブル15に対する形状測定ユニット20の位置および角度(姿勢)に基づき、ワークWの形状を算出することでスリット光が照射された位置におけるワークWの三次元位置を求めることができる。また、各駆動機構を移動させながら、スリット光が照射される位置を走査し、その照射される位置が変わる度に画像を取得することで、ワークWの三次元形状を求めることができる。
 なお、形状測定の際には、形状測定ユニット20を被検物に対して相対的に走査させながら、加工痕等の三次元形状の測定が行われるので、位置変更部から移動軸または旋回軸Bの位置情報をエンコーダから取得する必要がある。そのため、位置変更部の並進移動機構に設けられたエンコーダからの信号取得タイミングと形状測定ユニット20による撮影タイミングとを同期させることで、形状測定精度を向上することができる。具体的には米国特許公報第6611617号に開示されているような同期方法を採用することが好ましい。なお、形状測定ユニット20と形状測定ユニット20から得られたデータを基に三次元形状を算出する制御部については、他にも特開2015-129665号に開示された形状測定ユニットと制御部を用いることでもよい。この形状測定ユニットは一定領域において加工痕と形状測定ユニットの相対移動なし三次元形状を求めることができる。したがって、このような形状測定ユニットを用いることにより、位置変更部からのエンコーダ情報を用いる必要なく複数の加工痕の相対位置関係を算出することが可能である。
 ワークWの三次元形状の測定時は、ワークWに対する形状測定ユニット20の位置を相対移動させて、ワークWをスリット光により走査する。この走査は、ターニングテーブル15上に載置されたワークWを、刃物台5(すなわち形状測定ユニット20)に対して相対的に、X軸方向、Y軸方向またはZ軸方向に並進移動させて行う。この際、工具取り付け部6を旋回軸B周りに旋回させる必要はない。これにより旋回軸Bやワーク主軸Cによる位置決め誤差による形状測定誤差が生じなくなる。
 形状測定ユニット20により、工具7によって加工されたワークWの加工痕を測定することで、加工痕の形状を測定できる。測定対象とする加工痕の全てが形状測定ユニット20による視野範囲に収まらない場合には、ターニングテーブル15上に載置されたワークWを、刃物台5(すなわち形状測定ユニット20)に対して相対的に並進移動させることにより、それぞれの加工痕を形状測定ユニット20による視野範囲に収めるようにしてもよい。この際、工具取り付け部6を旋回軸Bやワーク主軸C周りに旋回させない方が好ましい。
 次に、本発明の実施の形態における加工装置1の補正方法について説明する。本発明の実施の形態では、加工装置1の補正方法を行うために、まず、製品形状にワークWを加工する前に、複数の加工痕を形成する。図2(a)は、ワークWの一例である。この円筒状のワークWの上端面には、予め複数の加工痕を形成するための加工痕形成部W1、W2が一体的に形成されている。この加工痕形成部W1、W2は矩形形状を有しており、各面が平面である。図2(b)は、ワークWの加工痕形成部W1の拡大図である。たとえば、加工装置1の補正用に形成する加工痕は、図2(b)のように同一面に形成された複数の加工痕である。複数の加工痕は、形状測定ユニット20で形状を測定する際、形状測定ユニット20を旋回軸Bやワーク主軸C周りで相対移動させて測定することを十分に避けることができる。特に、形状測定ユニット20でワークWを測定する場合、X軸、Y軸およびZ軸方向の並進移動の位置決めで生ずる誤差に対して、旋回軸Bの位置決め角度誤差の方が形状測定結果に及ぼす誤差が大きい。なぜなら、旋回軸Bの位置決め角度誤差により、旋回軸BからワークWの測定位置までの距離に応じて、比例的に測定位置の位置ズレ量が拡大してしまうためである。また同様に、ワーク主軸CからワークW上の加工位置までの距離に応じて、ターニングテーブル15の位置決め角度誤差により比例的に測定位置のズレ量が拡大してしまうことが理由となる。
 なお、それぞれ異なる場所に形成されたワークWの加工痕を形状測定ユニット20の視野範囲に収めるためにワークWをX軸方向、Y軸方向またはZ軸方向に並進移動させる場合とは、次のような場合である。図2(b)に例示した加工痕形成部W1は、複数の加工痕101および加工痕102を有する。加工痕101および102は、同じ工具7によって異なる姿勢によりそれぞれ加工したものである。この加工痕はある目的の形状創生を行うために形成された加工痕でなく、試し加工などでワークWにつけられた加工痕であればよい。そのため、加工痕の形状についてはいかなる形状でもよい。ただし、複数の加工痕の両者の相対位置関係を求めやすい形状であれば良い。また、このような複数の加工痕101および102の形状を形状測定ユニット20で測定する場合において、形状測定ユニット20による視野範囲に加工痕101および102が両方とも収まる場合(加工痕101を形状測定する画像に加工痕102も収まっている場合)には、加工痕101および102の形状を測定するためにワークWを並進移動させる必要はない。このようにすることで、加工装置の並進移動時に生ずる位置決め誤差による形状測定誤差を生じなくすることができる。
 しかし、一方の加工痕しか視野範囲に収まらない場合(加工痕101を形状測定する画像から加工痕102が外れている場合)には、例えば、先に加工痕101を視野範囲に収めて加工痕101の形状を測定した上で、形状測定ユニット20(すなわち刃物台5)を、ターニングテーブル15上に載置されたワークWに対して相対的に、X軸方向、Y軸方向またはZ軸方向に並進移動させる。そして加工痕102を視野範囲に収めて加工痕102の形状を測定する。加工痕101の形状測定データと加工痕102の形状測定データとの相対位置関係は、加工痕101の形状測定時から加工痕102の形状測定時に行われた並進移動させた距離と方向に基づいて算出することができる。
 上述のように、回動移動よりも並進移動により生ずる位置決め誤差による形状測定結果の影響は十分に低いので、Y軸方向への並進移動を行って測定される加工痕101と加工痕102との相対距離の測定精度は、形状測定ユニット20の視野範囲に加工痕101および102の双方が同時に収まる状態で測定される加工痕102と加工痕101との相対距離の測定精度とほぼ同程度である。
 なお、X軸方向やZ軸方向へ並進移動する場合も同様である。
 また、加工痕形成部W1、W2はワークWを製品形状に加工する際には、削り取られるような部材であってもよい。
<校正処理の概要>
 ところで、本実施の形態では、上述したような5軸制御の加工装置1によってワークWに形成される形状の精度を高めるため、以下のような校正処理を行う。すなわち、図2に例示したように、ターニングテーブル15上の所定位置に載置されたワークWに対して複数の試験加工(校正用の加工)を行い、ワークWに複数の加工痕101および加工痕102を残す。
 具体的には、工具7の旋回軸B周りの旋回角の設定角度をθ1に設定し、ワークW上における計算上での工具7の刃先の位置を目標位置P101となるようにワークWを並進移送させてワークWに対して加工を行い、ワークW上に図2の左側に示した加工痕101を形成する。
 次に、目標位置P101からY軸マイナス方向に所定距離だけ離れた目標位置P102を設定する。旋回軸B周りの旋回角の設定角度をθ2に設定し、ワークW上における計算上での工具7の刃先の位置を目標位置P102となるようにワークWを並進移動させてワークWに対して加工を行い、ワークW上に図2の右側に示した加工痕102を形成する。
 形状測定ユニット20でワークWの複数の加工痕101及び加工痕102の画像データを取得し、取得された画像データを基に制御部30により、ワークWの複数の加工痕101および加工痕102の形状および位置を算出する。工具7の先端の旋回角度精度が理想的であれば、測定した加工痕101および加工痕102の形状および位置が、加工装置1において校正用の加工時に目標とした複数の校正用加工形状および位置の許容範囲内に存在する。しかしながら、旋回軸から工具7の先端までは比較的距離が長いため、工具7の先端の旋回角度の精度が高くとも、加工痕の形成位置が許容された範囲にない場合がある。
 そこで、本実施の形態では、工具取り付け部6(すなわちチャックされた工具7の刃先)の旋回軸B周りにおける旋回角度ごとに、X軸方向、Y軸方向、およびZ軸方向のそれぞれの座標値に対して適用する補正値を求める。これらの補正データを求めるために、ワークWに対する工具取り付け部6(すなわちチャックされた工具7の刃先)の旋回角度を複数の異なる値に変化させて校正用の加工を複数回行い、ワークW上に複数の校正用の加工痕101および加工痕102を形成する。
 なお、校正用の加工痕は、工具7の径や長さ、工具7の軸方向も取得し得るように、ワークWのいずれかの面において観察可能な形状に加工する。なお、工具7の刃先の径や工具7の軸方向、刃物台5に対する工具7の取り付け姿勢については、加工痕形状データ取得部で得られた三次元形状データから加工痕の表面形状データを求め、その表面形状データと工具7の加工軌跡データから算出してもよい。本実施の形態では、図2に例示するように、Y―Z平面に平行な面に対してX軸マイナス側に凹となるような加工痕101および加工痕102を形成する。加工痕101および加工痕102の位置および形状を測定することで、それぞれにおける、ワークWに対する工具7の角度(工具7の軸方向)、工具7の径、および加工された長さ(深さ)を取得することができる。また、加工痕101、加工痕102の相対的な位置関係を測定することができる。
<ブロック図の説明>
 図3は、加工装置1の要部構成を例示するブロック図である。図3において、加工装置1は、入力部10と、形状測定ユニット20と、制御部30と、X軸駆動機構11と、Y軸駆動機構50と、Z軸駆動機構13と、旋回軸駆動機構70と、ワーク主軸駆動機構80とを含む。
 入力部10は、例えば、オペレータによって操作される操作パネルによって構成される。オペレータは、加工装置1によってワークWに所定の加工を行わせるべく、例えば、目標とする工具7による加工の始点位置(三次元座標)、終点位置(三次元座標)、およびワークWに対する工具7の刃先の角度を示すデータの入力操作を行う。入力部10は、オペレータによって入力された情報を位置情報算出部31へ転送する。
 なお、オペレータは、加工装置1に校正用の加工を行わせる場合には、目標とする校正用の工具7による加工の始点位置(三次元座標)、終点位置(三次元座標)、およびワークWに対する工具7の刃先の角度(ワークWに対する工具主軸Aの軸方向の角度)を示すデータの入力操作を行う。
 オペレータは、複数の加工痕101、102がそれぞれ加工痕を形成するワークW上で近接した位置に形成されるように、データを入力する。「近接した位置」とは、例えば、次のいずれかが満たされるものであってもよい。
(1)ワークWに形成された加工痕101、102の位置が、形状測定ユニット20を加工痕101、102に対して相対移動することなしに、加工痕101、102の少なくとも一部を測定可能であること。
(2)ワークWに形成された加工痕101、102の位置が、形状測定ユニット20のワークWに対する測定方向を変える必要の無い位置に形成されていること。
(3)ワークWに形成された加工痕101、102の位置が、後述の加工痕形状データ取得部32によって取得される加工痕101、102それぞれの形状データを少なくとも一部で分離できる位置関係にあること。
 なお、ワークWにそれぞれ形成された加工痕101および102は、以下のようにして設けるようにしてもよい。形状測定ユニット20で加工痕101および102の一方の測定を行ってから、他方の測定する際に、少なくとも旋回軸である旋回軸Bを中心に回動する回動移動の必要が無い位置に加工痕101および102が形成されていること。
 また、オペレータは、加工装置1に製品用の加工を行わせる場合には、目標とする製品用の加工形状(三次元座標)、および加工位置ごとのワークWに対する工具7の刃先の角度を示すデータの入力操作を行う。
 なお、オペレータが入力部10に対して入力操作を行う代わりに、あらかじめプリセットされている情報(目標とする工具7のワークWへの進入経路の始点位置(三次元座標)、終点位置(三次元座標)、およびワークWまたはターニングテーブル15に対する工具7の角度または工具主軸Aの角度))を位置情報算出部31へ転送するように構成してもよい。
 形状測定ユニット20は、制御部30からの測定指示により、上述したようにワークWの複数の加工痕101および加工痕102の形状および位置を測定する。形状測定ユニット20は、測定結果を制御部30へ送る。
 制御部30は、位置情報算出部31と、加工痕形状データ取得部32と、比較部/補正データ作成部33と、5軸NCデータ生成部34と、補正データ記憶部35とを含む。
 位置情報算出部31は、入力部10から入力されたワークWまたはターニングテーブル15に対する工具7の角度または工具主軸Aの角度に基づき、旋回軸B周りに旋回する工具取り付け部6の旋回角度(所定の基準軸に対する工具主軸Aの角度)を決定する。また、位置情報算出部31は、入力部10から入力された情報に基づき、それぞれの旋回角度により形成されるべき加工形状(目標とする加工形状)を示す三次元的な位置のデータを算出する。位置情報算出部31はさらに、校正処理の際に、目標とする複数の校正用の加工形状を示すデータから、基準となる複数の校正用加工形状のノミナル相対位置情報(複数の校正用の加工形状の相対位置)を算出する。
 加工痕形状データ取得部32は、形状測定ユニット20から送られた加工痕101および加工痕102の画像情報からスリット光の像の位置を求め、かつ求めたパターンの位置と、ターニングテーブル15に対する形状測定ユニット20の位置および角度(姿勢)に基づき、加工痕101および加工痕102の三次元形状および位置を求める。
 比較部/補正データ作成部33は、加工痕形状データ取得部32によって加工痕101および加工痕102の三次元的な位置情報から相対位置情報を取得する。そして、校正処理の際に、旋回角度Θごとに、位置情報算出部31によって算出された加工痕101および加工痕102のノミナル相対位置情報と、加工痕形状データ取得部32によって取得された相対位置情報とを比較し、両者の間で相違する相対位置の相違情報(Δx,Δy,Δz)を取得する。比較部/補正データ作成部33はさらに、相違情報(Δx,Δy,Δz)に基づき、旋回角度Θを引数とする補正データ(-Δx(Θ),-Δy(Θ),-Δz(Θ))を作成する。
 比較部/補正データ作成部33は、実際に校正用の加工痕の形成を行ったときのそれぞれの旋回角度の間の旋回角度については、校正用の加工を行った複数の旋回角度についての相違情報を補間することによって、その旋回角度に対応する補正データを算出する。また、校正用の加工を行った旋回角度よりも大きい旋回角度については、上記複数の旋回角度についての相違情報を外挿することによって、その旋回角度に対応する補正データを算出する。
 補正データ記憶部35は、上記旋回角度Θを引数とする補正データ(-Δx(Θ),-Δy(Θ),-Δz(Θ))を記憶する。補正データ(-Δx(Θ),-Δy(Θ),-Δz(Θ)は、校正処理の際に、制御部30の指示によって補正データ記憶部35に記録される。また、補正データ記憶部35が記憶する補正データ(-Δx(Θ),-Δy(Θ),-Δz(Θ))は、製品用の加工を行う場合において、制御部30によって指定された旋回角度Θに対応する補正データが読み出される。
 5軸NCデータ生成部34は、入力部10から入力された情報と工具7の情報(刃の形状、工具の径、工具の長さ、チャックされる位置)とに基づき、5軸の制御量(例えばNC(Numerical Control)データ)を生成する。5軸NCデータ生成部34はさらに、製品用の加工を行う場合において、生成した5軸の制御量を、補正データ記憶部35から読み出した補正データ(-Δx(Θ),-Δy(Θ),-Δz(Θ))によって補正する。本出願明細書で説明されている位置変更部の制御量を補正する補正部としての機能も有する。すなわち、生成した5軸の制御量のうちのX軸、Y軸、およびZ軸の制御量を補正データによってそれぞれ補正する。
 5軸NCデータ生成部34は、加工装置1で校正用の加工を行う場合には、生成した5軸の制御量に基づいて旋回軸駆動機構70、ワーク主軸駆動機構80、X軸駆動機構11、Y軸駆動機構50、およびZ軸駆動機構13へそれぞれ出力する。
 また、5軸NCデータ生成部34は、加工装置1で製品の加工を行う場合には、生成した5軸の制御量を上記補正データ(-Δx(Θ),-Δy(Θ),-Δz(Θ)によって補正して、旋回軸駆動機構70、ワーク主軸駆動機構80、X軸駆動機構11、Y軸駆動機構50、およびZ軸駆動機構13へそれぞれ出力する。
 旋回軸駆動機構70は、5軸NCデータ生成部34からの制御量に基づき、旋回軸B周りに旋回する工具取り付け部6の旋回角度(基準軸に対する工具主軸Aの角度)を制御する。ワーク主軸駆動機構80は、5軸NCデータ生成部34からの制御量に基づき、ターニングテーブル15の回転角度(ワーク主軸Cを回転軸とする)を制御する。
 X軸駆動機構11は、5軸NCデータ生成部34からの制御量に基づき、刃物台5のX軸方向の並進移動量を制御する。Y軸駆動機構50は、5軸NCデータ生成部34からの制御量に基づき、ワークWのY軸方向の並進移動量を制御する。Z軸駆動機構13は、5軸NCデータ生成部34からの制御量に基づき、刃物台5のZ軸方向の並進移動量を制御する。
<フローチャートの説明>
 図4は、校正処理の流れを説明するフローチャートである。制御部30は、校正処理を行う場合に図4による処理を起動させる。図4のステップS10において、制御部30の位置情報算出部31は、入力部10から入力された角度情報(設定角度θ1、θ2)と工具7による加工の始点位置および終点位置情報に基づき、旋回軸B周りの工具主軸Aの旋回角度を決定してステップS20へ進む。なお、この場合、始点位置と終点位置を直線で結んだ方向を基に、その方向に応じた仰角を基に旋回軸Bの角度を設定する。
 ステップS20において、制御部30の位置情報算出部31は、入力部10から入力された情報に基づき、それぞれの旋回角度において形成されるべき校正用の複数の加工形状(目標とする加工形状)を示すデータを生成してステップS30へ進む。
 ステップS30において、制御部30の位置情報算出部31は、目標とする複数の加工形状を示すデータから、複数の加工形状のノミナル相対位置情報を算出し、ステップS40へ進む。ステップS40において、制御部30の5軸NCデータ生成部34は、目標とする加工形状と工具7の情報とに基づき、NCデータを生成してステップS50へ進む。
 ステップS50において、制御部30は、5軸のNCデータを基に、旋回軸駆動機構70、ワーク主軸駆動機構80、X軸駆動機構11、Y軸駆動機構50、およびZ軸駆動機構13へそれぞれ制御データを出力してステップS60へ進む。
 これにより、ワークWに校正用の加工痕101および加工痕102が形成される。
 ステップS60において、制御部30は形状測定ユニット20へ指示を送り、加工痕101および加工痕102の形状および位置を算出するために必要な画像情報を取得させる。そして、加工痕形状データ取得部32により必要な画像情報と各駆動軸の位置情報、角度情報を基に、加工痕101および加工痕102の三次元形状および位置情報を算出する。算出された三次元形状および位置情報から、加工痕101および加工痕102の相対位置情報を取得してステップS70へ進む。
 ステップS70において、制御部30の比較部/補正データ作成部33は、ステップS30で算出した相対位置情報(目標とする校正用の加工痕のノミナル相対位置情報)と、ステップS60で取得した相対位置情報(加工痕101および加工痕102の相対位置情報)とを比較し、相対位置の相違情報(Δx,Δy,Δz)を取得してステップS80へ進む。
 ステップS80において、制御部30の比較部/補正データ作成部33は、相違情報(Δx,Δy,Δz)に基づき、旋回角度Θごとに補正データ(-Δx(Θ),-Δy(Θ),-Δz(Θ))を作成してステップS90へ進む。
 ステップS90において、制御部30は、旋回角度Θを引数とする補正データ(-Δx(Θ),-Δy(Θ),-Δz(Θ))を補正データ記憶部35へ記録して図4による処理を終了する。
 以上説明した校正処理は、例えば、工具7を交換したとき、前回の校正処理後に製品の加工を所定回数行ったとき、製品用のワークWの形状を前回まで使用した形状と異なる形状に変更するとき、製品用の加工の内容を変更するときなどに、必要に応じて行うとよい。とくに、この校正処理は、ワークWから被加工物を形状創生する前に、同じワークWに対して校正用加工痕を形成することで実施することが好ましい。
 その際、校正処理に用いるワークWは、校正専用のワークWを用いてもよいし、製品用のワークWを用いてもよい。製品用のワークWを用いる場合は、最終的に製品となる部分以外の部分、すなわち、製品には不要な部分に校正用の加工を施すとよい。
 図5は、加工処理の流れを説明するフローチャートである。制御部30は、加工装置1で加工を行う場合に図5による処理を起動させる。図5のステップS210において、制御部30は、校正処理を行うか否かを判定する。制御部30は、オペレータによる校正処理の指示を受けた場合にステップS210を肯定判定してステップS220へ進み、ステップS220において上述した校正処理(図4)を行う。一方、制御部30は、オペレータによる校正処理の指示を受けない場合には、ステップS210を否定判定してステップS230へ進む。
 ステップS230において、制御部30の位置情報算出部31は、入力部10から入力された情報に基づき、工具主軸Aの旋回角度を抽出してステップS240へ進む。
 ステップS240において、制御部30の位置情報算出部31は、入力部10から入力された情報に基づき、それぞれの旋回角度において形成されるべき製品用の加工形状(目標とする加工形状)を示すデータを生成してステップS250へ進む。
 ステップS250において、制御部30の5軸NCデータ生成部34は、目標とする加工形状と工具7の情報とに基づき、5軸のNCデータを生成してステップS260へ進む。
 ステップS260において、制御部30は、補正データが存在するか否かを判定する。制御部30は、校正処理済みであり、補正データ記憶部35に補正データ(-Δx(Θ),-Δy(Θ),-Δz(Θ))が記録されている場合にステップS260を肯定判定してステップS270へ進む。制御部30は、校正処理の前であり、補正データ記憶部35に補正データ(-Δx(Θ),-Δy(Θ),-Δz(Θ))が記録されていない場合には、ステップS260を否定判定してステップS300へ進む。
 ステップS270において、制御部30は、ステップS230で抽出した旋回角度ごとに、対応する補正データ(-Δx(Θ),-Δy(Θ),-Δz(Θ))を補正データ記憶部35から読み出してステップS280へ進む。
 ステップS280において、制御部30の5軸NCデータ生成部34は、ステップS250で生成した5軸の制御量を、ステップS230で抽出した旋回角度ごとに、補正データ記憶部35から読み出した補正データ(-Δx(Θ),-Δy(Θ),-Δz(Θ))によって補正してステップS290へ進む。
 ステップS290において、制御部30は、補正後の5軸のNCデータを旋回軸駆動機構70、ワーク主軸駆動機構80、X軸駆動機構11、Y軸駆動機構50、およびZ軸駆動機構13へそれぞれ出力して図5による処理を終了する。
 これにより、ワークWに製品用の加工が行われる。
 ステップS260を否定判定して進むステップS300において、制御部30は、補正していない5軸のNCデータを旋回軸駆動機構70、ワーク主軸駆動機構80、X軸駆動機構11、Y軸駆動機構50、およびZ軸駆動機構13へそれぞれ出力して図5による処理を終了する。この場合は、補正なしのNCデータを用いてワークWに加工が行われる。
 上述した実施の形態によれば、次の作用効果が得られる。
(1)上記加工装置1で用いた補正方法は、ワークWと工具7との相対的な姿勢を変える旋回軸Bを備え、ワークWと工具7との相対的な位置を変更する駆動機構11、13、50、70と、駆動機構11、13、50、70の旋回軸B、およびその他のX軸、Y軸、Z軸の位置を制御する制御部30とを備える加工装置1に適用される。そして、補正方法は、ワークWの製品用の加工前に、近接した位置に、旋回軸Bにおける異なる設定角度θ1、θ2の各々でそれぞれ校正用の加工痕101、102をワークWに形成し、加工痕101、102の相対位置関係と、制御部30が指示する加工形状、すなわち目標とする校正用の加工痕のノミナル相対位置関係との差に基づいて、補正値を取得し、取得された補正値を基に駆動機構11、13、50へ出力される制御値を補正する。この補正方法によれば、加工後のワークWに形成される形状の精度の低下を抑えることができる。とくに、旋回軸B周りに工具7を旋回させる際の工具7の先端位置精度の影響を抑えたい場合に有効である。
 なお、近接した位置に校正用の加工痕101、102をワークWに形成する旨の「近接した位置」とは、上述したように、ワークWに形成された加工痕101、102の位置が、形状測定ユニット20を加工痕101、102に対して相対移動することなしに、加工痕101、102の少なくとも一部を測定可能な位置であってもよい。また、ワークWに形成された加工痕101、102の位置が、形状測定ユニット20のワークWに対する測定方向を変える必要の無い位置に形成されていてもよい。さらにまた、ワークWに形成された加工痕101、102の位置が、加工痕形状データ取得部32で取得したそれぞれの加工痕の形状データが少なくとも一部で分離できるような位置関係であってもよい。
(2)加工装置1は、画像センサーを有した形状測定ユニット20を備える。そして、上記補正方法において、制御部30は、画像センサーで取得できる視野範囲内に形成されたそれぞれの加工痕101、102の三次元形状データと三次元位置情報、または画像センサーの視野範囲内に各々の加工痕の画像が取れるように並進移動機構を制御し、加工痕101および102の画像と、それぞれの画像を取得した時の並進移動機構のエンコーダから得られた位置情報を用いて得られたそれぞれの加工痕101、102の三次元形状データと三次元位置情報に基づき、制御値への補正値、例えば補正データ(-Δx(Θ),-Δy(Θ),-Δz(Θ))を取得する。画像センサーを有した形状測定ユニット20によって複数の加工痕101、102の画像データを取得し、その画像データを基に形状データを算出することで、ワークWを加工装置1に載置したままの状態で、複数の校正用の加工痕101、102の相対位置関係を得ることができる。このため、ワークWを加工装置1から取り外して複数の加工痕101、102の形状を測定する場合に比べて、測定誤差が少ない加工痕101、102の相対位置関係を得ることができる。
(3)上記補正方法において、それぞれの加工痕101、102を形成するときの設定角度は、製品用の加工時に設定される旋回軸Bの設定角度の旋回角度範囲内に含まれるように設定される。また、製品用の加工時に設定される旋回角度範囲の角度の最大値および最小値の差よりも小さな角度差を有するように設定されるようにした。校正用の加工を行う設定角度θ1、θ2よりも大きい設定角度については、上記複数の設定角度θ1、θ2における相違情報を外挿することによって、その設定角度に対応する補正値を取得する。これにより、校正用の加工時に設定角度を大きく振らなくても、製品用の加工時に設定される設定角度に対応する補正値、例えば補正データ(-Δx(Θ),-Δy(Θ),-Δz(Θ))を得ることができる。
(4)上記(2)の形状測定ユニット20は、駆動機構40~60が具備する移動軸(X軸、Y軸、Z軸)上に設けられる。これにより、形状測定ユニット20によってワークWをスリット光で走査する際、あるいは測定対象とする加工痕101(または102)を形状測定ユニット20による視野範囲に収める際に、移動精度が十分高い並進移動のみにより実現できるので、誤差が少ない加工痕101、102の相対位置関係を得ることができる。
(5)上記(4)の形状測定ユニット20は、光切断センサーであり、光切断センサーは、移動軸(X軸、Y軸、Z軸)上に設けられており、光切断センサーは、旋回軸Bを固定した状態で、移動軸(X軸、Y軸、Z軸)による相対移動を行うことで、加工痕101、102が形成された部分を走査し、形状測定ユニット20は、光切断センサーから取得された情報に基づきそれぞれの加工痕101、102の三次元形状を取得する。これにより、誤差が少ない加工痕101、102の相対位置関係を得ることができる。
(6)上述した加工装置1は、ワークWと工具7とを相対的に並進移動軸(X軸、Y軸、Z軸)の方向に位置を変更する駆動機構11、13、50と、ワークWと工具7との相対的な姿勢を変える旋回軸駆動機構70とを備える。これら駆動機構11、13、50および旋回軸駆動機構70が位置変更部を構成する。加工装置1はさらに、位置変更部へ制御量を出力し、ワークWと工具7との相対的な位置を制御する制御部30と、工具7によってワークWの異なる位置に加工された複数の校正用加工痕101、102の形状および位置を測定する形状測定ユニット20と、制御部30が目標とする複数の目標加工形状の相対的位置関係、および形状測定ユニット20によって測定された複数の校正用加工痕101、102の相対的位置関係の差に基づいて、制御量の補正値、例えば補正データ(-Δx(Θ),-Δy(Θ),-Δz(Θ))を算出する制御部30、実施の形態ではとくに比較部/補正データ作成部33を備える。この加工装置1によれば、加工後のワークWに形成される形状の精度の低下を抑えることができる。すなわち、制御部30が目標とする2つの目標加工形状の相対的位置関係と、測定した校正用加工痕101、102の相対的位置関係との差に基づいて算出された制御量の補正値を用いることで、駆動機構11、13、50による並進移動軸方向への移動精度、および旋回軸駆動機構70による旋回軸B周りの旋回の精度のいずれの精度の影響も抑えることができる
(7)上記加工装置1においては、旋回軸駆動機構70の旋回軸Bの周りの旋回角度を変えることによってワークWと工具7との相対的な姿勢を変更することができる。制御部30は、駆動機構11、13、50による並進移動量および旋回軸駆動機構70による旋回角度を制御する。この制御により、複数の校正用加工痕101、102が形成される。形状測定ユニット20は、異なる旋回角度でそれぞれ加工された複数の校正用加工痕101、102の形状および位置を測定する。これにより、とくに、旋回軸駆動機構70により工具7を旋回軸B周りに旋回させた際の工具7の先端の位置精度の影響を抑えたい場合に有効である。
(8)上記加工装置1において、制御部30である比較部/補正データ作成部33は、複数の目標加工形状の相対位置関係と、形状測定ユニット20で測定された複数の校正用加工痕101、102の相対位置関係を示す形状情報との差に基づき、複数の旋回角度ごとに、補正値として並進移動軸(X軸、Y軸、Z軸)の方向の並進移動量の補正値、例えば補正データ(-Δx(Θ),-Δy(Θ),-Δz(Θ))を算出する。これにより、旋回軸駆動機構70により工具7を旋回軸B周りに旋回させた際の工具7の先端位置精度を、旋回角度ごとに、並進移動軸(X軸、Y軸、Z軸)の方向の並進移動量として補正することができる。
(9)上記加工装置1において、制御部30は、比較部/補正データ作成部33によって補正値を算出する前は、複数の目標加工形状を形成するために生成した旋回角度および並進移動量を制御量とし、比較部/補正データ作成部33によって補正値を算出した後は、目標形状情報に基づいて生成した並進移動量および旋回角度に補正値で補正した旋回角度および並進移動量を制御量とする。これにより、補正値を算出する前も後も、それぞれにおいて適切な制御量を得ることができる。
(10)上記加工装置1において、形状測定ユニット20は、駆動機構11、13、50で並進移動軸(X軸、Y軸、Z軸)の方向の並進移動量を変えることにより、ワークWの校正用加工痕101、102との相対的な位置が変更されるようにした。これにより、形状測定ユニット20によってワークWをスリット光で走査する際、あるいは測定対象とする加工痕101(または102)を形状測定ユニット20による視野範囲に収める際に、形状測定時に旋回軸B周りの旋回角度を変化させる場合に比べて、誤差が少ない加工痕101、102の相対位置関係を得ることができる。
(11)上記加工装置1において、形状測定ユニット20は、校正用加工痕101、102の形状測定結果に基づき、少なくとも工具7の径および工具7の長さと工具7の軸方向を取得する。これにより、加工痕101、102の相対位置関係を適切に得ることができる。
(12)上記加工装置1において、形状測定ユニット20は、加工されたワークWが加工装置1に載置されている状態で複数の校正用加工痕101、102の形状および位置を測定するようにした。これにより、ワークWを加工装置1から取り外して複数の加工痕101、102の形状を測定する場合に比べて、測定誤差が少ない加工痕101、102の相対位置関係を得ることができる。
 次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施形態と組み合わせることも可能である。
(変形例1)
 上記実施の形態において、加工装置1はスライドレール9a、縦レール4、横レール3のみ有した並進軸移動手段のみによる3軸構成の位置変更部を有した加工装置であってもよい。
 その場合、少なくともいずれか一つの並進移動機構により工具を移動させて、近接した位置に複数の加工痕を形成し、その複数の加工痕の相対位置関係と、前記制御部が指示する加工形状の相対位置関係との差に基づいて、前記位置変更部へ出力される制御値を補正するようにしてもよい。
 なお、複数の加工痕の相対位置関係を求めるために形状測定ユニット20を加工痕が形成されたワークに対して相対移動させる必要がある場合、なるべく相対移動距離が短くなり、かつ、それぞれの加工痕の一部の形状が分離できるような位置に、複数の加工痕を形成することが好ましい。特に、複数の加工痕を形成する際に行った工具の移動距離よりも、測定時における形状測定ユニット20の移動距離が短いことで、並進移動機構による位置決め誤差により生ずる形状測定誤差を小さくすることができる。
(変形例2)
 上記実施の形態においては、入力部10を介して、目標とする工具7による加工の始点位置(三次元座標)、終点位置(三次元座標)、およびワークWに対する工具7の刃先の角度を示すデータを含む、ツールパス情報を入力する例を説明した。入力部10から入力する代わりに、ティーチング動作によってツールパスを設定するように構成してもよい。
(変形例3)
 上記実施の形態においては、補正データとして、旋回角度Θごとに補正データ(-Δx(Θ),-Δy(Θ),-Δz(Θ))を作成する例を説明した。この代わりに、旋回軸Bの旋回軸駆動機構へ供給する制御データへの旋回角度毎の補正データとして作成してもよい。
 また、旋回軸Bの旋回角度に応じた補正データ以外にも、ワーク主軸Cの旋回角度に応じた補正データや工具主軸Aの回転角度に応じた補正データも同様に作成してもよい。
 変形例3において、比較部/補正データ作成部33は、校正処理の際に、旋回角度Θごとに、位置情報算出部31によって算出された三次元的な位置と、加工痕形状データ取得部32によって算出された三次元的な位置とを比較し、両者の間で相違する相違情報(Δθ)を取得する。比較部/補正データ作成部33はさらに、相違情報(Δθ)に基づき、旋回角度Θを引数とする補正データ(-Δθ(Θ))を作成する。
 変形例3において、5軸NCデータ生成部34は、製品用の加工を行う場合において、生成した5軸の制御量のうちの旋回軸駆動機構70へ出力する制御量を、補正データ(-Δθ(Θ))によって補正する。
(変形例4)
 上記実施の形態においては、校正用の加工として2つの加工痕101および102を形成するようにしたが、3つ以上の加工をおこなってもよい。すなわち、設定角度をθ1にセットして加工する加工痕101と、設定角度をθ2にセットして加工する加工痕102とに加えて、設定角度をθ3にセットして加工する加工痕を形成する。
 なお、複数の加工痕は、完全に分離していなくてもよく、形状測定ユニット20によって、各加工痕を分離して三次元形状を測定できる位置関係にあればよい。
(変形例5)
 形状測定ユニット20は、工具取付け部6の工具取付位置に、工具の代わりに脱着可能に取り付けるものでもよい。
(変形例6)
 形状測定ユニット20は、工具取付け部6ではなく刃物台5の外装部に取り付けられていてもよい。この場合、旋回軸Bにより可動する側に形状測定ユニット20が取り付けられていないので、旋回軸Bの回動による測定位置のズレで生ずる測定誤差を生じさせなくすることができる。
(変形例7)
 なお、被加工物を所定の目的の形状創生のために行う加工前に形成される複数の加工痕の全てを、同一の加工装置で形成するものに限定するものではない。共通の加工ワークに一つは加工装置Aで加工痕を形成し、他方は加工装置Bで加工痕を形成することで、加工装置Aと加工装置Bの加工位置の偏差量を求めることができる。具体的には以下の工程で補正を行う。
 最初に被加工物と第1の工具との相対的な位置を変更する第1の位置変更部と第1の位置変更部を制御する第1の制御部を有した第1の加工装置により、前記被加工物に少なくとも一つの加工痕を形成する。次に、同じ被加工物と第2の工具との相対的な位置を変更する第2の位置変更部と前記第2の位置変更部を制御する第2の制御部を有した第2の加工装置により前記被加工物に、第1の加工装置で形成した加工痕の近傍に、さらに少なくとも一つの第2の加工痕を形成する。第1の加工装置で形成された少なくとも一つの加工痕と第2の加工装置で形成された少なくとも一つの第2の加工痕の相対位置関係と、前記第1の制御部が指示する加工形状と前記第2の制御部が指示する加工形状との相対位置関係との差に基づいて、前記第1または第2の位置変更部のいずれか一方へ出力される制御値を補正する。このようにその複数の加工痕の相対位置関係と、前記制御部が指示する加工形状の相対位置関係との差に基づいて、加工装置Aまたは加工装置Bの少なくとも一方の前記位置変更部へ出力される制御値を補正するようにしてもよい。
 なお、その際は加工装置Aと加工装置Bとは共通の載置台を利用することが好ましい。これにより、加工装置Aと加工装置B間とで加工痕を形成するワークを置きなおすことによる位置ズレ量が位置変更部に出力される制御値に影響を及ぼしにくくなる。
(変形例8)
 本発明で使用する加工装置は、形状測定ユニット20が着脱式であってもよい。その際、加工痕を形成する際には、必ず形状測定ユニット20が取り付けられた状態でなくともよい。少なくとも加工痕の一方を形成する加工装置に、複数の加工痕を測定する際に、取り付け可能な形状測定ユニットであれば良い。
(変形例9)
 上述した説明では、補正データ記憶部35から読み出された補正データ(-Δx(Θ),-Δy(Θ),-Δz(Θ))の活用例として、加工装置1におけるNCデータの補正に用いる場合を説明した。補正データを基にした相違情報(Δx,Δy,Δz)が、目標とする加工形状と、実際に加工した加工痕の形状とのずれであることを鑑みると、上記補正データを以下の用途に用いることもできる。
1.加工指示図
 加工指示図を出力するときに、上記補正データを考慮した加工指示図を出力する。
2.設計図
 設計図を作成するときに、上記補正データを製造誤差の出方情報として用いる。
3.製品の面の許容差を、上記補正データで表す。
 一般に、製品の面は、当該製品の基準面からの寸法に基づいて表されることが多い。しかしながら、基準面からの寸法よりも、製品の面の形状そのものの許容差を表したい場合がある。そこで、加工装置1の旋回軸B周りの旋回角度ごとに算出した上記補正データを、加工装置1で形成される形状の許容差として用いる。
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。実施形態および変形例で示された各構成を組み合わせて用いる態様も本発明の範囲内に含まれる。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 1…加工装置
 5…刃物台
 6…工具取り付け部
 7…工具
11…X軸駆動機構
13…Z軸駆動機構
20…形状測定ユニット
50…Y軸駆動機構
70…旋回軸駆動機構
101、102…加工痕
 θ1、θ2…旋回角の設定角度
 A…工具主軸
 B…旋回軸
 C…ワーク主軸
 W…ワーク

Claims (17)

  1.  被加工物と工具との相対的な位置を変更する位置変更部と、
     前記位置変更部を制御する制御部とを備える加工装置の補正方法において、
     複数の加工痕を形成し、
     前記複数の加工痕の相対位置関係と、前記制御部が指示する加工形状の相対位置関係との差に基づいて、前記位置変更部へ出力される制御値を補正する加工装置の補正方法。
  2.  請求項1に記載の加工装置の補正方法において、
     前記位置変更部は、さらに前記被加工物と前記工具との相対的な姿勢を変える旋回軸を備え、
     前記複数の加工痕は、前記旋回軸における異なる設定角度の各々でそれぞれ加工痕が形成されている加工装置の補正方法。
  3.  請求項2に記載の加工装置の補正方法において、
     前記複数の加工痕は、前記被加工物の表面において近接した位置に形成されている加工装置の補正方法。
  4.  請求項2または3に記載の加工装置の補正方法において、
     前記加工痕の相対位置関係が求められる加工痕のそれぞれは、
     前記位置変更部に設けられ、前記加工痕の相対位置関係を求める際に用いられる形状測定ユニットにより、前記複数の加工痕のそれぞれを順次測定する間に、前記旋回軸による回動移動の必要が無い位置に形成されている加工装置の補正方法。
  5.  請求項4に記載の加工装置の補正方法において、
     前記加工装置は、前記位置変更部により前記加工痕に対して相対的に位置を変更可能に保持された画像センサーを有した形状測定ユニットを備え、
     前記画像センサーで取得できる視野範囲内に、形成された前記加工痕の少なくとも一部の形状データに基づき、前記制御部は、前記制御値への補正値を取得する加工装置の補正方法。
  6.  請求項4に記載の加工装置の補正方法において、
     前記それぞれの加工痕を形成するときの前記設定角度は、製品製造のための加工時に設定される前記旋回軸の旋回角度を含んで設定される旋回角度範囲の間で設定される加工装置の補正方法。
  7.  請求項5に記載の加工装置の補正方法において、
     前記形状測定ユニットは、前記位置変更部または前記位置変更部が具備する移動軸上に設けられている加工装置の補正方法。
  8.  請求項7に記載の加工装置の補正方法において、
     前記形状測定ユニットは、光切断センサーであり、
     前記光切断センサーは、前記移動軸上に設けられており、
     前記光切断センサーは、前記旋回軸を固定した状態で、前記移動軸による相対移動を行うことで、前記加工痕が形成された部分を走査し、
     前記形状測定ユニットは、前記光切断センサーから取得された情報に基づき前記それぞれの加工痕の三次元形状を取得する
     加工装置の補正方法。
  9.  請求項1に記載の加工装置の補正方法において、
     前記複数の加工痕は、前記位置変更部で前記工具の前記被加工物に対する相対位置を変えながら、前記工具により形成する加工装置の補正方法。
  10.  請求項1に記載の加工装置の補正方法において、
     前記被加工物と第1の工具との相対的な位置を変更する第1位の位置変更部と前記位置変更部を制御する第1の制御部を有した第1の加工装置により前記被加工物に少なくとも一つの加工痕を形成し、
     前記被加工物と第2の工具との相対的な位置を変更する第2の位置変更部と前記第2の位置変更部を制御する第2の制御部を有した第2の加工装置により前記被加工物に前記少なくとも一つの加工痕の近傍に、さらに少なくとも一つの第2の加工痕を形成し、
     前記少なくとも一つの加工痕と前記少なくとも一つの第2の加工痕の相対位置関係と、前記第1の制御部が指示する加工形状と前記第2の制御部が指示する加工形状との相対位置関係との差に基づいて、前記第1または第2の位置変更部のいずれか一方へ出力される制御値を補正する加工装置の補正方法。
  11.  被加工物と工具とを相対的に位置を変更する位置変更部と、
     前記位置変更部へ制御量を出力し、前記被加工物と前記工具との相対的な位置を制御する制御部と、
     前記工具によって前記被加工物の異なる位置に加工された複数の校正用加工痕の位置を測定する形状測定部と、
     前記制御部が目標とする複数の目標加工形状の相対的位置関係と、前記形状測定部によって測定された前記複数の校正用加工痕の相対的位置関係との差に基づいて得られた、前記制御量の補正値により前記制御部から前記位置変更部へ与えられる制御量を補正する補正部とを備える加工装置。
  12.  請求項11に記載の加工装置において、
     前記位置変更部は、前記被加工物と前記工具との相対的な姿勢を変える旋回軸移動機構を備え、かつ前記旋回軸移動機構の旋回軸の周りの旋回角度を変えることによって前記被加工物と前記工具との相対的な姿勢を変更し、
     前記制御部は、前記位置変更部による並進移動量および前記旋回角度を制御して、前記複数の校正用加工痕を形成するように制御し、
     前記形状測定部は、異なる前記旋回角度でそれぞれ加工された前記複数の校正用加工痕の形状および位置を測定する加工装置。
  13.  請求項12に記載の加工装置において、
     さらに、前記複数の目標加工形状の相対位置関係と、前記測定された前記複数の校正用加工痕の相対位置関係を示す形状情報との差に基づき、前記補正値として、複数の前記旋回角度ごとに設定された並進移動軸の方向の並進移動量の補正値を算出する補正値算出部を備える加工装置。
  14.  請求項13に記載の加工装置において、
     前記制御部は、前記補正値算出部によって前記補正値を算出する前は、前記複数の目標加工形状を形成するために生成した前記旋回角度または前記並進移動量を前記制御量とし、前記補正値算出部によって前記補正値を算出した後は、前記補正部により目標形状情報に基づいて生成した前記並進移動量または前記旋回角度に対して前記補正値で補正した前記旋回角度および前記並進移動量を、前記制御量として前記位置変更部に出力する加工装置。
  15.  請求項13から請求項14のいずれか一項に記載の加工装置において、
     前記形状測定部は、前記位置変更部で前記並進移動軸の方向の前記並進移動量を変えることにより、前記被加工物の前記校正用加工痕との相対的な位置が変更される加工装置。
  16.  請求項11から請求項14のいずれか一項に記載の加工装置において、
     前記形状測定部は、前記校正用加工痕の形状測定結果に基づき、少なくとも前記工具の径および前記工具の長さと前記工具の軸方向を取得する加工装置。
  17.  請求項11から請求項16のいずれか一項に記載の加工装置において、
     前記形状測定部は、加工された前記被加工物が加工装置に載置されている状態で前記複数の校正用加工痕の形状および位置を測定する加工装置。
PCT/JP2016/052825 2016-01-29 2016-01-29 加工装置の補正方法および加工装置 WO2017130412A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017563656A JP6642593B2 (ja) 2016-01-29 2016-01-29 加工装置の補正方法および加工装置
PCT/JP2016/052825 WO2017130412A1 (ja) 2016-01-29 2016-01-29 加工装置の補正方法および加工装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/052825 WO2017130412A1 (ja) 2016-01-29 2016-01-29 加工装置の補正方法および加工装置

Publications (1)

Publication Number Publication Date
WO2017130412A1 true WO2017130412A1 (ja) 2017-08-03

Family

ID=59397559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052825 WO2017130412A1 (ja) 2016-01-29 2016-01-29 加工装置の補正方法および加工装置

Country Status (2)

Country Link
JP (1) JP6642593B2 (ja)
WO (1) WO2017130412A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107941644A (zh) * 2017-12-28 2018-04-20 中铁隧道局集团有限公司 测量三自由度滚刀破岩及磨损的实验装置及配套的滚刀滑差率及滑动距离测量方法
CN110757247A (zh) * 2019-12-02 2020-02-07 新代科技(苏州)有限公司 整合量测的加工控制系统
WO2021206172A1 (ja) * 2020-04-10 2021-10-14 株式会社牧野フライス製作所 加工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079303A (ja) * 1993-06-23 1995-01-13 Kobe Steel Ltd 工作機械の機械パラメータの補正方法及びその装置
JP2004009293A (ja) * 2003-08-11 2004-01-15 Toshiba Mach Co Ltd 工作機械の加工適否チェック方法
JP2008073782A (ja) * 2006-09-19 2008-04-03 Shibuya Kogyo Co Ltd 加工装置の位置ずれ補正装置およびその方法
JP2009223440A (ja) * 2008-03-13 2009-10-01 Disco Abrasive Syst Ltd ワーク加工方法およびワーク加工装置
WO2014068709A1 (ja) * 2012-10-31 2014-05-08 株式会社牧野フライス製作所 工作機械の制御装置および工作機械

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05337785A (ja) * 1992-06-05 1993-12-21 Hitachi Constr Mach Co Ltd 研削ロボットの研削経路修正装置
JP5956952B2 (ja) * 2013-05-10 2016-07-27 株式会社牧野フライス製作所 数値制御工作機械

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079303A (ja) * 1993-06-23 1995-01-13 Kobe Steel Ltd 工作機械の機械パラメータの補正方法及びその装置
JP2004009293A (ja) * 2003-08-11 2004-01-15 Toshiba Mach Co Ltd 工作機械の加工適否チェック方法
JP2008073782A (ja) * 2006-09-19 2008-04-03 Shibuya Kogyo Co Ltd 加工装置の位置ずれ補正装置およびその方法
JP2009223440A (ja) * 2008-03-13 2009-10-01 Disco Abrasive Syst Ltd ワーク加工方法およびワーク加工装置
WO2014068709A1 (ja) * 2012-10-31 2014-05-08 株式会社牧野フライス製作所 工作機械の制御装置および工作機械

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107941644A (zh) * 2017-12-28 2018-04-20 中铁隧道局集团有限公司 测量三自由度滚刀破岩及磨损的实验装置及配套的滚刀滑差率及滑动距离测量方法
CN107941644B (zh) * 2017-12-28 2023-06-20 中铁隧道局集团有限公司 测量三自由度滚刀破岩及磨损的实验装置及配套的滚刀滑差率及滑动距离测量方法
CN110757247A (zh) * 2019-12-02 2020-02-07 新代科技(苏州)有限公司 整合量测的加工控制系统
WO2021206172A1 (ja) * 2020-04-10 2021-10-14 株式会社牧野フライス製作所 加工方法
JP2021168043A (ja) * 2020-04-10 2021-10-21 株式会社牧野フライス製作所 加工方法
JP7026718B2 (ja) 2020-04-10 2022-02-28 株式会社牧野フライス製作所 加工方法

Also Published As

Publication number Publication date
JPWO2017130412A1 (ja) 2018-11-22
JP6642593B2 (ja) 2020-02-05

Similar Documents

Publication Publication Date Title
JP6913102B2 (ja) ビーム加工機械の軸較正
JP5725796B2 (ja) 工具の測定方法及び測定装置、並びに工作機械
JP6667376B2 (ja) 部品圧入方法および部品圧入システム
US20100228384A1 (en) Method and device for generating transformed control data for controlling a tool on a machine tool
KR101406842B1 (ko) 크랭크 축의 가공 방법, 크랭크 축의 가공 장치, 제어 장치및 프로그램
JP2016083729A (ja) 幾何誤差同定システム、及び幾何誤差同定方法
EP2584419B1 (en) CNC machine for cutting with plasma, oxygen and water jet used as a cutting tool with automatic setting up a precise position of a cutting tool in a cutting head by autocalibration and method thereof
JP5219974B2 (ja) 加工制御装置、レーザ加工装置およびレーザ加工システム
JP2007044802A (ja) 多軸工作機械における旋回軸中心測定方法
JP2009012083A (ja) 工作機械の運動誤差測定方法及び運動誤差測定装置
JP5317627B2 (ja) 誤差補正方法
JP2007168013A (ja) 工具刃先位置演算方法及び工作機械
WO2017130412A1 (ja) 加工装置の補正方法および加工装置
JP5693662B2 (ja) 変位測定器の自動心出し方法及び変位測定機能を有する工作機械
JP4503326B2 (ja) 工具経路データ生成装置及びこれを備えた制御装置
JP2014075050A (ja) 加工システム、及びその加工方法
JP2015186831A (ja) ヘリカルギヤの加工方法、及び加工装置
JP6440183B2 (ja) ワーク加工処理装置
US20230152772A1 (en) Positional relationship measurement method and machining apparatus
JP7192758B2 (ja) 加工装置および加工方法
JP2017124485A (ja) 工作機械および工具先端位置の補正方法
JP6467208B2 (ja) Nc工作機械、その円ないし球面加工方法及び加工プログラム
JP2002001568A (ja) Nc制御3次元レーザ加工機におけるレーザ加工ヘッドのパラメータ設定方法およびnc制御3次元レーザ加工機
JP2015093332A (ja) 較正機能付きワーク加工装置
JP2004174586A (ja) 数値制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887998

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017563656

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16887998

Country of ref document: EP

Kind code of ref document: A1