WO2009136514A1 - 異形断面コイルばね - Google Patents

異形断面コイルばね Download PDF

Info

Publication number
WO2009136514A1
WO2009136514A1 PCT/JP2009/053154 JP2009053154W WO2009136514A1 WO 2009136514 A1 WO2009136514 A1 WO 2009136514A1 JP 2009053154 W JP2009053154 W JP 2009053154W WO 2009136514 A1 WO2009136514 A1 WO 2009136514A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
cross
section
coil spring
fatigue strength
Prior art date
Application number
PCT/JP2009/053154
Other languages
English (en)
French (fr)
Inventor
寿雄 磯部
純 松本
Original Assignee
株式会社東郷製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東郷製作所 filed Critical 株式会社東郷製作所
Priority to CN2009801162299A priority Critical patent/CN102016344B/zh
Priority to US12/736,596 priority patent/US8393602B2/en
Priority to JP2010511032A priority patent/JP5127921B2/ja
Publication of WO2009136514A1 publication Critical patent/WO2009136514A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • F16F1/042Wound springs characterised by the cross-section of the wire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type

Definitions

  • the present invention relates to a modified cross-section coil spring, and more particularly to a modified cross-section coil spring obtained by coiling a coil wire having a modified cross section and then applying a fatigue strength improvement treatment.
  • a coil spring is made of a coil wire having a circular cross section.
  • the surface stress generated on the circumference of the cross section of the coil wire becomes larger on the inner peripheral side than on the outer peripheral side of the coil. This is because the surface stress generated on the cross-sectional circumference of the coil wire is generated under the influence of the shearing force in addition to the influence (torsional force) that the coil wire is curved. For this reason, in this type of coil spring, cracks that cause breakage are likely to occur on the inner circumference side of the coil where the surface stress increases.
  • the cross-section of the coil wire is an odd-shaped cross section that is close to an oval cross section.
  • a coil spring is known (for example, see Japanese Patent Application Laid-Open No. 59-190528).
  • this irregular cross-section coil spring has an oval portion 81 on the inner peripheral side of the coil and a flat portion 82 on the outer peripheral side of the coil in the longitudinal cross section along the coil axial direction of the coil wire 80.
  • the vertical cross-sectional outline of the coil wire 80 is composed of a curved portion (CBADE) and a straight portion (CD).
  • shaft among the longitudinal cross-sectional outlines of the coil strand 80 is made into the innermost end A of a deformed cross-section coil spring.
  • the “coil inner peripheral side” means the coil inner peripheral side (center side of the coil spring) in the longitudinal section along the coil axial direction of the coil wire unless otherwise specified.
  • the “circumferential side” is the coil inner peripheral side (center side of the coil spring) in the longitudinal section along the coil axis direction of the coil wire,
  • this modified cross-section coil spring by providing the flat portion 82 at the outermost part of the coil spring, the stress sharing when the axial load is applied can be increased on the outer periphery side of the coil, and as a result, the axial load is applied. It is described that the surface stress can be equalized on the cross-sectional circumference of the coil wire 80.
  • a coil spring (including a modified cross-section spring) is generally subjected to a fatigue strength improving process such as a shot peening process in order to improve the fatigue strength.
  • the coil spring has a three-dimensional structure (coil wire overlapping condition, etc.) that is easy to shoot shot peening (for example, near the innermost end A shown in FIG. 8) and difficult to process (for example, FIG. 8 and the vicinity of the B end or the E end) from the part on the way from the innermost end A to the B end or the E end.
  • the degree of improvement in the fatigue strength of the coil spring by shot peening or the like cannot be equivalent in the circumferential direction of the cross section of the coil wire.
  • Fig. 9 shows the distribution of the fatigue strength ratio on the inner peripheral side of the coil (from the A end to the vicinity of the B end) when a general coil spring is subjected to a fatigue strength reduction process such as shot peening.
  • the position (A end) where the deviation angle ⁇ is 0 ° is the closest position to the central axis of the coil.
  • the B end is at a position where the declination ⁇ is 90 °
  • the E end is at a position where the declination ⁇ is 270 °.
  • the fatigue strength ratio is the ratio of the fatigue strength at the position where the deflection angle is each angle when the fatigue strength at the position (A end) where the deflection angle ⁇ is 0 ° is 1.0 (100%). It is.
  • the fatigue strength improvement treatment when applied to a general coil spring, the fatigue strength ratio is changed from the A side (innermost end) to the B end (or E end) side of the coil spring. It decreases toward. That is, in the circumferential direction of the coil strand, the shot peening process becomes more difficult from the portion closest to the coil central axis (A end side, near 0 °) toward the B end or E end along the circumferential direction of the cross section. As the degree increases, the degree of improvement in fatigue strength decreases. This also applies to the conventional modified cross-section coil spring.
  • the bias of the surface stress distribution when an axial load is applied is improved by making the vertical cross-sectional outline (cross-sectional shape) of the coil wire 80 a predetermined abnormal shape.
  • the fatigue strength after the fatigue crack strength improvement treatment such as shot peening treatment is not taken into consideration.
  • the iso-stress design cross-sectional outline in the conventional modified cross-section coil spring cannot be an iso-fatigue strength cross-section line. That is, in the circumferential direction of the cross section of the coil wire 80, there is a portion with low fatigue strength on the inner circumferential side of the coil.
  • the conventional irregular cross-section coil is designed with a vertical cross-sectional outline of the coil wire 80 with a small number of drawing parameters. If the number of drawing parameters is small, the design cannot be made while finely adjusting the profile of the longitudinal section. For this reason, in the conventional modified cross-section coil, even if an attempt is made to finely adjust the vertical cross-sectional contour line in consideration of the circumferential distribution of the degree of fatigue strength improvement by the fatigue strength improvement processing, it cannot sufficiently cope with it.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a modified cross-section coil spring having more uniform and higher fatigue strength along the circumferential direction of the cross section of the coil wire.
  • the present inventor has newly created a vertical cross section contour formula in which the cross section parameters are newly subdivided in order to make it possible to design a heel while finely adjusting the vertical cross section contour.
  • the effect of the fatigue strength improvement treatment on the surface stress distribution was investigated, and the distribution of the degree of fatigue strength improvement in the circumferential direction of the coil wire was obtained by experiments and the like.
  • the parameter value in the new formula of the longitudinal cross-section contour is studied and calculated by the finite element method (FEM), and the equal fatigue strength
  • FEM finite element method
  • the vertical cross-sectional outline of the coil wire was designed so as to approach the cross-sectional line, and the present invention was completed. Furthermore, it was confirmed that the shape on the outer peripheral side of the coil in the vertical cross-sectional outline does not significantly affect the surface stress distribution on the inner peripheral side of the coil.
  • the modified sectional coil spring of the present invention thus completed is a modified sectional coil spring obtained by coiling a coil wire having a modified section into a spring shape and then applying a fatigue strength improving process including a shot peening process.
  • a fatigue strength improving process including a shot peening process.
  • the longitudinal cross-sectional contour line along the coil axis direction of the coil strand is centered on the pole.
  • the coil has a substantially elliptical shape with the radial direction of the coil as the major axis direction, and the longest diameter side maximum diameter of the longitudinal section contour line is 2LR, the minor diameter side maximum diameter of the longitudinal section contour line is 2SR, and the center in the major axis direction
  • the offset coefficient is ⁇ b
  • the pole is the origin
  • the start line is the positive part of the x-axis
  • the inner x-axis coefficient is nxr
  • the inner y-axis coefficient is nyr.
  • x (LR ⁇ b) cos nxr ⁇ + ⁇ b
  • y SRsin nyr ⁇ (2)
  • is the polar angle of the polar coordinate system, and 0 ° ⁇ ⁇ ⁇ 90 °, 270 ° ⁇ ⁇ ⁇ 360 °, 0.7 ⁇ nxr ⁇ 0.9, 0.8 ⁇ nyr ⁇ 1.0, 0.1SR ⁇ ⁇ b ⁇ 0.3SR.
  • the coil axis direction is the center axis direction of the deformed section coil spring.
  • the coil radial direction is a direction perpendicular to the central axis direction of the deformed section coil spring.
  • the approximate oval shape is not a geometrically defined oval shape, but a shape that approximates an oval shape.
  • This substantially elliptical outline is determined based on a predetermined formula, and includes both a curve portion only and a curve portion and a straight line portion.
  • the coil inner peripheral side portion of the longitudinal cross-sectional outline of the coil wire is expressed by the above formulas (1) and (2). That is, in the modified cross-section coil spring of the present invention, in order to design the coil inner peripheral side portion of the longitudinal cross-section contour line, a new parameter including three parameters of the center offset coefficient ⁇ b, the inner x-axis coefficient nxr, and the inner y-axis coefficient nyr is included. The following formula is used. Thereby, it becomes possible to design while adjusting the coil inner peripheral side part of a longitudinal cross-section outline finely.
  • the range of the three parameters of the center offset coefficient ⁇ b, the inner x-axis coefficient nxr, and the inner y-axis coefficient nyr in the expressions (1) and (2) indicates that the fatigue strength improving process including the shot peening process is subjected to the surface stress distribution.
  • the fatigue strength is set to be more uniform and high in the circumferential direction of the cross section of the coil inner circumferential side portion.
  • the modified cross-section coil spring of the present invention has a more uniform and higher fatigue strength in the coil inner circumferential side portion in the circumferential direction of the coil strand.
  • the coil outer peripheral side portion of the vertical cross-sectional outline is expressed by the following expressions (3) and (4). It is preferable.
  • x ⁇ ⁇ (LR ⁇ b)
  • y SRsin nyl ⁇ (4) (However, in the above equations (3) and (4), 90 ° ⁇ ⁇ ⁇ 270 °, 0.8 ⁇ nxl ⁇ 1.6, 0.3 ⁇ nyl ⁇ 0.6, and ⁇ b is (1 It is equal to the value of ⁇ b in the formulas (2) and (2).)
  • the coil outer peripheral side flange portion of the cross-sectional contour line of the coil wire is expressed by the above formulas (3) and (4).
  • a new equation including three parameters of the center offset coefficient ⁇ b, the outer x-axis coefficient nxl, and the outer y-axis coefficient nyl is used.
  • the range of the three parameters of the center offset coefficient ⁇ b, the outer x-axis coefficient nxl, and the outer y-axis coefficient nyl in the expressions (3) and (4) is such that the portion on the outer periphery side of the coil is a straight line in the vertical cross-sectional outline. Or it is set so that a line close to a straight line may be included in part.
  • the coil strand in which the coil outer peripheral side portion of the vertical cross-sectional outline is expressed by the above formulas (3) and (4) has a flat surface or a substantially flat surface on the coil outer peripheral side.
  • it becomes a coil strand from which the shape of a longitudinal cross-sectional outline differs in a coil inner peripheral side and a coil outer peripheral side.
  • the working efficiency is improved, and a deformed section coil spring having high fatigue strength can be reliably manufactured.
  • the three parameter ranges of the center offset coefficient ⁇ b, the outer x-axis coefficient nxl, and the outer y-axis coefficient nyl in the expressions (3) and (4) indicate that the fatigue strength is higher in the circumferential direction of the coil outer peripheral portion. It is also set to be uniform and high. For this reason, this irregularly shaped cross-section coil spring has a more uniform and high fatigue strength in the entire cross-sectional circumferential direction of the coil wire.
  • the longitudinal section contour line is an equal fatigue strength section line or an equal fatigue strength approximate section line in the range of the declination of at least 10 ° ⁇ ⁇ ⁇ 70 ° and 290 ° ⁇ ⁇ ⁇ 350 °. It is preferable.
  • the approximate equal fatigue strength cross-sectional line is a cross-sectional line maintained within a certain allowable range ( ⁇ 10% from the average value) of fatigue strength.
  • the spring index (D / d) is 3.0 to 6.0, where D is the center of gravity of the coil and d is the rounded wire equivalent diameter of the coil. preferable.
  • the modified cross-section coil spring of the present invention is used for a clutch damper or an automatic transmission lock-up damper of an automotive manual transmission.
  • FIG. 1 shows a vertical cross-sectional outline of a modified cross-section coil spring according to an embodiment in a polar coordinate system.
  • FIG. 2 shows the distribution of the fatigue strength ratio in consideration of the surface stress of the deformed section coil spring after the conventional fatigue strength improvement process and the surface stress of the deformed section coil spring after the fatigue strength improvement process of the present embodiment. This is a comparison of the distribution of the fatigue strength ratio.
  • FIG. 3 shows an adjustable region of the vertical cross-sectional contour line of the modified cross-section coil spring according to the embodiment.
  • FIG. 4 shows the surface stress distribution of the coil inner peripheral side portion of the longitudinal cross-sectional outline of the coil wire of the modified cross-section coil spring according to the embodiment.
  • FIG. 5 shows the surface stress distribution of the coil inner peripheral side portion of the longitudinal cross-sectional outline of the modified cross-section coil spring according to the comparative example.
  • FIG. 6 shows the influence of the center offset coefficient ⁇ b of the modified cross-section coil spring according to the example and the comparative example on the surface stress distribution on the inner peripheral side of the modified cross-section coil spring.
  • FIG. 7 shows the influence of the outer x-axis coefficient nxl and the outer y-axis coefficient nyl of the irregular cross-section coil spring according to the embodiment on the surface stress distribution on the inner peripheral side of the irregular cross-section coil spring.
  • FIG. 8 shows a longitudinal section of a conventional “deformed section” coil spring.
  • FIG. 9 shows the distribution of the fatigue strength ratio of a coil spring after a general coil spring is subjected to the fatigue strength improving soot treatment.
  • the deformed section coil spring of this embodiment is formed by coiling a coil wire into a spring shape. Further, the fatigue strength improving process is performed on the coil spring having a deformed cross section.
  • the fatigue strength improving process includes at least a shot peening process and has other processing steps.
  • the coil wire of the modified cross-section coil spring of the present embodiment has a modified cross-section.
  • the longitudinal cross-sectional outline 10 of the coil wire 1 of the modified cross-section coil spring of the present embodiment is in the coil radial direction from the pole O toward the coil central axis.
  • the shape is substantially elliptical with the pole O as the center and the coil radial direction as the major axis direction.
  • FIG. 1 shows the longitudinal cross-sectional outline 10 which follows the coil axial direction of the coil strand 1 of the irregular cross-section coil spring of this embodiment.
  • the longitudinal cross-sectional outline 10 of the coil wire 1 includes an inner peripheral portion 101 and an outer peripheral portion 102, and the outer peripheral portion 102 further includes two curved portions 1021 and a substantially straight line formed therebetween. A straight portion 1022.
  • the maximum diameter on the major axis side of the longitudinal section contour 10 is 2LR
  • the maximum minor axis side diameter of the longitudinal section contour 10 is 2SR
  • the center offset coefficient in the major axis direction is ⁇ b
  • the pole O is the origin.
  • the longitudinal cross-sectional profile of the coil wire 1 of the modified cross-section coil spring of this embodiment is expressed by the equations (1) and (2).
  • the influence of the fatigue strength improving process including the shot peening process on the surface stress distribution is taken into consideration. It is possible to set so that the fatigue strength is more uniform and higher in the circumferential direction. Moreover, it is more preferable that 0.7 ⁇ nxr ⁇ 0.85, 0.9 ⁇ nyr ⁇ 1.0, and 0.15SR ⁇ ⁇ b ⁇ 0.25SR.
  • the coil outer peripheral side portion 102 of the longitudinal cross-sectional outline 10 of the coil wire 1 of the modified cross-section coil spring of this embodiment is expressed by the above equation (3). And (4).
  • the irregular cross-section coil spring of the present embodiment is the same as the above formulas (3) and (4), in which 90 ° ⁇ ⁇ ⁇ 270 °, 0.8 ⁇ nxl ⁇ 1.6, 0.3 ⁇ nyl ⁇ 0. .6, and ⁇ b is equivalent to the value of ⁇ b in the equations (1) and (2).
  • the fatigue strength can be set to be more uniform and higher in the circumferential direction of the cross section of the coil outer peripheral side portion 102.
  • the deformed cross-section coil spring of the present embodiment can be used in the circumferential direction of the longitudinal cross-sectional outline 10 of the coil wire 1.
  • a deformed section coil spring having a more uniform and higher fatigue strength can be realized along the circumferential direction of the cross section of the coil wire 1 of the deformed section coil spring (shown by a solid line) of the present embodiment.
  • FIG. 2 is a comparison of the fatigue strength ratio with surface stress taken into consideration for the irregular cross-section coil spring (shown by a solid line) of the present embodiment and the conventional irregular cross-section coil spring (shown by a dotted line).
  • “fatigue strength ratio with surface stress” means that the change in the stress in the circumferential direction of the cross-section is taken into account. It means stress.
  • the fatigue strength ratio including the surface stress on the circumference of the longitudinal cross-sectional outline of the coil wire is between 10 ° and 70 ° declination ⁇ .
  • the fatigue strength ratio on the inner circumference side of the coil strand is about 10 degrees of deflection angle ⁇ .
  • the fatigue strength ratio decreases.
  • the declination angle ⁇ is between 10 ° and 45 °, the fatigue strength ratio decreases rapidly.
  • the modified cross-section coil spring (indicated by the solid line) of the present embodiment is the entire cross-sectional circumferential direction of the coil wire 1, particularly the inner peripheral portion 101 (0 ° ⁇ ⁇ ⁇ 90 °, 270 ° ⁇ ⁇ ⁇ The same is true for 360 °), and a fatigue strength ratio that is more uniform in the circumferential direction and that includes surface stress is obtained. Therefore, the modified cross-section coil spring of this embodiment has a more uniform and higher fatigue strength.
  • the longitudinal cross-sectional contour line 10 of the coil wire 1 can be freely set so that the surface stress distribution is more uniform and high. Yes (shown in FIG. 3).
  • FIG. 3 shows an example of an adjustable region of the longitudinal cross-sectional contour line 10 (cross-sectional shape) of the coil wire 1 of the deformed cross-section coil spring of the present embodiment by setting the above five parameters within a predetermined range.
  • the inner x-axis coefficient nxr, the inner y-axis coefficient xyr, and the center offset coefficient ⁇ b are set to predetermined ranges, so that the coil wire is set.
  • a uniform fatigue strength can be maintained at the inner peripheral side portion 101 of one longitudinal section contour line 10, and the outer x-axis coefficient nxl and the outer y-axis coefficient nyl are set within a predetermined range, so that The length and the like of the straight portion 1022 of the outer peripheral side portion 102 of the surface contour line 10 can be freely adjusted.
  • the coil wire 1 of the modified cross-section coil spring of the present embodiment has a flat surface or a substantially flat surface on the outer peripheral side of the coil by adjusting the outer x-axis coefficient nxl and the outer y-axis coefficient nyl to the above ranges. .
  • the shape of the longitudinal cross-section outline 10 becomes the coil strand 1 from which a coil inner peripheral side differs from a coil outer peripheral side, when coiling this coil strand 1 in a deformed cross-section coil spring shape, a coil strand 1 can be easily distinguished from the “coil inner circumference” side and the “coil outer circumference” side, improving the work efficiency and ensuring a deformed cross-section coil spring with high fatigue strength. Can be manufactured.
  • the spring index (D / d) may be set to 3.0 to 6.0, where D is the center of gravity of the coil of the modified cross-section coil spring of the present embodiment, and d is the round wire equivalent diameter of the coil. it can.
  • the center-of-gravity diameter is the coil diameter at the center-of-gravity position of the irregular cross section.
  • the round wire equivalent diameter is the diameter of a true circular line having the same cross-sectional area as that of the irregular cross section.
  • the irregular cross-section coil spring of this embodiment can be manufactured, for example, by the following four steps.
  • the distribution of the fatigue strength improving degree in the circumferential direction of the cross section of the coil wire is obtained by experiments or the like.
  • Coiling is performed using a coil wire having a longitudinal cross-sectional contour line (cross-sectional shape) finally designed, and a deformed cross-section coil spring is manufactured by performing a fatigue strength improvement process.
  • the basic shape of the modified cross-section coil spring is required, so the basic shape is determined in advance.
  • the coil wire 1 (regardless of the cross-sectional shape) is coiled into the basic shape to obtain an experimental coil spring.
  • Fatigue strength improvement processing that is actually performed when manufacturing a modified cross-section coil spring is applied to the experimental coil spring.
  • the distribution of the degree of improvement in fatigue strength caused by the overlapping state of the coil wires 1 is examined. Specifically, the surface stress distribution in the circumferential direction of the coil wire before and after the fatigue strength improving process is obtained, and the distribution of the fatigue strength ratio is obtained from the difference.
  • the method of examining the distribution of the degree of improvement in fatigue strength by experiment is adopted, other methods of examining the fatigue strength ratio by, for example, simulation on a personal computer can also be adopted.
  • the parameter values used in equations (1) to (4) are optimized by the finite element method (FEM), and the cross section of equal fatigue strength
  • FEM finite element method
  • the coil element wire 1 having the finally designed longitudinal cross-sectional outline 10 (cross-sectional shape) is actually coiled and subjected to a fatigue strength improvement process to produce a modified cross-section coil spring.
  • the modified cross-section coil spring of this embodiment manufactured in this way is preferably used for a clutch damper or an automatic transmission lock-up damper of an automobile manual transmission.
  • a longitudinal cross-sectional outline (cross-sectional shape) 10 of the coil wire 1 of the modified cross-section coil spring of the present embodiment is expressed by the above formulas (1) to (4) in the polar coordinate system shown in FIG.
  • the longitudinal cross-sectional outline 10 of the coil wire 1 of the modified cross-section coil spring of this embodiment includes an inner peripheral portion 101 and an outer peripheral portion 102.
  • the outer peripheral portion 102 includes two curved portions 1021 and a substantially straight line portion 1022 formed therebetween.
  • the coil element wire 1 having the vertical cross-sectional contour line 10 satisfying the equations (1) to (4) was coiled and subjected to shot peening treatment under certain conditions to produce a coil spring.
  • the coiling conditions were oil-tempered wire, cold-coiled, and further subjected to low-temperature annealing at 450 ° C for 30 minutes soaking to remove residual stress during coiling.
  • the conditions for the shot peening treatment are as follows: after performing a 1/30 shot peening treatment with a particle diameter of ⁇ 0.6 mm (HV550), soaking at 225 ° C. for 15 minutes or more in order to recover the torsion yield point Low temperature annealing was performed.
  • the inner x-axis coefficient nxr, inner y-axis coefficient nyr, outer x-axis coefficient nxl, outer y-axis coefficient nyl, and center offset coefficient ⁇ b which are parameters related to the above formulas (1) to (4).
  • the influence on the surface stress distribution in the circumferential direction of the coil strand 1 was examined.
  • Examples 1 to 6 In the first to sixth embodiments, the outer x-axis coefficient nxl, the outer y-axis coefficient nyl, and the center offset coefficient ⁇ b in the expressions (1) to (4) are fixed, the inner x-axis coefficient nxr, and the inner y-axis coefficient nyr.
  • Table 1 the surface stress distribution of the inner wire 101 of the coil wire 1 of the irregular cross-section coil spring was simulated by a personal computer (shown in FIG. 4).
  • FIG. 4 shows a simulated surface stress distribution in the longitudinal cross-sectional outline 10 (inner peripheral side portion 101) of the coil wire 1 of Examples 1 to 6. This surface stress distribution is for the coil wire 1 at the time of coiling (before shot peening).
  • the inner x-axis coefficient nxr is set in the range of 0.7 to 0.9
  • the inner y-axis coefficient nyr is set in the range of 0.8 to 1.0.
  • the deflection angle ⁇ is 10
  • the surface stress gradually decreased as the declination angle ⁇ increased between about 45 ° and about 45 °.
  • the difference in the improvement degree of the fatigue strength in the circumferential direction of the longitudinal cross-sectional outline 10 of the coil wire 1 due to the fatigue strength improvement process such as shot peening is considered in advance.
  • Fatigue strength ratio with more uniform surface stress in the circumferential direction by finely manipulating the longitudinal cross-sectional contour line 10 (cross-sectional shape) of the deformed section coil spring using the inner x-axis coefficient nxr and inner y-axis coefficient nyr It was possible to design a modified cross-section coil spring with Therefore, a modified cross-section coil spring having a more uniform and high fatigue strength could be manufactured.
  • the fatigue strength ratio value taking into account the surface stress of the modified cross-section coil spring of this example is substantially uniform in the circumferential direction when the declination angle ⁇ is in the range of 10 ° to 70 °, as shown in FIG. It was.
  • Comparative Examples 1 to 11 are basically the same as Example 1, except that the settings of the inner x-axis coefficient nxr and the inner y-axis coefficient nyr are changed outside the predetermined range.
  • the surface stress distribution of the (inner peripheral side portion 101) of the coil wire 1 of the irregular cross-section coil spring was simulated with a personal computer by changing nxr and nyr as shown in Table 2.
  • FIG. 5 shows the simulated surface stress distribution in the longitudinal cross-sectional contour 10 (inner peripheral side portion 101) of the coil wires 1 of Comparative Examples 1 to 11.
  • the deflection angle ⁇ is 0 ° to 20 along the circumferential direction (inner portion 101) of the longitudinal cross-sectional outline 10 of the coil wire 1.
  • the distribution of surface stress tends to increase. For this reason, even if shot peening is applied to these irregular cross-section coil springs, the fatigue strength ratio taking into account surface stress cannot be effectively equalized in the circumferential direction, and the equivalent fatigue strength (approximate) cross section It cannot be a line.
  • the deflection angle ⁇ is increased along the circumferential direction (inner portion 101) of the longitudinal cross-sectional outline 10 of the coil element wire 1.
  • the surface stress distribution tends to decrease, but when the declination ⁇ exceeds 45 °, it tends to increase rapidly, and the degree thereof is large.
  • the fatigue strength ratio taking into account surface stress cannot be effectively equalized in the circumferential direction, and the equivalent fatigue strength (approximate) cross section It cannot be a line.
  • the inner x-axis coefficient nxr is smaller than 0.7, the surface stress tends to increase rapidly when the declination ⁇ exceeds 45 °, while the inner x-axis coefficient nxr is more than 0.9.
  • the fatigue strength ratio in consideration of the surface stress when the declination ⁇ is around 0 ° tends to be too low.
  • Example 7 to 9 The seventh to ninth embodiments are basically the same as the first embodiment, and the inner x-axis coefficient nxr and inner y-axis coefficient nyr are fixed to 0.75 and 1.0, respectively, and the center offset coefficient ⁇ b is set. This is a modified example.
  • FIG. 6 shows the simulated surface stress distribution in the longitudinal cross-sectional outline 10 (inner peripheral portion 101) of the coil wire 1 of Examples 7 to 9.
  • the deflection angle ⁇ is in the range of 10 ° to 45 ° along the circumferential direction (inner side) of the longitudinal cross-sectional outline 10 of the coil wire 1.
  • the distribution of surface stress tends to decrease in a predetermined manner.
  • the surface stress near the declination ⁇ of 45 ° is lower than the surface stress near 0 °.
  • the center offset coefficient ⁇ b within a predetermined range, it is possible to promote the improvement of the fatigue strength ratio in consideration of the effective surface stress by the shot peening process.
  • the fatigue strength ratio taking the surface stress into account can be finely adjusted so as to have an equal fatigue strength (approximate) cross section line.
  • Comparative Examples 12 and 13 are basically the same as Examples 7 to 9, and are examples in which the setting of the center offset coefficient ⁇ b is changed outside the predetermined range.
  • the deflection angle ⁇ is in the range of 10 ° to 45 ° along the circumferential direction (inner side) of the longitudinal cross-sectional outline 10 of the coil wire 1.
  • the surface stress distribution does not show a predetermined decreasing tendency.
  • the surface stress near the declination ⁇ of 45 ° is higher than the surface stress near 0 °.
  • the fatigue strength ratio taking into account the surface stress by the shot peening process is not effectively improved, and it cannot be an equal fatigue strength (approximate) cross section line.
  • the longitudinal cross-sectional outline 10 of the coil wire 1 is adjusted by adjusting the center offset coefficient ⁇ b within a predetermined range. (Cross sectional shape) is adjusted, and the inclination of the surface stress curve can be finely corrected.
  • Example 10 to 18 In Examples 10 to 18, the inner x-axis coefficient nxr, the inner y-axis coefficient nyr, and the center offset coefficient ⁇ b are fixed in the expressions (1) to (4), the outer x-axis coefficient nxl, and the outer y-axis coefficient nyl.
  • Table 5 The surface stress distribution of the irregular-shaped coil spring was simulated by a personal computer (shown in FIG. 7).
  • FIG. 7 shows a simulated surface stress distribution in the outer peripheral side portion 102 of the longitudinal cross-sectional outline 10 of the irregular cross-section coil springs of Examples 10 to 18.
  • the outer x-axis coefficient nxl and the outer y-axis coefficient nyl in the circumferential direction of the vertical cross-sectional outline 10 of the coil wire 1 are It can be seen that the surface stress distribution of the outer peripheral portion 102 of the contour line 10 is not significantly affected.
  • the shape of the outer peripheral side part 102 of the longitudinal cross-section outline 10 of a coil strand can be determined by setting nxl and nyl.
  • the surface stress distribution on the outer peripheral side can be finely adjusted by changing the outer x-axis coefficient nxl and the outer y-axis coefficient nyl. Further, as shown in FIG. 3, by adjusting the outer x-axis coefficient nxl and the outer y-axis coefficient nyl, the linear shape of the outer peripheral side portion 102 of the longitudinal cross-sectional outline 10 of the coil wire 1 of the deformed section coil spring is adjusted. Can be set from a curve to a straight line or a line close to a straight line. Thereby, the shape of the longitudinal cross-sectional outline 10 becomes the coil strand 1 from which the coil inner peripheral side 101 and the coil outer peripheral side 102 differ.
  • the longitudinal cross-sectional outline (cross-sectional shape) of the coil wire 1 is set.
  • the inner peripheral side portion 101 can be finely adjusted.
  • the outer x-axis coefficient nxl, the outer y-axis coefficient nyl, and the center offset coefficient ⁇ b within a predetermined range, it is possible to finely adjust the outer portion 102 of the longitudinal cross-sectional outline 1 of the coil wire 1. it can.
  • the modified cross-section coil spring of the present invention is suitably used for a clutch damper or an automatic transmission lock-up damper of an automobile manual transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Springs (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

本発明の異形断面コイルばねは、異形断面を有するコイル素線をばね形状にコイリングしてから、ショットピーニング処理を含む疲労強度改善処理を施してなり、該異形断面コイルばねの縦断面輪郭線のコイル内周側部分は、極座標系及び直交座標系において、下記(1)式及び(2)式で表されることを特徴とする。   x=(LR-Δb)cosnxrθ+Δb       …(1)   y=SRsinnyrθ               …(2)  (ただし、(1)式及び(2)式において、θは極座標系の偏角であり、かつ、0°≦θ<90°、270°≦θ<360°、0.7≦nxr≦0.9、0.8≦nyr≦1.0、0.1SR≦Δb≦0.3SRである。) 本発明によれば、コイル素線の断面周方向に沿ってより均等且つ高い疲労強度を有する異形断面コイルばねを提供することができる。

Description

異形断面コイルばね
 本発明は異形断面コイルばねに関し、詳しくは異形断面のコイル素線をコイリングしてから疲労強度改善処理を施してなる異形断面コイルばねに関する。
 一般に、コイルばねは断面が円形のコイル素線によって作られる。この種のコイルばねにコイル軸方向の荷重が作用すると、コイル素線の断面周上に発生する表面応力はコイルの外周側よりも内周側で大きくなる。このコイル素線の断面周上に発生する表面応力は、コイル素線が湾曲している影響(ねじり力)に加えて剪断力の影響を受けて発生するからである。このため、この種のコイルばねでは、表面応力の高くなるコイル内周側で、折損の原因となるクラックが発生しやすい。
そこで、コイル軸方向の荷重が作用したときに発生する、コイル素線の断面周上における表面応力の偏りをできるだけ少なくするために、コイル素線の断面を卵形に近い異形断面とした異形断面コイルばねが知られている(例えば、特開昭59-190528号公報を参照)。
 この異形断面コイルばねは、図8に示されるように、コイル素線80のコイル軸方向に沿う縦  断面において、コイル内周側に卵形部81を有し、コイル外周側に扁平部82を有している。すなわち、コイル素線80の縦断面輪郭線が曲線部分(C-B-A-E-D)と直線部分(C-D)とにより構成されている。なお、コイル素線80の縦断面輪郭線のうち最もコイル中心軸に近い部位が、異形断面コイルばねの最内側端Aとされる。また、
本明細書において、「コイル内周側」とは、特に断らない限り、コイル素線のコイル軸方向に沿う縦断面におけるコイル内周側(コイルばねの中心側)のことであり、「コイル内周側」とは、特に断らない限り、コイル素線のコイル軸方向に沿う縦断面におけるコイル内周側(コイルばねの中心側)のことであり、
 この異形断面コイルばねでは、コイルばねの最外側部に扁平部82を設けることで、軸方向荷重が作用したときの応力分担をコイル外周側で大きくすることができ、その結果軸方向荷重が作用したときの表面応力をコイル素線80の断面周上において均等化できると、記載されている。
 ところで、コイルばね(異形断面ばねを含む)は、一般に、疲労強度を向上させる為にショットピーニング処理等の疲労強度改善処理が施される。しかし、コイルばねには、その立体的構造(コイル素線の重なり具合など)により、  ショットピーニング処理しやすい部位(例えば、図8に示す最内側端A付近)と処理し難い部位(例えば、図8に示す最内側端AからB端又はE端に向かう途中の部位からB端又はE端付近)が存在する。このため、ショットピーニング処理等によるコイルばねの疲労強度改善度合は、コイル素線の断面周方向に同等とはなり得ない。
 一般のコイルばねに対して、ショットピーニング等の疲労強度 改善処理を施した場合の、コイル内周側(A端からB端付近まで)における疲労強度割合の分布を図9に示す。なお、図9では、極座標系において、偏角θが0°となる位置(A端)がコイルの中心軸に一番近い位置である。また、B端は偏角θが90°となる位置にあり、E端は偏角θが270°となる位置にある。なお、疲労強度割合とは、偏角θが0°である位置(A端)の疲労強度を1.0(100%)とした場合の、偏角が各角度である位置の疲労強度の割合である。
 また、図9から理解できるように、一般のコイルばねに疲労強度改善 処理を施した場合、疲労強度割合は、コイルばねのA側(最内側端)からB端(或はE端)側に向かって低下する。つまり、コイル素線の断面周方向において、コイル中心軸に一番近い部位(A端側、0°付近)から断面周方向に沿って、B端或いはE端に向かうほど、ショットピーニング処理の難易度が増すことに連れて疲労強度の改善度合が低下する。このことは、従来の異形断面コイルばねでも同様である。
 ところが、従来の異形断面コイルばねにおいては、コイル素線80の縦断面輪郭線(断面形状)を所定の異形状にすることで、軸方向荷重が作用したときの表面応力分布の偏りを改善しようとしているが、ショットピーニング処理等の疲労  強度改善処理後の疲労強度までは考慮していない。このため、従来の異形断面コイルばねにおける等応力設計断面輪郭線は、等疲労強度断面線とはなり得ない。つまり、コイル素線80の断面周方向において、コイル内周側に疲労強度の低い部位が存在する。
 また、従来の異形断面コイルは、少ない作画パラメータ数でコイル素線80の縦断面輪郭線を設計している。作画パラメータ数が少ないと、縦断面輪郭線を細かく調整しつつ設計することができない。このため、従来の異形断面コイルでは、疲労強度改善処理による疲労強度改善度合の周方向分布を考慮した上で、縦断面輪郭線を細かく調整しようとしても、それに十分に対応することができない。
 本発明は上記した実情に鑑みてなされたものであり、コイル素線の断面周方向に沿ってより均等且つ高い疲労強度を有する異形断面コイルばねを提供することを課題とする。
 本発明者は、縦断面輪郭線を細かく調整しつつ 設計することを可能とするために、新たに断面パラメータを細分化した縦断面輪郭線の式を創作した。また、疲労強度改善処理が表面応力分布に及ぼす影響を調べ、コイル素線の断面周方向における疲労強度改善度合の分布を実験等により求めた。そして、コイル素線の断面周方向における疲労強度改善度合の分布を加味しつつ、前記縦断面輪郭線の新たな式におけるパラメータ値を有限要素法(FEM)で検討、算出して、等疲労強度断面線に近づくようにコイル素線の縦断面輪郭線を設計し、本発明を完成した。さらに、縦断面輪郭線のうちコイル外周側の形状は、コイル内周側の表面応力分布にさほど影響を与えないことを確認した。
 (1)こうして完成した本発明の異形断面コイルばねは、異形断面を有するコイル素線をばね形状にコイリングしてから、ショットピーニング処理を含む疲労強度改善処理を施してなる異形断面コイルばねであって、極と、該極からコイル中心軸に向かってコイル半径方向に延びる始線とを有する極座標系において、前記コイル素線のコイル軸方向に沿う縦断面輪郭線は、前記極を中心とするとともに前記コイル半径方向を長径方向とする略楕円形をなし、かつ、前記縦断面輪郭線の長径側最大径を2LR、前記縦断面輪郭線の短径側最大径を2SR、前記長径方向における中心オフセット係数をΔbとするとともに、前記極を原点、前記始線をx軸の正の部分とする直交座標系において、内側x軸係数をnxr、内側y軸係数をnyrとしたとき、前記縦断面輪郭線のコイル内周側部分が下記(1)式及び(2)式で表されることを特徴とする。
  x=(LR-Δb)cosnxrθ+Δb       …(1)
  y=SRsinnyrθ               …(2)
 (ただし、前記(1)式及び(2)式において、θは前記極座標系の偏角であり、かつ、0°≦θ<90°、270°≦θ<360°、0.7≦nxr≦0.9、0.8≦nyr≦1.0、0.1SR≦Δb≦0.3SRである。)
ここで、前記コイル軸方向とは異形断面コイルばねの 中心軸方向のことである。また、前記コイル半径方向とは異形断面コイルばねの中心軸方向と垂直な方向のことである。
 前記略楕円形とは、幾何学的に定義される楕円形ではなく、楕円形に近似した形状をいう。この略楕円形の輪郭線は、所定の式に基づいて決定され、曲線部のみからなるもの及び曲線部と直線部とからなるものの双方を含む。
 本発明の異形断面コイルばねでは、コイル素線の縦断面輪郭線のコイル内周側部分が前記(1)式及び(2)式で表される。すなわち、本発明の異形断面コイルばねでは、縦断面輪郭線のコイル内周側部分を設計するために、中心オフセット係数Δb、内側x軸係数nxr及び内側y軸係数nyrという3つのパラメータを含む新たな式が用いられる。これにより、縦断面輪郭線のコイル内周側部分を細かく調整しつつ設計することが可能となる。
 また、前記(1)式及び(2)式における中心オフセット係数Δb、内側x軸係数nxr及び内側y軸係数nyrの3つのパラメータの範囲は、ショットピーニング処理を含む疲労強度改善処理が表面応力分布に及ぼす影響を考慮して、コイル内周側部分の断面周方向において疲労強度がより均等且つ高くなるように設定されている。
 したがって、本発明の異形断面コイルばねは、コイル素線の断面周方向のうちでコイル内周側部分において、より均等且つ高い疲労強度を有する。
 (2)前記直交座標系において、外側x軸係数をnxl、外側y軸係数をnylとしたとき、前記縦断面輪郭線のコイル外周側部分が下記(3)式及び(4)式で表されることが好ましい。
  x=-{(LR-Δb)|cosnxlθ|-Δb}    …(3)
  y=SRsinnylθ                 …(4)
 (ただし、前記(3)式及び(4)式において、90°≦θ<270°、0.8≦nxl≦1.6、0.3≦nyl≦0.6であり、Δbは前記(1)式及び(2)式におけるΔbの値に等しい。)
 この構成によると、コイル素線の断面輪郭線のコイル外周側 部分が前記(3)式及び(4)式で表される。すなわち、縦断面輪郭線のコイル外周側部分を設計するために、中心オフセット係数Δb、外側x軸係数nxl及び外側y軸 係数nylという3つのパラメータを含む新たな式が用いられる。これにより、縦断面輪郭線のコイル外周側部分を細かく調整しつつ設計することが可能となる。
 また、前述のとおり、コイル素線の縦断面輪郭線のうちコイル 外周側の形状は、コイル内周側の表面応力分布にさほど影響を与えないことが、本発明者の実験等により判明している。そこで、前記(3)式及び(4)式における中心オフセット係数Δb、外側x軸係数nxl及び外側y軸係数nylの3つのパラメータの範囲は、縦断面輪郭線のうちコイル外周側の部分が直線又は直線に近い線を一部に含むように設定されている。すなわち、縦断面輪郭線のコイル外周側部分が前記(3)式及び(4)式で表されるコイル素線は、コイル外周側に平坦面又はほぼ平らな面を有する。これにより、縦断面輪郭線の形状がコイル内周側とコイル外周側とで異なるコイル素線となる。このため、このコイル素線をコイルばね形状にコイリングする際に、コイル素線の「コイル内周側になる」側と「コイル外周側になる」側とを簡単に識別することができ、その作業効率が向上するとともに、高い疲労強度を持つ異形断面コイルばねを確実に製造することができる。
 さらに、前記(3)式及び(4)式における中心オフセット係数Δb、外側x軸係数nxl及び外側y軸係数nylの3つのパラメータの範囲は、コイル外周側部分の断面周方向において疲労強度がより均等且つ高くなるようにも設定されている。このため、この 異形断面コイルばねは、コイル素線の断面周方向の全体において、より均等且つ高い疲労強度を有する。
 (3)前記縦断面輪郭線が、少なくとも10°≦θ≦70°及び290°≦θ≦350°の前記偏角の範囲において、等疲労強度断面線又は等疲労強度近似断面線となっていることが好ましい。
 ここで、前記等疲労強度近似断面線とは、疲労強度がある一定の許容範囲(平均値から±10%)内に維持された断面線である。
 (4)本発明の異形断面コイルばねにおいて、コイルの重心径をD、コイルの丸線換算径をdとしたとき、ばね指数(D/d)が3.0~6.0であることが好ましい。
 (5)本発明の異形断面コイルばねは、自動車用 マニュアルトランスミッションのクラッチダンパー又はオートマチックトランスミッションロックアップダンパーに使用されることが好ましい。
図1は、実施例に係る異形断面コイルばねの縦断面輪郭線を極座標系で示したものである。 図2は、従来の疲労強度改善処理実施後の異形断面コイルばねの表面応力を加味した疲労強度割合の分布及び本実施形態の疲労強度改善処理実施後の異形断面コイルばねの表面応力を加味した疲労強度割合の分布を比較したものである。 図3は、実施例に係る異形断面コイルばねの縦断面輪郭線の調整可能な領域を示すものである。 図4は、実施例に係る異形断面コイルばねのコイル素線の縦断面輪郭線のコイル内周側部分の表面応力分布を示すものである。 図5は、比較例に係る異形断面コイルばねの縦断面輪郭線のコイル内周側部分の表面応力分布を示すものである。 図6は、実施例及び比較例に係る異形断面コイルばねの中心オフセット係数Δbが異形断面コイルばねの内周側の表面応力分布に及ぼす影響を示すものである。 図7は、実施例に係る異形断面コイルばねの外側x軸係数nxl、外側y軸係数nylが異形断面コイルばねの内周側の表面応力分布に及ぼす影響を示すものである。 図8は、従来の「異形断面」コイルばねの縦断面を示すものである。 図9は、一般のコイルばねに疲労強度改善 処理を実施した後のコイルばねの疲労強度割合の分布を示すものである。
 本実施形態の異形断面コイルばねは、コイル素線をばね形状にコイリングしてなるものである。更に、コイリング形成された異形断面コイルばねに対して疲労強度改善処理が行われる。なお、疲労強度改善処理は少なくともショットピーニング処理を含み、その他の処理工程を有するものである。
 また、本実施形態の異形断面コイルばねのコイル素線は異形断面である。具体的には、図1に示すように、本実施形態の異形断面コイルばねのコイル素線1の縦断面輪郭線10は、極Oと、極Oからコイル中心軸に向かってコイル半径方向に延びる始線OXとを有する極座標系において、極Oを中心とするとともにコイル半径方向を長径方向とする略楕円形をなす。なお、図1は、本実施形態の異形断面コイルばねのコイル素線1のコイル軸方向に沿う縦断面輪郭線10を示すものである。
 また、コイル素線1の縦断面輪郭線10は内周側部分101と外周側部分102とを備え、外周側部分102は、さらに、二つの曲線部分1021と、その間に形成されたほぼ直線の直線部分1022とを備える。
 前記極座標系において、縦断面輪郭線10の長径側最大径を2LR、縦断面輪郭線10の短径側最大径を2SR、長径方向における中心オフセット係数をΔbとするとともに、極Oを原点、始線OXをx軸の正の部分とする直交座標系において、 内側x軸係数をnxr、内側y軸係数をnyrとしたとき、本実施形態の異形断面コイルばねのコイル素線1の縦断面輪郭線10のコイル内周側部分101が前記(1)式及び(2)式で表される。
 ここで、本実施形態の異形断面コイルばねは、前記(1)式及び(2)式において、0°≦θ<90°、270°≦θ<360°、0.7≦nxr≦0.9、0.8≦nyr≦1.0、0.1SR≦Δb≦0.3SRとされている。
 内側x軸係数nxr、内側y軸係数nyr及び中心オフセット係数Δbを上記範囲とすることにより、ショットピーニング処理を含む疲労強度改善処理が表面応力分布に及ぼす影響が考慮され、コイル内周側部分101の断面周方向において  疲労強度がより均等且つ高くなるように設定できる。また、0.7≦nxr≦0.85、0.9≦nyr≦1.0、0.15SR≦Δb≦0.25SRであることは、より好ましい。
 また、外側x軸係数をnxl、外側y軸係数をnylとしたとき、本実施形態の異形断面コイルばねのコイル素線1の縦断面輪郭線10のコイル外周側部分102は前記(3)式及び(4)式で表される。
 ここで、本実施形態の異形断面コイルばねは、前記(3)式及び(4)式において、90°≦θ<270°、0.8≦nxl≦1.6、0.3≦nyl≦0.6とされ、Δbは前記(1)式及び(2)式におけるΔbの値に同等とされている。
 外側x軸係数nxl、外側y軸係数nylを上記範囲とすることにより、コイル外周側部分102の断面周方向において疲労強度がより均等かつ高くなるように設定できる。
 このように、nxr、nyr、nxl、nyl、Δbの5つのパラメータを上記所定範囲に設定することにより、本実施形態の異形断面コイルばねは、コイル素線1の縦断面輪郭線10の周方向の全体において、より均等且つ高い疲労強度を有することができる。つまり、コイル素線1の縦断面輪郭線(断面形状)10を細かく調整することで、表面応力に対する疲労強度改善処理の悪影響を軽減することができ、結果的に、図2に示すように、本 実施形態の異形断面コイルばね(実線で示す)のコイル素線1の断面周方向に沿って、より均等かつ高い疲労強度を持つ異形断面コイルばねが実現できる。図2は、本実施形態の異形断面コイルばね(実線で示す)及び従来の異形断面コイルばね(点線で示す)について、表面応力を加味した疲労強度割合を比較したものである。なお、「表面応力を加味した疲労強度割合」における「表面応力を加味した」とは、断面周方向の応力の変化を加味したことを意味し、ここでの「表面応力」は表面に生じる剪断応力を意味する。
 図2に示すように、従来品(点線で示す)では、コイル素線の 縦断面輪郭線の周上において、表面応力を加味した疲労強度割合は、偏角θが10°~70°の間で、40°付近を底とする谷状になっている。
 一方、図9にも示したように、一般のコイルばねでは、ショット  ピーニング等の疲労強度改善処理を実施した場合、コイル素線のコイル内周側における疲労強度割合は、偏角θが約10°以上になると減少し、特に偏角θが10°から45°付近の間では、疲労強度割合が急激に減少している。この結果、図2に示すように、従来の異形断面コイルばねでは、表面応力を加味した疲労強度割合の低下は、偏角θが10°付近から60°付近までの部分に集中しやすく、特に偏角θが10°付近から45°までの範囲には急激な低下傾向が見られる(図2に点線で示す)。
 これに対して、本実施形態の異形断面コイルばね( 実線で示す)は、コイル素線1の断面周方向全体、特に内周側部分101(0°≦θ<90°、270°≦θ<360°も同様)において、周方向により均等な、表面応力を加味した疲労強度割合が得られている。よって、本実施形態の異形断面コイルばねは、より均等かつ高い疲労強度を有している。
 また、上記5つのパラメータを用いることにより、本実施形態の異形断面コイルばねでは、コイル素線1の縦断面輪郭線10を表面応力分布がより均等にかつ高くなるように自由に設定することができる(図3に示す)。図3は、上記5つのパラメータを所定範囲に設定することにより、本実施形態の異形断面コイルばねのコイル素線1の縦断面輪郭線10(断面形状)の調整可能な領域の一例を示す。
 具体的には、図3に示すように、本実施形態の異形断面コイルばねでは、内側x軸係数nxr、内側y軸係数xyr及び中心オフセット係数Δbを所定範囲に設定することにより、コイル素線1の縦断面輪郭線10の内周側部分101においてより均等かつ高い疲労強度を維持することができ、また、外側x軸係数nxl、外側y軸係数nylを所定範囲に設定することにより、縦断面輪郭線10の外周側部分102の直線部分1022の長さ等を自由に調整することができる。
 また、本実施形態の異形断面コイルばねのコイル素線1は、外側x軸係数nxl、外側y軸係数nylを上記範囲に調整することで、コイル外周側に平坦面又はほぼ平らな面を有する。これにより、縦断面輪郭線10の形状がコイル内周側とコイル外周側とで異なるコイル素線1となるため、このコイル素線1を異形断面コイルばね形状にコイリングする際に、コイル素線1の「コイル内周側になる」側と「コイル外周側になる」側とを簡単に識別することができ、その作業効率が向上するとともに、高い疲労強度を持つ異形断面コイルばねを確実に製造することができる。
 また、本実施形態の異形断面コイルばねのコイルの重心径をDとし、コイルの丸線換算径をdとしたとき、ばね指数(D/d)を3.0~6.0とすることができる。なお、重心径とは、異形断面の重心位置におけるコイル径のことである。また、丸線換算径とは、異形断面の断面積と断面積が同一の真円線の直径のことである。
 ここで、ばね指数(D/d)が3.0以下である場合には、加工上の問題で成形が難しく、また、ばね指数(D/d)が6.0以上である場合には、異形線による表面応力分散効果が薄れ、また、疲労強度の低下割合が図9に示す程ではなくなる。
 本実施形態の異形断面コイルばねは、例えば、 以下の4つのステップにより製造することができる。まず、異形断面コイルばねの基本形状を予め設定する。そして、疲労強度改善処理が表面応力分布に及ぼす影響を調べる為に、コイル素線の断面周方向における疲労強度改善度合の分布を実験などにより求める。次に、疲労強度改善度合の分布の実験データから上記各パラメータ値が所定範囲内となるように検討、算出し、等疲労強度断面線に近づくようにコイル素線の縦断面輪郭線を設計する。最終的に設計された縦断面輪郭線(断面形状)のコイル素線を用いてコイリング加工し、更に疲労強度改善処理を行うことにより異形断面コイルばねを製造する。
 以下、本実施形態の異形断面コイルばねの製造 方法における上記の4つのステップをより具体的に説明する。
 まず、異形断面コイルばねを製造するには、異形断面コイルばねの基本形状が必要なため、予めその基本形状を決定する。
 そして、コイル素線1(断面形状を問わない)を前記基本形状にコイリング加工して、実験用コイルばねとする。実際に異形断面コイルばねを製造する際に行う疲労強度改善処理を実験用コイルばねに施す。コイル素線1の重なり具合によって発生する疲労強度改善度合の分布を調べる。具体的には、疲労強度改善処理を施す前後のコイル素線の断面周方向における表面応力分布をそれぞれ求め、その差異により疲労強度割合の分布を求める。なお、ここでは、実験により疲労強度改善度合の分布を調べる方法を採用したが、この他には、例えば、パソコンにおけるシミュレーションにより疲労強度割合を調べる方法も採用できる。
 次に、疲労強度改善処理による疲労強度改善度合の分布の実験データに応じて、有限要素法(FEM)により、(1)式~(4)式に用いるパラメータ値を最適化し、等疲労強度断面線に近づくようにコイル素線の縦断面輪郭線10を設計する。
 最後に、最終的に設計された縦断面輪郭線10(断面形状)を持つコイル素線1を実際にコイリング加工し、疲労強度改善処理を行って異形断面コイルばねを製造する。
 このように製造された本実施形態の異形断面コイルばねは、好ましくは自動車用マニュアルトランスミッションのクラッチダンパー又はオートマチックトランスミッションロックアップダンパーに使用される。
(実施例)
 本実施例の異形断面コイルばねのコイル素線1の 縦断面輪郭線(断面形状)10は、図1に示す極座標系において、前記(1)式~(4)式で表される。
 図1に示すように、本実施例の異形断面コイルばねのコイル素線1の縦断面輪郭線10は、内周側部分101と外周側部分102とを備えている。また、外周側部分102は、二つの曲線部分1021と、その間に形成されたほぼ直線の直線部分1022とを備えている。
 また、本実施例では、前記(1)式~(4)式を満たす縦断面輪郭線10を有するコイル 素線1をコイリング加工し、一定条件のショットピーニング処理を行い、コイルばねを製造した。
 なお、コイリング加工の条件は、オイルテンパー線を用い、冷間にてコイリング成形を行い、さらにコイリング時の残留応力除去のため、450℃で均熱30分以上の低温焼きなましを行うものであった。また、ショットピーニング処理の条件は、粒径φ0.6mm(HV550)にて30分の1段ショットピーニング処理を行った後、ねじり降伏点を回復させるために、225℃で均熱15分以上の低温焼きなましを行うものであった。
 各実施例に基づき、上記(1)式~(4)式に係るパラメータである内側x軸係数nxr、内側y軸係数nyr、外側x軸係数nxl、外側y軸係数nyl及び中心オフセット係数Δbが、コイル素線1の断面周方向の表面応力分布に及ぼす影響について検討した。
(実施例1~6) 
 実施例1~6では、前記(1)式~(4)式において、外側x軸係数nxl、外側y軸係数nyl及び中心オフセット係数Δbを固定し、内側x軸係数nxr、内側y軸係数nyrを表1に示すように変化させて、異形断面コイルばねのコイル素線1の(内周側部分101)の 表面応力分布をパソコンでシミュレーションした(図4に示す)。なお、図4は、実施例1~6のコイル素線1の縦断面輪郭線10(内周側部分101)における、シミュレーションされた表面応力分布を示す。この表面応力分布は、コイリング加工した時点(ショットピーニング処理前)でのコイル素線1についてのものである。
Figure JPOXMLDOC01-appb-T000001
 図4に示す実施例1~6から理解できるように、内側x軸係数nxrを0.7~0.9の範囲に、内側y軸係数nyrを0.8~1.0の範囲にすることにより、偏角θが10°付近から45°付近までの間に、断面周上における表面応力の所定の減少傾向が得られた。また、偏角θが45°を過ぎてもほぼ平坦な曲線(表面応力分布)が得られた。特に、内側x軸係数nxrを0.7~0.8の範囲とし、かつ、内側y軸係数nyrを0.9~1.0の範囲とした実施例1~4では、偏角θが10°付近から45°付近までの間において、偏角θが増加するにつれて表面応力が徐々に減少した。コイリング加工した時点でこのような表面応力分布を持つコイル素線1に対して、ショットピーニングなどの疲労強度改善処理を実施することにより、コイル素線1のコイル内周側部分において表面応力が周方向に不均等になることを有効に抑制することができ、したがって、周方向により均等な表面応力を加味した疲労強度割合を得ることができた(図2に 実線で示す)。
即ち、ショットピーニング等の疲労強度改善処理による、コイル素線1の縦断面輪郭線10の周方向における疲労強度の改善度合の差異(特に10°<θ<45°の範囲内)を予め考慮し、内側x軸係数nxr、内側y軸係数nyrを用いて異形断面コイルばねの縦断面輪郭線10(断面形状)を細かく操作することによって、周方向により均等な、表面応力を加味した疲労強度割合を有する異形断面コイルばねを設計することができた。よって、より均等かつ高い疲労強度を持つ異形断面コイルばねを製造することができた。また、本実施例の異形断面コイルばねの表面応力を加味した疲労強度割合の値は、図2に示すように、偏角θが10°~70°の範囲内おいて、周方向にほぼ均等になっていた。
(比較例1~11) 
 以下、比較例として、内側x軸係数nxr、内側y軸係数nyrを所定範囲外に設定した場合に、これらがコイル素線の断面周方向に沿った表面応力の分布に及ぼす影響について検討した。
比較例1~11は、実施例1と基本的に同様であるが、内側x軸係数nxr、内側y軸係数nyrの設定を所定 範囲外に変更した例である。なお、比較例1~11では、nxr、nyrを表2に示すように変化させて、異形断面コイルばねのコイル素線1の(内周側部分101)の 表面応力分布をパソコンでシミュレーションした(図5に示す)。図5は、比較例1~11のコイル素線1の縦断面輪郭線10(内周側部分101)における、シミュレーションされた表面応力分布を示す。
Figure JPOXMLDOC01-appb-T000002
 図5から理解できるように、比較例2~9に示す異形断面コイルばねでは、コイル素線1の縦断面輪郭線10の周方向(内側部分101)に沿って偏角θが0°~20°の範囲内において、表面応力の分布が増加傾向にある。このため、これらの異形断面コイルばねに対してショットピーニング処理を実施しても、表面応力を加味した疲労強度割合を周方向に有効に均等化することができず、等疲労強度(近似)断面線になり得ない。
 また、図5から理解できるように、比較例1、10、11に示す異形 断面コイルばねでは、コイル素線1の縦断面輪郭線10の周方向(内側部分101)に沿って偏角θが10°~45°の範囲内において、表面応力の分布が減少傾向にあるが、偏角θが45°を過ぎると急激に上昇する傾向にあり、その度合いが大きい。このため、これらの異形断面コイルばねに対してショットピーニング処理を実施しても、表面応力を加味した疲労強度割合を周方向に有効に均等化することができず、等疲労強度(近似)断面線になり得ない。
 図5に示す比較例1~11から理解できるように、比較例2~9では、偏角θが10°付近からの表面応力の分布に低下傾向が見られないため、疲労強度改善処理後の表面応力を加味した疲労強度割合の均等化に不利である。また、比較例1、10、11では、偏角θが10°付近から表面応力の分布は低下する傾向にあるが、45°を過ぎると、急激に上昇する傾向になり、同様に疲労強度改善処理後の表面応力の均等化に不利である。
さらに、内側x軸係数nxrが0.7よりも小さいとき、偏角θが45°を過ぎると表面応力が急激に上昇する傾向になりやすく、一方、内側x軸係数nxrは0.9よりも大きいとき、偏角θが0°付近での表面応力を加味した疲労強度割合が下がり過ぎる傾向になりやすい。
 図5に示す比較例1~11と図4に示す実施例1~6を比較してみると、  実施例1~6の異形断面コイルばねの(内周側)表面応力分布は、偏角θが10°付近から45°付近までは所定の低下傾向になっており、そして45°を過ぎても、急激に上昇する傾向にならないため、疲労強度改善処理後の表面応力を加味した疲労強度割合の均等化に有利であることが分かった。
(実施例7~9)
 実施例7~9は、基本的に実施例1と同様であり、更に内側x軸係数nxr、内側y軸係数nyrを0.75、1.0にそれぞれ固定し、中心オフセット係数Δbの設定を変更した例である。
 実施例7~9では、Δbを表3に示すように変更させた上で、異形断面コイルばねのコイル素線1の(内周側部分101)の表面応力分布をパソコンでシミュレーションした(図6に示す)。なお、図6は、実施例7~9のコイル素線1の縦断面輪郭線10(内側周部分101)における、シミュレーションされた表面応力分布を示す。
Figure JPOXMLDOC01-appb-T000003
 図6から理解できるように、実施例7~9の異形断面コイルばねでは、コイル素線1の縦断面輪郭線10の周方向(内側)に沿って偏角θが10°~45°の範囲内において、表面応力の分布は所定の減少傾向にある。また、偏角θが45°付近の表面応力は0°付近の表面応力よりも低いことが分かる。このため、中心オフセット係数Δbを所定の範囲に設定することにより、ショットピーニング処理により有効な表面応力を加味した疲労強度割合の向上を促進することができ、コイル素線1の縦断面輪郭線10に対して、表面応力を加味した疲労強度割合を等疲労強度(近似)断面線になるように微調整することができる。
(比較例12、13)
 以下、Δbを所定範囲外に設定してシミュレーションを行った比較例について説明する。
 比較例12、13は、実施例7~9と基本的に同様であり、中心オフセット係数Δbの設定を所定範囲外に変更した例である。
 比較例12、13では、Δbを表4に示すように変更させた上で、異形断面コイルばねのコイル素線1の(内周側部分101)の表面応力分布をパソコンでシミュレーションした(図6に示す)。
Figure JPOXMLDOC01-appb-T000004
 図6から理解できるように、比較例12、13の異形断面コイルばねでは、コイル素線1の縦断面輪郭線10の周方向(内側)に沿って偏角θが10°~45°の範囲内において、表面応力の分布は所定の減少傾向が見られない。また、偏角θが45°付近の表面応力は0°付近の表面応力よりも高いことが分かる。このため、この異形断面コイルばねでは、ショットピーニング処理による表面応力を加味した疲労強度割合の有効な向上にならず、等疲労強度(近似)断面線になり得ない。
 また、図6に示す実施例7~9と比較例12、13を比較して理解できるように、中心オフセット係数Δbを所定範囲内に調整することで、コイル素線1の縦断面輪郭線10(断面形状)が調整され、表面応力曲線の傾き具合を細かく補正することができる。
 一方、中心オフセット係数Δbは、0.3SRを超えると、偏角θが45°付近の表面応力が0°付近の表面応力よりも大きくなり、疲労強度改善処理後の表面応力を加味した疲労強度割合の均等化に不利である。
(実施例10~18)
 実施例10~18では、前記(1)式~(4)式において、内側x軸係数nxr、内側y軸係数nyr及び中心オフセット係数Δbを固定し、外側x軸係数nxl、外側y軸係数nylを表5に示すように変化させて、異形断面コイルばねの表面応力分布をパソコンでシミュレーションした(図7に示す)。なお、図7は、実施例10~18の異形断面コイルばねの縦断面輪郭線10の外周側部分102における、シミュレーションされた表面応力  分布を示す。
Figure JPOXMLDOC01-appb-T000005
 図7から理解できるように、実施例10~18の異形断面コイルばねでは、コイル素線1の縦断面輪郭線10の周方向において、外側x軸係数nxl、外側y軸係数nylは、縦断面輪郭線10の外周側部分102の表面応力分布にさほど影響を与えないことが分かる。なお、nxl、nylを設定することにより、コイル素線の縦断面輪郭線10の外周側部分102の形状を決定することができる。
 図7に示す実施例10~18から理解できるように、外側x軸係数nxl、外側y軸係数nylを変化させることにより外周側の表面応力分布を微調整することができる。また、図3にも示したように、外側x軸係数nxl及び外側y軸係数nylを調整することにより、異形断面コイルばねのコイル素線1の縦断面輪郭線10の外周側部分102の線形を曲線から直線或いは直線に近い線形に設定することができる。これにより、縦断面輪郭線10の形状がコイル内周側101とコイル外周側102とで異なるコイル素線1となる。このため、このコイル素線1をコイルばね形状にコイリングする際に、コイル素線1の「コイル内周側になる」側と「コイル外周側になる」側とを簡単に識別することができ、異形断面コイルばねの生産効率が向上する。
 このように、内側x軸係数nxr、内側y軸係数nyr及び(原点の)中心オフセット係数Δbを所定の範囲で適宜に設定することにより、コイル素線1の縦断面輪郭線(断面形状)の内周側部分101を細かく調整することができる。また、外側x軸係数nxl、外側y軸係数nyl及び中心オフセット係数Δbを所定の範囲で適宜に設定することにより、コイル素線1の縦断面輪郭線1の外側部分102を細かく調整することができる。これにより、本実施例の異形断面コイルばねのコイル素線1の断面周方向に、より均等かつ高い疲労強度を有することができ、コイル内周側における表面応力が高くなることによる折損の発生が有効に抑制され、コイルばねの疲労寿命が長くなる。
 
本発明の異形断面コイルばねは、自動車用マニュアルトランスミッションのクラッチダンパー又はオートマチックトランスミッションロックアップダンパーなどに好適に用いられる。

Claims (5)

  1. 異形断面を有するコイル素線をばね形状にコイリングしてから、ショットピーニング処理を含む疲労強度改善処理を施してなる異形断面コイルばねであって、
     極と、該極からコイル中心軸に向かってコイル半径方向に延びる始線とを有する極座標系において、前記コイル素線のコイル軸方向に沿う縦断面輪郭線は、前記極を中心とするとともに前記コイル半径方向を長径方向とする略楕円形をなし、かつ、前記縦断面輪郭線の長径側最大径を2LR、前記縦断面輪郭線の短径側最大径を2SR、前記長径方向における中心オフセット係数をΔbとするとともに、前記極を原点、前記始線をx軸の正の部分とする直交座標系において、内側x軸係数をnxr、内側y軸係数をnyrとしたとき、
     前記縦断面輪郭線のコイル内周側部分が下記(1)式及び(2)式で表されることを特徴とする異形断面コイルばね。
      x=(LR-Δb)cosnxrθ+Δb       …(1)
      y=SRsinnyrθ               …(2)
     (ただし、前記(1)式及び(2)式において、θは前記極座標系の偏角であり、かつ、0°≦θ<90°、270°≦θ<360°、0.7≦nxr≦0.9、0.8≦nyr≦1.0、0.1SR≦Δb≦0.3SRである。)
  2. 前記直交座標系において、外側x軸係数をnxl、外側y軸 係数をnylとしたとき、
     前記縦断面輪郭線のコイル外周側部分が下記(3)式及び(4)式で表される請求の範囲第1項に記載の異形断面コイルばね。
      x=-{(LR-Δb)|cosnxlθ|-Δb}    …(3)
      y=SRsinnylθ                 …(4)
     (ただし、前記(3)式及び(4)式において、90°≦θ<270°、0.8≦nxl≦1.6、0.3≦nyl≦0.6であり、Δbは前記(1)式及び(2)式におけるΔbの値に等しい。)
  3. 前記縦断面輪郭線が、少なくとも10°≦θ≦70°及び290°≦θ≦350°の前記偏角の範囲において、等疲労強度  断面線又は等疲労強度近似断面線となっている請求の範囲第1項又は第2項に記載の異形断面コイルばね。
  4. コイルの重心径をD、コイルの丸線換算径をdとしたとき、
     ばね指数(D/d)が3.0~6.0である請求の範囲第1項ないし第3項のいずれか1項に記載の異形断面コイルばね。
  5. 自動車用マニュアルトランスミッションの クラッチダンパー又はオートマチックトランスミッションロックアップダンパーに使用される請求の範囲第1項ないし第4項のいずれか1項に記載の異形断面コイルばね。
PCT/JP2009/053154 2008-05-07 2009-02-23 異形断面コイルばね WO2009136514A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801162299A CN102016344B (zh) 2008-05-07 2009-02-23 异形截面螺旋弹簧
US12/736,596 US8393602B2 (en) 2008-05-07 2009-02-23 Coil spring with irregular cross section
JP2010511032A JP5127921B2 (ja) 2008-05-07 2009-02-23 異形断面コイルばね

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-121211 2008-05-07
JP2008121211 2008-05-07

Publications (1)

Publication Number Publication Date
WO2009136514A1 true WO2009136514A1 (ja) 2009-11-12

Family

ID=41264571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053154 WO2009136514A1 (ja) 2008-05-07 2009-02-23 異形断面コイルばね

Country Status (4)

Country Link
US (1) US8393602B2 (ja)
JP (1) JP5127921B2 (ja)
CN (1) CN102016344B (ja)
WO (1) WO2009136514A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140057729A1 (en) * 2011-05-13 2014-02-27 Schaeffler Technologies AG & Co. KG Torque transfer device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130096887A1 (en) * 2011-10-13 2013-04-18 Ticona Llc Polymer Spring and Method for Designing Same
JP5981958B2 (ja) * 2014-05-28 2016-08-31 三菱製鋼株式会社 懸架コイルばね及びストラット型懸架装置
DE112015002114T5 (de) * 2014-07-07 2017-03-02 Aisin Aw Co., Ltd. Schraubenfeder
US10057133B2 (en) * 2015-07-08 2018-08-21 Fedex Corporate Services, Inc. Systems, apparatus, and methods of enhanced monitoring for an event candidate associated with cycling power of an ID node within a wireless node network
US20170261058A1 (en) * 2016-03-11 2017-09-14 Otis Elevator Company Elevator safety spring and method of manufacturing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190528A (ja) * 1983-04-12 1984-10-29 Mitsubishi Motors Corp 異形断面つる巻きバネ
JPS60241535A (ja) * 1984-05-12 1985-11-30 Sanko Senzai Kogyo Kk コイルばね
JPS61167728A (ja) * 1985-01-18 1986-07-29 Murata Hatsujo Kk コイルばね
JPH02186137A (ja) * 1989-01-10 1990-07-20 Sanko Senzai Kogyo Kk コイルばね
WO2006129710A1 (ja) * 2005-05-31 2006-12-07 Nhk Spring Co., Ltd. コイルばね

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2998242A (en) * 1959-05-18 1961-08-29 John G Schwarzbeck Stress equalized coil spring
JPS60121333A (ja) * 1983-12-01 1985-06-28 Murata Hatsujo Kk コイルばね
FR2678035B1 (fr) * 1991-06-20 1995-04-14 Valeo Ressort a boudin, notamment pour amortisseur de torsion.
US6776401B2 (en) * 2000-04-01 2004-08-17 Robert Bosch Gmbh Helical compression spring for use in a component of a fuel injection system
CN2809328Y (zh) * 2005-06-07 2006-08-23 厦门大发弹簧工业有限公司 用于伞中棒内的弹簧
CN201011372Y (zh) * 2007-01-25 2008-01-23 阳旻企业股份有限公司 车辆避震器专用的异形断面弹簧

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190528A (ja) * 1983-04-12 1984-10-29 Mitsubishi Motors Corp 異形断面つる巻きバネ
JPS60241535A (ja) * 1984-05-12 1985-11-30 Sanko Senzai Kogyo Kk コイルばね
JPS61167728A (ja) * 1985-01-18 1986-07-29 Murata Hatsujo Kk コイルばね
JPH02186137A (ja) * 1989-01-10 1990-07-20 Sanko Senzai Kogyo Kk コイルばね
WO2006129710A1 (ja) * 2005-05-31 2006-12-07 Nhk Spring Co., Ltd. コイルばね

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140057729A1 (en) * 2011-05-13 2014-02-27 Schaeffler Technologies AG & Co. KG Torque transfer device

Also Published As

Publication number Publication date
CN102016344B (zh) 2012-09-05
CN102016344A (zh) 2011-04-13
US8393602B2 (en) 2013-03-12
US20110031667A1 (en) 2011-02-10
JP5127921B2 (ja) 2013-01-23
JPWO2009136514A1 (ja) 2011-09-08

Similar Documents

Publication Publication Date Title
JP5127921B2 (ja) 異形断面コイルばね
US8308150B2 (en) Coil spring for vehicle suspension and method for manufacturing the same
KR101200694B1 (ko) 차량 현가용 코일 스프링과 그 제조 방법
WO2010146907A1 (ja) コイルばねの製造方法
JP2000233625A (ja) 中空スタビライザの製造方法
JP6884852B2 (ja) 鋼線およびばね
JPWO2004085685A1 (ja) 高強度ばねの製造方法
WO2011111623A1 (ja) 中実スタビライザ、中実スタビライザ用鋼材および中実スタビライザの製造方法
JP2000345238A (ja) 自動車用懸架ばねの製造方法
WO2015064202A1 (ja) ばね及びばねの製造方法
JP5511067B2 (ja) コイルばねの製造方法
JP7062395B2 (ja) 圧縮コイルばねの製造方法
US8470104B2 (en) High strength valve spring for vehicle engine and method of manufacturing the same
JP5550359B2 (ja) 自動車懸架用コイルばね
US9969238B2 (en) Hollow stabilizer
JP4080510B2 (ja) 高強度pc鋼撚り線、その製造方法およびそれを用いたコンクリート構造物
JP4261089B2 (ja) 高強度・高耐疲労コイルばねの製造方法
JP3539866B2 (ja) 疲労性に優れた鋼線およびその製造方法
JP3539865B2 (ja) 疲労性に優れた鋼線およびその製造方法
KR101467041B1 (ko) 크랭크 샤프트 제조방법
WO2023120475A1 (ja) 圧縮コイルばねおよびその製造方法
JPS61218843A (ja) 鋼製ばねとその製造方法
JPWO2014196308A1 (ja) ばね用鋼、ばね及びばねの製造方法
JPS62133020A (ja) 低炭素アルミキルド鋼製の6tボルトの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980116229.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09742639

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010511032

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12736596

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09742639

Country of ref document: EP

Kind code of ref document: A1