WO2011111623A1 - 中実スタビライザ、中実スタビライザ用鋼材および中実スタビライザの製造方法 - Google Patents

中実スタビライザ、中実スタビライザ用鋼材および中実スタビライザの製造方法 Download PDF

Info

Publication number
WO2011111623A1
WO2011111623A1 PCT/JP2011/055071 JP2011055071W WO2011111623A1 WO 2011111623 A1 WO2011111623 A1 WO 2011111623A1 JP 2011055071 W JP2011055071 W JP 2011055071W WO 2011111623 A1 WO2011111623 A1 WO 2011111623A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid stabilizer
stabilizer
solid
steel material
formula
Prior art date
Application number
PCT/JP2011/055071
Other languages
English (en)
French (fr)
Inventor
浩行 水野
淳 杉本
野村 一衛
隆紀 久野
隆之 榊原
Original Assignee
愛知製鋼株式会社
中央発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛知製鋼株式会社, 中央発條株式会社 filed Critical 愛知製鋼株式会社
Priority to CN201180012088.3A priority Critical patent/CN102782172B/zh
Priority to MX2012010102A priority patent/MX2012010102A/es
Priority to JP2012504429A priority patent/JP5631972B2/ja
Priority to DE112011100846T priority patent/DE112011100846T8/de
Priority to US13/579,228 priority patent/US20120318409A1/en
Publication of WO2011111623A1 publication Critical patent/WO2011111623A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • B60G21/055Stabiliser bars
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/40Constructional features of dampers and/or springs
    • B60G2206/42Springs
    • B60G2206/427Stabiliser bars or tubes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a solid stabilizer that ensures stability during vehicle travel, a steel material for the solid stabilizer, and a method for manufacturing the solid stabilizer.
  • the stabilizer connects the suspension arms on both sides in the vehicle width direction of the vehicle.
  • the stabilizer is suppressing the roll at the time of vehicle travel.
  • the stabilizer includes a solid stabilizer manufactured from a solid steel material and a hollow stabilizer manufactured from a hollow steel material.
  • hollow stabilizers are often used to reduce vehicle weight.
  • Patent Document 1 discloses an electric resistance welded steel pipe for a hollow stabilizer
  • Patent Document 2 discloses a method for manufacturing a hollow stabilizer.
  • solid stabilizers are easier to ensure the desired strength than hollow stabilizers. Moreover, the manufacturing cost is low. For this reason, although the demand for hollow stabilizers has increased, solid stabilizers are still often used. The structure of these two types of stabilizers is different in that they are hollow and solid. For this reason, naturally the characteristic requested
  • the stabilizer manufacturing method includes a molding process, a quenching process, and a tempering process.
  • the steel material is subjected to a bending process in order to make the steel material into a stabilizer shape.
  • the radial center portion is a cavity.
  • the resistance to bending deformation is inherently small. Therefore, it is easy to bend.
  • the steel material is packed up to the center in the radial direction. For this reason, the resistance to bending deformation is inherently large. Therefore, it is difficult to bend and the spring back also becomes large.
  • the required level for the springback is higher than when manufacturing a hollow stabilizer. Further, in the case of a solid stabilizer, the required strength is higher than that in the case of a hollow stabilizer, so that the springback also becomes large due to the influence.
  • the steel material after bending is quenched.
  • the radial center is a cavity.
  • high hardenability is not requested
  • the steel material is packed up to the center in the radial direction. For this reason, hardenability sufficient for hardening to a radial direction center part is requested
  • the center in the radial direction is a cavity.
  • the shrinkage difference (cooling rate difference) between the outer peripheral surface and the inner peripheral surface is small during the rapid cooling in the quenching step. Therefore, burning cracks are unlikely to occur.
  • the steel material is packed up to the center in the radial direction.
  • the shrinkage difference (cooling speed difference) between the outer peripheral surface and the radial center is large during the rapid cooling in the quenching process. Therefore, burning cracks are likely to occur.
  • it is hard to generate a fire crack, that is, high resistance to fire cracking compared with the steel material for hollow stabilizers.
  • the solid stabilizer is easier to ensure the desired strength than the hollow stabilizer. For this reason, solid stabilizers are often used in vehicles that require high strength. However, when trying to increase the strength, the content of C, etc., which is effective for increasing the strength, is increased, which leads to a decrease in the bending workability and anti-cracking resistance, so compared to a hollow stabilizer. When trying to manufacture a solid stabilizer having excellent strength, there is a problem that even if the technology used in the hollow stabilizer is directly converted into a solid stabilizer, the intended characteristics cannot be obtained.
  • the solid stabilizer, the steel material for the solid stabilizer, and the method for producing the solid stabilizer of the present invention have been completed in view of the above problems.
  • the present invention provides a solid stabilizer, a solid stabilizer steel material, and a medium that are excellent in strength without causing the above-mentioned problems when producing a solid stabilizer in terms of bending workability, hardenability, and fire cracking resistance. It aims at providing the manufacturing method of an actual stabilizer.
  • the solid stabilizer of the present invention is a solid stabilizer produced by cold forming, quenching, and tempering a steel material for solid stabilizer, Steel material for actual stabilizers is mass%, C: 0.24 to 0.40%, Si: 0.15 to 0.40%, Mn: 0.50 to 1.20%, P: 0.03% or less , Cr: 0.30% or less, Ti: 0.01-0.03%, B: 0.0010-0.0030%, satisfying the condition of the following formula (1), the balance being Fe and inevitable It consists of impurities, the hardness of the radial center part after the tempering is 400 HV or more, and the martensite ratio of the radial center part after the tempering is 80% or more. 1.24 ⁇ (2C + 0.1Si + 0.4Mn + 0.4Cr) ⁇ ⁇ 1+ (1.5B ⁇ 300B 2 ) ⁇ 240 ⁇ ⁇ 1.7 Formula (1)
  • the lower limit value of C is 0.25%
  • the upper limit value of Mn is 1.00%
  • the lower limit value of the formula (1) is 1 .4 is better.
  • the tensile strength is 1200 MPa or more
  • the 0.2% proof stress is 1100 MPa or more
  • the impact value at room temperature is 70 J / It is better to have a configuration of cm 2 or more. According to this configuration, a solid stabilizer having both high strength and high toughness can be obtained.
  • the solid stabilizer steel material of the present invention is, in mass%, C: 0.24 to 0.40%, Si: 0.15 to 0.40%, Mn: 0.50 to 1.20%, P: 0.03% or less, Cr: 0.30% or less, Ti: 0.01 to 0.03%, B: 0.0010 to 0.0030%,
  • the condition of the following formula (1) is satisfied, the balance is composed of Fe and inevitable impurities, and is rolled at a heating temperature of 1000 ° C. or less during finish rolling, and the hardness after rolling is 200 HV or less.
  • the lower limit value of C is 0.25%
  • the upper limit value of Mn is 1.00%
  • the lower limit value of the formula (1) is 1 .4 is better.
  • the solid stabilizer manufacturing method of the present invention is, in mass%, C: 0.24 to 0.40%, Si: 0.15 to 0.40%, Mn : 0.50 to 1.20%, P: 0.03% or less, Cr: 0.30% or less, Ti: 0.01 to 0.03%, B: 0.0010 to 0.0030%
  • the lower limit value of C is 0.25%
  • the upper limit value of Mn is 1.00%
  • the lower limit value of the formula (1) is 1 .4 is better.
  • the steel material for solid stabilizer of the present invention can obtain performance satisfying mechanical properties such as strength and toughness while ensuring necessary hardenability, fire cracking resistance and bending workability by optimizing the components. .
  • mechanical properties such as strength and toughness
  • fire cracking resistance and bending workability by optimizing the components.
  • each of bending workability, fire cracking resistance, and mechanical properties does not necessarily have a level of performance that is clearly superior, but conventional steel requires some characteristics. Although the required level of some other characteristics may not be satisfied even if the level is satisfied, the most important feature of the present invention is that an optimal product design has been made to satisfy all the required characteristics. is there.
  • (C) C is an indispensable component for ensuring the strength required as a solid stabilizer after quenching and tempering.
  • the reason why the C content is 0.24% by mass (hereinafter abbreviated as “%” where appropriate) is because the strength of the solid stabilizer decreases when it is less than 0.24%. Moreover, it is because the hardenability of the steel material for solid stabilizers becomes low.
  • the C content is preferably set to 0.25% or more.
  • the reason why the C content is set to 0.40% or less is that when 0.40% is exceeded, the resistance to fire cracking of the steel material for solid stabilizer is lowered.
  • the toughness after tempering falls.
  • the hardness of the steel material for solid stabilizers after finish rolling (before cold forming) increases, and bending workability during cold forming decreases.
  • Si acts as a deoxidizer during melting.
  • the reason why the Si content is set to 0.15% or more is that when it is less than 0.15%, the hardenability of the solid stabilizer steel is lowered. Moreover, it is because the intensity
  • the reason why the Si content is set to 0.40% or less is that when it exceeds 0.40%, the fire cracking resistance of the solid stabilizer steel material is lowered. Moreover, it is because the hardness of the steel material for solid stabilizers after finish rolling (before cold forming) increases, and bending workability during cold forming decreases.
  • Mn Mn Mn Mn is added in order to improve the hardenability of the solid stabilizer steel.
  • the reason why the Mn content is 0.50% or more is that when it is less than 0.50%, the hardenability of the solid steel for stabilizer becomes low. Moreover, it is because the intensity
  • the reason why the Mn content is 1.20% or less is that when it exceeds 1.20%, the fire cracking resistance of the solid stabilizer steel is lowered. Moreover, it is because the hardness of the steel material for solid stabilizers after finish rolling (before cold forming) increases, and bending workability during cold forming decreases. For the same reason, the content of Mn is preferably 1.00% or less.
  • P The content of P is preferably as small as possible.
  • the reason why the P content is 0.03% or less is that when it exceeds 0.03%, the toughness after tempering decreases.
  • B B like Mn and Cr, has the effect of improving the hardenability of the solid stabilizer steel. Further, B has an effect of improving the grain boundary strength.
  • the reason why the B content is set to 0.0010% or more is that when it is less than 0.0010%, the hardenability of the steel material for the solid stabilizer is lowered. Moreover, it is because the intensity
  • the content of B is made 0.0030% or less because the additive effect of B (hardenability improving effect, strength improving effect) gradually saturates as the additive amount increases, so it exceeds 0.0030%. This is because even if B is added, the effect is saturated.
  • a secondary term is set for the B content in addition to the primary term.
  • Ti B is easy to combine with N in the steel. If B is combined with N to form BN, the effect of adding B cannot be obtained. Therefore, by adding Ti and generating TiN between Ti and N, the effect of adding B is ensured.
  • the reason why the Ti content is 0.01% or more is that when the Ti content is less than 0.01%, it is difficult to ensure the B addition effect.
  • the reason why the Ti content is set to 0.03% or less is that when it exceeds 0.03%, coarse TiN is easily generated and toughness is reduced.
  • the solid stabilizer steel material of the present invention contains, in addition to the above-mentioned components, an amount of Al (about 0.040% or less) necessary for deoxidation treatment, which is an essential step in the production of steel, as impurities. You may do it.
  • Formula (1) is an empirical formula obtained by multivariate analysis of experimental data. When the content of each component is set so as to conform to the formula (1), the hardenability and the fire cracking resistance of the solid steel for stabilizer can be optimized.
  • the numerical value obtained by substituting the content of each component (% value, for example, 0.25 if 0.25%) into the formula (1) is over 1.24.
  • the hardenability is insufficient for use as a solid stabilizer, and it becomes difficult to secure a martensite ratio of 80% or more to the radial center after quenching, resulting in a decrease in the strength of the solid stabilizer. Because.
  • the numerical value of the formula (1) exceeds 1.4.
  • the numerical value obtained by substituting the content of each component into the formula (1) is less than 1.7 when it is 1.7 or more.
  • Equation (2) is an empirical equation obtained by multivariate analysis of experimental data.
  • the contents of Si and C are set so as to conform to the formula (2), the hardness of the surface of the steel material for solid stabilizer can be optimized.
  • the reason why the numerical value of the formula (2) is set to be less than 1.5 is that when the value is 1.5 or more, the amount of Si with respect to C increases and decarburization is easy. That is, the strength of the surface of the solid stabilizer is lower than the hardness inside the solid stabilizer. As described above, by using the expression (2), it is possible to suppress a decrease in the strength of the surface of the solid stabilizer.
  • Heating temperature during finish rolling is set to 1000 ° C. or less is that when it exceeds 1000 ° C., the hardness after rolling increases, and the bending workability of the solid stabilizer steel material in the cold state decreases. Specifically, there is a problem that the spring back becomes large and the variation in shape after bending becomes large.
  • the reason why the hardness after rolling is 200 HV or less is that if it is 200 HV or less, the spring back during bending can be suppressed to a target value or less.
  • FIG. 1 shows a perspective view of a solid stabilizer according to an embodiment of the present invention.
  • the solid stabilizer 1 has a U shape as a whole.
  • the solid stabilizer 1 includes a torsion part 10 and a pair of arm parts 11.
  • the torsion part 10 extends in the vehicle width direction.
  • the pair of arm parts 11 are connected to both axial ends of the torsion part 10.
  • a pair of rings 12 are fixed by caulking near both ends of the torsion unit 10 in the vehicle width direction.
  • a pair of bushes 13 are provided around the pair of rings 12 on the outer side in the vehicle width direction.
  • the bush 13 is fixed to a vehicle body (not shown).
  • Eyepieces 110 are arranged at the tips of the pair of arm parts 11, respectively. Each of the pair of eyeballs 110 is connected to a suspension arm (not shown).
  • Hardness after tempering the part to judge the martensite ratio in the central part in the radial direction is a solid stabilizer, it is necessary to make the structure tempered to the central part in the radial direction, hardenability is insufficient This is because the central portion in the radial direction becomes a non-baked structure and the hardness decreases. Therefore, if a structure and hardness having no problem are obtained in the central portion in the radial direction, naturally, a portion other than the central portion in the radial direction of the surface can secure a martensite ratio of 80% or more.
  • solid stabilizers are often used for vehicles that require high strength and high toughness as compared to hollow stabilizers. For this reason, when it falls below these lower limits, it may be impossible to clear the strict requirements for the solid stabilizer.
  • the manufacturing method of a solid stabilizer has a forming process, a quenching process, and a tempering process.
  • the forming process the solid stabilizer steel material after finish rolling is subjected to cold bending. And the shape of the solid stabilizer which is preparation object is provided to the steel material for solid stabilizers.
  • the quenching process the solid stabilizer steel is first heated to austenite the structure, and then rapidly cooled to a hard martensite structure. In the subsequent tempering process, the toughness of the solid stabilizer steel is improved.
  • the heating method in the quenching step of the solid stabilizer manufacturing method is not particularly limited, but it can be heated by furnace heating, electric heating or the like.
  • the quenching refrigerant in the quenching step is not particularly limited, but water, a polymer solution, or the like can be used.
  • the temperature pattern of the heating and cooling in a hardening process and a tempering process is not specifically limited.
  • the bending process in a formation process is not specifically limited. For example, it is possible to perform bending using an NC bender or a bending die in the cold.
  • sample manufacturing method includes a hot forging process, a forming process, a quenching process, a tempering process, and a finishing process.
  • the steel material was first cut into a predetermined length. Next, both axial ends of the cut steel material were heated, hot forged, and holes were drilled. In this way, as shown in FIG. 1, a pair of eyeball portions 110 were formed at both axial ends of the steel material.
  • the steel material was bent cold. Specifically, the steel material was curved in a U shape. Thus, as shown in FIG. 1, the torsion part 10 and the pair of arm parts 11 were formed.
  • a pair of eyeballs 110 made of steel were clamped. Subsequently, it heated to quenching temperature 970 degreeC by supplying with electricity between a pair of eyeball parts 110, and carrying out energization heating. Then, the steel was quenched with water.
  • the steel material was heated again and gradually cooled.
  • the maximum temperature (tempering temperature) at the time of heating was adjusted for the purpose of the hardness of the center of the radial direction of the steel material after tempering being 420 HV.
  • the hardness after the quenching process increased only to 320 HV. For this reason, it is judged that it is impossible to adjust to 420 HV in the tempering step, and if tempering is performed, the hardness may further decrease and the difference from the target value may further increase. No tempering was performed.
  • the coating process performed by heating steel materials also served as the tempering process.
  • the coating temperature that is, the tempering temperature was 200 ° C.
  • the shape of the steel material is finely adjusted, then the surface is subjected to shot peening treatment, then the surface is coated, and finally a pair of rings 12 are caulked and fixed to the torsion part 10 as shown in FIG. . In this way, a sample was manufactured.
  • Comparative Example 8 is a sample for evaluating the difference in easiness of fire cracking between hollow and solid cases. For Comparative Example 8, only the evaluation of fire cracking resistance was performed. The evaluation method will be described later.
  • Example composition Next, the composition of the sample will be described.
  • Table 1 shows data relating to the components of Examples 1 to 8 and Comparative Examples 1 to 13, production conditions, and evaluation items (fire cracking resistance, cold bending workability, strength, durability, and toughness).
  • Examples 1 to 8 are solid stabilizers of the present invention.
  • C exceeds the upper limit value with respect to the composition range of the present invention.
  • Cr exceeds the upper limit with respect to the composition range of the present invention.
  • the numerical value of Formula (1) is over the upper limit with respect to the composition range of this invention.
  • Si exceeds the upper limit with respect to the composition range of the present invention.
  • the numerical value of the formula (1) exceeds the upper limit value with respect to the composition range of the present invention.
  • Ti exceeds the upper limit with respect to the composition range of the present invention.
  • Comparative Example 6 the numerical value of the formula (1) is lower than the lower limit value with respect to the composition range of the present invention.
  • the comparative example 6 is a solid stabilizer manufactured using the same material as the steel material conventionally used for hollow stabilizers.
  • Mn exceeds the upper limit value with respect to the composition range of the present invention.
  • the numerical value of Formula (1) is over the upper limit with respect to the composition range of this invention.
  • Comparative Example 7 is a solid stabilizer made of the same steel material as the base steel pipe C in Table 1 of Patent Document 2. That is, the steel material substantially the same as the steel material currently disclosed by patent document 2 for hollow stabilizers is prepared, and the solid stabilizer is manufactured from the steel material.
  • the comparative example 8 will be described later.
  • Comparative Example 9 C is below the lower limit with respect to the composition range of the present invention. Moreover, the numerical value of Formula (2) exceeds the upper limit with respect to the composition range of the present invention. In Comparative Example 10, Ti and B are lower than the lower limit values with respect to the composition range of the present invention. Moreover, the numerical value of Formula (1) is less than a lower limit with respect to the composition range of this invention. Comparative Example 10 is a solid stabilizer made of steel corresponding to JIS carbon steel S33C. In Comparative Example 11, C and Cr exceed the upper limit values with respect to the composition range of the present invention. Moreover, Ti and B are less than a lower limit with respect to the composition range of the present invention.
  • Comparative Example 11 is a solid stabilizer made of steel corresponding to JIS spring steel SUP9.
  • Comparative Example 12 is a solid stabilizer made of the same steel as Example 1. The heating temperature during finish rolling of the steel material exceeds the upper limit of the present invention.
  • Comparative Example 13 is a solid stabilizer made of the same steel as Example 3. The heating temperature during finish rolling of the steel material exceeds the upper limit of the present invention.
  • test pieces were first held at a quenching temperature of 970 ° C. for 30 minutes and then cooled with water. The test piece after water cooling was observed, and the case where even one crack could be confirmed was evaluated as “X”, and the case where all thirty cracks could not be confirmed was evaluated as “ ⁇ ”.
  • the spring back includes the bender head rotation angle (design angle between the torsion part 10 and the arm part 11) of the NC bender when bending the steel material, and the torsion part 10 and the arm part 11 after actual bending.
  • the spring back amount when a solid stabilizer is manufactured using Comparative Example 6, which is a representative example of a steel material for a hollow stabilizer that has been conventionally used is R01, and a JIS spring that has been conventionally used.
  • the spring back amount of Comparative Example 11 corresponding to the most average component of the steel material SUP9 was R02, and the average value of R01 and R02 was R0.
  • the springback amount of each sample is R1, and R1 / R0, which is a ratio with R0, is shown in Table 1.
  • this value was evaluated as a target value of 1.0 or less. This is less than the average value of the springback amount of each of the steel materials for the hollow stabilizer represented by the comparative example 6 and the steel material for spring SUP9 of JIS represented by the comparative example 11 from the past actual production data. This is because, if the amount of spring back can be suppressed, it is understood that the bending can be suppressed to less than a problem-free variation during the production of the solid stabilizer.
  • the hardness of the stabilizer was evaluated by the Vickers hardness (JIS Z 2244 HV10) of a test piece cut out from the stabilizer.
  • the 0.2% proof stress is the same as the tensile strength described later.
  • a tensile test JIS Z 2241 is performed on the test piece cut out from the stabilizer (No. 14A test piece JIS Z 2201), and the permanent strain at unloading. was evaluated based on the stress of 0.2%.
  • the tensile strength was evaluated by conducting a tensile test (JIS Z 2241) on a test piece (14A test piece JIS Z 2201) cut out from the stabilizer.
  • Durability was evaluated by a durability test performed on the stabilizer. As shown in FIG. 1, the diameter of the stabilizer 1 is 26 mm. The distance between the pair of bushes 13 is 490 mm. The interval between the pair of eyeballs 110 is 820 mm.
  • Toughness was evaluated by performing a Charpy impact test (JIS Z 2242) at 20 ° C. on a test piece cut out from a stabilizer (JIS No. 2 mmU notch test piece).
  • the hardness after rolling was high and the cold bending workability was low.
  • the 0.2% proof stress was low.
  • durability was low.
  • the strength (hardness, martensite ratio, 0.2% proof stress, tensile strength) was low.
  • durability and toughness were low.
  • the hardness after rolling was high and the cold bending workability was low.
  • the toughness was low.
  • the hardness after rolling was high and the cold bending workability was low.
  • the hardness after rolling was high and the cold bending workability was low.
  • the hardness after rolling was high and the cold bending workability was low.
  • Comparative Example 6 is a solid stabilizer manufactured using a steel material used for a hollow stabilizer. From this, it was found that satisfactory evaluation results could not be obtained for all evaluation items even if the steel material for hollow stabilizers was used as it was for solid stabilizers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Vehicle Body Suspensions (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 曲げ加工性が高く、焼入れ性が高く、耐焼割れ性が高い中実スタビライザ用鋼材、強度が高い中実スタビライザ、および中実スタビライザの製造方法を提供することを課題とする。 中実スタビライザ用鋼材は、質量%で、C:0.24~0.40%、Si:0.15~0.40%、Mn:0.50~1.20%、P:0.03%以下、Cr:0.30%以下、Ti:0.01~0.03%、B:0.0010~0.0030%を含有する。中実スタビライザ用鋼材は、下記式(1)の条件を満足する。中実スタビライザ用鋼材の焼戻し後における径方向中心部の硬さは400HV以上であり、焼戻し後における径方向中心部のマルテンサイト率は80%以上である。 1.24<(2C+0.1Si+0.4Mn+0.4Cr)×{1+(1.5B-300B)×240}<1.7 ・・・式(1)

Description

中実スタビライザ、中実スタビライザ用鋼材および中実スタビライザの製造方法
 本発明は、車両走行時の安定性を確保する中実スタビライザ、中実スタビライザ用鋼材および中実スタビライザの製造方法に関する。
 スタビライザは、車両の車幅方向両側のサスペンションアーム間を連結している。スタビライザは、車両走行時のロールを抑制している。スタビライザには、中実の鋼材から作製される中実スタビライザと、中空の鋼材から作製される中空スタビライザと、がある。近年においては、車両軽量化のため、中空スタビライザが使用されることが多くなっている。例えば、特許文献1には中空スタビライザ用の電縫溶接鋼管が、特許文献2には中空スタビライザの製造方法が、それぞれ開示されている。
特開2004-11009号公報 特開2005-76047号公報
 しかしながら、中空スタビライザと比較して、中実スタビライザは、所望の強度を確保しやすい。また、製造コストが低い。このため、中空スタビライザの需要が増しているものの、依然として中実スタビライザも多く使用されている。これら二種類のスタビライザの構造は、中空と中実という点において、異なっている。このため、鋼材に要求される特性も当然に異なっている。以下、その相違点を具体的に説明する。
 スタビライザの製造方法は、成形工程と焼入れ工程と焼戻し工程とを有している。成形工程においては、鋼材をスタビライザの形状にするために、鋼材に曲げ加工が施される。ここで、中空スタビライザ用鋼材の場合、径方向中心部が空洞である。このため、本来的に曲げ変形に対する抵抗が小さい。したがって、曲げ加工しやすい。これに対して、中実スタビライザ用鋼材の場合、径方向中心部まで鋼材が詰まっている。このため、本来的に曲げ変形に対する抵抗が大きい。したがって、曲げ加工しにくく、かつスプリングバックも大きくなってしまう。したがって、中実スタビライザを製造する際は、中空スタビライザを製造する場合と比較して、スプリングバックに対する要求レベルが高くなる。さらに、中実スタビライザの場合は、中空スタビライザの場合より、要求される強度も高くなるため、その影響によりスプリングバックも大きくなってしまう。
 したがって、中空スタビライザを製造する場合には、スプリングバックが問題となる程度まで大きくなることはなかったが、中実スタビライザを製造する場合には、スプリングバック量も考慮して素材等を選択する必要がある。
 また、焼入れ工程においては、曲げ加工後の鋼材に焼入れ処理が施される。ここで、中空スタビライザの場合、径方向中心部が空洞である。このため、高い焼入れ性が鋼材に要求されない。これに対して、中実スタビライザの場合、径方向中心部まで鋼材が詰まっている。このため、径方向中心部まで硬化するのに十分な、焼入れ性が鋼材に要求される。
 また、中空スタビライザの場合、径方向中心部が空洞である。このため、焼入れ工程における急冷の際、外周面と内周面との間の収縮差(冷却速度差)が小さい。したがって、焼割れが起こりにくい。これに対して、中実スタビライザの場合、径方向中心部まで鋼材が詰まっている。このため、焼入れ工程における急冷の際、外周面と径方向中心部との間の収縮差(冷却速度差)が大きい。したがって、焼割れが起こりやすい。このように、中空スタビライザ用鋼材と比較して、中実スタビライザ用鋼材の場合、焼割れが起こりにくいこと、つまり中空スタビライザ用鋼材と比較して高い耐焼割れ性が要求される。
 さらに、前述したように、中空スタビライザと比較して、中実スタビライザは、所望の強度を確保しやすい。このため、中実スタビライザは、高い強度が要求される車両に用いられる場合が多い。しかしながら、強度を高めようとすると、高強度化に効果のあるC等の含有量を多くすることになり、これは上記曲げ加工性や耐焼割れ性を低下させることにつながるため、中空スタビライザに比べ強度の優れた中実スタビライザを製造しようとすると、中空スタビライザに用いられている技術を、そのまま中実スタビライザに転用しても、狙いとする特性が得られないという問題があった。
 以上説明したように、中空スタビライザ用鋼材をそのまま中実スタビライザ用鋼材に転用しても、両者に要求される特性が全く異なるため、曲げ加工性、焼入れ性、耐焼割れ性、強度などの特性に対する要求を、全て満たすことはできない。
 本発明の中実スタビライザ、中実スタビライザ用鋼材および中実スタビライザの製造方法は、上記課題に鑑みて完成されたものである。本発明は、曲げ加工性、焼入れ性、耐焼割れ性の点で中実スタビライザを製造する際に前記した問題が生じることなく、かつ強度の優れた中実スタビライザ、中実スタビライザ用鋼材、および中実スタビライザの製造方法を提供することを目的とする。
 (1)上記課題を解決するため、本発明の中実スタビライザは、中実スタビライザ用鋼材を、冷間で成形し、焼入れし、焼戻しすることにより作製される中実スタビライザであって、前記中実スタビライザ用鋼材は、質量%で、C:0.24~0.40%、Si:0.15~0.40%、Mn:0.50~1.20%、P:0.03%以下、Cr:0.30%以下、Ti:0.01~0.03%、B:0.0010~0.0030%を含有し、下記式(1)の条件を満足し、残部がFeおよび不可避不純物からなり、前記焼戻し後における径方向中心部の硬さが400HV以上であり、該焼戻し後における該径方向中心部のマルテンサイト率が80%以上であることを特徴とする。
 1.24<(2C+0.1Si+0.4Mn+0.4Cr)×{1+(1.5B-300B)×240}<1.7  ・・・式(1)
 (2)好ましくは、上記(1)の構成において、前記Cの下限値は0.25%であり、前記Mnの上限値は1.00%であり、前記式(1)の下限値は1.4である構成とする方がよい。
 (3)好ましくは、上記(1)または(2)の構成において、下記式(2)の条件を満足する構成とする方がよい。
 (Si/C)<1.5  ・・・式(2)
 (4)好ましくは、上記(1)ないし(3)のいずれかの構成において、前記焼戻し後において、引張強さが1200MPa以上、0.2%耐力が1100MPa以上、室温での衝撃値が70J/cm以上である構成とする方がよい。本構成によると、高強度と高靭性とを併せ持つ中実スタビライザを得ることができる。
 (5)また、上記課題を解決するため、本発明の中実スタビライザ用鋼材は、質量%で、C:0.24~0.40%、Si:0.15~0.40%、Mn:0.50~1.20%、P:0.03%以下、Cr:0.30%以下、Ti:0.01~0.03%、B:0.0010~0.0030%を含有し、下記式(1)の条件を満足し、残部がFeおよび不可避不純物からなり、仕上圧延時において、加熱温度1000℃以下の条件で圧延され、圧延後の硬さが200HV以下であることを特徴とする。
 1.24<(2C+0.1Si+0.4Mn+0.4Cr)×{1+(1.5B-300B)×240}<1.7  ・・・式(1)
 (6)好ましくは、上記(5)の構成において、前記Cの下限値は0.25%であり、前記Mnの上限値は1.00%であり、前記式(1)の下限値は1.4である構成とする方がよい。
 (7)好ましくは、上記(5)または(6)の構成において、下記式(2)の条件を満足する構成とする方がよい。
 (Si/C)<1.5  ・・・式(2)
 (8)また、上記課題を解決するため、本発明の中実スタビライザの製造方法は、質量%で、C:0.24~0.40%、Si:0.15~0.40%、Mn:0.50~1.20%、P:0.03%以下、Cr:0.30%以下、Ti:0.01~0.03%、B:0.0010~0.0030%を含有し、下記式(1)の条件を満足し、残部がFeおよび不可避不純物からなり、仕上圧延時において、加熱温度1000℃以下の条件で圧延され、圧延後の硬さが200HV以下である中実スタビライザ用鋼材に、冷間で曲げ加工を施す成形工程と、成形後の該中実スタビライザ用鋼材に焼入れ処理を施す焼入れ工程と、焼入れ後の該中実スタビライザ用鋼材に焼戻し処理を施す焼戻し工程と、を有することを特徴とする。
 1.24<(2C+0.1Si+0.4Mn+0.4Cr)×{1+(1.5B-300B)×240}<1.7  ・・・式(1)
 (9)好ましくは、上記(8)の構成において、前記Cの下限値は0.25%であり、前記Mnの上限値は1.00%であり、前記式(1)の下限値は1.4である構成とする方がよい。
 (10)好ましくは、上記(8)または(9)の構成において、下記式(2)の条件を満足する構成とする方がよい。
 (Si/C)<1.5  ・・・式(2)
 本発明の中実スタビライザ用鋼材は、成分の最適化によって、必要な焼入れ性、耐焼割れ性、曲げ加工性を確保しつつ、強度、靭性等の機械的特性を満足する性能を得ることができる。曲げ加工性、耐焼割れ性、機械的特性の一つ一つを従来鋼と比較すると、必ずしも明らかに優れるというレベルの性能を有しているわけではないが、従来鋼が一部の特性の要求レベルを満足しても他の一部の特性の要求レベルを満足しない場合があるのに対して、全ての要求特性を満足するように最適な製品設計をしたことが本発明の最大の特徴である。
本発明の一実施形態となる中実スタビライザの斜視図である。
 以下、本発明の中実スタビライザ、中実スタビライザ用鋼材、中実スタビライザの製造方法の実施形態について説明する。
 <中実スタビライザ用鋼材>
 [中実スタビライザ用鋼材を構成する各成分の含有量]
 まず、中実スタビライザ用鋼材を構成する各成分の含有量について説明する。
 (C)
 Cは、焼入れ、焼戻し後に中実スタビライザとして必要な強度を確保するために不可欠な成分である。Cの含有量を0.24質量%(以下、適宜「%」と略称する。)以上としたのは、0.24%未満の場合、中実スタビライザの強度が低下するからである。また、中実スタビライザ用鋼材の焼入れ性が低くなるからである。同様の理由から、好ましくはCの含有量を0.25%以上とする方がよい。Cの含有量を0.40%以下としたのは、0.40%超過の場合、中実スタビライザ用鋼材の耐焼割れ性が低くなるからである。また、焼戻し後の靭性が低下するからである。また、仕上圧延後(冷間成形前)の中実スタビライザ用鋼材の硬さが上昇し、冷間成形時の曲げ加工性が低くなるからである。
 (Si)
 Siは溶製時に脱酸剤として作用する。Siの含有量を0.15%以上としたのは、0.15%未満の場合、中実スタビライザ用鋼材の焼入れ性が低くなるからである。また、中実スタビライザの強度が低下するからである。Siの含有量を0.40%以下としたのは、0.40%超過の場合、中実スタビライザ用鋼材の耐焼割れ性が低くなるからである。また、仕上圧延後(冷間成形前)の中実スタビライザ用鋼材の硬さが上昇し、冷間成形時の曲げ加工性が低くなるからである。
 (Mn)
 Mnは、中実スタビライザ用鋼材の焼入れ性を向上させるために添加される。Mnの含有量を0.50%以上としたのは、0.50%未満の場合、中実スタビライザ用鋼材の焼入れ性が低くなるからである。また、中実スタビライザの強度が低下するからである。Mnの含有量を1.20%以下としたのは、1.20%超過の場合、中実スタビライザ用鋼材の耐焼割れ性が低くなるからである。また、仕上圧延後(冷間成形前)の中実スタビライザ用鋼材の硬さが上昇し、冷間成形時の曲げ加工性が低くなるからである。同様の理由から、好ましくはMnの含有量を1.00%以下とする方がよい。
 (P)
 Pの含有量は、できるだけ少ない方が好ましい。Pの含有量を0.03%以下としたのは、0.03%超過の場合、焼戻し後の靭性が低下するからである。
 (Cr)
 Crは、Mn同様、中実スタビライザ用鋼材の焼入れ性を向上させるために添加される。Crの含有量を0.30%以下としたのは、0.30%超過の場合、中実スタビライザ用鋼材の耐焼割れ性が低くなるからである。また、仕上圧延後(冷間成形前)の中実スタビライザ用鋼材の硬さが上昇し、冷間成形時の曲げ加工性が低くなるからである。
 (B)
 Bは、Mn、Cr同様、中実スタビライザ用鋼材の焼入れ性を向上させる効果を有する。また、Bは、粒界強度を向上させる効果を有する。Bの含有量を0.0010%以上としたのは、0.0010%未満の場合、中実スタビライザ用鋼材の焼入れ性が低下するからである。また、中実スタビライザの強度が低下するからである。Bの含有量を0.0030%以下としたのは、Bの添加効果(焼入れ性向上効果、強度向上効果)は添加量が増加するのに従って徐々に飽和するため、0.0030%を超えてBを添加しても、効果が飽和してしまうからである。なお、この点に鑑み、後述する式(1)においても、Bの含有量については、一次項に加えて、二次項が設定されている。
 (Ti)
 Bは、鋼中のNと結合しやすい。BがNと結合しBNが生成すると、Bの添加効果が得られなくなる。そこで、Tiを添加し、TiとNとの間にTiNを生成させることにより、Bの添加効果を確保している。
 Tiの含有量を0.01%以上としたのは、0.01%未満の場合、B添加効果を確保しにくくなるからである。Tiの含有量を0.03%以下としたのは、0.03%超過の場合、粗大TiNが生成しやすくなり、靭性が低下するからである。
 なお、本発明の中実スタビライザ用鋼材は、上記各成分の他に、鋼の製造時に必須の工程である脱酸処理に必要な量のAl(0.040%以下程度)を、不純物として含有していてもよい。
 [式(1)]
 次に、式(1)について説明する。式(1)は、実験データを多変量解析して得られた、経験式である。式(1)に適合するように各成分の含有量を設定すると、中実スタビライザ用鋼材の焼入れ性、耐焼割れ性を最適化することができる。
 式(1)に各成分の含有量(%値。例えば0.25%なら0.25)を代入して得られる数値が、1.24超過になるようにしたのは、1.24以下の場合、中実スタビライザとして使用するには焼入れ性が不足し、焼入れ後において径方向中心部まで80%以上のマルテンサイト率を確保することが困難になり、結果として中実スタビライザの強度が低下するからである。同様の理由から、好ましくは式(1)の数値が1.4超過になる方がよい。また、式(1)に各成分の含有量を代入して得られる数値が、1.7未満になるようにしたのは、1.7以上の場合、前記した理由により中空スタビライザに比べ焼割れの発生しやすい中実スタビライザの製造の場合には、焼割れを完全に防止することができなくなるおそれがあるためである。このように、式(1)を用いることにより、中実スタビライザの製造の際に問題のない焼入れ性と耐焼割れ性を確保することができる。
 [式(2)]
 次に、式(2)について説明する。式(2)は、実験データを多変量解析して得られた、経験式である。式(2)に適合するようにSi、Cの含有量を設定すると、中実スタビライザ用鋼材の表面の硬度を最適化することができる。
 式(2)の数値が、1.5未満になるようにしたのは、1.5以上の場合、Cに対するSiの量が多くなり、脱炭しやすくなるからである。すなわち、中実スタビライザの内部の硬度と比較して、中実スタビライザの表面の強度が低くなるからである。このように、式(2)を用いることにより、中実スタビライザの表面の強度の低下を抑制することができる。
 [加熱温度、圧延後の硬さ]
 仕上圧延時の加熱温度を1000℃以下にしたのは、1000℃超過の場合、圧延後の硬さが上昇し、冷間での中実スタビライザ用鋼材の曲げ加工性が低下するからである。具体的には、スプリングバックが大きくなり、曲げ加工後の形状のばらつきが大きくなってしまうという問題がある。また、圧延後の硬さを200HV以下にしたのは、200HV以下であれば、曲げ加工時のスプリングバックを目標値以下に抑えることが可能だからである。
 <中実スタビライザ>
 中実スタビライザの素材であるスタビライザ用鋼材の、各成分の含有量、式(1)、式(2)については、上述したとおりである。
 図1に、本発明の一実施形態となる中実スタビライザの斜視図を示す。図1に示すように、中実スタビライザ1は、全体としてU字状を呈している。中実スタビライザ1は、トーション部10と、一対のアーム部11と、を備えている。トーション部10は、車幅方向に延在している。一対のアーム部11は、トーション部10の軸方向両端に連なっている。トーション部10の車幅方向両端付近には、一対のリング12が、かしめ固定されている。一対のリング12の車幅方向外側には、一対のブッシュ13が環装されている。ブッシュ13は、車体(図略)に固定されている。一対のアーム部11の先端には、各々、目玉部110が配置されている。一対の目玉部110は、各々、サスペンションアーム(図略)に連結されている。
 [焼戻し後の硬さ、マルテンサイト率]
 焼戻し後の硬さ、マルテンサイト率を判断する部位を径方向中心部にしたのは、中実スタビライザの場合、径方向中心部まで焼きの入った組織にする必要があり、焼入れ性が不足すると、径方向中心部が焼きの入っていない組織となって、硬さが低下するためである。したがって、径方向中心部で問題のない組織、硬さが得られていれば、当然、表面等径方向中心部以外の部位は80%以上のマルテンサイト率を確保することができる。
 焼戻し後における径方向中心部の硬さを400HV以上にしたのは、本発明では従来の中空スタビライザと比較して同等か優れる強度を確保することを目的としているため、400HV未満の硬さは強度が不足するからである。同様に、焼戻し後における径方向中心部のマルテンサイト率を80%以上にしたのは、80%未満の場合、目的とする強度が得られないからである。
 [引張強さ、0.2%耐力、衝撃値]
 引張強さを1200MPa以上、0.2%耐力を1100MPa以上、室温での衝撃値を70J/cm以上としたのは、これらの下限値を下回る場合、中実スタビライザに要求される高強度と高靭性とを両立しにくいからである。
 すなわち、中空スタビライザと比較して、中実スタビライザは、高強度や高靭性が要求される車両に用いられる場合が多い。このため、これらの下限値を下回る場合、中実スタビライザに対する厳しい要求をクリアーできないおそれがあるからである。
 <中実スタビライザの製造方法>
 中実スタビライザの製造方法は、成形工程と焼入れ工程と焼戻し工程とを有している。成形工程においては、仕上圧延後の中実スタビライザ用鋼材に、冷間で曲げ加工を施す。そして、中実スタビライザ用鋼材に、作製対象である中実スタビライザの形状を付与する。焼入れ工程においては、まず中実スタビライザ用鋼材を加熱し、組織をオーステナイト化した後、急冷して硬いマルテンサイト組織とし、その後の焼戻し工程で、中実スタビライザ用鋼材の靭性の向上を図る。
 中実スタビライザ用鋼材の各成分の含有量、式(1)、式(2)、仕上圧延時の加熱温度、仕上圧延後の硬さについては、上述したとおりである。
 <その他>
 以上、本発明の中実スタビライザ、中実スタビライザ用鋼材、中実スタビライザの製造方法の実施の形態について説明した。しかしながら、実施の形態は上記形態に特に限定されるものではない。当業者が行いうる種々の変形的形態、改良的形態で実施することも可能である。
 例えば、中実スタビライザの製造方法の焼入れ工程における加熱方法は、特に限定しないが、炉加熱や通電加熱等により加熱することができる。また、焼入れ工程における急冷用の冷媒も特に限定しないが、水、ポリマー系溶液等を用いることができる。また、焼入れ工程、焼戻し工程における加熱、冷却の温度パターンは、特に限定しない。また、成形工程における曲げ加工は特に限定しない。例えば、冷間においてNCベンダーや曲げ型等を用いて曲げ加工を行うことができる。
 以下、スタビライザ、スタビライザ用鋼材に対して行った、耐焼割れ性、冷間曲げ加工性、強度、耐久性、靭性に関する評価試験について説明する。
 <サンプルの製造方法>
 まず、サンプル(実施例1~8、比較例1~7、9~13のスタビライザ)の製造方法について説明する。サンプルの製造方法は、熱間鍛造工程と、成形工程と、焼入れ工程と、焼戻し工程と、仕上工程と、を有している。
 熱間鍛造工程においては、まず、鋼材を所定の長さに切断した。次に、切断した鋼材の軸方向両端を加熱し、熱間鍛造し、孔を穿設した。このようにして、図1に示すように、鋼材の軸方向両端に、一対の目玉部110を形成した。
 成形工程においては、冷間で鋼材に曲げ加工を施した。具体的には、鋼材をU字状に湾曲させた。このようにして、図1に示すように、トーション部10と一対のアーム部11とを形成した。
 焼入れ工程においては、まず鋼材の一対の目玉部110をクランプした。次いで、一対の目玉部110間に通電して通電加熱することにより、焼入れ温度970℃まで加熱した。それから、水により鋼材を急冷した。
 焼戻し工程においては、再度鋼材を加熱し、徐冷した。なお、加熱時の最高温度(焼戻し温度)は、焼戻し後における鋼材の径方向中心の硬さが420HVになることを目標に、調整した。ただし、後述する比較例10については、焼入れ工程後における硬さが320HVまでしか上昇しなかった。このため、焼戻し工程で420HVに調整することは不可能であると判断し、焼戻しをすれば硬さがさらに低下し目標値との差がさらに大きくなる可能性があるため、比較例10については焼戻しを行わなかった。また、実施例7については、仕上工程において、鋼材を加熱して行われる塗装工程を、焼戻し工程と兼ねた。塗装温度、つまり焼戻し温度は200℃とした。
 仕上工程においては、まず鋼材の形状を微調整し、次いで表面にショットピーニング処理を施し、それから表面に塗装を施し、最後に図1に示すように一対のリング12をトーション部10にかしめ固定した。このようにして、サンプルを製造した。
 比較例8は、中空と中実の場合の焼割れのしやすさの違いを評価するためのサンプルである。比較例8については耐焼割れ性の評価のみを行った。評価方法については後述する。
 <サンプルの組成>
 次に、サンプルの組成について説明する。表1に、実施例1~8、比較例1~13の成分、製造条件、評価項目(耐焼割れ性、冷間曲げ加工性、強度、耐久性、靭性)に関するデータを示す。
 請求項で規定した成分および特性の数値範囲を外れているものについては、「*」を付して示す。また、請求項で規定していない特性であって、著しく劣っているものについては、「♯」を付して示す。
Figure JPOXMLDOC01-appb-T000001
 以下、実施例1~8、比較例1~13の特徴を簡単に説明する。実施例1~8は、本発明の中実スタビライザである。比較例1は、本発明の組成範囲に対して、Cが上限値を上回っている。比較例2は、本発明の組成範囲に対して、Crが上限値を上回っている。また、本発明の組成範囲に対して、式(1)の数値が上限値を上回っている。比較例3は、本発明の組成範囲に対して、Siが上限値を上回っている。比較例4は、本発明の組成範囲に対して、式(1)の数値が上限値を上回っている。比較例5は、本発明の組成範囲に対して、Tiが上限値を上回っている。比較例6は、本発明の組成範囲に対して、式(1)の数値が下限値を下回っている。また、比較例6は、従来から中空スタビライザ用として汎用されている鋼材と同じ材料を使って製造した中実スタビライザである。比較例7は、本発明の組成範囲に対して、Mnが上限値を上回っている。また、本発明の組成範囲に対して、式(1)の数値が上限値を上回っている。また、比較例7は、特許文献2の表1の母鋼管Cと同じ鋼材製の中実スタビライザである。つまり、特許文献2に中空スタビライザ用として開示されている鋼材とほぼ同じ鋼材を準備し、その鋼材から中実スタビライザを製造したものである。比較例8については、後述する。比較例9は、本発明の組成範囲に対して、Cが下限値を下回っている。また、本発明の組成範囲に対して、式(2)の数値が上限値を上回っている。比較例10は、本発明の組成範囲に対して、Ti、Bが下限値を下回っている。また、本発明の組成範囲に対して、式(1)の数値が下限値を下回っている。比較例10は、JISの炭素鋼S33Cに相当する鋼材製の中実スタビライザである。比較例11は、本発明の組成範囲に対して、C、Crが上限値を上回っている。また、本発明の組成範囲に対して、Ti、Bが下限値を下回っている。また、本発明の組成範囲に対して、式(1)の数値が上限値を上回っている。比較例11は、JISのばね鋼SUP9に相当する鋼材製の中実スタビライザである。比較例12は、実施例1と同じ鋼材製の中実スタビライザである。鋼材の仕上圧延時の加熱温度が本発明の上限値を上回っている。比較例13は、実施例3と同じ鋼材製の中実スタビライザである。鋼材の仕上圧延時の加熱温度が本発明の上限値を上回っている。
 なお、表1には記載していないが、実施例として用いた全ての鋼材は脱酸処理を行っているため、少量(0.010~0.035%)のAlを含有している。また、表1には記載していないが、実施例として用いた全ての鋼材のPの含有量は、0.03%以下である。
 <評価項目および評価方法>
 次に、評価項目および評価方法について、表1を参照しながら説明する。なお、比較例8については、耐焼割れ性のみ評価した。
 [耐焼割れ性]
 耐焼割れ性の評価には、仕上圧延後の鋼材から切り出した、テストピース(直径26mm、長さ100mm、深さ1mmのVノッチ入り)を、30本使用した。つまり、一つのサンプルにつき、30本のテストピースを使用した。なお、比較例8については、直径が26mm、長さが100mmで、深さ1mmのVノッチが入っており、径方向肉厚が4mmのテストピースを、30本使用した。
 30本のテストピースを、まず焼入れ温度970℃で30分間保持し、その後水冷した。水冷後のテストピースを観察し、1本でも焼割れが確認できた場合を「×」、全30本で全く焼割れが確認できない場合を「○」と評価した。
 テストピースにVノッチを入れたのは、もともと焼割れ性の問題は大量生産した中の一部に生じただけでも問題であり、頻繁に起きる問題ではなく、少ない本数のテストピースでは差異が生じないからである。また、実際に焼割れが生じるのは微小な疵等の割れの原因があった場合が多く、そのような場合でも焼割れしないことが要求されるからである。
 [冷間曲げ加工性]
 (圧延後の硬さ)
 圧延後の鋼材の硬さは、仕上圧延後の鋼材から切り出したテストピースの、ビッカース硬さ(JIS Z 2244 HV10)により、評価した。
 (スプリングバック)
 冷間曲げ加工性は、スプリングバックにより評価した。これは前記したとおりスプリングバックが大きくなると曲げ加工後の形状のばらつきが大きくなるという問題があるからである。
 スプリングバックは、鋼材に曲げ加工を施す際の、NCベンダーのベンダーヘッド回転角(トーション部10とアーム部11との間の設計角度)と、実際の曲げ加工後のトーション部10とアーム部11との間の実角度と、の比(=実角度/設計角度)を用いて、評価した。
 具体的には、従来から用いられている中空スタビライザ用の鋼材の代表例である比較例6を用いて中実スタビライザを製造した場合のスプリングバック量をR01、従来から用いられているJISのばね用鋼材SUP9のうちの最も平均的な成分に相当する比較例11のスプリングバック量をR02とし、R01とR02との平均値をR0とした。そして、各サンプルのスプリングバック量をR1とし、R0との比であるR1/R0を表1に記載した。
 前記したとおり、スプリングバックが大きくなるほど曲げ加工後のばらつきが大きくなるため、この値が1.0以下を目標値として評価した。これは過去の実際の製造データより、前記比較例6に代表される中空スタビライザ用の鋼材と、比較例11に代表されるJISのばね用鋼材SUP9の、それぞれのスプリングバック量の平均値以下程度にスプリングバック量を抑えることができれば、中実スタビライザ製造途中の曲げ加工の際に問題のないばらつき以下に抑えられることを把握しているからである。
 [強度]
 (表面の硬さ)
 スタビライザの表面の硬さは、スタビライザから切り出したテストピースの、ビッカース硬さ(JIS Z 2244 HV10)により、評価した。
 (硬さ)
 スタビライザの硬さは、スタビライザから切り出したテストピースの、ビッカース硬さ(JIS Z 2244 HV10)により、評価した。
 (マルテンサイト率)
 マルテンサイト率は、スタビライザから切り出したテストピースの、径方向中心部の組織を光学顕微鏡(×400倍)で観察することにより、評価した。
 (0.2%耐力)
 0.2%耐力は、後述する引張強さ同様に、スタビライザから切り出したテストピース(14A号試験片 JIS Z 2201)に対して、引張試験(JIS Z 2241)を行い、除荷時の永久歪みが0.2%になる応力により、評価した。
 (引張強さ)
 引張強さは、スタビライザから切り出したテストピース(14A号試験片 JIS Z 2201)に対して、引張試験(JIS Z 2241)を行うことにより、評価した。
 [耐久性]
 耐久性は、スタビライザに対して行った耐久試験により評価した。図1に示すように、スタビライザ1の直径は26mmである。一対のブッシュ13間の間隔は、490mmである。一対の目玉部110間の間隔は、820mmである。
 耐久試験においては、まず、一対のブッシュ13をジグ(図略)に固定した。次いで、一対の目玉部110を上下反対方向に交互に加振した。加振の周波数は、2Hzとした。加振ストローク(下死点~上死点間)は、70mmとした。スタビライザに割れが発生するまでの繰り返し数で、耐久性を評価した。
 [靭性]
 靭性は、スタビライザから切り出したテストピース(JIS3号2mmUノッチ試験片)に対して、20℃でシャルピー衝撃試験(JIS Z 2242)を行うことにより、評価した。
 <試験結果>
 次に、試験結果について、表1を参照しながら説明する。実施例1~8によると、鋼材についても、またスタビライザについても、全ての評価項目において、満足できる評価結果が得られた。
 これに対して、比較例1~13によると、評価項目によっては満足できる評価結果が得られる場合があるものの、全ての評価項目において満足できる評価結果は得られなかった。簡単に説明すると、比較例1の場合、冷間曲げ加工性が低かった。また、靭性が低かった。比較例2の場合、焼割れが発生した。比較例3の場合、冷間曲げ加工性が低かった。比較例4の場合、焼割れが発生した。比較例5の場合、スプリングバックが大きかった。また、靭性が低かった。比較例6の場合、マルテンサイト率が低かった。また、0.2%耐力が低かった。また、耐久性が低かった。比較例7の場合、焼割れが発生した。また、圧延後の硬さが高く、冷間曲げ加工性が低かった。比較例9の場合、0.2%耐力が低かった。また、耐久性が低かった。比較例10の場合、強度(硬さ、マルテンサイト率、0.2%耐力、引張強さ)が低かった。また、耐久性と靭性が低かった。比較例11の場合、圧延後の硬さが高く、冷間曲げ加工性が低かった。また、靭性が低かった。比較例12の場合、圧延後の硬さが高く、冷間曲げ加工性が低かった。比較例13の場合、圧延後の硬さが高く、冷間曲げ加工性が低かった。
 上記比較例1~13のうち、比較例6は、中空スタビライザ用として使用されている鋼材を用いて中実スタビライザを製造したものである。このことから、中空スタビライザ用鋼材をそのまま中実スタビライザ用に転用しても、全ての評価項目において満足できる評価結果は得られないことが判った。
 比較例8の耐焼割れ性の評価には、比較例7と同じ鋼材を用いた中空のテストピースを準備した。評価の結果、中実の比較例7に焼割れが発生したのに対して、中空の比較例8には焼割れが発生しなかった。このことから、中空スタビライザに用いて焼割れが生じない場合があっても、中実スタビライザに用いると焼割れが生じる場合があることが判った。本発明では、前記したとおり中空スタビライザに対して中実スタビライザの方が焼割れが生じやすいという点も考慮して成分設計されているため、前記したとおり強度特性を満足しつつ焼割れも生じない設計となっており、その効果は中実スタビライザを製造する際に極めて大きいものである。
 1:中実スタビライザ、10:トーション部、11:アーム部、12:リング、13:ブッシュ、110:目玉部。

Claims (10)

  1.  中実スタビライザ用鋼材を、冷間で成形し、焼入れし、焼戻しすることにより作製される中実スタビライザであって、
     前記中実スタビライザ用鋼材は、質量%で、C:0.24~0.40%、Si:0.15~0.40%、Mn:0.50~1.20%、P:0.03%以下、Cr:0.30%以下、Ti:0.01~0.03%、B:0.0010~0.0030%を含有し、下記式(1)の条件を満足し、残部がFeおよび不可避不純物からなり、
     前記焼戻し後における径方向中心部の硬さが400HV以上であり、該焼戻し後における該径方向中心部のマルテンサイト率が80%以上であることを特徴とする中実スタビライザ。
     1.24<(2C+0.1Si+0.4Mn+0.4Cr)×{1+(1.5B-300B)×240}<1.7  ・・・式(1)
  2.  前記Cの下限値は0.25%であり、前記Mnの上限値は1.00%であり、前記式(1)の下限値は1.4である請求項1に記載の中実スタビライザ。
  3.  下記式(2)の条件を満足する請求項1または請求項2に記載の中実スタビライザ。
     (Si/C)<1.5  ・・・式(2)
  4.  前記焼戻し後において、引張強さが1200MPa以上、0.2%耐力が1100MPa以上、室温での衝撃値が70J/cm以上である請求項1ないし請求項3のいずれかに記載の中実スタビライザ。
  5.  質量%で、C:0.24~0.40%、Si:0.15~0.40%、Mn:0.50~1.20%、P:0.03%以下、Cr:0.30%以下、Ti:0.01~0.03%、B:0.0010~0.0030%を含有し、
     下記式(1)の条件を満足し、
     残部がFeおよび不可避不純物からなり、
     仕上圧延時において、加熱温度1000℃以下の条件で圧延され、圧延後の硬さが200HV以下である中実スタビライザ用鋼材。
     1.24<(2C+0.1Si+0.4Mn+0.4Cr)×{1+(1.5B-300B)×240}<1.7  ・・・式(1)
  6.  前記Cの下限値は0.25%であり、前記Mnの上限値は1.00%であり、前記式(1)の下限値は1.4である請求項5に記載の中実スタビライザ用鋼材。
  7.  下記式(2)の条件を満足する請求項5または請求項6に記載の中実スタビライザ用鋼材。
     (Si/C)<1.5  ・・・式(2)
  8.  質量%で、C:0.24~0.40%、Si:0.15~0.40%、Mn:0.50~1.20%、P:0.03%以下、Cr:0.30%以下、Ti:0.01~0.03%、B:0.0010~0.0030%を含有し、
     下記式(1)の条件を満足し、
     残部がFeおよび不可避不純物からなり、
     仕上圧延時において、加熱温度1000℃以下の条件で圧延され、圧延後の硬さが200HV以下である中実スタビライザ用鋼材に、
    冷間で曲げ加工を施す成形工程と、
     成形後の該中実スタビライザ用鋼材に焼入れ処理を施す焼入れ工程と、
     焼入れ後の該中実スタビライザ用鋼材に焼戻し処理を施す焼戻し工程と、
    を有する中実スタビライザの製造方法。
     1.24<(2C+0.1Si+0.4Mn+0.4Cr)×{1+(1.5B-300B)×240}<1.7  ・・・式(1)
  9.  前記Cの下限値は0.25%であり、前記Mnの上限値は1.00%であり、前記式(1)の下限値は1.4である請求項8に記載の中実スタビライザの製造方法。
  10.  下記式(2)の条件を満足する請求項8または請求項9に記載の中実スタビライザの製造方法。
     (Si/C)<1.5  ・・・式(2)
PCT/JP2011/055071 2010-03-08 2011-03-04 中実スタビライザ、中実スタビライザ用鋼材および中実スタビライザの製造方法 WO2011111623A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180012088.3A CN102782172B (zh) 2010-03-08 2011-03-04 实心稳定杆、实心稳定杆用钢材和实心稳定杆的制造方法
MX2012010102A MX2012010102A (es) 2010-03-08 2011-03-04 Estabilizador solido, material de acero para el estabilizador solido y metodo de fabricacion del estabilizador solido.
JP2012504429A JP5631972B2 (ja) 2010-03-08 2011-03-04 中実スタビライザ、中実スタビライザ用鋼材および中実スタビライザの製造方法
DE112011100846T DE112011100846T8 (de) 2010-03-08 2011-03-04 Massiver Stabilisator, Stahlmaterial für den massiven Stabilisator und Herstellungsverfahren des massiven Stabilisators
US13/579,228 US20120318409A1 (en) 2010-03-08 2011-03-04 Solid stabilizer, steel material for solid stabilizer, and manufacturing method of solid stabilizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-051029 2010-03-08
JP2010051029 2010-03-08

Publications (1)

Publication Number Publication Date
WO2011111623A1 true WO2011111623A1 (ja) 2011-09-15

Family

ID=44563427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055071 WO2011111623A1 (ja) 2010-03-08 2011-03-04 中実スタビライザ、中実スタビライザ用鋼材および中実スタビライザの製造方法

Country Status (6)

Country Link
US (1) US20120318409A1 (ja)
JP (1) JP5631972B2 (ja)
CN (1) CN102782172B (ja)
DE (1) DE112011100846T8 (ja)
MX (1) MX2012010102A (ja)
WO (1) WO2011111623A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534144A (zh) * 2011-11-02 2012-07-04 杭州钱江弹簧有限公司 轿车稳定杆圆盘淬火机
WO2016093183A1 (ja) * 2014-12-08 2016-06-16 日本発條株式会社 スタビライザ
WO2016152240A1 (ja) * 2015-03-23 2016-09-29 日本発條株式会社 スタビライザおよびその製造方法
KR20160126049A (ko) 2014-03-24 2016-11-01 Jfe 죠코 가부시키가이샤 고강도이며 내식성이 우수한 스태빌라이저용 강과, 그것을 이용한 차량용 스태빌라이저 및 그의 제조방법
JP2019214263A (ja) * 2018-06-12 2019-12-19 日本発條株式会社 スタビライザ、およびその製造方法
JP2020076154A (ja) * 2020-01-07 2020-05-21 日本発條株式会社 懸架装置用ばねの製造方法
US10995382B2 (en) 2014-12-08 2021-05-04 Nhk Spring Co., Ltd. Production method for stabilizers

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6444082B2 (ja) * 2014-07-23 2018-12-26 日本発條株式会社 スタビライザ製造装置およびその方法
DE102015114897A1 (de) * 2015-09-04 2017-03-09 Muhr Und Bender Kg Drehstab-Stabilisator und Verfahren zum Herstellen eines Drehstab-Stabilisators
DE102016107143A1 (de) * 2016-04-18 2017-10-19 Benteler Steel/Tube Gmbh Kraftfahrzeug, Fahrwerkkomponente, insbesondere für eine Fahrwerkkomponente und Verwendung der Fahrwerkkomponente und eines Werkstoffes
CN108823490A (zh) * 2018-06-01 2018-11-16 张家港保税区恒隆钢管有限公司 一种汽车横向稳定杆无缝钢管
CN110016539B (zh) * 2019-04-08 2020-09-18 中国科学院金属研究所 确定718h预硬型塑料模具钢最佳高温扩散退火工艺的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197218A (ja) * 1982-05-13 1983-11-16 Nhk Spring Co Ltd 中空スタビライザの製造方法
JPH0693339A (ja) * 1992-07-27 1994-04-05 Sumitomo Metal Ind Ltd 高強度高延性電縫鋼管の製造方法
JP2000336460A (ja) * 1999-05-27 2000-12-05 Nippon Steel Corp 機械構造用熱間圧延線材・棒鋼及びその製造方法
JP2001011575A (ja) * 1999-06-30 2001-01-16 Nippon Steel Corp 冷間加工性に優れた機械構造用棒鋼・鋼線及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533402A (en) * 1984-02-16 1985-08-06 Nhk Spring Co., Ltd. Method of manufacturing a hollow stabilizer
FR2780984B1 (fr) * 1998-07-09 2001-06-22 Lorraine Laminage Tole d'acier laminee a chaud et a froid revetue et comportant une tres haute resistance apres traitement thermique
JP2004011009A (ja) 2002-06-11 2004-01-15 Nippon Steel Corp 中空スタビライザー用電縫溶接鋼管
JP4066915B2 (ja) 2003-08-28 2008-03-26 Jfeスチール株式会社 耐疲労特性に優れた中空スタビライザの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197218A (ja) * 1982-05-13 1983-11-16 Nhk Spring Co Ltd 中空スタビライザの製造方法
JPH0693339A (ja) * 1992-07-27 1994-04-05 Sumitomo Metal Ind Ltd 高強度高延性電縫鋼管の製造方法
JP2000336460A (ja) * 1999-05-27 2000-12-05 Nippon Steel Corp 機械構造用熱間圧延線材・棒鋼及びその製造方法
JP2001011575A (ja) * 1999-06-30 2001-01-16 Nippon Steel Corp 冷間加工性に優れた機械構造用棒鋼・鋼線及びその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534144A (zh) * 2011-11-02 2012-07-04 杭州钱江弹簧有限公司 轿车稳定杆圆盘淬火机
KR20160126049A (ko) 2014-03-24 2016-11-01 Jfe 죠코 가부시키가이샤 고강도이며 내식성이 우수한 스태빌라이저용 강과, 그것을 이용한 차량용 스태빌라이저 및 그의 제조방법
WO2016093183A1 (ja) * 2014-12-08 2016-06-16 日本発條株式会社 スタビライザ
US10995382B2 (en) 2014-12-08 2021-05-04 Nhk Spring Co., Ltd. Production method for stabilizers
US11111554B2 (en) 2014-12-08 2021-09-07 Nhk Spring Co., Ltd. Stabilizer
WO2016152240A1 (ja) * 2015-03-23 2016-09-29 日本発條株式会社 スタビライザおよびその製造方法
JP2016175607A (ja) * 2015-03-23 2016-10-06 日本発條株式会社 スタビライザおよびその製造方法
JP2019214263A (ja) * 2018-06-12 2019-12-19 日本発條株式会社 スタビライザ、およびその製造方法
JP7154043B2 (ja) 2018-06-12 2022-10-17 日本発條株式会社 スタビライザ
JP2020076154A (ja) * 2020-01-07 2020-05-21 日本発條株式会社 懸架装置用ばねの製造方法

Also Published As

Publication number Publication date
MX2012010102A (es) 2012-11-21
US20120318409A1 (en) 2012-12-20
JP5631972B2 (ja) 2014-11-26
DE112011100846T8 (de) 2013-03-14
DE112011100846T5 (de) 2013-01-17
CN102782172B (zh) 2014-05-14
CN102782172A (zh) 2012-11-14
JPWO2011111623A1 (ja) 2013-06-27

Similar Documents

Publication Publication Date Title
JP5631972B2 (ja) 中実スタビライザ、中実スタビライザ用鋼材および中実スタビライザの製造方法
JP5624503B2 (ja) ばねおよびその製造方法
KR101706839B1 (ko) 중공 스태빌라이저 및 중공 스태빌라이저용 강관 및 그 제조 방법
JP5693126B2 (ja) コイルばね及びその製造方法
US8911566B2 (en) Nitrocarburized crankshaft member and steel for nitrocarburized crankshafts
JP5196934B2 (ja) 高疲労寿命焼入れ・焼戻し鋼管およびその製造方法
JP2007224366A (ja) 高強度ステンレス鋼ばねおよびその製造方法
WO2011078165A1 (ja) 高強度ばね用鋼
JP5653022B2 (ja) 腐食疲労強度に優れるばね用鋼、及びばね
JP6477007B2 (ja) 板ばね及びその製造方法
JP4773106B2 (ja) 強度−捻れ特性バランスに優れた鋼部品およびその製造方法と該鋼部品用鋼材
JP2005002365A (ja) 高強度スタビライザ
JP4403624B2 (ja) 軟窒化用非調質鋼及び軟窒化非調質クランク軸とその製造方法
JP5653020B2 (ja) 腐食疲労強度に優れるばね用鋼及びばね
JP4923927B2 (ja) クランクシャフトの製造方法
KR102437796B1 (ko) 중공 스태빌라이저 제조용의 전봉 강관, 중공 스태빌라이저, 및 그것들의 제조 방법
JP3859331B2 (ja) 高疲労強度鋼線およびばねとそれらの製造方法
KR101789944B1 (ko) 코일 스프링 및 그 제조 방법
JP4510515B2 (ja) 疲労特性に優れた中空部品
JP5734050B2 (ja) 転動疲労特性、高周波焼入性に優れる中炭素鋼
JP3872364B2 (ja) 冷間成形コイルばね用オイルテンパー線の製造方法
JP5653021B2 (ja) 腐食疲労強度に優れるばね用鋼、及びばね
JP5512231B2 (ja) 静的ねじり強度に優れたドライブシャフト用電縫鋼管およびその製造方法
WO2023120475A1 (ja) 圧縮コイルばねおよびその製造方法
JP6287363B2 (ja) 疲労特性に優れた中空材とその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180012088.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753282

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13579228

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012504429

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/010102

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 112011100846

Country of ref document: DE

Ref document number: 1120111008465

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2750/KOLNP/2012

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 11753282

Country of ref document: EP

Kind code of ref document: A1