CN110016539B - 确定718h预硬型塑料模具钢最佳高温扩散退火工艺的方法 - Google Patents

确定718h预硬型塑料模具钢最佳高温扩散退火工艺的方法 Download PDF

Info

Publication number
CN110016539B
CN110016539B CN201910277714.XA CN201910277714A CN110016539B CN 110016539 B CN110016539 B CN 110016539B CN 201910277714 A CN201910277714 A CN 201910277714A CN 110016539 B CN110016539 B CN 110016539B
Authority
CN
China
Prior art keywords
temperature diffusion
sample
annealing process
segregation
diffusion annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910277714.XA
Other languages
English (en)
Other versions
CN110016539A (zh
Inventor
傅排先
刘航航
张岳洪
姚林华
刘宏伟
王坚民
李殿中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Linhong Special Steel Co ltd
Institute of Metal Research of CAS
Original Assignee
Changzhou Linhong Special Steel Co ltd
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Linhong Special Steel Co ltd, Institute of Metal Research of CAS filed Critical Changzhou Linhong Special Steel Co ltd
Priority to CN201910277714.XA priority Critical patent/CN110016539B/zh
Publication of CN110016539A publication Critical patent/CN110016539A/zh
Application granted granted Critical
Publication of CN110016539B publication Critical patent/CN110016539B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明涉及718H预硬型塑料模具钢领域,具体为一种确定718H预硬型塑料模具钢最佳高温扩散退火工艺的方法,其步骤如下:Ⅰ从铸态钢锭冒口下端柱状晶严重区域选取若干金相试样,并进行标记;Ⅱ采用封闭石英管充氩气的方式进行绝缘空气保护加热保温;Ⅲ试样经砂纸打磨、抛光及硝酸酒精溶液腐蚀后,对试样平均奥氏体晶粒尺寸进行精准测量;Ⅳ利用显微硬度计测量高温扩散工艺前后微观偏析区域与基体的显微硬度差值;Ⅴ利用场发射电子探针精准测量易偏析元素偏析比,偏析比即为合金元素在偏析区最大浓度值与基体组织最小浓度值的比值;Ⅵ综合分析高温扩散前后晶粒尺寸、显微硬度差值及合金元素偏析比变化,确定最佳的高温扩散退火工艺。

Description

确定718H预硬型塑料模具钢最佳高温扩散退火工艺的方法
技术领域
本发明涉及718H预硬型塑料模具钢领域,具体为一种确定718H预硬型塑料模具钢最佳高温扩散退火工艺的方法。
背景技术
近年来,模具工业的快速发展极大地促进厚大断面预硬型模具钢的消耗和研究。预硬型718H塑料模具钢由于其尺寸较大,且合金元素含量较高,模铸钢锭易于在凝固过程中因溶质原子的再分配行为而导致合金元素在铸态组织中的不均匀分布,不可避免的会产生微观偏析缺陷。传统利用锻造等变形方式改善元素微观偏析的工艺操作由于模块尺寸问题,很难取得较好的效果。而且,合金元素微观偏析经后续锻造(轧制)等工艺时将沿着变形方向拉长而具有方向性,继而形成带状组织,严重影响钢锭的热加工等性能。对于不同材料而言,高温扩散退火工艺主要参数即保温时间和退火温度是不一致的,且十分重要。若温度过高或保温时间过长,不仅会影响锻造、轧制或挤压生产的金属或合金的力学性能,降低产品质量,而且会增加企业的能耗和运营成本。鉴于此,研究高温扩散退火工艺在保证产品质量的前提下具有重要意义。
发明内容
本发明的目的在于提供一种确定718H预硬型塑料模具钢最佳高温扩散退火工艺的方法,能够起到使合金元素均匀分布的作用。
为解决上述技术问题,本发明的技术方案是:
一种确定718H预硬型塑料模具钢最佳高温扩散退火工艺的方法,包括以下步骤:
(1)从铸态钢锭冒口下端柱状晶严重区域选取试样,并进行标记;
(2)采用封闭石英管充氩气的方式进行绝缘空气保护加热,加热温度为1210~1280℃,保温时间为1~24h;
(3)试样经砂纸打磨、抛光及浓度为3~5wt%的硝酸酒精溶液腐蚀后,对试样平均奥氏体晶粒尺寸进行精准测量;
(4)利用载荷为500g的显微硬度计测量高温扩散工艺前后微观偏析区域与基体的显微硬度差值;
(5)利用场发射电子探针精准测量易偏析元素偏析比,偏析比即为合金元素在偏析区最大浓度值与基体组织最小浓度值的比值;
(6)综合分析高温扩散前后晶粒尺寸、显微硬度差值及合金元素偏析比变化,确定最佳的高温扩散退火工艺。
所述的确定718H预硬型塑料模具钢最佳高温扩散退火工艺的方法,步骤(1)中,从铸态钢锭冒口下端柱状晶严重区域选取24个试样,试样长度为5~15mm,宽度为5~15mm,厚度为5~15mm,并进行标记。
所述的确定718H预硬型塑料模具钢最佳高温扩散退火工艺的方法,步骤(2)中,采用封闭石英管充氩气的方式进行绝缘空气保护加热时,加热速度为50~200℃/h。
所述的确定718H预硬型塑料模具钢最佳高温扩散退火工艺的方法,步骤(3)中,平均奥氏体晶粒尺寸测量标准参照GB T 6394-2002进行评估,采用Image-Pro Plus 6.0软件对奥氏体晶粒尺寸进行统计;为了保证统计的准确性,每个试样取10个测量视场,测量的晶粒数不少于300个。
所述的确定718H预硬型塑料模具钢最佳高温扩散退火工艺的方法,步骤(6)中,综合分析高温扩散前后晶粒尺寸、显微硬度差值及合金元素偏析比变化,确定最佳的高温扩散退火工艺为1250℃保温12h。
本发明的设计思想是:
对于合金元素的微观偏析行为,常采用高温均匀化退火工艺减少或消除,可提高模铸钢锭的热变形稳定性。C原子半径较小,极易扩散,而合金元素Cr、Mn及Mo元素等碳化物形成元素由于其较大的原子半径和较低的扩散系数,使其扩散速率较慢。若进行长程扩散,需要在高温条件下进行长时间的保温才能达到改善元素微观偏析的效果,但高温长时间保温却又导致奥氏体晶粒粗化严重影响后续力学性能。因此,最佳高温扩散退火工艺,即保证元素均匀化、又能最大程度抑制粗晶,就显着尤为重要。
本发明的优点及有益效果是:
1、本发明以实验室真空感应炉冶炼718H预硬型塑料模具钢为实验材料,基于系统的实验方案及先进的表征手段研究不同加热温度、保温时间处理后的微观组织演变和易偏析合金元素分布。主要目的是确定最佳的高温扩散退火温度和保温时间,为718H塑料模具钢工业化应用过程中的力学性能改善提供理论支撑。
2、本发明综合分析高温扩散前后晶粒尺寸、显微硬度差值及合金元素偏析比变化,确定最佳的高温扩散退火工艺为1250℃保温12h。利用该最佳高温扩散退火工艺,可以使材料满足组织均匀性并减轻锻造变形后的带状组织,对提高模具钢产品档次具有非常重要的意义。
附图说明
图1为不同高温扩散退火工艺后晶粒尺寸变化图(a)和显微硬度差值变化图(b);其中,图1(a)横坐标Holding time代表保温时间(h),纵坐标Average grain size代表平均晶粒尺寸(μm)。图1(b)横坐标Holding time代表保温时间(h),纵坐标Difference inmicrohardness代表平均显微硬度差值(HV)。
图2分别为合金元素Cr(a)、Mo(b)偏析比随保温时间变化情况;其中,横坐标Time代表保温时间(h),纵坐标SR代表合金元素偏析比(MPa)。
具体实施方式
在具体实施过程中,本发明确定718H预硬型塑料模具钢最佳高温扩散退火工艺的方法,从铸态钢锭冒口下端柱状晶严重区域选取24个试样,尺寸分别为10mm×10mm×8mm的试样,并进行标记。采用封闭石英管充氩气的方式进行绝缘空气保护加热,加热速度为100℃/h,加热温度分别为1210℃、1230℃、1250℃和1280℃,保温时间分别为1h、2h、4h、8h、12h、24h。通过综合分析高温扩散前后晶粒尺寸、显微硬度差值及合金元素Cr、Mo偏析比变化,以确定最佳的高温扩散退火工艺。
下面,结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
实施例
请参阅图1和图2,本实施例确定718H预硬型塑料模具钢最佳高温扩散退火工艺的方法,包括以下步骤:
(1)从铸态钢锭冒口下端柱状晶严重区域选取24个试样,尺寸分别为10mm×10mm×8mm的试样,并进行标记;
(2)采用封闭石英管充氩气的方式进行绝缘空气保护加热,加热速度为100℃/h,加热温度分别为1210℃、1230℃、1250℃和1280℃,保温时间分别为1h、2h、4h、8h、12h、24h,见表1。
表1为高温扩散退火工艺参数
T/t 1h 2h 4h 8h 12h 16h 24h
1210℃ A1 A2 A3 A4 A5 A6 A7
1230℃ B1 B2 B3 B4 B5 B6 B7
1250℃ C1 C2 C3 C4 C5 C6 C7
1280℃ D1 D2 D3 D4 D5 D6 D7
(2)试样经砂纸打磨、抛光及浓度为4wt%的硝酸酒精溶液腐蚀后,对试样平均奥氏体晶粒尺寸进行精准测量,平均奥氏体晶粒尺寸测量标准参照GB T 6394-2002进行评估。采用Image-Pro Plus 6.0软件对奥氏体晶粒尺寸进行统计。为了保证统计的准确性,每个试样取10个测量视场,测量的晶粒数不少于300个,结果见图1(a);
(3)利用载荷为500g的显微硬度计测量高温扩散工艺前后微观偏析区域与基体的显微硬度差值,结果见图1(b);
(4)利用场发射电子探针JXA-8530F精准测量易偏析元素Cr、Mo在保温4h及12h后的偏析比SR,结果见图2;
(5)通过综合分析高温扩散前后晶粒尺寸、显微硬度差值及合金元素Cr、Mo偏析比变化,以确定最佳的高温扩散退火工艺为1250℃保温12h。
在1210℃下进行高温扩散工艺时,奥氏体晶粒长大速度较慢,保温12h后晶粒尺寸达到207μm。而对于在1230℃以上加热时,晶粒尺寸增长速率较快,在12h时,晶粒尺寸增加至243~290μm,此时再持续进行保温,由于晶粒长大所需的动力不足,长大的趋势减慢。1210℃高温扩散1~24h后,显微硬度差从329HV降至37.9HV,但当保温12h时后,显微硬度差值下降的速率明显降低,仅从56.5HV下降至37.9HV。经1230℃保温1~24h后,显微硬度差值会降至15.1HV。对于1250和1280℃保温1~24h后,显微硬度差值分别降至10.3HV及9.8HV。研究发现,当保温时间超过12h后,显微硬度差值下降的速率明显降低。从图1(b)可得出结论,1230~1280℃高温扩散并保温超过12h后,材料的显微硬度差值变化趋势基本相同,改变较小。根据晶粒尺寸及显微硬度差值变化情况分析,最佳的扩散温度及保温时间可优选为1230℃保温12h和1250℃保温12h两种工艺。从图2可得出结论,1250℃保温12h工艺对于Cr及Mo元素均有更好的均匀化作用。因此,针对于718H模具钢的高温扩散工艺,综合晶粒尺寸、显微硬度差值变化及Cr、Mo元素偏析比的精确统计分析,确定的最佳的高温扩散退火工艺为1250℃保温12h。
实施例结果表明,本发明确定718H预硬型塑料模具钢最佳高温扩散退火工艺的方法,通过上述方式,能够起到使合金元素均匀分布的作用。

Claims (4)

1.一种确定718H预硬型塑料模具钢最佳高温扩散退火工艺的方法,其特征在于,包括以下步骤:
(1)从铸态钢锭冒口下端柱状晶严重区域选取试样,并进行标记;
(2)采用封闭石英管充氩气的方式进行绝缘空气保护加热,加热温度为1210~1280℃,保温时间为1~24 h;
(3)试样经砂纸打磨、抛光及浓度为3~5 wt%的硝酸酒精溶液腐蚀后,对试样平均奥氏体晶粒尺寸进行精准测量;
(4)利用载荷为500 g的显微硬度计测量高温扩散工艺前后微观偏析区域与基体的显微硬度差值;
(5)利用场发射电子探针精准测量易偏析元素偏析比,偏析比即为合金元素在偏析区最大浓度值与基体组织最小浓度值的比值;
(6)综合分析高温扩散前后晶粒尺寸、显微硬度差值及合金元素偏析比变化,确定最佳的高温扩散退火工艺,确定最佳的高温扩散退火工艺为1250℃保温12 h。
2.根据权利要求1所述的确定718H预硬型塑料模具钢最佳高温扩散退火工艺的方法,其特征在于,步骤(1)中,从铸态钢锭冒口下端柱状晶严重区域选取24个试样,试样长度为5~15 mm,宽度为5~15 mm,厚度为5~15 mm,并进行标记。
3.根据权利要求1所述的确定718H预硬型塑料模具钢最佳高温扩散退火工艺的方法,其特征在于,步骤(2)中,采用封闭石英管充氩气的方式进行绝缘空气保护加热时,加热速度为50~200 ℃/h。
4.根据权利要求1所述的确定718H预硬型塑料模具钢最佳高温扩散退火工艺的方法,其特征在于,步骤(3)中,平均奥氏体晶粒尺寸测量标准参照GB T 6394-2002进行评估,采用Image-Pro Plus 6.0软件对奥氏体晶粒尺寸进行统计;为了保证统计的准确性,每个试样取10个测量视场,测量的晶粒数不少于300个。
CN201910277714.XA 2019-04-08 2019-04-08 确定718h预硬型塑料模具钢最佳高温扩散退火工艺的方法 Active CN110016539B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910277714.XA CN110016539B (zh) 2019-04-08 2019-04-08 确定718h预硬型塑料模具钢最佳高温扩散退火工艺的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910277714.XA CN110016539B (zh) 2019-04-08 2019-04-08 确定718h预硬型塑料模具钢最佳高温扩散退火工艺的方法

Publications (2)

Publication Number Publication Date
CN110016539A CN110016539A (zh) 2019-07-16
CN110016539B true CN110016539B (zh) 2020-09-18

Family

ID=67190738

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910277714.XA Active CN110016539B (zh) 2019-04-08 2019-04-08 确定718h预硬型塑料模具钢最佳高温扩散退火工艺的方法

Country Status (1)

Country Link
CN (1) CN110016539B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102782172B (zh) * 2010-03-08 2014-05-14 爱知制钢株式会社 实心稳定杆、实心稳定杆用钢材和实心稳定杆的制造方法
JP5904409B2 (ja) * 2011-09-28 2016-04-13 日立金属株式会社 靭性に優れた金型用鋼材の製造方法
CN107287400B (zh) * 2016-08-05 2019-06-07 中国科学院金属研究所 一种确定718h预硬型塑料模具钢回火温度的方法

Also Published As

Publication number Publication date
CN110016539A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
Ueji et al. Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure
RU2378410C1 (ru) Способ изготовления плит из двухфазных титановых сплавов
CN103014410B (zh) 铜合金及其制备方法
CN101967602B (zh) 一种无取向硅钢薄带及其制备方法
Fu et al. Strain-softening behavior of an Fe–6.5 wt% Si alloy during warm deformation and its applications
Ding et al. Microstructures and mechanical properties of commercial purity iron processed by asymmetric rolling
CN104593571A (zh) 提高316不锈钢耐腐蚀性能的晶界工程工艺方法
CN114855097B (zh) 一种提高FeMnCoCr高熵合金强度和低温耐磨性的方法
CN1481444A (zh) 用于生产晶粒定向电工钢带的工艺
CN104136636B (zh) 用于制备具有高水平冷轧收缩率的晶粒取向的磁性片材的方法
CN109628777B (zh) 一种提高高熵合金耐腐蚀性的方法
CN110016539B (zh) 确定718h预硬型塑料模具钢最佳高温扩散退火工艺的方法
CN111705254A (zh) 一种耐腐蚀动密封用CoNiFe中熵合金及其制备方法
CN1261599C (zh) 采用带坯连铸生产(110)[001]晶粒取向电工钢的方法
CN101206167A (zh) 一种适用于高强变形铝合金厚板淬透性检测的方法
CN113462983B (zh) 一种易钻孔且排屑快的锁体钢及其制备方法
CN109402493A (zh) 一种用于铝板带连续铸轧的铸态贝氏体合金蠕铁铸轧辊套
CN111069553B (zh) 一种连铸坯的质量改进方法
TW202246539A (zh) 無方向性電磁鋼板
RU45998U1 (ru) Изделие из стали
CN113832408A (zh) Fe-15Mn-8Al-0.3C铁素体-奥氏体双相低密度钢及其热处理方法
CN102071299B (zh) 高性能纳米晶弹簧钢板材的制造方法
Zhao et al. Segregation behavior of alloying elements in different oriented single crystal nickel based superalloys
Ma et al. Investigation on the High-Temperature Deformation and Dynamic Recrystallization Behavior of CF170 Maraging Stainless Steel
CN115537508A (zh) 一种高强钢板的闪速热处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant