WO2009133608A1 - 電気鉄道システム - Google Patents

電気鉄道システム Download PDF

Info

Publication number
WO2009133608A1
WO2009133608A1 PCT/JP2008/058278 JP2008058278W WO2009133608A1 WO 2009133608 A1 WO2009133608 A1 WO 2009133608A1 JP 2008058278 W JP2008058278 W JP 2008058278W WO 2009133608 A1 WO2009133608 A1 WO 2009133608A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
electric
railway system
unit
electric vehicle
Prior art date
Application number
PCT/JP2008/058278
Other languages
English (en)
French (fr)
Inventor
英俊 北中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020107024217A priority Critical patent/KR101162454B1/ko
Priority to PCT/JP2008/058278 priority patent/WO2009133608A1/ja
Priority to US12/936,837 priority patent/US8596434B2/en
Priority to CA2725409A priority patent/CA2725409C/en
Priority to JP2008547795A priority patent/JP4346678B1/ja
Priority to EP08740946.2A priority patent/EP2275300B1/en
Priority to CN2008801289810A priority patent/CN102015356B/zh
Publication of WO2009133608A1 publication Critical patent/WO2009133608A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/42Current collectors for power supply lines of electrically-propelled vehicles for collecting current from individual contact pieces connected to the power supply line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/18Current collectors for power supply lines of electrically-propelled vehicles using bow-type collectors in contact with trolley wire
    • B60L5/22Supporting means for the contact bow
    • B60L5/28Devices for lifting and resetting the collector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/53Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells in combination with an external power supply, e.g. from overhead contact lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/32Constructional details of charging stations by charging in short intervals along the itinerary, e.g. during short stops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M1/00Power supply lines for contact with collector on vehicle
    • B60M1/36Single contact pieces along the line for power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C17/00Arrangement or disposition of parts; Details or accessories not otherwise provided for; Use of control gear and control systems
    • B61C17/06Power storing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/30Railway vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • an electric vehicle has a configuration in which electric power from an overhead line is taken in by a current collector and an electric motor is driven using the electric power from the overhead line.
  • FIG. 1 An example of running an electric vehicle in such a partial overhead line-less system or a complete overhead line-less system is shown.
  • the electric car raises the pantograph, which is a current collector, collects power from the overhead lines, which are overhead conductors, and runs as an existing electric railway, and lowers the pantograph in sections where there is no overhead line.
  • the vehicle is driven by the power of the power storage element.
  • electric cars raise the pantograph for several tens of seconds to several minutes while the electric cars are stopped at stations, etc. To fast charge the power storage element.
  • the power taken from the pantograph is usually larger than the power during normal driving. Therefore, since a large current is passed through the pantograph, it is important to maintain a good contact state between the pantograph and the overhead wire.
  • the present invention has been made in view of the above, and is suitable for each mode of traveling in a section where there is no overhead line, charging the power storage element when the vehicle is stopped, and traveling in a section where there is an overhead line. It is an object of the present invention to provide an electric railway system capable of stably and safely charging a power storage element therein.
  • an electric railway system includes an electric vehicle and a power supply device that supplies electric power to the electric vehicle.
  • the power supply device includes a power source and an aerial conductor portion connected to the power source, and the electric vehicle is provided on a roof of the electric vehicle and has a contact conductor portion that can contact the aerial conductor portion.
  • a current collector capable of raising and lowering the contact conductor based on a command from the outside; an open / close unit connected to the current collector for opening and closing a main circuit serving as a power supply path;
  • a power converter connected to the open / close unit for performing power conversion, a power storage device connected to the power converter for storing power, and an electric motor driven by the power converter to drive the electric vehicle
  • a control unit for controlling the opening and closing unit.
  • the electric railway system of the present invention it is suitable for each mode of traveling in a section without an overhead line, charging to a power storage element when stopped, and traveling in a section with an overhead line, and in particular, the power storage element when an electric vehicle is stopped. There is an effect that it is possible to provide an electric railway system capable of stably and safely performing quick charging to the vehicle.
  • FIG. 1 is a diagram illustrating a configuration example of an electric railway system according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration example of the electric vehicle according to the embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a configuration example of the power conversion device 12 according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing a configuration example of the pantograph 2A and the overhead line 1A in the embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a configuration example of the control unit 15 according to the embodiment of the present invention.
  • FIG. 6 is a diagram showing a waveform example of the pantograph voltage and its differential value in the embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a waveform example of the reactor voltage in the embodiment of the present invention.
  • FIG. 1 is a diagram illustrating a configuration example of an electric railway system according to an embodiment of the present invention.
  • the equipment installed on the ground is provided in the rail 4 on which the electric vehicle 10 travels, the overhead wire 1A that is an aerial conductor for quick charging provided in the station 50, and the normal electrification section.
  • the substation 70 that is a power source for the electric vehicle 10 and connected to the overhead line 1A and the overhead line 1B.
  • the substation 70 is simply indicated by a DC voltage source symbol.
  • a special high voltage AC received from the power system is stepped down by a transformer, and a voltage of about 600V to 1500V DC is rectified by the rectifier. It is set as the structure supplied to 1A or the overhead wire 1B.
  • the overhead line 1A and the overhead line 1B may be configured to be fed from different substations (not shown).
  • the overhead wire 1B collects electricity while the electric vehicle 10 travels. Therefore, in general, in order to improve the followability of the pantograph, a trolley wire composed of a copper-based material is provided at regular intervals. Therefore, the overhead line 1A has a large cross-sectional area and a high rigidity because the overhead wire 1A collects electricity in a state where the electric vehicle 10 is stopped and a large current flows due to rapid charging. It is preferable to use a rigid overhead wire mainly composed of a copper plate.
  • the electric vehicle 10 is equipped with a pantograph 2A, which is a current collector for quick charging, and a pantograph 2B, which is a current collector for an existing electrified section.
  • a pantograph 2A which is a current collector for quick charging
  • a pantograph 2B which is a current collector for an existing electrified section. The detailed configuration of the electric vehicle 10 will be described later.
  • Section A is a normal electrified section, and the electric vehicle 10 travels by raising the pantograph 2B and receiving power from the overhead line 1B.
  • Section B is an overhead line-less section, and the electric vehicle 10 lowers and stores the pantographs 2A and 2B, and travels with the electric power of the on-vehicle power storage element.
  • the section C is an overhead charging section, and is a section for charging the power storage element mounted on the vehicle with the power consumed by the traveling in the section B. In section C, a station or a dedicated charging section is assumed here, and in both cases, the electric vehicle 10 stops and the pantograph 2A is raised to perform charging.
  • FIG. 2 is a diagram illustrating a configuration example of the electric vehicle 10 according to the embodiment of the present invention.
  • FIG. 3 is a figure which shows the structural example of the power converter device 12 in embodiment of this invention.
  • the electric vehicle 10 is equipped with a pantograph 2A for quick charging and a pantograph 2B for current electrification section current collection, and can be selectively raised or lowered.
  • both pantographs are electrically connected to each other. However, the connection may be switched as necessary without always being connected.
  • the pantograph 2A is provided with a temperature detection unit 6 that measures the temperature of a contact conductor 60 (see FIG. 4 to be described later) that contacts the overhead wire 1A, and a state detection unit 5 that detects the lifted state of the pantograph 2A.
  • the temperature detection signal TH from the detection unit 6 and the state detection signal PS from the state detection unit 5 are respectively input to the control unit 15.
  • the pantograph 2 ⁇ / b> A is connected to an opening / closing unit 11 configured by a switch or a circuit breaker that opens and closes a main circuit that is a power supply path.
  • the power conversion device 12 includes an input filter circuit including a reactor 40 and a capacitor 41, and a voltage detector 42 that detects the voltage of the reactor 40 and outputs the voltage to the control unit 15 as the reactor voltage DV.
  • the DC / DC converter circuit and the inverter circuit are connected to the subsequent stage of the input filter circuit. Note that the DC / DC converter circuit and the inverter circuit are configured by known techniques, and detailed description thereof is omitted here. Further, the present invention is not limited by the configurations of the DC / DC converter circuit and the inverter circuit.
  • the output of the power conversion device 12 is connected to the power storage device 13 and the electric motor 16.
  • the power storage device 13 has a built-in power storage element such as a secondary battery group such as a lithium ion battery or a nickel metal hydride battery, or an electric double layer capacitor group, and the power received via the pantograph 2A or the pantograph 2B.
  • a built-in power storage element such as a secondary battery group such as a lithium ion battery or a nickel metal hydride battery, or an electric double layer capacitor group
  • charging is performed via the power conversion device 12, and the stored power is supplied to the electric motor 16 via the power conversion device 12 to drive the wheels 3.
  • the present invention is not limited by the type of power storage element.
  • the voltage detector 17 is provided in the subsequent stage of the pantograph 2A, and is configured to input the detected pantograph voltage ES to the control unit 15.
  • the control unit 15 receives a pantograph raising / lowering command PC from the outside, and receives a temperature detection signal TH, a state detection signal PS, and a pantograph voltage ES from the pantograph 2A. Reactor voltage detection value DV is input from power converter 12. In addition, the control unit 15 outputs an on / off signal KC to the opening / closing unit 11, a control signal GC to the power conversion device 12, and a forced drop signal PD to the pantograph 2A.
  • the control signal GC is a signal including a current command for adjusting currents of the DC / DC converter circuit and the inverter circuit, and respective on / off commands. The detailed configuration and operation example of the control unit 15 will be described later.
  • FIG. 4 is a diagram showing a configuration example of the pantograph 2A and the overhead line 1A in the embodiment of the present invention.
  • the pantograph 2 ⁇ / b> A that is a current collecting unit includes a mechanism unit 62, a frame 61 composed of conductors, a contact conductor unit 60 that is electrically connected to the frame 61, and the state detection unit 5. And a temperature detection unit 6.
  • pantograph 2B has the same configuration as the pantograph 2B except that the differences are clearly shown below.
  • pantograph 2A The operation of the pantograph 2A will be described below.
  • the mechanism 62 raises the frame 61 using a spring, air pressure, electric force, etc., and a contact conductor provided on the top of the frame 61 60 is brought into contact with the overhead wire 1A to obtain electric power.
  • the mechanism unit 62 lowers the frame 61 using a spring, air pressure, electric force, or the like, and a contact conductor portion 60 provided on the top of the frame 61. And the contact with the overhead wire 1A is cut off.
  • a forced descent signal PD is input from the control unit 15.
  • the mechanism unit 62 quickly lowers the frame 61 using a spring, air pressure, electric force, or the like, and the contact conductor unit 60 provided on the top of the frame 61 and the overhead wire. Break contact with 1A.
  • the state detection unit 5 detects the ascending / descending state of the contact conductor unit 60. For example, when it is determined that the contact conductor unit 60 has reached the overhead wire 1A and has come into contact, the state detection signal PS is turned on. On the contrary, when it is determined that the contact between the contact conductor 60 and the overhead wire 1A is broken, the state detection signal PS is turned off.
  • the determination of the contact state may be whether the positional relationship between the contact conductor 60 and the overhead wire 1A is detected or the contact pressure is detected, but there is no limitation on the means.
  • the state detection signal PS may be a signal indicating the detected position of the contact conductor 60 itself. In this case, it is determined whether the contact conductor 60 has reached the overhead wire 1A or the contact is cut off. This is performed by the control unit 15.
  • the temperature detector 6 measures the temperature of the contact conductor 60 and turns on the temperature detection signal TH when, for example, a predetermined set value is exceeded. Further, the temperature detection signal TH is turned off when the temperature of the contact conductor portion 60 becomes a predetermined value or less.
  • the temperature detection signal TH may be a signal indicating the detected temperature of the contact conductor 60 itself. In this case, the control unit 15 determines whether the temperature is equal to or higher than a predetermined value. To do.
  • a carbon material having a smaller coefficient of friction with the overhead wire than copper is used as the material of the contact portion of the contact conductor portion 60 installed on the pantograph 2B in contact with the overhead wire.
  • a copper alloy or the like having a high conductivity and a high melting point is used as the material of the portion that contacts the overhead wire of the contact conductor portion 60 installed in the pantograph 2A.
  • pantograph 2B Since the pantograph 2B is used during traveling as described above, it is preferable to consider the following points. That is, since the pantograph 2B collects electricity while sliding the contact conductor 60 and the overhead wire 1B while the electric vehicle 10 is traveling, it is important not to wear the overhead wire 1B. For this reason, it is a preferable condition to use a carbon material having a low coefficient of friction for the portion of the contact conductor 60 that contacts the overhead wire 1B.
  • the carbon material has a larger electrical resistance than copper and a large loss due to current application, the amount of heat generated at the contact point between the overhead wire 1B and the contact conductor portion 60 increases.
  • the contact conductor 60 can be expected to be cooled by the traveling wind, and the heat generation point always moves with the movement of the electric vehicle 10, so the heat generation point is the same point. It will not be a problem.
  • pantograph 2A since the pantograph 2A is used while stopped as described above, it is preferable to consider the following points. That is, since the pantograph 2A collects current from the overhead line 1A while the electric vehicle 10 is stopped, there is no fear that the overhead line 1A is worn.
  • the two overhead wires 1 ⁇ / b> A are provided in parallel in the traveling direction of the electric vehicle 10, and are configured to be in contact with the contact conductor portion 60. In addition, it is not limited to two shown in FIG. 4, You may provide two or more.
  • the plurality of overhead wires 1 ⁇ / b> A are electrically connected to each other and receive voltage supply from the substation 70.
  • the electrical contact is remarkably deteriorated. Even if the situation occurs, the remaining overhead wire 1A can be in contact with the contact conductor 60, and stable current collection is possible.
  • the same effect can be obtained by providing a plurality of pantographs 2A in the electric vehicle 10 and electrically connecting the plurality of pantographs 2A to each other.
  • the overhead wire 1A is lifted somewhat upward by the pushing force of the pantograph 2A, and only when a certain amount is lifted, this is detected by a position detector (not shown)
  • the voltage may be applied from the point 70 to the overhead wire 1A. If comprised in this way, only when the contact force between the contact conductor part 60 and the overhead wire 1A exists reliably, there exists an effect which can supply electric power to the pantograph 2A, and more stable current collection is attained.
  • FIG. 5 is a diagram illustrating a configuration example of the control unit 15 according to the embodiment of the present invention.
  • the control unit 15 receives the pantograph voltage ES, determines whether the pantograph voltage ES is abnormal, outputs the result as a determination signal ESD, and the reactor voltage DV.
  • the reactor voltage abnormality determination unit 21 that inputs and determines the abnormality of the reactor voltage DV and outputs the result as the determination signal DVD and the temperature detection signal TH of the contact conductor 60 are input, and the temperature abnormality determination is performed.
  • the temperature determination unit 22 that outputs the result as a determination signal THD, the state detection signal PS is input, the lift state of the pantograph 2A is determined, the lift determination unit 23 that outputs the result as the determination signal PSD, and the pantograph lift
  • the command PC and the state detection signal PS are input, the welding state of the contact conductor portion 60 of the pantograph 2A is determined, and the result is
  • a welding determination unit 24 that outputs as a constant signal MDD, a logical sum of these determination signals ESD, DVD, THD, PSD, and outputs a result ER0, and a stop signal indicating that the electric vehicle 10 is stopped
  • the logical inversion circuit 25 for taking the logical inversion of the stop signal ST and outputting the result STB, and the STB on (H) level.
  • the forced drop control unit 26 that outputs the forced drop basic signal PDS
  • the delay circuit 30 that inputs the forced drop basic signal PDS, outputs the forced drop signal PD after being delayed by a predetermined time, and the logical product
  • the logical sum circuit 29 that takes the logical sum of the output ER1 of the circuit 28, the judgment signal MDD and the forced drop basic signal PDS, and logically inverts the output signal of the logical sum circuit 29 to obtain the judgment signal
  • the logical inversion circuit 31 that outputs R, the determination signal ER, and the separately generated basic on / off signal KC0 are logically summed and output as the on / off signal KC, and the determination signal ER is generated separately.
  • a logical product circuit 33 that takes a logical sum with the basic control signal GC0 and outputs the result as a control signal GC.
  • the pantograph voltage abnormality determination unit 20 determines abnormality of the contact state between the overhead line 1A and the contact conductor 60 based on the pantograph voltage ES that is a physical quantity indicating the degree of contact between the overhead line 1A and the contact conductor 60.
  • FIG. 6 is a diagram showing a waveform example of the pantograph voltage ES and its differential value in the embodiment of the present invention.
  • the pantograph voltage abnormality determination unit 20 obtains a differential value (change rate) of the pantograph voltage ES and monitors whether or not this is within the determination value.
  • the pantograph voltage ES is passed through a high-pass filter to extract a voltage fluctuation component (frequency component) generated due to a poor contact state. Based on this, the abnormality determination may be performed.
  • the reactor voltage abnormality determination unit 21 determines abnormality of the contact state between the overhead wire 1A and the contact conductor 60 based on the reactor voltage DV that is a physical quantity indicating the degree of contact between the overhead wire 1A and the contact conductor 60.
  • FIG. 7 is a diagram showing a waveform example of the reactor voltage DV in the embodiment of the present invention.
  • the reactor voltage abnormality determination unit 21 monitors whether or not the reactor voltage DV is within the determination value. When the reactor voltage DV takes a value outside the determination value, it is determined that the electrical contact between the overhead wire 1A and the contact conductor 60 is defective (abnormal), and the determination signal DVD is turned on (H level).
  • the abnormality determination may be performed based on the differential value (change rate) of the reactor voltage DV as in the processing in the pantograph voltage abnormality determination unit 20.
  • the reactor voltage DV may be passed through a high-pass filter to extract a voltage fluctuation component (frequency component) generated due to a poor contact state, and an abnormality determination may be performed based on this.
  • the pantograph voltage abnormality determining unit 20 and the reactor voltage abnormality determining unit 21 may be configured to include at least one of them.
  • pantograph voltage abnormality determination unit 20 or the reactor voltage abnormality determination unit 21 determines that the electrical contact between the overhead wire 1A and the contact conductor 60 is defective (abnormal) based on the result.
  • the determination signal ESD or the determination signal DVD may be turned on (H level).
  • the temperature determination unit 22 turns the determination signal THD on (H level) when the temperature detection signal TH, which is a physical quantity indicating the degree of contact state, indicates the overtemperature of the contact conductor unit 60.
  • the state detection signal PS which is a physical quantity indicating the degree of contact state, indicates that the rising position of the contact conductor 60 is equal to or less than a predetermined value and is not in contact with the overhead wire 1A.
  • PSD is turned on (H level).
  • the logical sum circuit 27 takes the logical sum of the determination signal ESD, DVD, THD, and PSD. With this configuration, when any of the events that can occur when the contact state between the overhead wire 1A and the contact conductor portion 60 is abnormal, the contact state between the overhead wire 1A and the contact conductor portion 60 is obtained. Is determined to be abnormal, and a determination signal ER0 is output.
  • the logical product circuit 28 takes a logical product with the stop signal ST indicating that the electric vehicle 10 is stopped, and outputs a determination signal ER1.
  • the logical product circuit 28 takes a logical product with the stop signal ST indicating that the electric vehicle 10 is stopped, and outputs a determination signal ER1.
  • the determination signal ER1 When the determination signal ER1 is turned on (H level), it is determined that there is an abnormality in the electrical contact state between the overhead wire 1A and the contact conductor 60, so that the logical sum circuit 29 and the logical inversion circuit 31 are set.
  • the power converter 12 is output by forcibly turning off the on / off signal KC and the control signal GC regardless of the basic on / off signal KC0 and the basic control signal GC0 generated separately. While stopping, the switching part 11 is turned off and the main circuit current is interrupted. With this configuration, it is possible to protect the current from flowing through the pantograph 2A, and to avoid the expansion of the abnormal range.
  • the state detection signal PS is transmitted between the contact conductor 60 and the overhead wire 1A.
  • a signal indicating that the contact state is continued is output, it is determined that the contact conductor portion 60 and the overhead wire 1A are welded and the pantograph 2A cannot be lowered, and the determination signal MDD is turned on (H level).
  • the determination signal MDD When the determination signal MDD is turned on (H level), it is determined that both of them are welded by an arc or the like generated between the overhead wire 1A and the contact conductor 60, and the logical sum circuit 29 and the logical inversion circuit 31 are used.
  • the determination signal ER is output, and the on / off signal KC and the control signal GC are forcibly turned off regardless of the separately generated basic on / off signal KC0 and the basic control signal GC0. Inverter circuit) is inhibited from starting to inhibit energization of electric motor 16, and switching circuit 11 is turned off to cut off the main circuit current.
  • the electric vehicle 10 is started in a state in which the pantograph 2A is welded to the overhead line 1A, and it is possible to avoid the destruction of the pantograph 2A and avoid the expansion of damage. Note that it is not preferable that the electric vehicle 10 moves even if energization of the electric motor 16 is prohibited and the main circuit is disconnected by turning off the opening / closing part 11. For this reason, it is preferable to take measures for prohibiting running of the electric vehicle.
  • the electric vehicle 10 raises the pantograph 2A and is rapidly charged, the electric vehicle 10 is moved by the brake of the electric vehicle 10 being loosened or intentionally operated.
  • the forced lowering basic signal PDS is turned on (H level).
  • the determination signal ER is output via the logical sum circuit 29 and the logical inversion circuit 31, and the on / off signal KC and the control signal GC are forced regardless of the separately generated basic on / off signal KC0 and basic control signal GC0.
  • the power converter 12 is turned off and the open / close unit 11 is turned off to cut off the main circuit current.
  • the delay time of the delay circuit 30 is set to be equal to or longer than the time until the switching unit 11 and the power converter 12 are turned off. By doing so, it is possible to descend and store the pantograph 2A before the electric vehicle 10 departs from the section C. As a result, it is possible to avoid a situation in which the pantograph 2A rises in a place where the overhead line 1A does not exist and exceeds the ascent limit and breaks.
  • the power converter 12 and the switching unit 11 are stopped to make the main circuit current zero. Since the descent of the pantograph 2A is started later, the current is not interrupted by the separation of the contact conductor portion 60 of the pantograph 2A and the overhead wire 1A, and an arc is generated between the pantograph 2A and the overhead wire 1A, resulting in melting. It can be avoided.
  • the feedback signal (not shown) indicating the on / off state is received from the opening / closing unit 11 and the power conversion device 12, and the forcing is performed after confirming that the switching unit 11 and the power conversion device 12 are turned off
  • the interlock circuit is configured to turn on the drop signal PD.
  • the temperature of the contact conductor portion 60 is indirectly detected by a thermoviewer or the like (not shown), and a determination is made based on this.
  • the signal THD may be turned on (H level), or arc light generated between the overhead wire 1A and the contact conductor portion 60 is detected by an optical sensor (not shown), and the detected value is equal to or greater than a predetermined value.
  • the determination signal THD may be turned on (H level) assuming that the temperature of the contact conductor 60 is high.
  • pantograph 2A used at the time of rapid charging while the vehicle is stopped and the pantograph 2B used for overhead line current collection while traveling are described as being mounted on the electric vehicle 10, but the pantograph 2A May be shared with another pantograph having both the characteristics of the pantograph 2B. It goes without saying that the configuration shown in the embodiment of the present invention can be applied even in this case.
  • the pantograph 2B may be substituted for the pantograph 2A. It goes without saying that the configuration shown in the embodiment of the present invention can be applied even in this case.
  • the structure shown in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and a part thereof is not deviated from the gist of the present invention. Needless to say, it is possible to change the configuration such as omission.
  • the electric railway system according to the present invention is useful as an invention capable of stably and safely performing rapid charging of the power storage element while the electric vehicle is stopped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

 電気鉄道システムにおいて、電気車が停車中における電力貯蔵素子への急速充電を、安定かつ安全に行うこと。電気車10に電力を供給する電力供給装置を有する電気鉄道システムにおいて、電力供給装置は、電源70と、電源70に接続された架空導体部1Aと、を備え、電気車10は、電気車10の屋根上に設置され、架空導体部1Aに接触可能な接触導体部60を有し、外部からの指令に基づいて接触導体部60の上昇および下降が可能な集電部2Aと、集電部2Aに接続され、主回路の開閉を行う開閉部11と、開閉部11に接続されて電力変換を行う電力変換装置12と、電力変換装置12に接続された電力貯蔵装置13と、電力変換装置12により駆動され、電気車10を駆動する電動機16と、少なくとも開閉部11を制御する制御部15と、を備える。

Description

電気鉄道システム
 本発明は、電気車と、電気車に電力を供給する電力供給装置とを含んで構成される電気鉄道システムに関するものである。
 一般に電気車は、架線からの電力を集電部で取り入れ、架線からの電力を使用して電動機を駆動して走行する構成である。
 近年、二次電池や電気二重層キャパシタ等の電力貯蔵素子の性能が向上してきていることから、これらを電気車に搭載し、電力貯蔵素子の電力を使用して電動機を駆動するシステムの開発が進められている。
 このようなシステムの種類としては、景観上の問題から、既設電化路線の一部区間から架線を撤去し、あるいは既設電化路線の路線延長部分のみを架線レスとし、架線のある区間の走行時は架線からの電力を使用し、架線レス区間を走行する場合は電力貯蔵素子からの電力で走行する構成とした部分架線レスシステムや、全路線から架線を撤去して電力貯蔵素子からの電力でのみ走行し、終端駅や途中停車駅にのみ、充電用の電源と架線を設けておき、この架線から取り入れた電力で、電力貯蔵素子に充電を行う完全架線レスシステム等が検討されている(例えば、特許文献1)。
特開2006-238652号公報
 このような部分架線レスシステム、あるいは完全架線レスシステムにおける、電気車の走行例を示す。架線のある区間では、電気車は、集電部であるパンタグラフを上昇させ、架空導体部である架線より電力を集電して既存の電気鉄道として走行し、架線の無い区間ではパンタグラフを降下させ、電力貯蔵素子の電力により走行する。電気車は、架線の無い区間での走行で消費した電力を補うため、電気車が駅等に停車中の数十秒から数分の間に、パンタグラフを上昇させ、充電用として設けられた架線から電力貯蔵素子への急速充電を行う。
 上記のように、電力貯蔵素子への急速充電を短時間で行う場合には、パンタグラフから取り入れる電力は通常走行時の電力よりも大きくなるのが通常である。したがって、パンタグラフには大電流を通電することになるので、パンタグラフと架線との接触状態を良好に保つことが重要となる。
 ここで、パンタグラフと架線との接触状態に異常がある場合を考える。たとえば、パンタグラフと架線との間の接触抵抗が増大した場合には、パンタグラフと架線とが接している接触部の温度が上昇して、当該部分の溶断を招く可能性がある。
 また、積雪等の影響でパンタグラフが架線から離れた場合、パンタグラフと架線の間でアークが発生し、高温によりパンタグラフ、架線を損傷するおそれがあるほか、周囲の機器をも焼損するおそれがある。これらの理由により、パンタグラフと架線との接触状態の異常を速やかに検出し、充電を中止する等の処置を採ることの必要性が生じている。
 本発明は、上記に鑑みてなされたものであって、架線が無い区間における走行、停車中の電力貯蔵素子への充電、架線のある区間における走行の各モードに好適で、特に電気車が停車中における電力貯蔵素子への急速充電を、安定かつ安全に行うことのできる電気鉄道システムを提供することを目的とする。
 上述した課題を解決し、目的を達成するため、本発明にかかる電気鉄道システムは、電気車と、前記電気車に電力を供給する電力供給装置とを含んで構成される電気鉄道システムにおいて、前記電力供給装置は、電源と、前記電源に接続された架空導体部と、を備え、前記電気車は、前記電気車の屋根上に設置され、前記架空導体部に接触可能な接触導体部を有し、外部からの指令に基づいて前記接触導体部の上昇動作および下降動作が可能な集電部と、前記集電部に接続され、電力の供給経路である主回路の開閉を行う開閉部と、前記開閉部に接続され、電力変換を行う電力変換装置と、前記電力変換装置に接続され、電力の貯蔵を行う電力貯蔵装置と、前記電力変換装置により駆動され、前記電気車を駆動する電動機と、少なくとも前記開閉部を制御する制御部と、を備えることを特徴とする。
 本発明の電気鉄道システムによれば、架線が無い区間における走行、停車中の電力貯蔵素子への充電、架線のある区間における走行の各モードに好適で、特に電気車が停車中における電力貯蔵素子への急速充電を、安定かつ安全に行うことのできる電気鉄道システムを提供することができるという効果を奏する。
図1は、本発明の実施の形態における電気鉄道システムの構成例を示す図である。 図2は、本発明の実施の形態における電気車の構成例を示す図である。 図3は、本発明の実施の形態における電力変換装置12の構成例を示す図である。 図4は、本発明の実施の形態におけるパンタグラフ2Aと架線1Aの構成例を示す図である。 図5は、本発明の実施の形態における制御部15の構成例を示す図である。 図6は、本発明の実施の形態におけるパンタグラフ電圧とその微分値の波形例を示す図である。 図7は、本発明の実施の形態におけるリアクトル電圧の波形例を示す図である。
符号の説明
 1A,1B 架線
 2A,2B パンタグラフ
 3 車輪
 4 レール
 5 状態検出部
 6 温度検出部
 10 電気車
 11 開閉部
 12 電力変換装置
 13 電力貯蔵装置
 15 制御部
 16 電動機
 17 電圧検出器
 20 パンタグラフ電圧異常判定部
 21 リアクトル電圧異常判定部
 22 温度判定部
 23 昇降判定部
 24 溶着判定部
 25 論理反転回路
 26 強制降下制御部
 27 論理和回路
 28 論理積回路
 29 論理和回路
 30 遅延回路
 31 論理反転回路
 32,33 論理積回路
 40 リアクトル
 41 コンデンサ
 42 電圧検出器
 50 駅
 60 接触導体部
 61 フレーム
 62 機構部
 70 電源
 以下に本発明にかかる電気鉄道システムの実施の形態を図面に基づいて詳細に説明する。なお、以下の実施の形態により、本発明が限定されるものではない。
実施の形態.
 図1は、本発明の実施の形態における電気鉄道システムの構成例を示す図である。図1に示すように、地上に設置された設備は、電気車10が走行するレール4と、駅50に設けられた急速充電用の架空導体部である架線1Aと、通常の電化区間に設けられた架線1Bと、電気車10への電源であり架線1Aおよび架線1Bに接続された変電所70とを含んで構成される。
 変電所70は、図1では単なる直流電圧源の記号で示しているが、一般には電力系統から受電した特別高圧交流を変圧器で降圧し、整流器で整流した直流600V~1500V程度の電圧を架線1Aあるいは架線1Bに供給する構成としている。なお、架線1Aおよび架線1Bは、それぞれ別の変電所(図示せず)から給電される構成としてもよい。
 なお、架線1Bは、電気車10が走行しながら集電するため、一般にはパンタグラフの追従性を良くするために、銅を主体とした素材で構成されたトロリー線を一定間隔で設けられた支柱により、レール4上に支持する構成がとられるが、架線1Aは、電気車10が停止した状態で集電することと、急速充電に伴う大電流が流れることから、断面積が大きく剛性の高い銅板を主体とした剛体架線を使用するのが好適である。
 電気車10は、急速充電用の集電部であるパンタグラフ2Aと、既存電化区間用の集電部であるパンタグラフ2Bとを搭載している。電気車10の詳細な構成は、後述する。
 区間Aは、通常の電化区間であり、電気車10はパンタグラフ2Bを上昇させて架線1Bから電力を受電し走行する。区間Bは、架線レス区間であり、電気車10はパンタグラフ2A、2Bを降下させて格納し、車載した電力貯蔵素子の電力により走行する。区間Cは、急速充電用架線区間であり、区間Bにおける走行で消費した電力を、車載された電力貯蔵素子に充電するための区間である。区間Cは、ここでは駅や専用の充電区間を想定しており、何れも電気車10は停止して、パンタグラフ2Aを上昇させて充電を行う。
 図2は、本発明の実施の形態における電気車10の構成例を示す図である。また、図3は、本発明の実施の形態における電力変換装置12の構成例を示す図である。図2に示すように、電気車10には、急速充電用のパンタグラフ2Aと、既存電化区間集電用のパンタグラフ2Bとが搭載され、選択的に上昇あるいは下降させることが可能な構成である。また、図2では、両パンタグラフは互いに電気的に接続されているが、常時接続せずに必要に応じて接続を切り替える構成としてもよい。
 パンタグラフ2Aには、架線1Aと接触する接触導体部60(後述する図4参照)の温度を計測する温度検出部6、パンタグラフ2Aの昇降状態を検出する状態検出部5が設けられており、温度検出部6からの温度検出信号TH、状態検出部5からの状態検出信号PSは、それぞれ制御部15に入力される構成である。パンタグラフ2Aには、電力の供給経路である主回路を開閉するスイッチあるいは遮断器等で構成される開閉部11が接続され、開閉部11の後段には電力変換装置12が配置される。
 電力変換装置12は、図3に示すように、リアクトル40とコンデンサ41とからなる入力フィルタ回路と、リアクトル40の電圧を検出し、リアクトル電圧DVとして制御部15に出力する電圧検出器42とを有し、入力フィルタ回路の後段にはDC/DCコンバータ回路およびインバータ回路が接続されている。なお、DC/DCコンバータ回路およびインバータ回路は、公知技術で構成されるものであり、ここでの詳細な説明は省略する。また、DC/DCコンバータ回路およびインバータ回路の構成によって、本発明が限定されるものではない。
 図2に戻り、電力変換装置12の出力は、電力貯蔵装置13および電動機16に接続されている。
 電力貯蔵装置13は、リチウムイオン電池やニッケル水素電池等の二次電池群、あるいは電気二重層キャパシタ群等の電力貯蔵素子が内蔵され構成されており、パンタグラフ2Aあるいはパンタグラフ2Bを介して受電した電力により電力変換装置12を介して充電を行うとともに、貯蔵した電力を、電力変換装置12を介して電動機16に供給し、車輪3を駆動するように構成されている。なお、電力貯蔵素子の種類によって、本発明が限定されるものではない。
 パンタグラフ2Aの後段には、電圧検出器17が設けられており、検出したパンタグラフ電圧ESを制御部15に入力するように構成されている。
 制御部15は、外部よりパンタグラフ昇降指令PCが入力され、パンタグラフ2Aより、温度検出信号TH、状態検出信号PS、パンタグラフ電圧ESが入力される。電力変換装置12より、リアクトル電圧検出値DVが入力される。また、制御部15は、開閉部11に対してオンオフ信号KCを、電力変換装置12に対して制御信号GCを、パンタグラフ2Aに対して強制降下信号PDをそれぞれ出力する。制御信号GCは、DC/DCコンバータ回路、インバータ回路の電流を調整する電流指令と、それぞれのオンオフ指令を含む信号である。なお、制御部15の詳細構成および動作例は追って説明する。
 図4は、本発明の実施の形態におけるパンタグラフ2Aと架線1Aの構成例を示す図である。図4に示すように、集電部であるパンタグラフ2Aは、機構部62と、導体で構成されるフレーム61と、フレーム61と電気的に接続されている接触導体部60と、状態検出部5と、温度検出部6と、を備えて構成される。
 なお、パンタグラフ2Bについては、以下に差異を明示している点を除いてはパンタグラフ2Bと同様の構成である。
 以下にパンタグラフ2Aの動作を説明する。外部から入力されるパンタグラフ昇降指令PCが上昇を指令した場合、機構部62は、ばね、空気圧、電動力等を利用してフレーム61を上昇させ、フレーム61の頂上部に設けられた接触導体部60を架線1Aに接触させ、電力を得る。外部から入力されるパンタグラフ昇降指令PCが下降を指令した場合、機構部62はばね、空気圧、電動力等を利用してフレーム61を下降させ、フレーム61の頂上部に設けられた接触導体部60と架線1Aとの接触を断つ。
 また、制御部15からは強制降下信号PDが入力される構成となっている。強制降下信号PDが入力された場合、機構部62は、ばね、空気圧、電動力等を利用して、速やかにフレーム61を下降させ、フレーム61の頂上部に設けられた接触導体部60と架線1Aとの接触を断つ。
 状態検出部5は、接触導体部60の昇降状態を検出するものであり、たとえば接触導体部60が架線1Aに到達し接触したと判断した場合に、状態検出信号PSをオンとする。逆に、接触導体部60と架線1Aとの接触が断たれていると判断した場合は、状態検出信号PSをオフとする。接触状態の判断は、接触導体部60と架線1Aとの位置関係を検出するか、接触圧力を検出するか、等が考えられるが、手段には制約はない。
 なお、状態検出信号PSは、検出された接触導体部60の位置そのものを示す信号であってもよく、この場合は接触導体部60が架線1Aに到達したかあるいは接触が断たれたかの判別は、制御部15で実施する。
 温度検出部6は、接触導体部60の温度を測定し、たとえば所定の設定値を超過した場合に温度検出信号THをオンとする。また接触導体部60の温度が所定の値以下となった場合に温度検出信号THをオフとする。
 なお、温度検出信号THは、検出された接触導体部60の温度そのものを示す信号であってもよく、この場合は所定の値以上であるか以下であるかの判別は、制御部15で実施する。
 ここで、パンタグラフ2Aとパンタグラフ2Bとの違いを説明する。パンタグラフ2Bに設置される接触導体部60の架線と接触する部分の材質は、銅と比較して架線との摩擦係数が小さいカーボン素材が使用される。しかし、パンタグラフ2Aに設置される接触導体部60の架線と接触する部分の材質は、導電率が高く、融点の高い銅合金等を使用するのが好適である。
 機構部62にも違いがある。パンタグラフ2Aに設置された機構部62は、接触導体部60の押上げ力をパンタグラフ2Bのそれよりも大きく設定してあり、接触導体部60と架線1Aとの接触圧を、パンタグラフ2Bのそれよりも高く確保するよう構成している。
 上記構成とした理由を以下に示す。パンタグラフ2Bは、上述したとおり、走行中に使用されるため、以下の点に配慮することが好ましい。つまり、パンタグラフ2Bは電気車10の走行中に接触導体部60と架線1Bを摺動しながら集電を行うことになるので、架線1Bを磨耗させないことが重要となる。このため、接触導体部60の架線1Bと接する部位には摩擦係数の低いカーボン素材を使用することが好ましい条件となる。
 なお、カーボン素材は銅と比較して電気抵抗が大きく、電流の通電による損失が大きいため、架線1Bと接触導体部60との接触点の発熱量は大きくなる。
 しかしながら、電気車10は、走行しながら集電を行うので、走行風による接触導体部60の冷却が期待でき、また電気車10の移動に伴い常に発熱箇所が移動するので、発熱箇所が同一箇所に固定されることがなく、問題とはならない。
 これに対して、パンタグラフ2Aは、上述したとおり、停止中に使用されるため、以下の点に配慮することが好ましい。つまりパンタグラフ2Aは、電気車10が停止中に架線1Aから集電を行うことになるので、架線1Aを磨耗させてしまう心配はない。
 しかしながら、急速充電中においては、接触導体部60と架線1Aとの接触点は固定されるため、接触点での発熱を最小限に抑える必要があり、接触電気抵抗を最小化することが重要となる。このため、導電性のよい銅合金を使用する。また、万一接触点の温度が上昇した場合においても、溶損に至らないように溶融温度の高い銅合金を使用することが好ましい条件となる。
 また、外部環境の影響により接触点の電気的接触の安定性が脅かされるといった懸念がある。具体的には、冬季に接触導体部60の上部に積雪し、積雪の重量で接触導体部60の架線1Aへの押し付け力が低下した場合や、架線1Aと接触導体部60との接触点近傍が粉塵や鳥の糞等で汚損していた場合、接触点での接触抵抗が大きくなり発熱量が増大するといった懸念がある。
 このため、パンタグラフ2Aに設置された機構部62は、接触導体部60の押上げ力をパンタグラフ2Bよりも大きく設定することが好ましい条件となる。接触導体部60と架線1Aとの接触圧を、パンタグラフ2Bのそれよりも高くすることで、接触導体部60と架線1Aとの間の電気的接触をより確実にすることが可能となる。
 なお、走行中に使用するパンタグラフ2Bは、走行による摩擦により接触導体部60と架線1Bとの間の異物は除去され、積雪の心配もない。したがって、接触導体部60と架線1Bとの接触圧をそれほど大きくしなくても電気的接触の安定性の確保が可能となる。
 もしパンタグラフ2Bにおいて、フレーム61の押し上げ力を大きくした場合、架線1Bとの摩擦力が大きくなり架線1Bの磨耗増加を招くほか、架線1Bの上方への押し上げ量が増加することになり、架線1Bの上部に設けられた構造物(たとえば跨線橋)等への接触の懸念が生じるため、架線1Bの張力を増加させる等の対策が必要となる。このため、パンタグラフ2Bの接触導体部60の押し上げ力を大きくすることは、あまり好ましくない。
 つぎに、架線1Aについて説明する。架線1Aは、図4のB図に示すように、電気車10の進行方向に並列に2本設けられ、それぞれが接触導体部60に接するように構成されている。なお、図4に示す2本に限定されず、2本以上の複数本設けてもよい。また、複数の架線1Aは、互いに電気的に接続され、変電所70からの電圧供給を受ける。
 このように、複数の架線1Aが接触導体部60と接するように構成することで、たとえば架線1Aのうち1本にビニール等の異物が付着していた場合等で、著しく電気的接触が悪化する状況が発生しても、残りの架線1Aが接触導体部60と接することができ、安定した集電が可能となる。
 なお、パンタグラフ2Aの接触導体部60を2本以上の複数本設ける(図4の図では2本を例示)ことによっても、架線1Aとの接触を確実にすることができ、安定した集電が可能となる。
 また、電気車10にパンタグラフ2Aを複数台設けて、複数台を互いに電気的に接続しても同じ効果を得ることができる。ただし、パンタグラフ搭載数が増加して電気車10の重量が重くなり、屋根上のスペースも要するといった不利点に配慮する必要がある。
 さらに、図示は省略しているが、架線1Aは、パンタグラフ2Aの押し上げ力により多少上方へ持ち上がるようにしておき、一定量持ち上がった場合にのみ、図示しない位置検出器でこれを検出して、変電所70から架線1Aに電圧を印加する構成としてもよい。このように構成すれば、接触導体部60と架線1Aとの間の接触力が確実に存在する場合にのみ、パンタグラフ2Aに電力を供給できる効果があり、より安定した集電が可能となる。
 つぎに、制御部15の構成を説明する。図5は、本発明の実施の形態における制御部15の構成例を示す図である。
 図5に示すように、制御部15は、パンタグラフ電圧ESを入力し、パンタグラフ電圧ESの異常を判定して、その結果を判定信号ESDとして出力するパンタグラフ電圧異常判定部20と、リアクトル電圧DVを入力し、リアクトル電圧DVの異常を判定して、その結果を判定信号DVDとして出力するリアクトル電圧異常判定部21と、接触導体部60の温度検出信号THを入力し、温度の異常判定を行い、その結果を判定信号THDとして出力する温度判定部22と、状態検出信号PSを入力し、パンタグラフ2Aの昇降状態を判定して、その結果を判定信号PSDとして出力する昇降判定部23と、パンタグラフ昇降指令PCと状態検出信号PSとを入力し、パンタグラフ2Aの接触導体部60の溶着状況を判定して、その結果を判定信号MDDとして出力する溶着判定部24と、これら判定信号ESD、DVD、THD、PSDの論理和をとり、その結果ER0を出力する論理和回路27と、電気車10が停車中を示す停車信号STとER0との論理積をとり、その結果ER1を出力する論理積回路28と、停車信号STの論理反転をとり、その結果STBを出力する論理反転回路25と、STBがオン(H)レベルとなった場合に、強制降下基本信号PDSを出力する強制降下制御部26と、強制降下基本信号PDSを入力し、所定時間だけ遅延させて強制降下信号PDを出力する遅延回路30と、論理積回路28の出力ER1と、判定信号MDDと強制降下基本信号PDSとの論理和をとる論理和回路29と、論理和回路29の出力信号を論理反転させ、判定信号ERを出力する論理反転回路31と、判定信号ERと、別途生成された基本オンオフ信号KC0との論理和をとり、オンオフ信号KCとして出力する論理積回路32と、判定信号ERと、別途生成された基本制御信号GC0との論理和をとり、制御信号GCとして出力する論理積回路33と、を含んで構成される。
 このように構成された制御部15の動作を説明する。パンタグラフ電圧異常判定部20では、架線1Aと接触導体部60との接触状態の程度を示す物理量であるパンタグラフ電圧ESに基づいて、架線1Aと接触導体部60との接触状態の異常判定を行う。
 図6は、本発明の実施の形態におけるパンタグラフ電圧ESとその微分値の波形例を示す図である。図6に示すように、架線1Aと接触導体部60との電気的接触が不良となった場合、接触抵抗が変化したり、アークが発生し、図6中に破線で示したとおり電圧が変動する。パンタグラフ電圧異常判定部20では、パンタグラフ電圧ESの微分値(変化率)を求め、これが判定値以内に存在するか、否かを監視する。パンタグラフ電圧ESの微分値(変化率)が判定値外の値をとった場合、架線1Aと接触導体部60との電気的接触が不良(異常)であると判断して判定信号ESDをオン(Hレベル)とする。
 なお、パンタグラフ電圧ESの微分値(変化率)に基づいて異常判定を行うほか、パンタグラフ電圧ESをハイパスフィルタに通し、接触不良状態に起因して発生する電圧変動成分(周波数成分)を抽出して、これに基づいて異常判定を実施する構成としてもよい。
 リアクトル電圧異常判定部21では、架線1Aと接触導体部60との接触状態の程度を示す物理量であるリアクトル電圧DVに基づいて、架線1Aと接触導体部60との接触状態の異常判定を行う。
 図7は、本発明の実施の形態におけるリアクトル電圧DVの波形例を示す図である。図7に示すように、架線1Aと接触導体部60との電気的接触が不良となった場合、接触抵抗が変化したり、アークが発生し、図7中に破線で示したとおり電圧が変動する。リアクトル電圧異常判定部21ではリアクトル電圧DVが判定値以内に存在するか、否かを監視する。リアクトル電圧DVが判定値外の値をとった場合、架線1Aと接触導体部60との電気的接触が不良(異常)であると判断して判定信号DVDをオン(Hレベル)とする。
 なお、パンタグラフ電圧異常判定部20での処理と同様にリアクトル電圧DVの微分値(変化率)に基づいて、異常判定を行ってもよい。またリアクトル電圧DVをハイパスフィルタに通し、接触不良状態に起因して発生する電圧変動成分(周波数成分)を抽出して、これに基づいて異常判定を実施する構成としてもよい。パンタグラフ電圧異常判定部20と、リアクトル電圧異常判定部21は、少なくとも片方を備える構成でもよい。
 そのほかの構成として、図示しないが、フーリエ変換等の手段でパンタグラフ電圧ESあるいはリアクトル電圧DVに含まれる周波数の分析を行い、予め明確にしておいたアークが発生している状態で生じる周波数分布の特徴との比較照合を行って、その結果により、パンタグラフ電圧異常判定部20あるいはリアクトル電圧異常判定部21において、架線1Aと接触導体部60との電気的接触が不良(異常)であると判断して判定信号ESDあるいは判定信号DVDをオン(Hレベル)とする構成としても良い。
 温度判定部22では、接触状態の程度を示す物理量である温度検出信号THが接触導体部60の過温度を示している場合に、判定信号THDをオン(Hレベル)とする。
 昇降判定部23では、接触状態の程度を示す物理量である状態検出信号PSが接触導体部60の上昇位置が所定値以下であり、架線1Aに接していない状態を示している場合に、判定信号PSDをオン(Hレベル)とする。
 論理和回路27では、上記の判定信号ESDとDVDとTHDとPSDとの論理和をとる。このように構成することで、架線1Aと接触導体部60との接触状態が異常である場合に発生しうる事象のうちどれかが発生した場合に、架線1Aと接触導体部60との接触状態が異常であると判断して判定信号ER0を出力する。
 つぎに、論理積回路28にて、電気車10が停車中であることを示す停車信号STとの論理積をとり、判定信号ER1を出力する。このように構成することで、電気車10が通常の電化区間を走行中における架線1Bとパンタグラフ2Bとの間の離線や、電圧変動による不要な異常検出を回避し、電気車10が停車中である場合のみに異常検出機能を有効とすることができる。
 判定信号ER1がオン(Hレベル)となった場合、架線1Aと接触導体部60との間の電気的接触状態に異常があるものと判断されるので、論理和回路29、論理反転回路31を介して、判定信号ERを出力し、別途生成された基本オンオフ信号KC0と基本制御信号GC0によらず、オンオフ信号KCと制御信号GCとを強制的にオフとすることで、電力変換装置12を停止させるとともに、開閉部11をオフして主回路電流を遮断する。このように構成することで、パンタグラフ2Aに電流が流れないように保護し、異常範囲の拡大を回避することが可能となる。
 つぎに、溶着判定部24では、たとえば電気車10の急速充電が完了し、パンタグラフ昇降指令PCが下降を指示しているにも関わらず、状態検出信号PSが接触導体部60と架線1Aとが接した状態を継続している旨の信号を出力している場合、接触導体部60と架線1Aとが溶着しパンタグラフ2Aの降下が不能であると判断して判定信号MDDをオン(Hレベル)とする。
 判定信号MDDがオン(Hレベル)となった場合、架線1Aと接触導体部60との間で発生したアーク等により、両者が溶着したと判断し、論理和回路29、論理反転回路31を介して、判定信号ERを出力し、別途生成された基本オンオフ信号KC0と基本制御信号GC0によらず、オンオフ信号KCと制御信号GCとを強制的にオフとすることで、電力変換装置12(特にインバータ回路)の起動を禁止して電動機16への通電を禁止するとともに、開閉部11をオフして主回路電流を遮断する。このように構成することで、パンタグラフ2Aが架線1Aと溶着した状態で電気車10が起動し、パンタグラフ2Aを破壊することを回避し被害の拡大を回避することが可能となる。なお、電動機16への通電を禁止し、かつ開閉部11をオフして主回路を切断しても、電気車10が移動することは好ましくない。このため、電気車の走行を禁止する処置を講ずることが好ましい。
 つぎに、強制降下制御部26では、たとえば電気車10がパンタグラフ2Aを上昇させて急速充電中に、電気車10のブレーキが緩む等して、あるいは意図的に操作して電気車10が動いた場合に、強制降下基本信号PDSをオン(Hレベル)とする。これにより、論理和回路29、論理反転回路31を介して、判定信号ERを出力し、別途生成された基本オンオフ信号KC0と基本制御信号GC0によらず、オンオフ信号KCと制御信号GCとを強制的にオフとすることで、電力変換装置12をオフするとともに、開閉部11をオフして主回路電流を遮断する。
 この後、遅延回路30にて設定した遅延時間が経過した後、強制降下信号PDが出力され、パンタグラフ2Aを降下させる。ここで、遅延回路30の遅延時間は、開閉部11と電力変換装置12とがオフ状態となるまでの時間以上に設定しておく。このようにすることで、電気車10が区間Cを逸脱するまえにパンタグラフ2Aを降下格納することが可能となる。その結果、パンタグラフ2Aが架線1Aの存在しない場所で上昇し、上昇限界を超えて破損に至るといった状況を回避することが可能となる。
 なお、遅延回路30で強制降下基本信号PDSのオンタイミングから強制降下信号PDをオンするまでの時間を確保することで、電力変換装置12と開閉部11を停止させて主回路電流をゼロとした後にパンタグラフ2Aの降下が開始されるので、パンタグラフ2Aの接触導体部60と架線1Aの離線によって電流を遮断することがなくなり、パンタグラフ2Aと架線1Aとの間にアークが発生して溶損する事態を回避することが可能となる。
 なお、遅延回路30を設けるほか、開閉部11と電力変換装置12とからオンオフ状態を示すフィードバック信号(図示せず)を受けて、開閉部11と電力変換装置12のオフを確認してから強制降下信号PDをオンするようにインターロック回路を構成しても同様の効果が得られる。
 また、架線1Aと接触導体部60との電気的接触の異常を検出する方法としては、サーモビュア等(図示せず)により間接的に接触導体部60の温度を検出して、これに基づいて判定信号THDをオン(Hレベル)とする構成としてもよいし、架線1Aと接触導体部60との間に発生したアーク光を、図示しない光センサで検出し、検出値が所定以上である場合に、接触導体部60の温度が高温であるとして、判定信号THDをオン(Hレベル)とする構成としてもよい。
 なお、実施の形態で示した構成では、停車中の急速充電時に使用するパンタグラフ2Aと、走行中の架線集電に使用するパンタグラフ2Bとを電気車10に搭載する形態で説明したが、パンタグラフ2Aとパンタグラフ2Bの両方の特性を兼ね備えた別のパンタグラフと共用してもよい。この場合でも、本発明の実施の形態に示した構成が適用できるのは言うまでもない。
 また、急速充電電流が少ない場合等では、パンタグラフ2Aの代わりにパンタグラフ2Bで代用してもよい。この場合でも、本発明の実施の形態に示した構成が適用できるのは言うまでもない。
 以上のように構成したので、架線が無い区間における走行、停車中の電力貯蔵素子への充電、架線のある区間における走行の各モードに好適で、特に電気車が停車中にける電力貯蔵素子への急速充電を、安定して行うことのできる電気鉄道システムを提供できる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。
 以上のように、本発明にかかる電気鉄道システムは、電気車が停車中における電力貯蔵素子への急速充電を、安定かつ安全に行うことのできる発明として有用である。

Claims (26)

  1.  電気車と、前記電気車に電力を供給する電力供給装置とを含んで構成される電気鉄道システムにおいて、
     前記電力供給装置は、
     電源と、
     前記電源に接続された架空導体部と、
     を備え、
     前記電気車は、
     前記電気車の屋根上に設置され、前記架空導体部に接触可能な接触導体部を有し、外部からの指令に基づいて前記接触導体部の上昇動作および下降動作が可能な集電部と、
     前記集電部に接続され、電力の供給経路である主回路の開閉を行う開閉部と、
     前記開閉部に接続され、電力変換を行う電力変換装置と、
     前記電力変換装置に接続され、電力の貯蔵を行う電力貯蔵装置と、
     前記電力変換装置により駆動され、前記電気車を駆動する電動機と、
     少なくとも前記開閉部を制御する制御部と、
     を備えたことを特徴とする電気鉄道システム。
  2.  前記制御部は、前記架空導体部と前記接触導体部との接触状態の程度を示す物理量に基づいて、前記開閉部および前記電力変換装置のオンオフ制御を行う構成としたことを特徴とする請求項1に記載の電気鉄道システム。
  3.  前記制御部による前記開閉部および前記電力変換装置に対するオンオフ制御は、前記電気車が停止している場合に限り実行されることを特徴とする請求項2に記載の電気鉄道システム。
  4.  前記電気車は、
     前記集電部の前記接触導体部を介して前記架空導体部から印加された電圧を検出する電圧検出器をさらに備え、
     前記制御部は、前記電圧検出器により検出された電圧を前記物理量の一つとして前記開閉部および前記電力変換装置のオンオフ制御を行うことを特徴とする請求項3に記載の電気鉄道システム。
  5.  前記電気車は、
     前記集電部の前記接触導体部を介して前記架空導体部から印加された電圧を検出する電圧検出器をさらに備え、
     前記制御部は、前記電圧検出器により検出された電圧に基づいて算出された電圧の変化率を前記物理量の一つとして前記開閉部および前記電力変換装置のオンオフ制御を行うことを特徴とする請求項3に記載の電気鉄道システム。
  6.  前記制御部は、前記電圧の変化率が所定値以上である場合に、前記開閉部および前記電力変換装置をオフに制御することを特徴とする請求項5に記載の電気鉄道システム。
  7.  前記電力変換装置が、入力側にリアクトルとコンデンサとを含む入力フィルタを備えた構成の場合に、
     前記制御部は、前記リアクトルに印加された電圧を前記物理量の一つとして前記開閉部および前記電力変換装置のオンオフ制御を行うことを特徴とする請求項3に記載の電気鉄道システム。
  8.  前記制御部は、前記リアクトルに印加された電圧の変化率を前記物理量の一つとして前記開閉部および前記電力変換装置のオンオフ制御を行うことを特徴とする請求項3に記載の電気鉄道システム。
  9.  前記制御部は、前記リアクトルに印加された電圧の変化率が所定値以上である場合に、前記開閉部および前記電力変換装置をオフに制御することを特徴とする請求項8に記載の電気鉄道システム。
  10.  前記集電部は、前記架空導体部と前記接触導体部とが接触しているか否かを検出する状態検出部を備え、
     前記制御部は、前記状態検出部による検出信号を前記物理量の一つとして前記開閉部および前記電力変換装置のオンオフ制御を行うことを特徴とする請求項3に記載の電気鉄道システム。
  11.  前記制御部は、前記状態検出部により検出された検出信号が、前記架空導体部と前記接触導体部とが接触していない旨を表す信号である場合に、前記開閉部および前記電力変換装置をオフに制御することを特徴とする請求項10に記載の電気鉄道システム。
  12.  前記集電部は、前記接触導体部の温度を検出する温度検出部を備え、
     前記制御部は、前記温度検出部により検出された検出信号を前記物理量の一つとして前記開閉部および前記電力変換装置のオンオフ制御を行うことを特徴とする請求項3に記載の電気鉄道システム。
  13.  前記制御部は、前記温度検出部により検出された前記接触導体部の温度が所定値以上である場合に、前記開閉部および前記電力変換装置をオフに制御することを特徴とする請求項12に記載の電気鉄道システム。
  14.  前記集電部は、前記架空導体部と、前記接触導体部とが接しているか否かを検出する状態検出部を備え、
     前記接触導体部を降下させる指令を前記集電部へ入力したにも関わらず、前記状態検出部により検出された検出信号が、前記架空導体部と前記接触導体部とが接触した状態を継続している旨を表す信号である場合に、前記制御部は、前記電気車の走行を禁止するように制御することを特徴とする請求項1に記載の電気鉄道システム。
  15.  前記制御部は、前記集電部の降下を指示する強制降下制御部と、該強制降下制御部の出力を遅延させる遅延回路とを備え、
     前記集電部を上昇して該電気車の充電中に該電気車が動いた場合、前記制御部は前記開閉部および前記電力変換装置をオフに制御するとともに、遅れて該集電部を降下させることを特徴とする請求項1に記載の電気鉄道システム。
  16.  前記集電部を上昇して前記電気車の充電中に該電気車が動いた場合、前記制御部は前記開閉部および前記電力変換装置をオフに制御するとともに、前記遅延回路にて設定した遅延時間の経過後に、前記集電部を降下させることを特徴とする請求項15に記載の電気鉄道システム。
  17.  前記集電部は、前記接触導体部と前記架空導体部との接触部の位置を検出する位置検出器を備え、
     前記架空導体部は、前記集電部からの押し上げ量が所定値以上の場合に、前記電源との間で電気的接続がとられるように構成されることを特徴とする請求項1~16の何れか1項に記載の電気鉄道システム。
  18.  前記架空導体部は、該架空導体部と前記接触導体部とが複数個所で接触するように、並列して複数設けられたことを特徴とする請求項1~17に記載の電気鉄道システム。
  19.  前記接触導体部は、該接触導体部と前記架空導体部とが複数個所で接触するように、前記集電部に複数設けられたことを特徴とする請求項1~18に記載の電気鉄道システム。
  20.  前記電気車が走行中の場合と、停止中の場合とで選択的に使用できるように前記集電部を複数設けたことを特徴とする請求項1に記載の電気鉄道システム。
  21.  前記電気車が停止中に使用する前記集電部の前記接触導体部と前記架空導体部との接触力は、前記電気車が走行中に使用する前記集電部の前記接触導体部と前記架空導体部との接触力よりも大きな値に設定したことを特徴とする請求項20に記載の電気鉄道システム。
  22.  前記電気車が停止中に使用する前記集電部の前記接触導体部の材料は、前記電気車が走行中に使用する前記集電部の前記接触導体部の材料よりも、導電率の高い材料であることを特徴とする請求項20または21に記載の電気鉄道システム。
  23.  前記電気車が停止中に使用する前記集電部の前記接触導体部の材料は、前記電気車が走行中に使用する前記集電部の前記接触導体部の材料よりも、溶融温度の高い材料であることを特徴とする請求項20~22の何れか1項に記載の電気鉄道システム。
  24.  前記電気車が停止中に使用する前記集電部の前記接触導体部の材料は、前記電気車が走行中に使用する前記集電部の前記接触導体部の材料よりも、前記架空導体部に対する摩擦係数が大きな材料であることを特徴とする請求項20~23の何れか1項に記載の電気鉄道システム。
  25.  通常の電化区間と、急速充電用の区間とで異なる架空導体部を設けたことを特徴とする請求項1に記載の電気鉄道システム。
  26.  前記電気車が停止中に使用する前記架空導体部の材料は、前記電気車が走行中に使用する前記架空導体部の材料よりも、断面積が大きく剛性の高い材料であることを特徴とする請求項25に記載の電気鉄道システム。
PCT/JP2008/058278 2008-04-30 2008-04-30 電気鉄道システム WO2009133608A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020107024217A KR101162454B1 (ko) 2008-04-30 2008-04-30 전기 철도 시스템
PCT/JP2008/058278 WO2009133608A1 (ja) 2008-04-30 2008-04-30 電気鉄道システム
US12/936,837 US8596434B2 (en) 2008-04-30 2008-04-30 Electric railway system
CA2725409A CA2725409C (en) 2008-04-30 2008-04-30 Electric railway system
JP2008547795A JP4346678B1 (ja) 2008-04-30 2008-04-30 電気鉄道システム
EP08740946.2A EP2275300B1 (en) 2008-04-30 2008-04-30 Electric railway system
CN2008801289810A CN102015356B (zh) 2008-04-30 2008-04-30 电气铁路系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/058278 WO2009133608A1 (ja) 2008-04-30 2008-04-30 電気鉄道システム

Publications (1)

Publication Number Publication Date
WO2009133608A1 true WO2009133608A1 (ja) 2009-11-05

Family

ID=41254839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/058278 WO2009133608A1 (ja) 2008-04-30 2008-04-30 電気鉄道システム

Country Status (7)

Country Link
US (1) US8596434B2 (ja)
EP (1) EP2275300B1 (ja)
JP (1) JP4346678B1 (ja)
KR (1) KR101162454B1 (ja)
CN (1) CN102015356B (ja)
CA (1) CA2725409C (ja)
WO (1) WO2009133608A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183771A (ja) * 2009-02-06 2010-08-19 Kawasaki Heavy Ind Ltd パンタグラフ自動昇降装置
WO2012074095A1 (ja) * 2010-12-03 2012-06-07 三菱重工業株式会社 電動車両への給電システム
CN102910079A (zh) * 2012-09-20 2013-02-06 南车南京浦镇车辆有限公司 基于列车网络系统的地铁列车受电弓控制方法
JP5274723B1 (ja) * 2012-06-07 2013-08-28 三菱電機株式会社 電気車制御装置
JP2014220888A (ja) * 2013-05-07 2014-11-20 シオン電機株式会社 直流電源使用時に生ずるアーク放電防止システム
KR101497200B1 (ko) 2010-07-30 2015-02-27 미츠비시 쥬고교 가부시키가이샤 가선 교통 시스템 및 그 제어 방법
JP2015220967A (ja) * 2014-05-21 2015-12-07 近畿車輌株式会社 集電装置、鉄道車両及び集電システム
CN107650690A (zh) * 2017-09-20 2018-02-02 株洲时代电子技术有限公司 一种铁路工程机械混合动力源控制方法
RU2675765C2 (ru) * 2014-08-19 2018-12-24 Цзилинь Юниверсити Энергосистема электрифицированной железной дороги без обратной последовательности во всем процессе и без сетей электропитания на интервалах
CN110133418A (zh) * 2019-06-18 2019-08-16 重庆市轨道交通(集团)有限公司 受电弓检测装置
JP2020192976A (ja) * 2019-05-27 2020-12-03 株式会社ExH 電力供給システム
JP2021044982A (ja) * 2019-09-12 2021-03-18 東海旅客鉄道株式会社 電力変換システム

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2671748B2 (en) * 2011-01-31 2023-11-15 Hitachi, Ltd. Driving system, driving system for railroad-vehicle, and railroad-vehicle and multi-car train mounted with same
JP5791363B2 (ja) * 2011-05-10 2015-10-07 株式会社小松製作所 自走式ケーブル中継台車
FR2976529B1 (fr) * 2011-06-14 2013-07-12 Alstom Transport Sa Dispositif de recharge en energie pour un vehicule
CN103648826B (zh) * 2011-06-23 2016-03-16 三菱电机株式会社 列车信息管理装置以及列车信息管理方法
EP2572922A1 (en) * 2011-09-26 2013-03-27 Alcatel Lucent Method of charging an energy storage unit
KR101251552B1 (ko) * 2011-10-13 2013-04-08 한국철도기술연구원 도전성 유체를 이용한 비접촉 급전 장치
US8893830B2 (en) * 2011-11-18 2014-11-25 Caterpillar Inc. Automated pantograph control for mining truck power system
CN102700425A (zh) * 2012-04-26 2012-10-03 江苏中辆科技有限公司 新能源有轨公交运营系统
CN102975724B (zh) * 2012-12-07 2015-05-20 南车株洲电力机车有限公司 一种城轨车辆的蓄电池与受流器牵引供电系统
KR101478083B1 (ko) * 2013-06-13 2014-12-31 현대로템 주식회사 판토그라프 오토드롭 시스템 및 방법
EP3140148B1 (en) * 2014-05-05 2018-04-11 Volvo Truck Corporation A method and arrangement for controlling charging of an electrical storage system in a vehicle
DE102014217219A1 (de) 2014-08-28 2016-03-03 Siemens Aktiengesellschaft Elektrische Schaltung für ein Fahrzeug und Verfahren zur Kontaktaufnahme und/oder -beendigung eines Fahrzeugs mit einem fahrzeugexternen elektrischen Netz
KR101551140B1 (ko) 2015-01-12 2015-09-07 주식회사 다원시스 철도차량의 운전실 독립형 냉난방 시스템
PL3085570T3 (pl) * 2015-04-20 2020-06-01 Alstom Transport Technologies Elektryczny układ zasilania do pojazdu z napędem elektrycznym i sposoby sterowania takim elektrycznym układem zasilania
JP6484855B2 (ja) * 2015-04-21 2019-03-20 株式会社明電舎 トロリ線の摩耗推定方法及び推定装置
DE102015006308B4 (de) * 2015-05-16 2022-01-27 Audi Ag Ladevorrichtung zum induktiven Laden eines elektrischen Energiespeichers eines Kraftfahrzeugs und Verfahren zum Betreiben einer Ladevorrichtung
DE102015215174A1 (de) * 2015-08-07 2017-02-09 Siemens Aktiengesellschaft Vorrichtung und ein Verfahren zum oberleitungslosen Betreiben eines Schienenfahrzeugs
EP3165398B1 (en) * 2015-11-09 2023-07-26 ALSTOM Transport Technologies Method and system for monitoring a pantograph of a railway vehicle and railway vehicle
KR101989963B1 (ko) 2017-04-10 2019-06-17 주식회사 우진기전 철도차량의 개폐장치용 스마트 유닛
DE102017215135A1 (de) * 2017-08-30 2019-02-28 Siemens Mobility GmbH Verfahren sowie Vorrichtung zur Überprüfung einer Kontaktierung eines Stromabnehmers
JP7042597B2 (ja) * 2017-12-04 2022-03-28 株式会社東芝 車両用制御装置及び電動車両
CA3116475C (en) * 2018-10-16 2023-01-03 Siemens Mobility GmbH Battery monitoring method in a rail vehicle
CN110293850A (zh) * 2019-06-13 2019-10-01 宝鸡中车时代工程机械有限公司 具有接触网供电电源系统的轨道工程车
FR3105116B1 (fr) * 2019-12-23 2023-01-06 Alstom Transp Tech Dispositif de captage d’énergie électrique pour véhicule, notamment ferroviaire, et véhicule, notamment ferroviaire, comprenant un tel dispositif
KR20210099674A (ko) * 2020-02-04 2021-08-13 현대자동차주식회사 전기버스 충전 시스템 및 이를 이용한 충전방법
KR102490484B1 (ko) * 2021-02-05 2023-01-25 한국자동차연구원 판토그라프의 이상 진단 장치 및 방법
KR102515775B1 (ko) * 2021-02-08 2023-03-30 한국자동차연구원 전기차의 충전을 위한 판토그라프의 결빙 방지 시스템 및 그 작동 방법
AT525171B1 (de) * 2021-07-12 2023-01-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Verfahren zum Betreiben einer Gleisbaumaschine
CN118103244A (zh) * 2021-10-14 2024-05-28 大众汽车股份公司 用于运行电气驱动的机动车的方法
US11923632B2 (en) 2021-11-24 2024-03-05 Caterpillar Inc. Terminal assembly for conductor rod having multiple degrees of freedom
US11859370B2 (en) 2021-11-24 2024-01-02 Caterpillar Inc. Multi-tiered interface between conductor rod and work machine
US11688973B2 (en) 2021-11-24 2023-06-27 Caterpillar Inc. Connector assembly for conductor rod having multiple degrees of freedom
WO2023097201A1 (en) * 2021-11-24 2023-06-01 Caterpillar Inc. Radial and axial interface between conductor rod and work machine
CN114384072B (zh) * 2021-11-30 2023-07-11 杭州申昊科技股份有限公司 一种用于轨道巡检刚性接触网的磨耗检测方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571003U (ja) * 1980-06-02 1982-01-06
JP2003319509A (ja) * 2002-04-22 2003-11-07 Odakyu Dentetsu Kk 鉄道車両のパンタグラフ保護方法及び装置
JP2006238652A (ja) 2005-02-25 2006-09-07 Toshiba Corp 鉄道エネルギー補給システム
JP2007295640A (ja) * 2006-04-20 2007-11-08 Railway Technical Res Inst 架線・バッテリハイブリッド車両のパンタグラフ誤動作防止装置及び方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797881B2 (ja) * 1986-07-29 1995-10-18 東洋電機製造株式会社 トロリ−アシスト車両用パンタグラフの架線外れ検知装置
RU2108936C1 (ru) 1997-04-03 1998-04-20 Валерий Григорьевич Запускалов Мобильный контрольно-вычислительный комплекс для диагностики контактной сети железнодорожного транспорта
RU2110419C1 (ru) 1997-04-24 1998-05-10 Владимир Анатольевич Гасюта Транспортное средство с автономным ходом
RU2137622C1 (ru) 1997-06-17 1999-09-20 Галиулин Равиль Масгутович Устройство для измерения параметров контактного провода
JPH1146402A (ja) * 1997-07-25 1999-02-16 East Japan Railway Co 直流電気車両のパンダグラフ・アーク検出装置
JP3911621B2 (ja) 2000-06-06 2007-05-09 株式会社日立製作所 バッテリ駆動列車の鉄道システム
FR2819759B1 (fr) * 2001-01-24 2003-05-23 Alstom Systeme d'alimentation d'un vehicule a traction electrique
FR2822764B1 (fr) * 2001-03-29 2003-05-16 Alstom Procede et dispositif de pilotage de l'alimentation en energie d'un vehicule a traction electrique destine a fonctionner en mode d'alimentation externe ou en mode d'alimentation autonome
AT500328B1 (de) * 2002-02-07 2010-03-15 Elin Ebg Traction Gmbh Fahrzeug mit einem elektrischen antrieb und verfahren zum betrieb eines solchen fahrzeuges
KR100588049B1 (ko) 2003-12-30 2006-06-09 한국철도기술연구원 철도차량에서 집전장치의 측정시스템과의 인터페이스를위한 차량신호 측정장치
JP2005287184A (ja) * 2004-03-30 2005-10-13 Railway Technical Res Inst 監視装置
KR100719193B1 (ko) 2005-06-30 2007-05-16 미쓰비시덴키 가부시키가이샤 차량용 보조 전원 장치
JP4167678B2 (ja) 2005-08-26 2008-10-15 株式会社神戸製鋼所 電動車走行システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571003U (ja) * 1980-06-02 1982-01-06
JP2003319509A (ja) * 2002-04-22 2003-11-07 Odakyu Dentetsu Kk 鉄道車両のパンタグラフ保護方法及び装置
JP2006238652A (ja) 2005-02-25 2006-09-07 Toshiba Corp 鉄道エネルギー補給システム
JP2007295640A (ja) * 2006-04-20 2007-11-08 Railway Technical Res Inst 架線・バッテリハイブリッド車両のパンタグラフ誤動作防止装置及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2275300A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183771A (ja) * 2009-02-06 2010-08-19 Kawasaki Heavy Ind Ltd パンタグラフ自動昇降装置
KR101497200B1 (ko) 2010-07-30 2015-02-27 미츠비시 쥬고교 가부시키가이샤 가선 교통 시스템 및 그 제어 방법
WO2012074095A1 (ja) * 2010-12-03 2012-06-07 三菱重工業株式会社 電動車両への給電システム
US9434259B2 (en) 2012-06-07 2016-09-06 Mitsubishi Electric Corporation Electric vehicle control apparatus
WO2013183152A1 (ja) * 2012-06-07 2013-12-12 三菱電機株式会社 電気車制御装置
JP5274723B1 (ja) * 2012-06-07 2013-08-28 三菱電機株式会社 電気車制御装置
CN102910079A (zh) * 2012-09-20 2013-02-06 南车南京浦镇车辆有限公司 基于列车网络系统的地铁列车受电弓控制方法
JP2014220888A (ja) * 2013-05-07 2014-11-20 シオン電機株式会社 直流電源使用時に生ずるアーク放電防止システム
US9800045B2 (en) 2013-05-07 2017-10-24 Sion Electric Co., Ltd. System for preventing arc discharge generated during use of DC power supply
JP2015220967A (ja) * 2014-05-21 2015-12-07 近畿車輌株式会社 集電装置、鉄道車両及び集電システム
US10850637B2 (en) 2014-08-19 2020-12-01 Jilin University Electrified railway power grid system without negative sequence in whole process and without power supply networks at intervals
RU2675765C2 (ru) * 2014-08-19 2018-12-24 Цзилинь Юниверсити Энергосистема электрифицированной железной дороги без обратной последовательности во всем процессе и без сетей электропитания на интервалах
CN107650690A (zh) * 2017-09-20 2018-02-02 株洲时代电子技术有限公司 一种铁路工程机械混合动力源控制方法
CN107650690B (zh) * 2017-09-20 2020-12-04 株洲时代电子技术有限公司 一种铁路工程机械混合动力源控制方法
JP2020192976A (ja) * 2019-05-27 2020-12-03 株式会社ExH 電力供給システム
CN110133418A (zh) * 2019-06-18 2019-08-16 重庆市轨道交通(集团)有限公司 受电弓检测装置
JP2021044982A (ja) * 2019-09-12 2021-03-18 東海旅客鉄道株式会社 電力変換システム
JP7301686B2 (ja) 2019-09-12 2023-07-03 東海旅客鉄道株式会社 電力変換システム

Also Published As

Publication number Publication date
KR20110004402A (ko) 2011-01-13
CA2725409A1 (en) 2009-11-05
US8596434B2 (en) 2013-12-03
EP2275300B1 (en) 2013-11-13
US20110030574A1 (en) 2011-02-10
KR101162454B1 (ko) 2012-07-04
EP2275300A1 (en) 2011-01-19
JP4346678B1 (ja) 2009-10-21
CN102015356A (zh) 2011-04-13
CA2725409C (en) 2014-11-25
JPWO2009133608A1 (ja) 2011-08-25
CN102015356B (zh) 2013-11-13
EP2275300A4 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP4346678B1 (ja) 電気鉄道システム
AU2011251493B2 (en) AC electric vehicle
JP4568736B2 (ja) 架線レス交通システム及びその充電方法
JP4814825B2 (ja) ハイブリッド電源システム
JP5816619B2 (ja) 乗客および/または貨物輸送用の運搬機器を有する空中ケーブルカーシステム
US20140232191A1 (en) Contact wire system for traction supply of an electric tractive vehicle
JP5331461B2 (ja) 鉄道車両駆動システム
JP5322685B2 (ja) 蓄電型電車の給電システム
EP2839982B1 (fr) Pantographe pour véhicule ferroviaire comportant des moyens de dégivrage et procédé de dégivrage d'un pantographe
CN104334392B (zh) 电车控制装置
JP2009113691A (ja) 鉄道における電池駆動式車両の地上給電システム
CN108473057A (zh) 用于监视电力系统中的电绝缘电阻的方法和系统
CN105691231A (zh) 快速充电的控制方法、车载系统及地面充电站控制系统
JP2006014395A (ja) 電気車の制御装置
RU2456174C1 (ru) Электрическая железнодорожная система
KR102004313B1 (ko) 제3궤조 집전슈의 결빙 방지 장치
CN102514500A (zh) 一种双电源工程维护车通过无电区的控制方法
JP3455076B2 (ja) 交直両用電気車
KR102469395B1 (ko) 전차선 급전구분 시스템
JP7059173B2 (ja) 電力変換システム
JP2004096886A (ja) 電気車の集電制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880128981.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2008547795

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08740946

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12936837

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008740946

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2725409

Country of ref document: CA

Ref document number: 6904/CHENP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107024217

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010148788

Country of ref document: RU