WO2009131179A1 - 変異体酵母及びこれを用いた物質生産方法 - Google Patents

変異体酵母及びこれを用いた物質生産方法 Download PDF

Info

Publication number
WO2009131179A1
WO2009131179A1 PCT/JP2009/058078 JP2009058078W WO2009131179A1 WO 2009131179 A1 WO2009131179 A1 WO 2009131179A1 JP 2009058078 W JP2009058078 W JP 2009058078W WO 2009131179 A1 WO2009131179 A1 WO 2009131179A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
hap4
target product
mutant yeast
yeast
Prior art date
Application number
PCT/JP2009/058078
Other languages
English (en)
French (fr)
Inventor
大西 徹
宣紀 多田
松下 響
典子 保谷
亘広 石田
隆 嶋村
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN2009801141625A priority Critical patent/CN102016024B/zh
Priority to EP09733795.0A priority patent/EP2281881B1/en
Priority to US12/989,359 priority patent/US8741610B2/en
Publication of WO2009131179A1 publication Critical patent/WO2009131179A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • C07K14/395Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts from Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid

Definitions

  • the present invention relates to a mutant yeast modified so that a predetermined gene is constitutively expressed in wild type yeast, and a substance production method using the same.
  • a mutant yeast introduced so that the gene involved in biosynthesis of the target product can be expressed constitutively is prepared and subjected to appropriate culture conditions.
  • the mutant yeast is then cultured, and the target product is recovered from inside or outside the fungus body.
  • a substance other than ethanol it is preferable to reduce ethanol produced in large quantities. So far, gene-disrupted strains such as pyruvate decarboxylase and alcohol dehydrogenase, which are in the ethanol production pathway, have been produced in order to reduce ethanol production ability.
  • Non-patent document 1 Ishida, N. et al. (2006) Biosci. Biotechnol. Biochem. 70, p1148-1153
  • Non-patent document 2 Flikweert, MT et al. (1996) Yeast 12, p247-257
  • Non Patent Document 3 Eri, A. et al. (1998) J. Ferment. Bioeng.
  • Patent Literature 1 Special Table 2003-500062
  • Patent Literature 2 Special Table 2001-516584
  • Non-patent document 4 Skory, CD (2003) J. Ind. Microbiol. Biotechnol 30, p22-27).
  • Non-Patent Document 1 Non-Patent Document 3 and Non-Patent Document 4
  • ethanol can be significantly reduced by destroying a gene in the ethanol production pathway, the majority of the reduction is not necessarily made. It is not a target product.
  • the present invention can significantly improve the productivity of the target product and maintain an excellent growth rate and fermentation rate when producing the target product using yeast.
  • An object of the present invention is to provide a mutant yeast that can be produced and a method for producing a substance using the same.
  • the growth rate and fermentation rate are maintained by introducing a gene involved in the production of the target product and constitutively expressing the HAP4 gene.
  • the productivity of the target product is greatly improved, and the present invention has been completed.
  • the present invention includes the following.
  • a mutant yeast introduced with a foreign gene encoding an enzyme involved in the production of a target product and a constitutively expressible HAP4 gene or a homologous gene thereof.
  • the mutant yeast of (1) above is preferably a mutant strain having reduced alcohol productivity as compared to the wild type.
  • alcohol productivity can be reduced by reducing the enzyme activity of an enzyme involved in alcohol synthesis.
  • the enzyme involved in alcohol synthesis include pyruvate decarboxylase and / or alcohol dehydrogenase.
  • the pyruvate decarboxylase include an enzyme encoded by at least one gene selected from the group consisting of PDC1 gene, PDC5 gene and PDC6 gene.
  • Examples of the alcohol dehydrogenase include an enzyme encoded by the ADH1 gene.
  • mutant yeast of (1) above it is preferable to use yeast belonging to the genus Saccharomyces, particularly yeast belonging to the strain of Saccharomyces cerevisiae.
  • yeast belonging to the genus Saccharomyces particularly yeast belonging to the strain of Saccharomyces cerevisiae.
  • the foreign gene include a gene encoding a protein having lactate dehydrogenase activity.
  • a substance production method using yeast comprising the steps of culturing the mutant yeast according to the present invention described above to produce the target product inside and outside the fungus body and the step of recovering the target product.
  • the target product can be an organic acid.
  • the target product is preferably lactic acid.
  • the target product may be alcohol other than ethanol.
  • the mutant yeast according to the present invention by using the mutant yeast according to the present invention, which can provide a mutant yeast excellent in the productivity of the target product while maintaining an excellent growth rate and fermentation rate, The target product can be produced at a low cost.
  • the mutant yeast according to the present invention is obtained by introducing a foreign gene encoding an enzyme involved in production of a target product and a constitutively expressible HAP4 gene or a homologous gene thereof.
  • the HAP4 gene encodes the HAP4 protein constituting the subunit of the Hap2p / 3p / 4p / 5p CCAAT-binding complex that is hemi-activated and glucose-repressed.
  • the complex is known to have transcription promoting activity for various genes.
  • the HAP4 protein and the above-mentioned complex are described in detail in Gancedo (JM (1998) Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62 (2), p334-61.
  • the nucleotide sequence of the coding region in the HAP4 gene and the amino acid sequence of the HAP4 protein are shown in SEQ ID NOs: 1 and 2, respectively.
  • the HAP4 gene to be introduced so as to be constitutively expressed is not limited to the protein containing the amino acid sequence shown in SEQ ID NO: 2, and is preferably 70% or more, for example, with respect to the amino acid sequence shown in SEQ ID NO: 2.
  • the identity means a value obtained by default setting using a computer program in which the blast algorithm is implemented and a database storing gene sequence information.
  • the HAP4 gene may be one or more (for example, 2 to 60, preferably 2 to 50, more preferably 2 to 40, still more preferably 2 to 30) in the amino acid sequence shown in SEQ ID NO: 2. Most preferably, it may be a gene encoding a protein which comprises an amino acid sequence in which 2 to 15 amino acids have been deleted, substituted, added or inserted and which forms the above-mentioned complex and exhibits transcription promoting activity.
  • the HAP4 gene is not limited to the gene containing the base sequence shown in SEQ ID NO: 1, but for all or a part of a continuous polynucleotide comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 1.
  • it may be a gene that encodes a protein that hybridizes under stringent conditions to form the complex and exhibits transcription promoting activity.
  • stringent conditions refer to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. For example, hybridization at 45 ° C.
  • Hybridization can be performed by a conventionally known method such as the method described in J. Sambrook et al. Molecular lonCloning, A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory (1989).
  • the amino acid sequence having a predetermined identity as described above, the amino acid sequence having an amino acid deletion, substitution or addition, etc., is a base sequence encoding a protein containing the amino acid sequence shown in SEQ ID NO: 2 (for example, And the polynucleotide having the base sequence shown in SEQ ID NO: 1 can be modified by a technique known in the art. Similarly, a polynucleotide that hybridizes under stringent conditions to all or a part of a polynucleotide consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 similarly to SEQ ID NO: The polynucleotide having the base sequence shown in 1 can be modified by a technique known in the art.
  • Mutation can be introduced into a nucleotide sequence by a known method such as Kunkel method or Gapped duplex method or a method according thereto, for example, a mutation introduction kit using site-directed mutagenesis (for example, Mutant- Mutations are introduced using K, Mutant-G (both trade names, manufactured by TAKARA Bio Inc.) or the like, or using LA PCR-in-vitro Mutagenesis series kits (trade name, manufactured by TAKARA Bio Inc.).
  • a mutation introduction kit using site-directed mutagenesis for example, Mutant- Mutations are introduced using K, Mutant-G (both trade names, manufactured by TAKARA Bio Inc.) or the like, or using LA PCR-in-vitro Mutagenesis series kits (trade name, manufactured by TAKARA Bio Inc.).
  • EMS ethyl methanesulfonic acid
  • 5-bromouracil 2-aminopurine
  • hydroxylamine N-methyl-N'-nitro-N nitrosoguanidine
  • other carcinogenic compounds are representative.
  • a method using a chemical mutagen such as that described above may be used, or a method using radiation treatment or ultraviolet treatment represented by X-rays, alpha rays, beta rays, gamma rays and ion beams may be used.
  • HAP4 gene can be isolated from Saccharomyces cerevisiae by a conventionally known technique and used.
  • a homologous gene of the HAP4 gene may be used in place of the above-described HAP4 gene.
  • HAP4 gene homologous genes include Kluyveromyces lactis-derived HAP4 homologous genes (see Bourgarel, D. et al., 1999. Mol. Microbiol. 31: 1205-1215) and Hansenula polymorpha-derived HAP4 homologous genes (Sybirna, K. et. al., 2005. Curr. Genet. 47: 172-181).
  • the base sequences of these HAP4 homologous genes and the amino acid sequences of HAP4 homologous proteins encoded by the genes can be obtained from known databases such as Genbank.
  • a method using a constitutive expression promoter can be mentioned. That is, a method of constructing an expression vector in which the HAP4 gene or a homologous gene thereof is arranged under the control of a constitutive expression promoter and transforming a host using the expression vector can be employed.
  • the constitutive expression promoter is a promoter having a function of expressing a downstream gene regardless of the growth conditions of the host cell.
  • the constitutive expression promoter can be used without particular limitation, but may be appropriately selected according to the type of host cell and the type of gene to be controlled.
  • constitutive expression promoters in Saccharomyces cerevisiae include ADH1 promoter, HIS3 promoter, TDH3 promoter, CYC3 promoter, CUP1 promoter and HOR7 promoter.
  • the expression vector containing the above-described constitutive expression promoter and the HAP4 gene or a homologous gene thereof is another sequence for preparing the expression of the HAP4 gene or the homologous gene when introduced into a host, specifically an operator. , Enhancer, silencer, ribosome binding sequence, terminator and the like.
  • the host for introducing the HAP4 gene or its homologous gene so as to constitutively express it is not particularly limited as long as it is a yeast.
  • yeasts that can be used as a host include Ascomycota ascomycete yeast, Basidiomycota basidiomycetous yeast, and incomplete fungal (Fungi Imperfecti) incomplete fungal yeast.
  • ascomycetous yeast particularly Saccharomyces cerevisiae, budding yeast, Candida utilis or Pichia pastris, Shizosaccharomyces pombe, etc. Used.
  • Kluyveromyces lactis and Hansenula polymorpha can be used as hosts.
  • alcohol productivity fell means that alcohol productivity fell significantly compared with wild type yeast.
  • alcohol productivity can be reduced by introducing a mutation into wild-type yeast so that the enzyme activity of an enzyme involved in alcohol synthesis is reduced.
  • enzymes involved in alcohol synthesis include pyruvate decarboxylase and alcohol dehydrogenase.
  • pyruvate decarboxylase and alcohol dehydrogenase examples include pyruvate decarboxylase and alcohol dehydrogenase.
  • alcohol productivity can be reduced by reducing one or both enzyme activities.
  • Examples of the gene encoding pyruvate decarboxylase derived from Saccharomyces cerevisiae include PDC1 gene, PDC5 gene and PDC6 gene.
  • Examples of the gene encoding alcohol dehydrogenase derived from Saccharomyces cerevisiae include the ADH1 gene.
  • Alcohol productivity can be reduced by deleting one or more of these genes.
  • the method for deleting the gene is not particularly limited, but includes a method for deleting the gene, a method for introducing a mutation into the gene to express an inactive enzyme, and an expression control region of the gene (for example, a promoter).
  • the method of deleting or mutating can be mentioned.
  • the gene deletion method includes a method of expressing siRNA (small interfering RNA), antisense RNA, and ribozyme for the gene in a host cell.
  • the mutant yeast according to the present invention is a foreign gene encoding an enzyme involved in the production of the target product, and can be used to produce the target product.
  • the target product is not particularly limited as long as it is a substance that can be biosynthesized in yeast.
  • Examples include acids, organic acids such as ascorbic acid and citric acid, and alcohols such as 1-propanol, 2-propanol, 1-butanol, isobutanol, 2-methyl-1-butanol and 3-methyl-1-butanol. .
  • examples of the foreign gene include a lactate dehydrogenase (LDH) gene involved in lactic acid synthesis.
  • LDH lactate dehydrogenase
  • the mutant yeast is imparted with lactic acid-producing ability.
  • LDH has various homologues depending on the type of organism or in vivo.
  • the LDH used in the present invention includes not only naturally derived LDH but also LDH synthesized chemically or genetically.
  • LDH is preferably derived from prokaryotes such as Lactobacillus helvetics, Lactobacillus casei, Klubermyces thermotolerance, Torlas pora del brucchi, Schizosaccharomyces pombe, Rhizopus oryzae and other eukaryotes such as mold More preferably, it is derived from higher eukaryotes such as plants, animals and insects. For example, it is preferable to use bovine-derived LDH (L-LDH). By introducing these genes into the yeast described above, the microorganism can be imparted with lactic acid-producing ability.
  • prokaryotes such as Lactobacillus helvetics, Lactobacillus casei, Klubermyces thermotolerance, Torlas pora del brucchi, Schizosaccharomyces pombe, Rhizopus oryzae and other eukaryotes such as mold More preferably, it is derived from higher eukaryotes
  • the above-described foreign gene may be introduced under the control of a constitutive expression promoter, or may be introduced under the control of an expression-inducible promoter.
  • the foreign gene described above need not be introduced under the control of a promoter containing a CCAAT consensus sequence that is recognized and bound by the Hap2p / 3p / 4p / 5p CCAAT-binding complex.
  • the HAP4 gene or a homologous gene thereof is constitutively expressed, so that the productivity of the target product is greatly improved.
  • constitutive expression of the HAP4 gene or its homologous gene improves the productivity of the target product without reducing the growth rate and fermentation rate. be able to.
  • the yield of the target product can be greatly improved, and the production cost of the target product can be significantly reduced.
  • Example 1 LDH gene transfer / PDC1 gene disruption DNA fragment preparation
  • LDH lactate dehydrogenase
  • PDC1 pyruvate synthase gene
  • a DNA fragment fused with PDC1 promoter, LDH gene and TDH3 terminator was amplified by PCR using plasmid pBTrp-PDC1-LDHKCB disclosed in JP-A-2003-259878 as a template.
  • TB215 (5′-GAAACAGCTATGACCATGATTACG-3 ′: SEQ ID NO: 3)
  • TB1497 5′-AAGCTCTTAAAACGGGAATTCCCCTAAGAAACCAT-3 ′: SEQ ID NO: 4
  • primers see FIG. 1.
  • the HIS3 gene was amplified using plasmid pRS403 (available from ATCC) as a template.
  • TB1421 (5′-ATGGTTTCTTAGGGGAATTCCCGTTTTAAGAGCTT-3 ′: SEQ ID NO: 5) and TB422 (5′-GACCAAGTTAGCTGGTCGAGTTCAAGAGAAAAAAAAAG-3 ′: SEQ ID NO: 6) were used as primers.
  • downstream DNA fragment of the PDC1 gene was amplified by PCR using the above pBTrp-PDC1-LDHKCB as a template.
  • TB1147 (5′-CCAGCTAACTTGGTCGACTTG-3 ′: SEQ ID NO: 7) and TB019 (5′-GCGCGTAATACGACTCACTAT-3 ′: SEQ ID NO: 8) were used as primers.
  • the obtained DNA fragment contains a region where the PDC1 promoter, LDH gene and TDH3 terminator are fused in this order, the LEU2 gene as a selection marker, and the downstream region of the PDC1 gene as a recombination region.
  • this DNA fragment is referred to as “LDH gene introduced / PDC1 gene disruption DNA fragment”.
  • DNA fragment for PDC5 gene disruption a DNA fragment for disrupting the PDC5 gene was prepared. Specifically, using the genomic DNA of Saccharomyces cerevisiae BY4742 (Invitrogen) as a template, the 5 ′ upstream untranslated region DNA fragment and the 3 ′ downstream untranslated region DNA fragment of the PDC5 gene were each amplified by PCR (see FIG. 2). ).
  • the PCR primers used were the former TB604 (5'-TTCGCATCTAAGGGGTGGTG-3 ': SEQ ID NO: 11) and TB607 (5'-GCGTGTACGCATGTAACTTTGTTCTTCTTGTTATT-3': SEQ ID NO: 12), and the latter TB599 (5'-CTAACATTCAACGCTAGACGGTTCTCTACAATTGA-3 ': SEQ ID NO: 13) and TB501 (5′-TAAGAAGGCATGTTGGCCTCTGT-3 ′: SEQ ID NO: 14).
  • the hygromycin resistance gene expression cassette was amplified by PCR using the plasmid pBHPH-PT disclosed in JP-A-2003-259878 as a template.
  • the PCR primers used were TB606 (5′-AATAACAAGAAGAACAAAGTTACATGCGTACACGC-3 ′: SEQ ID NO: 15) and TB598 (5′-TCAATTGTAGAGAACCGTCTAGCGTTGAATGTTAG-3 ′: SEQ ID NO: 16).
  • this DNA fragment is referred to as “PDC5 gene disruption DNA fragment”.
  • a DNA fragment was prepared in order to overexpress the HAP4 gene derived from Saccharomyces cerevisiae. Specifically, using the genomic DNA of Saccharomyces cerevisiae BY4742 as a template, a DNA fragment containing a part of the PDC6 gene and its 5 ′ upstream untranslated region, a DNA fragment containing the HAP4 gene and its terminator region, and a TDH2 promoter region The DNA fragment and the DNA fragment containing the 5 ′ upstream untranslated region of the CTT1 gene were amplified by PCR (see FIG. 3).
  • the PCR primers used were TB1021 (5'-CCTTGATGCGTGCGTAACC-3 ': SEQ ID NO: 19) and TB910 (5'-AAACGCGTGTACGCATGTAATCTCATAAACCTATGCACTG-3': SEQ ID NO: 20), TB911 (5'-TCATATTCGACGATGTCGTCCGAACTACAGTTATCGCCTC-3 ': SEQ ID NO: 21 ) And TB679 (5'-CACACAAACAAACAAAACAAAATGACCGCAAAGACTTTTCTAC-3 ': SEQ ID NO: 22), TB680 (5'-GTAGAAAAGTCTTTGCGGTCATTTTGTTTTGTTTGTTTGTGTGTG-3': SEQ ID NO: 23) and TB900 (5'-ATATATCTGCAGGGATCCCTTGAC899) '-TCAGAATACCCGTCAAGGGATCCCTGCAGATATAT-3': SEQ ID NO: 25) and TB349 (5'-CCATATTTTCG
  • the phleomycin expression cassette was amplified by PCR using the plasmid pBble-LDHKCB disclosed in JP-A-2003-259878 as a template.
  • the PCR primers used were TB909 (5′-CAGTGCATAGGTTTATGAGATTACATGCGTACACGCGTTT-3 ′: SEQ ID NO: 27) and TB912 (5′-GAGGCGATAACTGTAGTTCGGACGACATCGTCGAATATGA-3 ′: SEQ ID NO: 28).
  • a PCR product containing a part of the PDC6 gene amplified as described above and its 5 ′ upstream untranslated region and a phleomycin expression cassette as a template were combined by PCR according to the method of Shevchuk, NA, et al.
  • the PCR primers used were TB315 (5′-ACCAGCCCATCTCAATCCATCT-3 ′: SEQ ID NO: 29) and TB912.
  • the PCR product containing the HAP4 gene amplified as described above and its terminator region, the PCR product containing the TDH2 promoter region, and the PCR product containing the 5 'upstream untranslated region of the CTT1 gene were similarly combined by PCR. .
  • the PCR primers used were TB911 and TB316 (5′-AGCGTATGGGTGATGAGAGTAC-3 ′: SEQ ID NO: 30).
  • the two fragments combined as described above were further combined by PCR in the same manner using DNA as a template.
  • TB948 (5′-GTTGAAGTCGCCTGGTAGCC-3 ′: SEQ ID NO: 31) and TB734 (5′-TGTCCAGGCTACGTCGAATC-3 ′: SEQ ID NO: 32) were used as primers.
  • the finally obtained DNA fragment is referred to as “HAP4 gene overexpression DNA fragment”.
  • LDH gene transfer / PDC1 gene disruption strain production Using the Frozen-EZ Yeast Transformation II kit (ZYMO RESEARCH), the above-mentioned DNA fragment for LDH gene transfer / PDC1 gene disruption is introduced into BY4742 strain for criminal conversion. went. This transformation followed the protocol attached to the kit. After transformation, the cells were spread on a leucine selective medium (SD-Leu) plate and cultured at 30 ° C. for 3 days to select transformants. Genomic DNA was prepared from the transformant, and it was confirmed by PCR that the DNA fragment for LDH gene introduction / PDC1 gene disruption was integrated into the chromosome.
  • SD-Leu leucine selective medium
  • TB324 (5′-CTCATACATGTTTCATGAGGGT-3 ′: SEQ ID NO: 33) and TB304 (5′-ACACCCAATCTTTCACCCATCA-3 ′: SEQ ID NO: 34) are used as primers located outside the DNA fragment for LDH gene transfer / PDC1 gene disruption. It was used. As a result, the PDC1 gene in BY4742 strain was destroyed, and it was confirmed that the LDH gene was integrated into the chromosome. Hereinafter, this transformed yeast is referred to as “LDH gene introduced / PDC1 gene disrupted strain”.
  • LDH gene introduction / PDC1 and PDC5 gene disruption strain production Next, the LDH gene introduction / PDC1 gene disruption strain was transformed using the PDC5 gene disruption DNA fragment.
  • the transformation method is the same as described above. After transformation, the cells were plated on a plate of YPD medium containing 200 ⁇ g / ml hygromycin, cultured at 30 ° C. for 3 days, and transformants were selected. Genomic DNA was prepared from the transformant, and it was confirmed by PCR that the DNA fragment for PDC5 gene disruption was integrated into the chromosome.
  • TB077 (5′-GGAACCCATAGATGAAGAGG-3 ′: SEQ ID NO: 35) is used as a primer located outside the DNA fragment for PDC5 gene disruption
  • TB434 (5′-ATCCGCTCTAACCGAAAAGG-) is used as a primer located inside the DNA fragment for PDC5 gene disruption.
  • HAP4 gene-introduced strain Next, the above-mentioned DNA fragment for HAP4 gene overexpression was transformed into the LDH gene-introduced / PDC1 gene-disrupted strain and the LDH gene-introduced / PDC1 and PDC5 gene-disrupted strain.
  • the transformation method is the same as described above. After transformation, the cells were spread on a plate of YPD medium containing 100 ⁇ g / ml phleomycin and cultured at 30 ° C. for 3-5 days to select transformants. Genomic DNA was prepared from the transformant, and it was confirmed by PCR that the DNA fragment for HAP4 gene overexpression was integrated into the chromosome.
  • This PCR uses TB315, a primer located outside the HAP4 gene overexpression DNA fragment, and TB1020 (5'-TCCTGCGCCTGATACAGAAC-3 ': SEQ ID NO: 37) located inside the HAP4 gene overexpression DNA fragment. did. As a result, it was confirmed that the DNA fragment for overexpression of the HAP4 gene was introduced into the chromosomes of the LDH gene introduced / PDC1 gene disrupted strain and the LDH gene introduced / PDC1 and PDC5 gene disrupted strain.
  • test strain was inoculated at the same concentration of 0.01% under the same conditions, and sampling was performed approximately every 2 hours after the start of growth to measure the bacterial cell concentration.
  • the specific growth rate was confirmed to be in the logarithmic growth phase for 2 to 10 hours from the start of growth, and calculated according to the following formula.
  • Fermentation test 1 LDH gene-introduced / PDC1 gene-disrupted strains prepared in the manner described above (HAP4 non-introduced strain in this section) and LDH gene-introduced / PDC1 gene-disrupted strains into which HAP4 gene overexpression DNA fragments have been introduced (in this section, HAP4-introduced strains)
  • HAP4-introduced strains A fermentation test was conducted. Specifically, the test strain was inoculated into a YPD medium (yeast extract 1%, peptone 2% and glucose 2%) and cultured at 30 ° C. for 24 hours. After completion of the culture, the cells were collected by centrifugation (2000 g, 3 minutes).
  • lactic acid yield was calculated by the following formula.
  • Lactic acid yield (%) Lactic acid maximum concentration (%) / Preparation sugar concentration (%)
  • FIG. 4 The results of the fermentation test are shown in FIG. As can be seen from FIG. 4, in the HAP4-introduced strain, the lactic acid yield was improved from 62% to 70% and the maximum ethanol concentration was decreased from 2.2% to 1.4%, compared with the non-HAP4-introduced strain. In addition, the fermentation rate was comparable.
  • Fermentation test 2 LDH gene-introduced / PDC1 and PDC5 gene-disrupted strains (in this section, HAP4-non-introduced strains) and LDH gene-introduced / HAP4 gene overexpression DNA fragments / PDC1 and PDC5 gene-disrupted strains (in this section)
  • a fermentation test was conducted on HAP4-introduced strains. This fermentation test was performed in the same manner as in the fermentation test 1 except that a YPE medium (1% yeast extract, 2% peptone, and 1% ethanol) was used instead of the YPD medium.
  • yeast that constitutively expressed the HAP4 gene the ability to produce lactic acid by the LDH gene introduced as a foreign gene was greatly improved.
  • yeast that constitutively expresses the HAP4 gene and has a lower alcohol productivity has a higher ability to produce lactic acid by the LDH gene introduced as a foreign gene. It became clear that it improved more greatly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 酵母を用いて目的生産物を生産するに際して、目的生産物の生産性を大幅に向上させるとともに優れた生育速度及び発酵速度を維持する。  宿となる酵母に対して、目的生産物の生産に関与する酵素をコードする外来遺伝子と、構成的に発現可能なHAP4遺伝子又はその相同遺伝子とを導入する。変異体酵母は、野性型と比較してアルコール生産性が低下した変異株であることが好ましい。

Description

変異体酵母及びこれを用いた物質生産方法
 本発明は、野性型酵母に対して所定の遺伝子を構成的に発現させるように改変した変異体酵母及びこれを用いた物質生産方法に関する。
 酵母(Saccharomyces cerevisiae)等を用いて目的生産物を生産する場合、当該目的生産物の生合成に関与する遺伝子を構成的に発現できるように導入した変異体酵母を作製し、適切な培養条件にて変異体酵母を培養し、目的生産物を菌体内或いは菌体外から回収する。また、エタノール以外の物質を目的生産物とする場合、大量に生産されるエタノールを減らすことが好ましい。これまでに、エタノール生産能を低減するため、エタノールの生産経路にあるピルビン酸脱炭酸酵素やアルコール脱水素酵素などの遺伝子破壊株が作製された。しかしながら、特にSaccharomyces cerevisiaeのようなクラブトリー効果のある菌においては、エタノール生産量は低減するものの、増殖や発酵能力が大幅に低下し、実用性が低いといった問題があった。(非特許文献1:Ishida, N. et al. (2006) Biosci. Biotechnol. Biochem. 70, p1148-1153、非特許文献2:Flikweert, M.T. et al. (1996) Yeast 12, p247-257、非特許文献3:Eri, A. et al. (1998) J. Ferment. Bioeng. 86, p284-289、特許文献1:特表2003-500062号公報、特許文献2:特表2001-516584号公報、非特許文献4:Skory, C.D. (2003) J. Ind. Microbiol. Biotechnol 30, p22-27)。また、非特許文献1、非特許文献3及び非特許文献4によれば、エタノールの生産経路の遺伝子を破壊することで大幅にエタノールを低減することはできても、必ずしも低減分の大部分が目的生産物にはなるわけではない。
 一方、エタノールの生産経路の遮断は一部に留め、目的生産物の代謝経路を増強することで、目的生産物収率を向上させる報告もあるが(非特許文献5:Saitoh, S (2005) Appl. Environ. Microbiol. 71, p2789-2792)、目的の生産物の収率は向上するものの、エタノール低減は不十分で、発酵速度もやや低下するといった問題がある。
特表2003-500062号公報 特表2001-516584号公報 Ishida, N. et al. (2006) Biosci. Biotechnol. Biochem. 70, p1148-1153 Flikweert, M.T. et al. (1996) Yeast 12, p247-257 Eri, A. et al. (1998) J. Ferment. Bioeng. 86, p284-289 Skory, C.D. (2003) J. Ind. Microbiol. Biotechnol 30, p22-27 Saitoh, S (2005) Appl. Environ. Microbiol. 71, p2789-2792
 そこで、本発明は、上述したような実情に鑑み、酵母を用いて目的生産物を生産するに際して、目的生産物の生産性を大幅に向上させるとともに優れた生育速度及び発酵速度を維持することができる変異体酵母及びこれを用いた物質生産方法を提供することを目的とする。
 上述した目的を達成するため、本発明者らが鋭意検討した結果、目的生産物の生産に関与する遺伝子を導入するとともに、HAP4遺伝子を構成的に発現させることで、生育速度及び発酵速度を維持しつつ当該目的生産物の生産性が大幅に向上することを見いだし、本発明を完成するにいたった。
 本発明は以下を包含する。
 (1)目的生産物の生産に関与する酵素をコードする外来遺伝子と、構成的に発現可能なHAP4遺伝子又はその相同遺伝子とを導入した変異体酵母。
 上記(1)の変異体酵母としては、野性型と比較してアルコール生産性が低下した変異株であることが好ましい。例えば、アルコール合成に関与する酵素の酵素活性を低下させることでアルコール生産性を低下させることができる。ここで、アルコール合成に関与する酵素としては、ピルビン酸脱炭酸酵素及び/又はアルコール脱水素酵素を挙げることができる。上記ピルビン酸脱炭酸酵素としては、PDC1遺伝子、PDC5遺伝子及びPDC6遺伝子からなる群から選ばれる少なくとも1の遺伝子によりコードされる酵素を挙げることができる。上記アルコール脱水素酵素としては、ADH1遺伝子によりコードされる酵素を挙げることができる。また、上記(1)の変異体酵母としては、Saccharomyces属に属する酵母、特にSaccharomyces cerevisiaeの菌株に属する酵母を使用することが好ましい。また、上記外来遺伝子は、乳酸脱水素酵素活性を有するタンパク質をコードする遺伝子を挙げることができる。
 (2)上述した本発明に係る変異体酵母を培養し、目的生産物を菌体内外に生成する工程と、上記目的生産物を回収する工程とを含む、酵母を用いた物質生産方法。
 上記(2)の物質生産方法において、目的生産物としては有機酸とすることができる。また、特に目的生産物としては乳酸とすることが好ましい。なお、目的生産物としてはエタノール以外のアルコールとすることもできる。
 本発明によれば、優れた生育速度及び発酵速度を維持しながらも、目的生産物の生産性に優れた変異体酵母を提供することができる、本発明に係る変異体酵母を用いることによって、目的生産物を低コストに生産することができる。
 本明細書は本願の優先権の基礎である日本国特許出願2008-113053号の明細書および/または図面に記載される内容を包含する。
LDH遺伝子導入/PDC1遺伝子破壊用DNA断片を構築するフローを示す模式図である。 PDC5遺伝子破壊用DNA断片を構築するフローを示す模式図である。 HAP4遺伝子過剰発現用DNA断片を構築するフローを示す模式図である。 LDH遺伝子導入/PDC1遺伝子破壊株に対するHAP4導入株及びHAP4非導入株について発酵試験の結果を示す特性図である。 LDH遺伝子導入/PDC1及びPDC5遺伝子破壊株に対するHAP4導入株及びHAP4非導入株について発酵試験の結果を示す特性図である。
 以下、本発明を詳細に説明する。
 本発明に係る変異体酵母は、目的生産物の生産に関与する酵素をコードする外来遺伝子と、構成的に発現可能なHAP4遺伝子又はその相同遺伝子とを導入したものである。ここで、HAP4遺伝子とは、ヘミ活性化、グルコース抑制されるHap2p/3p/4p/5p CCAAT-結合性複合体のサブユニットを構成するHAP4タンパク質をコードしている。当該複合体は、種々の遺伝子の転写促進活性を有していることが知られている。特に、HAP4タンパク質及び上記複合体については、Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62(2), p334-61に詳述されている。
 HAP4遺伝子におけるコーディング領域の塩基配列及びHAP4タンパク質のアミノ酸配列を、それぞれ配列番号1及び2に示す。なお、構成的に発現するように導入するHAP4遺伝子としては、配列番号2に示したアミノ酸配列を含むタンパク質に限定されず、配列番号2に示したアミノ酸配列に対して、例えば70%以上、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上、最も好ましくは97%以上の同一性を有するアミノ酸配列を含み、上記複合体を形成して転写促進活性を示すタンパク質をコードする遺伝子であってもよい。ここで、同一性とは、blastアルゴリズムを実装したコンピュータプログラム及び遺伝子配列情報を格納したデータベースを用いてデフォルトの設定で求められる値を意味する。
 また、HAP4遺伝子としては、配列番号2に示したアミノ酸配列において1又は複数個(例えば2~60個、好ましくは2~50個、より好ましくは2~40個、さらに好ましくは2~30個、最も好ましくは、2~15個)のアミノ酸が欠失、置換、付加又は挿入されたアミノ酸配列を含み、上記複合体を形成して転写促進活性を示すタンパク質をコードする遺伝子であってもよい。
 さらに、HAP4遺伝子としては、配列番号1に示した塩基配列を含む遺伝子に限定されず、配列番号1に示した塩基配列に対する相補的な塩基配列からなるポリヌクレオチドの全部又は連続する一部に対して、ストリンジェントな条件下でハイブリダイズし、上記複合体を形成して転写促進活性を示すタンパク質をコードする遺伝子であってもよい。ここで、ストリンジェントな条件下とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。例えば、45℃、6×SSC(塩化ナトリウム/クエン酸ナトリウム)でのハイブリダイゼーション、その後の50~65℃、0.2~1×SSC、0.1%SDSでの洗浄が挙げられ、或いはそのような条件として、65~70℃、1×SSCでのハイブリダイゼーション、その後の65~70℃、0.3×SSCでの洗浄を挙げることができる。ハイブリダイゼーションは、J. Sambrook et al. Molecular Cloning, A Laboratory Manual,2nd Ed., Cold Spring Harbor Laboratory(1989)に記載されている方法等、従来公知の方法で行うことができる。
 なお、上述したような、所定の同一性を有するアミノ酸配列や、アミノ酸の欠失、置換若しくは付加を有するアミノ酸配列等は、配列番号2に示したアミノ酸配列を含むタンパク質をコードする塩基配列(例えば、配列番号1に示す塩基配列)を有するポリヌクレオチドを、当該技術分野で公知の手法によって改変することによって行うことができる。また、配列番号1に示した塩基配列に対する相補的な塩基配列からなるポリヌクレオチドの全部又は連続する一部に対して、ストリンジェントな条件下でハイブリダイズするポリヌクレオチドについても、同様に、配列番号1に示す塩基配列を有するポリヌクレオチドを、当該技術分野で公知の手法によって改変することによって行うことができる。塩基配列に変異を導入するには、Kunkel法またはGapped duplex法等の公知手法又はこれに準ずる方法により行うことができ、例えば部位特異的突然変異誘発法を利用した変異導入用キット(例えばMutant-KやMutant-G(何れも商品名、TAKARA Bio社製))等を用いて、あるいはLA PCR in vitro Mutagenesisシリーズキット(商品名、TAKARA Bio社製)を用いて変異が導入される。また、変異導入方法としては、EMS(エチルメタンスルホン酸)、5-ブロモウラシル、2-アミノプリン、ヒドロキシルアミン、N-メチル-N’-ニトロ-Nニトロソグアニジン、その他の発ガン性化合物に代表されるような化学的変異剤を使用する方法でも良いし、X線、アルファ線、ベータ線、ガンマ線、イオンビームに代表されるような放射線処理や紫外線処理による方法でも良い。
 また、あるタンパク質が、上記複合体を形成して転写促進活性を有するか否かは、例えば、David S. McNabbら、Eukaryotic Cell, November 2005, p. 1829-1839, Vol. 4, No. 11に開示された実験系を利用して確認することができる。すなわち、この文献には、Hap2p/Hap3p/Hap5pヘテロトリマーを構築した後にHap4タンパク質を作用させることで、上記複合体を形成するとともに上記転写促進活性を示すことが記載されている。よって、当該文献に記載された実験系を利用して、あるタンパク質がHAP4タンパク質と同等の機能を有するか否かを容易に検討することができる。
 ところで、上述したHAP4遺伝子は、従来公知の手法によりSaccharomyces cerevisiaeから単離して使用することができる。なお、本発明においては、上述したHAP4遺伝子の代わりにHAP4遺伝子の相同遺伝子を使用しても良い。HAP4遺伝子の相同遺伝子としては、Kluyveromyces lactis由来のHAP4相同遺伝子(Bourgarel, D. et al., 1999. Mol. Microbiol. 31:1205-1215参照)及びHansenula polymorpha由来のHAP4相同遺伝子(Sybirna, K. et al., 2005. Curr. Genet. 47:172-181参照)を挙げることができる。これらHAP4相同遺伝子の塩基配列及び当該遺伝子によりコードされるHAP4相同タンパク質のアミノ酸配列は、Genbank等の公知のデータベースより入手することができる。
 以上で説明したHAP4遺伝子又はその相同遺伝子を、宿主内で構成的に発現させるには、例えば、構成的発現プロモーターを利用する方法が挙げられる。すなわち、構成的発現プロモーターの制御下にHAP4遺伝子又はその相同遺伝子を配置した発現ベクターを構築し、当該発現ベクターを用いて宿主を形質転換する方法を採用することができる。ここで構成的発現プロモーターとは、宿主細胞の生育条件とは無関係に下流の遺伝子を発現させる機能を有するプロモーターである。構成的発現プロモーターは、特に限定しないで使用できるが、宿主細胞の種類に応じてまた制御する遺伝子の種類等に応じて適宜選択すればよい。例えば、サッカロマイセス・セレビシエにおける構成的発現プロモーターとしては、ADH1プロモーター、HIS3プロモーター、TDH3プロモーター、CYC3プロモーター、CUP1プロモーター及びHOR7プロモーター等が挙げられる。
 なお、上述した構成的発現プロモーターとHAP4遺伝子又はその相同遺伝子とを含む発現ベクターは、宿主に導入された際にHAP4遺伝子又はその相同遺伝子の発現を調製するその他の配列、具体的には、オペレーター、エンハンサー、サイレンサー、リボソーム結合配列、ターミネーター等を有していてもよい。
 ここで、HAP4遺伝子又はその相同遺伝子を構成的に発現するように導入するための宿主としては、酵母であれば特に限定されない。宿主として使用可能な酵母としては、例えば、子嚢菌類(Ascomycota)の子嚢菌酵母、担子菌類(Basidiomycota)の担子菌酵母、又は不完全菌類(Fungi Imperfecti)の不完全菌酵母を挙げることができる。好ましくは、子嚢菌酵母、特に出芽酵母であるサッカロマイセス・セレビシアエ、キャンディダ・ユーティリス(Candida utilis)又はピキア・パストリス(Pichia pastris)等、分裂酵母であるシゾサッカロマイセス・ポンベ(Shizosaccharomyces pombe)等が用いられる。また、宿主としては、Kluyveromyces lactis及びHansenula polymorphaを使用することができる。
 また、特に、宿主として使用する酵母は、アルコール生産性が低下した変異株を使用することが好ましい。ここで、アルコール生産性が低下したとは、野性型酵母と比較して、アルコール生産性が有意に低下したことを意味する。例えば、アルコール合成に関与する酵素の酵素活性が低下するように変異を野性型酵母に対して導入することによって、アルコール生産性を低下させることができる。アルコール合成に関与する酵素としては、ピルビン酸脱炭酸酵素及びアルコール脱水素酵素を挙げることができる。これらピルビン酸脱炭酸酵素及びアルコール脱水素酵素のうち、一方又は両方の酵素活性を低下させることでアルコール生産性を低下させることができる。サッカロマイセス・セレビシアエ由来のピルビン酸脱炭酸酵素をコードする遺伝子としては、PDC1遺伝子、PDC5遺伝子及びPDC6遺伝子を挙げることができる。サッカロマイセス・セレビシアエ由来のアルコール脱水素酵素をコードする遺伝子としては、ADH1遺伝子を挙げることができる。
 これら遺伝子のうち1又は複数の遺伝子を欠損させることによって、アルコール生産性を低下させることができる。なお、遺伝子の欠損方法としては、特に限定されないが、当該遺伝子を欠失させる方法、当該遺伝子に変異を導入して不活性型の酵素を発現させる方法、当該遺伝子の発現調節領域(例えばプロモーター)を欠失又は変異させる方法を挙げることができる。また、遺伝子の欠損方法には、当該遺伝子に対するsiRNA (small interfering RNA)、アンチセンスRNA、リボザイムを宿主細胞内において発現させる方法も含まれる。
 また、本発明に係る変異体酵母は、目的生産物の生産に関与する酵素をコードする外来遺伝子しており、当該目的生産物を生産するために使用することができる。目的生産物としては、酵母で生合成できる物質であれば特に限定されないが、例えば乳酸、アクリル酸、酢酸、ピルビン酸、3-ヒドロキシプロピオン酸、フマル酸、コハク酸、イタコン酸、レブリン酸、アジピン酸、アスコルビン酸及びクエン酸等の有機酸並びに1-プロパノール、2-プロパノール、1-ブタノール、イソブタノール、2-メチル-1-ブタノール及び3-メチル-1-ブタノール等のアルコールを挙げることができる。
 なかでも、乳酸を目的生産物とする場合、外来遺伝子としては、乳酸の合成に関与する乳酸脱水素酵素(LDH)遺伝子を挙げることができる。換言すれば、外来遺伝子としてLDH遺伝子を導入することによって、変異体酵母には乳酸生産能が付与されることとなる。LDHとしては、生物の種類に応じてあるいは生体内において各種同族体が存在する。本発明において使用するLDHとしては天然由来のLDHの他、化学合成的あるいは遺伝子工学的に人工的に合成されたLDHも包含している。LDHとしては、好ましくは、ラクトバチルス・ヘルベティクス、ラクトバチルス・カゼイ、クルベルマイセス・サーモトレランス、トルラスポラ・デルブルッキ、シゾサッカロマイセス・ポンベ、リゾプス・オリゼなどの原核生物もしくはカビなどの真核生物由来であり,より好ましくは、植物、動物、昆虫などの高等真核生物由来である。例えば、ウシ由来のLDH(L-LDH)を使用することが好ましい。これら遺伝子を、上述した酵母に導入することによって、当該微生物に乳酸生成能を付与することができる。
 また、上述した外来遺伝子は、構成的発現プロモーターの制御下に導入されても良いし、発現誘導型プロモーターの制御下に導入されても良い。なお、上述した外来遺伝子は、Hap2p/3p/4p/5p CCAAT-結合性複合体が認識して結合するCCAATコンセンサス配列を含むプロモーターの制御下に導入される必要はない。
 本発明に係る変異体酵母によれば、HAP4遺伝子又はその相同遺伝子を構成的に発現するため、目的生産物の生産性が大幅に向上することとなる。特に、アルコール生産性が低減した変異体酵母においては、HAP4遺伝子又はその相同遺伝子を構成的に発現させることで生育速度及び発酵速度の低下を来すことなく、目的生産物の生産性を向上させることができる。このように、本発明に係る変異体酵母を利用することで、目的生産物の収率を大幅に向上させることができ、目的生産物の生産コストを著しく削減することができる。
 以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲は以下の実施例に限定されるものではない。
〔実施例1〕
LDH遺伝子導入/PDC1遺伝子破壊用DNA断片の作製
 先ず、宿主となる酵母に対して外来遺伝子として乳酸脱水素酵素(LDH)遺伝子を導入するとともに、アルコール合成に関与するピルビン酸合成酵素遺伝子(PDC1遺伝子)を破壊するためのDNA断片を作製した。
 具体的には、特開2003-259878号公報に開示されたプラスミドpBTrp-PDC1-LDHKCBを鋳型として、PDC1プロモーター、LDH遺伝子及びTDH3ターミネーターが融合したDNA断片をPCRで増幅した。このPCRではプライマーとしてTB215(5'-GAAACAGCTATGACCATGATTACG-3':配列番号3)とTB1497(5'-AAGCTCTTAAAACGGGAATTCCCCTAAGAAACCAT-3':配列番号4)を使用した(図1参照)。
 一方、プラスミドpRS403(ATCCから入手可能)を鋳型として、HIS3遺伝子を増幅した。このPCRではプライマーとしてTB1421(5'-ATGGTTTCTTAGGGGAATTCCCGTTTTAAGAGCTT-3':配列番号5)とTB422(5'-GACCAAGTTAGCTGGTCGAGTTCAAGAGAAAAAAAAAG-3':配列番号6)を使用した。
 また、上記pBTrp-PDC1-LDHKCBを鋳型として、PDC1遺伝子の下流領域DNA断片をPCRで増幅した。このPCRではプライマーとして、TB1147(5'-CCAGCTAACTTGGTCGACTTG-3':配列番号7)とTB019(5'-GCGCGTAATACGACTCACTAT-3':配列番号8)を使用した。
 以上のように増幅した3種類のPCR産物を鋳型として、Shevchuk, N.A.らの方法(Shevchuk, N. A. et al.(2004)Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously. Nucleic Acids Research 32(2) e19)により、3種類のPCR産物を結合した。このPCRではプライマーとしてTB151(5'-CCTATCTCTAAACTTCAACACC-3':配列番号9)とTB152(5'-TCAGCAATAGTGGTCAACAACT-3':配列番号10)を使用した。なお、得られたDNA断片は、PDC1プロモーター、LDH遺伝子及びTDH3ターミネーターがこの順で融合した領域と、選択マーカーとしてのLEU2遺伝子と、組み換え用領域としてのPDC1遺伝子の下流領域とが含まれている。以下、このDNA断片を「LDH遺伝子導入/PDC1遺伝子破壊用DNA断片」と称する。
PDC5遺伝子破壊用DNA断片の作製
 また、本実施例では、PDC5遺伝子を破壊するためのDNA断片を作製した。具体的には、Saccharomyces cerevisiae BY4742株(Invitrogen社)のゲノムDNAを鋳型として、PDC5遺伝子の5'上流非翻訳領域DNA断片と3'下流非翻訳領域DNA断片をそれぞれPCRで増幅した(図2参照)。使用したPCR用プライマーは前者がTB604(5'-TTCGCATCTAAGGGGTGGTG-3':配列番号11)とTB607(5'-GCGTGTACGCATGTAACTTTGTTCTTCTTGTTATT-3':配列番号12)、後者がTB599(5'-CTAACATTCAACGCTAGACGGTTCTCTACAATTGA-3':配列番号13)とTB501(5'-TAAGAAGGCATGTTGGCCTCTGT-3':配列番号14)である。
 また、特開2003-259878号公報で開示されたプラスミドpBHPH-PTを鋳型として、ハイグロマイシン耐性遺伝子の発現カセットをPCRで増幅した。使用したPCR用プライマーはTB606(5'-AATAACAAGAAGAACAAAGTTACATGCGTACACGC-3':配列番号15)とTB598(5'-TCAATTGTAGAGAACCGTCTAGCGTTGAATGTTAG-3':配列番号16)である。
 以上のように増幅した3種類のPCR産物を鋳型として、上述したShevchuk, N.A.らの方法により、3種類のPCR産物を結合した。このPCRではプライマーとしてTB070(5'-GGAGACCCACTGTACAAC-3':配列番号17)とTB210(5'-GCAGCTGAAAGATAATAAGGTATG-3':配列番号18)を使用した。以下、このDNA断片を「PDC5遺伝子破壊用DNA断片」と称する。
HAP4遺伝子過剰発現用DNA断片の作製
 また、本実施例では、Saccharomyces cerevisiae由来のHAP4遺伝子を過剰発現させるためDNA断片を作製した。具体的には、Saccharomyces cerevisiae BY4742株のゲノムDNAを鋳型として、PDC6遺伝子の一部とその5'上流非翻訳領域を含むDNA断片、HAP4遺伝子とそのターミネーター領域を含むDNA断片、TDH2プロモーター領域を含むDNA断片、CTT1遺伝子の5'上流非翻訳領域を含むDNA断片をPCRで増幅した(図3参照)。使用したPCR用プライマーはそれぞれTB1021(5'-CCTTGATGCGTGCGTAACC-3':配列番号19)とTB910(5'-AAACGCGTGTACGCATGTAATCTCATAAACCTATGCACTG-3':配列番号20)、TB911(5'-TCATATTCGACGATGTCGTCCGAACTACAGTTATCGCCTC-3':配列番号21)とTB679(5'-CACACAAACAAACAAAACAAAATGACCGCAAAGACTTTTCTAC-3':配列番号22)、TB680(5'-GTAGAAAAGTCTTTGCGGTCATTTTGTTTTGTTTGTTTGTGTG-3':配列番号23)とTB900(5'-ATATATCTGCAGGGATCCCTTGACGGGTATTCTGA-3':配列番号24)、TB899(5'-TCAGAATACCCGTCAAGGGATCCCTGCAGATATAT-3':配列番号25)とTB349(5'-CCATATTTTCGTTAGGTCATTT-3':配列番号26)である。
 また、特開2003-259878号公報で開示されたプラスミドpBble-LDHKCBを鋳型として、フレオマイシン発現カセットをPCRで増幅した。使用したPCR用プライマーはTB909(5'-CAGTGCATAGGTTTATGAGATTACATGCGTACACGCGTTT-3':配列番号27)とTB912(5'-GAGGCGATAACTGTAGTTCGGACGACATCGTCGAATATGA-3':配列番号28)である。
 以上のように増幅したPDC6遺伝子の一部とその5'上流非翻訳領域を含むPCR産物、フレオマイシン発現カセットを鋳型として、上述したShevchuk, N.A.らの方法により、PCRで結合した。使用したPCR用プライマーはTB315(5'-ACCAGCCCATCTCAATCCATCT-3':配列番号29)とTB912である。また、以上のように増幅したHAP4遺伝子とそのターミネーター領域を含むPCR産物、TDH2プロモーター領域を含むPCR産物及びCTT1遺伝子の5'上流非翻訳領域を含むPCR産物を鋳型として、同様にPCRで結合した。使用したPCR用プライマーはTB911とTB316(5'-AGCGTATGGGTGATGAGAGTAC-3':配列番号30)である。
 そして、上述のように結合した2つの断片をさらにDNAを鋳型として、同様にPCRで結合した。このPCRではプライマーとしてTB948(5'-GTTGAAGTCGCCTGGTAGCC-3':配列番号31)とTB734(5'-TGTCCAGGCTACGTCGAATC-3':配列番号32)を使用した。最終的に得られたDNA断片を「HAP4遺伝子過剰発現用DNA断片」と称する。
LDH遺伝子導入/PDC1遺伝子破壊株の作製
 Frozen-EZ Yeast Transformation IIキット(ZYMO RESEARCH社製)を用いて、上述したLDH遺伝子導入/PDC1遺伝子破壊用DNA断片をBY4742株に導入して刑資転換を行った。この形質転換はキット添付のプロトコールに従った。形質転換後、ロイシン選択培地(SD-Leu)のプレートにまいて、30℃で3日間培養し、形質転換体を選抜した。形質転換体よりゲノムDNAを調製し、PCR法によって、LDH遺伝子導入/PDC1遺伝子破壊用DNA断片が染色体に組み込まれていることを確認した。このPCRではLDH遺伝子導入/PDC1遺伝子破壊用DNA断片の外側に位置するプライマーとして、TB324(5'-CTCATACATGTTTCATGAGGGT-3':配列番号33)とTB304(5'-ACACCCAATCTTTCACCCATCA-3':配列番号34)を使用した。その結果、BY4742株におけるPDC1遺伝子を破壊して、LDH遺伝子が染色体に組込まれていることを確認した。以下、この形質転換酵母を「LDH遺伝子導入/PDC1遺伝子破壊株」と称する。
LDH遺伝子導入/PDC1及びPDC5遺伝子破壊株の作製
 次に、PDC5遺伝子破壊用DNA断片を用いて、LDH遺伝子導入/PDC1遺伝子破壊株を形質転換した。なお、形質転換方法は上記と同様である。形質転換後、200μg/mlのハイグロマイシンを含むYPD培地のプレートにまいて、30℃で3日間培養し、形質転換体を選抜した。形質転換体よりゲノムDNAを調製し、PCR法によりPDC5遺伝子破壊用DNA断片が染色体に組み込まれていることを確認した。このPCRではPDC5遺伝子破壊用DNA断片の外側に位置するプライマーとしてTB077(5'-GGAACCCATAGATGAAGAGG-3':配列番号35)とPDC5遺伝子破壊用DNA断片内部に位置するプライマーとしてTB434(5'-ATCCGCTCTAACCGAAAAGG-3':配列番号36)を使用した。その結果、LDH遺伝子導入/PDC1遺伝子破壊株におけるPDC5遺伝子が破壊されていることを確認した。以下、この形質転換酵母を「LDH遺伝子導入/PDC1及びPDC5遺伝子破壊株」と称する。
HAP4遺伝子導入株の作製
 次に、上述したHAP4遺伝子過剰発現用DNA断片を用いて、上記LDH遺伝子導入/PDC1遺伝子破壊株及びLDH遺伝子導入/PDC1及びPDC5遺伝子破壊株を形質転換した。なお、形質転換方法は上記と同様である。形質転換後、100μg/mlのフレオマイシンを含むYPD培地のプレートにまいて、30℃で3-5日間培養し、形質転換体を選抜した。形質転換体よりゲノムDNAを調製し、PCR法によりHAP4遺伝子過剰発現用DNA断片が染色体に組み込まれていることを確認した。このPCRではHAP4遺伝子過剰発現用DNA断片の外側に位置するプライマーであるTB315とHAP4遺伝子過剰発現用DNA断片内部に位置するプライマーであるTB1020(5'-TCCTGCGCCTGATACAGAAC-3':配列番号37)を使用した。その結果、LDH遺伝子導入/PDC1遺伝子破壊株及びLDH遺伝子導入/PDC1及びPDC5遺伝子破壊株の染色体中にHAP4遺伝子過剰発現用DNA断片が導入されていることを確認した。
増殖試験
 上述したように作製したLDH遺伝子導入/PDC1遺伝子破壊株(本項ではHAP4非導入株)及びHAP4遺伝子過剰発現用DNA断片を導入したLDH遺伝子導入/PDC1遺伝子破壊株(本項ではHAP4導入株)について比増殖速度を算出した。具体的には、YPD(イーストエキストラクト 1%、ペプトン 2%及びグルコース2%)液体培地を100ml分注した500ml容バッフル付きフラスコに供試株を植菌し、30℃、120rpm(振幅35mm)で15~20時間振盪培養後、菌体濃度0.7~1.0%の状態で集菌した。再度、同条件にて供試株を菌体濃度0.01%の濃度で植菌し、増殖開始後約2時間毎にサンプリングを行い、菌体濃度を測定した。比増殖速度は増殖開始2~10時間の間、対数増殖期であることを確認し、下記式に従って算出した。
Figure JPOXMLDOC01-appb-M000001
 増殖試験の結果を表1に示す。表1に示すように、HAP4導入株は、HAP4非導入株と比較して、ほぼ同等の増殖速度であった。
Figure JPOXMLDOC01-appb-T000002
発酵試験1
 上述したように作製したLDH遺伝子導入/PDC1遺伝子破壊株(本項ではHAP4非導入株)及びHAP4遺伝子過剰発現用DNA断片を導入したLDH遺伝子導入/PDC1遺伝子破壊株(本項ではHAP4導入株)について発酵試験を行った。具体的には、供試株をYPD培地(イーストエキストラクト 1%、ペプトン 2%及びグルコース2%)に植菌し、30℃で24時間培養を行った。培養終了後、遠心分離(2000g、3分)により菌体を回収した。
 次に、発酵培地(グルコース11%、イーストエキス1%及び炭酸カルシウム4%)25mlを50ml容のフラスコに入れ、菌体濃度が0.5%になるように接種し、80rpm/分(震とう幅40mm)で34℃2~3日間発酵を行った。発酵終了後、乳酸とエタノールの生産量を検討した。なお、乳酸収率は下記式で計算した。
   乳酸収率(%)=乳酸最高濃度(%)/仕込み糖濃度(%)
 発酵試験の結果を図4に示した。図4から判るように、HAP4導入株は、HAP4非導入株と比較して、乳酸収率が62%から70%に向上し、エタノール最高濃度が2.2%から1.4%に低下した。なお、発酵速度は同程度であった。
 この結果から、HAP4遺伝子を構成的に発現した酵母においては、外来遺伝子として導入したLDH遺伝子による乳酸生産能が大幅に向上することが明らかとなった。
発酵試験2
 上述したように作製したLDH遺伝子導入/PDC1及びPDC5遺伝子破壊株(本項ではHAP4非導入株)及びHAP4遺伝子過剰発現用DNA断片を導入したLDH遺伝子導入/PDC1及びPDC5遺伝子破壊株(本項ではHAP4導入株)について発酵試験を行った。本発酵試験では、YPD培地に代えてYPE培地(イーストエキストラクト 1%、ペプトン 2%及びエタノール1%)を使用した以外は、上記発酵試験1と同様にして行った。
 発酵試験の結果を図5に示した。図5から判るように、HAP4導入株は、HAP4非導入株と比較して、乳酸収率が77%から90%に向上し、エタノール最高濃度が0.09%から0.03%に低下した。なお、発酵速度は同程度であった。
 この結果から、HAP4遺伝子を構成的に発現した酵母においては、外来遺伝子として導入したLDH遺伝子による乳酸生産能が大幅に向上することが明らかとなった。また、発酵試験1の結果(図4)と比較すると、HAP4遺伝子を構成的に発現した酵母であってアルコール生産性がより低下した酵母においては、外来遺伝子として導入したLDH遺伝子による乳酸生産能がより大幅に向上することが明らかとなった。
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (13)

  1.  目的生産物の生産に関与する酵素をコードする外来遺伝子と、構成的に発現可能なHAP4遺伝子又はその相同遺伝子とを導入した変異体酵母。
  2.  野性型と比較してアルコール生産性が低下した変異株であることを特徴とする請求項1記載の変異体酵母。
  3.  アルコール合成に関与する酵素の酵素活性が低下したことを特徴とする請求項1又は2記載の変異体酵母。
  4.  上記アルコール合成に関与する酵素は、ピルビン酸脱炭酸酵素及び/又はアルコール脱水素酵素であることを特徴とする請求項3記載の変異体酵母。
  5.  上記ピルビン酸脱炭酸酵素は、PDC1遺伝子、PDC5遺伝子及びPDC6遺伝子からなる群から選ばれる少なくとも1の遺伝子によりコードされることを特徴とする請求項4記載の変異体酵母。
  6.  上記アルコール脱水素酵素は、ADH1遺伝子によりコードされることを特徴とする請求項4記載の変異体酵母。
  7.  Saccharomyces属に属することを特徴とする請求項1乃至6いずれか一項記載の変異体酵母。
  8.  Saccharomyces cerevisiaeの菌株に属することを特徴とする請求項1乃至6いずれか一項記載の変異体酵母。
  9.  上記外来遺伝子は、乳酸脱水素酵素活性を有するタンパク質をコードする遺伝子であることを特徴とする請求項1乃至8いずれか一項記載の変異体酵母。
  10.  請求項1乃至8いずれか一項記載の変異体酵母を培養し、目的生産物を菌体内外に生成する工程と、
     上記目的生産物を回収する工程とを含む、酵母を用いた物質生産方法。
  11.  上記目的生産物が有機酸であることを特徴とする請求項10記載の物質生産方法。
  12.  上記目的生産物が乳酸であることを特徴とする請求項10記載の物質生産方法。
  13.  上記目的生産物がエタノール以外のアルコールであることを特徴とする請求項10記載の物質生産方法。
PCT/JP2009/058078 2008-04-23 2009-04-23 変異体酵母及びこれを用いた物質生産方法 WO2009131179A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801141625A CN102016024B (zh) 2008-04-23 2009-04-23 突变体酵母及使用其的物质生产方法
EP09733795.0A EP2281881B1 (en) 2008-04-23 2009-04-23 Yeast mutant and substance production method using the same
US12/989,359 US8741610B2 (en) 2008-04-23 2009-04-23 Yeast mutant and substance production method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008113053A JP4963488B2 (ja) 2008-04-23 2008-04-23 変異体酵母及びこれを用いた物質生産方法
JP2008-113053 2008-04-23

Publications (1)

Publication Number Publication Date
WO2009131179A1 true WO2009131179A1 (ja) 2009-10-29

Family

ID=41216908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058078 WO2009131179A1 (ja) 2008-04-23 2009-04-23 変異体酵母及びこれを用いた物質生産方法

Country Status (5)

Country Link
US (1) US8741610B2 (ja)
EP (1) EP2281881B1 (ja)
JP (1) JP4963488B2 (ja)
CN (1) CN102016024B (ja)
WO (1) WO2009131179A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2292741A1 (en) * 2009-08-26 2011-03-09 OrganoBalance GmbH Genetically modified organisms for the production of lipids
US9150835B2 (en) 2011-06-24 2015-10-06 Samsung Electronics Co., Ltd. Modified microorganism for highly efficient production of lactic acid
KR20150065213A (ko) 2013-12-04 2015-06-15 삼성전자주식회사 감소된 에탄올 생산능을 갖는 효모 세포 및 이의 용도
WO2015103001A1 (en) * 2013-12-31 2015-07-09 Butamax Advanced Biofuels Llc Expression of a hap transcriptional complex subunit
KR101577134B1 (ko) * 2014-05-09 2015-12-14 씨제이제일제당 (주) 젖산 생산이 향상된 미생물 및 이를 이용하여 젖산을 생산하는 방법
CN107709540B (zh) * 2014-06-20 2021-04-09 韩国生命工学研究院 库德里阿兹威氏毕赤酵母ng7微生物及其用途
KR102277898B1 (ko) 2014-07-03 2021-07-15 삼성전자주식회사 산물 생산능이 향상된 효모 및 그를 이용한 산물을 생산하는 방법
KR20160046615A (ko) 2014-10-21 2016-04-29 삼성전자주식회사 폴리우레탄 엘라스토머, 이를 포함하는 열가소성 수지 조성물, 열가소성 수지조성물로 이루어진 성형품 및 폴리우레탄 엘라스토머 제조방법
WO2016199966A1 (ko) * 2015-06-12 2016-12-15 씨제이제일제당 주식회사 젖산 생산이 향상된 미생물 및 이를 이용하여 젖산을 생산하는 방법
CN104911118A (zh) * 2015-06-29 2015-09-16 江南大学 一种乳酸脱氢酶人源化酿酒酵母及其构建方法
TWI659101B (zh) * 2015-07-14 2019-05-11 Cj第一製糖股份有限公司 具有增進乳酸生產力之微生物及使用該微生物生產乳酸之方法
CN105087407B (zh) * 2015-08-20 2018-11-27 天津大学 一种酿酒酵母工程菌株及其制备方法、应用、发酵培养方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026079A1 (en) * 1996-12-12 1998-06-18 Universiteit Van Amsterdam Methods for modulating metabolic pathways of micro-organisms and micro-organisms obtainable by said methods
WO1999014335A1 (en) * 1997-09-12 1999-03-25 A.E. Staley Manufacturing Company Yeast strains for the production of lactic acid
JP2003500062A (ja) 1999-05-21 2003-01-07 カーギル ダウ エルエルシー 有機生成物の合成方法および合成材料
JP2003259878A (ja) 2002-03-11 2003-09-16 Toyota Central Res & Dev Lab Inc 乳酸脱水素酵素をコードするdnaおよびその利用
WO2003102152A2 (en) * 2002-05-30 2003-12-11 Cargill Dow Llc Methods and materials for the production of lactic acid in yeast
JP2006006271A (ja) * 2004-06-29 2006-01-12 Toyota Central Res & Dev Lab Inc 乳酸生産酵母および乳酸生産方法
JP2008043325A (ja) * 2006-07-19 2008-02-28 Toray Ind Inc 温度感受性アルコール脱水素酵素を有する酵母及び有機酸の製造方法
JP2008048726A (ja) * 2006-07-24 2008-03-06 Toray Ind Inc 変異型ピルビン酸脱炭酸酵素5遺伝子を有する酵母及び乳酸の製造方法
JP2008113053A (ja) 2008-02-04 2008-05-15 Kaneka Corp 光電変換装置の製造工程管理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07155184A (ja) 1993-12-08 1995-06-20 Ajinomoto Co Inc 発酵法によるl−リジンの製造法
JP4330041B2 (ja) * 1996-11-13 2009-09-09 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 組換え生物体によるグリセロールの製造方法
JP2002136293A (ja) * 2000-08-23 2002-05-14 Toray Ind Inc 微生物およびd−乳酸の製造方法
US8039238B2 (en) * 2002-03-11 2011-10-18 Toyota Jidosha Kabushiki Kaisha Method of controlling ethanol production and mass production of lactic acid and transformant therefor
JP4269037B2 (ja) 2002-09-24 2009-05-27 独立行政法人酒類総合研究所 有機酸高含有清酒の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026079A1 (en) * 1996-12-12 1998-06-18 Universiteit Van Amsterdam Methods for modulating metabolic pathways of micro-organisms and micro-organisms obtainable by said methods
WO1999014335A1 (en) * 1997-09-12 1999-03-25 A.E. Staley Manufacturing Company Yeast strains for the production of lactic acid
JP2001516584A (ja) 1997-09-12 2001-10-02 エイ・イー・スタリー・マニユフアクチヤリング・カンパニー 乳酸生産のための酵母菌株
JP2003500062A (ja) 1999-05-21 2003-01-07 カーギル ダウ エルエルシー 有機生成物の合成方法および合成材料
JP2003259878A (ja) 2002-03-11 2003-09-16 Toyota Central Res & Dev Lab Inc 乳酸脱水素酵素をコードするdnaおよびその利用
WO2003102152A2 (en) * 2002-05-30 2003-12-11 Cargill Dow Llc Methods and materials for the production of lactic acid in yeast
JP2006006271A (ja) * 2004-06-29 2006-01-12 Toyota Central Res & Dev Lab Inc 乳酸生産酵母および乳酸生産方法
JP2008043325A (ja) * 2006-07-19 2008-02-28 Toray Ind Inc 温度感受性アルコール脱水素酵素を有する酵母及び有機酸の製造方法
JP2008048726A (ja) * 2006-07-24 2008-03-06 Toray Ind Inc 変異型ピルビン酸脱炭酸酵素5遺伝子を有する酵母及び乳酸の製造方法
JP2008113053A (ja) 2008-02-04 2008-05-15 Kaneka Corp 光電変換装置の製造工程管理方法

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
BOURGAREL, D. ET AL., MOL. MICROBIOL., vol. 31, 1999, pages 1205 - 1215
DAVID S. MCNABB ET AL., EUKARYOTIC CELL, vol. 4, no. 11, November 2005 (2005-11-01), pages 1829 - 1839
ERI, A. ET AL., J. FERMENT. BIOENG., vol. 86, 1998, pages 284 - 289
FLIKWEERT, M. T. ET AL., YEAST, vol. 12, 1996, pages 247 - 257
GANCEDO JM: "Yeast carbon catabolite repression", MICROBIOL. MOL. BIOL. REV., vol. 62, no. 2, 1998, pages 334 - 361
ISHIDA, N. ET AL., BIOSCI. BIOTECHNOL. BIOCHEM., vol. 70, 2006, pages 1148 - 1153
ISHIDA, N. ET AL.: "The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on L-lactic acid production", BIOSCI. BIOTECHNOL. BIOCHEM., vol. 70, no. 5, 2006, pages 1148 - 1153, XP008129166 *
J. SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY
SAITOH, S, APPL. ENVIRON. MICROBIOL., vol. 71, 2005, pages 2789 - 2792
See also references of EP2281881A4
SHEVCHUK, N. A. ET AL.: "Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously", NUCLEIC ACIDS RESEARCH, vol. 32, no. 2, 2004, pages E 19
SKORY, C. D., J. IND. MICROBIOL. BIOTECHNOL., vol. 30, 2003, pages 22 - 27
SYBIRNA, K. ET AL., CURR. GENET., vol. 47, 2005, pages 172 - 181
VAN MARIS, A. J. A. ET AL.: "Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: possible consequence of energy-dependent lactate export", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 70, no. 5, 2004, pages 2898 - 2905, XP008145590 *

Also Published As

Publication number Publication date
EP2281881A4 (en) 2011-12-28
JP2009261286A (ja) 2009-11-12
JP4963488B2 (ja) 2012-06-27
EP2281881A1 (en) 2011-02-09
US8741610B2 (en) 2014-06-03
US20110039316A1 (en) 2011-02-17
CN102016024A (zh) 2011-04-13
EP2281881B1 (en) 2015-03-11
CN102016024B (zh) 2013-01-02

Similar Documents

Publication Publication Date Title
JP4963488B2 (ja) 変異体酵母及びこれを用いた物質生産方法
JP5321320B2 (ja) 発酵能力が向上された酵母及びその利用
JP5803106B2 (ja) D−乳酸脱水素酵素活性を有するポリペプチド、該ポリペプチドをコードするポリヌクレオチドおよびd−乳酸の製造方法
RU2711983C2 (ru) Микроорганизм, продуцирующий молочную кислоту, и способ продуцирования молочной кислоты с его использованием
WO2018114762A1 (en) Improved glycerol free ethanol production
JP7034088B2 (ja) 乳酸産生法
KR20200026261A (ko) 엑토인-생산 효모
JP2021520835A (ja) 有機酸耐性酵母由来新規プロモーター及びこれを用いた目的遺伝子の発現方法
EP3378931A1 (en) Fdca-decarboxylating monooxygenase-deficient host cells for producing fdca
JP4395132B2 (ja) D−乳酸脱水素酵素活性を有するタンパク質をコードするdna及びその利用
JP2012170422A (ja) キシローストランスポーター活性を有する新規タンパク質および当該タンパク質をコードするポリヌクレオチド、並びにそれらの利用
JP5813977B2 (ja) Kluyveromyces属の変異体酵母及びこれを用いたエタノールの製造方法
CN105296371A (zh) 具有改进的生产力的酵母和产生产物的方法
CN112094826B (zh) 延胡索酸还原酶
JP5827055B2 (ja) Kluyveromyces属の変異体酵母及びこれを用いたエタノールの製造方法
JP2010136627A (ja) 酵母にガラクトースを利用させる方法
JP2022078003A (ja) 耐酸性酵母遺伝子ベースの合成プロモーター
CN115552016A (zh) 通过过表达mig多肽的酵母来降低乙酸生产
JP2003093060A (ja) 耐酸性微生物を用いた有機酸及びアルコールの製造方法
CN117467551A (zh) 一种高产l-苹果酸的耐酸酵母菌株及其构建方法和应用
WO2023093794A1 (zh) 一种高产l-苹果酸的耐酸酵母菌株及其构建方法和应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980114162.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09733795

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12989359

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009733795

Country of ref document: EP