WO2009131159A1 - 木材用刃物 - Google Patents

木材用刃物 Download PDF

Info

Publication number
WO2009131159A1
WO2009131159A1 PCT/JP2009/058021 JP2009058021W WO2009131159A1 WO 2009131159 A1 WO2009131159 A1 WO 2009131159A1 JP 2009058021 W JP2009058021 W JP 2009058021W WO 2009131159 A1 WO2009131159 A1 WO 2009131159A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard
coating layer
layer
cutting
coated
Prior art date
Application number
PCT/JP2009/058021
Other languages
English (en)
French (fr)
Inventor
南 徹
西尾 悟
Original Assignee
兼房株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 兼房株式会社 filed Critical 兼房株式会社
Priority to EP09735310.6A priority Critical patent/EP2279837B1/en
Priority to JP2010509205A priority patent/JP5576788B2/ja
Priority to CN2009801145522A priority patent/CN102015229A/zh
Priority to US12/736,517 priority patent/US8435651B2/en
Publication of WO2009131159A1 publication Critical patent/WO2009131159A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D65/00Making tools for sawing machines or sawing devices for use in cutting any kind of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D61/00Tools for sawing machines or sawing devices; Clamping devices for these tools
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • Y10T428/12847Cr-base component
    • Y10T428/12854Next to Co-, Fe-, or Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the present invention relates to a wood cutting tool, and more specifically, for wood, which is used for cutting and pulverizing wood and wood-based materials, and has a chromium or chromium nitride-based hard basic coating layer formed on at least a rake face or a flank face. It relates to a knife.
  • the base material is used for grinding tools for grinding wood and wood-based composite materials, rotary cutting tools such as circular saws used for cutting, and planing tools such as planar knives. Bearing steels, tool steels, cemented carbides and the like are selectively employed.
  • a hard foundation coating layer containing chromium nitride (CrN) or the like is applied to the rake face or flank face for the purpose of improving the sharpness and maintaining and improving the cutting life of these knives and cutting blades.
  • the treatment is widely implemented by the PVD treatment method or the like.
  • Patent Document 1 discloses that a chromium nitride hard base coating layer is formed on either the flank face or the rake face of a wood cutting tool based on high-speed tool steel or other cemented carbide. And the proposal which suppresses wear with time of a cutting blade is made.
  • the wood cutting tool coated with the hard basic coating layer of chromium nitride exhibited an excellent effect on the dry woody material, but could not be expected to have an effect on the work material having a high moisture content. . That is, when the moisture content of the work material increases, elution of the chromium component in the hard basic coating layer is promoted, and there is a problem that the amount of wear due to erosion (the amount of cutting edge retraction) increases.
  • An object of the present invention is to provide a wood cutting tool having corrosion resistance.
  • a wood cutting tool in which a hard base coating layer having a chromium material and / or a chromium nitride-based material is directly or indirectly coated on at least a rake face or a flank face of a substrate made of cemented carbide, bearing steel or tool steel.
  • the hard main coating layer is directly or indirectly coated with a hard main coating layer having a chromium oxide-based material.
  • the wood cutting tool according to the present invention can improve the wear resistance and corrosion resistance of wood and wood materials regardless of the dry state, thereby extending the product life.
  • FIG. 3 is a cross-sectional view of cutting edges of Samples 1 and 2 showing an experimental result of Experimental Example 1.
  • FIG. 4 is a cross-sectional view of cutting edges of Samples 1 to 3 showing experimental results of Experimental Example 2.
  • FIG. 6 is a cross-sectional view of cutting edges of Samples 1 to 4 showing experimental results of Experimental Example 3.
  • FIG. 6 is a cross-sectional view of cutting edges of Samples 1 to 3 showing experimental results of Experimental Example 4.
  • FIG. 6 is a cross-sectional view of cutting edges of Samples 1 to 6 showing experimental results of Experimental Example 5. It is a graph which shows the experimental result of Experimental example 6, Comprising: The peeling area with respect to the film thickness of a hard basic coating layer is shown. It is a graph which shows the experimental result of Experimental example 7, Comprising: The ratio of the chipping width
  • FIG. 10 is a cross-sectional view of cutting edges of Samples 1 and 2 showing the experimental results of Experimental Example 8. FIG.
  • FIG. 10 is a cross-sectional view of cutting edges of Samples 1 and 2 showing the experimental results of Experimental Example 9. It is a graph which shows the experimental result which compared the cutting power of Experimental example 9, Comprising: (a) shows the case where a feed rate is 2 m / min, (b) shows the case where a feed rate is 4 m / min.
  • FIG. 1A is an overall view of the wood cutting tool 10 according to the first embodiment when viewed from the rake face 16 side
  • FIG. 1B is a cross-sectional view of the wood cutting tool 10 taken along the line AA.
  • a carbide replaceable blade 10 provided in a replaceable blade milling cutter, a replaceable blade type router bit, or the like is employed as a wood cutting tool.
  • This cemented carbide replacement blade 10 has a thin plate-like base material 12 made of cemented carbide as a main body, and cutting edge portions 14 and 14 are formed on both edges in the longitudinal direction of the base material 12. By reversing the blade 10, both cutting blade portions 14, 14 can be used for cutting.
  • the rake face 16 of the super hard blade 10 is coated with a hard base coating layer 18 having chromium nitride (CrN) by PVD treatment, as shown in an enlarged view in FIG.
  • the hard basic coating layer 18 has, for example, a five-layer structure from the first layer 18a to the fifth layer 18e, with the substrate 12 side as the first layer 18a.
  • the total film thickness of the hard basic coating layer 18 is set in the range of about 0.075 ⁇ m to 10.0 ⁇ m. If the hard basic coating layer 18 is smaller than 0.075 ⁇ m, the base material 12 cannot be properly protected, and it is difficult to ensure adhesion with the hard main coating layer 20 (described later) as shown in an experimental example described later. It becomes. On the other hand, if the thickness of the hard basic coating layer 18 is larger than 10.0 ⁇ m, chipping of the hard basic coating layer 18 is liable to occur during cutting or sharpening (sharpening).
  • the hard basic coating layer 18 since the hard basic coating layer 18 is ground and removed on the flank 22 side of the base material 12 at the time of cutting, the hard basic coating layer 18 has a cutting edge portion (cutting edge) as a cross section on the flank 22. However, it does not remain as a film.
  • the outer surface of the fifth layer 18e which is the outermost layer of the hard basic coating layer 18, is coated with a hard main coating layer 20 having a chromium oxide-based material (Cr—O).
  • the hard main coating layer 20 is composed of a thin layer of chromium oxide (Cr 2 O 3 ).
  • the hard main coating layer 20 is composed of one layer, and the film thickness is set in the range of about 0.2 ⁇ m to 5.0 ⁇ m. When the film thickness of the hard main coating layer 20 is smaller than 0.2 ⁇ m, the wear resistance and corrosion resistance cannot be improved as shown in the experimental examples described later, and the film thickness of the hard main coating layer 20 is 5.
  • the hard main coating layer 20 is larger than 0 ⁇ m, chipping at the time of cutting or cutting the hard main coating layer 20 is likely to occur.
  • the hard main coating layer 20 remains on the cutting edge portion as a cross-section on the flank 22 of the substrate 12 by grinding during blade attachment, but does not remain as a coating.
  • the hard basic coating layer 18 has a five-layer structure and the hard main coating layer 20 has one layer.
  • the hard basic coating layer 18 is not limited to this coating structure. It is also possible to make more than one layer, or to make the hard main coating layer 20 more than two layers.
  • FIG. 2A is an overall view of the wood cutting tool 30 according to the second embodiment when viewed from the rake face 34 side
  • FIG. 2B is a cross-sectional view taken along the line BB.
  • a cemented carbide replacement blade 30 provided in a replaceable blade milling cutter, a replaceable blade type router bit or the like is employed.
  • the cemented carbide replacement blade 30 includes a substrate 32 made of cemented carbide, and a rake face 34 of the substrate 32 is coated with a hard basic coating layer 36 made of chromium nitride.
  • the hard basic coating layer 36 has, for example, a two-layer structure (a first layer 36a and a second layer 36b from the base material 32 side).
  • a hard main coating layer 38 made of chromium oxynitride (CrNO) is formed on the outer surface of the second layer 36b, which is the outermost layer of the hard basic coating layer 36.
  • the hard main coating layer 38 has, for example, a three-layer structure, and the first layer 38a coated on the hard basic coating layer 36 is a chromium oxynitride coated with PVD at an oxygen concentration of 5% in an oxygen and nitrogen gas atmosphere. Consists of.
  • the second layer 38b and the outermost third layer 38c laminated on the first layer 38a are both composed of chromium oxynitride coated with PVD at an oxygen concentration of 10% in a gas atmosphere of oxygen and nitrogen. Is done.
  • the hard main coating layer 38 is configured by stacking a plurality of chromium oxynitride layers having different oxygen concentrations.
  • the overall film thickness of the hard basic coating layer 36 is set in the range of about 0.075 ⁇ m to 10.0 ⁇ m, as in Example 1, and the entire thickness of the hard main coating layer 38 is about It is set within the range of 0.2 ⁇ m to 5.0 ⁇ m.
  • the hard basic coating layer 36 and the hard main coating layer 38 remain in the cutting edge portion as cross sections on the flank 40 of the base material 32 by grinding at the time of cutting, the coating does not remain.
  • the hard basic coating layer 36 has a two-layer structure and the hard main coating layer 38 has a three-layer structure, but this coating structure may be changed as appropriate.
  • the substrate 52 of the planar knives 50 and 51 is made of high-speed tool steel, and the rake face 54 is coated with only one hard base coating layer 56 made of chromium nitride by PVD processing. Further, the hard basic coating layers 56 and 56 of both planar knives 50 and 51 are coated with only one hard main coating layer 58 and 60 having different thicknesses.
  • the hard main coating layers 58 and 60 are made of chromium oxide (Cr 2 O 3 ) as in the first embodiment.
  • the hard basic coating layer 56 has a thickness of about 2.2 ⁇ m, and the hard main coating layer 58 has a thickness of about 2.2 ⁇ m. It is set to 0.4 ⁇ m.
  • the thickness of the hard basic coating layer 56 is about 2.3 ⁇ m and the thickness of the hard main coating layer 60 is about 0. It is set to 0.7 ⁇ m.
  • any of the hard main coating layers 58 and 60 can be changed as long as the film thickness is in the range of 0.2 ⁇ m to 5.0 ⁇ m.
  • the thickness of the hard basic coating layers 56 and 56 can be changed within a range of 0.075 ⁇ m to 10.0 ⁇ m.
  • the planar knives 50 and 51 are re-ground by re-grinding the flank surfaces 62 and 62 and are reused. Therefore, the flank surfaces 62 and 62 of the planar knives 50 and 51 are provided with a hard foundation.
  • the coating layer 56 and the hard main coating layers 58 and 60 are not coated.
  • FIG. 4 is a cross-sectional view showing a wood cutting tool 70 according to a modified example.
  • the wood cutting tool is a cemented carbide replacement blade 70 used for a replacement blade milling cutter, a replacement blade type router bit, etc.
  • the cemented carbide replacement blade 70 has a base material 72 made of cemented carbide as a main body.
  • a plurality of hard basic coating layers 74 and hard main coating layers 76 are alternately laminated on the rake face 78 of the substrate 72. That is, a hard basic coating layer 74 made of chromium nitride (CrN) is formed as a first layer on the rake surface 78 of the base material 72, and chromium is formed as a second layer on the upper surface of the hard basic coating layer 74. A hard main coating layer 76 made of oxide (Cr 2 O 3 ) is formed. Further, a chromium nitride hard base coating layer 74 is formed as a third layer, and a chromium oxide hard main coating layer 76 is coated on the third layer as the outermost fourth layer.
  • a hard basic coating layer 74 made of chromium nitride (CrN) is formed as a first layer on the rake surface 78 of the base material 72
  • chromium is formed as a second layer on the upper surface of the hard basic coating layer
  • the above-mentioned modification example related to FIG. 4 is to laminate a plurality of hard basic coating layers and hard main coating layers alternately, and each coating layer is composed of a single layer.
  • each coating layer is a single layer, and each coating layer may be a multilayer.
  • all of the hard basic coating layer and the hard main coating layer are multilayers, and the single layer and the multilayer may be alternately or a random combination having no law.
  • the base material 72 is alternately composed of a hard base coating layer made of multilayered chambered chromium (CrN) and a hard main coating layer made of multilayered chromium oxide (Cr 2 O 3 ). This is the case where a plurality of rake faces 78 are stacked. As described above, it is not necessary that all of the hard basic coating layer and the hard main coating layer are all multi-layered, and only a specific coating layer may be multi-layered.
  • the coating layer of chromium oxide (Cr 2 O 3 ) is a multilayer
  • the oxygen concentration in the first layer, the second layer, the third layer,... May be different. That is, the oxygen concentration in the gas atmosphere of oxygen and chromium when chromium oxide is PVD-coated on the first layer, the second layer, the third layer,...
  • the total thickness of all the hard basic coating layers 74 and the hard main coating layer 76 is set to be about 15.0 ⁇ m or less. This is because if the total film thickness is larger than 15.0 ⁇ m, chipping is likely to occur during cutting or blade attachment.
  • the hard basic coating layer 74 or the hard main coating layer 76 is alternately laminated, so that the hard basic coating layer 74 or the hard main coating layer 76 is formed even if blade chipping occurs during cutting or cutting. It is possible to suppress the occurrence of large (deep) blade chipping while only peeling in units. Also in the coating structure according to the modified example, the same excellent wear resistance and corrosion resistance effects as in Examples 1 to 3 can be exhibited.
  • the hard basic coating layer 74 and the hard main coating layer 76 remain on the cutting edge portion (blade edge) as a cross section on the flank 80 of the base material 72 by grinding at the time of cutting, they remain as a coating. Absent.
  • chromium nitride (CrN) was adopted as the coating composition of the hard basic coating layers 18, 36, 56, 74.
  • Cr chromium
  • chromium (Cr) and / or nitridation excluding oxides was used.
  • CrBN, CrCN, CrAIN, CrSiN, CrTiN or the like can be used as the hard basic coating layer as long as it contains a chromium-based material.
  • a replaceable blade milling cutter or a replaceable blade type router bit as a wood blade.
  • any blade such as a chipper knife, a tip saw, or a finger joint cutter may be used.
  • the hard base coating layer 18, 36, 56, 74 and the hard main coating layer 20, 38, 58, 60, 76 were formed on the rake face 16, 34, 54, 78.
  • a coating layer may be formed on the flank surfaces 22, 40, 62, 80, or a coating layer may be formed on both the rake surfaces 16, 34, 54, 78 and the flank surfaces 22, 40, 62, 80.
  • samples having various coating structures were prepared with various wood cutting tools, and cutting experiments were performed.
  • PVD treatment is performed by an arc discharge type ion plating apparatus (not shown) to form a single layer or multiple layers of a hard base coating layer on a base material of cemented carbide or high speed tool steel.
  • a hard main coating layer of chromium oxide (Cr 2 O 3 ) or chromium oxynitride (CrNO) is formed on a single layer or multiple layers on a substrate of super-hard blade or high-speed tool steel on which a hard basic coating layer is formed. Coated to form structure.
  • Example 1 In Experimental Example 1, an experiment was conducted to confirm the wear resistance and corrosion resistance effects when a hard main coating layer made of chromium oxide was coated. In other words, a superhard replacement blade (sample 1) coated only with a hard basic coating layer and a superhard replacement blade (sample 2) coated with a hard basic coating layer and a hard main coating layer were prepared, and cutting experiments were performed respectively. It was.
  • the coating structures of Samples 1 and 2 are shown below.
  • the film type of each sample was analyzed with an energy dispersive X-ray analyzer (the same applies to the following experimental examples).
  • the total film thickness of the coated film was set in the range of 7.0 ⁇ m to 7.5 ⁇ m in any of the sample superhard replacement blades.
  • the dimension of a base material is 20 mm x 12 mm x 1.5 mm in any sample.
  • the blade tip retraction amount is large in Sample 1 that is not coated with the hard main coating layer, and the blade tip retraction amount is small in Sample 2 that is coated with the hard main coating layer.
  • the rake face wear band width is large for sample 1 and very small for sample 2.
  • sample 1 has a rounded cross-sectional shape due to wear of the rake face hard basic coating layer
  • sample 2 has a rake face coating (hard basic coating layer and hard base coating layer). The main coating layer) remains and a sharp cross-sectional shape is maintained.
  • the cemented carbide replaceable blade according to Sample 2 coated with the hard main coating layer exhibits extremely good wear resistance and corrosion resistance.
  • Example 2 Next, a cutting experiment was performed by adding Sample 3 coated with a hard main coating layer (chromium oxide) having a large film thickness to Samples 1 and 2 in Experimental Example 1.
  • the film thickness of the hard main coating layer of sample 2 is about 0.7 ⁇ m, whereas the film thickness of the hard main coating layer of sample 3 is about 2.0 ⁇ m.
  • the coating structures of Samples 1 to 3 are shown below. In any sample, the total film thickness is set in a range of about 7.0 to 7.5 ⁇ m, and the substrate has a size of 20 mm ⁇ 12 mm ⁇ 1.5 mm.
  • samples 2 and 3 on which the hard main coating layer is formed are smaller both in the amount of cutting edge retraction and the rake face wear band width.
  • Sample 3 in which the thickness of the hard main coating layer is increased shows the smallest value.
  • sample 1 has a rounded cross-sectional shape due to wear of the rake face hard basic coating layer
  • samples 2 and 3 have a rake face coating (hard basic coating layer).
  • Layer and hard main coating layer) remain, and a sharp cross-sectional shape is maintained.
  • the carbide replacement blades according to Samples 2 and 3 coated with chromium oxide have extremely good wear resistance and corrosion resistance even for work materials with high moisture content. You can see that it works. Moreover, it can be said that the larger the thickness of the hard main coating layer, the more the wear resistance and corrosion resistance effects are improved.
  • Example 3 In Experimental Example 3, a comparison experiment was performed using chromium oxynitride (Samples 2 and 3) or chromium oxide (Sample 4) as the hard main coating layer.
  • samples employing chromium oxynitride two types of samples (samples 2 and 3) were prepared in which the oxygen concentrations in the gas atmosphere of oxygen and nitrogen when forming the hard main coating layer were different.
  • a superhard replacement blade coated only with a hard basic coating layer was also prepared (Sample 1).
  • the coating structures of Samples 1 to 4 used in this experimental example are shown below. In any sample, the total film thickness is set in the range of about 7.0 ⁇ m to 7.5 ⁇ m, and the substrate dimensions are 20 mm ⁇ 12 mm ⁇ 1.5 mm.
  • the cutting edge retraction amount is the largest in the sample 1 which is not coated with the hard main coating layer, and the cutting edge retraction amount in the samples 2 to 4 is small.
  • the sample 3 having a higher oxygen concentration in the gas atmosphere at the time of PVD coating has a smaller cutting edge retraction amount and rake face wear amount.
  • the sample 4 shows the smallest value. From FIG. 7, although all the samples 1 to 4 have a sharp shape, the samples 3 and 4 have a particularly sharp cross-sectional shape.
  • the cemented carbide replaceable blade coated with the hard main coating layer made of chromium oxide has excellent wear resistance for both a high moisture content work material and a dry work material. It can be seen that it exhibits high performance and corrosion resistance. On the other hand, it can be seen that a superhard spare blade coated with a hard main coating layer made of chromium oxynitride exhibits good wear resistance and corrosion resistance to a dry work material. In addition, it was confirmed that when chromium oxynitride is coated, the wear resistance and corrosion resistance are improved according to the oxygen concentration.
  • Example 4 In Experimental Examples 1 to 3, a cemented carbide replacement blade having a base material made of a cemented carbide was used. In Experimental Example 4, a cutting experiment was performed using a planar knife formed of a high-speed tool steel. It was. As in Experimental Examples 1 to 3, when preparing samples, a hard basic coating layer of chromium nitride (CrN) was formed on the rake face of the base material made of high-speed tool steel using an arc discharge ion plating apparatus. To do. Then, a hard main coating layer of chromium oxide (Cr 2 O 3 ) was coated on the hard basic coating layer so as to have different film thicknesses under the following conditions to prepare two types of samples (Samples 2 and 3). . For comparison, a sample (Sample 1) coated only with a hard basic coating layer was also prepared. The coating structures of Samples 1 to 3 used in this experimental example are shown below.
  • the retraction amount of the blade edge is the largest in the sample 1 not coated with the hard main coating layer, and the retraction amount of the blade edge decreases in the order of the sample 2 and the sample 3.
  • the rake face wear band width is also the largest for sample 1 and decreases in the order of sample 2 and sample 3.
  • Sample 3 with a large thickness of the hard main coating layer generated more chipping than Sample 2.
  • Samples 2 and 3 have a very small cutting edge retraction amount, leaving a sharp cross-sectional shape.
  • Example 5 in order to confirm a preferable range of the film thickness of the hard main coating layer, a plurality of samples having different film thicknesses were created and a cutting experiment was performed.
  • the samples used in this experimental example were coated with a single hard basic coating layer (chromium nitride) on a cemented carbide replacement blade based on cemented carbide, and various hard main coating layers made of chromium oxide. (Samples 2 to 6).
  • Samples 2 to 6 For comparison, a superhard replacement blade coated only with a hard basic coating layer was also prepared (Sample 1).
  • the coating structures of Samples 1 to 6 are shown below. In any sample, the entire film thickness is set to about 7.5 ⁇ m.
  • both the cutting edge retraction amount and the rake face wear band width decrease as the thickness of the hard main coating layer increases.
  • extremely sharp cross-sectional shapes remain for samples 5 and 6.
  • the hard main coating layer needs to have a certain thickness (at least about 0.2 ⁇ m or more).
  • the preferable thickness of the hard main coating layer is about 0.2 ⁇ m to 5.0 ⁇ m. Is set in the range.
  • Example 6 In Experimental Example 6, an experiment was conducted to examine the influence of the thickness of the hard basic coating layer on the adhesion of the hard main coating layer. Also in this experimental example, a hard basic coating layer made of chromium nitride was coated on a super hard blade, and a hard main coating layer made of chromium oxide was further coated. As samples, three types of super hard blades with different thicknesses of the hard base coating layer and different thicknesses of the hard main coating layer were prepared (Samples 2 to 4). For comparison, a super hard blade (Sample 1) in which the base material was coated only with a hard main coating layer (film thickness: 4.0 ⁇ m) was also prepared. The coating structures of Samples 1 to 4 are shown below. The samples 1 to 4 were used to observe indentations provided with a Rockwell hardness tester, and the peeled area on the surface of each sample was measured with a digital microscope. The measurement results are shown in the graph of FIG.
  • the lower limit of the film thickness of the hard basic coating layer is desirably about 0.075 ⁇ m or more.
  • Example 7 In Experimental Example 7, an experiment was conducted to examine the influence of the thickness of the hard basic coating layer on the chipping resistance (chipping). In the present experimental example, only a hard basic coating layer of chromium nitride was formed on a cemented carbide replaceable blade, and five types of cemented carbide replaceable blades having different thicknesses of the hard basic coating layer were prepared. The coating structures of Samples 1 to 5 are shown below.
  • the thickness of the hard basic coating layer is desirably about 10.0 ⁇ m or less.
  • the thickness of the hard main coating layer is desirably set in the range of about 0.2 ⁇ m to 5.0 ⁇ m.
  • the film thickness of the hard basic coating layer is desirably set in the range of about 0.075 ⁇ m to 10.0 ⁇ m.
  • Example 8 In the experimental examples so far, it has been confirmed that the hard main coating layer exhibits good wear resistance and corrosion resistance against the lumber wood and the laminated wood. Therefore, in Experimental Example 8, an experiment was conducted to compare cutting performance with respect to a wood board (MDF (Medium Density Fiberboard)). That is, a super-hard replacement blade (sample 1) coated only with a hard basic coating layer and a super-hard replacement blade (sample 2) coated with a hard basic coating layer and a hard main coating layer are prepared, and each is applied to a wood board. Cutting experiments were conducted. The coating structures of Samples 1 and 2 are shown below. In any of the superhard blades of the samples, the total thickness of the coated films was about 3.0 ⁇ m, and coating was performed on both the rake face and the flank face.
  • MDF Medium Density Fiberboard
  • the end face of the wood board is cut using the above samples 1 and 2, and the wear amount of the cut portion of the surface layer (surface) side of the wood board at the edge of each sample and the center of the wood board with the low density The amount of wear at the location where the part (inside) side was cut was measured.
  • Cutting conditions are as follows. Machine: NC horizontal axis cutting machine Work material: Wood board (South Sea wood) Cutting tool: Cutter (cutting diameter 125mm) Feeding speed: 4m / min Rotation speed: 6000RPM Cutting depth: 0.5mm Cutting material length: 1000m
  • FIG. 12 shows the cross-sectional shape of the blade edge of each sample after the cutting experiment.
  • the left column in FIG. 12 shows the result on the surface layer side (MDF surface layer portion) of the wooden board, and the right column in FIG. 12 shows the result on the center portion (MDF center portion) of the wooden board.
  • the sample 1 shows a large value for both the blade tip retraction amount and the rake face wear band width.
  • the rake face wear band width of sample 1 is large on the surface layer side of the wooden board.
  • Sample 2 coated with the hard main coating layer shows smaller values of the blade tip retraction amount and the rake face wear band width than Sample 1.
  • the amount of wear is large on the surface layer side of the wooden board. This is presumably because the surface layer of the wood board has a high density and the load during cutting increases. Further, as shown in FIG.
  • the cutting edge of the sample 1 has a rounded shape, whereas the cutting edge of the sample 2 has a sharp cross-sectional shape. From the results of Experimental Example 8, it was confirmed that the hard main coating layer can exhibit excellent wear resistance and corrosion resistance even with respect to the wooden board.
  • Example 9 In Experimental Examples 1 to 7, the rake face was coated, and in Experimental Example 8, the rake face and the flank face were coated and a cutting experiment was performed. In Experimental Example 9, the coating was applied only to the flank face. An experiment was conducted to examine cutting performance. In this experiment, a tip saw was used as a wood cutting tool, and the flank of the cemented carbide tip was coated. That is, Sample 1 in which only the hard basic coating layer is coated on the flank of the carbide tip and Sample 2 in which the flank of the carbide tip is coated with the hard basic coating layer and the hard main coating layer are prepared, and cutting experiments are performed respectively. Was done. The coating structures of Samples 1 and 2 are shown below.
  • the tip saw used in this experiment has an outer diameter of 180 mm, a blade thickness of 2.6 mm, a main body thickness of 1.8 mm, a hole diameter of 25.4 mm, and a number of teeth of 24.
  • the thickness was about 3.0 ⁇ m.
  • FIG. 13 shows the cross-sectional shape of the edge of each sample after cutting 150 m, 300 m, and 450 m.
  • the blade edge (flank face) retraction amount and the flank wear band width are the wear amounts indicated by reference numerals c and d in FIG. 13, respectively.
  • cemented carbide or high-speed tool steel is used as the base material 12, 32, 52, 72 is shown, but a base material made of bearing steel can also be used. It is.
  • the base 12, 32, 52, 72 is directly coated with the hard base coat layer 18, 36, 56, 74, and the hard base coat layer 18, 36, 56, 74 is coated.
  • a hard main coating layer 20, 38, 58, 60, 76 directly coated was employed.
  • the base material 12, 32, 52, 72 and the hard basic coating layer 18, 36, 56, 74, or the hard basic coating layer 18, 36, 56, 74 and the hard Another coating layer (intermediate layer) made of TiN or the like may be interposed between the main coating layers 20, 38, 58, 60, and 76. That is, the hard basic coating layer 18, 36, 56, 74 and the hard main coating layer 20, 38, 58, 60, 76 are respectively replaced with the base material 12, 32, 52, 72 and the hard basic coating layer 18, 36, 56. , 74 may be indirectly coated.
  • the hard basic coating layers 18, 36, 56, 74 and the hard main coating layers 20, 38, 58, 60, 76 are formed in multiple layers
  • the hard basic coating layers 18, 36, 56, 74 are hardened between the hard basic coating layers 18, 36, 56, 74.
  • An intermediate layer made of TiN or the like may be interposed between the main coating layers 20, 38, 58, 60, 76.
  • the total film thickness including the hard basic coating layers 18, 36, 56, 74 and the intermediate layer interposed between the coating layers is preferably in the range of about 0.075 ⁇ m to 10.0 ⁇ m. .
  • the total film thickness including the intermediate layer is in the range of about 0.2 ⁇ m to 5.0 ⁇ m. Furthermore, from the viewpoint of improving the protection power and the like, it is possible to coat another outermost layer (hard main coating layer) with another coating layer (protective layer) made of TiN or the like.

Abstract

 耐摩耗性・耐食性を向上した木材用刃物を提供する。  超硬合金または工具鋼からなる基材12のすくい面16に、窒化クロム(CrN)からなる硬質基礎被膜層18がPVD処理されてコーティングされる。この硬質基礎被膜層18は、基材12側から順に第1層18a~第5層18eの5層構造をなしている。また、硬質基礎被膜層18の第5層18eの外面には、クロム酸化物(Cr)からなる硬質主被膜層20がコーティングされる。硬質主被膜層20は、硬質基礎被膜層18と同様に、PVD処理されて形成される。硬質基礎被膜層18に硬質主被膜層20をコーティングすることで、浸食が抑制されて超硬替刃10の耐摩耗性・耐食性が向上される。

Description

木材用刃物
 この発明は、木材用刃物に関し、更に詳細には、木材や木質系材料の切削・粉砕に供され、少なくともすくい面または逃げ面にクロムまたは窒化クロム系の硬質基礎被膜層が形成された木材用刃物に関するものである。
 木材や木質系材料系の複合材料を粉砕するための粉砕刃や、切削加工するのに使用される丸鋸等の回転切削用工具その他プレーナナイフ等の平削り用工具等には、その基材として軸受鋼や工具鋼、超硬合金等が選択的に採用されている。これら粉砕刃および切削刃等の木材用刃物には、切れ味の改善や切削寿命の持続と向上を目的として、そのすくい面または逃げ面に窒化クロム(CrN)等を含有した硬質基礎被膜層を施す処理がPVD処理法等により広く実施されている。
 例えば、特許文献1には、高速度工具鋼やその他超硬合金等を基材とする木材用刃物において、その逃げ面またはすくい面の何れか一方の面に窒化クロムの硬質基礎被膜層を形成して、切刃の経時的な摩耗を抑制する提案がなされている。
特開平2-252501号公報
 ところが近年では、環境に対する関心の高まりから、木材用刃物の更なる耐久性の向上および長寿命化が求められる傾向にあり、木材用刃物の耐摩耗性・耐食性の飛躍的な向上が期待されている。また、従来例の如く、窒化クロムの硬質基礎被膜層をコーティングした木材用刃物は、乾燥した木質系材料に対する優れた効果は発揮するものの、含水率の高い被削材に対する効果は期待できなかった。すなわち、被削材の含水率が高くなると、硬質基礎被膜層におけるクロム成分の溶出が促進されてしまい、浸食による摩耗量(刃先後退量)が増大する難点があった。
 そこで本発明は、従来の木材用刃物に内在する前記問題に鑑み、これを好適に解決するべく提案されたものであって、木材や木質材料に対し、乾燥状態に拘らず高い耐摩耗性・耐食性を備えた木材用刃物を提供することを目的とする。
 前記課題を克服し、所期の目的を達成するため、請求項1に係る木材用刃物は、
 超硬合金、軸受鋼または工具鋼からなる基材の少なくともすくい面または逃げ面に、クロム物質および/または窒化クロム系物質を有する硬質基礎被膜層が直接的または間接的にコーティングされた木材用刃物において、
 前記硬質基礎被膜層に、酸化クロム系物質を有する硬質主被膜層が直接的または間接的にコーティングされていることを特徴とする。
 本発明に係る木材用刃物によれば、木材や木質材料に対し、乾燥状態に拘らず耐摩耗性・耐食性を向上して、製品寿命を延ばし得る。
実施例1に係る超硬替刃を示す図であって、(a)は超硬替刃をすくい面側から見た全体図を示し、(b)は(a)のA-A線断面図を示す。 実施例2に係る超硬替刃を示す図であって、(a)は超硬替刃をすくい面側から見た全体図を示し、(b)は(a)のB-B線断面図を示す。 実施例3に係るプレーナナイフを示す図であって、(a)は薄い硬質主被膜層が形成された超硬替刃の断面図を示し、(b)は厚い硬質主被膜層が形成されたプレーナナイフの断面図を示す。 変更例に係る超硬替刃を示す断面図である。 実験例1の実験結果を示す試料1および2の刃先断面図である。 実験例2の実験結果を示す試料1~3の刃先断面図である。 実験例3の実験結果を示す試料1~4の刃先断面図である。 実験例4の実験結果を示す試料1~3の刃先断面図である。 実験例5の実験結果を示す試料1~6の刃先断面図である。 実験例6の実験結果を示すグラフであって、硬質基礎被膜層の膜厚に対する剥離面積を示す。 実験例7の実験結果を示すグラフであって、硬質基礎被膜層の膜厚に対するチッピング幅の割合および刃先後退量を示す。 実験例8の実験結果を示す試料1および2の刃先断面図である。 実験例9の実験結果を示す試料1および2の刃先断面図である。 実験例9の切削動力を比較した実験結果を示すグラフであって、(a)は送り速度が2m/minの場合を示し、(b)は送り速度が4m/minの場合を示す。
 次に、本発明に係る木材用刃物につき、好適な実施例を挙げて、添付図面を参照して以下説明する。
 図1(a)は、実施例1に係る木材用刃物10をすくい面16側から見た全体図であり、図1(b)は、木材用刃物10のA-A線断面図である。実施例1では、木材用刃物として、替刃式ミーリングカッターや替刃式ルータービット等に設けられる超硬替刃10が採用されている。この超硬替刃10は、超硬合金を材質とする薄板状の基材12を本体とし、該基材12の長手方向の両縁部に切刃部14,14が形成され、超硬替刃10を反転することで両切刃部14,14を切削に使用し得るようになっている。超硬替刃10のすくい面16には、図1(b)に拡大して示すように、PVD処理により窒化クロム(CrN)を有する硬質基礎被膜層18がコーティングされている。前記硬質基礎被膜層18は、例えば、前記基材12側を第1層18aとして、第1層18a~第5層18eまでの5層構造をなしている。
 この硬質基礎被膜層18の全体の膜厚は、約0.075μm~10.0μmの範囲内に設定されている。硬質基礎被膜層18が0.075μmよりも小さいと、基材12を適切に保護し得なくなると共に、後述の実験例で示すように、硬質主被膜層20(後述)との密着性確保が困難となる。また、硬質基礎被膜層18の膜厚が10.0μmよりも大きいと、切削時または刃付け(刃研ぎ)時に該硬質基礎被膜層18のチッピングが発生し易くなる。なお、基材12の逃げ面22側は、刃付けの際に硬質基礎被膜層18が研削されて除去されるので、該硬質基礎被膜層18は逃げ面22において断面として切刃部(刃先)に残るものの、被膜としては残存していない。
 前記硬質基礎被膜層18の最外層である第5層18eの外面には、酸化クロム系物質(Cr-O)を有する硬質主被膜層20がコーティングされている。この硬質主被膜層20は、薄膜のクロム酸化物(Cr)の層で構成されている。実施例1では、硬質主被膜層20は1つの層から構成され、その膜厚は約0.2μm~5.0μmの範囲に設定される。硬質主被膜層20の膜厚が0.2μmより小さくなると、後述の実験例で示すように、耐摩耗性・耐食性の向上が図り得なくなり、また、硬質主被膜層20の膜厚を5.0μmより大きくすれば、硬質主被膜層20の切削時や刃付け時のチッピングが発生し易くなってしまう。このように、硬質基礎被膜層18上に更に硬質主被膜層20をコーティングすることで、木材や木質材料に対し、乾燥状態に拘らず極めて良好な耐摩耗性・耐食性が発揮される。なお、硬質主被膜層20も、刃付けの際の研削により基材12の逃げ面22に断面として切刃部に残るものの、被膜としては残存していない。実施例1では、硬質基礎被膜層18を5層構造とし、硬質主被膜層20を1層としたが、この被膜構造に限定される訳ではなく、硬質基礎被膜層18を4層以下または6層以上としたり、硬質主被膜層20を2層以上とすることも可能である。
 次に、木材用刃物の実施例2について、以下説明する。図2(a)は、実施例2に係る木材用刃物30をすくい面34側から見た全体図であり、図2(b)はB-B線断面図である。実施例2の木材用刃物としては、実施例1と同様に、替刃式ミーリングカッターや替刃式ルータービット等に設けられる超硬替刃30が採用されている。この超硬替刃30は、超硬合金からなる基材32を備え、該基材32のすくい面34に窒化クロムからなる硬質基礎被膜層36がコーティングされている。この硬質基礎被膜層36は、例えば、2層構造(基材32側から第1層36a,第2層36b)をなしている。
 前記硬質基礎被膜層36の最外層である第2層36bの外面には、酸窒化クロム(CrNO)からなる硬質主被膜層38が形成されている。この硬質主被膜層38は、例えば3層構造をなし、前記硬質基礎被膜層36上にコーティングされる第1層38aは、酸素と窒素のガス雰囲気における酸素濃度5%としてPVDコーティングした酸窒化クロムで構成される。また、前記第1層38a上に積層される第2層38bおよび最も外側の第3層38cは、何れも、酸素と窒素のガス雰囲気における酸素濃度を10%としてPVDコーティングした酸窒化クロムで構成される。すなわち、実施例2では、硬質主被膜層38が、酸素濃度の異なる酸窒化クロムの層を複数積層して構成される。なお、前記硬質基礎被膜層36の全体の膜厚は、実施例1と同様に、約0.075μm~10.0μmの範囲内に設定され、硬質主被膜層38の全体の膜厚も、約0.2μm~5.0μmの範囲内に設定される。また、刃付けの際の研削により、基材32の逃げ面40に、硬質基礎被膜層36および硬質主被膜層38が断面として切刃部に残るものの、被膜としては残存していない。なお、実施例2では、硬質基礎被膜層36を2層構造とし、硬質主被膜層38を3層構造としたが、この被膜構造は適宜変更してもよい。
 次に、実施例3の木材用刃物50,51について説明する。実施例3では、図3(a)および(b)に示すように、木材用刃物として2種のプレーナナイフ50,51が採用されている。プレーナナイフ50,51の基材52は、高速度工具鋼で形成され、そのすくい面54には、窒化クロムからなる硬質基礎被膜層56がPVD処理により1層だけコーティングされている。また、両プレーナナイフ50,51の硬質基礎被膜層56,56には、膜厚の異なる硬質主被膜層58,60が1層だけコーティングされている。この硬質主被膜層58,60は、実施例1と同様にクロム酸化物(Cr)で構成される。
 膜厚の薄い硬質主被膜層58が施されたプレーナナイフ50(図3(a)参照)では、硬質基礎被膜層56の膜厚が約2.2μm、硬質主被膜層58の膜厚が約0.4μmに設定されている。一方、厚い硬質主被膜層60が施されたプレーナナイフ51(図3(b)参照)は、硬質基礎被膜層56の膜厚が約2.3μm、硬質主被膜層60の膜厚が約0.7μmに設定されている。但し、何れの硬質主被膜層58,60についても、膜厚が0.2μm~5.0μmの範囲内であれば変更可能である。また、硬質基礎被膜層56,56についても、膜厚が0.075μm~10.0μmの範囲内で変更し得る。なお、プレーナナイフ50,51は、逃げ面62,62を再研磨することで再刃付けをし、再使用に供されるので、該プレーナナイフ50,51の逃げ面62,62に、硬質基礎被膜層56および硬質主被膜層58,60はコーティングされていない。また、実施例3の各被膜層56,58,60の被膜構造に限定される訳でなく、被膜構造は適宜変更可能である。
  (変更例)
 なお、硬質基礎被膜層および硬質主被膜層の被膜構造としては、上記実施例で示したものに限られる訳ではない。例えば、硬質基礎被膜層および硬質主被膜層を交互に複数積層するようにしてもよい。図4は、変更例に係る木材用刃物70を示す断面図である。この木材用刃物は、替刃式ミーリングカッターや替刃式ルータービット等に用いられる超硬替刃70であって、該超硬替刃70は、超硬合金で形成された基材72を本体とする。また、図4に拡大して示すように、基材72のすくい面78に、硬質基礎被膜層74および硬質主被膜層76が交互に複数積層されて構成される。すなわち、基材72のすくい面78上には、窒化クロム(CrN)で構成される硬質基礎被膜層74が第1層として形成され、該硬質基礎被膜層74の上面に、第2層としてクロム酸化物(Cr)で構成される硬質主被膜層76が形成される。更に、第3層として窒化クロムの硬質基礎被膜層74が形成され、該第3層上に、最も外側の第4層としてクロム酸化物の硬質主被膜層76がコーティングされている。
 図4に関する上記の変更例は、硬質基礎被膜層と硬質主被膜層とを交互に複数積層するものであるが、各被膜層は何れも単層で構成されている。しかし、このように各被膜層が単層であることは要件でなく、各被膜層を多層のものとしてもよい。また硬質基礎被膜層と硬質主被膜層の全てが多層である必要はなく、単層と多層とが交互に、または法則性のないランダムな組合せとなってもよい。
 例えば図示しないが、多層の室化クロム(CrN)で構成される硬質基礎被膜層と、多層のクロム酸化物(Cr)で構成される硬質主被膜層とを、交互に基材72のすくい面78に複数積層する場合がこれである。なお前述した如く、全ての硬質基礎被膜層と硬質主被膜層との夫々が全ての多層になっている必要はなく、特定の被膜層だけが多層になっていてもよい。
 更に、クロム酸化物(Cr)の被膜層を多層とする場合、第1層、第2層、第3層…における酸素濃度が異なっていてもよい。すなわち、第1層、第2層、第3層…にクロム酸化物をPVDコーティングする際の酸素とクロムのガス雰囲気下における酸素濃度を各層で異ならせて実施してもよい。
 ここで、変更例に係る超硬替刃70では、全ての硬質基礎被膜層74および硬質主被膜層76における膜厚の合計は、約15.0μm以下となるように設定されている。膜厚の合計が15.0μmより大きくなると、切削時や刃付け時にチッピングが生じ易くなるからである。このように、硬質基礎被膜層74および硬質主被膜層76を交互に積層することで、切削時や刃付け時に刃カケが生じたとしても、硬質基礎被膜層74または硬質主被膜層76が層単位で剥離するに留まり、大きな(深い)刃カケが生ずるのを抑制することができる。また、変更例に係る被膜構造においても、実施例1~3と同様な優れた耐摩耗性・耐食性効果を発揮し得る。なお、基材72の逃げ面80には、刃付けの際の研削により、硬質基礎被膜層74および硬質主被膜層76が断面として切刃部(刃先)に残るものの、被膜としては残存していない。
 なお、実施例1~3および変更例では、硬質基礎被膜層18,36,56,74の被膜組成として窒化クロム(CrN)を採用したが、酸化物を除いたクロム(Cr)および/または窒化クロム系物質を含むものであれば、窒化クロムの他、例えば、CrBN、CrCN、CrAIN、CrSiN,CrTiN等を硬質基礎被膜層として採用することができる。また、実施例1~3および変更例では、木材用刃物として替刃式ミーリングカッターや替刃式ルータービット等の超硬替刃10,30,70またはプレーナナイフ50,51を例に説明したが、木材または木質系材料用の粉砕刃や切削刃であれば、チッパーナイフやチップソー、フィンガージョイントカッター等、何れの刃物であってもよい。更に、実施例1~3および変更例では、すくい面16,34,54,78に硬質基礎被膜層18,36,56,74および硬質主被膜層20,38,58,60,76を形成したが、逃げ面22,40,62,80に被膜層を形成したり、すくい面16,34,54,78および逃げ面22,40,62,80の両面に被膜層を形成してもよい。特に、粉砕刃の場合には、すくい面および逃げ面の両面にコーティングすることが望ましい。また、基材12,32,52,72の全体に両被膜層をコーティングすることも可能である。
 次に、本発明に係る木材用刃物の切削性能を確認するべく、以下に示すように、各種の被膜構造をなす試料を種々の木材用刃物で作成して切削実験を行なった。試料の作成に際しては、アーク放電型イオンプレーティング装置(図示せず)によりPVD処理を実施し、超硬合金または高速度工具鋼の基材に単層または多層の硬質基礎被膜層を形成する。そして、硬質基礎被膜層を形成した超硬替刃または高速度工具鋼の基材に対し、クロム酸化物(Cr)または酸窒化クロム(CrNO)の硬質主被膜層を単層または多層構造をなすようコーティングした。実験例1~7では、基材のすくい面にコーティングをし、実験例8では、基材のすくい面および逃げ面にコーティングをし、実験例9では、基材の逃げ面にコーティングをした。処理条件は、以下の通りである。
蒸発源     :クロム(Cr)
アーク放電電流値:150A
バイアス電圧  :-40~-100V
チャンバー内圧力:2.66Pa
基板温度    :400℃
  (実験例1)
 実験例1では、クロム酸化物からなる硬質主被膜層をコーティングした場合の耐摩耗性・耐食性効果を確認する実験を行なった。すなわち、硬質基礎被膜層のみをコーティングした超硬替刃(試料1)と、硬質基礎被膜層および硬質主被膜層をコーティングした超硬替刃(試料2)とを作成し、夫々切削実験を行なった。試料1および2の被膜構造を以下に示す。なお、各試料の膜種は、エネルギー分散形X線分析装置で解析した(以下の実験例でも同様である)。何れの試料の超硬替刃においても、コーティングした被膜の合計膜厚は、7.0μm~7.5μmの範囲内に設定した。また、何れの試料も、基材の寸法は20mm×12mm×1.5mmである。
Figure JPOXMLDOC01-appb-T000001
 上記試料1および2を用いて、被削材としてのスギに対する切削実験を行なった。切削条件は以下の通りである。
機械:NCルーター
被削材:スギ(含水率30~80%)
切削工具:ルータービット(切削径45mm)
送り速度:1m/min
回転数:6000RPM
切込み量:20mm
切削材長:77.5m
 上記実験により、以下の結果を得た。
Figure JPOXMLDOC01-appb-T000002
 また、77.5m切削後の各試料の刃先断面形状を図5に示す。なお、すくい面後退量およびすくい面摩耗帯幅は、夫々、図5の符号aおよび符号bで示す摩耗量である(以下の実験例1~8においても同様である)。
 上記実験結果より、刃先後退量は、硬質主被膜層をコーティングしていない試料1が大きく、硬質主被膜層をコーティングした試料2の刃先後退量は小さくなっていることが分かる。また、すくい面摩耗帯幅についても、試料1は大きく、試料2は極めて小さな値を示している。また図5より、試料1は、すくい面の硬質基礎被膜層が摩耗して、丸みを帯びた断面形状をなしているのに対し、試料2は、すくい面の被膜(硬質基礎被膜層および硬質主被膜層)が残存し、シャープな断面形状が保たれている。本実験例の結果から明らかなように、硬質主被膜層をコーティングした試料2に係る超硬替刃は、極めて良好な耐摩耗性および耐食性を発揮していることが分かる。
  (実験例2)
 次に、実験例1での試料1,2に、膜厚の大きい硬質主被膜層(クロム酸化物)をコーティングした試料3を加えて切削実験を行なった。試料2の硬質主被膜層の膜厚は約0.7μmであるのに対し、試料3の硬質主被膜層の膜厚は約2.0μmである。試料1~3の被膜構造を以下に示す。なお、何れの試料も、全体の膜厚は、約7.0~7.5μmの範囲に設定され、基材の寸法は20mm×12mm×1.5mmである。
Figure JPOXMLDOC01-appb-T000003
 上記試料1~3を用いて、含水率の高いヒノキに対する切削実験を行なった。切削条件は、以下の通りである。
機械:NCルーター
被削材:ヒノキ(含水率50~90%)
切削工具:ルータービット(切削径45mm)
送り速度:1m/min
回転数:6000RPM
切込み量:20mm
切削材長:30m
 上記実験により、以下の結果を得た。
Figure JPOXMLDOC01-appb-T000004
 また、30m切削後の各試料の刃先断面形状を図6に示す。
 上記実験結果より、刃先後退量およびすくい面摩耗帯幅の何れも、硬質主被膜層を形成した試料2および3が小さくなっていることが分かる。特に、硬質主被膜層の膜厚を大きくした試料3が最も小さな値を示している。また、図6より、試料1は、すくい面の硬質基礎被膜層が摩耗して、丸みを帯びた断面形状をなしているのに対し、試料2および3は、すくい面の被膜(硬質基礎被膜層および硬質主被膜層)が残存しており、シャープな断面形状が保たれている。実験例2の結果から明らかなように、含水率が高い被削材に対しても、クロム酸化物をコーティングした試料2および3に係る超硬替刃は、極めて良好な耐摩耗性・耐食性を発揮することが分かる。また、硬質主被膜層の膜厚が大きい程、耐摩耗性・耐食性効果がより向上するといえる。
  (実験例3)
 実験例3では、硬質主被膜層として酸窒化クロム(試料2,3)またはクロム酸化物(試料4)を採用して対比実験を行なった。また、酸窒化クロムを採用したものについては、硬質主被膜層を形成する際の酸素と窒素のガス雰囲気における酸素濃度を相違させた2種類の試料(試料2,3)を用意した。更に、比較のため、硬質基礎被膜層のみをコーティングした超硬替刃も作成した(試料1)。本実験例で使用される試料1~4の被膜構造を以下に示す。なお、何れの試料も、全体の膜厚は約7.0μm~7.5μmの範囲に設定し、基材の寸法は20mm×12mm×1.5mmである。
Figure JPOXMLDOC01-appb-T000005
 これら試料1~4を用いて、乾燥したスプルース集成材に対する切削実験を行なった。切削条件は、以下の通りである。
機械:NCルーター
被削材:スプルース集成材
切削工具:ルータービット(切削径45mm)
送り速度:1m/min
回転数:6000RPM
切込み量:20mm
切削材長:90m
 上記実験により、以下の結果を得た。
Figure JPOXMLDOC01-appb-T000006
 また、90m切削後の各試料の刃先断面形状を図7に示す。
 上記実験結果より、刃先後退量は、硬質主被膜層をコーティングしていない試料1が最も大きく、試料2~4の刃先後退量は小さいことが分かる。同じ酸窒化クロムからなる硬質主被膜層をコーティングした試料2,3では、PVDコーティング時のガス雰囲気における酸素濃度の高い試料3の方が、刃先後退量,すくい面摩耗量共に小さくなっている。また、すくい面摩耗帯幅については、試料4が最も小さな値を示している。図7より、何れの試料1~4もシャープな形状を留めているものの、特に試料3および4は、非常にシャープな断面形状が残存している。この実験例3の結果から分かるように、酸窒化クロムまたはクロム酸化物の硬質主被膜層をコーティングした超硬替刃は、乾燥材に対して良好な耐摩耗性・耐食性を発揮することが分かる。また、酸窒化クロムの硬質主被膜層をコーティングした場合、酸素濃度が高い程、耐摩耗性・耐食性効果が向上することが分かる。
 以上の実験例1~3の結果から、クロム酸化物からなる硬質主被膜層をコーティングした超硬替刃は、含水率の高い被削材および乾燥した被削材の何れにも優れた耐摩耗性・耐食性を発揮することが分かる。一方、酸窒化クロムからなる硬質主被膜層をコーティングした超硬替刃では、乾燥した被削材に対して良好な耐摩耗性・耐食性を発揮することが分かる。しかも、酸窒化クロムをコーティングする場合、酸素濃度に応じて耐摩耗性・耐食性も向上することが確認された。
  (実験例4)
 上記実験例1~3では、超硬合金からなる基材を有する超硬替刃を用いたが、実験例4では、基材を高速度工具鋼で形成したプレーナナイフを用いて切削実験を行なった。実験例1~3と同様に、試料の作成に際しては、アーク放電型イオンプレーティング装置により、高速度工具鋼で構成された基材のすくい面に窒化クロム(CrN)の硬質基礎被膜層を形成する。そして、この硬質基礎被膜層に対し、以下の条件でクロム酸化物(Cr)の硬質主被膜層を膜厚が異なるようコーティングし、2種の試料(試料2および3)を作成した。また、比較用として、硬質基礎被膜層のみをコーティングした試料(試料1)も作成した。本実験例で用いられる試料1~3の被膜構造を以下に示す。
Figure JPOXMLDOC01-appb-T000007
 上記試料1~3を用いて、乾燥させたスプルースに対する切削実験を行なった。切削条件は以下の通りである。
機械:NC横軸切削機械
被削材:スプルース乾燥材
切削工具:カッター(切削径125mm)
送り速度:5m/min
回転数:6000RPM
切込み量:0.5mm
切削材長:1000m
 上記実験により、以下の結果を得た。
Figure JPOXMLDOC01-appb-T000008
 また、切削実験後の各試料の刃先断面形状を図8に示す。
 上記実験結果より、刃先後退量は、硬質主被膜層をコーティングしていない試料1が最も大きく、試料2、試料3の順で刃先後退量が小さくなっているのが分かる。また、すくい面摩耗帯幅についても、試料1が最も大きく、試料2,試料3の順で小さくなっている。但し、硬質主被膜層の膜厚が大きい試料3では、試料2に比べ、チッピングが多く発生していたことが確認された。また、図8より、試料2および3は、刃先後退量が非常に小さく、シャープな断面形状を残している。実験例4の結果から明らかなように、高速度工具鋼を基材とするプレーナナイフに対しても、硬質主被膜層をコーティングした場合に優れた耐摩耗性・耐食性効果を発揮することが確認された。また、本実験例においても、耐摩耗性・耐食性効果は、硬質主被膜層の膜厚に比例して向上することが確認された。
  (実験例5)
 そこで、実験例5では、硬質主被膜層の膜厚の好適な範囲を確認するため、膜厚を異ならせた複数の試料を作成して切削実験を行なった。本実験例で用いられる試料は、超硬合金を基材とする超硬替刃に単層の硬質基礎被膜層(窒化クロム)をコーティングし、更に、クロム酸化物からなる硬質主被膜層を各種の膜厚でコーティングした(試料2~6)。また、対比のため、硬質基礎被膜層のみをコーティングした超硬替刃も作成した(試料1)。試料1~6の被膜構造を以下に示す。なお、何れの試料も、全体の膜厚は約7.5μmに設定してある。
Figure JPOXMLDOC01-appb-T000009
 上記試料1~6を用いて、含水率の高いヒノキに対する切削実験を行なった。切削条件は以下の通りである。
機械:NCルーター
被削材:ヒノキ(含水率50~90%)
切削工具:ルータービット(切削径45mm)
送り速度:1m/min
回転数:6000RPM
切込み量:20mm
切削材長:30m
 上記実験により、以下の結果を得た。
Figure JPOXMLDOC01-appb-T000010
 また、切削実験後の各試料の刃先断面形状を図9に示す。
 上記実験結果より、刃先後退量およびすくい面摩耗帯幅は、何れも、硬質主被膜層の膜厚が大きくなるに従って小さくなることが分かる。特に、図9から明らかなように、試料5および6については、極めてシャープな断面形状が残存している。一方、試料2のように、硬質主被膜層が余りに小さいと、刃先後退量およびすくい面摩耗帯幅が大きくなり、刃先断面形状も丸みを帯びていることが分かる。従って、硬質主被膜層はある程度の厚み(少なくとも約0.2μm以上)が必要であると思われる。但し、硬質主被膜層の膜厚を大きくするに従い、切削時や刃付け時でのチッピングが発生し易くなることから、好適な硬質主被膜層の膜厚は、約0.2μm~5.0μmの範囲に設定される。
  (実験例6)
 実験例6では、硬質基礎被膜層の膜厚が硬質主被膜層の密着性に対して及ぼす影響を調べる実験を行なった。本実験例においても、超硬替刃に窒化クロムの硬質基礎被膜層をコーティングし、更に、クロム酸化物からなる硬質主被膜層をコーティングした。試料としては、硬質主被膜層の膜厚を一定(4.0μm)とすると共に、硬質基礎被膜層の膜厚を異ならせた3種類の超硬替刃を作成した(試料2~4)。また、対比のため、基材に硬質主被膜層(膜厚4.0μm)のみをコーティングした超硬替刃(試料1)も作成した。試料1~4の被膜構造を以下に示す。
Figure JPOXMLDOC01-appb-T000011
 上記試料1~4を用いてロックウェル硬さ試験機で設けた圧痕の観察を行ない、デジタルマイクロスコープにて、各試料の表面の剥離面積を測定した。その測定結果を図10のグラフに示す。
 図10に示すように、硬質基礎被膜層の膜厚が0.0μm~0.075μmまでは、剥離面積が高い値で推移し、余り変化がないことが分かる。一方、膜厚が0.075μmを越えると、剥離面積が大きく減少を始めることが分かる。従って、硬質基礎被膜層の膜厚の下限値は、約0.075μm以上であることが望ましいといえる。
  (実験例7)
 実験例7では、硬質基礎被膜層の膜厚が耐欠損性(チッピング)に与える影響を調べる実験を行なった。本実験例では、超硬替刃に窒化クロムの硬質基礎被膜層のみを形成し、該硬質基礎被膜層の膜厚を異ならせた5種類の超硬替刃を作成した。試料1~5の被膜構造を以下に示す。
Figure JPOXMLDOC01-appb-T000012
 上記試料1~5を用いて、乾燥したスプルース集成材に対する切削実験を行なった。切削条件は以下の通りである。
機械:NCルーター
被削材:スプルース集成材
切削工具:ルータービット(切削径45mm)
送り速度:1m/min
回転数:6000RPM
切込み量:20mm
切削材長:60m
 上記切削実験後のすくい面の刃先後退量を各試料毎に測定した。また、各試料の切削刃長(切削に供された切刃の長さ)に対するチッピング幅の割合を算出した。その結果を図11のグラフに示す。図11から分かるように、刃先後退量は硬質基礎被膜層の膜厚に比例して小さくなるのに対し、チッピング幅の割合は、膜厚に比例して大きくなっている。特に、膜厚が10.0μmを越えると、チッピング幅の割合が急激に大きくなっているのが分かる。一方、刃先後退量は膜厚が10.0μmを越えると、その減少度合が小さくなっている(傾きが緩やかになっている)。従って、硬質基礎被膜層の膜厚としては、約10.0μm以下とすることが望ましいといえる。
 以上の実験例5~7の結果から、硬質主被膜層の膜厚としては、約0.2μm~5.0μmの範囲で設定することが望ましいといえる。一方、硬質基礎被膜層の膜厚については、約0.075μm~10.0μmの範囲に設定することが望ましいといえる。
  (実験例8)
 これまでの実験例では、硬質主被膜層がムク木材および集成材に対して良好な耐摩耗性・耐食性を発揮することが確認された。そこで、実験例8では、木質ボード(MDF(Medium Density Fiberboard))に対する切削性能を比較する実験を行なった。すなわち、硬質基礎被膜層のみをコーティングした超硬替刃(試料1)と、硬質基礎被膜層および硬質主被膜層をコーティングした超硬替刃(試料2)とを作成し、夫々について木質ボードに対する切削実験を行なった。試料1および2の被膜構造を以下に示す。なお、何れの試料の超硬替刃においても、コーティングした被膜の合計膜厚が約3.0μmとなるようにし、すくい面および逃げ面の両面にコーティングを行なった。
Figure JPOXMLDOC01-appb-T000013
 上記試料1および2を用いて木質ボードの端面を切削し、各試料の刃先について、木質ボードにおける密度の高い表層部(表面)側を切削した箇所の摩耗量と、木質ボードにおける密度の低い中央部(内部)側を切削した箇所の摩耗量とを測定した。切削条件は以下の通りである。
機械:NC横軸切削機械
被削材:木質ボード(南洋材)
切削工具:カッター(切削径125mm)
送り速度:4m/min
回転数:6000RPM
切込み量:0.5mm
切削材長:1000m
 上記実験により、以下の結果を得た。
Figure JPOXMLDOC01-appb-T000014
 また、切削実験後の各試料の刃先断面形状を図12に示す。なお、図12の左欄は、木質ボードの表層部側(MDF表層部)の結果を示し、図12の右欄は、木質ボードの中心部(MDF中心部)の結果を示している。
 上記実験結果より、木質ボードの表層部および中心部の何れも、試料1は、刃先後退量およびすくい面摩耗帯幅ともに大きな値を示していることが分かる。特に、試料1のすくい面摩耗帯幅は、木質ボードの表層部側で大きくなっている。一方、硬質主被膜層をコーティングした試料2は、試料1に比べて刃先後退量およびすくい面摩耗帯幅ともに小さな値を示している。なお、何れの試料も、木質ボードの表層部側で摩耗量が大きくなっている。これは、木質ボードの表層部は密度が高く、切削時の負荷が大きくなるからであると考えられる。また、図12に示されるように、試料1の刃先は、丸みを帯びた形状となっているのに対し、試料2の刃先は、シャープな断面形状を残している。実験例8の結果より、硬質主被膜層は、木質ボードに対しても優れた耐摩耗性・耐食性を発揮し得ることが確認された。
  (実験例9)
 実験例1~7では、すくい面にコーティングをし、実験例8では、すくい面および逃げ面にコーティングをして切削実験を行なったが、実験例9では、コーティングを逃げ面にのみした場合の切削性能を調べる実験を行なった。また、今回の実験では、木材用刃物としてチップソーを採用し、超硬チップの逃げ面にコーティングを施した。すなわち、超硬チップの逃げ面に硬質基礎被膜層のみをコーティングした試料1と、超硬チップの逃げ面に硬質基礎被膜層および硬質主被膜層をコーティングした試料2とを作成し、夫々切削実験を行なった。試料1および2の被膜構造を以下に示す。なお、本実験で使用されるチップソーは、外径180mm、刃厚2.6mm、本体厚1.8mm、穴径25.4mm、歯数24となっており、何れの試料もコーティングの膜厚は約3.0μmとした。
Figure JPOXMLDOC01-appb-T000015
 上記試料1および2を用いて、被削材としてのヒノキに対し切削を行なった。切削条件は以下の通りである。
機械:NC横軸切削機械
被削材:ヒノキ(含水率50~90%)
切削工具:チップソー(切削径180mm)
送り速度:2m/min
回転数:6800RPM
切込み量:2.0mm
 上記実験により、以下の結果を得た。
Figure JPOXMLDOC01-appb-T000016
 また、150m、300m、450m切削後の各試料の刃先断面形状を図13に示す。なお、刃先(逃げ面)後退量および逃げ面摩耗帯幅は、夫々、図13の符号cおよび符号dで示す摩耗量である。
 更に、上記の実験でヒノキを450m切削した試料1および2に対し、切削動力を比較する実験も行なった。この実験では、被削材としてスプルース乾燥材を採用した。この実験での切削条件は、以下の通りである。
回転数:6800RPM
送り速度:2m/minまたは4m/min
切込み量:2mm
 この結果を図14に示す。なお、図14のグラフにおいて、実線は試料1を示し、破線は試料2を示している。
 表16の結果より、刃先後退量および逃げ面摩耗帯幅ともに硬質主被膜層をコーティングした試料2が小さいことが分かる。特に、試料2の逃げ面摩耗帯幅は、非常に小さな値となっている。また、図13から明らかなように、試料1では、刃先が摩耗して丸みを帯びた形状を呈しているのに対し、試料2では、シャープな刃先断面形状が残存している。更に、図14の結果から、何れの送り速度の場合でも、試料2の切削動力は、試料1に比べて10%程度小さくなっている。すなわち、試料1は、摩耗により刃先断面形状が丸みを帯びたことで切削動力が増加したのに対し、試料2では、刃先断面形状がシャープな形状を維持して切削動力の上昇が抑えられたものと考えられる。このように実験例9では、逃げ面にのみコーティングした場合であっても、硬質主被膜層をコーティングした試料2に係るチップソーは、極めて良好な耐摩耗性・耐食性を発揮し得ることが確認された。
 なお、上記の実施例および実験例では、基材12,32,52,72として超硬合金または高速度工具鋼を採用した場合を示したが、軸受鋼からなる基材を採用することも可能である。また、実施例および実験例では、基材12,32,52,72に対し硬質基礎被膜層18,36,56,74を直接コーティングし、また、硬質基礎被膜層18,36,56,74に対しても、硬質主被膜層20,38,58,60,76を直接コーティングしたものを採用した。しかしながら、密着性等の向上の観点から、基材12,32,52,72と硬質基礎被膜層18,36,56,74との間や、硬質基礎被膜層18,36,56,74と硬質主被膜層20,38,58,60,76との間に、TiN等からなる別の被膜層(中間層)を介在させてもよい。すなわち、硬質基礎被膜層18,36,56,74や硬質主被膜層20,38,58,60,76を、夫々、基材12,32,52,72や硬質基礎被膜層18,36,56,74に対し間接的にコーティングしてもよい。
 更に、硬質基礎被膜層18,36,56,74や硬質主被膜層20,38,58,60,76を多層とした場合に、夫々の硬質基礎被膜層18,36,56,74間や硬質主被膜層20,38,58,60,76間にTiN等からなる中間層を介在させてもよい。この場合、硬質基礎被膜層18,36,56,74および該被膜層間に介在する中間層を含めた全体の膜厚が、前述した約0.075μm~10.0μmの範囲内にあることが望ましい。同様に、硬質主被膜層20,38,58,60,76についても、中間層を含めた全体の膜厚が前述した約0.2μm~5.0μmの範囲内にあることが望ましい。更に、保護力等の向上の観点から、最外層(硬質主被膜層)にTiN等からなる別の被膜層(保護層)をコーティングすることも可能である。

Claims (4)

  1.  超硬合金、軸受鋼または工具鋼からなる基材(12,32,52,72)の少なくともすくい面(16,34,54,78)または逃げ面(22,40,62,80)に、クロム物質および/または窒化クロム系物質を有する硬質基礎被膜層(18,36,56,74)が直接的または間接的にコーティングされた木材用刃物において、
     前記硬質基礎被膜層(18,36,56,74)に、酸化クロム系物質を有する硬質主被膜層(20,38,58,60,76)が直接的または間接的にコーティングされている
    ことを特徴とする木材用刃物。
  2.  前記硬質主被膜層(20,38,58,60,76)の膜厚は、約0.2μm~5.0μmに設定される請求項1記載の木材用刃物。
  3.  前記硬質基礎被膜層(18,36,56,74)の膜厚は、約0.075μm~10.0μmに設定される請求項1または2記載の木材用刃物。
  4.  前記硬質基礎被膜層(74)および硬質主被膜層(76)が交互に複数積層され、全ての被膜層(74,76)の膜厚の合計が約15.0μm以下に設定される請求項1記載の木材用刃物。
PCT/JP2009/058021 2008-04-25 2009-04-22 木材用刃物 WO2009131159A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09735310.6A EP2279837B1 (en) 2008-04-25 2009-04-22 Wood cutting tool
JP2010509205A JP5576788B2 (ja) 2008-04-25 2009-04-22 木材用刃物
CN2009801145522A CN102015229A (zh) 2008-04-25 2009-04-22 木材用刀具
US12/736,517 US8435651B2 (en) 2008-04-25 2009-04-22 Wood cutting tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008116223 2008-04-25
JP2008-116223 2008-04-25

Publications (1)

Publication Number Publication Date
WO2009131159A1 true WO2009131159A1 (ja) 2009-10-29

Family

ID=41216888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058021 WO2009131159A1 (ja) 2008-04-25 2009-04-22 木材用刃物

Country Status (5)

Country Link
US (1) US8435651B2 (ja)
EP (1) EP2279837B1 (ja)
JP (1) JP5576788B2 (ja)
CN (1) CN102015229A (ja)
WO (1) WO2009131159A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147282A1 (ja) * 2011-04-27 2012-11-01 兼房株式会社 切削用刃物及び回転切削工具
WO2014084389A1 (ja) 2012-11-29 2014-06-05 京セラ株式会社 総形刃物および木材用総形工具
WO2014103567A1 (ja) 2012-12-28 2014-07-03 兼房株式会社 刃物
JP5748152B2 (ja) * 2010-08-03 2015-07-15 ユケン工業株式会社 Cr系被膜処理物品

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH705029A1 (de) 2011-05-27 2012-11-30 Bloesch W Ag Beschichtetes Holzbearbeitungswerkzeug.
WO2014170005A2 (de) * 2013-04-16 2014-10-23 Oerlikon Trading Ag, Trübbach Oxidationsschutzschicht auf chrombasis
CN103213345B (zh) * 2013-04-28 2015-08-05 中山源谥真空科技有限公司 一种具有抗变色耐磨复合膜的工件以及在工件表面形成复合膜的方法
DE102013016056A1 (de) * 2013-09-27 2015-04-02 Weil Engineering Gmbh Schneid- oder Stanzwerkzeug
CN117460593A (zh) 2021-07-12 2024-01-26 兼房株式会社 切削工具
CN115418607B (zh) * 2022-08-25 2024-02-23 株洲钻石切削刀具股份有限公司 含三氧化二铬氧化物层的复合涂层切削刀具

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02252501A (ja) 1989-03-28 1990-10-11 Kanefusa Hamono Kogyo Kk 木材回転切削用刃物
JPH08132310A (ja) * 1994-11-02 1996-05-28 Nachi Fujikoshi Corp 潤滑硬質膜被覆ドリル
JP2816511B2 (ja) * 1992-07-14 1998-10-27 兼房 株式会社 木材切削用刃物
JPH11236670A (ja) * 1997-12-15 1999-08-31 Osaka Prefecture 酸化処理による皮膜の改質法及び皮膜が改質された基材
JP2002103304A (ja) * 2000-09-29 2002-04-09 Kanefusa Corp クロムの酸化物または酸窒化物の皮膜および該皮膜を形成した切削工具
JP2007276271A (ja) * 2006-04-07 2007-10-25 Nippon Coating Center Kk 木材切削用刃物
JP2007290180A (ja) * 2006-04-24 2007-11-08 Nippon Coating Center Kk 木材切削用刃物
JP2009067043A (ja) * 2007-09-14 2009-04-02 Sulzer Metaplas Gmbh 切削工具及び切削工具の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2665565B2 (ja) * 1990-09-27 1997-10-22 兼房株式会社 木材平削り用刃物
JP2673655B2 (ja) * 1993-09-21 1997-11-05 兼房株式会社 木材または木質系複合材加工用の回転切削工具
ITUD20040082A1 (it) * 2004-04-29 2004-07-29 Pozzo Spa Utensile per la lavorazione del legno o materiali affini, e relativo procedimento di realizzazione
SE0402180D0 (sv) * 2004-09-10 2004-09-10 Sandvik Ab Deposition of Ti1-xAlxN using Bipolar Pulsed Dual Magnetron Sputtering
DE102004044240A1 (de) * 2004-09-14 2006-03-30 Walter Ag Schneidwerkzeug mit oxidischer Beschichtung
WO2006070509A1 (ja) * 2004-12-28 2006-07-06 Sumitomo Electric Hardmetal Corp. 表面被覆切削工具および表面被覆切削工具の製造方法
SE529143C2 (sv) * 2005-04-18 2007-05-15 Sandvik Intellectual Property Skär belagt med ett kompositoxidskikt

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02252501A (ja) 1989-03-28 1990-10-11 Kanefusa Hamono Kogyo Kk 木材回転切削用刃物
JP2816511B2 (ja) * 1992-07-14 1998-10-27 兼房 株式会社 木材切削用刃物
JPH08132310A (ja) * 1994-11-02 1996-05-28 Nachi Fujikoshi Corp 潤滑硬質膜被覆ドリル
JPH11236670A (ja) * 1997-12-15 1999-08-31 Osaka Prefecture 酸化処理による皮膜の改質法及び皮膜が改質された基材
JP2002103304A (ja) * 2000-09-29 2002-04-09 Kanefusa Corp クロムの酸化物または酸窒化物の皮膜および該皮膜を形成した切削工具
JP2007276271A (ja) * 2006-04-07 2007-10-25 Nippon Coating Center Kk 木材切削用刃物
JP2007290180A (ja) * 2006-04-24 2007-11-08 Nippon Coating Center Kk 木材切削用刃物
JP2009067043A (ja) * 2007-09-14 2009-04-02 Sulzer Metaplas Gmbh 切削工具及び切削工具の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2279837A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5748152B2 (ja) * 2010-08-03 2015-07-15 ユケン工業株式会社 Cr系被膜処理物品
WO2012147282A1 (ja) * 2011-04-27 2012-11-01 兼房株式会社 切削用刃物及び回転切削工具
JP2012228842A (ja) * 2011-04-27 2012-11-22 Kanefusa Corp 切削用刃物及び回転切削工具
WO2014084389A1 (ja) 2012-11-29 2014-06-05 京セラ株式会社 総形刃物および木材用総形工具
WO2014103567A1 (ja) 2012-12-28 2014-07-03 兼房株式会社 刃物
JP6002784B2 (ja) * 2012-12-28 2016-10-05 兼房株式会社 刃物
US10201908B2 (en) 2012-12-28 2019-02-12 Kanefusa Kabushiki Kaisha Cutting tool

Also Published As

Publication number Publication date
EP2279837B1 (en) 2013-07-10
CN102015229A (zh) 2011-04-13
JPWO2009131159A1 (ja) 2011-08-18
EP2279837A1 (en) 2011-02-02
EP2279837A4 (en) 2011-03-30
JP5576788B2 (ja) 2014-08-20
US8435651B2 (en) 2013-05-07
US20110033722A1 (en) 2011-02-10

Similar Documents

Publication Publication Date Title
JP5576788B2 (ja) 木材用刃物
JP6404906B2 (ja) 切削工具
US8492008B2 (en) Cutting tool and also a method for the manufacture of a cutting tool
JP6606840B2 (ja) 多結晶ダイヤモンド焼結体付き回転切削工具
CN102791409B (zh) 硬质被膜及硬质被膜被覆工具
KR101154611B1 (ko) 절삭용 공구
EP2576854B1 (en) Coated cutting tool
EP2939806B1 (en) Cutting tool
EP0809559B1 (en) Knife blades
KR20120002447A (ko) 천공 공구
Darmawan et al. Wear characteristics of multilayer-coated cutting tools when milling particleboard
JP3337804B2 (ja) エンドミル
WO2018216641A1 (ja) 刃具用材料及びその製造方法、並びに刃具
Ratajski et al. Hard coatings for woodworking tools–a review
JPS5943246B2 (ja) 表面被覆超硬合金製ミニチユアドリル
Pangestu et al. Performance of coated tungsten carbide in milling composite boards
JP4996278B2 (ja) 深穴加工用超硬質材料製ロングドリル
JP3036343B2 (ja) エンドミル
WO2023234389A1 (ja) 木材切削用刃物及びその再研磨方法
CN2762980Y (zh) 木工切割锯片
JP2011093053A (ja) 切削工具およびその製造方法
CN117460593A (zh) 切削工具
CN109576670B (zh) 切削工具用硬质覆膜
JPH0631520A (ja) エンドミル
JPH07328811A (ja) 耐摩耗性のすぐれた表面被覆高速度鋼製切削工具

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980114552.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09735310

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010509205

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12736517

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009735310

Country of ref document: EP