WO2009128347A1 - 2-アルキル-2-シクロアルケン-1-オンの製造方法 - Google Patents

2-アルキル-2-シクロアルケン-1-オンの製造方法 Download PDF

Info

Publication number
WO2009128347A1
WO2009128347A1 PCT/JP2009/056871 JP2009056871W WO2009128347A1 WO 2009128347 A1 WO2009128347 A1 WO 2009128347A1 JP 2009056871 W JP2009056871 W JP 2009056871W WO 2009128347 A1 WO2009128347 A1 WO 2009128347A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
palladium
alkyl
gas
hydrogen
Prior art date
Application number
PCT/JP2009/056871
Other languages
English (en)
French (fr)
Inventor
薫司 松本
敦志 永澤
由晴 安宅
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to EP09731956.0A priority Critical patent/EP2269971B1/en
Priority to US12/988,164 priority patent/US8378147B2/en
Publication of WO2009128347A1 publication Critical patent/WO2009128347A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/10Systems containing only non-condensed rings with a five-membered ring the ring being unsaturated

Definitions

  • the present invention relates to a process for the preparation of 2-alkyl-2-cycloalk-1-enes and to a process for the activation of palladium and / or platinum catalysts.
  • 2-alkyl-2-cycloalk-1-enes are useful as synthetic intermediates for physiologically active substances and perfumes.
  • a method for producing 2-alkyl-2-cycloalk-1-ene there is a method in which 2-alkylidenecycloalkanone is isomerized by contacting it with a solid acid catalyst in a gas phase under heating (Patent Document 1).
  • Method of isomerization under heating using a platinum group metal catalyst Patent Document 2
  • method of isomerization at 20 to 150 ° C. in the presence of hydrogen halide or sulfonic acid Patent Document 3
  • 150 ° C. in alcohol solvent A method of isomerization by contacting with hydrogen halide at ⁇ 190 ° C.
  • Patent Document 4 is known.
  • the method of Patent Document 1 has a disadvantage that the operation is complicated because it is a gas phase reaction, and the method of Patent Document 2 reduces the double bond with hydrogen gas used for catalyst activation to Since the alkylcycloalkanone is by-produced and the yield of the desired 2-alkyl-2-cycloalk-1-ene decreases, it has the disadvantage that high purity can not be obtained.
  • the methods described in Patent Documents 3 and 4 have problems of corrosion of the reaction tank and post-treatment because of using strong acid.
  • the present invention relates to the following [1] and [2].
  • R 1 and R 2 each represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, or R 1 and R 2 may form a cyclopentane ring or a cyclohexane ring through a carbon atom adjacent to .
  • R 3 may be replaced with any of the hydrogen atoms on the alicyclic structure, an alkyl group having 1 to 5 carbon atoms Indicate
  • a method for activating a palladium and / or platinum catalyst according to the following steps (a) and (b): Step (a): Step of activating palladium and / or platinum catalyst in an atmosphere containing hydrogen gas Step (b): Replacing hydrogen gas present as an atmosphere of catalyst in step (a) with an inert gas Process to remove
  • the present invention relates to a method for producing 2-alkyl-2-cycloalk-1-en, which can obtain a target product with high purity and is highly productive, and a method for activating a palladium and / or platinum catalyst.
  • the present inventors reacted with 2-alkylidenecycloalkanone in the presence of hydrogen gas and palladium and / or platinum catalyst treated with an inert gas to obtain excellent selectivity and high yield. It has been found that it is possible to produce alkyl-2-cycloalk-1-enes.
  • the method for producing 2-alkyl-2-cycloalk-1-ene (hereinafter also referred to as “compound (2)”) represented by the following general formula (2) of the present invention is represented by the following general formula (1) Characterized in that the reacted 2-alkylidene cycloalkanone (hereinafter also referred to as “compound (1)”) is reacted in the presence of a palladium and / or platinum catalyst treated by the following steps (a) and (b) I assume.
  • the method for activating a palladium and / or platinum catalyst of the present invention is characterized by the following steps (a) and (b).
  • n is an integer of 0 to 3
  • n represents an integer of 1 or 2
  • R 1 and R 2 are either each a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, or R 1 and R 2 The adjacent carbon atom may form a cyclopentane ring or a cyclohexane ring.
  • R 3 represents an alkyl group having 1 to 5 carbon atoms which may be substituted with any hydrogen atom on the alicyclic structure.
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, or cyclo either via a carbon atom adjacent to R 1 and R 2 It may form a pentane ring or a cyclohexane ring.
  • R 1 and R 2 are preferably a hydrogen atom or a linear or branched alkyl group, and more preferably a hydrogen atom or a linear alkyl group.
  • alkyl group of R 1 and R 2 examples include methyl group, ethyl group, various propyl groups of linear or branched chain, various butyl groups, various pentyl groups, various hexyl groups, various heptyl groups and various octyl groups.
  • “form a cyclopentane ring or a cyclohexane ring via a carbon atom adjacent to R 1 and R 2 ” means that R 1 is bonded to R 2 via a carbon atom, or R 2 is It means that "a 5-membered ring or a 6-membered ring is formed" by bonding to R 1 through a carbon atom.
  • the hydrogen atom bonded to the carbon atom may be substituted, for example, by a hydrocarbon group such as an alkyl group having 1 to 5 carbon atoms or an alkenyl group.
  • R 3 represents an alkyl group having 1 to 5 carbon atoms which may be substituted with any hydrogen atom on the alicyclic structure constituting the cycloalkenone.
  • Preferred examples of the alkyl group having 1 to 5 carbon atoms include alkyl groups having 1 to 3 carbon atoms such as methyl, ethyl and propyl.
  • the manufacturing method of compound (1) which is a raw material is not specifically limited, For example, it can manufacture by carrying out the aldol condensation of cyclopentanone and an aldehyde according to the method as described in Chemical Abstracts 79, 78170 f etc., for example.
  • n is 1 or 2
  • R 1 and R 2 are each a hydrogen atom or C 1 to C Examples thereof include compounds which are linear or branched alkyl groups having 8 or preferably 3 to 6 carbon atoms.
  • the compound (1) examples include 2-propylidenecyclopentanone, 2-butylidenecyclopentanone, 2- (2'-methylpropylidene) cyclopentanone, 2-pentylidenecyclopentanone, 2- (2'-methylbutylidene) cyclopentanone, 2-hexylidenecyclopentanone, 2- (2'-ethylpropylidene) cyclopentanone, 2- (2'-propylpentylidene) cyclopentanone, etc. It can be mentioned.
  • the compound (1) obtained by such a method can be used without purification, but when the activity of the catalyst is lowered, it may be used after purification by a method such as distillation.
  • the compound (2) of the present invention is produced by reacting the compound (1) in the presence of a palladium and / or platinum catalyst treated by the following steps (a) and (b).
  • the catalyst used in the present invention is a catalyst containing platinum (Pt) and / or palladium (Pd) (hereinafter collectively referred to as “metal component”) as a main component.
  • metal component platinum (Pt) and / or palladium (Pd) (hereinafter collectively referred to as “metal component”) as a main component.
  • metal component platinum (Pt) and / or palladium (Pd) (hereinafter collectively referred to as “metal component”) as a main component.
  • metal component can be used singly or in combination of two or more.
  • “containing as a main component” means that the component is contained in the catalyst metal component preferably at 50 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more, particularly preferably 95 mol% It means including above.
  • These catalysts may contain other metal components or minor amounts of cocatalysts.
  • Such other metal components include, for example, elements of Groups 8 to 9 of Period 5 to 6 of the Periodic Table, such as Ru, Rh, Os, Ir, Ti, V, Cr, Mn, Fe, Co And elements of Groups 4 to 11 of Period 4 of the periodic table such as Ni and Cu, W, Ag, Au and the like.
  • the catalyst can be suitably prepared and used in the form of a supported type, Raney type, soluble type, powdery form, granular form and the like.
  • the supported catalyst is a catalyst in which a metal component is supported on a carrier in order to improve physical properties such as durability of the catalyst.
  • the supported catalyst can be prepared by a known method such as precipitation, ion exchange, evaporation to dryness, spray drying, and kneading.
  • As the carrier carbon (activated carbon), alumina, silica, silica-alumina, barium sulfate, calcium carbonate and the like can be mentioned. Among these, carbon (activated carbon), silica, alumina and silica-alumina are preferable.
  • the catalyst include palladium carbon, platinum carbon, palladium-loaded alumina, platinum-loaded alumina, palladium-loaded barium sulfate, platinum-loaded barium sulfate, palladium-loaded calcium carbonate, platinum-loaded calcium carbonate and the like.
  • palladium carbon, platinum carbon, palladium-loaded alumina, and platinum-loaded alumina which are highly reactive and capable of easily recovering a palladium catalyst after reaction, are preferable, and from the viewpoint of availability, ease of handling, reactivity, etc.
  • Particularly preferred are palladium carbon and platinum carbon.
  • the supported amount of the metal component in the supported catalyst is preferably about 0.1 to 70% by mass based on the total amount of the support and the supported metal component from the viewpoint of catalytic activity.
  • the Raney-type catalyst is a porous sponge-like metal catalyst, and can be prepared, for example, by Teruo Kubomatsu and Shinichiro Komatsu, "Raney catalyst", Kyoritsu Publishing (1971), and the like.
  • a soluble catalyst for example, a solution of a metal salt such as an inorganic acid such as nitric acid or hydrochloric acid or a mixed solution of various metal salts may be dropped to the reaction system.
  • a commercial item can also be used as said catalyst.
  • the amount of catalyst used can be optimized as appropriate depending on the type of reaction.
  • the amount of metal is preferably 0.001 to 1.5 mol%, more preferably 0.005 to 0.5 mol%, relative to the compound (1) which is the raw material.
  • 0.01 to 0.2 mol% is more preferable.
  • a catalyst it may be a suspension bed or a fixed bed. In the case of a fixed bed reaction using a solid platinum group metal catalyst, it is effective in mass production because a separation step of the catalyst and the reaction product is not necessary. In the suspension bed reaction, if a solid catalyst is used, the catalyst and the reaction liquid can be easily separated by filtration or the like, and it is also possible to recycle the catalyst.
  • the reaction may be carried out either in liquid or gas phase, or in batch or continuous mode.
  • Step (a) is a step of activating the palladium and / or platinum catalyst in an atmosphere containing hydrogen gas. 70 mass% or more is preferable from a viewpoint of the efficiency of activation, and, as for the hydrogen gas concentration in the gaseous-phase part in a processing tank, 90 mass% or more is more preferable.
  • the activation treatment temperature of the catalyst is preferably 20 to 150 ° C., more preferably 25 to 100 ° C., and still more preferably 30 to 80 ° C.
  • the pressure reduction degree at the activation treatment is preferably 0.5 to 100 kPa, more preferably 5 to 70 kPa, and still more preferably 10 to 60 kPa.
  • the activation time is preferably 0.5 to 2 hours, more preferably 0.75 to 1.5 hours.
  • the catalyst activation treatment is preferably performed by repeating the operation of reducing the pressure in a hydrogen gas atmosphere and then returning to the atmospheric pressure a plurality of times, for example, 2 to 6 times, preferably 3 to 4 times.
  • the step (b) is a step of replacing the hydrogen gas present as an atmosphere of the catalyst in the step (a) with an inert gas and removing it.
  • the step (b) may be any step as long as the hydrogen gas contained in the treated palladium and / or platinum catalyst obtained in the step (a) can be rapidly discharged out of the system, and in particular, the other steps It is not limited.
  • the process etc. which substitute with an inert gas under slight pressure reduction can be mentioned.
  • the inert gas nitrogen gas, argon gas, helium gas and the like are preferable, and nitrogen gas is more preferable.
  • the degree of pressure reduction is preferably 0.5 to 100 kPa, more preferably 10 to 90 kPa, and still more preferably 20 to 80 kPa.
  • the hydrogen gas concentration in the gas phase part in the treatment tank after replacement with inert gas is preferably 0 to 30% by mass, and more preferably 0.1 to 10% by mass.
  • the operation of removing hydrogen gas in the catalyst is preferably performed by repeating the operation of reducing the pressure in an inert gas atmosphere and then returning to the atmospheric pressure a plurality of times, for example, 2 to 10 times, preferably 3 to 9 times. .
  • the temperature in the reaction of the present invention is preferably 100 to 300 ° C., from the viewpoint of terminating the reaction in a short time to prevent the polymerization of the compound (1) and preventing a decrease in yield, more preferably 150 to 250 ° C. 230 ° C. is more preferable, and 170 to 210 ° C. is particularly preferable.
  • the reaction pressure can be appropriately adjusted according to the reaction temperature, but is preferably in the range of 50 to 200 kPa, and more preferably in the range of 100 to 150 kPa.
  • the invention can be carried out in the presence or absence of a solvent. It is advantageous from the viewpoints of productivity and economy to use no solvent.
  • a solvent which can be used, and, for example, alcohols such as methanol, ethanol, isopropanol, tert-butanol, n-butanol, hexanol, octanol, ethylene glycol, propylene glycol, ethylene glycol monoethyl ether, diethylene glycol, benzyl alcohol and the like , Ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone, ethers such as isopropyl ether, n-butyl ether, 1,4-dioxane and tetrahydropyran, esters such as n-methyl formate, methyl acetate and ethyl acetate And hydrocarbon
  • the process for producing the compound (2) of the present invention it becomes possible to prevent the polymerization of the 2-alkylidenecycloalkanone which is the raw material and the 2-alkyl-2-cyclopentenone which is the product, and the compound (2) Can be obtained in high yield and high purity.
  • the target compound can be produced using a catalyst having low corrosiveness and toxicity.
  • m is 0, n is 1 or 2, more preferably n is 1, R 1 and R 2 are each a hydrogen atom or C 1 to C Examples thereof include compounds which are linear or branched alkyl groups having 8 or preferably 3 to 6 carbon atoms.
  • the compound (2) examples include 2-propyl-2-cyclopenten-1-one, 2-isopropyl-2-cyclopenten-1-one, 2-n-butyl-2-cyclopenten-1-one, 2- n-Pentyl-2-cyclopenten-1-one, 2-isopentyl-2-cyclopenten-1-one, 2- (2'-methylbutyl) -2-cyclopenten-1-one, 2-hexyl-2-cyclopentene-1 -On etc. are mentioned.
  • An alkyl (3-oxo-2-alkylcycloalkyl) acetate (hereinafter referred to as “compound (3)”) represented by the following general formula (3) is a compound useful as a fragrance material and a physiologically active substance, It can be obtained by reacting the compound (2) obtained by the above production method as a raw material in the presence of a basic catalyst.
  • R 4 is an alkyl group having 1 to 3 carbon atoms, preferably a linear or branched alkyl group
  • the malonic acid diester represented by the following general formula (4) is preferably added to the compound (2) which is the starting material, in the presence of a basic catalyst.
  • the reaction is carried out at a ratio of 5 molar times, more preferably 1.2 to 2 molar times, to produce a compound represented by the following general formula (5) (hereinafter referred to as “compound (5)”).
  • R 4 may be the same or different.
  • Examples of the basic catalyst that can be used include alkali metals such as sodium and potassium, and alkali metal alkoxides such as sodium alkoxide and potassium alkoxide.
  • the amount of the basic catalyst used is preferably 0.005 to 0.2 mole, more preferably 0.01 to 0.1 mole, per mol of the compound (2), from the viewpoint of reactivity and the like.
  • polar solvents such as alcohols are preferred.
  • the reaction temperature is preferably -10 to 30 ° C, and more preferably -2 to 20 ° C.
  • a compound (3) can be produced by reacting the compound (5) obtained by the above method with water.
  • Water is preferably added in an amount of 1 to 3 times the molar amount of the compound (5), and it is preferable to react while dropping into the reaction system.
  • the reaction temperature at this time is preferably 150 to 230 ° C., and more preferably 180 to 220 ° C.
  • the present invention it is possible to obtain a target product with high purity and provide a highly productive method for producing 2-alkyl-2-cycloalkene-1-one, and a method for activating palladium and / or platinum catalyst. can do. Further, according to the present invention, it becomes possible to prevent the polymerization of raw materials and by-production of 2-alkylcycloalkanone more than before, and the target compound is obtained in high yield and high purity using a catalyst with low corrosiveness and toxicity. Can be manufactured by
  • the product is quantified by gas chromatography (GC) analysis (Agilent Technology, 6890N, column: DB-1 (30 m ⁇ 0.25 mm ⁇ 0.25 ⁇ m), oven: 100 ° C. ⁇ 5 ° C. / min. ⁇ 210 ° C. ⁇ 20 ° C./min. 280 ° C. (4.5 min. hold) (total 30 min.), carrier: He, flow rate: 1.6 mL / min., inlet: 280 ° C., detector (FID) It carried out by the internal standard method (internal standard: undecane (Nacalai Tesque, Inc.
  • Synthesis Example 1 (Synthesis of 2-pentylidenecyclopentanone) In a 6 m 3 reaction vessel equipped with a dropping vessel, 2241 kg (26.6 kmol) of cyclopentanone, 1007 kg of water, and 11 kg of 48% NaOH were charged and cooled to 15 ° C while stirring, then 985 kg of valeraldehyde at the same temperature (11. After dropping 4 kmol) over 5 hours, the mixture was stirred for 1 hour. After completion of the reaction, the reaction solution was neutralized, and excess cyclopentanone was recovered by distillation. In 1868 kg of the reaction product of the organic layer, 1706 kg of 2- (1-hydroxypentyl) -cyclopentanone was contained.
  • Example 1 In an automatic synthesizer (manufactured by Shibata Scientific Co., Ltd., Chemi-200, reaction container manufactured by 100 mL GL), decane (manufactured by Wako Pure Chemical Industries, Ltd., special grade, purity 99%) 5.0 g (0.035 mol), 5% Pd 0.43 g of C./C (manufactured by N.E. Chemcat Co., Ltd., Pd carbon powder, 49% water content product) was added, and the inside of the tank was purged with nitrogen under slightly reduced pressure (27 kPa) while stirring at 400 r / min.
  • decane manufactured by Wako Pure Chemical Industries, Ltd., special grade, purity 99%
  • Example 2 In the same automatic synthesizer as used in Example 1, 5.0 g (0.035 mol) of decane, 1.11 g of 2% Pt / C (manufactured by EI Chemcat Co., Ltd., Pt carbon powder, 54% water-containing product) In addition, 400 r / min. The operation of depressurizing the inside of the tank to 27 kPa while stirring with hydrogen and returning to atmospheric pressure with hydrogen was repeated four times. The temperature in the tank was raised to 50 ° C., and catalyst activation was performed for 1 hour.
  • Pt / C manufactured by EI Chemcat Co., Ltd., Pt carbon powder, 54% water-containing product
  • Comparative Example 1 10 g of 2-pentylidenecyclopentanone and 0.23 g of 5% Pd / C used in Example 1 were added to the same automatic synthesizer as used in Example 1, and the system was slightly depressurized while stirring. It replaced with nitrogen by (27 kPa). Then, after attaching the pressure-proof balloon which collected hydrogen, the operation of pressure-reducing the inside of a tank to 27 kPa and returning to atmospheric pressure with hydrogen was repeated 4 times, the inside of a tank was heated up to 130 degreeC.
  • Comparative example 2 10 g of 2-pentylidene cyclopentanone and 0.43 g of 5% Pd / C used in Example 1 were added to the same automatic synthesizer as used in Example 1, and the pressure in the tank was slightly reduced while stirring. The reactor was purged with nitrogen at (27 kPa), and the temperature in the tank was raised to 195 ° C. The reaction was carried out for 6 hours, and the internal standard yield of 2-pentyl-2-cyclopenten-1-one by GC analysis was 85%, 2-pentylcyclopentanone was 4%, and high-boiling by-products were 11%. It was
  • Comparative example 3 In the same automatic synthesizer as used in Example 1, 5.0 g (0.035 mol) of decane, 0.56 g of 5% Ir / C (manufactured by NY Chemcat Co., Ltd., Ir carbon powder, 61% water-containing product) In addition, 400 r / min. The operation of depressurizing the inside of the tank to 27 kPa while stirring with hydrogen and returning to atmospheric pressure with hydrogen was repeated four times. The temperature in the tank was raised to 50 ° C., and catalyst activation was performed for 1 hour.
  • Comparative example 4 In the same automatic synthesizer as used in Example 1, 5.0 g (0.035 mol) of decane, 0.47 g of 5% Rh / C (manufactured by EI Chemcat Co., Ltd., Rh carbon powder, 54% water-containing product) In addition, 400 r / min. The operation of depressurizing the inside of the tank to 27 kPa while stirring with hydrogen and returning to atmospheric pressure with hydrogen was repeated four times. The temperature in the tank was raised to 50 ° C., and catalyst activation was performed for 1 hour.
  • Comparative example 5 In the same automatic synthesizer as used in Example 1, 5.0 g (0.035 mol) of decane, 0.44 g of 5% Ru / C (manufactured by EI Chemcat Co., Ltd., Ru carbon powder, 50% water-containing product) In addition, 400 r / min. The operation of depressurizing the inside of the tank to 27 kPa while stirring with hydrogen and returning to atmospheric pressure with hydrogen was repeated four times. The temperature in the tank was raised to 50 ° C., and catalyst activation was performed for 1 hour.
  • 2-alkyl-2-cycloalk-1-ene can be industrially advantageously produced in high yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

 2-アルキリデンシクロアルカノンを、下記工程(a)及び(b)で処理したパラジウム及び/又は白金触媒の存存下で反応させる、一般式(2)で表される2-アルキル-2-シクロアルケン-1-オンの製造方法、及び下記工程(a)及び(b)によるパラジウム及び/又は白金触媒の活性化方法である。本発明によれば、高純度で生産性良く2-アルキル-2-シクロアルケン-1-オンを製造することができる。  工程(a):パラジウム及び/又は白金触媒を、水素ガスを含む雰囲気下において活性化する工程  工程(b):工程(a)において触媒の雰囲気として存在する水素ガスを、不活性ガスで置換し除去する工程 (式中、mは0~3、nは1又は2、R1及びR2は水素原子又は炭素数1~8のアルキル基等を示し、R3は炭素数1~5のアルキル基を示す。)

Description

2-アルキル-2-シクロアルケン-1-オンの製造方法
 本発明は、2-アルキル-2-シクロアルケン-1-オンの製造方法、及びパラジウム及び/又は白金触媒の活性化方法に関する。
 2-アルキル-2-シクロアルケン-1-オンは、生理活性物質や香料の合成中間体として有用である。従来、2-アルキル-2-シクロアルケン-1-オンの製造法としては、2-アルキリデンシクロアルカノンを加熱下に固体酸触媒と気相で接触させて異性化する方法(特許文献1)、白金族金属触媒を用いて加熱下、異性化する方法(特許文献2)、ハロゲン化水素又はスルホン酸の存在下、20~150℃で異性化する方法(特許文献3)、アルコール溶媒中150℃~190℃でハロゲン化水素と接触させて異性化する方法(特許文献4)が知られている。
 しかし、特許文献1の方法は、気相反応であるため操作が煩雑であるという欠点を有し、特許文献2の方法は、触媒活性化に用いる水素ガスにより二重結合が還元されて2-アルキルシクロアルカノンが副生し、目的とする2-アルキル-2-シクロアルケン-1-オンの収率が低下するため、高純度のものが得られないという欠点を有する。また、特許文献3及び4に記載の方法は、強酸を使用するため反応槽の腐食性、後処理の問題があった。
特開昭55-120533号公報 特公昭58-42175号公報 特開昭51-23240号公報 特開2000-327618号公報
 本発明は、次の〔1〕及び〔2〕に関する。
〔1〕下記一般式(1)で表される2-アルキリデンシクロアルカノンを、下記工程(a)及び(b)で処理したパラジウム及び/又は白金触媒の存存下で反応させる、下記一般式(2)で表される2-アルキル-2-シクロアルケン-1-オンの製造方法
 工程(a):パラジウム及び/又は白金触媒を、水素ガスを含む雰囲気下において活性化する工程
 工程(b):工程(a)において触媒の雰囲気として存在する水素ガスを、不活性ガスで置換し除去する工程
Figure JPOXMLDOC01-appb-C000003
(式中、mは0~3の整数、nは1又は2の整数、R1及びR2は、それぞれ水素原子又は炭素数1~8のアルキル基を示すか、又はR1とR2とに隣接する炭素原子を介してシクロペンタン環又はシクロヘキサン環を形成してもよい。R3は、脂環構造上のいずれかの水素原子と置換してもよい、炭素数1~5のアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000004
(式中、m、n、R1、R2及びR3は前記と同じである。)
〔2〕下記工程(a)及び(b)によるパラジウム及び/又は白金触媒の活性化方法。
工程(a):パラジウム及び/又は白金触媒を、水素ガスを含む雰囲気下において活性化する工程
 工程(b):工程(a)において触媒の雰囲気として存在する水素ガスを、不活性ガスで置換し除去する工程
 本発明は、高純度で目的物を得ることができ、生産性の高い2-アルキル-2-シクロアルケン-1-オンの製造方法、及びパラジウム及び/又は白金触媒の活性化方法に関する。
 本発明者らは、水素ガス及び不活性ガスにより処理したパラジウム及び/又は白金触媒の存在下で、2-アルキリデンシクロアルカノンを反応させることにより、優れた選択性、高収率で、2-アルキル-2-シクロアルケン-1-オンを製造できることを見出した。
 本発明の下記一般式(2)で表される2-アルキル-2-シクロアルケン-1-オン(以下、「化合物(2)」ともいう)の製造方法は、下記一般式(1)で表される2-アルキリデンシクロアルカノン(以下、「化合物(1)」ともいう)を、下記工程(a)及び(b)によって処理したパラジウム及び/又は白金触媒の存存下で反応させることを特徴とする。
 また、本発明のパラジウム及び/又は白金触媒の活性化方法は、下記工程(a)及び(b)によることを特徴とする。
 工程(a):パラジウム及び/又は白金触媒を、水素ガスを含む雰囲気下において活性化する工程
 工程(b):工程(a)において触媒の雰囲気として存在する水素ガスを、不活性ガスで置換し除去する工程
Figure JPOXMLDOC01-appb-C000005
 式中、mは0~3の整数、nは1又は2の整数、R1及びR2は、それぞれ水素原子又は炭素数1~8のアルキル基を示すか、又はR1とR2とに隣接する炭素原子を介してシクロペンタン環又はシクロヘキサン環を形成してもよい。R3は、脂環構造上のいずれかの水素原子と置換してもよい、炭素数1~5のアルキル基を示す。
[化合物(1)及び(2)]
 本発明の化合物(2)の製造方法においては、原料として化合物(1)を用いる。
 一般式(1)及び(2)において、R1及びR2は、それぞれ水素原子又は炭素数1~8のアルキル基を示すか、又はR1とR2とに隣接する炭素原子を介してシクロペンタン環又はシクロヘキサン環を形成してもよい。R1及びR2は、水素原子又は直鎖又は分岐鎖のアルキル基であることが好ましく、水素原子又は直鎖のアルキル基であることがより好ましい。
 R1及びR2であるアルキル基としては、メチル基、エチル基、直鎖又は分岐鎖の各種プロピル基、各種ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基が挙げられる。
 ここで、「R1とR2とに隣接する炭素原子を介してシクロペンタン環又はシクロヘキサン環を形成」するとは、R1が炭素原子を介してR2と結合して、又は、R2が炭素原子を介してR1と結合して、5員環又は6員環を形成」することを意味する。なお、炭素原子に結合した水素原子は、例えば炭素数1~5のアルキル基、アルケニル基等の炭化水素基で置換していてもよい。
 一般式(1)及び(2)において、R3は、シクロアルケノンを構成する脂環構造上のいずれかの水素原子と置換してもよい炭素数1~5のアルキル基を示す。この炭素数1~5のアルキル基としては、好ましくはメチル基、エチル基、プロピル基等の炭素数1~3のアルキル基が挙げられる。
 原料である化合物(1)の製造方法は特に限定されないが、例えばケミカルアブストラクツ79巻、78170f等に記載の方法に従い、シクロペンタノンとアルデヒドをアルドール縮合させることにより製造することができる。
 化合物(1)の好適例としては、一般式(1)において、mが0、nが1又は2、より好ましくはnが1、R1及びR2が、それぞれ水素原子、又は炭素数1~8、好ましくは炭素数3~6の直鎖又は分岐鎖のアルキル基である化合物が挙げられる。
 化合物(1)の具体例としては、2-プロピリデンシクロペンタノン、2-ブチリデンシクロペンタノン、2-(2’-メチルプロピリデン)シクロペンタノン、2-ペンチリデンシクロペンタノン、2-(2’-メチルブチリデン)シクロペンタノン、2-ヘキシリデンシクロペンタノン、2-(2’-エチルプロピリデン)シクロペンタノン、2-(2’-プロピルペンチリデン)シクロペンタノン等が挙げられる。
 本発明では、このような方法で得られる化合物(1)を精製せずに用いることもできるが、触媒の活性が低下する場合は蒸留等の方法で精製して用いてもよい。
[化合物(2)の製造]
 本発明の化合物(2)は、化合物(1)を、下記工程(a)及び(b)によって処理したパラジウム及び/又は白金触媒の存在下で反応させることにより製造される。
工程(a):パラジウム及び/又は白金触媒を、水素ガスを含む雰囲気下において活性化する工程
工程(b):工程(a)において触媒の雰囲気として存在する水素ガスを、不活性ガスで置換し除去する工程
<触媒>
 本発明に用いられる触媒は、白金(Pt)及び/又はパラジウム(Pd)(以下、これらを総称して「金属成分」ともいう)を主成分として含む触媒である。これらの金属成分は、1種単独で又は2種以上を組み合わせて用いることができる。ここで、「主成分として含む」とは、触媒金属成分中に、当該成分を好ましくは50モル%以上、より好ましくは70モル%以上、更に好ましくは90モル%以上、特に好ましくは95モル%以上含むことを意味する。
 これらの触媒は、他の金属成分又は副次量の助触媒を含有していてもよい。このような他の金属成分の例としては、例えば、Ru、Rh、Os、Irなどの周期律表第5~6周期の第8~9族元素、Ti、V、Cr、Mn、Fe、Co、Ni、Cu等の周期律表第4周期の第4~11族元素や、W、Ag及びAu等が挙げられる。
 触媒は、担持型、ラネー型、可溶型、粉末状、顆粒状等の形態に適宜調製して使用することができる。
 担持型触媒は、触媒の耐久性等の物理的特性を改善するために金属成分を担体に担持した触媒である。担持型触媒の調製は、沈殿法、イオン交換法、蒸発乾固法、噴霧乾燥法、混練法等の公知の方法により行うことができる。担体としては、炭素(活性炭)、アルミナ、シリカ、シリカ-アルミナ、硫酸バリウム及び炭酸カルシウム等が挙げられる。これらの中では、炭素(活性炭)、シリカ、アルミナ、シリカ-アルミナが好ましい。
 触媒の具体例としては、パラジウムカーボン、白金カーボン、パラジウム担持アルミナ、白金担持アルミナ、パラジウム担持硫酸バリウム、白金担持硫酸バリウム、パラジウム担持炭酸カルシウム、白金担持炭酸カルシウム等が挙げられる。これらの中では、反応性が高く、反応後にパラジウム触媒を容易に回収可能なパラジウムカーボン、白金カーボン、パラジウム担持アルミナ、白金担持アルミナが好ましく、入手性や取り扱いの簡便さ、反応性等の観点から、パラジウムカーボン及び白金カーボンが特に好ましい。
 担持型触媒における金属成分の担持量は、触媒活性の点から、担体と担持された金属成分との合計量に基づき、通常0.1~70質量%程度が好ましい。
 ラネー型触媒は多孔質のスポンジ状金属触媒であり、例えば、久保松照夫、小松信一郎著、「ラネー触媒」、共立出版(1971))等により調製することができる。
 可溶型触媒を用いる場合は、例えば、硝酸、塩酸などの無機酸などの金属塩の溶液、又は各種金属塩の混合溶液を反応系に滴下すればよい。
 なお、上記の触媒として市販品を使用することもできる。
 触媒の使用量は、反応形式により適宜最適化することができる。
 回分式の場合は、反応性及び経済性の観点から、原料である化合物(1)に対して、金属量として0.001~1.5mol%が好ましく、0.005~0.5mol%がより好ましく、0.01~0.2mol%がさらに好ましい。
 触媒を用いる場合は、懸濁床でも固定床でもよい。
 固体白金族金属触媒を用いた固定床反応の場合には、触媒と反応終了物との分離工程が要らないことから、大量生産する際には有効である。
 懸濁床反応でも固体触媒を使用すれば、濾過等により触媒と反応液とを容易に分離することができ、触媒をリサイクルすることも可能である。また、反応形式は、液相でも気相でも、また回分式でも連続式でも行うことができる。
<工程(a)>
 工程(a)は、パラジウム及び/又は白金触媒を、水素ガスを含む雰囲気下において活性化する工程である。
 処理槽内の気相部中の水素ガス濃度は、活性化の効率の観点から70質量%以上が好ましく、90質量%以上がより好ましい。
 触媒の活性化処理温度は、20~150℃が好ましく、25~100℃がより好ましく、30~80℃が更に好ましい。活性化処理時の減圧度は0.5~100kPaが好ましく、5~70kPaがより好ましく、10~60kPaがさらに好ましい。また、活性化時間は0.5~2時間が好ましく、0.75~1.5時間がより好ましい。
 触媒の活性化処理は、水素ガス雰囲気下で減圧とした後大気圧に戻すという操作を複数回、例えば2~6回、好ましくは3~4回繰り返すことにより行うことが好ましい。
<工程(b)>
 工程(b)は、工程(a)において触媒の雰囲気として存在する水素ガスを、不活性ガスで置換し除去する工程である。
 工程(b)は、工程(a)で得られた処理済のパラジウム及び/又は白金触媒に含まれる水素ガスを、速やかに系外に排出することができる工程であればよく、その他については特に限定されない。例えば、微減圧下で不活性ガスに置換する工程等を挙げることができる。
 不活性ガスとしては、窒素ガス、アルゴンガス、ヘリウムガス等が好ましく、窒素ガスがより好ましい。また、減圧度は0.5~100kPaが好ましく、10~90kPaがより好ましく、20~80kPaがさらに好ましい。
 不活性ガスによる置換後の処理槽内の気相部の水素ガス濃度は、収率の観点から0~30質量%が好ましく、0.1~10質量%がより好ましい。
 触媒中の水素ガスを除去する操作は、不活性ガス雰囲気下で減圧とした後大気圧に戻すという操作を複数回、例えば2~10回、好ましくは3~9回繰り返すことにより行うことが好ましい。
<反応条件>
 本発明の反応における温度は100~300℃が好ましく、反応を短時間で終わらせ、化合物(1)の重合を防ぎ収率の低下を防ぐという観点から、150~250℃がより好ましく、160~230℃がさらに好ましく、170~210℃が特に好ましい。
 反応圧力は反応温度に応じて適宜調整しうるが、50~200kPaの範囲とすることが好ましく、100~150kPaの範囲とすることがより好ましい。
<溶媒>
 本発明は、溶媒の存在下でも不存在下でも行うことができる。溶媒を使用しない方が、生産性、経済性の観点から有利である。使用しうる溶媒に特に制限はなく、例えば、メタノール、エタノール、イソプロパノール、tert-ブタノール、n-ブタノール、ヘキサノール、オクタノール、エチレングリコール、プロピレングリコール、エチレングリコールモノエチルエーテル、ジエチレングリコール、ベンジルアルコール等のアルコール類、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン類、イソプロピルエーテル、n-ブチルエーテル、1,4-ジオキサン、テトラヒドロピラン等のエーテル類、ギ酸n-メチル、酢酸メチル、酢酸エチル等のエステル類、n-へキサン、n-オクタン、n-デカン、シクロヘキサン、ベンゼン、トルエン、キシレン等の炭化水素類等が挙げられる。これらの溶媒は、1種単独で又は2種以上を組み合わせて用いることができる。
 本発明の化合物(2)の製造方法によれば、原料である2-アルキリデンシクロアルカノン、生成物である2-アルキル-2-シクロペンテノンの重合を防ぐことが可能となり、化合物(2)を高収率、高純度で得ることができる。また、腐食性、毒性の低い触媒を用いて目的化合物を製造することが可能となる。
 化合物(2)の好適例としては、一般式(2)において、mが0、nが1又は2、より好ましくはnが1、R1及びR2が、それぞれ水素原子、又は炭素数1~8、好ましくは炭素数3~6の直鎖又は分岐鎖のアルキル基である化合物が挙げられる。
 化合物(2)の具体例としては、2-プロピル-2-シクロペンテン-1-オン、2-イソプロピル-2-シクロペンテン-1-オン、2-n-ブチル-2-シクロペンテン-1-オン、2-n-ペンチル-2-シクロペンテン-1-オン、2-イソペンチル-2-シクロペンテン-1-オン、2-(2’-メチルブチル)-2-シクロペンテン-1-オン、2-ヘキシル-2-シクロペンテン-1-オン等が挙げられる。
[アルキル(3-オキソ-2-アルキルシクロアルキル)アセテートの製造方法]
 下記一般式(3)で表されるアルキル(3-オキソ-2-アルキルシクロアルキル)アセテート(以下、「化合物(3)」という。)は、香料素材、生理活性物質として有用な化合物であり、上記の製造方法で得られた化合物(2)を原料として、塩基性触媒の存在下で反応させることにより、得ることができる。
Figure JPOXMLDOC01-appb-C000006
(式中、m、n、R1、R2及びR3前記と同じである。R4は炭素数1~3のアルキル基、好ましくは直鎖又は分岐鎖のアルキル基を示す。)
 化合物(3)を製造する場合は、まず、原料である化合物(2)に対して、塩基性触媒の存在下で、下記一般式(4)で表されるマロン酸ジエステルを、好ましくは1~5モル倍、より好ましくは1.2~2モル倍の割合で反応させて、下記一般式(5)で表される化合物(以下、「化合物(5)」という。)を製造する。
Figure JPOXMLDOC01-appb-C000007
(式中、m、n、R1、R2、R3、及びR4は前記と同じである。2個のR4は同一でもよいし、異なっていてもよい。)
 用いることのできる塩基性触媒としては、ナトリウム、カリウム等のアルカリ金属、ナトリウムアルコキシド、カリウムアルコキシド等のアルカリ金属アルコキシド等が挙げられる。
 塩基性触媒の使用量は、反応性等の観点から、化合物(2)に対して0.005~0.2モル倍が好ましく、0.01~0.1モル倍がより好ましい。溶媒を使用する場合は、アルコール類等の極性溶媒が好ましい。
 反応温度は-10~30℃が好ましく、-2~20℃がより好ましい。
 次に、上記の方法により得られた化合物(5)と水とを反応させることにより、化合物(3)を製造することができる。水は、化合物(5)に対して1~3モル倍量を加えることが好ましく、反応系中に滴下しながら反応させることが好ましい。この際の反応温度は150~230℃が好ましく、180~220℃がより好ましい。
 本発明によれば、高純度で目的物を得ることができ、生産性の高い2-アルキル-2-シクロアルケン-1-オンの製造方法、及びパラジウム及び/又は白金触媒の活性化方法を提供することができる。
 また、本発明によれば、従来よりも原料の重合及び2-アルキルシクロアルカノンの副生を防ぐことが可能となり、腐食性、毒性の低い触媒を用いて目的化合物を高収率、高純度で製造することが可能となる。
 以下の例において、生成物の定量はガスクロマトグラフィー(GC)分析(Agilent Technology社製、6890N、カラム:DB-1(30m×0.25mm×0.25μm)、オーブン:100℃→5℃/min.→210℃→20℃/min.280℃(4.5min.hold)(計30min.)、キャリア:He、流量:1.6mL/min.、注入口:280℃、検出器(FID):280℃、注入量:1μL、スプリット:100:1)による内部標準法(内部標準:ウンデカン(ナカライテスク株式会社製、純度99%))によって行った。
 なお、実施例、比較例において、「%」は特記しない限り「質量%」であり、反応圧力は、すべて101kPa(大気圧)である。
合成例1(2-ペンチリデンシクロペンタノンの合成)
 滴下槽を備えた6m3の反応槽に、シクロペンタノン2241kg(26.6kmol)、水1007kg、48%NaOH11kgを仕込み、撹拌しながら15℃に冷却した後、同温度でバレルアルデヒド985kg(11.4kmol)を5時間かけて滴下した後、1時間撹拌した。反応終了後、中和し、過剰のシクロペンタノンを蒸留回収した。有機層の反応終了品1868kg中には2-(1-ヒドロキシペンチル)-シクロペンタノン 1706kgが含まれていた。
 脱水管を備えた300mlの4つ口フラスコに、上記で得られた反応終了品を精留して得られた2-(1-ヒドロキシペンチル)-シクロペンタノン170g(0.99mol)と、TiO2(球状成型品、直径1.5mm)8.5gを加え、100℃、53kPaの条件下で加熱混合し、2-ペンチリデンシクロペンタノン141g(収率93%)を得た。
実施例1
 自動合成装置(柴田科学株式会社製、Chemi-200、100mL GL製反応容器)に、デカン(和光純薬工業株式会社製、特級、純度99%) 5.0g(0.035mol)、5%Pd/C(エヌ・イー ケムキャット株式会社製、Pdカーボン粉末、49%含水品)0.43gを加えて、400r/minで攪拌しながら槽内を微減圧下(27kPa)で窒素置換した。その後、水素を捕集した耐圧風船を取り付け、槽内を27kPaまで減圧しては水素で大気圧に戻すという操作を4回繰り返した。槽内を50℃まで昇温し、1時間触媒活性化を行った。槽内を54kPaまで減圧しては窒素で大気圧に戻すという操作を8回繰り返した後、槽内を190℃まで昇温し、シリンジを用いて合成例1で得られた2-ペンチリデンシクロペンタノン(純度96%)10gを添加した。反応は6時間行い、GC分析による2-ペンチル-2-シクロペンテン-1-オンの内標収率は96%であり、2-ペンチルシクロペンタノンは3%、高沸副生物は1%生成していた。
実施例2
 実施例1で用いたのと同じ自動合成装置にデカン5.0g(0.035mol)、2%Pt/C(エヌ・イー ケムキャット株式会社製、Ptカーボン粉末、54%含水品)1.11gを加えて、400r/min.で攪拌しながら槽内を27kPaまで減圧しては水素で大気圧に戻すという操作を4回繰り返した。槽内を50℃まで昇温し、1時間触媒活性化を行った。槽内を54kPaまで減圧しては窒素で大気圧に戻すという操作を8回繰り返した後、槽内を200℃まで昇温し、シリンジを用いて合成例1で得られた2-ペンチリデンシクロペンタノン(純度96%)10gを添加した。反応は6時間行い、GC分析による2-ペンチル-2-シクロペンテン-1-オンの内標収率は95%であり、2-ペンチルシクロペンタノンは2%、高沸副生物は1%生成していた。
比較例1
 実施例1で用いたのと同じ自動合成装置に、2-ペンチリデンシクロペンタノン10g、実施例1で用いた5%Pd/C 0.23gを加えて、攪拌しながら系内を微減圧下(27kPa)で窒素置換した。その後、水素を捕集した耐圧風船を取り付け、槽内を27kPaまで減圧しては水素で大気圧に戻すという操作を4回繰り返した後、槽内を130℃まで昇温した。反応は2時間行い、GC分析による2-ペンチル-2-シクロペンテン-1-オンの内標収率は77%であり、2-ペンチルシクロペンタノンは20%、高沸副生物は1%生成していた。
比較例2
 実施例1で用いたのと同じ自動合成装置に、2-ペンチリデンシクロペンタノン10g、実施例1で用いた5%Pd/C 0.43gを加えて、攪拌しながら槽内を微減圧下(27kPa)で窒素置換し、槽内を195℃まで昇温した。反応は6時間行い、GC分析による2-ペンチル-2-シクロペンテン-1-オンの内標収率は85%であり、2-ペンチルシクロペンタノンは4%、高沸副生物は11%生成していた。
比較例3
 実施例1で用いたのと同じ自動合成装置にデカン5.0g(0.035mol)、5%Ir/C(エヌ・イー ケムキャット株式会社製、Irカーボン粉末、61%含水品)0.56gを加えて、400r/min.で攪拌しながら槽内を27kPaまで減圧しては水素で大気圧に戻すという操作を4回繰り返した。槽内を50℃まで昇温し、1時間触媒活性化を行った。槽内を54kPaまで減圧しては窒素で大気圧に戻すという操作を8回繰り返した後、槽内を200℃まで昇温し、シリンジを用いて合成例1で得られた2-ペンチリデンシクロペンタノン(純度96%)10gを添加した。反応は5.5時間行い、GC分析による2-ペンチル-2-シクロペンテン-1-オンの内標収率は19%であり、2-ペンチルシクロペンタノンは検出せず、高沸副生物は19%生成していた。
比較例4
 実施例1で用いたのと同じ自動合成装置にデカン5.0g(0.035mol)、5%Rh/C(エヌ・イー ケムキャット株式会社製、Rhカーボン粉末、54%含水品)0.47gを加えて、400r/min.で攪拌しながら槽内を27kPaまで減圧しては水素で大気圧に戻すという操作を4回繰り返した。槽内を50℃まで昇温し、1時間触媒活性化を行った。槽内を54kPaまで減圧しては窒素で大気圧に戻すという操作を8回繰り返した後、槽内を200℃まで昇温し、シリンジを用いて合成例1で得られた2-ペンチリデンシクロペンタノン(純度96%)10gを添加した。反応は4時間行い、GC分析による2-ペンチル-2-シクロペンテン-1-オンの内標収率は10%であり、2-ペンチルシクロペンタノンは検出せず、高沸副生物は19%生成していた。
比較例5
 実施例1で用いたのと同じ自動合成装置にデカン5.0g(0.035mol)、5%Ru/C(エヌ・イー ケムキャット株式会社製、Ruカーボン粉末、50%含水品)0.44gを加えて、400r/min.で攪拌しながら槽内を27kPaまで減圧しては水素で大気圧に戻すという操作を4回繰り返した。槽内を50℃まで昇温し、1時間触媒活性化を行った。槽内を54kPaまで減圧しては窒素で大気圧に戻すという操作を8回繰り返した後、槽内を200℃まで昇温し、シリンジを用いて合成例1で得られた2-ペンチリデンシクロペンタノン(純度96%)10gを添加した。反応は4時間行い、GC分析による2-ペンチル-2-シクロペンテン-1-オンの内標収率は1%であり、2-ペンチルシクロペンタノンは検出せず、高沸副生物は22%生成していた。
 本発明の製造方法によれば2-アルキル-2-シクロアルケン-1-オンを高収率で工業的に有利に製造できる。

Claims (5)

  1.  下記一般式(1)で表される2-アルキリデンシクロアルカノンを、下記工程(a)及び(b)で処理したパラジウム及び/又は白金触媒の存存下で反応させる、下記一般式(2)で表される2-アルキル-2-シクロアルケン-1-オンの製造方法。
     工程(a):パラジウム及び/又は白金触媒を、水素ガスを含む雰囲気下において活性化する工程
     工程(b):工程(a)において触媒の雰囲気として存在する水素ガスを、不活性ガスで置換し除去する工程
    Figure JPOXMLDOC01-appb-C000001
    (式中、mは0~3の整数、nは1又は2の整数、R1及びR2は、それぞれ水素原子又は炭素数1~8のアルキル基を示すか、又はR1とR2とに隣接する炭素原子を介してシクロペンタン環又はシクロヘキサン環を形成してもよい。R3は、脂環構造上のいずれかの水素原子と置換してもよい、炭素数1~5のアルキル基を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、m、n、R1、R2及びR3は前記と同じである。)
  2.  一般式(1)及び(2)において、mが0、nが1又は2、R1及びR2が、それぞれ水素原子、又は炭素数1~8の直鎖又は分岐鎖のアルキル基である、請求項1に記載の2-アルキル-2-シクロアルケン-1-オンの製造方法。
  3.  一般式(1)及び(2)において、mが0、nが1、R1及びR2が、それぞれ水素原子、又は炭素数1~8の直鎖又は分岐鎖のアルキル基である、請求項1に記載の2-アルキル-2-シクロアルケン-1-オンの製造方法。
  4.  不活性ガスが、窒素ガス、アルゴンガス又はヘリウムガスである、請求項1~3のいずれかに記載の2-アルキル-2-シクロアルケン-1-オンの製造方法。
  5.  下記工程(a)及び(b)によるパラジウム及び/又は白金触媒の活性化方法。
    工程(a):パラジウム及び/又は白金触媒を、水素ガスを含む雰囲気下において活性化する工程
     工程(b):工程(a)において触媒の雰囲気として存在する水素ガスを、不活性ガスで置換し除去する工程


     
PCT/JP2009/056871 2008-04-15 2009-04-02 2-アルキル-2-シクロアルケン-1-オンの製造方法 WO2009128347A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09731956.0A EP2269971B1 (en) 2008-04-15 2009-04-02 Process for producing a 2-alkyl-2-cycloalkene-1-one
US12/988,164 US8378147B2 (en) 2008-04-15 2009-04-02 Process for producing a 2-alkyl-2-cycloalkene-1-one

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-105334 2008-04-15
JP2008105334 2008-04-15

Publications (1)

Publication Number Publication Date
WO2009128347A1 true WO2009128347A1 (ja) 2009-10-22

Family

ID=41199045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056871 WO2009128347A1 (ja) 2008-04-15 2009-04-02 2-アルキル-2-シクロアルケン-1-オンの製造方法

Country Status (4)

Country Link
US (1) US8378147B2 (ja)
EP (1) EP2269971B1 (ja)
JP (1) JP5478097B2 (ja)
WO (1) WO2009128347A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9416082B2 (en) 2013-02-11 2016-08-16 Firmenich Sa Process for the isomerisation of an exo double bond
WO2023063030A1 (ja) * 2021-10-12 2023-04-20 花王株式会社 α、β-不飽和ケトンの異性化工程を含む化合物の製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123240A (en) 1974-08-14 1976-02-24 Toray Industries 22 arukiru 22 shikuropentenonno seizoho
JPS5239655A (en) * 1975-09-22 1977-03-28 Soda Koryo Kk Process for preparing 2- alkyl cyclopentenone
JPS55120533A (en) 1979-03-09 1980-09-17 Nippon Zeon Co Ltd Preparation of 2-alkyl-2-cyclopentenone
JPS56147740A (en) * 1980-01-18 1981-11-16 Int Flavors & Fragrances Inc Manufacture of methyldihydrojasmonate and homologue
JPH0592934A (ja) * 1991-09-30 1993-04-16 Nippon Zeon Co Ltd 2−アルキル−2−シクロアルケン−1−オン類の製造法
JP2000327618A (ja) 1999-05-26 2000-11-28 Kao Corp 2−アルキル−2−シクロペンテノンの製造法
JP2004203844A (ja) * 2002-12-26 2004-07-22 Kao Corp 2−(アルキリデン)シクロアルカノンの製法
JP2005035939A (ja) * 2003-07-16 2005-02-10 Kao Corp 酢酸エステル誘導体の製造法
JP2005516769A (ja) * 2002-01-29 2005-06-09 エクソンモービル リサーチ アンド エンジニアリング カンパニー フィッシャー−トロプシュ担持触媒の活性化

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796516B2 (ja) * 1987-05-12 1995-10-18 出光興産株式会社 シクロアルカノンの製造方法
US7057077B2 (en) * 2002-12-26 2006-06-06 Kao Corporation Method for producing 2- (alkyl) cycloalkenone
US7078559B2 (en) * 2003-07-16 2006-07-18 Kao Corporation Method of producing acetate derivative

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123240A (en) 1974-08-14 1976-02-24 Toray Industries 22 arukiru 22 shikuropentenonno seizoho
JPS5239655A (en) * 1975-09-22 1977-03-28 Soda Koryo Kk Process for preparing 2- alkyl cyclopentenone
JPS5842175B2 (ja) 1975-09-22 1983-09-17 ソダコウリヨウ カブシキガイシヤ 2− アルキル−シクロペンテノンノ セイゾウホウ
JPS55120533A (en) 1979-03-09 1980-09-17 Nippon Zeon Co Ltd Preparation of 2-alkyl-2-cyclopentenone
JPS56147740A (en) * 1980-01-18 1981-11-16 Int Flavors & Fragrances Inc Manufacture of methyldihydrojasmonate and homologue
JPH0592934A (ja) * 1991-09-30 1993-04-16 Nippon Zeon Co Ltd 2−アルキル−2−シクロアルケン−1−オン類の製造法
JP2000327618A (ja) 1999-05-26 2000-11-28 Kao Corp 2−アルキル−2−シクロペンテノンの製造法
JP2005516769A (ja) * 2002-01-29 2005-06-09 エクソンモービル リサーチ アンド エンジニアリング カンパニー フィッシャー−トロプシュ担持触媒の活性化
JP2004203844A (ja) * 2002-12-26 2004-07-22 Kao Corp 2−(アルキリデン)シクロアルカノンの製法
JP2005035939A (ja) * 2003-07-16 2005-02-10 Kao Corp 酢酸エステル誘導体の製造法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 78170F
See also references of EP2269971A4 *
SHA CHIN-KANG ET AL., JOURNAL OF ORGANIC CHEMISTRY, vol. 68, 2003, pages 8704 - 8707, XP008142318 *
TAKEISHI KENZO ET AL., CHEMISTRY - EUROPEAN JOURNAL, vol. 10, 2004, pages 5681 - 5688, XP008142315 *
TERUO KUBOMATSU; SHINICHIRO KOMATSU: "Raney Catalysts", 1971, KYORITSU-SHUPPAN

Also Published As

Publication number Publication date
EP2269971B1 (en) 2016-12-28
US20110040127A1 (en) 2011-02-17
JP2009275031A (ja) 2009-11-26
US8378147B2 (en) 2013-02-19
JP5478097B2 (ja) 2014-04-23
EP2269971A1 (en) 2011-01-05
EP2269971A4 (en) 2015-07-08

Similar Documents

Publication Publication Date Title
JP5279275B2 (ja) ジアリールフェノキシアルミニウム化合物
US8394994B2 (en) Method for producing of 2-alkyl-2-cycloalken-1-one
US9056820B2 (en) Alicyclic alcohol
US8816136B2 (en) Method for producing alicyclic alcohol
WO2010032770A1 (ja) アルコールの水素移動反応に用いる触媒、その製造方法、及びカルボニル基含有化合物の製造方法
JP5478097B2 (ja) 2−アルキル−2−シクロアルケン−1−オンの製造方法
JP2012097080A (ja) ジオール化合物の製造方法
US20020095059A1 (en) Method of making fluorinated alcohols
JP4472063B2 (ja) ジシクロヘキサン誘導体の製造方法
JP2019001746A (ja) ジオールの製造方法
JP3971875B2 (ja) トランス−4−(4’−オキソシクロヘキシル)シクロヘキサノール類の製造方法
JP2008264762A (ja) 有機カルボニル化合物のシアノシリル化触媒
EP2479163B1 (en) Method for producing cyclohexyl alkyl ketones
JPH08245477A (ja) 二酸化炭素の接触水素化によるホルムアルデヒドの製造方法
JP3930194B2 (ja) 高純度アルキルシクロヘキサノールアルキレンオキサイド付加物の製造方法
US20040073068A1 (en) Method for preparing cyclohexyl phenyl ketone from 1,3- butadiene and acrylic acid
JP4292808B2 (ja) 光学活性エピハロヒドリンまたは3−ハロプロパン−1,2−ジオールの製法
JP2004131439A (ja) 2,5−ジ置換シクロペンタノン化合物及び2,5−ジ置換シクロペンタノール化合物の製造方法。
JP3089772B2 (ja) シクロヘキサン環を有するジオール化合物の製造方法
JP2010173965A (ja) 2−アルキル−2−シクロアルケノンの製造方法
JP2005262183A (ja) 不飽和ケトン製造用触媒および不飽和ケトンの製造方法
JPH06305998A (ja) 1,4−ブタンジオールの製造方法
JPH07242582A (ja) 3−ヘキシナールアセタール及びシス−3−ヘキセナールジシス−3−ヘキセニルアセタールの製造法
JP2004323388A (ja) 不飽和一級アルコールの製造方法
JP2002179609A (ja) ビス(4−オキソシクロヘキシル)類の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09731956

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009731956

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12988164

Country of ref document: US

Ref document number: 2009731956

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE