WO2009128250A1 - 原子燃料ペレットの製造方法、燃料集合体とその製造方法およびウラン粉末 - Google Patents

原子燃料ペレットの製造方法、燃料集合体とその製造方法およびウラン粉末 Download PDF

Info

Publication number
WO2009128250A1
WO2009128250A1 PCT/JP2009/001708 JP2009001708W WO2009128250A1 WO 2009128250 A1 WO2009128250 A1 WO 2009128250A1 JP 2009001708 W JP2009001708 W JP 2009001708W WO 2009128250 A1 WO2009128250 A1 WO 2009128250A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
oxide
gadolinium
uranium
gadolinia
Prior art date
Application number
PCT/JP2009/001708
Other languages
English (en)
French (fr)
Inventor
渡辺庄一
熊埜御堂宏徳
三橋偉司
菅原聡
植田精
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008106896A external-priority patent/JP2009257912A/ja
Priority claimed from JP2008295954A external-priority patent/JP5112265B2/ja
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to CN200980113496.0A priority Critical patent/CN102007547B/zh
Priority to EP09731619.4A priority patent/EP2280400A4/en
Publication of WO2009128250A1 publication Critical patent/WO2009128250A1/ja
Priority to US12/904,781 priority patent/US20110080987A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/62Ceramic fuel
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C21/00Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
    • G21C21/02Manufacture of fuel elements or breeder elements contained in non-active casings
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/62Ceramic fuel
    • G21C3/623Oxide fuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a method for producing nuclear fuel pellets, a fuel assembly loaded in a nuclear reactor, a method for producing the same, and uranium powder.
  • uranium enrichment that is, increasing the concentration of 235U in uranium, reduces the number of new fuel assembly replacements and the amount of spent fuel assemblies required to obtain the same amount of power generation. , Greatly contribute to reducing fuel cycle costs.
  • a nuclear fuel for a nuclear reactor to which a flammable poison represented by gadolinium oxide (gadolinia, Gd 2 O 3 ) is added is used to improve the combustion characteristics of a nuclear fuel assembly. It has been known.
  • gadolinium oxide is generally added at a concentration of 1 to 15% by weight to nuclear fuel pellets manufactured using uranium dioxide (UO 2 ) as the main body of the nuclear fuel to form part of the fuel assembly. It is used.
  • the average enrichment of uranium 235 in the fuel assembly loaded in the core is set to 3.0% by weight, and 10.0% by weight gadolinia is added to a part of the fuel rods in the fuel assembly.
  • the structure which consists of is disclosed.
  • the ratio of the flammable poison added at this time may be significantly smaller than the ratio added for improving the combustion characteristics of the conventional fuel assembly.
  • the concentration of gadolinia is not more than 10% by weight unless the concentration of uranium 235 exceeds 10% by weight. The objective can be achieved.
  • Japanese Patent Laid-Open No. 2004-177241 Japanese Patent Laid-Open No. 4-212093 Japanese Patent Laid-Open No. 9-80180 Japanese Patent Laid-Open No. 2004-177241
  • the neutron multiplication factor of the mixture is increased by adding a substance with a large neutron absorption cross section to uranium. There is a method to make it equal to 5% or less of uranium.
  • the amount used to minimize the influence of the neutron absorption effect on the neutron behavior of the core during the operation cycle is as small as possible.
  • Examples of the material having a large neutron absorption cross section include gadolinium (Gd), which is currently used for the purpose of controlling the reactivity during the operation cycle. Since gadolinium has a very large neutron absorption cross section, the neutron multiplication factor of the fuel can be reduced even with a small amount. However, when a small amount of gadolinia (Gd 2 O 3 ) is added to uranium, if the concentration distribution of gadolinia becomes non-uniform in the mixed powder with uranium dioxide or sintered pellets, There is a possibility that the suppression effect cannot be exhibited.
  • Gd gadolinium
  • Patent Document 1 discloses a method for ensuring critical safety by adding a small amount of erbium oxide (Er 2 O 3 ) having a smaller neutron absorption cross-section than gadolinia (Gd 2 O 3 ) to UO 2 pellets. Has been. Also, critical safety can be ensured by a method of applying boron (B) or the like disclosed in Patent Document 2 to the surface of the UO 2 pellet or the inside of the fuel cladding tube.
  • Er 2 O 3 erbium oxide
  • Gd 2 O 3 gadolinia
  • the thermal neutron absorption cross sections at room temperature are about 640 burns for Er-167 and about 3,840 burns for B-10, and 254,080 burns for Gd-157, the isotope of Gd.
  • erbium or boron is used as nuclear fuel, depending on the concentration of the flammable poisons, there is a possibility that the flammable poisons remain at the end of the operation cycle and the reactivity loss of the core occurs.
  • flammable poisons remain at the end of the operation cycle, it becomes difficult to exert the cost reduction effect of the fuel cycle due to the high enrichment of uranium.
  • Combustible poisons typified by gadolinium are used by taking advantage of their large neutron absorption cross section, but when they are added to nuclear fuel pellets at low concentrations, the neutron absorption cross section is large. In addition, it is necessary to add the particles dispersed as much as possible to avoid aggregation of the particles. This is because the thermal neutron mean free path in gadolinia is about 10 ⁇ m, and if there is a larger gadolinia particle lump than this, the neutron absorption effect is reduced by the self-shielding effect.
  • gadolinia When gadolinia is added at a concentration of 1 to 15% by weight in conventional nuclear fuel pellets, this self-shielding effect has a property that must be designed as an original characteristic of the product.
  • gadolinia when gadolinia is added at a low concentration of 0.1% by weight or less, the difference in the self-shielding effect depending on the degree of dispersion of gadolinia particles appears as an influence on the neutron absorption effect. For this reason, it is necessary to suppress the self-shielding effect by using a powder having a small particle size as the gadolinia to be added and dispersing the individual particles as much as possible.
  • the flammable poison oxide particles When a low concentration fine particle size flammable poison oxide powder is added by the conventional method of manufacturing nuclear fuel pellets with flammable poison added, and mixed with this, the flammable poison oxide particles have electrostatic adhesion, etc. Therefore, it is difficult to disperse and mix individual particles.
  • the flammable poison oxide In the pellets produced by sintering the mixed powder of the flammable poison oxide particles and the nuclear fuel oxide while the flammable poison oxide particles are aggregated, the flammable poison oxide is a lump having a crystal grain size of 10 ⁇ m or more. Since the solid solution is formed, the neutron absorption effect is reduced due to the self-shielding effect, and a desired neutron absorption effect cannot be obtained as a combustible poison-added nuclear fuel pellet.
  • an object of the present invention is to make it possible to perform criticality management without a significant cost increase when uranium having a concentration of more than 5 wt% is used for nuclear fuel.
  • the present invention provides a fuel assembly having a chemical formula A 1-X Gd X O 2-0.5X or a chemical formula A 1-X Gd X O 1 with gadolinium and a rare earth element A excluding gadolinium. Characterized by having a fuel element containing a Gd composite oxide represented by .5 and an oxide of uranium with a concentration of more than 5%.
  • the chemical formula A 1-X Gd X O 2-0.5X or the chemical formula A 1-X Gd X O 1.5 with gadolinium and a rare earth element A excluding gadolinium is given.
  • the present invention relates to a uranium powder having a Gd compound represented by the chemical formula A 1-X Gd X O 2-0.5X or the chemical formula A 1-X Gd X O 1.5 with gadolinium and a rare earth element A excluding gadolinium.
  • the oxide contains uranium oxide having a concentration of more than 5%.
  • the present invention provides a method for injecting powdered gadolinium oxide, which is a flammable poison, and at least one compound of an element different from gadolinium into a liquid in a liquid container, stirring and mixing in the method for producing nuclear fuel pellets And a step of producing a gadolinium oxide-containing powder by drying the liquid stirred in the liquid container, and mixing the gadolinium oxide-containing powder and the oxide of the nuclear fuel to obtain a nuclear fuel oxide-containing mixture. And a step of molding and sintering the nuclear fuel oxide-containing mixture into a nuclear fuel pellet.
  • uranium having a concentration of more than 5 wt% when uranium having a concentration of more than 5 wt% is used for nuclear fuel, criticality management can be performed without a significant cost increase.
  • Metal amount is a UO 2 powder of 33kg and a sphere is a graph showing the effective neutron multiplication factor of the presence of water reflecting the thickness of 30 cm. It is a figure which shows the relationship between the equivalent gadolinia concentration and the uranium enrichment which should be added to the UO2 powder whose enrichment exceeds 5 wt% in 1st Embodiment of the fuel assembly which concerns on this invention.
  • FIG. 4 is a graph showing a concentration range of equivalent gadolinia to be added to a low gadolinia fuel rod in the first embodiment of the fuel assembly according to the present invention.
  • FIG. 6 is a diagram schematically showing the number of Gd composite oxides when the equivalent gadolinia concentration in the pellet is the same and the Gd densities in the Gd composite oxide are different, and FIG. ) Indicates a case where the Gd density is low.
  • FIG. 1 schematically shows a mixed state of gadolinia particles and uranium dioxide particles, which is explained as a comparative example of the first embodiment of the fuel assembly according to the present invention.
  • a mixed state of gadolinia particles, cerium oxide particles and uranium dioxide particles is schematically shown.
  • (A) shows gadolinia and oxidation.
  • (b) is the gadolinia-containing mixed powder 5 after the mixed granule drying step S3 of this example
  • (c) is the uranium dioxide particles 6
  • (d) is the mixing step S4 of the present invention. This is the case where the subsequent gadolinia-containing mixed powder 5 and uranium dioxide particles 6 are mixed.
  • FIG. 2 is a longitudinal sectional view of the fuel rod used in the first embodiment of the fuel assembly according to the present invention.
  • the fuel rod in the present embodiment has a cladding tube 21, a pellet 23, a lower end plug 22, an upper end plug 25, and a plenum spring 24.
  • the cladding tube 21 is a tube formed of a zirconium alloy into a cylinder.
  • the pellet 23 is obtained by baking and hardening a uranium oxide or the like into a cylindrical shape having a height of about 1 cm, for example.
  • a plurality of pellets 23 are accommodated inside the cladding tube 21.
  • a lower end plug 22 is welded to the lower end of the cladding tube 21.
  • An upper end plug 25 is welded to the upper end of the cladding tube 21.
  • a plenum spring 24 is disposed between the upper end plug 25 and the end face of the pellet 23, and the pellet 23 is pressed and supported.
  • FIG. 1 is a cross-sectional view of the fuel assembly of the present embodiment.
  • FIG. 1 also shows the positional relationship with the control rod 40 when this fuel assembly is loaded in a nuclear reactor.
  • the fuel assembly 10 of the present embodiment is loaded into a boiling water reactor (BWR) with the channel box 41 attached.
  • the fuel assembly 10 includes fuel rods 13, 14, 15, 16, 17, 18, 19 and a water rod 11.
  • the water rod 11 is a tube formed of, for example, a zirconium alloy so that water flows inside.
  • This fuel assembly 10 is a design example of a replacement fuel assembly with an average uranium enrichment of about 6.2 wt%, assuming an operation cycle of 2 years and an average removal burnup of about 70 GWd / t.
  • 74 fuel rods 13, 14, 15, 16, 17, 18, 19 and two water rods 11 are bundled, for example, in a 9 ⁇ 9 square lattice.
  • the two water rods 11 are disposed in the vicinity of the center of the cross section of the fuel assembly 10 at positions that occupy seven square lattices.
  • the 74 fuel rods 13, 14, 15, 16, 17, 18, 19 as fuel elements are arranged at the positions of the remaining square lattice.
  • the fuel rods 13, 14, 15, 16, 17, 18, 19 and the water rod 11 are supported at their upper and lower ends by tie plates, and by spacers provided at, for example, seven locations between the tie plates. Movement in the cross-sectional direction is restricted.
  • the 74 fuel rods 13, 14, 15, 16, 17, 18, 19 are divided into uranium fuel rods 13, 14, 15, high gadolinia fuel rods 19, and low gadolinia fuel rods 16, 17, 18. Can be classified.
  • the uranium fuel rods 13, 14, and 15 are fuel rods containing pellets 23 formed of uranium oxide having a concentration of 5 wt% or less.
  • the uranium fuel rods 13, 14, and 15 the uranium fuel rod 13 having a uranium enrichment of 3 wt%, the uranium fuel rod 14 having a uranium enrichment of 4 wt%, and the uranium enrichment of 5 wt%.
  • Three types of uranium fuel rods 15% are used.
  • the high gadolinia fuel rod 19 is a fuel rod containing a pellet 23 containing a relatively high concentration of gadolinia (Gd2O3) in uranium oxide.
  • the gadolinia contained in the pellets 23 accommodated in the high gadolinia fuel rods 19 is introduced for the purpose of flattening the excess reactivity of the core during the operation cycle of the nuclear reactor.
  • the content ratio in the gadolinia pellets introduced for such a purpose is generally 1 wt% or more.
  • uranium with a concentration of 6 wt% is used for the pellets 23 stored in the high gadolinia fuel rods 19.
  • the low gadolinia fuel rods 16, 17, and 18 contain pellets 3 containing uranium oxide having a concentration exceeding 5% and Gd composite oxide of rare earth elements excluding gadolinium and gadolinium.
  • the gadolinium contained in the low gadolinia fuel rods 16, 17 and 18 is introduced mainly for the purpose of ensuring critical safety until the reactor is loaded, such as fuel processing and transportation. It is generally less than 0.1 wt%.
  • the composite oxide refers to an oxide that is two or more kinds of metal oxides and maintains a stoichiometric composition even in a microstructure.
  • the Gd composite oxide is an oxide of gadolinium Gd and another rare earth element A, and the chemical formula when the ratio of Gd to the number of atoms of the rare earth element A is X is A 1-X Gd X It is an oxide represented by O 2-0.5X or A 1-X Gd X O 1.5 .
  • the rare earth element A for example, cerium Ce or lanthanum La can be used.
  • the equivalent gadolinia concentration is a concentration when Gd in the Gd composite oxide exists as a single gadolinia.
  • Non-patent Document 1 “complete submersion” is assumed as the severest case in terms of criticality safety.
  • This “completely submerged” state is a state in which water penetrates into the gaps between the nuclear fuel materials and is surrounded by water.
  • the “minimum estimation” is used as the limit value in “mass management” or “geometry management” in the entire uranium concentration range for a homogeneous UO 2 / H 2 O system.
  • “Critical value” and “Minimum estimated critical lower limit value” are defined.
  • Mass management is management that does not handle reactor fuel exceeding a certain mass, which is a critical safety limitation.
  • “Shape and dimension management” refers to management that does not handle reactor fuel that exceeds a certain shape and dimension.
  • the estimated critical value is a value that is determined to be critical if the mass, shape, or dimension is the value, and the estimated critical lower limit value is determined to be subcritical if the mass, shape, or dimension is less than the value.
  • Table 1 Each value in Table 1 is shown as the minimum value in the entire uranium concentration range.
  • a small amount of Gd composite oxide for example, Gd composite oxide corresponding to gadolinia of less than 0.1 wt% is added to UO 2 powder having a uranium enrichment of more than 5 wt%. Is added uniformly.
  • the nuclear fuel is set so as to be equal to or smaller than the maximum value of the effective neutron multiplication factor in the limit value of mass management or shape dimension control that is a critical safety limit of UO 2 powder with a uranium enrichment of 5 wt%. Perform criticality management of cycle facilities.
  • each neutron effective multiplication factor of mass management or shape dimension management of UO 2 powder having a uranium enrichment level of more than 5 wt% corresponds to each of mass management or shape dimension management of UO 2 powder at uranium enrichment level of 5 wt% in Table 1.
  • UO 2 powder criticality of The limiting conditions are made equal to the critical safety limiting conditions for UO 2 powder with a concentration of 5 wt%.
  • the enrichment of uranium as a reference for the effective neutron multiplication factor is not limited to 5 wt%, and may be 5 wt% or less.
  • the neutron effective multiplication factor with the uranium enrichment of 4.5 wt% may be used as a reference in consideration of manufacturing tolerance of uranium enrichment.
  • the limit on critical safety becomes excessive and the amount of gadolinia added becomes excessive.
  • FIG. 3 is a graph showing the effective neutron multiplication factor when a UO 2 powder having a metal amount of 33 kg is a sphere and has a water reflection thickness of 30 cm.
  • FIG. 3 shows that the amount of metal which is the minimum estimated critical lower limit value of 5 wt% enrichment among the uranium enrichments (3 wt%, 4 wt%, 5 wt%, 10 wt%, 20 wt%) shown in Table 1 is 33 kg.
  • using UO 2 powder is an example of calculating the equivalent gadolinia concentration related to mass control.
  • the maximum value of neutron effective multiplication factor of UO 2 powder having a uranium enrichment of 5 wt% and a metal uranium amount of 33 kg in the entire uranium concentration range shown in Table 1 is defined as kmax.
  • the relationship between the uranium enrichment and the equivalent gadolinia concentration is calculated using the uranium concentration (or sphere volume) as a parameter in a spherical homogeneous system in which the gap of UO 2 powder is filled with water and water reflection conditions.
  • the concentrations of equivalent gadolinia added to the UO 2 powder for the cases of uranium enrichment 6 wt%, 7 wt%, 8 wt% and 10 wt% are 53 ppm, 110 ppm, 170 ppm and 305 ppm, respectively.
  • 1 ppm 1 ⁇ 10 ⁇ 4 wt%.
  • the fuel pellets produced following the UO 2 powder process in the fuel fabrication facility performs neutron transport calculations with the conditions of the same equivalent gadolinia concentration for each stage of the nuclear reactor fuel rods assembled and fuel assembly assembled in UO 2 powder process It was confirmed that the effect of suppressing the effective neutron multiplication factor was the smallest value.
  • the arrangement of fuel pellets using reactor fuel with a uranium enrichment of more than 5 wt%, and the bundle of reactor fuel rods in the fuel assembly assembly stage The neutron effective multiplication factor of the UO 2 system for the bundle of reactor fuel rods and the assembled fuel assembly is suppressed below the neutron effective multiplication factor of fuel pellets, reactor fuel rods and fuel assemblies with 5 wt% uranium enrichment, respectively. As well as satisfying the limiting conditions.
  • FIG. 4 is a diagram showing the relationship between the equivalent gadolinia concentration to be added to UO 2 powder having a concentration level exceeding 5 wt% and the uranium concentration level in the present embodiment.
  • the effective neutron multiplication factor is uranium with a enrichment of 5 wt%.
  • the equivalent gadolinia concentration to be added is 5 ppm for UO2 powder having a concentration of 5 wt%.
  • the proportionality constant with respect to the increment from 5 wt% of the uranium enrichment of the UO 2 powder with the enrichment exceeding 5 wt% is the equivalent to be added when the uranium enrichment is 10 wt%.
  • the equivalent gadolinia concentration (wt%) to be easily added is obtained by multiplying the increment (wt%) from 5 wt% of the uranium enrichment of the UO2 powder with the enrichment exceeding 5 wt% by 61 ⁇ 10 ⁇ 4. be able to.
  • the gradient of the equivalent gadolinia concentration to be added to the UO 2 powder having a concentration exceeding 5 wt% increases as the concentration of uranium increases.
  • the method using the approximate straight line in this way calculates the equivalent gadolinia concentration higher than the method of calculating the equivalent gadolinia concentration corresponding to the enrichment of each uranium by performing neutron transport calculation. . Therefore, it is a management method on the safe side from the viewpoint of criticality management.
  • a small amount of Gd composite oxide is uniformly added from the stage of UO 2 powder to uranium having a concentration of more than 5 wt%. It can be handled in the same manner as UO 2 powder having a uranium enrichment of 5 wt%. Then, not only the handling of the UO 2 powder in the fuel fabrication facility, the fuel pellets fabrication, 5 wt% reactor fuel equivalent critical even in nuclear reactor fuel rod fabrication and fuel assembly assembly and the manufacturing process of storage, etc. Management can be performed. As a result, the neutron effective multiplication factor is suppressed below the limit value that ensures subcriticality in the processes of fuel molding, new fuel transportation, and new fuel storage. An increase in costs can be suppressed.
  • FIG. 5 is a graph showing the infinite multiplication factor during the output operation of the fuel assembly of the present embodiment. This graph shows a case where the void ratio is 40%, and FIG. 5 shows that the average uranium enrichment without using a small amount of gadolinia of 0.1 wt% or less is about 6.2 wt% for comparison. The infinite multiplication factor of the design example of the fuel assembly is also shown.
  • line A shows the burnup and infinite multiplication factor in the fuel assembly not using a small amount of gadolinia.
  • Line B shows the burnup and infinite multiplication factor in the fuel assembly of the present embodiment.
  • line C represents the equivalent gadolinia concentration contained in the reactor fuel rod using UO 2 powder with a uranium enrichment of more than 5 wt% among the reactor fuel rods provided in the fuel assembly of the present embodiment.
  • the burnup and infinite multiplication factor in the fuel assembly doubled are shown.
  • the fuel assemblies to be infinite multiplication factor of the line C is equivalent gadolinia concentration and fuel rods with uranium enrichment 6 wt% of UO 2 is at 106 ppm, equivalent gadolinia concentration uranium enrichment 7 wt% of UO 2 with 220ppm And a fuel rod using UO 2 having an equivalent gadolinia concentration of 340 ppm and a uranium enrichment of 8 wt%.
  • a line D represents a fuel in which the equivalent gadolinia concentration contained in a fuel rod using UO 2 having a uranium enrichment of more than 5 wt% is tripled among the nuclear fuel rods provided in the fuel assembly of the present embodiment.
  • the burnup and infinite multiplication factor in the assembly are shown.
  • the fuel assemblies of the line D includes a fuel rod equivalent gadolinia concentration using uranium enrichment 6 wt% of UO 2 in 159 ppm, the fuel rods equivalent gadolinia concentration using uranium enrichment 7 wt% of UO 2 with 330ppm And a fuel rod using UO 2 having an equivalent gadolinia concentration of 510 ppm and a uranium enrichment of 8 wt%.
  • the difference of the infinite multiplication factor (k) of the fuel assembly of line B with respect to the infinite multiplication factor of the fuel assembly not using a small amount of gadolinia shown by line A is about 1% ⁇ k at the beginning of combustion.
  • the effect on the reactivity of the core is small. That is, in the fuel assembly of the present embodiment, the difference in infinite multiplication factor due to the use of a small amount of gadolinia is about 1% ⁇ k, and it is necessary to change the conventional design specially because a small amount of gadolinia is used. Absent.
  • the difference in infinite multiplication factor are about 2% ⁇ k and about 3% ⁇ k, respectively, and it is not necessary to change the conventional design as in the fuel assembly of the present embodiment, or the number, concentration or the number of high gadolinia fuel rods 19 It is possible to cope with minor design changes such as placement.
  • the infinite multiplication factor of the fuel assembly according to the present embodiment quickly decreases with combustion for a fuel assembly not using a very small amount of gadolinia, and has a cycle burnup of about 5 GWd / t (1/2 year operation) Equivalent) Above, there is almost no difference. Therefore, the loss of reactivity due to the addition of a small amount of gadolinia at the end of the operation cycle can be ignored.
  • FIG. 6 is a graph showing an equivalent gadolinia concentration range to be added to the low gadolinia fuel rod in the present embodiment.
  • the uranium enrichment is 5 if the minute amount of the equivalent gadolinia added to the low gadolinia fuel rods 16, 17, 18 is between three times the value of the present embodiment. It is possible to handle processing, transportation, etc. at the same facilities and equipment as fuel rods of less than%, and the reactivity loss during the operation cycle is negligible. Therefore, by using uranium with enrichment exceeding 5% mixed with a small amount of gadolinia in the range shown by the diagonal lines in FIG. 6, it can be processed and processed at the same facilities and equipment as fuel rods with uranium enrichment of 5% or less. Handling such as transportation is possible, and the reactivity loss during the operation cycle is negligible. For this reason, uranium with a concentration exceeding 5% can be used without significant changes in processing facilities, transportation equipment, and the like. Further, since the reactivity loss during the operation cycle can be ignored, the fuel cycle cost can be further reduced.
  • the equivalent gadolinia concentration at a uranium enrichment of 10 wt% can be in the range from 305 ppm to 915 ppm, which is three times the value. Even in each enrichment in which the uranium enrichment exceeds 5 wt%, it can be in a range up to three times the concentration of gadolinia of the present embodiment. Assuming that the upper limit of uranium enrichment in commercial light water reactor fuel is practically around 10 wt% when adopting a reactor fuel with a uranium enrichment over 5 wt%, there is a trace amount in the reactor fuel with uranium enrichment exceeding 5 wt%. The concentration of gadolinia added to is about 0.1 wt%.
  • the nuclear fuel according to the present embodiment can be treated as having an enrichment of 5 wt% or less for criticality management even if the enrichment is uranium having an enrichment exceeding 5 wt%. That is, a fuel rod using UO 2 with a uranium enrichment of 5 wt% or more added with a small amount, for example, less than 0.1 wt% gadolinia, can be assembled by the same assembly process as a conventional fuel assembly, so Thus, a fuel assembly using uranium having a uranium enrichment exceeding 5 wt% can be obtained.
  • Gadolinia added in a small amount burns out quickly in the early stage of combustion, as a nuclear characteristic of the fuel assembly, by introducing a reactor fuel with a uranium enrichment exceeding 5 wt% without causing a loss of reactivity at the end of the operation cycle.
  • the fuel economy can be improved at the same time.
  • the low gadolinia fuel rods 16, 17, and 18 contain gadolinium, which is a flammable poison, as a composite oxide with other rare earth elements.
  • Gadolinium has a larger neutron absorption cross section than other rare earth elements.
  • other rare earth elements that form composite oxides with gadolinium are used as diluents that dilute the effect of gadolinium as a neutron absorber.
  • the thermal neutron absorption cross section of cerium Ce or lanthanum La is about 10 burns and much smaller than that of Gd. Therefore, Gd is dominant in the neutron absorption characteristics of the Gd composite oxide containing cerium or lanthanum.
  • Such low gadolinia fuel rods 16, 17, and 18 can be manufactured as follows, for example. First, for Gd and lanthanum or cerium having a small neutron absorption cross section, ammonium carbonate is added to a mixed solution of each nitrate aqueous solution and coprecipitated to be thermally decomposed. Thereby, a composite oxide powder of Gd and another rare earth element is obtained. The mixed oxide powder of Gd and another rare earth element is diluted and mixed with a predetermined amount of UO2 powder to obtain a uniformly mixed oxide powder.
  • the concentration distribution of the flammable poison in the UO 2 powder or in the pellet 23 may be non-uniform.
  • Gd composite oxide particles in which Gd is diluted with a rare earth element having a small neutron absorption cross section are used, the number of powder particles for obtaining the same gadolinium concentration increases, and gadolinium Can be easily dispersed uniformly.
  • Gd has a very large neutron absorption microscopic cross section
  • the larger the gadolinia particles the more the self-shielding effect of neutron absorption and the lower the neutron absorption efficiency.
  • the diameter of the gadolinium-containing particles be as small as possible.
  • Gd composite oxide particles in which Gd is diluted with a rare earth element having a small neutron absorption cross section are used. Therefore, the density of Gd in the particles containing gadolinium is reduced to reduce the self-shielding effect. Therefore, the decrease in neutron absorption efficiency is suppressed.
  • FIG. 7 is a diagram schematically showing the number of Gd composite oxides when the equivalent gadolinia concentration in the pellet is the same and the Gd densities in the Gd composite oxides are different.
  • FIG. 7A shows a high Gd density. In the case (b), the Gd density is low.
  • FIG. 8 is a graph schematically showing the relationship between the total neutron absorption effect by Gd and the particle diameter of the Gd composite oxide in UO 2 having a constant amount of Gd contained per unit volume.
  • FIG. 8 shows two types of cases where the Gd density ⁇ in the Gd composite oxide particles is small and large, corresponding to (a) and (b) of FIG. 7.
  • the number of the Gd composite oxide particles 51 having a low Gd density in the pellet 23 is equal to that of the Gd having a high Gd density.
  • the number is larger than the number of composite oxide particles 52. That is, when the Gd composite oxide particles have the same diameter, if the amount of Gd contained per unit volume is constant, the number of powder particles increases as the Gd density ⁇ in the Gd composite oxide particles decreases. Are more uniformly dispersed.
  • the Gd density ⁇ in the Gd composite oxide particles is the same, the smaller the diameter of the Gd composite oxide particles, the greater the neutron absorption effect.
  • the neutron absorption effect increases as the Gd density ⁇ in the Gd composite oxide particles decreases.
  • the chemical formula of the composite oxide of Gd and Ce is Ce 1-X Gd X O 2-0.5X .
  • the chemical formula of the complex oxide of Gd and La is La 1-X Gd X O 1.5 .
  • the Gd addition concentration is constant, the smaller the Gd ratio X in the Gd composite oxide, the lower the neutron absorption effect per powder particle and the higher the efficiency.
  • the amount of Gd composite oxide increases. The total number of powder particles also increases. For this reason, it is extremely useful from the viewpoint of uniformly dispersing the flammable poison particles.
  • the ratio of the Gd composite oxide is as small as possible.
  • the dilution is preferably about 3 times or more. That is, the maximum weight ratio of Gd in the Gd composite oxide is preferably about 33 wt%.
  • the gadolinia concentration required for the low gadolinia fuel rods 16, 17, 18 is 0.1 wt% or less, so it was mixed with the mixed powder with UO 2 or UO 2 .
  • Gd weight ratio of Gd compound oxide is preferably set to 5 wt% or more.
  • the number of particles of the Gd composite oxide introduced into the UO 2 powder is larger than that when used as a single oxide of gadolinium. . For this reason, the uniformity can be easily increased upon mixing with UO 2 powder.
  • gadolinium is a rare earth element, even if a complex oxide is formed with other rare earth elements, chemical characteristics and the like do not change significantly compared to gadolinium.
  • the oxide powder thus obtained is treated in the same manner as uranium having a concentration of 5% even if the concentration of uranium exceeds 5 wt%, as long as Gd of a predetermined concentration is contained. be able to.
  • praseodymium (Pr) and yttrium (Y) can be used as rare earth elements having a small neutron absorption cross section.
  • scandium (Sc), neodymium (Nd), promethium (Pm), thulium (Tm), holmium (Ho), and ytterbium (Yb) may be used.
  • erbium (Er), samarium (Sm), and europium (Eu), which are neutron absorbers have a smaller neutron absorption cross section than gadolinium, and thus can be used as other rare earth elements.
  • a flammable poison having a large neutron absorption cross section is uniformly mixed with uranium having a concentration of more than 5 wt% as a Gd composite oxide with other rare earth elements.
  • Addition reduces the impact on criticality control measures at nuclear fuel cycle facilities. For this reason, when uranium having a concentration of more than 5 wt% is used for nuclear fuel, criticality management can be performed without a significant cost increase. Therefore, it is possible to effectively improve the economy by effectively utilizing the fuel cycle cost reduction effect due to the increase in uranium enrichment.
  • FIG. 9 is a flowchart showing the order of steps in the method for producing nuclear fuel pellets used in this embodiment.
  • gadolinium oxide (gadolinia, Gd 2 O 3 ) is used as the oxide of the flammable poison to be added, and uranium dioxide is used as an example of the atomic fuel oxide.
  • gadolinia powder 1 and compound powder 2 of an element different from gadolinium are charged into liquid 3 in a container (S1), and these two types of powders 1, 2 and liquid 3 are combined.
  • a suitable example of “compound of an element different from gadolinium” hereinafter referred to as a substance to be mixed) mixed with gadolinia 1, cerium oxide, that is, cerium oxide (CeO 2 ) is used. I will explain it.
  • gadolinia powder 61, mixed material powder 62 and water 63 are put in a predetermined container and hermetically sealed, and this container is vibrated to powders 61 and 62 and water 63. May be stirred.
  • the stirring liquid 65 obtained by stirring (S2) the two types of powders 61 and 62 and water 63 is dried (S3) to produce a mixed powder 65a of gadolinia and cerium oxide.
  • Mix with uranium dioxide (UO 2 ) powder 66 (S4) The mixing of the powder 65a and the uranium dioxide powder 66 may be performed by the same method and apparatus as the mixing of the gadolinia powder and the uranium dioxide powder performed in the conventional method for producing nuclear fuel pellets.
  • the mixture of the powder 65a and the powder 66 thus formed is put into a fuel pellet mold (S5), which is then sintered to produce a fuel pellet (S6).
  • the molding and sintering steps (S5, S6) are the same as those in the past, and schematic illustration is omitted.
  • FIGS. 10 and 11 schematically showing the situation where each particle and particle are mixed.
  • FIG. 10A shows gadolinia particles and uranium dioxide particles before mixing.
  • the gadolinia particles have a small particle size and are agglomerated in the air due to electrostatic adhesion and the like.
  • the aggregated state is not eliminated as shown in FIG. It is extremely difficult to make gadolinia particles dispersed.
  • the ideal mixed state is a state where the gadolinia fine particles are not aggregated but are sufficiently diffused and mixed almost uniformly into the uranium oxide particles.
  • the gadolinia particles 61 can be dispersed in the cerium oxide particles 62 and mixed almost uniformly.
  • a mixed powder of particles and cerium oxide particles can be produced.
  • the weight of the cerium oxide particles 62 mixed with the gadolinia particles 61 is set to the weight of the gadolinia particles 61. It is desirable to adjust to about 5 to 15 times.
  • the cerium oxide particles 62 having a sufficiently larger amount than the gadolinia particles 61 are mixed in this way as described above. This is because it is assumed that the ratio of gadolinia, which is a poisonous substance, is suppressed to a low concentration of about 0.1% by weight or less. It was experimentally clarified that gadolinia particles are discretely arranged in each particle group by setting such weight ratio. More preferably, the weight ratio of the cerium oxide particles 62 is about 10 times that of the gadolinia particles 61.
  • gadolinia fine particles 61 and the cerium oxide fine particles 62 are put into the water 63 and stirred (S2), each fine particle floats in the water, and aggregation is eliminated instantly.
  • the specific gravity of gadolinia is about 7.4, and the specific gravity of cerium oxide is about 7.1, which is almost the same, so it is easy to maintain a good mixing state without separation during settling before drying. is there.
  • the mixed powder shown in FIG. 11 (d) is molded as a raw material, and sintered pellets are manufactured (S5, S6), so that even when uranium dioxide, gadolinia, and cerium oxide form a solid solution, the gadolinia region Can be kept very small depending on the size of the fine particles, and the self-shielding effect does not affect the neutron absorption effect.
  • atomic fuel pellets in which gadolinia fine particles are dispersed without agglomeration, so that a combustible poison is added at a relatively low concentration, and atoms with stable neutron absorption effect are obtained.
  • Fuel pellets can be produced.
  • the manufacturing tolerance of the reactivity of the flammable poison can be reduced, and as a result, the range of uncertainty factors that must be considered in the nuclear design conditions of the fuel assembly using this, that is, the width of the flammable poison reactivity is reduced. Therefore, it is possible to estimate the fuel assembly with a low initial reactivity.
  • the mixed substance (compound of an element different from gadolinium) mixed in liquid with gadolinia in the present invention is a rare earth element oxide having a similar chemical property because gadolinium is a rare earth. It is suitable as. Further, as the material to be mixed, one kind of rare earth element oxide other than gadolinia may be selected, or a mixture of plural kinds of rare earth element oxides may be selected.
  • rare earth elements include elements having a large neutron absorption cross section, and when samarium (Sm) or europium (Eu) is selected as the powder 62, the effect of their neutron absorption effect (micro neutrons on thermal neutrons).
  • the cross-sectional area of absorption: 4000 to 6000b) may impair the effect of reducing the manufacturing tolerance of the reactivity of the combustible poison provided by the present invention. Therefore, it is preferable to select a rare earth element having a relatively small neutron absorption cross section (a microneutron absorption cross section of 12 b or less).
  • cerium oxide is used as a rare earth element oxide. It is preferable to use one or a mixture of two or more of (CeO 2 ), praseodymium oxide (Pr 6 O 11 ), lanthanum oxide (La 2 O 3 ), and yttrium oxide (Y 2 O 3 ).
  • CeO 2 praseodymium oxide
  • Pr 6 O 11 praseodymium oxide
  • La 2 O 3 lanthanum oxide
  • Y 2 O 3 yttrium oxide
  • scandium (Sc), neodymium (Nd), promethium (Pm), holmium (Ho), and ytterbium (Yb) are based on this.
  • the mixing ratio can be set according to the design of the nuclear fuel, taking into consideration the effect (microneutron absorption cross section is 100 to 1000b) and the gadolinia neutron absorption effect (microneutron absorption cross section is 46000b).
  • the mixing ratio is not limited by the neutron absorption effect.
  • a mixed material (a compound of an element different from gadolinium) with gadolinia
  • zirconium oxide zirconia, ZrO 2
  • aluminum oxide alumina, Al 2 O 3
  • calcium oxide CaO
  • zirconium (Zr), aluminum (Al), and calcium (Ca) have small microneutron absorption cross sections of 0.185b, 0.241b, and 0.44b, respectively.
  • the nuclear fuel oxide in the present embodiment it is preferable to use uranium dioxide (UO 2 ) or uranium trioxide (U 3 O 8 ), but when U 3 O 8 is used, It is desirable to produce powdered U 3 O 8 in a uranium fuel reconversion facility and then mix with combustible poison oxides.
  • UO 2 uranium dioxide
  • U 3 O 8 uranium trioxide
  • ammonium uranate (NH) obtained by reacting with ammonia after hydrolyzing raw material UF 6 by wet (ADU) method in a reconversion facility. 4) may be used 2 U 2 O 7) which was powder of (ADU powder).
  • FIG. 12 is a cross-sectional view of the fuel assembly according to the second embodiment of the present invention.
  • the fuel assembly of the present embodiment is loaded into a pressurized water reactor.
  • 264 fuel rods 31 and 32 are bundled in a 17 ⁇ 17 square lattice, and control rod guide thimble 33 is arranged at the lattice position of 34, and is used for in-core instrumentation at the central lattice position.
  • a guide thimble 34 is arranged.
  • the fuel rods 31 and 32 are divided into a low gadolinia fuel rod 31 and a high gadolinia fuel rod 32.
  • the low gadolinia fuel rod 31 accommodates pellets 23 (see FIG. 2) obtained by adding 53 ppm equivalent gadolinia as a Gd composite oxide with rare earth element A except Gd to 6 wt% enriched uranium.
  • the rare earth element A for example, cerium Ce or lanthanum La can be used.
  • the high gadolinia fuel rod 32 accommodates pellets 23 in which 7 wt% gadolinia is added to uranium having a concentration of 5 wt%.
  • the addition of Gd composite oxide with an equivalent gadolinia concentration of 53 ppm to uranium with a concentration of 6 wt% is less than or equal to the effective neutron multiplication factor of uranium with a concentration of 5 wt%. . Therefore, in the manufacturing process of the fuel assembly of the present embodiment, after adding and mixing the Gd composite oxide to the uranium powder, criticality safety is maintained by facilities and equipment that handle uranium with a concentration of 5 wt%. It can be handled as it is.
  • the influence on the initial reactivity of the core is negligible, and no unburned Gd remains in the fuel rods containing the trace concentration Gd composite oxide at the end of the operation cycle. , Reactivity loss can be reduced.
  • high-quality fuel is manufactured by uniformly adding a small amount of Gd composite oxide from the stage of handling UO2 powder to uranium with a concentration of over 5 wt%, and equipment modification costs for fuel molding processing facilities related to critical safety And the increase in the molding process cost accompanying it can be suppressed. For this reason, the significant reduction effect of the number of new fuel replacement bodies and the reduction of the fuel cycle cost due to the increase of the reactor fuel enrichment, which is the purpose of applying the reactor fuel with the enrichment of uranium exceeding 5%, can be achieved.
  • Gd which is a flammable poison with a large neutron absorption cross-section
  • uranium with a concentration of more than 5 wt% uniformly as a Gd composite oxide with other rare earth elements.
  • a nuclear fuel rod having an enrichment of 5 wt% or less may be arranged at the corner portion or the peripheral portion of the fuel assembly to further flatten the local power distribution.
  • a fuel assembly using borosilicate glass or the like as the flammable poison may be used.
  • FIG. 13 is a cross-sectional view of the fuel assembly according to the third embodiment of the present invention.
  • the fuel assembly of the present embodiment is a fuel assembly that is loaded into a pressurized water reactor.
  • one type of low-gadolinia fuel rod 35 is used as the fuel rod.
  • the low gadolinia fuel rod 35 accommodates pellets 23 (see FIG. 2) obtained by adding a Gd composite oxide of gadolinium and erbium to uranium with a concentration of 6 wt%.
  • the equivalent gadolinia concentration of the composite oxide of gadolinium and erbium is 50 ppm.
  • the equivalent erbia concentration in the pellet is 0.3 wt%.
  • the equivalent erbia concentration is a concentration when erbium in the composite oxide exists as a single oxide.
  • the mixing ratio can be selected in consideration of the neutron absorption effect of Gd and Er.
  • the amount of Gd composite oxide to be added is 0.1 wt% or less in terms of equivalent gadolinia concentration. Therefore, considering that erbium mainly controls the reactivity of the core, for example, equivalent gadolinia
  • the concentration range is preferably 1/10 or less than 0.01 wt%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

 燃料集合体を形成する燃料棒13,14,15,16,17,18,19のうち、5%を超える濃縮度のウランの酸化物を含有する低ガドリニア入燃料棒16,17,18には、Gd複合酸化物が添加されている。Gd複合酸化物とは、ガドリニウムとガドリニウムを除く希土類元素Aとの化学式A1-XGd2-0.5Xまたは化学式A1-XGd1.5で表わされる酸化物である。希土類元素Aとしては、セリウムCe、ランタンLa、エルビウムErなどを用いることができる。

Description

原子燃料ペレットの製造方法、燃料集合体とその製造方法およびウラン粉末
 本発明は、原子燃料ペレットの製造方法、原子炉に装荷される燃料集合体とその製造方法およびウラン粉末に関する。
 原子力発電プラントの出力の増加や運転サイクルの長期化を実現し、かつ使用済み燃料集合体の発生数を抑制して経済性の向上を図るためには、燃料のウラン濃縮度を高めることが望ましい。ウランの高濃縮度化、すなわち、ウラン中での235Uの濃度を高めることは、同じ発電量を得るために必要な新燃料集合体の取替体数と使用済燃料集合体発生量を低減し、燃料サイクルコストの低減に大きく貢献する。
 しかし、商業規模で実用化されている軽水炉用燃料集合体加工施設は、一般的に、ウラン濃縮度が5%を上限として、臨界安全性を確保できるように設計されている。このような施設の安全審査は「ウラン加工施設安全審査指針」に基づいて行われ、臨界安全性を確保できていることなどが審査によって確かめられて、その施設の設置が許可されることになる。一方、濃縮度が5%を越えるウランを取り扱う施設は、「特定のウラン加工施設のための安全審査指針」に基づいて、より厳格な規制を受けている。
 したがって、濃縮度が5%を超えるウランを用いた燃料集合体を原子炉に用いるためには、臨界管理の観点から、加工施設の大幅な設計変更や設備改造が必要になり、コストが上昇する可能性がある。また、濃縮度が5%を超えるウランを用いた場合には、新燃料輸送、新燃料貯蔵の各工程においても設計変更、設備改造などが必要になり、コストが上昇する可能性がある。そうすると、原子炉燃料の濃縮度上昇による燃料サイクルコスト低減効果が相殺される可能性がある。
 従来、主に軽水炉用燃料として、酸化ガドリニウム(ガドリニア、Gd)に代表される可燃性毒物を添加した原子炉用核燃料を用いることによって、原子燃料集合体の燃焼特性の向上が図ることが知られている。この目的に供する原子燃料では、一般に、二酸化ウラン(UO)を原子燃料本体として製造される原子燃料ペレットに酸化ガドリニウムが1~15重量%の濃度で添加されて、燃料集合体の一部に用いられている。
 例えば、特許文献3には、炉心に装荷される燃料集合体のウラン235の平均濃縮度を3.0重量%とし、燃料集合体の燃料棒の一部に10.0重量%のガドリニアを添加してなる構成が開示されている。
 一方、将来の軽水減速型原子炉において、燃料経済性を向上させ、ウラン資源を有効活用するために、ウラン235の濃縮度を従来の設定である「5.0重量%以下」よりも高くした、すなわち濃縮度が5.0重量%より高く設定された燃料を用いるための検討が開始されている。このような濃縮度の高い燃料を用いるとき、燃料製造工程の最終段階を行う加工施設において、従来の設計で安全を担保されている5.0重量%よりも高い濃縮度のウランに微量の可燃性毒物を添加することによって、可燃性毒物添加後の取り扱いを既存の製造設備で行っても臨界安全性を担保できるようにすることが検討されている(例えば、特許文献4参照)。
 このとき添加される可燃性毒物の割合は、従来の燃料集合体の燃焼特性向上のために添加された割合よりも大幅に少なくてよい。例えば、可燃性毒物としてガドリニアを添加する場合、ウラン235濃縮度が10重量%を超えなければ、ガドリニアの濃度は多くて0.1重量%、通常はそれよりも低い濃度で臨界安全性担保の目的を達成できる。
特開2004-177241号公報 特開平4-212093号公報 特開平9-80180号公報 特開2004-177241号公報
科学技術庁原子力安全局核燃料規制課編、「臨界安全ハンドブック」、1988年10月31日、にっかん書房発行
 ウランの濃縮度が5wt%を超える原子炉燃料を採用するためには、臨界管理の観点から各工程における設計変更、設備改造などに伴ってコストが増大し、原子炉燃料の濃縮度上昇による燃料サイクルコスト低減効果が相殺される可能性がある。このため、これに対応する対策が必要となる。なお、ウラン濃縮度5wt%超の原子炉燃料を採用するにあたり、商用軽水炉用燃料のウラン濃縮度の上限は10wt%程度が実用的である。
 ウランの濃縮度が5wt%を超える原子燃料を、現行の加工施設などで取り扱うためには、ウランに中性子吸収断面積が大きな物質を添加するなどして、その混合物の中性子増倍率を濃縮度が5%以下のウランと同等にする方法がある。中性子吸収断面積が大きな物質を用いて燃料の中性子増倍率を小さくする場合、その中性子吸収効果が運転サイクル中の炉心の中性子挙動に与える影響をできるだけ小さくするために用いる量はできるだけ少ないほうが好ましい。
 中性子吸収断面積が大きな物質としては、現在、運転サイクル中の反応度を制御することなどを目的として用いられているガドリニウム(Gd)が挙げられる。ガドリニウムは、中性子吸収断面積が非常に大きいため、微量でも燃料の中性子増倍率を小さくすることができる。しかし、微量のガドリニア(Gd)をウランに添加する場合、二酸化ウランとの混合粉末、あるいは、焼結されたペレットの状態において、ガドリニアの濃度分布が不均一になると、中性子増倍率の抑制効果を発揮できないおそれがある。一方、このような不均一性に起因した中性子増倍率抑制効果の低減を補うために中性子吸収断面積が大きな物質の濃度を高めると、運転サイクル中の反応度が低下し、燃料サイクルコストが増加する可能性がある。
 特許文献1には、ガドリニア(Gd)よりも中性子吸収断面積が小さい、酸化エルビウム(Er)をUOペレットに微量だけ添加することによって臨界安全性を確保する方法が開示されている。また、特許文献2で開示されている、ボロン(B)などをUOペレット表面や燃料被覆管の内側に塗布する方法によっても、臨界安全性を確保することができる。
 しかし、室温(0.025eV)における熱中性子吸収断面積は、Er-167で約640バーン、B-10で約3,840バーンであり、Gdの同位体であるGd-157で254,080バーンと比べてはるかに小さい。このため、エルビウムやボロンを原子燃料に用いた場合、それらの可燃性毒物の濃度によっては運転サイクルの末期において可燃性毒物が残留して炉心の反応度損失が発生する可能性がある。運転サイクル末期に可燃性毒物が残留している場合、ウランの高濃縮度化による燃料サイクルのコスト低減効果を発揮することが困難となる。
 ガドリニウムに代表される可燃性毒物は中性子吸収断面積が大きいという特徴を活かして使用されるものであるが、これを低濃度で原子燃料ペレットに添加する際には、中性子吸収断面積が大きいために、粒子の凝集を避け極力分散させて添加する必要が生じる。ガドリニア中の熱中性子平均自由行程は10μm程度であり、これよりも大きいガドリニア粒子の塊があると、自己遮へい効果によって中性子吸収効果が低減するためである。
 従来の原子燃料ペレットにおいて1~15重量%の濃度でガドリニアを添加した場合、この自己遮へい効果は、製造物本来の特性として設計されなければならない性質をもつ。しかし、0.1重量%以下の低濃度でガドリニアを添加する場合には、ガドリニア粒子の分散の程度による自己遮へい効果の違いが、中性子吸収効果への影響として大きく現れてしまう。このため、添加するガドリニアとしては粒径の小さい粉末を用い、個々の粒子を極力分散させることによって、自己遮へい効果を抑制する必要がある。
 ところが、従来、ガドリニアなどの可燃性毒物酸化物を比較的高濃度の1~15重量%で添加した原子燃料ペレットを製造する場合、焼結ペレットにおけるマイクロクラックの抑止や核分裂生成物ガスの放出抑止の観点から、酸化ウランと可燃性毒物の酸化物およびこれらの固溶体の結晶粒径を大きくすることが課題となっている。これに対し、0.1重量%以下の低濃度の可燃性毒物酸化物を原子燃料酸化物に添加した場合、マイクロクラックの抑止や核分裂生成物ガスの放出抑止に対する課題よりも、中性子吸収効果への影響抑止の課題のほうが重要性をもつ。
 従来の可燃性毒物を添加した原子燃料ペレットの製造方法により低濃度の微小粒径可燃性毒物酸化物粉末を添加して、これを混合した場合、可燃性毒物酸化物粒子が静電付着力等によって凝集してしまうため、個々の粒子を分散させて混合することは困難である。可燃性毒物酸化物粒子が凝集したままでこれと原子燃料酸化物との混合粉末を焼結して製造したペレットにおいては、可燃性毒物酸化物が結晶粒径10μm以上の大きさを持つ塊の固溶体を形成するため、自己遮へい効果によって中性子吸収効果が低下してしまい、可燃性毒物添加原子燃料ペレットとして所望の中性子吸収効果を得ることができない。
 他方、自己遮へいによる中性子吸収効果の低減を補うために可燃性毒物添加量を多めに設定し調合した場合、中性子吸収効果のばらつきが大きくなり、原子炉に供する燃料集合体の核設計への不確定要因を大きく与えざるを得ない。
 そこで、本発明は、原子燃料に濃縮度が5wt%を超えるウランを用いる場合に、大幅なコスト上昇なしに臨界管理できるようにすることを目的とする。
 上述の目的を達成するため、本発明は、燃料集合体において、ガドリニウムとガドリニウムを除く希土類元素Aとの化学式A1-XGd2-0.5Xまたは化学式A1-XGd1.5で表わされるGd複合酸化物および5%を超える濃縮度のウランの酸化物を含有する燃料要素を有することを特徴とする。
 また、本発明は、燃料集合体の製造方法において、ガドリニウムとガドリニウムを除く希土類元素Aとの化学式A1-XGd2-0.5Xまたは化学式A1-XGd1.5で表わされるGd複合酸化物を、5%を超える濃縮度のウランの酸化物とを混合する工程、を有することを特徴とする。
 また、本発明は、ウラン粉末において、ガドリニウムとガドリニウムを除く希土類元素Aとの化学式A1-XGd2-0.5Xまたは化学式A1-XGd1.5で表わされるGd複合酸化物を、5%を超える濃縮度のウランの酸化物とを含有することを特徴とする。
 また、本発明は、原子燃料ペレットの製造方法において、可燃性毒物である粉末状の酸化ガドリニウムと少なくとも1種のガドリニウムと異なる元素の化合物とを液体容器中の液体に注入し攪拌し混合する工程と、この液体容器中で攪拌した液体を乾燥させて酸化ガドリニウム含有粉体を製造する工程と、この酸化ガドリニウム含有粉体と原子燃料の酸化物とを混合して原子燃料酸化物含有混合物を得る工程と、この原子燃料酸化物含有混合物を成型し焼結して原子燃料ペレットとする工程と、を有することを特徴とする。
 本発明によれば、原子燃料に濃縮度が5wt%を超えるウランを用いる場合に、大幅なコスト上昇なしに臨界管理できる。
本発明に係る燃料集合体の第1の実施の形態の横断面図である。 本発明に係る燃料集合体の第1の実施の形態に用いる燃料棒の縦断面図である。 金属量が33kgのUO粉末を球体とし、30cmの水反射厚がある場合の中性子実効増倍率を示すグラフである。 本発明に係る燃料集合体の第1の実施の形態において、濃縮度が5wt%を超えるUO2粉末に添加すべき等価ガドリニア濃度とウラン濃縮度との関係を示す図である。 本発明に係る燃料集合体の第1の実施の形態の出力運転時での無限増倍率を示すグラフである。 本発明に係る燃料集合体の第1の実施の形態において、低ガドリニア燃料棒に添加すべき等価ガドリニアの濃度範囲を示すグラフである。 ペレット中の等価ガドリニア濃度が同じで、Gd複合酸化物中のGd密度が異なる場合のGd複合酸化物の個数を模式的に表す図であって、(a)はGd密度が高い場合、(b)はGd密度が低い場合を示す。 単位体積あたりに含有するGd量が一定のUO2におけるGdによるトータルの中性子吸収効果のGd複合酸化物の粒子径との関係を模式的に示すグラフである。 本発明に係る燃料集合体の第1の実施の形態に用いる原子燃料ペレットの製造方法の工程順を示すフローチャートである。 本発明に係る燃料集合体の第1の実施の形態の比較例として説明される、ガドリニア粒子と二酸化ウラン粒子の混合状態を模式的に示したもので、(a)は混合前、(b)は気中で両者を混合した従来例の場合、(c)は理想的な混合がなされた場合である。 本発明に係る燃料集合体の第1の実施の形態の作用を説明するため、ガドリニア粒子、酸化セリウム粒子と二酸化ウラン粒子の混合状態を模式的に示したもので、(a)はガドリニアと酸化セリウムの混合前、(b)は本実施例の混合粒体の乾燥工程S3後のガドリニア含有混合粉体5の場合、(c)は二酸化ウラン粒子6、(d)は本発明の混合工程S4後のガドリニア含有混合粉体5と二酸化ウラン粒子6の混合がなされた場合である。 本発明に係る燃料集合体の第2の実施の形態における横断面図である。 本発明に係る燃料集合体の第3の実施の形態における横断面図である。
 本発明に係る燃料集合体の実施の形態を、図面を参照して説明する。なお、同一または類似の構成には同一の符号を付し、重複する説明は省略する。
[第1の実施の形態]
 図2は、本発明に係る燃料集合体の第1の実施の形態に用いる燃料棒の縦断面図である。
 本実施の形態における燃料棒は、被覆管21と、ペレット23と、下部端栓22と、上部端栓25と、プレナムスプリング24とを有している。被覆管21は、ジルコニウム合金で円筒に形成された管である。ペレット23は、ウランの酸化物などをたとえば高さが1cm程度の円柱状に焼き固めたものである。被覆管21の内部には、複数のペレット23が収納される。被覆管21の下端には、下部端栓22が溶接されている。被覆管21の上端には、上部端栓25が溶接されている。上部端栓25とペレット23の端面との間には、プレナムスプリング24が配置され、ペレット23が押圧支持されている。
 図1は、本実施の形態の燃料集合体の横断面図である。図1には、この燃料集合体を原子炉に装荷した場合の制御棒40との位置関係をあわせて示した。
 本実施の形態の燃料集合体10は、チャンネルボックス41を装着された状態で沸騰水型原子炉(BWR)に装荷される。燃料集合体10は、燃料棒13,14,15,16,17,18,19とウォータロッド11とを有している。ウォータロッド11は、内部に水が流れるようにたとえばジルコニウム合金で形成された管である。この燃料集合体10は、運転サイクルは2年で、取出平均燃焼度70GWd/t程度を想定した、平均ウラン濃縮度が約6.2wt%の取替用燃料集合体の設計例である。
 74本の燃料棒13,14,15,16,17,18,19と2本のウォータロッド11とは、たとえば9行9列の正方格子状に束ねられている。2本のウォータロッド11は、燃料集合体10の横断面の中央付近に、正方格子の7箇所を占める位置に配置される。燃料要素である74本の燃料棒13,14,15,16,17,18,19は、残りの正方格子の位置に配置される。燃料棒13,14,15,16,17,18,19およびウォータロッド11は、上端および下端をタイプレートで支持され、また、タイプレートとタイプレートの間のたとえば7箇所に設けられたスペーサによって横断面方向の移動が制限されている。
 74本の燃料棒13,14,15,16,17,18,19は、ウラン燃料棒13,14,15と、高ガドリニア入燃料棒19と、低ガドリニア入燃料棒16,17,18とに分類することができる。ウラン燃料棒13,14,15は、濃縮度が5wt%以下のウランの酸化物で形成されたペレット23を収納した燃料棒である。本実施の形態では、ウラン燃料棒13,14,15として、ウランの濃縮度が3wt%のウラン燃料棒13と、ウランの濃縮度が4wt%のウラン燃料棒14と、ウランの濃縮度が5wt%のウラン燃料棒15の3種類が用いられている。
 高ガドリニア入燃料棒19は、ウラン酸化物中に比較的高い濃度のガドリニア(Gd2O3)を含有させたペレット23を収納した燃料棒である。高ガドリニア入燃料棒19に収められたペレット23に含有されるガドリニアは、原子炉の運転サイクル中の炉心の余剰反応度を平坦化させるためなどを目的として導入されるものである。このような目的で導入されるガドリニアのペレット中の含有割合は、一般的に1wt%以上である。また、高ガドリニア入燃料棒19に収納されるペレット23には、濃縮度が6wt%のウランが用いられる。
 低ガドリニア入燃料棒16,17,18は、5%を超える濃縮度のウランの酸化物と、ガドリニウムおよびガドリニウムを除く希土類元素のGd複合酸化物とを含有するペレット3を収納している。低ガドリニア入燃料棒16,17,18に含有されるガドリニウムは、主として燃料の加工、輸送など、原子炉に装荷されるまでの臨界安全を確保することを目的として導入されており、添加量は概ね0.1wt%未満である。本実施の形態では、低ガドリニア入燃料棒16,17,18として、ガドリニア換算で53ppmの複合酸化物を添加した濃縮度6wt%のUOを用いた燃料棒16と、ガドリニア換算で110ppmのGd複合酸化物を添加した濃縮度7wt%のUOを用いた燃料棒17と、ガドリニア換算で170ppmのGd複合酸化物を添加した濃縮度8wt%のUO2を用いた燃料棒18と、を用いている。
 ここで複合酸化物とは、二種類以上の金属酸化物であって、ミクロ構造においても化学量論的な組成を維持している酸化物のことを言う。また、Gd複合酸化物とは、ガドリニウムGdおよび他の希土類元素Aとの酸化物であって、希土類元素Aの原子数に対するGdの割合をXとした場合の化学式が、A1-XGd2-0.5XまたはA1-XGd1.5で表わされる酸化物である。希土類元素Aとしては、たとえばセリウムCeまたはランタンLaを用いることができる。また、ガドリニア換算とは、Gd複合酸化物中からガドリニア(Gd)を分離した状態で換算することを言うこととする。等価ガドリニア濃度とは、Gd複合酸化物中のGdが単独のガドリニアとして存在した場合の濃度であるとする。
 臨界安全ハンドブック(非特許文献1)では、臨界安全上最も厳しい場合として、「完全水没」を想定している。この「完全水没」という状態は、核燃料物質の隙間に水が浸透し、かつ周囲を水で取り囲んだ状態である。このような「完全水没」の状態において、均質なUO・HOの体系に対して、ウランの全ての濃度範囲で、「質量管理」あるいは「形状寸法管理」における制限値として「最小推定臨界値」および「最小推定臨界下限値」を定めている。「質量管理」とは、臨界安全上の制限となる一定の質量を超える原子炉燃料は取り扱わない管理である。「形状寸法管理」とは、一定の形状・寸法を超える原子炉燃料は取り扱わない管理である。UO粉末を取り扱う工程における、これらの制限値を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 ここで、推定臨界値とは質量や形状・寸法がその値であれば臨界と判断される値であり、推定臨界下限値とは質量や形状・寸法がその値以下であれば未臨界と判断される値であって、表1の各数値はウラン全濃度範囲における最小値として示される。
 本実施の形態では、燃料成形加工施設で取り扱うUO粉末について、ウラン濃縮度5wt%超のUO粉末に微量のGd複合酸化物、たとえば0.1wt%未満のガドリニアに相当するGd複合酸化物を均一に添加する。これにより、ウラン濃縮度5wt%のUO粉末の臨界安全上の制限となる質量管理あるいは形状寸法管理の制限値における中性子実効増倍率の最大値と等しいか、これよりも小さくなるように原子燃料サイクル施設の臨界管理を行う。すなわち、ウラン濃縮度5wt%超のUO粉末の質量管理あるいは形状寸法管理の各々の中性子実効増倍率が、表1のウラン濃縮度5wt%でのUO粉末の質量管理あるいは形状寸法管理の各々の中性子実効増倍率の最大値に等しいか、より小さくなるように濃縮度が5wt%を超えるUO2粉末に微量のガドリニアを添加することにより、濃縮度が5wt%を超えるUO粉末の臨界安全の制限条件を濃縮度が5wt%のUO粉末の臨界安全の制限条件と等しくする。
 なお、臨界安全の制限条件とする中性子実効増倍率の基準とするウランの濃縮度は、5wt%に限定されるものではなく、5wt%以下であればよい。たとえば、ウランの濃縮度の製造公差などを考慮して、ウランの濃縮度が4.5wt%の中性子実効増倍率を基準としてもよい。ただし、基準とするウランの濃縮度が5wt%に比べて小さくなるにしたがって、臨界安全に対する制限が過大になりガドリニアの添加量は過剰になることを留意する。
 図3は、金属量が33kgのUO粉末を球体とし、30cmの水反射厚がある場合の中性子実効増倍率を示すグラフである。
 図3は、表1に示された各ウラン濃縮度(3wt%、4wt%、5wt%、10wt%、20wt%)のうち、5wt%濃縮度の最小推定臨界下限値である金属量が33kgのUO粉末を用いて質量管理に関わる等価ガドリニア濃度を算出した例である。表1に示されたウラン全濃度範囲におけるウランの濃縮度が5wt%で金属ウラン量が33kgのUO粉末の中性子実効増倍率の最大値をkmaxとする。図3には、このkmaxと微量のガドリニアを添加したウラン濃縮度5wt%超のUO粉末の中性子実効増倍率が等価もしくは小さくなるようにした場合のウラン濃縮度と等価ガドリニア濃度との関係が示されている。
 このウラン濃縮度と等価ガドリニア濃度との関係は、UO粉末の間隙が水で満たされ、かつ水反射条件の球状の均質体系において、ウラン濃度(あるいは球体積)をパラメータとした場合の計算を行うと、ウラン濃縮度6wt%、7wt%、8wt%および10wt%の各ケースについてUO粉末に添加する等価ガドリニアの濃度はそれぞれ53ppm、110ppm、170ppmおよび305ppmとなる。なお、ここで、1ppm=1×10-4wt%とする。
 また、同じ等価ガドリニア濃度の条件で、表1に示したウラン濃縮度5wt%のUO粉末の無限円柱直径24.4cm、無限平板厚さ11.2cmおよび球半径24.0cmを与え、ウラン濃度をパラメータとした場合の中性子輸送計算を行うと、微量のガドリニアを含むウラン濃縮度5wt%超のUO粉末の中性子実効増倍率はウラン濃縮度5wt%のUO粉末の中性子実効増倍率の最大値より小さい値となり、同様に制限条件を満足する。
 さらに、燃料成形加工施設におけるUO粉末工程に続く燃料ペレット製造、原子炉燃料棒組立および燃料集合体組立の各工程についても同じ等価ガドリニア濃度の条件で中性子輸送計算を行い、UO粉末工程における中性子実効増倍率の抑制効果が最も小さい値となることが確認された。すなわち、UO粉末工程において設定した等価ガドリニア濃度を使用することで、ウラン濃縮度5wt%超の原子炉燃料を使用する燃料ペレットの配列、燃料集合体組立て段階における原子炉燃料棒を束ねる際の原子炉燃料棒の束、組立て後の燃料集合体についてのUO体系の中性子実効増倍率はそれぞれウラン濃縮度5wt%の燃料ペレット、原子炉燃料棒、燃料集合体の中性子実効増倍率以下に抑制され、同様に制限条件を満足する。
 図4は、本実施の形態において、濃縮度が5wt%を超えるUO粉末に添加すべき等価ガドリニア濃度とウラン濃縮度との関係を示す図である。
 上述のとおり、ウランの濃縮度が6、7、8、10wt%の場合、添加する等価ガドリニアの濃度が53、110、170、305ppmであれば中性子実効増倍率は濃縮度が5wt%のウランと同等以下となる。また、濃縮度が5wt%のUO2粉末では添加すべき等価ガドリニア濃度は0ppmである。これらの点を結ぶと、図4に示すように、濃縮度が5wt%を超えるUO粉末のウラン濃縮度の5wt%からの増分と添加すべき等価ガドリニアの濃度との関係はほぼ比例する。
 そこで、この関係が比例であるとすると、濃縮度が5wt%を超えるUO粉末のウラン濃縮度の5wt%からの増分に対する比例定数は、ウランの濃縮度が10wt%の場合の添加すべき等価ガドリニアの濃度である305×10-4wt%(=305ppm)をウランの濃縮度10wt%の5wt%からの増分、すなわち、5wt%で除して、61×10-4となる。すなわち、濃縮度が5wt%を超えるUO2粉末のウラン濃縮度の5wt%からの増分(wt%)に61×10-4を乗ずることにより、容易に添加すべき等価ガドリニア濃度(wt%)を求めることができる。
 図4に示したように、濃縮度が5wt%を超えるUO粉末に添加すべき等価ガドリニア濃度は、ウランの濃縮度が大きくなるにしたがって、傾きが大きくなっている。このため、このように近似直線を用いる方法は、中性子輸送計算を行って、それぞれのウランの濃縮度に対応した等価ガドリニアの濃度を算出する方法と比較すると、等価ガドリニア濃度が高めに算出される。したがって、臨界管理の観点から安全側の管理方法である。
 このように、本実施の形態によれば、濃縮度が5wt%を超えるウランについて、UO粉末の段階から微量のGd複合酸化物を均一に添加することにより、添加後は、臨界管理上はウラン濃縮度5wt%のUO粉末と同等に扱うことができる。そうすると、燃料成形加工施設においてはUO粉末の取扱のみならず、燃料ペレット成形加工、原子炉燃料棒製作および燃料集合体組立および貯蔵等の各製造工程においても5wt%原子炉燃料と同等の臨界管理を行うことができる。これによって、燃料成形加工、新燃料輸送、新燃料貯蔵の工程において未臨界性を確保する制限値以下に中性子実効増倍率を抑制して設計変更や設備改造等によるコストの上昇およびそれに伴う成形加工費の上昇を抑制することができる。
 図5は、本実施の形態の燃料集合体の出力運転時での無限増倍率を示すグラフである。このグラフは、ボイド率が40%の場合を示しており、また、図5には、比較のため、0.1wt%以下の微量のガドリニアを用いていない平均ウラン濃縮度が約6.2wt%の燃料集合体の設計例の無限増倍率をあわせて示した。
 図5において、線Aは微量のガドリニアを用いていない燃料集合体における燃焼度と無限増倍率を示している。線Bは本実施の形態の燃料集合体における燃焼度と無限増倍率を示している。
 また、図5において、線Cは本実施の形態の燃料集合体が備える原子炉燃料棒のうち、ウラン濃縮度5wt%超のUO粉末を使用した原子炉燃料棒に含まれる等価ガドリニア濃度を例えば2倍にした燃料集合体における燃焼度と無限増倍率を示している。すなわち、線Cの無限増倍率となる燃料集合体は、等価ガドリニア濃度が106ppmでウラン濃縮度6wt%のUOを用いた燃料棒と、等価ガドリニア濃度が220ppmでウラン濃縮度7wt%のUOを用いた燃料棒と、等価ガドリニア濃度が340ppmでウラン濃縮度8wt%のUOを用いた燃料棒とが含まれている。
 図5において、線Dは本実施の形態の燃料集合体が備える原子炉燃料棒のうち、ウラン濃縮度5wt%超のUOを用いた燃料棒に含まれる等価ガドリニア濃度を3倍にした燃料集合体における燃焼度と無限増倍率を示している。すなわち、線Dの燃料集合体は、等価ガドリニア濃度が159ppmでウラン濃縮度6wt%のUOを用いた燃料棒と、等価ガドリニア濃度が330ppmでウラン濃縮度7wt%のUOを用いた燃料棒と、等価ガドリニア濃度が510ppmでウラン濃縮度8wt%のUOを用いた燃料棒とが含まれている。
 図5に示すように、線Aで示される微量のガドリニアを用いていない燃料集合体の無限増倍率に対する線Bの燃料集合体の無限増倍率(k)の差異は燃焼初期において約1%Δk程度と小さく、炉心の反応度に与える影響はわずかである。すなわち、本実施の形態の燃料集合体では、微量のガドリニアを用いたことによる無限増倍率の差異は1%Δk程度であり、微量のガドリニアを用いたために特別に従来の設計を変更する必要はない。
 また、線Cおよび線Cで示すように、ウラン濃縮度5wt%超のUOを用いた燃料棒に含まれるガドリニアの濃度を2倍および3倍にした燃料集合体では、無限増倍率の差異はそれぞれ略2%Δk、略3%Δk程度と小さく、本実施の形態の燃料集合体と同様に従来の設計を変更する必要がないか、あるいは、高ガドリニア入燃料棒19の本数、濃度あるいは配置などの軽微な設計変更によって対応可能である。
 また、微量のガドリニアを用いていない燃料集合体に対して、本実施の形態の燃料集合体の無限増倍率は、燃焼とともに速やかに小さくなり、サイクル燃焼度5GWd/t程度(1/2年運転相当)以上ではほとんど差異がない。したがって、運転サイクル末期での微量のガドリニアの添加による反応度損失は無視できる。
 図6は、本実施の形態において、低ガドリニア入燃料棒に添加すべき等価ガドリニア濃度範囲を示すグラフである。
 図5からわかるように、低ガドリニア入燃料棒16,17,18に添加する微量の等価ガドリニア濃度は、本実施の形態の値からその3倍の値の間であれば、ウラン濃縮度が5%以下の燃料棒と同様の施設、設備で加工・輸送などの取り扱いが可能であり、かつ、運転サイクル中の反応度損失も無視できる程度となる。したがって、濃縮度が5%を超えるウランを、図6の斜線で示す範囲の微量のガドリニアと混合して用いることにより、ウラン濃縮度が5%以下の燃料棒と同様の施設、設備で加工・輸送などの取り扱いが可能であり、かつ、運転サイクル中の反応度損失も無視できる程度となる。このため、加工施設、輸送機器などの大幅な変更を伴わずに5%を超える濃縮度のウランを用いることができる。また、運転サイクル中の反応度損失も無視できるため、燃料サイクルコストをより低減することができる。
 たとえば、ウラン濃縮度10wt%での等価ガドリニア濃度は、305ppmから、その3倍の値の915ppmまでの範囲とできる。ウラン濃縮度が5wt%を超える各濃縮度においても、本実施の形態のガドリニアの濃度の3倍までの範囲とすることができる。ウラン濃縮度5wt%超の原子炉燃料を採用するにあたり、商用軽水炉用燃料のウラン濃縮度の上限は10wt%程度が実用的であるとすると、ウラン濃縮度が5wt%を超える原子炉燃料に微量に添加するガドリニアの濃度はおよそ0.1wt%未満となる。
 本実施の形態の原子燃料は、濃縮度が5wt%を超えるウランであっても臨界管理上は濃縮度が5wt%以下として扱うことができる。すなわち、従来の燃料集合体と同様の組立工程によって微量、たとえば0.1wt%未満のガドリニアを添加したウラン濃縮度が5wt%以上のUOを使用した燃料棒の組み立てができるので、設備改造などを伴うことなく、ウラン濃縮度が5wt%を超えるウランを用いた燃料集合体を得ることができる。
 また、微量添加したガドリニアは燃焼初期において速やかに燃え尽きるため、燃料集合体の核特性として、運転サイクル末期における反応度損失を生ずることなく、ウラン濃縮度5wt%超の原子炉燃料を導入することによる燃料経済性向上を同時に満たすことができる。
 本実施の形態において、低ガドリニア入燃料棒16,17,18には、可燃性毒物であるガドリニウムが他の希土類元素との複合酸化物として含有されている。ガドリニウムは、他の希土類元素に比べて中性子吸収断面積が大きい。このため、ガドリニウムと複合酸化物を形成する他の希土類元素は、ガドリニウムの中性子吸収材としての効果を希釈する希釈材として用いられていることになる。たとえばセリウムCeあるいはランタンLaの熱中性子吸収断面積は、10バーン程度でGdのそれよりもはるかに小さい。そのため、セリウムあるいはランタンを含有するGd複合酸化物の中性子吸収特性は、Gdが支配的となる。
 このような低ガドリニア入燃料棒16,17,18は、たとえば次のように製造することができる。まず、Gdと、中性子吸収断面積の小さいランタンあるいはセリウムとについて、それぞれの硝酸塩水溶液の混合溶液に炭酸アンモニウムを加えて共沈させたものを加熱分解させる。これにより、Gdと他の希土類元素との複合酸化物の粉末が得られる。このGdと他の希土類元素との複合酸化物の粉末を、所定の量のUO2粉末と希釈混合することによって均一に混合された酸化物粉末が得られる。
 ガドリニウムをペレット23に含有させる場合、含有量が小さいと、UO粉末中、あるいはペレット23内の可燃性毒物の濃度分布が不均一となるおそれがある。しかし、本実施の形態では、Gdを中性子吸収断面積の小さい希土類元素に希釈させたGd複合酸化物粒子を用いているため、同一のガドリニウム濃度を得るための粉末粒子の数が多くなり、ガドリニウムを含有する粒子を均一に分散させることが容易にできる。
 また、Gdは中性子吸収微視断面積が非常に大きいため、ガドリニアの粒子が大きいほど中性子吸収の自己遮へい効果が増して中性子吸収効率が低下する。このため、ガドリニウムを含有する粒子の径はできるだけ小さい方が好ましい。本実施の形態では、Gdを中性子吸収断面積の小さい希土類元素に希釈させたGd複合酸化物粒子を用いているため、ガドリニウムを含有する粒子中のGdの密度を小さくして自己遮へい効果を低減して中性子吸収効率の低下を抑えている。
 図7は、ペレット中の等価ガドリニア濃度が同じで、Gd複合酸化物中のGd密度が異なる場合のGd複合酸化物の個数を模式的に表す図であって、(a)はGd密度が高い場合、(b)はGd密度が低い場合を示す。図8は、単位体積あたりに含有するGd量が一定のUOにおけるGdによるトータルの中性子吸収効果のGd複合酸化物の粒子径との関係を模式的に示すグラフである。図8には、図7の(a)および(b)に対応して、Gd複合酸化物粒子中のGd密度ρが小さい場合と大きい場合の2種類を示している。
 図7に模式的に示すように、Gd複合酸化物粒子の径が同じで等価ガドリニア濃度が同じ場合、ペレット23中のGd密度が低いGd複合酸化物粒子51の個数は、Gd密度が高いGd複合酸化物粒子52の個数に比べて多い。つまり、Gd複合酸化物粒子の径が同じ場合、単位体積あたりに含有するGd量が一定であれば、Gd複合酸化物粒子中のGd密度ρが小さいほど粉末粒子数が多くなることなり、粒子はより均一に分散される。
 Gd複合酸化物粒子中のGd密度ρを同じ場合には、Gd複合酸化物粒子の径が小さいほど中性子吸収効果が大きい。また、Gd複合酸化物粒子の径が同じ場合は、Gd複合酸化物粒子中のGd密度ρが小さいほど中性子吸収効果が大きくなる。
 たとえばGdの原子数割合をXとした場合、GdとCeの複合酸化物の化学式は、Ce1-XGd2-0.5Xとなる。また、GdとLaの複合酸化物の化学式は、La1-XGd1.5となる。Gdの添加濃度一定とした場合、このGd複合酸化物中のGd比率Xが小さいほど粉末粒子1個あたりの中性子吸収効果が低減され効率が向上し、他方ではGd複合酸化物の量が増して粉末粒子の総数も増す。このため、可燃性毒物粒子を均一に分散化する観点から極めて有用である。一方、燃料集合体中のUOのインベントリを極力減らさないためには、Gd複合酸化物の割合ができるだけ小さいほうが好ましい。
 Gd複合酸化物においてGdの希釈効果を有効とするため、希釈は3倍程度以上となるほうが好ましい。つまり、Gd複合酸化物中のGdの重量率は最大33wt%程度が好ましい。一方、ウランの濃縮度が10wt%以下の場合、低ガドリニア入燃料棒16,17,18に必要なガドリニア濃度は0.1wt%以下であるから、UOとの混合粉末あるいはUO2と混合されたペレット中のGd複合酸化物の濃度は、最大で0.1/0.33=0.3wt%程度とするとよい。また、過度に希釈すると、Gd複合酸化物の量が多くなりすぎてUOのインベントリを減らしてしまうため、Gd複合酸化物のGd重量率は5wt%以上とすることが好ましい。
 また、本実施の形態では、ガドリニウムを希釈材とともに用いているため、UO2粉末中に導入するGd複合酸化物の粒子数は、ガドリニウムの単独の酸化物として用いる場合に比べて粒子数が多くなる。このため、UOの粉末との混合に際して容易に均一性を高めることができる。また、ガドリニウムは希土類元素であるため、他の希土類元素と複合酸化物を形成しても、化学的な特性などがガドリニウムと比べて大きく変化することがない。
 このようにして得られた酸化物粉末は、所定の濃度のGdが含まれていれば、ウランの濃縮度が5wt%を超える場合であっても、濃縮度が5%のウランと同様に取り扱うことができる。
 また、セリウム(Ce)やランタン(La)の他、中性子吸収断面積の小さい希土類元素として、プラセオジム(Pr)、イットリウム(Y)を用いることができる。さらに、スカンジウム(Sc)、ネオジム(Nd)、プロメチウム(Pm)、ツリウム(Tm)、ホルミウム(Ho)、およびイッテルビウム(Yb)を用いてもよい。その他、中性子吸収体であるエルビウム(Er)、サマリウム(Sm)、ユーロピウム(Eu)もガドリニウムに比べると中性子吸収断面積が小さいため、他の希土類元素として用いることができる。
 このように、本実施の形態によれば、濃縮度が5wt%を超えるウランに、中性子吸収断面積の大きい可燃性毒物であるGdを、他の希土類元素とのGd複合酸化物として均一に微量添加することによって、原子燃料サイクル施設における臨界管理対策への影響が軽減される。このため、原子燃料に濃縮度が5wt%を超えるウランを用いる場合に、大幅なコスト上昇なしに臨界管理できる。したがって、ウランの濃縮度上昇による燃料サイクルコスト低減効果を有効に活用して経済性向上を達成することができる。
 次に、本実施の形態に用いる可燃性毒物を添加した原子燃料ペレットの製造方法の詳細を説明する。
 図9は、本形態に用いる原子燃料ペレットの製造方法の工程順を示すフローチャートである。
 なお、本実施の形態では、添加する可燃性毒物の酸化物として酸化ガドリニウム(ガドリニア、Gd)を用い、また、原子燃料酸化物の例として二酸化ウランを用いた場合として、以下例示的に説明する。
 本実施の形態では、まず、ガドリニア粉末1と、ガドリニウムと異なる元素の化合物の粉末2とを、容器中の液体3に投入し(S1)、この2種類の粉末1,2と液体3とを撹拌容器(ミキサー)4によって撹拌する(S2)。なお、ガドリニア1と混合される「ガドリニウムと異なる元素の化合物」(以下、被混合物質という。)として好適な例として、セリウムの酸化物、すなわち酸化セリウム(CeO)を用いることとして、以下例示的に説明する。
 なお、ガドリニア粉末61と被混合物質粉末62を投入する液体63としては、水が好適であるが、アルコールやアセトンのような揮発性液体で代用することも考えられる。また、ミキサー4によりこれらを撹拌させるのに代えて、所定の容器にガドリニア粉末61と被混合物質粉末62と水63を入れて密閉し、この容器を振動させることによって粉末61,62と水63を撹拌してもよい。
 次に、2種類の粉末61,62と水63とを攪拌(S2)して得られた撹拌液65を乾燥させて(S3)、ガドリニアと酸化セリウムの混合粉体65aを製造し、これを二酸化ウラン(UO)粉末66と混合する(S4)。この粉体65aと二酸化ウラン粉末66の混合は、従来の原子燃料ペレットの製造方法において行われるガドリニア粉末と二酸化ウラン粉末との混合と同様の手法および装置により実施してよい。
 こうして形成された粉体65aと粉末66の混合体を、燃料ペレットの型に投入して成型し(S5)、これを焼結して燃料ペレットを生成する(S6)。この成型、焼結の工程(S5,S6)は従来と同じものであり、模式的な図示を省略する。
 かかる構成からなる本実施例の作用について、以下、各粒子、粒体の混合される状況を模式的に示した図10、図11を援用して説明する。
 まず、混合前のガドリニア粒子および二酸化ウラン粒子をそれぞれ示したものが図10(a)である。このように、ガドリニア粒子は粒径が小さく、気中では静電付着力等によって凝集した状態となっている。従来の方法で、この凝集状態にあるガドリニア粒子を二酸化ウラン粉末に投入して混合したとしても、気中で操作する限り、図10(b)に示すように凝集状態は解消されず、個々のガドリニア粒子を分散させた状態とすることは極めて困難である。気中操作で微小粒子の凝集を解消させるためには、乳鉢等によって圧力をかけながらすりつぶす操作が必要である。一方、図10(c)に示すように、ガドリニア微粒子が凝集せずに、十分に拡散しほぼ均一に酸化ウラン粒子中に混合した状態が理想的な混合状態である。
 そこで、本実施の形態では、図11(a)に示される、ガドリニア粒子1と、ガドリニア粒子61と比較して十分に多量の被混合物質からなる粒子62(ここでは例示的に酸化セリウム粒子として以下説明する。)とを、液体63中で混合する(S1)。液体63(水)中でこれらを混合することによって、ガドリニア粒子61が酸化セリウム粒子62中に分散してほぼ均一に混合した状態をつくることができる。これを容器4中で攪拌(S2)して攪拌液65を得、その後これを乾燥させる(S3)ことによって、図11(b)に示すような、十分にガドリニア粒子が分散配置されてなるガドリニア粒子と酸化セリウム粒子の混合粉体を製造することができる。
 この際、ガドリニアをガドリニア以外の元素の加工物中に十分に分散させてなる状況を実現することを考慮して、ガドリニア粒子61と混合する酸化セリウム粒子62の重量を、ガドリニア粒子61の重量の5~15倍程度に調整することが望ましい。このようにガドリニア粒子61より相対的に十分多い量の酸化セリウム粒子62を混合するのは、上述したように、最終的に焼結、成型されて製造される原子燃料ペレットに含有される可燃性毒物であるガドリニアの割合を約0.1重量%以下の低濃度に抑制することを想定しているためである。こうした重量比率に設定することにより、各粒子群にガドリニア粒子が離散して配置されることが実験的に解明された。なお、適切な重量比率としてより好ましくは、酸化セリウム粒子62の重量をガドリニア粒子61の約10倍とすることが考えられる。
 なお、ここで、ガドリニアの微粒子61と酸化セリウムの微粒子62とを水63中に投入して撹拌(S2)したとき、各微粒子は水中を浮遊して凝集は瞬時に解消される。また、ガドリニアの比重は約7.4、酸化セリウムの比重は約7.1で、ほぼ同等であるため、乾燥前の沈降時に分離することもなく、良好な混合状態を維持することが容易である。
 図3(b)に示されるガドリニア粒子と酸化セリウム粒子の混合粉体5aを、図11(c)に示される二酸化ウラン粒子と混合する(S4)と、図11(d)に示すように、ガドリニア粒子と酸化セリウム粒子の混合粉体65aそれぞれは凝集しているとしても、結局ガドリニア粒子61はこの粉体全体の中では分散した状態となるように、二酸化ウラン粒子の混合粉体を製造することができる。そして、こうしてできた製品は、図10(c)に示す理想的な状態と同等のガドリニアの分散状態を有している。
 図11(d)に示される混合粉体を原料として成型し、焼結ペレットを製造する(S5,S6)ことで、二酸化ウランとガドリニアおよび酸化セリウムが固溶体を生成した場合にも、ガドリニアの領域は微小粒子の大きさに応じて極めて微小なまま保持することができ、自己遮へい効果による中性子吸収効果への影響が生じない。
 よって、本実施例によれば、ガドリニア微粒子を凝集することなく分散させた原子燃料ペレットを製造することができるので、可燃性毒物を比較的低濃度に添加してなり中性子吸収効果の安定した原子燃料ペレットを製造することができる。こうして製造された原子燃料ペレットを燃料棒に用いたうえで燃料集合体を構成することで、中性子吸収効果のばらつきによる原子炉燃料集合体の核設計に与える不確定要因を最小化することができる。すなわち、可燃性毒物が有する反応度の製造公差を小さくでき、その結果これを用いた燃料集合体の核設計条件で考慮しなければならない不確定性要因の幅すなわち可燃性毒物反応度の幅を小さく見積もることができ、もって初期反応度の安定した燃料集合体設計が可能となる。
 当業者にあっては、各構成要素についてより適切な材料を選択し、あるいは、必要に応じて工程の追加、変更を行うことが可能である。
 例えば、本発明におけるガドリニアと液体中で混合される被混合物質(ガドリニウムと異なる元素の化合物)としては、ガドリニウムが希土類であることから、類似の化学的性質を持つ希土類元素の酸化物が化学形態として好適である。また、被混合物質としては、ガドリニア以外の1種類の希土類元素の酸化物を選択しても、複数種類の希土類元素の酸化物の混合物を選択してもよい。
 しかし、希土類元素には中性子吸収断面積が大きい元素が含まれており、サマリウム(Sm)、ユーロピウム(Eu)を粉体62として選択するときには、それらの中性子吸収効果の影響(熱中性子に対するミクロ中性子吸収断面積:4000~6000b)によって、本発明の提供する可燃性毒物が有する反応度の製造公差を小さくする効果が損なわれる恐れがある。従って、希土類元素の中でも、比較的中性子吸収断面積の小さい(ミクロ中性子吸収断面積が12b以下)ものを選択することが好適である。すなわち、本実施例において上述したセリウム(Ce)に加えて、プラセオジム(Pr)、ランタン(La)あるいはイットリウム(Y)のうちから少なくとも1つを選択して、希土類元素の酸化物として、酸化セリウム(CeO)、酸化プラセオジム(Pr11)、酸化ランタン(La)あるいは酸化イットリウム(Y)のうちの1つあるいは2つ以上の混合物とすることが好適である。また、希土類元素のうち、スカンジウム(Sc)、ネオジム(Nd)、プロメチウム(Pm)、ホルミウム(Ho)、およびイッテルビウム(Yb)はこれに準じる。
 これらの中性子吸収断面積の小さい希土類元素の酸化物を選ぶときには、ガドリニア粒子をこれらの酸化物粒子の中に十分に分散させて混合するために、ガドリニアとの重量の比率を大きくすることが可能である。
 一方、中性子吸収断面積の比較的大きな希土類元素、例えばジスプロシウム(Dy)、エルビウム(Er)、ツリウム(Tm)あるいはルテチウム(Lu)の酸化物を粉体2として選択するときには、これらの中性子吸収の効果(ミクロ中性子吸収断面積が100~1000b)とガドリニアの中性子吸収効果(ミクロ中性子吸収断面積が46000b)とを勘案して、核燃料の設計に応じて混合割合を設定することも可能である。他方、上述したCe、Pr、LaおよびYでは、中性子吸収効果による混合割合の制限は生じない。
 また、本実施の形態の攪拌工程(S2)において説明したように、攪拌液6中でのより攪拌がなされた状態を維持するためには、「ガドリニウムと異なる種類の元素の化合物」としては、その粉末の比重がガドリニア粉末の比重(約7.4)と近似したものを選択することが好適である。
 よって、主要な希土類元素について上述の2点を特性として比較したときに、以下の表を得ることができる。好適なものから順に2重丸、1重丸、三角の記号を付している。
Figure JPOXMLDOC01-appb-T000002
 さらに、ガドリニアとの被混合物質(ガドリニウムと異なる元素の化合物)としては、上述した希土類元素の酸化物以外でも、例えば、酸化ジルコニウム(ジルコニア、ZrO)、酸化アルミニウム(アルミナ、Al)、酸化カルシウム(CaO)の何れかを選択することも考えられる。ジルコニウム(Zr)、アルミニウム(Al)やカルシウム(Ca)はミクロ中性子吸収断面積がそれぞれ0.185b、0.241b、0.44b、と小さいためである。また、特に、ジルコニアは原子燃料酸化物であるUOと固溶体を作るため、また、アルミナや酸化カルシウムは焼結時の固溶体の体積を大きくする効果もあるため、こうした酸化物もまた好適な選択と考えられる。あるいは、こうした酸化物と上述したガドリニウム以外の希土類元素の酸化物を混合したものを採用してもよい。
 また、本実施の形態における原子燃料酸化物としては、二酸化ウラン(UO)または三酸化八ウラン(U)を用いることが好適であるが、Uを用いる場合には、ウラン燃料再転換施設において粉末状のUを製造し、その後に可燃性毒物酸化物と混合することが望ましい。また、原子燃料酸化物としてUOを用いる場合には、ウラン燃料再転換施設においてUOを得たうえで、このUOを粉末状に粉砕した直後、あるいは粉末状となったUOをウラン燃料再転換施設から移送してウラン燃料加工施設に受け入れた直後に、可燃性毒物酸化物と混合することが望ましい。さらに、UOまたはUに代えて、再転換施設での湿式(ADU)法により、原料のUFを加水分解させた後にアンモニアと反応させることで得られる重ウラン酸アンモン((NH)を粉末状にしたもの(ADU粉末)を用いてもよい。
[第2の実施の形態]
 図12は、本発明に係る燃料集合体の第2の実施の形態における横断面図である。
 本実施の形態の燃料集合体は、加圧水型原子炉に装荷されるものである。この燃料集合体は、264本の燃料棒31,32を17行17列の正方格子状に束ねて、34の格子位置に制御棒案内シンブル33を配置し、中央の格子位置に炉内計装用案内シンブル34を配置したものである。燃料棒31,32は、低ガドリニア入燃料棒31と、高ガドリニア入燃料棒32とに分けられる。
 低ガドリニア入燃料棒31は、濃縮度が6wt%のウランに53ppmの等価ガドリニアをGdを除く希土類元素AとのGd複合酸化物として添加したペレット23(図2参照)を収納している。希土類元素Aとしては、たとえばセリウムCeまたはランタンLaを用いることができる。高ガドリニア入燃料棒32は、濃縮度が5wt%のウランに7wt%のガドリニアを添加したペレット23を収納している。
 図3に示したとおり、濃縮度が6wt%のウランにGd複合酸化物を等価ガドリニア濃度が53ppmで添加したものは、濃縮度が5wt%のウランの中性子実効増倍率と比べて同等以下である。このため、本実施の形態の燃料集合体の製造過程において、ウラン粉末にGd複合酸化物を添加して混合した後は、濃縮度が5wt%のウランを取り扱う施設・機器によって、臨界安全を保ったまま取り扱うことができる。
 本実施の形態の燃料集合体の適用に際して炉心の初期反応度への影響は軽微であり、かつ運転サイクル末期において微量濃度Gd複合酸化物を含有する燃料棒中のGdの燃え残りが生じないため、反応度損失を低減することができる。また、濃縮度が5wt%を超えるウランにUO2粉末取扱の段階から微量のGd複合酸化物を均一に添加することにより高品質の燃料を製造し、臨界安全に関わる燃料成形加工施設の設備改造費およびそれに伴う成形加工費の上昇を抑えることができる。このため、ウランの濃縮度が5%を超える原子炉燃料を適用する目的である原子炉燃料濃縮度上昇による新燃料取替体数の大幅削減効果と燃料サイクルコスト低減が図られる。
 なお、加圧水型原子炉に装荷される燃料集合体では、主として運転サイクル中の反応度を調節する目的として高濃度のGdを用いないものもある。このような場合であっても、濃縮度が5wt%を超えるウランに、中性子吸収断面積の大きい可燃性毒物であるGdを、他の希土類元素とのGd複合酸化物として均一に微量添加することによって、同様の効果が得られる。また、燃料集合体のコーナー部あるいは周辺部において濃縮度5wt%以下の原子炉燃料棒を配置して局所出力分布をより平坦化してもよい。可燃性毒物としてホウ珪酸ガラスなどを使用した燃料集合体としてもよい。
[第3の実施の形態]
 図13は、本発明に係る燃料集合体の第3の実施の形態における横断面図である。
 本実施の形態の燃料集合体は、加圧水型原子炉に装荷される燃料集合体である。本実施の形態では、燃料棒としては低ガドリニア入燃料棒35の1種類が用いられる。この低ガドリニア入燃料棒35には、濃縮度が6wt%のウランにガドリニウムとエルビウムとのGd複合酸化物を添加したペレット23(図2参照)が収納される。ガドリニウムとエルビウムとの複合酸化物の等価ガドリニア濃度は50ppmである。また、このペレット中の等価エルビア濃度は、0.3wt%である。ここで、等価エルビア濃度とは、複合酸化物中のエルビウムが単独の酸化物として存在した場合の濃度である。
 ペレット中のEr濃度が高いと、運転サイクル末期においてErの燃え残り、これによる燃焼度ペナルティが生ずる場合がある。しかし、本実施の形態では、Gdを併用してEr量を減らすことによって、臨界安全性を確保しつつ、このような燃焼度ペナルティを低減することができる。また、GdとErの中性子吸収効果を勘案して混合割合を選択することが可能である。濃縮度が10wt%以下のウランでは、添加すべきGd複合酸化物量は、等価ガドリニア濃度で0.1wt%以下であるから、エルビウムが主として炉心の反応度制御を行うことを考慮すると、たとえば等価ガドリニア濃度の範囲として、その1/10の0.01wt%以下が好適である。
 このように、微量のGdと、Erの複合酸化物を構成する場合には、Gdを母材のErに均一に希釈した中性子吸収体が得られる。このような高品質の燃料を用いることにより、臨界安全のみならず炉心の反応度制御を円滑に行うことができる。
[その他の実施の形態]
 なお、以上の説明は単なる例示であり、本発明は上述の各実施の形態に限定されず、様々な形態で実施することができる。また、各実施の形態の特徴を組み合わせて実施することもできる。
10…燃料集合体、11…ウォータロッド、13…燃料棒、14…燃料棒、15…燃料棒、16…燃料棒、17…燃料棒、18…燃料棒、19…燃料棒、21…被覆管、22…下部端栓、23…ペレット、24…プレナムスプリング、25…上部端栓、31…燃料棒、32…燃料棒、33…制御棒案内シンブル、34…炉内計装用案内シンブル、35…燃料棒、40…制御棒、41…チャンネルボックス、51…Gd複合酸化物粒子、52…Gd複合酸化物粒子、61…ガドリニア(酸化ガドリニウム)粉末、62…酸化セリウム(ガドリニウムと異なる元素の化合物)粉末、63…水(液体)、64…撹拌容器(ミキサー)、65…攪拌液、65a…ガドリニア含有混合粉体(ガドリニアと酸化セリウムの混合粉体)、66…二酸化ウラン(原子燃料酸化物)粉末。

Claims (18)

  1.  ガドリニウムとガドリニウムを除く希土類元素Aとの化学式A1-XGd2-0.5Xまたは化学式A1-XGd1.5で表わされるGd複合酸化物および5%を超える濃縮度のウランの酸化物を含有する燃料要素を有することを特徴とする燃料集合体。
  2.  前記燃料要素中のガドリニウムの含有割合は、前記Gd複合酸化物中のガドリニウムが単独の酸化物として存在した場合に換算して0.1wt%未満であることを特徴とする請求の範囲1に記載の燃料集合体。
  3.  前記燃料要素中のウランの濃縮度は10wt%以下であって、前記燃料要素中のガドリニウムの含有割合は前記Gd複合酸化物中のガドリニウムが単独の酸化物として存在した場合に換算して前記燃料要素中のウランの濃縮度の5wt%からの増分に61×10-4を乗じた下限値以上であることを特徴とする請求の範囲2に記載の燃料集合体。
  4.  前記燃料要素中のガドリニウムの含有割合は前記Gd複合酸化物中のガドリニウムが単独の酸化物として存在した場合に換算して前記下限値の3倍以下であることを特徴とする請求の範囲3に記載の燃料集合体。
  5.  前記希土類元素Aは、エルビウムとランタンとセリウムとから選択される1以上の元素であることを特徴とする請求の範囲1ないし請求の範囲4のいずれか1項に記載の燃料集合体。
  6.  前記希土類元素Aはランタンおよびセリウムのいずれかであって、前記燃料要素中のウランの酸化物と前記Gd複合酸化物との総和に対する前記Gd複合酸化物の割合は0.1wt%以上0.3wt%以下であって、前記Gd複合酸化物中のガドリニウムの割合は5wt%以上33wt%以下であることを特徴とする請求の範囲1ないし請求の範囲4のいずれか1項に記載の燃料集合体。
  7.  前記希土類元素Aはエルビウムであって、前記燃料要素中のガドリニウムの含有割合は前記Gd複合酸化物中のガドリニウムが単独の酸化物として存在した場合に換算して0.01wt%以下であることを特徴とする請求の範囲1ないし請求の範囲4のいずれか1項に記載の燃料集合体。
  8.  前記燃料要素の前記Gd複合酸化物中のガドリニウムが単独の酸化物として存在した場合に換算した濃度よりも高い割合でガドリニウム酸化物を含有する高ガドリニア入燃料要素を有することを特徴とする請求の範囲1ないし請求の範囲7のいずれか1項に記載の燃料集合体。
  9.  ガドリニウムとガドリニウムを除く希土類元素Aとの化学式A1-XGd2-0.5Xまたは化学式A1-XGd1.5で表わされるGd複合酸化物を、5%を超える濃縮度のウランの酸化物とを混合する混合工程、を有することを特徴とする燃料集合体の製造方法。
  10.  ガドリニウムとガドリニウムを除く希土類元素Aとの化学式A1-XGd2-0.5Xまたは化学式A1-XGd1.5で表わされるGd複合酸化物と、5%を超える濃縮度のウランの酸化物とを含有することを特徴とするウラン粉末。
  11.  ウランの濃縮度は10wt%以下であって、ガドリニウムの含有割合は前記Gd複合酸化物中のガドリニウムが単独の酸化物として存在した場合に換算して、ウランの濃縮度の5wt%からの増分に61×10-4を乗じた下限値以上であることを特徴とする請求の範囲10に記載のウラン粉末。
  12.  酸化ガドリニウムと、少なくとも1種のガドリニウムと異なる元素の化合物とを液体容器中の液体に注入して攪拌し混合する工程と、
     この液体容器中で攪拌した液体を乾燥させて酸化ガドリニウム含有粉体を製造する工程と、
     この酸化ガドリニウム含有粉体と原子燃料の酸化物とを混合して原子燃料酸化物含有混合物を得る工程と、
     この原子燃料酸化物含有混合物を成型し焼結して原子燃料ペレットとする工程と、
    を有することを特徴とする原子燃料ペレットの製造方法。
  13.  前記ガドリニウムと異なる元素の化合物は、希土類元素の酸化物であることを特徴とする請求の範囲12に記載の原子燃料ペレットの製造方法。
  14.  前記希土類元素は、セリウム、プラセオジム、ランタン、イットリウムから選択される少なくとも1つであることを特徴とする請求の範囲13に記載の原子燃料ペレットの製造方法。
  15.  前記ガドリニウムと異なる種類の元素の化合物は、ジルコニウム、アルミニウム、カルシウムから選択される少なくとも1つの酸化物であることを特徴とする請求の範囲12に記載の原子燃料ペレットの製造方法。
  16.  前記酸化ガドリニウムと前記ガドリニウムと異なる元素の化合物と前記液体容器中で攪拌し混合する工程で、前記ガドリニウムの異なる元素の化合物の重量を、前記酸化ガドリニウムの重量の5~15倍に調整してなることを特徴とする請求の範囲12ないし請求の範囲15のいずれか1項に記載の原子燃料ペレットの製造方法。
  17.  前記液体は水であることを特徴とする請求の範囲12ないし請求の範囲16のいずれか1項に記載の原子燃料ペレットの製造方法。
  18.  前記原子燃料の酸化物は、UO、U、ADU((NH)粉末のいずれかであることを特徴とする請求の範囲12ないし請求の範囲17のいずれか1項に記載の原子燃料ペレットの製造方法。
PCT/JP2009/001708 2008-04-16 2009-04-14 原子燃料ペレットの製造方法、燃料集合体とその製造方法およびウラン粉末 WO2009128250A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980113496.0A CN102007547B (zh) 2008-04-16 2009-04-14 核燃料球芯块的制造方法、燃料组件及其制造方法和铀粉末
EP09731619.4A EP2280400A4 (en) 2008-04-16 2009-04-14 PROCESS FOR PRODUCTION OF NUCLEAR FUEL PASTIL, FUEL ASSEMBLY, PROCESS FOR PRODUCTION OF FUEL ASSEMBLY, AND URANIUM POWDER
US12/904,781 US20110080987A1 (en) 2008-04-16 2010-10-14 Manufacturing method of nuclear fuel pellet, fuel assembly for nuclear reactor and manufacturing method thereof and uranium powder

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-106896 2008-04-16
JP2008106896A JP2009257912A (ja) 2008-04-16 2008-04-16 原子燃料ペレットの製造方法
JP2008-295954 2008-11-19
JP2008295954A JP5112265B2 (ja) 2008-11-19 2008-11-19 燃料集合体、その製造方法およびウラン粉末

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/904,781 Continuation-In-Part US20110080987A1 (en) 2008-04-16 2010-10-14 Manufacturing method of nuclear fuel pellet, fuel assembly for nuclear reactor and manufacturing method thereof and uranium powder

Publications (1)

Publication Number Publication Date
WO2009128250A1 true WO2009128250A1 (ja) 2009-10-22

Family

ID=41198955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001708 WO2009128250A1 (ja) 2008-04-16 2009-04-14 原子燃料ペレットの製造方法、燃料集合体とその製造方法およびウラン粉末

Country Status (4)

Country Link
US (1) US20110080987A1 (ja)
EP (1) EP2280400A4 (ja)
CN (1) CN102007547B (ja)
WO (1) WO2009128250A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280152A (zh) * 2011-05-12 2011-12-14 清华大学 制备二氧化铀陶瓷燃料微球的方法
CN102298977A (zh) * 2010-06-25 2011-12-28 哈米尔顿森德斯特兰德公司 核燃料
WO2015080626A1 (ru) 2013-11-26 2015-06-04 Открытое Акционерное Общество "Акмэ-Инжиниринг" Таблетка ядерного топлива с повышенной теплопроводностью и способ её изготовления
JP2017096653A (ja) * 2015-11-18 2017-06-01 株式会社東芝 核燃料コンパクト、核燃料コンパクトの製造方法、及び核燃料棒

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103871528B (zh) * 2012-12-14 2017-04-05 中国核动力研究设计院 一种压水堆堆芯的长周期燃料管理方法
CN105776336B (zh) * 2014-12-26 2017-06-20 中核建中核燃料元件有限公司 一种uo2芯块在烧结炉内横置烧结的方法
EP3326173B1 (en) 2015-07-25 2020-04-22 Ultra Safe Nuclear Corporation Method for fabrication of fully ceramic microencapsulated nuclear fuel
WO2017172177A1 (en) 2016-03-29 2017-10-05 Ultra Safe Nuclear Corporation PROCESS FOR RAPID PROCESSING OF SiC AND GRAPHITIC MATRIX TRISO-BEARING PEBBLE FUELS
US10573416B2 (en) 2016-03-29 2020-02-25 Ultra Safe Nuclear Corporation Nuclear fuel particle having a pressure vessel comprising layers of pyrolytic graphite and silicon carbide
ES2835778T3 (es) 2016-03-29 2021-06-23 Ultra Safe Nuclear Corp Combustible microencapsulado totalmente cerámico fabricado con veneno susceptible de quemarse como ayuda a la sinterización
JP6878251B2 (ja) * 2017-02-09 2021-05-26 株式会社東芝 軽水炉用燃料集合体、軽水炉炉心設計方法および軽水炉用燃料集合体設計方法
JP6840015B2 (ja) * 2017-04-05 2021-03-10 株式会社日立製作所 燃料集合体及び燃料集合体の製造方法
CN110164573B (zh) * 2018-02-13 2023-12-12 韩国原子力研究院 导热率提高的核燃料粒料及其制备方法
CN110867262B (zh) * 2019-11-21 2021-05-18 中国核动力研究设计院 基于提高燃料利用率的液态金属冷却反应堆及管理方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212093A (ja) 1990-01-16 1992-08-03 Westinghouse Electric Corp <We> 複合可燃性吸収材・核燃料、核燃料及び原子炉の炉心
JPH0854484A (ja) * 1994-08-10 1996-02-27 Toshiba Corp 原子炉の燃料集合体
JPH0980180A (ja) 1995-09-13 1997-03-28 Hitachi Ltd 原子炉の初装荷炉心および原子炉の運転方法
JPH1123764A (ja) * 1997-06-27 1999-01-29 Korea Atom Energ Res Inst 酸化物核燃料のペレットスクラップのリサイクル方法
JPH1164560A (ja) * 1997-08-13 1999-03-05 Japan Atom Energy Res Inst 岩石型のプルトニウム核燃料
JPH11287883A (ja) * 1998-04-03 1999-10-19 Nippon Nuclear Fuel Dev Co Ltd 核燃料ペレットと、その製造方法と、その燃料要素および燃料集合体
JP2002181975A (ja) * 2000-12-11 2002-06-26 Nippon Nuclear Fuel Dev Co Ltd 燃料ペレットと、その製造方法と、その燃料要素および燃料集合体
JP2004177241A (ja) 2002-11-27 2004-06-24 Kansai Electric Power Co Inc:The 原子炉用燃料集合体
JP2005265696A (ja) * 2004-03-19 2005-09-29 Toshiba Corp 沸騰水型原子炉用燃料集合体

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904736A (en) * 1966-06-01 1975-09-09 Grace W R & Co Preparing microspheres of actinide nitrides from carbon containing oxide sols
US3930787A (en) * 1970-08-10 1976-01-06 General Electric Company Sintering furnace with hydrogen carbon dioxide atmosphere
US4123392A (en) * 1972-04-13 1978-10-31 Chemtree Corporation Non-combustible nuclear radiation shields with high hydrogen content
DE2939415C2 (de) * 1979-09-28 1981-11-26 Kraftwerk Union AG, 4330 Mülheim Verfahren zur Herstellung von hochdichten oxidischen Kernbrennstoffkörpern
DE3310755A1 (de) * 1983-03-24 1984-09-27 Kraftwerk Union AG, 4330 Mülheim Verfahren zur feststellung des inhaltes eines brennstabes
DE3406084A1 (de) * 1984-02-20 1985-08-22 Kraftwerk Union AG, 4330 Mülheim Verfahren zum herstellen von oxidischen kernbrennstoffsinterkoerpern
DE3765673D1 (de) * 1986-03-24 1990-11-29 Siemens Ag Kernbrennstoffsinterkoerper und verfahren zu seiner herstellung.
JPH0795766B2 (ja) * 1989-06-30 1995-10-11 株式会社日立製作所 デジタル・データ通信装置及びそれに使用するデータ通信アダプタ
FR2683373B1 (fr) * 1991-10-31 1994-03-04 Pechiney Uranium Elements combustibles nucleaires comportant un piege a produits de fission a base d'oxyde.
WO1995004994A1 (de) * 1993-08-09 1995-02-16 Siemens Aktiengesellschaft Uranhaltiger kernbrennstoff-sinterkörper
GB9515966D0 (en) * 1995-08-03 1995-10-04 British Nuclear Fuels Plc Nuclear fuel pellets
FR2742254B1 (fr) * 1995-12-12 1998-02-13 Comurhex Procede d'obtention d'un melange d'oxydes metalliques pulverulents, appartenant a la filiere nucleaire, a partir de leurs nitrates
DE19636563C1 (de) * 1996-09-09 1998-03-26 Siemens Ag Kernreaktor-Brennelemente mit hohem Abbrand und Verfahren zu ihrer Fertigung
US6125912A (en) * 1998-02-02 2000-10-03 Bechtel Bwxt Idaho, Llc Advanced neutron absorber materials
US6921510B2 (en) * 2003-01-22 2005-07-26 General Electric Company Method for preparing an article having a dispersoid distributed in a metallic matrix
JP4772743B2 (ja) * 2007-05-15 2011-09-14 株式会社東芝 原子燃料サイクル施設の臨界管理法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212093A (ja) 1990-01-16 1992-08-03 Westinghouse Electric Corp <We> 複合可燃性吸収材・核燃料、核燃料及び原子炉の炉心
JPH0854484A (ja) * 1994-08-10 1996-02-27 Toshiba Corp 原子炉の燃料集合体
JPH0980180A (ja) 1995-09-13 1997-03-28 Hitachi Ltd 原子炉の初装荷炉心および原子炉の運転方法
JPH1123764A (ja) * 1997-06-27 1999-01-29 Korea Atom Energ Res Inst 酸化物核燃料のペレットスクラップのリサイクル方法
JPH1164560A (ja) * 1997-08-13 1999-03-05 Japan Atom Energy Res Inst 岩石型のプルトニウム核燃料
JPH11287883A (ja) * 1998-04-03 1999-10-19 Nippon Nuclear Fuel Dev Co Ltd 核燃料ペレットと、その製造方法と、その燃料要素および燃料集合体
JP2002181975A (ja) * 2000-12-11 2002-06-26 Nippon Nuclear Fuel Dev Co Ltd 燃料ペレットと、その製造方法と、その燃料要素および燃料集合体
JP2004177241A (ja) 2002-11-27 2004-06-24 Kansai Electric Power Co Inc:The 原子炉用燃料集合体
JP2005265696A (ja) * 2004-03-19 2005-09-29 Toshiba Corp 沸騰水型原子炉用燃料集合体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Nuclear Criticality Safety Handbook", 31 October 1988, NIKKAN-SHOBOU, article "Nuclear Materials Regulation Division / Nuclear Safety Bureau / Science and Technology Agency"
See also references of EP2280400A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102298977A (zh) * 2010-06-25 2011-12-28 哈米尔顿森德斯特兰德公司 核燃料
CN102280152A (zh) * 2011-05-12 2011-12-14 清华大学 制备二氧化铀陶瓷燃料微球的方法
WO2015080626A1 (ru) 2013-11-26 2015-06-04 Открытое Акционерное Общество "Акмэ-Инжиниринг" Таблетка ядерного топлива с повышенной теплопроводностью и способ её изготовления
US10381119B2 (en) 2013-11-26 2019-08-13 Joint Stock Company “Akme-Engineering” Nuclear fuel pellet having enhanced thermal conductivity, and preparation method thereof
JP2017096653A (ja) * 2015-11-18 2017-06-01 株式会社東芝 核燃料コンパクト、核燃料コンパクトの製造方法、及び核燃料棒

Also Published As

Publication number Publication date
EP2280400A4 (en) 2016-06-15
US20110080987A1 (en) 2011-04-07
CN102007547B (zh) 2014-03-19
CN102007547A (zh) 2011-04-06
EP2280400A1 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
WO2009128250A1 (ja) 原子燃料ペレットの製造方法、燃料集合体とその製造方法およびウラン粉末
WO2011101208A1 (en) Nuclear fuel, nuclear fuel element, nuclear fuel assembly and a method manufacturing nuclear fuel
US6808656B2 (en) Method of producing a nuclear fuel sintered body
US20070242791A1 (en) Process for Producing Pellets of a Nuclear Fuel Based on a (U, Pu)02 or (U, Th)02 Mixed Oxide
JP2014529738A5 (ja)
US10062459B2 (en) Material made of uranium, gadolinium and oxygen and use thereof as consumable neutron poison
JP5112265B2 (ja) 燃料集合体、その製造方法およびウラン粉末
Ganguly Sol-gel microsphere pelletization: A powder-free advanced process for fabrication of ceramic nuclear fuel pellets
Simnad Nuclear reactor materials and fuels
JP4772743B2 (ja) 原子燃料サイクル施設の臨界管理法
Govers et al. Characterization of Belgian spent fuel assemblies
KR102230483B1 (ko) 경수로용 연료 집합체, 경수로 노심, 경수로용 연료 집합체 제조 방법 및 mox 연료 집합체 제조 방법
US20010022827A1 (en) Nuclear reactor fuel assembly with a high burnup
JP2010127718A (ja) 燃料集合体およびそれを装荷した原子炉
Pillon et al. Oxide and nitride TRU fuels: Lessons drawn from the CONFIRM and FUTURE projects of the 5th European Framework Program
JP2009257912A (ja) 原子燃料ペレットの製造方法
WO2014088461A1 (ru) Топливная композиция для водоохлаждаемых реакторов аэс на тепловых нейтронах
Radulescu et al. Fuel Assembly Reference Information for SNF Radiation Source Term Calculations
Haas et al. Fabrication and characterization of MOX fuels with high plutonium content using alternative processes
JP3943624B2 (ja) 燃料集合体
KR101621433B1 (ko) 환형 가연성 독봉 제조방법
Lebreton et al. α Self-irradiation Effects on Structural Properties of (U, Am) O2±δ Materials
JP2008175637A (ja) 軽水炉用燃料集合体及び原子燃料サイクル施設の臨界管理方法
Sterbentz et al. Weapons-grade plutonium dispositioning. Volume 4. Plutonium dispositioning in light water reactors
Basak Fabrication, properties and irradiation behaviour of MOX, carbide and nitride fuels, inert matrix fuels with and without minor actinides

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980113496.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09731619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009731619

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009731619

Country of ref document: EP