WO2009125527A1 - ブラシレスモータ位置検出装置 - Google Patents

ブラシレスモータ位置検出装置 Download PDF

Info

Publication number
WO2009125527A1
WO2009125527A1 PCT/JP2009/000151 JP2009000151W WO2009125527A1 WO 2009125527 A1 WO2009125527 A1 WO 2009125527A1 JP 2009000151 W JP2009000151 W JP 2009000151W WO 2009125527 A1 WO2009125527 A1 WO 2009125527A1
Authority
WO
WIPO (PCT)
Prior art keywords
position detection
magnetic pole
hall
pole position
brushless motor
Prior art date
Application number
PCT/JP2009/000151
Other languages
English (en)
French (fr)
Inventor
波多野健太
梅本俊行
宮本直生
藤村哲
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US12/812,248 priority Critical patent/US8525458B2/en
Priority to CN200980107055XA priority patent/CN101960698B/zh
Priority to JP2010507123A priority patent/JP4954325B2/ja
Priority to DE112009000276.5T priority patent/DE112009000276B4/de
Publication of WO2009125527A1 publication Critical patent/WO2009125527A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements

Definitions

  • the present invention is particularly suitable for use as a drive source for a throttle valve, an EGR (exhaust gas recirculation system) valve drive source, or a movable page of a VG (Variable Geometry) turbo system used in in-vehicle equipment.
  • the present invention relates to a brushless motor position detection device driven by a direct current.
  • the brushless motor detects a magnet having a stator having nine slots, an 8-pole rotor, a magnetic pole position detection magnet having the same number of poles as the rotor, and the magnetic pole position detection magnet. And three Hall ICs for detecting the rotational position of the rotor. In this way, a brushless motor having the same number of poles as the rotor and the number of poles of the magnetic pole position detection magnet and having three Hall ICs is referred to as a single precision brushless motor.
  • the number of poles of the magnetic pole position detection magnet is doubled.
  • the magnetic pole position detection magnet Has been developed (see, for example, Patent Document 1).
  • the number of poles of the magnetic pole position detection magnet is twice the number of rotor poles, and a brushless motor provided with three Hall ICs is referred to herein as a double precision brushless motor.
  • the resolution of detecting the rotational position of the rotor can be doubled that of a single precision brushless motor device.
  • the quadruple-precision brushless motor which has twice the rotational position detection resolution of the double-precision brushless motor, has three hall ICs for the double-precision brushless motor, plus three holes for position detection. IC is provided.
  • the three Hall ICs possessed by the double precision brushless motor are called magnetic pole position detection main Hall ICs, and the three Hall ICs added for quad precision are called magnetic pole position detection sub Hall ICs.
  • the magnetic hole position detection main hall IC and the magnetic pole position detection sub hall IC described above are mounted with an offset of a predetermined mechanical angle.
  • the mounting position accuracy of the magnetic hole position detection main hall IC and the magnetic pole position detection sub hall IC is required, and it is necessary to minimize the detection angle error.
  • the present invention has been made to solve the above-described problems, and has improved the reliability by minimizing the detection angle error between the magnetic hole position detection main hall IC and the magnetic pole position detection sub hall IC.
  • An object of the present invention is to provide a brushless motor position detection device.
  • a brushless motor position detection device includes a stator having a plurality of coils, and a predetermined number of poles that rotate when the stator is sequentially excited by a plurality of excitation patterns.
  • a rotor having a magnetic pole position detecting magnet disposed on a surface orthogonal to the rotation axis of the rotor, and a set of first sensors for detecting the position of the rotor, mounted on a surface facing the magnetic pole position detecting magnet. And a set of offsets adjusted so that the difference between the maximum value of the magnetic flux density at the mounting position of the first Hall element and the maximum value of the magnetic flux density at the mounting position of the first Hall element is within a predetermined range.
  • the second Hall element adjusted so that the difference between the maximum value of the magnetic flux density at the mounting position of the first Hall element and the maximum value of the magnetic flux density at the mounting position of the first Hall element is within a predetermined range.
  • the detection angle error between the magnetic pole position detection main Hall IC (first Hall element) and the magnetic pole position detection sub Hall IC (second Hall element) is minimized.
  • the reliability is improved by suppressing.
  • FIG. 1 is a cross-sectional view of an actuator device 1 incorporating a brushless motor position detection device according to Embodiment 1 of the present invention cut in the axial direction.
  • the actuator device 1 includes a cylindrical rotor 12 fitted to a motor shaft 11 inserted into a hollow portion of a stator 14 fixed to a case 13, and is rotatably supported by a bearing 15. It is constituted by.
  • a magnetic pole position detection magnet 16 is fixed to the rotor 12 so as to be a surface perpendicular to the axis.
  • the magnetization direction of the magnetic pole position detection magnet 16 is the axial direction.
  • the printed circuit board 17 is mounted with one set of magnetic pole position detection main hall ICs 18 for three-phase driving and one set of magnetic pole position detection sub hall ICs 19.
  • the printed circuit board 17 is attached to the case 13 so that the magnetic hole position detection main hall IC 18 and the magnetic pole position detection sub hall IC 19 face the magnetic pole position detection magnet 16.
  • FIG. 2 is a plan view of the magnetic pole position detection magnet 16, the magnetic pole position detection main Hall IC 18 and the magnetic pole position detection sub Hall IC 19 as viewed from the Hall IC side, and FIG. 2A shows no offset angle.
  • FIG. 2B shows an example with an offset angle ( ⁇ ).
  • the magnetic pole position detection magnet 16 is magnetized to have twice the number of poles of the rotor 12. For example, when the rotor 12 has 12 poles, the magnetic pole position detection magnet 16 is magnetized with 24 poles that are twice as large in the circumferential direction.
  • the magnetic pole position detection magnet 16 is formed of a ring magnet having a hole concentric with the outer periphery at the center.
  • the magnetic hole position detection main Hall IC 18 and the magnetic pole position detection sub Hall IC 19 are each composed of three Hall ICs (18a, 18b, 18c) and (19a, 19b, 19c) for three-phase driving.
  • the ICs 19c correspond to each other, and as shown in FIG. 2A, the magnetic pole position detection main hall IC 18a and the magnetic pole position detection sub-hole IC 19a are installed on the radiation. The same applies to the magnetic hole position detection main hall IC 18b and the magnetic pole position detection sub hall IC 19b, the magnetic pole position detection main hall IC 18c, and the magnetic pole position detection sub hall IC 19c.
  • the brushless motor can be driven and controlled without affecting the performance due to the presence of the magnetic pole position detection sub hall IC 19. Therefore, reliability is improved.
  • each of the magnetic pole position detection sub-hole ICs 19 (19a, 19b, 19c) is calculated in the radial direction with respect to each of the magnetic pole position detection main hall ICs 18 (18a, 18b, 18c). It is mounted with a machine offset angle ( ⁇ ).
  • the offset angle ( ⁇ ) is calculated based on the number of poles of the magnetic pole position detection magnet 16 and the position detection accuracy (double accuracy or quadruple accuracy) of the rotor 12.
  • the radii of the magnetic hole position detection main Hall IC 18 and the magnetic pole position detection sub Hall IC 19 are ra and rb, respectively.
  • the position is four times as accurate as the number of poles of the rotor 12. Detection is logically possible.
  • the maximum allowable error is ⁇ °.
  • the value of ⁇ is 2.5 ° for a quadruple precision brushless motor.
  • FIG. 3 schematically shows the positions of the magnetic pole position detection main Hall IC 18 and the magnetic pole position detection sub Hall IC 19 in the radial direction and the magnitude of the detected magnetic flux density with respect to the magnetic pole position detection magnet 16. It is. As shown in FIG. 3, the magnetic flux density ⁇ [G] at the radial position ra of the magnetic pole position detection main Hall IC 18 and the magnetic flux density ⁇ [G] at the radial position rb of the magnetic pole position detection sub-Hall IC 19 are substantially equal.
  • a magnetic pole position detection magnet 16 is installed so that
  • FIG. 4 shows the change of the magnetic flux density with respect to the circumferential angle at the mounting position of the magnetic pole position detection main Hall IC 18 and the magnetic pole position detection sub Hall IC 19 in the circumferential direction, that is, the respective magnetic flux density distributions of ⁇ and ⁇ . It is.
  • the sensitivity levels of the Hall ICs 18 and 19 to be used are also shown.
  • ⁇ A as an error in the circumferential angle at which the magnetic pole position detection main hall IC 18 and the magnetic pole position detection sub hall IC 19 detect the same level of magnetic flux density.
  • the magnetic pole position detection magnet 16 is arranged so that the magnetic flux densities detected by the magnetic pole position detection main Hall IC 18 and the magnetic pole position detection sub Hall IC 19 become substantially the same magnetic flux density, the same sensitivity level is obtained.
  • the angle error ⁇ A can be made sufficiently smaller than the circumferential offset angle ⁇ of the magnetic pole position detection main hall IC 18 and the magnetic pole position detection sub hall IC 19, and there is an advantage that highly accurate position detection can be performed.
  • the arrangement of the magnetic pole position detection magnets 16 may be determined to be sufficiently smaller than 2.5 ° in a quadruple precision brushless motor. In this way, by setting the range within 5 ° as a predetermined range of the detection error of the rotor at the position where the first Hall element and the second Hall element are arranged, the detection error is suppressed to a practically necessary range. be able to.
  • a set of first Hall elements that are mounted on the surface facing the magnetic pole position detection magnet 16 and detect the position of the rotor 12.
  • the difference between the maximum value of the magnetic flux density at the mounting position of the position detection main Hall IC 18) and the maximum value of the magnetic flux density at the mounting position of the second Hall element (magnetic pole position detection sub Hall IC 19) is within a predetermined range.
  • the magnetic pole position detection main Hall IC 18 or the magnetic pole position detection sub Hall IC 19 has a magnetic flux density detected by the rotation of the magnetic pole position detection magnet 16 equal to or higher than a certain value (threshold). Turns on or off. Therefore, if the magnetic flux density detected by the magnetic pole position detection sub-Hall IC 19 is the same as the magnetic flux density detected by the magnetic pole position detection main Hall IC 18, an on (or off) operation is performed simultaneously.
  • the position of the magnetic pole position detection magnet 16 is set so that the distribution of the magnetic flux density sensed by the magnetic pole position detection main Hall IC 18 and the distribution of the magnetic flux density sensed by the magnetic pole position detection sub Hall IC 19 are substantially equal. .
  • the magnetic flux density detected by the magnetic pole position detection main Hall IC 18 is equal to the distribution of the magnetic flux density detected by the magnetic pole position detection sub Hall IC 19
  • the magnetic flux density detected by the magnetic pole position detection main Hall IC 18 and the magnetic pole position detection By converting the timing at which the magnetic flux density detected by the sub Hall IC 19 becomes the same magnetic flux density, it becomes equal to a predetermined mechanical angle offset.
  • the detection angle error between the magnetic hole position detection main hall IC 18 and the magnetic pole position detection sub hall IC 19 is minimized, and therefore the position of the rotor 12 can be detected with quadruple precision.
  • the magnetic flux density distributions detected by the magnetic pole position detection main hall IC 18 and the magnetic pole position detection sub hall IC 19 are made substantially the same.
  • the error in the operation interval of the pair of Hall ICs (the magnetic hole position detection main Hall IC 18 and the magnetic pole position detection sub Hall IC 19) is minimized, and therefore, a resolution four times that of a single precision brushless motor can be obtained with high reliability. .
  • Embodiment 2 By the way, depending on the magnetization method or the shape of the magnet, the magnetic flux density detected by the two sets of Hall ICs (the magnetic hole position detection main Hall IC 18 and the magnetic pole position detection sub Hall IC 19) should be flat, The rate of change of the magnetic flux density in the radial direction can be reduced. As a result, there is no significant change in the magnetic flux density even if a slight deviation occurs in the mounting position of the two sets of Hall ICs. That is, in the first embodiment described above, the thickness of the magnetic pole position detection magnet 16 is uniform in the radial direction, but FIG.
  • the magnetic pole position detection magnet 16 may be formed to be thin in the middle as shown in the simulation of the radial position of the Hall IC 19 and the magnitude of the magnetic flux density detected by the Hall IC 19.
  • the rate of change in the radial direction of the magnetic flux density at the magnetic pole position can be reduced by changing the thickness in the middle. Accordingly, there is an advantage that a change in magnetic flux density with respect to the radial position of the magnetic hole position detection main hall IC 18 and the magnetic pole position detection sub hall IC 19 becomes small.
  • the magnetic flux density distribution in the radial direction is not a distribution that takes the maximum value between the main hole IC 18 for detecting the magnetic pole position and the sub hole IC 19 for detecting the magnetic pole position, but can fall in the middle.
  • the magnetic flux densities are equal at the mounting positions of the magnetic pole position detection main hall IC 18 and the magnetic pole position detection sub hall IC 19, so that the magnetic pole position detection main hall IC 18 and the magnetic pole position detection sub hall IC 19 are the same. There may be a drop in the middle of the Hall IC 19.
  • the position detection magnet 16 has the relaxation portion for relaxing the change in the magnetic flux density with respect to the rotation angle of the rotor 12, so that the magnetic hole position detection main hall IC 18 and the magnetic pole position detection are performed. Since the rate of change of the magnetic flux density at the mounting position of the sub-hole IC 19 is reduced, the arrangement of the magnetic pole position detection magnet 16 is facilitated.
  • Embodiment 3 As shown in the sectional structure of the magnetic pole position detecting magnet 16 in FIG. 6, notches 16a to 16d may be provided at the corners of the magnetic pole position detecting magnet 16. Since the magnetic pole position detection magnet 16 rotates at a high speed, if the holding force is weak, it moves to the outer peripheral side. In this case, the magnetic pole position detection main hall IC 18 and the magnetic pole position detection sub hall IC 19 detect it. The magnetic flux density distribution is shifted, and as a result, the timing at which these Hall ICs 18 and 19 are turned on (or turned off) is shifted. Accordingly, there is a possibility that the assumed position detection accuracy of the rotor 12 cannot be achieved.
  • the molding material 20 wraps around the notches 16a to 16d, Since the deviation can be suppressed, it can be said to be an essential deviation suppressing means because it is a four times higher precision brushless motor.
  • the above-described brushless motor position detection device according to the first to third embodiments can be used for any application, but is particularly used for in-vehicle devices that require miniaturization and durability. A remarkable effect is obtained, and it may be used as a drive source for opening / closing a throttle valve or an EGR valve, or as a drive source for an operating base of a VG turbo.
  • the brushless motor position detection device can be applied to a brushless motor that operates by a direct current.
  • a magnetic pole position detection magnet 16 and a magnetic pole position This is effective in improving the resolution of detecting the rotational position of the rotor 12 by using the detection main hall IC 18 and the magnetic pole position detection sub hall IC 19.
  • the brushless motor position detecting device improves reliability by minimizing the detection angle error between the magnetic hole position detecting main Hall IC and the magnetic pole position detecting sub Hall IC.
  • a set of first Hall elements that are mounted on a surface facing the position detection magnet and detects the position of the rotor, the maximum value of the magnetic flux density at the mounting position of the first Hall element, and the magnetic flux density at the mounting position of itself Since it is configured to have a set of second hall elements whose offsets are adjusted so that the difference from the maximum value falls within a predetermined range, the slot valves and EGR valves used in in-vehicle devices It is suitable for use as a drive source or a drive source such as a movable page of a VG turbo system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Brushless Motors (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

 磁極位置検出用マグネット16に対向する面に実装されロータ12の位置を検出する1組の第1のホール素子(磁極位置検出用メインホールIC18)の実装位置における磁束密度の最大値と、第2のホール素子(磁極位置検出用サブホールIC19)の実装位置における磁束密度の最大値との差が所定の範囲内になるようにオフセット調整してそれぞれ実装配置(周方向に所定の機械角度のオフセットを有するように実装配置)することにより、複数組のホール素子の検出精度を一致させる。

Description

ブラシレスモータ位置検出装置
 この発明は、特に、車載用機器に使用されるスロットルバルブ、EGR(排気ガス再循環システム)バルブの駆動源、もしくはVG(Variable Geometry)ターボシステムの可動ページ等の駆動源に用いて好適な、直流電流によって駆動される、ブラシレスモータ位置検出装置に関するものである。
 ブラシレスモータは、例えば、9個のスロットを有するステータと、8極のロータと、極数がロータと同じ8極を有する磁極位置検出用マグネットと、この磁極位置検出用マグネットの磁気を検出することによりロータの回転位置を検出する3個のホールICとを備えている。このように、ロータの極数と磁極位置検出用マグネットの極数が同じであり、かつ3個のホールICを備えたブラシレスモータを、ここでは単精度のブラシレスモータと呼ぶ。
 この単精度のブラシレスモータに対し、ロータの回転位置検出の分解能を上げるために、磁極位置検出用マグネットの極数を2倍にした、例えば、極数nのロータの場合、磁極位置検出用マグネットを2n極にしたブラシレスモータが開発されている(例えば、特許文献1参照)。
 このように、磁極位置検出用マグネットの極数はロータ極数の2倍であり、3個のホールICを備えたブラシレスモータをここでは2倍精度のブラシレスモータと呼ぶ。この2倍精度のブラシレスモータによれば、ロータの回転位置検出の分解能を単精度のブラシレスモータ装置の2倍にすることができる。
特開2002-252958号公報
 一方、上記した2倍精度のブラシレスモータに対し、さらに回転位置検出の分解能を向上させた4倍精度のブラシレスモータが望まれる。
 2倍精度のブラシレスモータの更に2倍の回転位置検出分解能を持つ4倍精度のブラシレスモータは、2倍精度のブラシレスモータが持つ3個のホールICに加え、更に位置検出用の3個のホールICを備えている。ここでは、2倍精度のブラシレスモータが持つ3個のホールICを磁極位置検出用メインホールIC、4倍精度用に追加した3個のホールICを磁極位置検出用サブホールICと呼ぶ。
 ところで、上記した磁極位置検出用メインホールICと磁極位置検出用サブホールICは、所定の機械角度のオフセットを持って実装されるが、このとき、4倍精度の高分解能を達成するためには、磁極位置検出用メインホールICと磁極位置検出用サブホールICとの実装位置精度が要求され、検知角度誤差を最小限に抑える必要があった。
 この発明は上記した課題を解決するためになされたものであり、磁極位置検出用メインホールICと磁極位置検出用サブホールICとの検知角度誤差を最小限に抑えて信頼性の向上をはかった、ブラシレスモータ位置検出装置を提供することを目的とする。
 上記した課題を解決するためにこの発明のブラシレスモータ位置検出装置は、複数のコイルが配設されたステータと、前記ステータが複数の励磁パターンによって順次励磁されることにより回転する所定の極数を有するロータと、前記ロータの回転軸に直交する面に配置された磁極位置検出用マグネットと、前記磁極位置検出用マグネットに対向する面に実装され、前記ロータの位置を検出する1組の第1のホール素子と、前記第1のホール素子の実装位置における磁束密度の最大値と自身の実装位置における磁束密度の最大値との差が所定の範囲内になるようにオフセットが調整された1組の第2のホール素子とを有するのである。
 この発明のブラシレスモータ位置検出装置によれば、磁極位置検出用メインホールIC(第1のホール素子)と磁極位置検出用サブホールIC(第2のホール素子)との検知角度誤差を最小限に抑えて信頼性の向上がはかれる。
この発明の実施の形態1に係るブラシレスモータ位置検出装置を組み込んだアクチュエータを軸方向に切断して示した断面図である。 この発明の実施の形態1に係るブラシレスモータ位置検出装置における部品配置の一例示す平面図である。 この発明の実施の形態1に係るブラシレスモータ位置検出装置の磁石断面と径方向の磁束密度の大きさを模擬的に示した図である。 この発明の実施の形態1に係るブラシレスモータ位置検出装置の磁束密度分布を示す図である。 この発明の実施の形態2に係るブラシレスモータ位置検出装置の磁石断面と径方向磁束密度の変化を模擬的に示した図である。 この発明の実施の形態3に係るブラシレスモータ位置検出装置の磁石断面を示す図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための最良の形態について、添付の図面にしたがって説明する。
実施の形態1.
 図1は、この発明の実施の形態1に係るブラシレスモータ位置検出装置を組み込んだアクチュエータ装置1を軸方向に切断して示した断面図である。
 図1に示されるように、アクチュエータ装置1は、モータシャフト11に嵌合された円筒状のロータ12がケース13に固着されたステータ14の中空部に挿入され、ベアリング15により回転自在に支持されることにより構成される。またロータ12には、その軸に垂直な面となるように磁極位置検出用マグネット16が固着されている。なお、磁極位置検出用マグネット16の着磁方向は軸方向である。
 また、プリント基板17には、3相駆動用に1組の磁極位置検出用メインホールIC18と、同じく1組の磁極位置検出用サブホールIC19が搭載されている。プリント基板17は、磁極位置検出用メインホールIC18、磁極位置検出用サブホールIC19が磁極位置検出用マグネット16に対向するように、ケース13に取り付けられている。
 図2は、磁極位置検出用マグネット16、磁極位置検出用メインホールIC18、磁極位置検出用サブホールIC19のそれぞれを、ホールIC側から見た平面図であり、図2(a)はオフセット角度なし、図2(b)はオフセット角度(γ)ありの例がそれぞれ示されている。
 図2(a)(b)に示されるように、磁極位置検出用マグネット16は、ロータ12の極数の2倍の極数に着磁されている。例えば、ロータ12が12極の場合、磁極位置検出用マグネット16は周方向に2倍の24極が着磁されている。また、この磁極位置検出用マグネット16は、中心に、外周と同心円の穴が開けられたリング磁石により形成される。
 磁極位置検出用メインホールIC18と、磁極位置検出用サブホールIC19とは、3相駆動用にそれぞれ3つのホールIC(18a、18b、18c)、(19a、19b、19c)から構成される。このとき、磁極位置検出用メインホールIC18aと、磁極位置検出用サブホールIC19a、磁極位置検出用メインホールIC18bと磁極位置検出用サブホールIC19b、磁極位置検出用メインホールIC18cと磁極位置検出用サブホールIC19cは、それぞれ対応しており、図2(a)に示す様に、磁極位置検出用メインホールIC18aと、磁極位置検出用サブホールIC19aは放射線上に設置されている。なお、磁極位置検出用メインホールIC18bと磁極位置検出用サブホールIC19b、磁極位置検出用メインホールIC18cと磁極位置検出用サブホールIC19cも同様である。
 このことにより、磁極位置検出用メインホールIC18が破損しても、磁極位置検出用サブホールIC19の存在のために、性能に影響を及ぼすことなくブラシレスモータを駆動し、制御することが可能になり、このため、信頼性が向上する。
 また、図2(b)は、磁極位置検出用サブホールIC19(19a、19b、19c)のそれぞれを、磁極位置検出用メインホールIC18(18a、18b、18c)のそれぞれに対し径方向に計算された機械オフセット角度(γ)をもって実装している。このオフセット角度(γ)は、磁極位置検出用マグネット16の極数と、ロータ12の位置検出精度(2倍精度や4倍精度)によって値がそれぞれ計算されるものである。
 ここでは、磁極位置検出用メインホールIC18、磁極位置検出用サブホールIC19の半径は、それぞれ、ra、rbである。この構造によれば、磁極位置検出用マグネット16の磁束密度の変化を磁極位置検出用メインホールIC18、磁極位置検出用サブホールIC19で検出するため、ロータ12の極数の4倍の精度の位置検出が論理的に可能になる。
 このとき、実際に4倍精度の位置検出を可能にするためには、磁極位置検出用メインホールIC18、磁極位置検出用サブホールIC19の径方向のオフセット角度の誤差が小さいことが重要であり、許容される最大誤差はγ°である。
 ここでγの値は、例えば、ステータ14が9スロット、ロータ12の極数が12極の場合、4倍精度のブラシレスモータでは、2.5°である。
 図3は、磁極位置検出用マグネット16に対して、磁極位置検出用メインホールIC18、磁極位置検出用サブホールIC19の径方向の位置と、検知する磁束密度の大きさを模擬的に示した図である。
 図3に示されるように、磁極位置検出用メインホールIC18の径位置raにおける磁束密度α[G]と、磁極位置検出用サブホールIC19の径位置rbにおける磁束密度β[G]がほぼ等しい値となるように磁極位置検出用マグネット16を設置している。
 図4は、周方向での磁極位置検出用メインホールIC18、磁極位置検出用サブホールIC19の実装位置における磁束密度の周方向角度に対する変化、すなわち、α、βそれぞれの磁束密度分布を示したものである。ここでは、更に使用するホールIC18、19の感度レベルもあわせて示してある。
 図4に示されるように、磁極位置検出用メインホールIC18と磁極位置検出用サブホールIC19が同一レベルの磁束密度を検知する周方向角度の誤差は、δ存在することになる。このとき、磁極位置検出用メインホールIC18、磁極位置検出用サブホールIC19が検出する磁束密度が、ほぼ同じ磁束密度になるように磁極位置検出用マグネット16を配置してあるため、同一感度レベルに対しての角度誤差δは最小となる。この結果、角度誤差δは、磁極位置検出用メインホールIC18と磁極位置検出用サブホールIC19の周方向のオフセット角度γより十分小さくすることができ、高精度な位置検出が出来る利点がある。
 例えば、ステータ14が9スロット、ロータ12の極数が12極の場合、4倍精度のブラシレスモータでは、2.5°より十分小さくなるように磁極位置検出用マグネット16の配置を決めればよい。このように、5°以内になる範囲を第1のホール素子と第2のホール素子の配置位置におけるロータの検出誤差の所定範囲として設定することで、検知誤差を実用上必要な範囲内に抑えることができる。
 上記したように、実施の形態1に係るブラシレスモータ位置検出装置によれば、磁極位置検出用マグネット16に対向する面に実装されロータ12の位置を検出する1組の第1のホール素子(磁極位置検出用メインホールIC18)の実装位置における磁束密度の最大値と、第2のホール素子(磁極位置検出用サブホールIC19)の実装位置における磁束密度の最大値との差が所定の範囲内になるようにオフセット調整してそれぞれ実装配置(周方向に所定の機械角度のオフセットを有するように実装配置)することにより、複数組のホール素子の検出精度を一致させることができ、このため、検知誤差を抑えることができる。
 すなわち、磁極位置検出用メインホールIC18、あるいは磁極位置検出用サブホールIC19は、磁極位置検出用マグネット16の回転によって検知される磁束密度がある値(閾値)以上、もしくはある値以下になったときにオンもしくはオフ動作を行う。したがって、磁極位置検出用サブホールIC19により検知された磁束密度が、磁極位置検出用メインホールIC18で検知された磁束密度と同じであれば同時にオン(もしくはオフ)動作を行うことになり、このため、磁極位置検出用メインホールIC18が感知する磁束密度の分布と、磁極位置検出用サブホールIC19が感知する磁束密度の分布がほぼ等しくなるように磁極位置検出用マグネット16の位置を設定してある。
 磁極位置検出用メインホールIC18が検知する磁束密度の分布と、磁極位置検出用サブホールIC19が検知する磁束密度の分布が等しければ、磁極位置検出用メインホールIC18が検知する磁束密度と磁極位置検出用サブホールIC19が検知する磁束密度が同じ磁束密度になるタイミングを角度換算することで所定の機械角度オフセットに等しくなる。その結果、磁極位置検出用メインホールIC18と磁極位置検出用サブホールIC19との検知角度誤差が最小となり、したがって、4倍精度のロータ12の位置検出が可能になる。
 上記したこの発明の実施の形態1に係るブラシレスモータ位置検出装置によれば、磁極位置検出用メインホールIC18と磁極位置検出用サブホールIC19が検知する磁束密度分布をほぼ同じにすることで、2組のホールIC(磁極位置検出用メインホールIC18と磁極位置検出用サブホールIC19)の動作間隔の誤差は最小となり、このため、高い信頼性をもって単精度のブラシレスモータの4倍の分解能が得られる。
実施の形態2.
 ところで、着磁の仕方、あるいは磁石の形状によっては、2組のホールIC(磁極位置検出用メインホールIC18と磁極位置検出用サブホールIC19)が検知する磁束密度を平坦なものとし、磁極位置の磁束密度の径方向の変化率を小さくすることが可能になる。このことにより、2組のホールICの実装位置に多少のずれが生じても磁束密度の大きな変化はない。
 すなわち、上記した実施の形態1では、磁極位置検出用マグネット16の厚さは、径方向に一様な厚さとしていたが、図5に、磁極位置検出用メインホールIC18と磁極位置検出用サブホールIC19の径方向の位置と、これらが検知する磁束密度の大きさを模擬的に示したように、例えば、磁極位置検出用マグネット16を途中でその厚さを薄く形成してもよい。磁極位置検出用マグネット16の厚さが一様である場合に比較して、途中で厚さを変更することで、磁極位置の磁束密度の径方向の変化率を小さくすることが可能になる。このことより、磁極位置検出用メインホールIC18および磁極位置検出用サブホールIC19の径方向位置に対する磁束密度の変化が小さくなるという利点がある。
 但し、図5に示されるように、径方向の磁束密度分布は磁極位置検出用メインホールIC18と磁極位置検出用サブホールIC19との中間で最大値を取る分布ではなく、中間に落ち込みが出来る場合がある。しかし、ここで重要なことは、磁極位置検出用メインホールIC18と磁極位置検出用サブホールIC19の実装位置で磁束密度が等しいことであるため、磁極位置検出用メインホールIC18と磁極位置検出用サブホールIC19との中間で落ち込みがあってもよい。
 上記した実施の形態2によれば、位置検出用マグネット16は、ロータ12の回転角度に対する磁束密度の変化を緩和するための緩和部を有することにより、磁極位置検出用メインホールIC18と磁極位置検出用サブホールIC19の実装位置における磁束密度の変化率が小さくなるため、磁極位置検出用マグネット16の配置が容易になる。
実施の形態3.
 図6に磁極位置検出用マグネット16の断面構造が示されるように、磁極位置検出用マグネット16の角に切り欠き部16a~16dを設けても良い。
 磁極位置検出用マグネット16は高速回転を行うため、保持力が弱いと外周側へ移動することになり、この場合、磁極位置検出用メインホールIC18と、磁極位置検出用サブホールIC19とが検出する磁束密度分布がずれることになり、その結果として、これらホールIC18、19がオン(もしくはオフ)するタイミングがずれることになる。したがって、想定しているロータ12の位置検出精度を達成できない可能性がでてくる。
 これに対して、図6に示されるように、磁極位置検出用マグネット16の角に切り欠き16a~16dを設けることで、磁石をモールドするときにモールド材20が切り欠きに回り込み、モールド材20が磁極位置検出用マグネット16を4角で保持する構造になり、結果として磁石の位置ずれを防止するという利点がある。
 上記した実施の形態3によれば、位置検出用マグネット16の任意の角に切り欠き16a~16dを設けることにより、磁石をモールドした際にモールド材20がその切り欠き16a~16dに廻り込み、ズレを抑制できるため、4倍の高精度ブラシレスモータであるために必須のズレ抑制手段であるといえる。
 なお、上記した実施の形態1~実施の形態3に係るブラシレスモータ位置検出装置は、あらゆる用途に用いることが可能であるが、特に、小型化、耐久性が要求される車載用機器に用いて顕著な効果が得られ、また、その内の、スロットルバルブやEGRバルブを開閉させるための駆動源として用い、あるいはVGターボの稼動ベージの駆動源として用いてもよい。
 この発明に係るブラシレスモータ位置検出装置は、直流電流により動作するブラシレスモータに適用が可能であり、特に、ロータ12の回転位置検出の分解能を上げるために、磁極位置検出用マグネット16と、磁極位置検出用メインホールIC18と、磁極位置検出用サブホールIC19とを用いてロータ12の回転位置検出の分解能を向上させる意味で有効である。
 以上のように、この発明に係るブラシレスモータ位置検出装置は、磁極位置検出用メインホールICと磁極位置検出用サブホールICとの検知角度誤差最小限に抑えて信頼性の向上をはかるため、磁極位置検出用マグネットに対向する面に実装され、ロータの位置を検出する1組の第1のホール素子と、第1のホール素子の実装位置における磁束密度の最大値と自身の実装位置における磁束密度の最大値との差が所定の範囲内になるようにオフセットが調整された1組の第2のホール素子とを有するように構成したので、車載用機器に使用されるスロットバルブ、EGRバルブの駆動源、もしくはVGターボシステムの可動ページ等の駆動源に用いるのに適している。

Claims (6)

  1.  複数のコイルが配設されたステータと、
     前記ステータが複数の励磁パターンによって順次励磁されることにより回転する所定の極数を有するロータと、
     前記ロータの回転軸に直交する面に配置された磁極位置検出用マグネットと、
     前記磁極位置検出用マグネットに対向する面に実装され、前記ロータの位置を検出する1組の第1のホール素子と、前記第1のホール素子の実装位置における磁束密度の最大値と自身の実装位置における磁束密度の最大値との差が所定の範囲内になるようにオフセットが調整された1組の第2のホール素子と、
     を有することを特徴とするブラシレスモータ位置検出装置。
  2.  前記第1のホール素子と第2のホール素子の実装位置におけるロータの回転角度の検出誤差を5度以内とするオフセット調整により前記所定の範囲とすることを特徴とする請求項1記載のブラシレスモータ位置検出装置。
  3.  前記磁極位置検出用マグネットは、
     前記ロータの回転角度に対する磁束密度の分布に変化を緩和する緩和部を有することを特徴とする請求項1記載のブラシレスモータ位置検出装置。
  4.  前記磁極位置検出用マグネットは、
     リング磁石で形成されることを特徴とする請求項1記載のブラシレスモータ位置検出装置。
  5.  前記1組の第2のホール素子は、
     前記ロータの2倍の極数を有する位置検出用マグネットに対向する面に実装された前記1組の第1のホール素子に対して周方向に所定のオフセットを有することを特徴とする請求項1記載のブラシレスモータ位置検出装置。
  6.  前記磁極位置検出用マグネットは、
     角に切り欠き部を有することを特徴とする請求項5記載のブラシレスモータ位置検出装置。
PCT/JP2009/000151 2008-04-07 2009-01-16 ブラシレスモータ位置検出装置 WO2009125527A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/812,248 US8525458B2 (en) 2008-04-07 2009-01-16 Brushless motor position detection device
CN200980107055XA CN101960698B (zh) 2008-04-07 2009-01-16 无刷电动机位置检测装置
JP2010507123A JP4954325B2 (ja) 2008-04-07 2009-01-16 ブラシレスモータ位置検出装置
DE112009000276.5T DE112009000276B4 (de) 2008-04-07 2009-01-16 Bürstenloser Motor mit Positions-Erfassungs-Vorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008099289 2008-04-07
JP2008-099289 2008-04-07

Publications (1)

Publication Number Publication Date
WO2009125527A1 true WO2009125527A1 (ja) 2009-10-15

Family

ID=41161665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000151 WO2009125527A1 (ja) 2008-04-07 2009-01-16 ブラシレスモータ位置検出装置

Country Status (5)

Country Link
US (1) US8525458B2 (ja)
JP (1) JP4954325B2 (ja)
CN (1) CN101960698B (ja)
DE (1) DE112009000276B4 (ja)
WO (1) WO2009125527A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011160636A (ja) * 2010-02-04 2011-08-18 Denso Corp モータ、及び、これを用いた電動パワーステアリング装置
JP2012005260A (ja) * 2010-06-17 2012-01-05 Denso Corp モータ、および、それを用いた電動パワーステアリング装置
JPWO2017168751A1 (ja) * 2016-04-01 2018-09-06 三菱電機株式会社 センサマグネット、回転子、電動機、及び空気調和機
JP2018179133A (ja) * 2017-04-12 2018-11-15 株式会社不二工機 電動弁
CN112739587A (zh) * 2018-09-19 2021-04-30 罗伯特·博世有限公司 制动液压控制装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2549631B1 (en) * 2011-07-22 2021-07-14 LG Innotek Co., Ltd. Holding structure of sensing magnet for EPS motor
GB2483177B (en) * 2011-10-19 2013-10-02 Protean Electric Ltd An electric motor or generator
US10821591B2 (en) 2012-11-13 2020-11-03 Milwaukee Electric Tool Corporation High-power cordless, hand-held power tool including a brushless direct current motor
KR101520922B1 (ko) * 2013-11-13 2015-05-18 유도스타자동화 주식회사 사출성형기의 밸브 모터장치
JP6233278B2 (ja) * 2014-11-04 2017-11-22 株式会社デンソー 回転位置検出装置
KR20160120069A (ko) * 2015-04-07 2016-10-17 엘지이노텍 주식회사 모터용 센싱유닛 및 이를 포함하는 모터
JP6706938B2 (ja) * 2016-03-18 2020-06-10 ローム株式会社 モータ駆動装置
CN109424777A (zh) * 2017-08-24 2019-03-05 杭州三花研究院有限公司 电动阀
CN107979240A (zh) * 2017-12-26 2018-05-01 横店集团英洛华电气有限公司 斜极式电机霍尔安装结构
US11251340B2 (en) * 2019-01-23 2022-02-15 Epistar Corporation Light-emitting device with distributed Bragg reflection structure
JP2020153813A (ja) * 2019-03-20 2020-09-24 日本電産コパル電子株式会社 非接触角度センサ
CN110289745A (zh) * 2019-07-25 2019-09-27 苏州金莱克汽车电机有限公司 一种具有变调式换向角的无刷电机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252958A (ja) * 2001-02-23 2002-09-06 Mitsubishi Electric Corp ブラシレスdcモータ
JP2003004486A (ja) * 2001-06-21 2003-01-08 Nissan Motor Co Ltd 回転角度検出装置
WO2006051590A1 (ja) * 2004-11-11 2006-05-18 Hitachi, Ltd. 回転検出装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0650246B1 (en) * 1992-07-09 2001-11-21 Seiko Epson Corporation Brushless motor
JPH06303752A (ja) 1993-04-12 1994-10-28 Seiko Epson Corp ブラシレスモータの位置検出用磁気回路
EP1271752A1 (en) 2001-06-13 2003-01-02 HSU, Chun-Pu Device for increasing the rotation speed of a permanent magnet motor
DE102004014986A1 (de) * 2004-03-26 2005-11-10 Minebea Co., Ltd. Elektromotor
JP2006109553A (ja) * 2004-10-01 2006-04-20 Japan Servo Co Ltd Dcブラシレスモータの磁極検出マグネットの固定方法
DE102005015141A1 (de) 2005-03-31 2006-10-05 Robert Bosch Gmbh Lagesensorsystem
JP2006314165A (ja) * 2005-05-09 2006-11-16 Nippon Densan Corp モータ
DE112007003276T5 (de) 2007-03-16 2010-02-11 Mitsubishi Electric Corp. Bürstenlose Motoreinheit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252958A (ja) * 2001-02-23 2002-09-06 Mitsubishi Electric Corp ブラシレスdcモータ
JP2003004486A (ja) * 2001-06-21 2003-01-08 Nissan Motor Co Ltd 回転角度検出装置
WO2006051590A1 (ja) * 2004-11-11 2006-05-18 Hitachi, Ltd. 回転検出装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011160636A (ja) * 2010-02-04 2011-08-18 Denso Corp モータ、及び、これを用いた電動パワーステアリング装置
JP2012005260A (ja) * 2010-06-17 2012-01-05 Denso Corp モータ、および、それを用いた電動パワーステアリング装置
JPWO2017168751A1 (ja) * 2016-04-01 2018-09-06 三菱電機株式会社 センサマグネット、回転子、電動機、及び空気調和機
KR20180105220A (ko) * 2016-04-01 2018-09-27 미쓰비시덴키 가부시키가이샤 센서 마그넷, 회전자, 전동기, 및 공기 조화기
KR102174666B1 (ko) * 2016-04-01 2020-11-05 미쓰비시덴키 가부시키가이샤 센서 마그넷, 회전자, 전동기, 및 공기 조화기
US11070112B2 (en) 2016-04-01 2021-07-20 Mitsubishi Electric Corporation Sensor magnet, rotor, electric motor, and air conditioner
JP2018179133A (ja) * 2017-04-12 2018-11-15 株式会社不二工機 電動弁
CN112739587A (zh) * 2018-09-19 2021-04-30 罗伯特·博世有限公司 制动液压控制装置
JPWO2020058787A1 (ja) * 2018-09-19 2021-09-24 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh ブレーキ液圧制御装置
JP7157166B2 (ja) 2018-09-19 2022-10-19 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング ブレーキ液圧制御装置
CN112739587B (zh) * 2018-09-19 2024-04-09 罗伯特·博世有限公司 制动液压控制装置

Also Published As

Publication number Publication date
CN101960698B (zh) 2013-12-25
DE112009000276T5 (de) 2011-02-10
JPWO2009125527A1 (ja) 2011-07-28
DE112009000276B4 (de) 2017-08-10
US8525458B2 (en) 2013-09-03
CN101960698A (zh) 2011-01-26
JP4954325B2 (ja) 2012-06-13
US20100289442A1 (en) 2010-11-18

Similar Documents

Publication Publication Date Title
JP4954325B2 (ja) ブラシレスモータ位置検出装置
US7800272B2 (en) Embedded magnet motor and manufacturing method of the same
JP4772146B2 (ja) ブラシレスモータ装置
US7764033B2 (en) Motor driving apparatus
US6720763B1 (en) Compact rotary magnetic position sensor having a sinusoidally varying output
US7939976B2 (en) Hybrid type rotary electric machine
JP2007151314A (ja) モータ
US20120200180A1 (en) Motor capable of adjusting phase difference between output signals
US20130154405A1 (en) Hybrid rotary electrical machine
JP2008011599A (ja) ブラシレスモータ
GB2521662A (en) A method checking the orientation of a magnetic ring position indicator
JPH10288054A (ja) スロットル弁制御装置
JP4965968B2 (ja) アキシャルギャップ形コアレスモータおよび位置決め装置
EP1083406A2 (en) Rotary position sensor
JPWO2005040730A1 (ja) 回転角検出装置
CN107078620B (zh) 电动机、电动机的控制方法以及电动机的控制装置
JP2010213488A (ja) 永久磁石型回転電機
JP6201910B2 (ja) 回転検出センサ及びその製造方法
JP2008058027A (ja) 回転センサ
JP4197258B2 (ja) ステッパモータ
JP4877599B2 (ja) Srモータの回転角度検出装置
CN116412750A (zh) 旋转角度检测装置
JP2007085743A (ja) 非接触回転変位センサ
JP2009236722A (ja) 回転角検出装置
JP2021023000A (ja) モータ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980107055.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09731283

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010507123

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12812248

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112009000276

Country of ref document: DE

Date of ref document: 20110210

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09731283

Country of ref document: EP

Kind code of ref document: A1