WO2009123356A1 - 高強度缶用鋼板およびその製造方法 - Google Patents

高強度缶用鋼板およびその製造方法 Download PDF

Info

Publication number
WO2009123356A1
WO2009123356A1 PCT/JP2009/057153 JP2009057153W WO2009123356A1 WO 2009123356 A1 WO2009123356 A1 WO 2009123356A1 JP 2009057153 W JP2009057153 W JP 2009057153W WO 2009123356 A1 WO2009123356 A1 WO 2009123356A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
strength
steel plate
rolling
temperature
Prior art date
Application number
PCT/JP2009/057153
Other languages
English (en)
French (fr)
Inventor
荒谷誠
加藤寿勝
河村勝人
田中匠
小島克己
佐藤覚
筋田成子
小泉正樹
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN200980112164.0A priority Critical patent/CN101983251A/zh
Priority to KR1020107021741A priority patent/KR101302817B1/ko
Priority to KR1020137009033A priority patent/KR20130045948A/ko
Priority to BRPI0911139-5A priority patent/BRPI0911139B1/pt
Priority to US12/935,564 priority patent/US20110076177A1/en
Publication of WO2009123356A1 publication Critical patent/WO2009123356A1/ja
Priority to US14/195,598 priority patent/US20140174609A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0442Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Definitions

  • the present invention relates to a steel plate for high-strength cans suitable as a can material for reducing or expanding the diameter after three-piece processing such as welding or two-piece processing such as DI, and a method for manufacturing the same.
  • Patent Document 1 proposes a method in which the components in steel are controlled within a certain range, hot rolling is performed at (Ar3 transformation point -30 ° C) or higher, and after cold rolling, continuous annealing is performed. It has been.
  • Patent Document 1 P is set to 0.02 wt% or less so as not to deteriorate the flange workability, neck workability, and corrosion resistance, and the rolling reduction of the secondary cold rolling is 15 to 30%. Therefore, it is difficult to efficiently process thin products and it is difficult to produce them, and appearance defects are likely to occur. In addition, it is difficult to produce stably, and improvement is necessary.
  • Patent Document 2 the components in the copper and the solid solution N are controlled within a certain range, and then hot rolling is performed at (Ar 3 transformation point is 30 ° C) or more, the cooling is performed, and winding is performed.
  • Hot rolling is performed at (Ar 3 transformation point is 30 ° C) or more, the cooling is performed, and winding is performed.
  • Water cooling After cold rolling, a method of manufacturing a steel plate for cans has been proposed in which a continuous annealing with a predetermined heat pattern is performed and the yield stress after paint baking is 550 MPa or more.
  • Patent Document 2 it is difficult to control the heat pattern strictly by increasing the temperature of continuous annealing in order to secure a predetermined solid solution N because it is a semi-very low carbon material. There is a problem that it is difficult to produce. In addition, simply securing solid solution N of 80% or more of N in steel makes it difficult to stably produce a steel plate with a predetermined strength due to variations in the N content of steel, and improvement is necessary. In addition, the method of Patent Document 2 reduces the total elongation and deteriorates workability.
  • Non-Patent Document 1 Hot rolling ⁇ Pickling ⁇ Cold rolling ⁇ Box annealing (BAF) ⁇ Second cold rolling (Rolling ratio: 20 ⁇ 50%)
  • Hot rolling ⁇ Pickling ⁇ Cold rolling ⁇ Continuous annealing (CAL) ⁇ Second cold rolling (Rolling ratio: 20 ⁇ 50%)
  • the rolling reduction in the second cold rolling is as high as 20 to 50%, and the operation efficiency is lowered due to the high rolling load.
  • various rolling oils with high viscosity are used for the purpose of improving lubricity during rolling, there is a problem of poor appearance after rolling due to uneven concentration of the rolling oil or partial oil adhesion.
  • the rolling reduction ratio is high, the total elongation becomes small, the workability deteriorates, and the steel sheet is stretched by rolling, so that the width direction and the length direction resistance according to the production direction and the processing direction of the material are reduced. The difference will increase.
  • Patent Document 1 Japanese Patent No. 3108615
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-107187
  • Non-Patent Document 1 “Technology History of Surface-treated Steel Sheets for Cans in Japan” Issued on October 30, 1998, Japan Iron and Steel Institute p. 188 In this way, there is no production method that can achieve both strength and productivity when it is desired to obtain a steel plate for cans with a thin product thickness.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a copper plate for cans having a yield stress YP of 500 Pa or more after coating and baking, and a method for producing the same. Disclosure of the invention
  • the present invention is as follows.
  • the method for producing a steel plate for a high-strength can according to [3] or [4], wherein the soaking temperature of the continuous annealing is set to an Ar 1 transformation temperature or higher.
  • the method for producing a steel plate for a high-strength can according to any one of [3] to [5], wherein plating is performed after the continuous annealing or the second cold rolling.
  • the percentages indicating the components of steel are all mass%.
  • the “high-strength steel plate for cans” is a copper plate for cans having a yield stress YP of 500 MPa or more after coating and baking treatment.
  • the steel plate for high-strength cans according to the present invention is intended for can materials. Furthermore, with or without surface treatment, it can be applied to a very wide range of applications with tin plating, nickel tin plating, chrome plating (so-called tin-free plating), or organic coating.
  • the thickness of the steel plate is not particularly limited, but from the viewpoint of obtaining the effect by making the most of the present invention, the plate thickness is preferably 0.3 mm or less, and more preferably 0.2 mm or less. Particularly preferred is 0.170 mra or less.
  • the present inventors have intensively studied to solve the above problems. As a result, the following knowledge was obtained.
  • Ingredient composition is low charcoal, and the absolute amount of solute N is ensured more than a certain level, and it is hardened by aging and hardening in printing process, film lamination process, drying / baking process, etc. before canning process It was found that a high-strength material can be secured by hardening by strain aging.
  • a steel sheet for high-strength cans has been completed by managing components based on the above knowledge.
  • the copper plate for high strength cans according to the present invention is a steel plate for cans having a yield stress YP of 500 MPa or more after painting and baking.
  • a low carbon material is used, and an absolute amount of solute N is ensured to be a certain level or more.
  • secondary cold rolling or a low pressure reduction rate of 2 is achieved.
  • the productivity can be increased and the productivity of the steel plate for cans can be increased and the strength can be increased.
  • the copper plate for cans obtained by temper rolling of about 1% after blunting has a total elongation E1 of 20% or more after coating and baking treatment.
  • the total elongation E 1 after coating / baking treatment exceeds 10%.
  • C is an effective element that increases the strength of the steel by solid solution strengthening, but on the other hand, it forms carbides and lowers the ductility and hence the workability of the steel sheet. If the C component is large, the steel sheet after secondary cold rolling will be hardened, resulting in deterioration of can manufacturing and neck workability. Also, due to the remarkable hardening of the weld, it becomes an element that causes HAZ cracking when the flange is heated. When C exceeds 0.10%, these effects become prominent, so C is made 0.10% or less. On the other hand, if the C content is extremely low, C is over 0.02% because there is a problem that the strength cannot be secured unless the rolling reduction of secondary cold rolling is over 20%. C is preferably 0.03% or more and 0.05% or less.
  • Si is an element that increases the strength of the steel by solid solution strengthening, but adding a large amount causes problems such as deterioration of surface treatment and corrosion resistance, so Si is limited to 0.10% or less. If particularly excellent corrosion resistance is required, Si should be 0.02% or less.
  • Mn is an effective element for preventing hot cracking due to S. And the effect which prevents a crack is acquired by adding suitably according to S amount.
  • Mn is preferably added in an amount of 0.20% or more. It also has the effect of refining crystal grains. On the other hand, if added in a large amount, the corrosion resistance tends to deteriorate, and the steel plate is hardened more than necessary, and the flange workability and neck workability are deteriorated. Therefore, the upper limit is made 1.5%.
  • Mn is preferably 0.20% or more and 0.30% or less. P: 0.20% or less
  • P makes the steel extremely hard, but it deteriorates the corrosion resistance as well as the flange workability and neck workability. Therefore, in the present invention, P is limited to 0.20% or less. P is preferably 0.001% or more and 0.0018% or less.
  • S exists as an inclusion in steel, and is an element that reduces the ductility of the steel sheet and further deteriorates the corrosion resistance. Therefore, 0.20% or less. S is preferably 0.001% or more and 0.0018% or less.
  • A1 0.10% or less
  • A1 combines with solute N to form A1N, and has the effect of reducing the amount of solute N.
  • an increase in the A1 content causes an increase in the recrystallization temperature, and the annealing temperature must be increased.
  • the amount of solute N is reduced due to the formation of A1N, and the amount of age hardening is reduced, resulting in a decrease in steel sheet strength.
  • this phenomenon becomes significant when the A1 content exceeds 0.10%.
  • A1 is limited to 0.1% or less.
  • A1 is preferably set to at least 0.20%.
  • A1 is preferably 0.020% or more and 0.060% or less.
  • N is an element that increases age hardenability, and is actively contained in the present invention. A marked increase in age hardenability is observed with a content of 0.0120% or more in the case of low-carbon materials. On the other hand, if the content exceeds 0.0250%, the risk of causing cracking defects in the rolled material (slab) is significantly increased. Therefore, N is limited to 0.0120% or more and 0.0250% or less. Steel plate for cans (cold rolled steel plate). Solid solution N: 0.0100% or more
  • the amount of solute N in the steel sheet for cans needs to be 0.0100% or more. This is the most important requirement in the present invention.
  • the cold-rolled steel sheet of the present invention is preferably manufactured by pickling the hot-rolled sheet, then cold-rolling and continuous annealing, and if necessary, performing the second cold-rolling.
  • Annealing process Since AIN tends to precipitate, it is important to manage the process so that the amount of solute N in the steel sheet for cans (cold rolled steel sheet) does not become less than 0.0100%.
  • the amount of N that is A1N is obtained by extraction analysis after dissolution treatment with bromoester, which is usually performed (hereinafter referred to as N as A1N), and the value obtained by subtracting N as A1N from the total amount of N Is the solute N content.
  • the total amount of solute N and solute C is preferably 0.0150% or more.
  • the amount of solute C is measured by internal wear or the total amount of C in the precipitate extracted from the steel sheet. It can also be calculated by subtracting from the C amount.
  • the balance is Fe and inevitable impurities.
  • the balance other than the above components is Fe and inevitable impurities.
  • an inevitable impurity for example, Sn: 0.01% or less is acceptable.
  • the copper plate for high strength cans of the present invention is obtained by the following method. First, molten steel having the above composition is melted by a generally known melting method using a converter or the like, and is formed into a rolled material (slab) by a generally known forging method such as a continuous forging method. Next, these rolled materials are used to form hot rolled sheets by hot rolling. At this time, the slab extraction temperature is 1200 ° C or higher, and the finish rolling temperature is (Ar 3 transformation point temperature-30) ° C or higher (preferably Ar 3 transformation point temperature or higher). Next, it is scraped at 650 ° C. or lower, pickled, and then cold-rolled and continuously annealed. Furthermore, if necessary, a second cold rolling is performed at a rolling reduction of 10% or more and less than 20% (preferably 10% or more and less than 15%). It is also possible to perform plating.
  • the slab is inserted into a heating furnace and heated, and the temperature extracted from the heating furnace is set to 1200 ° C or higher. This is to promote the decomposition of A1N and to secure a predetermined amount of solute N. It is preferably inserted into a heating furnace maintained at this temperature and heated. Finishing rolling temperature: (Ar 3 transformation point 1 30 ° C) or more
  • the finish rolling temperature in hot rolling is (Ar 3 transformation point is one 30 ° C). That's it.
  • the finish rolling temperature is less than (Ar 3 transformation point-30 ° C)
  • precipitation of A1N becomes prominent, solute N decreases, and anisotropy and workability deteriorate.
  • Ar 3 transformation point preferably Ar 3 transformation point or more.
  • the cutting temperature shall be 650 ° C or less to prevent N fixation by A1.
  • the scraping temperature exceeds 650 ° C, the precipitation amount of A1N increases remarkably and the solute N decreases, so that the target age hardening cannot be obtained.
  • the scraping temperature is 600 ° C. or lower.
  • the hot-rolled sheet manufactured as described above is pickled and cold-rolled to obtain a cold-rolled sheet.
  • the surface scale may be removed with an acid such as hydrochloric acid or sulfuric acid according to a conventional method.
  • the cold rolling reduction rate increases as the plate thickness decreases.
  • Soaking temperature for continuous annealing 600 ° C or more (preferred conditions)
  • soaking is preferably performed in a temperature range of 600 t or more. If the soaking temperature is 600 ° C or higher, the recrystallization progresses quickly, the working strain introduced by cold rolling does not remain, the ductility is high, and it is suitable for press working. Furthermore, soaking at a temperature equal to or higher than the Ar 1 transformation point is preferable because the strength can be further improved. It is presumed that when soaking above the Ar 1 transformation point, a partial pearlite structure contributes to the strength. In addition, it is not necessary to maintain a certain temperature within this temperature range. A soaking time of 10 s or more is sufficient for the stability of operation.
  • temper rolling of about 1% is preferably performed to adjust the surface roughness and hardness.
  • the cold-rolled steel sheet obtained through the above processes has a total elongation E 1 of 20% or more after painting and baking, and is a can steel sheet with extremely excellent workability.
  • a second cold rolling with a rolling reduction of 10% or more and less than 20% may be performed.
  • the main purpose of this second cold rolling is to further increase the strength. By setting it to 10% or more, further increase in strength can be achieved. By making it less than 20%, the elongation can be secured (total elongation E 1 after painting and baking treatment is 8% to 15% or less), and the effect of increasing the strength can be obtained without degrading workability.
  • the reduction ratio of the second cold rolling to 10% or more and less than 15%, it is possible to ensure that the total elongation E 1 after coating / baking treatment exceeds 10%.
  • Reduction ratio 10% or more and less than 20% cold-rolled steel sheet that has been cold-rolled for the second time
  • the total elongation E 1 after coating and baking is 8% to 15% and has excellent machinability. However, it becomes an extremely high strength steel plate for cans.
  • the rolling reduction is preferably 10% or more and less than 15%, and a cold-rolled steel sheet having a total elongation E 1 of 10% or more after painting and baking is obtained. A cold-rolled steel sheet is obtained through the above steps.
  • the cold-rolled steel sheet manufactured by the above-described process has a solid solution N content of 0.0100% or more, and becomes a high-strength can steel sheet having a yield stress after coating and baking treatment YP: 500 MPa or more. . Furthermore, since the steel plate for cans of the present invention can obtain a large stretch, it is excellent in workability.
  • the steel plate for cans of the present invention has a large age-hardening property due to solute N. Therefore, yield stress after coating / baking treatment YP: 500 MPa or more has an advantage in thinning the copper plate be able to.
  • the cold-rolled steel sheet of the present invention increases in strength even after the reflow treatment after plating by effectively utilizing the action of solute N, and is also prominent during the paint baking process after press forming. An age hardening phenomenon occurs and can dramatically increase the strength of the can body.
  • a plated layer can be formed by forming a (at least one side) plating layer on the surface of the cold-rolled copper sheet obtained as described above. Any of those applied to the steel plate for cans can be used as the adhesion layer formed on the surface. Examples of plating layers include tin plating, chrome plating, nickel plating, and nickel / chrome plating. In addition, there is no problem with applying paint or organic resin film after these mating treatments.
  • Temper rolling was performed at a reduction rate of 1.1% after continuous annealing.
  • the cold-rolled steel sheet thus obtained was subjected to a tensile test before and after the measurement of the solute N amount and the bake hardening test.
  • the amount of N in the cold-rolled steel sheet was analyzed by chemical analysis, and the amount of N present as A1N was determined by extraction analysis after dissolution treatment with bromoester.
  • the amount of solute N in the cold-rolled steel sheet the value of ⁇ (N amount in the cold-rolled steel sheet) 1 (N amount existing as A1N) ⁇ was used.
  • JIS 13-B tensile test specimens were collected from the center of the cold rolled steel sheet in the width direction to the rolling direction, and subjected to a tensile test at a strain rate crosshead speed of lOmmZs, yield stress YP and total elongation. E1 was measured. The tensile test was conducted within one day after commercialization. The reason why the tensile test piece is JIS No. 13-B test piece is to reduce the phenomenon of breaking outside the gauge as much as possible.
  • JIS 13-B tensile test specimens were collected in the rolling direction from the center in the width direction of these cold-rolled steel sheets, and after 2% tensile pre-strain was added, they were unloaded and subjected to a paint baking treatment of 210 X 20min. Appropriate heat treatment was applied. Before and after this test, the tensile test shown in (ii) was performed.
  • No. 2 and No. 3 in the comparative example are insufficient in yield stress Y P and do not have the strength and workability required for 3-piece processing, and therefore cannot be subjected to predetermined processing.
  • a steel plate for high-strength cans having a yield stress YP of 500 MPa or more after coating and baking is obtained.
  • a low-carbon material (1) a predetermined N amount as a component
  • the slab extraction temperature is set to 1200 ° C or higher to decompose A1N generated during slab fabrication
  • the total elongation after coating and baking treatment can be reduced by setting the secondary cold rolling reduction ratio to a suitable range of 10% or more and less than 15%.
  • the steel sheet for cans of the present invention can greatly contribute to the thinning of the steel sheet because the yield stress is greatly increased and the strength of the can body is greatly increased by the paint baking process after forming.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

塗装・焼付処理後の降伏応力が500Mpa以上の強度を有する缶用鋼板およびその製造方法を提供する。質量%で、C:0.02%超0.10%以下、Si:0.10%以下、Mn:1.5%以下、P:0.20%以下、S:0.20%以下、Al:0.10%以下、N:0.0120~0.0250%を含有し、かつ該Nのうち固溶Nとして0.0100%以上を含み、残部がFeおよび不可避的不純物からなる。固溶N量の絶対量を一定以上確保し、製缶加工前に施される印刷工程あるいはフィルムラミネート工程、乾燥・焼付工程などで焼入れ時効および歪時効により硬化することで高強度の材質を確保できる。なお、製造するにあたっては、スラブ抽出温度を1200℃以上とし、仕上げ圧延温度を(Ar3変態点温度-30)℃以上とする熱間圧延を施し、650℃以下で巻き取る。

Description

明 細 書 高強度缶用鋼板およびその製造方法 技術分野
本発明は、 溶接などの 3ピース加工や DIなどの 2ピース加工後に径形状の縮小 や拡大加工を行う缶用素材として好適な高強度缶用鋼板およびその製造方法に関す るものである。 背景技術
近年、 コス トの低減を目的として、 また、 利用資材の削減や環境負荷の軽減を目 的として、 素材である鋼材 (鋼板) の製品板厚を薄くするための製品開発が進めら れている。
また、 製品板厚を薄くすると剛性が低下するので、 この剛性の低下を補うため、 鋼材の高強度化を図る必要もある。 し力 し、 鋼材の高強度化を図った場合、 硬質化 するため、 フランジ加ェゃネッキング加ェで割れが生じる問題がある。
上記に対して、 現在、 種々の製造方法が提案されている。
例えば、 特許文献 1には、 鋼中成分を一定範囲に管理した上で、 (Ar3変態点 -30°C) 以上で熱間圧延を施し、 冷間圧延ののち、 連続焼鈍を行う方法が提案され ている。
しかしながら、 特許文献 1の方法では、 フランジ加工性、 ネック加工性および耐 食性を劣化させないように Pを 0. 02wt%以下とし、 さらに 2次冷間圧延の圧下率を 1 5〜3 0 %とするため、 薄い製品を効率的に処理することは難しく生産しにくい、 また外観不良が発生しやすいといった問題がある。 また、 安定的に製造することが 難しく、 改善が必要である。
また; 特許文献 2には、 銅中成分および固溶 Nを一定範囲に管理した上で、 (Ar 3変態点一 30°C) 以上で熱間圧延を施し、 所定の冷却を行い、 巻き取り、 水冷をし、 冷間圧延を行ったのち、 所定のヒートパターンの連続焼鈍を行い、 塗装焼付処理後 の降伏応力: 550MPa以上を有する缶用鋼板の製造方法が提案されている。
し力 しながら、 特許文献 2の方法では、 セミ極低炭材であり、 かつ所定の固溶 N を確保するために連続焼鈍の温度を高くし、 さらにヒートパターンを厳しく管理す ることが難しく、 生産しにくいといった問題がある。 また、 単に鋼中 Nの 80%以上 の固溶 Nを確保するだけでは、 鋼中 N含有量のばらつきから所定の強度の鋼板を安 定的に製造することが難しく、 改善が必要である。 また、 特許文献 2の方法では全 伸びが小さくなり、 加工性が劣化する。
さらに、 高強度な缶用鋼板の代表的な製造方法として、 下記の方法が提案されて おり、 焼鈍種類に応じて適宜選択し用いられている (例えば、 非特許文献 1 ) 。 熱間圧延→酸洗→冷間圧延→箱型焼鈍 (BAF)→2回目冷間圧延 (圧下率: 20〜5 0%)
熱間圧延→酸洗→冷間圧延→連続焼鈍 (CAL)→2回目冷間圧延 (圧下率: 20〜5 0%)
しかしながら、 上記の方法では、 2回目の冷間圧延での圧下率が 20〜50%と高 く、 圧延荷重が高いことにより操業能率は低くなる。 また、 圧延時の潤滑性を向上 する目的で粘度の高い各種圧延油が用いられるため圧延油の濃度むらや部分的な油 付着による、 圧延後の外観不良の問題がある。 さらに、 圧延圧下率が高い場合、 全 伸びが小さくなり、 加工性が劣化し、 また、 圧延により鋼板が伸ばされるため、 素 材の製造方向と加工方向に応じた幅方向と長さ方向の耐カ差が大きくなる。
これに対して、 2回目の冷間圧延での圧下率を低く抑える方法が考えられる。 し かし、 圧下率を低くした場合は、 必要とする耐カを得ることが困難となる。
特許文献 1 :特許第 3108615号公報
特許文献 2 :特開 2001-107187号公報
非特許文献 1 : 「わが国における缶用表面処理鋼板の技術史」 日本鉄鋼協会 平成 10年 10月 30日発行 p. 188 このように、 製品板厚の薄い缶用鋼板を得ようとする場合、 強度と生産性を両立 できる製造方法はなく、 望まれているのが現状である。
本発明は、 かかる事情に鑑みなされたもので、 塗装 ·焼付処理後の降伏応力 Y Pが 500 Pa以上の強度を有する缶用銅板およびその製造方法を提供することを目 的とする。 発明の開示
本発明は以下のとおりである。
[1] 質量%で、 C: 0.02%超 0.10%以下、 Si:0.10%以下、 Mn:1.5%以下、 P:0.2 0%以下、 S:0.20%以下、 A1:0.10%以下、 N:0.0120〜0.0250 %を含有し、 かつ該 Nの うち固溶 Nとして 0.0100%以上を含み、 残部が Feおよび不可避的不純物からなる ことを特徴とする高強度缶用鋼板。 、
[2] 表面にめっき層を有することを特徴とする [1] に記載の高強度缶用鋼板。
[3] 質量%で、 C: 0.02%超 0.10%以下、 Si:0.10%以下、 Mn:1.5%以下、 P:0.2 0%以下、 S:0.20%以下、 A1:0.10%以下、 N:0.0120〜0.0250 %を含有し、 残部が Fe および不可避的不純物からなる鋼スラブを、 スラブ抽出温度を 1200°C以上とし、 仕上げ圧延温度を (Ar3変態点温度- 30) °C以上とする熱間圧延を施し、 650°C以下 で卷き取り、 酸洗を施したのち、 冷間圧延を施し、 次いで、 連続焼鈍を施すことを 特徴とする高強度缶用鋼板の製造方法。
C 4 ] 前記連続焼鈍の後、 圧下率を 10%以上 20%未満とする 2回目の冷間圧延 を施すことを特徴とする [3] に記載の高強度缶用鋼板の製造方法。
[ 5 ] 前記連続焼鈍の均熱温度を Ar 1変態点温度以上とすることを特徴とする [3] または [4] に記載の高強度缶用鋼板の製造方法。
[6] 前記連続焼鈍または前記 2回目の冷間圧延の後、 めっき処理を施すことを 特徴とする [3] 〜 [5] のいずれかに記載の高強度缶用鋼板の製造方法。 なお、 本明細書において、 鋼の成分を示す%は、 すべて質量%である。 また、 本 発明において、 「高強度缶用鋼板」 とは、 塗装 ·焼付処理後の降伏応力 Y Pが 500 MPa以上の強度を有する缶用銅板である。
また、 本発明の高強度缶用鋼板は、 缶用素材を対象とする。 さらに、 表面処理の 有無は問わず、 錫めつき、 ニッケル錫めつき、 クロムめつき (いわゆるティンフリ 一めつき) あるいは、 さらに有機被覆などを施され、 極めて広範囲な用途に適用可 能である。
さらに、 鋼板の厚みについては特に限定しなレ、が、 本発明を最大限に活かし効果 を得る点からは板厚 0. 3mm以下、 さらに 0. 2謹以下が好ましい。 とくに好ましいの は 0. 170mra以下である。 発明を実施するための最良の形態
本発明者らは、 上記課題を解決するために鋭意研究を行った。 その結果、 以下の 知見を得た。
成分組成として、 低炭材とし、 固溶 N量の絶対量を一定以上確保し、 製缶加工前 に施される印刷工程あるいはフィルムラミネ一ト工程、 乾燥 ·焼付工程などで焼入 れ時効および歪時効により硬化することで高強度の材質を確保できることを見出し た。
以上のように、 本発明では、 上記知見に基づき成分を管理することで高強度缶用 鋼板を完成するに至った。
以下、 本発明を詳細に説明する。
本発明の高強度缶用銅板は、 塗装 ·焼付処理後の降伏応力 Y Pが 500MPa以上の 強度を有する缶用鋼板である。
そして、 本発明では、 低炭材とし、 固溶 N量の絶対量を一定以上確保し、 さらに、 塗装焼付処理後の時効硬化によって、 2次冷間圧延することなく、 あるいは低圧下 率の 2次冷間圧延を行うことにより、 生産性を高くして缶用鋼板の生産性を高くし て高強度化が可能となる。 さらに、 2次冷間圧延することなしに、 すなわち連続焼 鈍後 1%程度の調質圧延を施して得られる缶用銅板では塗装 ·焼付処理後の全伸び E 1が 20%以上を有する。 また、 10%以上 15%未満の圧下率で 2次冷間圧延を行 う缶用鋼板では塗装 ·焼付処理後の全伸び E 1が 10%超えを有する。 本発明の容器用鋼板の成分組成について説明する。
C :0. 02%超 0. 10%以下
Cは、 固溶強化により鋼の強度を増加させる有効な元素であるが、 一方で炭化物 を形成し、 鋼板の延性、 ひいては加工性を低下させる。 C成分が多いと 2次冷間圧 延後の鋼板を硬質化させ、 製缶性やネック加工性を劣化させる。 また、 溶接部の顕 著な硬質化によりフランジ加ェ時に HAZ割れを生じさせる元素となる。 Cが 0. 10% を超えると、 これらの影響が顕著になるので、 Cは 0. 10%以下とする。 一方、 C成 分が極端に低くなると 2次冷.間圧延の圧下率を 20%以上の強圧下としなければ強度 を確保できないという問題があるため Cは 0. 02%超とする。 Cは 0. 03%以上 0. 05% 以下とするのが好ましい。
Si :0. 10 %以下
Siは、 固溶強化により鋼の強度を増加させる元素であるが、 多量の添加は表面 処理性の劣化、 耐食性の劣化等の問題を生じるため、 Si は 0. 10%以下に限定する。 なお、 特に優れた耐食性が要求される場合は、 Siは 0. 02%以下とするのが好まし レ、。
Mn: 1. 5%以下
Mnは Sによる熱間割れを防止するのに有効な元素である。 そして、 S量に応じて 適宜添加することにより、 割れを防止する効果が得られる。 これらの効果を発揮す るためには、 Mnは 0. 20 %以上の添加が好ましい。 また、 結晶粒を微細化する作用 も有している。 一方、 多量に添加すると、 耐食性が劣化する傾向を示すとともに鋼 板を必要以上に硬質化させ、 フランジ加工性、 ネック加工性を劣化させるため、 上 限は 1. 5%とする。 Mnは 0. 20%以上 0. 30%以下とするのが好ましい。 P : 0. 20%以下
Pは、 鋼を著しく硬質化させるが、 フランジ加工性やネック加工性を劣化させると ともに、 耐食性を著しく劣化させる。 このため、 本発明では、 Pは 0. 20%以下に 限定する。 Pは 0. 001%以上 0. 018%以下とするのが好ましい。
S: 0. 20%以下
Sは鋼中で介在物として存在し、 鋼板の延性を減少させさらに耐食性を劣化させ る元素である。 そのため、 0. 20%以下とする。 Sは 0. 001%以上 0. 018%以下とするの が好ましい。
A1 :0. 10%以下
A1は、 固溶 Nと結合し、 A1Nを形成し、 固溶 N量を低減する効果を有する。 ま た、 A1含有量の増加は再結晶温度の上昇をもたらし、 焼鈍温度を高温とする必要 がある。 高温焼鈍では、 A1N形成のため、 固溶 N量が低減し、 時効硬化量が低減し、 したがって鋼板強度の低下をもたらす。 低炭材の場合、 このような現象が顕著とな るのは、 A1含有量が 0. 10%を超える場合である。 このようなことから、 A1は 0. 1 0%以下に限定した。 なお、 鋼の溶製工程における安定操業の観点からは、 A1は 0. 020 %以上とするのが望ましい。 A1は 0. 020%以上 0. 060%以下とするのが好ましい。
N:0. 0120〜0. 0250%
Nは、 時効硬化性を増加させる元素であり、 本発明においては、 積極的に含有さ せる。 時効硬化性の顕著な增加は低炭材の場合 0. 0120%以上の含有で認められる。 一方、 0. 0250%を超えて含有すると、 圧延素材 (スラブ) に割れ欠陥を発生する危 険性が顕著に増大する。 したがって、 Nは 0. 0120%以上 0. 0250%以下に限定する。 缶用鋼板 (冷延鋼板). の固溶 N : 0. 0100%以上
本発明の特徴である大きな時効硬化性を確保するためには、 缶用鋼板 (冷延鋼 板) 中の固溶 N量を 0. 0100%以上とする必要がある。 これは本発明において最も重 要な要件である。
本発明の冷延鋼板は、 好ましくは、 熱延板を酸洗したのち、 冷間圧延し、 連続焼 鈍を行い、 必要に応じて 2回目の冷間圧延を行い製造されるが、 この連続焼鈍工程 で AINは析出傾向にあるので、 缶用鋼板 (冷延鋼板) 中の固溶 N量が 0. 0100%未満 とならないような工程を管理することが重要となる。 なお、 本発明では、 通常実施 されるブロムエステルによる溶解処理後の抽出分析により A1N となっている N量 を求め (以下、 N as A1Nと称す) 、 全 N量から N as A1N を引いた値を固溶 N量 とする。
また、 前記した固溶 N量と固溶 C量を合計で 0. 0150%以上とすることが好ましい, 固溶 C量は内耗による測定により、 または鋼板から抽出した析出物中の C量を全 C 量から差し引いて求めることもできる。
残部は Feおよび不可避不純物とする。
上記した成分以外の残部は、 Feおよび不可避的不純物である。 なお、 不可避的 不純物としては、 例えば Sn: 0. 01%以下が許容できる。
次に、 本発明の高強度缶用鋼板の製造方法について説明する。
本発明の高強度缶用銅板は、 以下の方法により得られる。 まず、 上記した組成か らなる溶鋼を転炉等を用いた通常公知の溶製方法により溶製し、 連続錡造法等の通 常公知の鎵造方法で圧延素材 (スラブ) とする。 次いで、 これら圧延素材を用い、 熱間圧延により熱延板とする。 この時、 スラブ抽出温度は 1200°C以上とし、 仕上 げ圧延温度は (Ar 3変態点温度- 30) °C以上 (好適には Ar 3変態点温度以上) とす る。 次いで、 650°C以下で卷き取り、 酸洗を施したのち、 冷間圧延を施し、 連続焼 鈍を施す。 さらに必要に応じて、 圧下率を 10%以上 20%未満 (好適には 10%以上 15%未満) とする 2回目の冷間圧延を施す。 また、 めっき処理を施すことも可能で ある。
以下に、 詳細に説明する。
スラブ抽出温度: 1200°C以上
缶用鋼板の固溶 N量を 0. 0100%以上とするには、 スラブを加熱炉に挿入して加 熱し、 加熱炉から抽出する温度を 1200°C以上とする。 A1Nの分解を促進し、 所定量 の固溶 N量を確保するためである。 この温度に保持した加熱炉に挿入し加熱するの が好ましい。 仕上げ圧延温度: (Ar3変態点一 30°C) 以上
本発明では、 A1N の析出を有効に抑制し、 さらに異方性と加工性の劣化を生じさ せないようにするため、 熱間圧延における仕上げ圧延温度は (Ar3変態点一 30°C) 以上とする。 仕上げ圧延温度が (Ar3変態点一 30°C) 未満では、 A1N の析出が顕著 となり、 固溶 Nが低減し、 異方性と加工性の劣化を生じる。 なお、 好ましくは Ar3 変態点以上である。
なお、 仕上げ圧延の後、 水冷により強制冷却するのが好ましい。 これにより、 A1N の析出を抑制できる。
卷取り温度: 650 °C以下
卷取り温度は、 A1による Nの固定を抑制するため、 650 °C以下とする。 卷取り 温度が 650 °Cを超えると、 A1N析出量が顕著に増加し固溶 Nが減少する結果、 目 標とする時効硬化性を得ることができない。 なお、 高い時効硬化性を安定して得る ためには、 卷取り温度は 600°C以下とするのがさらに好ましい。
なお、 本発明では、 卷取り後コイル状態で空冷または水冷することが好ましい。 水 冷の場合、 生産性高くすることが可能となるが、 鋼板の板幅方向および長手方向の 材質の均一性のためには空冷することが好ましい。
酸洗、 冷間圧延
以上のようにして製造した熱延板に、 酸洗、 冷間圧延を施し、 冷延板とする。 酸 洗は常法に従い、 塩酸、 硫酸等の酸で表面スケールを除去すればよい。 冷間圧下率 も常法に従う力 板厚が薄いほど高めとなる。
連続焼鈍の均熱温度: 600 °C以上 (好適条件)
連続焼鈍工程では、 600 t以上の温度範囲で均熱することが好ましい。 均熱温度 が 600 °C以上とすると、 再結晶の進行が早く、 冷間圧延で導入された加工歪が残 留せず、 延性が高く、 プレス加工に適する。 さらに、 Ar l変態点以上で均熱すると、 さらに強度を向上させることが可能となるので好ましい。 Ar 1変態点以上で均熱す ると、 部分的にパーライト組織となることが強度に寄与すると推察される。 また、 この温度範囲内であれば、 特に一定の温虔に保持する必要はない。 操業の 安定性から 10 s以上の均熱相当時間があれば十分である。
連続焼鈍ののち、 1%程度の調質圧延を施し、 表面粗さと硬度の調整を行うことが 好ましい。
以上の工程を経て得られた冷延鋼板は塗装 ·焼付処理後の全伸び E 1が 20%以 上となり加工性が極めて優れた缶用鋼板となる。
連続焼鈍の後、 さらに、 圧下率: 10%以上 20%未満の 2回目の冷間圧延を施して もよい。 この 2回目の冷間圧延はさらなる高強度化が主目的である。 1 0%以上と することにより、 さらなる高強度化が達成できる。 20%未満とすることにより伸び を確保 (塗装 ·焼付処理後の全伸び E 1が 8%以上〜 15%以下) して加工性を劣化 させることがなく前記高強度化の効果が得られる。 特に、 2回目の冷間圧延の圧下 率を 10%以上 15%未満とすることで、 塗装 ·焼付処理後の全伸ぴ E 1 : 10%超え を確保することができる。
20%未満とすることにより伸びを確保して加工性を劣化させることがなく前記高 強度化の効果が得られる。 圧下率: 10%以上 20%未満の 2回目の冷間圧延を施し た冷延鋼板は塗装 ·焼付処理後の全伸ぴ E 1が 8%以上〜 15%以下となり優れた加 工性を有しつつ極めて高強度の缶用鋼板となる。 圧下率は 10%以上 15%未満が好 ましく、 塗装 ·焼付処理後の全伸ぴ E 1が 10%以上の冷延鋼板が得られる。 以上の工程を経て冷延鋼板が得られる。 そして、 製缶加工前 (プレス加工前) の 塗装 ·焼付処理により硬質材となっており、 板厚が 0. 3 瞧以下の極薄鋼板に適用 された場合にその優位性がより有効に発揮される。 また、 上記した工程により製造 される冷延鋼板は、 固溶 N量が 0. 0100%以上を有し、 塗装.焼付処理後の降伏応 力 Y P : 500MPa以上を有する高強度缶用鋼板となる。 さらに、 本発明の缶用鋼板 は大きい伸ぴを得ることができるので加工性に優れる。
本発明の缶用鋼板は、 固溶 Nにより大きな時効硬化性を得ている。 そのため、 塗 装 ·焼付処理後の降伏応力 Y P : 500 MPa以上を有し銅板の薄肉化を優位に進める ことができる。 また、 本発明の冷延鋼板は、 固溶 Nの作用を有効に利用することに より、 めっき後のリフロー処理後にも強度が増加し、 また、 プレス成形後の塗装焼 付工程時にも顕著な時効硬化現象が起こり、 缶体強度の飛躍的な増加をもたらすこ とができる。
本発明では、 上記により得られた冷延銅板の表面に (少なくとも片面) めっき層 を形成し、 めっき鋼板とすることができる。 表面に形成されるめつき層は缶用鋼板 に適用されるいずれのものも適用可能である。 めっき層としては、 錫めつき、 クロ ムめっき、 ニッケルめっき、 ニッケル ·クロムめつきが例示できる。 また、 これら のめつき処理後に塗装、 有機樹脂フィルム等を貼ることもなんら問題ない。 実施例 1
表 1に示す成分からなる鋼を転炉で溶製し、 連続铸造法でスラブとした。 次いで、 これらスラブを、 表 2に示す条件で熱間圧延し、 板厚: 2. 0 隨の熱延板とした。 次いで、 上記により得られた熱延板に对して酸洗による脱スケール処理を施し、 さ らに冷間圧延を施し、 表 2に示す条件で連続焼鈍おょぴ一部は 2次圧延を行い、 最 終仕上げ板厚: 0. 17 瞧の冷延銅板とした。
Figure imgf000012_0001
Figure imgf000012_0002
*:連続焼鈍後圧下率 1.1 %の調質圧延を行った。
このようにして得られた冷延鋼板について、 固溶 N量の測定ならびに焼付硬化試験 の前後に引張試験を実施した。
( i ) 固溶 N量の分析
化学分析により冷延鋼板中の N量を分析し、 また、 ブロムエステルによる溶解処理 後の抽出分析により A1N として存在する N量を求めた。 冷延鋼板中の固溶 N量は、 { (冷延鋼板中の N量) 一 (A1N として存在する N量) } の値を用いた。
(ii) 引張試験
これら冷延鋼板の幅方向の中央部から圧延方向に、 JIS 13号 - B引張試験片を採取 し、 歪速度クロスへッド速度: lOmmZs で引張試験を実施し、 降伏応力 Y Pと全伸 び E 1を測定した。 なお、 引張試験は製品化後 1日以内に実施した。 引張試験片を JIS 13 号- B試験片としたのは、 標点外で破断する現象を極力低減するためである。
(iii) 焼付硬化性試験
これら冷延鋼板の幅方向の中央部から圧延方向に、 JIS 13号- B引張試験片を採取 し、 2 %の引張予歪を付加したのちー且除荷し、 210 X 20min の塗装焼付処理相 当の熱処理を施した。 この試験の前後で、 (ii) に示す引張試験を行った。
これらの結果を表 3に示す。 '
Figure imgf000013_0001
表 3より、 本発明例である No. 1、 4、 5および 6は塗装 ·焼付け処理後に十分 な降伏応力 Y Pおよび全伸び E 1を有しており、 例えば、 3ピース加工に必要な強 度と加工性を十分に達成している。
さらに、 圧下率: 10%で 2次冷間圧延を行った No6の本発明例においては、 2次冷 間圧延を行ったにも拘わらず、 塗装 ·焼付処理後の全伸ぴ E 1が 12%と 10%超え を確保しているのがわかる。
一方、 比較例の No. 2および 3は、 それぞれ、 降伏応力 Y Pが不足し、 3ピース加 ェに必要な強度と加工性を有していないので、 所定の加工を施すことができない。
以上のように本 明によれば、 塗装 ·焼付処理後の降伏応力 Y Pが 500MPa以 上の強度を有する高強度缶用鋼板が得られる。
さらに、 本発明では、 低炭材とし、 (1 ) 成分として所定の N量を含有させ、
( 2 ) スラブ抽出温度を 1200°C以上としてスラブ錶造時に生じた A1N を分解させ、
( 3 ) 熱延コイルを 650で以下で卷き取ることにより A1Nの析出を抑制させること により、 冷延鋼板の固溶 N量の絶対量を一定以上確保し、 さらに、 塗装焼付処理後 の時効硬化によって、 2次冷間圧延することなく、 あるいは低圧下率の 2次冷間圧 延を行うことにより、 生産性を高くして缶用鋼板の高強度化が可能となる。
そして、 本発明の 2次冷間圧延することなしに、 すなわち連続焼鈍後 1%程度の調 質圧延を施して得られる高強度缶用銅板は、 塗装 ·焼付処理後の全伸び E 1が 2 0%以上有する。 また、 2次冷間圧延を行う高強度缶用鋼板では、 2次冷間圧延圧下 率を好適範囲である 10%以上 15%未満とすることで塗装 ·焼付処理後の全伸び E
1が 10%超えとすることができる。 産業上の利用可能性
本発明の缶用鋼板は、 成形後の塗装焼付処理により、 降伏応力が大きく上昇し、 そ れに伴い缶体強度が大きく上昇するため、 鋼板の薄肉化に大きく寄与できる。

Claims

請 求 の 範 囲
1. 質量%で、 C: 0.02%超 0.10%以下、 Si:0.10%以下、 Mn:1.5%以下、 P:0.2 0%以下、 S:0.20%以下、 A1:0.10%以下、 N:0.0120〜0.0250 %を含有し、 かつ該 Nの うち固溶 Nとして 0.0100%以上を含み、 残部が Feおよび不可避的不純物からなる ことを特徴とする高強度缶用鋼板。
2. 表面にめっき層を有することを特徴とする請求項 1に記載の高強度缶用鋼 板。
3. 質量0 /0で、 C:0.02%超 0.10%以下、 Si:0.10¾以下、 Mn:1.5%以下、 P:0.2 0%以下、 S: 0.20%以下、 A1:0.10%以下、 Ν:0·0120〜0·0250 %を含有し、 残部が Fe および不可避的不純物からなる鋼スラブを、 スラブ抽出温度を 1200°C以上とし、 仕上げ圧延温度を (Ar 3変態点温度 - 30) °C以上とする熱間圧延を施し、 650°C以下 で卷き取り、 酸洗を施したのち、 冷間圧延を施し、 次いで、 連続焼鈍を施すことを 特徴とする高強度缶用鋼板の製造方法。
4. 前記連続焼鈍の後、 圧下率を 10%以上 20%未満とする 2回目の冷間圧延 を施すことを特徴とする請求項 3に記載の高強度缶用鋼板の製造方法。
5. 前記連続焼鈍の均熱温度を Ar 1変態点温度以上とすることを特徴とする 請求項 3または 4に記載の高強度缶用銅板の製造方法。
6. 前記連続焼鈍または前記 2回目の冷間圧延の後、 めっき処理を施すことを特 徴とする請求項 3〜 5のいずれか一項に記載の高強度缶用鋼板の製造方法。
PCT/JP2009/057153 2008-04-03 2009-04-01 高強度缶用鋼板およびその製造方法 WO2009123356A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN200980112164.0A CN101983251A (zh) 2008-04-03 2009-04-01 高强度罐用钢板及其制造方法
KR1020107021741A KR101302817B1 (ko) 2008-04-03 2009-04-01 고강도 캔용 강판 및 그 제조 방법
KR1020137009033A KR20130045948A (ko) 2008-04-03 2009-04-01 고강도 캔용 강판 및 그 제조 방법
BRPI0911139-5A BRPI0911139B1 (pt) 2008-04-03 2009-04-01 Chapa de aço de alta resistência para latas e método para produção da mesma
US12/935,564 US20110076177A1 (en) 2008-04-03 2009-04-01 High-strength steel sheet for cans and method for manufacturing the same
US14/195,598 US20140174609A1 (en) 2008-04-03 2014-03-03 Method for manufacturing a high-strength steel sheet for a can

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-097011 2008-04-03
JP2008097011 2008-04-03

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/935,564 A-371-Of-International US20110076177A1 (en) 2008-04-03 2009-04-01 High-strength steel sheet for cans and method for manufacturing the same
US14/195,598 Division US20140174609A1 (en) 2008-04-03 2014-03-03 Method for manufacturing a high-strength steel sheet for a can

Publications (1)

Publication Number Publication Date
WO2009123356A1 true WO2009123356A1 (ja) 2009-10-08

Family

ID=41135701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057153 WO2009123356A1 (ja) 2008-04-03 2009-04-01 高強度缶用鋼板およびその製造方法

Country Status (7)

Country Link
US (2) US20110076177A1 (ja)
JP (1) JP5365312B2 (ja)
KR (2) KR101302817B1 (ja)
CN (2) CN103205657A (ja)
BR (1) BRPI0911139B1 (ja)
TW (1) TWI390052B (ja)
WO (1) WO2009123356A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008457A1 (ja) * 2011-07-12 2013-01-17 Jfeスチール株式会社 缶用鋼板およびその製造方法
JP2013072129A (ja) * 2011-09-29 2013-04-22 Jfe Steel Corp 高強度高加工性缶用鋼板およびその製造方法
JP2013133483A (ja) * 2011-12-26 2013-07-08 Jfe Steel Corp 高強度高加工性缶用鋼板およびその製造方法
WO2013151085A1 (ja) * 2012-04-06 2013-10-10 Jfeスチール株式会社 高強度高加工性鋼板及びその製造方法
WO2016031234A1 (ja) * 2014-08-29 2016-03-03 Jfeスチール株式会社 缶用鋼板及びその製造方法
JP6191807B1 (ja) * 2016-02-29 2017-09-06 Jfeスチール株式会社 缶用鋼板およびその製造方法
EP2671962B1 (en) * 2011-03-17 2019-10-02 JFE Steel Corporation Steel sheet for bottom of aerosol cans with high resistance to pressure and high formability and method for manufacturing the same

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5434212B2 (ja) * 2008-04-11 2014-03-05 Jfeスチール株式会社 高強度容器用鋼板およびその製造方法
US8557065B2 (en) 2009-12-02 2013-10-15 Jfe Steel Corporation Steel sheet for cans and method for manufacturing the same
WO2012073914A1 (ja) * 2010-12-01 2012-06-07 Jfeスチール株式会社 缶用鋼板およびその製造方法
US9315877B2 (en) 2010-12-06 2016-04-19 Nippon Steel & Sumitomo Metal Corporation Steel sheet for bottom covers of aerosol cans and method for producing same
JP6019719B2 (ja) * 2012-05-02 2016-11-02 Jfeスチール株式会社 高強度高延性鋼板の製造方法
JP5854134B2 (ja) * 2012-06-06 2016-02-09 Jfeスチール株式会社 3ピース缶体およびその製造方法
MX2016014062A (es) * 2014-04-30 2017-02-14 Jfe Steel Corp Lamina de acero de alta resistencia para envases y metodo para la produccion de la misma.
BR112016025118B1 (pt) * 2014-04-30 2021-02-17 Jfe Steel Corporation chapa de aço de alta resistência e método para fabricação da mesma
KR101989712B1 (ko) * 2014-10-28 2019-06-14 제이에프이 스틸 가부시키가이샤 2 피스 캔용 강판 및 그 제조 방법
MY173780A (en) * 2015-03-31 2020-02-20 Jfe Steel Corp Steel sheet for can and method for manufacturing the same
MY173840A (en) * 2015-03-31 2020-02-24 Jfe Steel Corp Steel sheet for can lid and method for producing the same
CN106086643B (zh) * 2016-06-23 2018-03-30 宝山钢铁股份有限公司 一种高强高延伸率的镀锡原板及其二次冷轧方法
PL3476964T3 (pl) * 2016-09-29 2021-07-19 Jfe Steel Corporation Blacha stalowa na zamknięcie koronowe, sposób jej wytwarzania oraz zamknięcie koronowe
CN107177788B (zh) * 2017-06-01 2019-05-24 首钢集团有限公司 一种二次冷轧镀锡板及其生产方法
CN111344075B (zh) * 2017-11-27 2022-07-08 杰富意钢铁株式会社 钢板及其制造方法以及二次冷轧机
DE102020126437A1 (de) 2020-10-08 2022-04-14 Thyssenkrupp Rasselstein Gmbh Verpackungsblecherzeugnis
DE102020106164A1 (de) 2020-03-06 2021-09-09 Thyssenkrupp Rasselstein Gmbh Kaltgewalztes Stahlflachprodukt für Verpackungen
EP3875626B1 (de) * 2020-03-06 2024-07-17 ThyssenKrupp Rasselstein GmbH Verpackungsblecherzeugnis

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10110244A (ja) * 1996-10-08 1998-04-28 Nippon Steel Corp フランジ成形の容易な二回冷延仕上げ溶接缶用鋼板及びその製造方法
JPH10110238A (ja) * 1996-10-08 1998-04-28 Nippon Steel Corp 高い降伏強度を有する溶接缶胴用鋼板及びその製造方法
JPH1180886A (ja) * 1997-09-04 1999-03-26 Kawasaki Steel Corp ドラム缶用冷延鋼板およびその製造方法ならびに鋼製高強度ドラム缶
JP2001107186A (ja) * 1999-08-05 2001-04-17 Kawasaki Steel Corp 高強度缶用鋼板およびその製造方法
JP2005350737A (ja) * 2004-06-11 2005-12-22 Nippon Steel Corp 強い缶体強度と良好なプレス加工性を備えた缶用薄鋼板およびその製造方法
JP2008208399A (ja) * 2007-02-23 2008-09-11 Jfe Steel Kk ドラム缶用薄肉冷延鋼板およびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637336A (ja) * 1986-06-27 1988-01-13 Nippon Steel Corp フランジ加工性の優れた溶接缶用極薄鋼板の製造方法
WO1999011835A1 (fr) * 1997-09-04 1999-03-11 Kawasaki Steel Corporation Plaques d'acier pour futs, procede de fabrication et fut
JP3931455B2 (ja) * 1998-11-25 2007-06-13 Jfeスチール株式会社 缶用鋼板およびその製造方法
DE60124999T2 (de) * 2000-02-23 2007-03-15 Jfe Steel Corp. Hochfestes warmgewalztes stahlblech mit ausgezeichneten reckalterungseigenschaften und herstellungsverfahren dafür
DE60125253T2 (de) * 2000-02-29 2007-04-05 Jfe Steel Corp. Hochfestes warmgewalztes Stahlblech mit ausgezeichneten Reckalterungseigenschaften
JP4839527B2 (ja) * 2000-05-31 2011-12-21 Jfeスチール株式会社 歪時効硬化特性に優れた冷延鋼板およびその製造方法
CA2380377C (en) * 2000-05-31 2007-01-09 Kawasaki Steel Corporation Cold-rolled steel sheets with superior strain-aging hardenability
US6962631B2 (en) * 2000-09-21 2005-11-08 Nippon Steel Corporation Steel plate excellent in shape freezing property and method for production thereof
TW200827460A (en) * 2006-08-11 2008-07-01 Nippon Steel Corp DR steel sheet and manufacturing method thereof
JP5434212B2 (ja) * 2008-04-11 2014-03-05 Jfeスチール株式会社 高強度容器用鋼板およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10110244A (ja) * 1996-10-08 1998-04-28 Nippon Steel Corp フランジ成形の容易な二回冷延仕上げ溶接缶用鋼板及びその製造方法
JPH10110238A (ja) * 1996-10-08 1998-04-28 Nippon Steel Corp 高い降伏強度を有する溶接缶胴用鋼板及びその製造方法
JPH1180886A (ja) * 1997-09-04 1999-03-26 Kawasaki Steel Corp ドラム缶用冷延鋼板およびその製造方法ならびに鋼製高強度ドラム缶
JP2001107186A (ja) * 1999-08-05 2001-04-17 Kawasaki Steel Corp 高強度缶用鋼板およびその製造方法
JP2005350737A (ja) * 2004-06-11 2005-12-22 Nippon Steel Corp 強い缶体強度と良好なプレス加工性を備えた缶用薄鋼板およびその製造方法
JP2008208399A (ja) * 2007-02-23 2008-09-11 Jfe Steel Kk ドラム缶用薄肉冷延鋼板およびその製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2671962B1 (en) * 2011-03-17 2019-10-02 JFE Steel Corporation Steel sheet for bottom of aerosol cans with high resistance to pressure and high formability and method for manufacturing the same
WO2013008457A1 (ja) * 2011-07-12 2013-01-17 Jfeスチール株式会社 缶用鋼板およびその製造方法
JP2013072129A (ja) * 2011-09-29 2013-04-22 Jfe Steel Corp 高強度高加工性缶用鋼板およびその製造方法
JP2013133483A (ja) * 2011-12-26 2013-07-08 Jfe Steel Corp 高強度高加工性缶用鋼板およびその製造方法
WO2013151085A1 (ja) * 2012-04-06 2013-10-10 Jfeスチール株式会社 高強度高加工性鋼板及びその製造方法
JP5804195B2 (ja) * 2012-04-06 2015-11-04 Jfeスチール株式会社 高強度高加工性鋼板及びその製造方法
JPWO2013151085A1 (ja) * 2012-04-06 2015-12-17 Jfeスチール株式会社 高強度高加工性鋼板及びその製造方法
WO2016031234A1 (ja) * 2014-08-29 2016-03-03 Jfeスチール株式会社 缶用鋼板及びその製造方法
KR20170029635A (ko) * 2014-08-29 2017-03-15 제이에프이 스틸 가부시키가이샤 캔용 강판 및 그 제조 방법
KR101923839B1 (ko) 2014-08-29 2018-11-29 제이에프이 스틸 가부시키가이샤 캔용 강판 및 그 제조 방법
JP5939368B1 (ja) * 2014-08-29 2016-06-22 Jfeスチール株式会社 缶用鋼板及びその製造方法
JP6191807B1 (ja) * 2016-02-29 2017-09-06 Jfeスチール株式会社 缶用鋼板およびその製造方法
WO2017150066A1 (ja) * 2016-02-29 2017-09-08 Jfeスチール株式会社 缶用鋼板およびその製造方法
US10941456B2 (en) 2016-02-29 2021-03-09 Jfe Steel Corporation Steel sheet for can and method for manufacturing the same

Also Published As

Publication number Publication date
BRPI0911139A2 (pt) 2015-10-06
KR101302817B1 (ko) 2013-09-02
CN101983251A (zh) 2011-03-02
US20110076177A1 (en) 2011-03-31
CN103205657A (zh) 2013-07-17
BRPI0911139A8 (pt) 2018-01-30
JP5365312B2 (ja) 2013-12-11
TW200948985A (en) 2009-12-01
JP2009263788A (ja) 2009-11-12
KR20100119821A (ko) 2010-11-10
US20140174609A1 (en) 2014-06-26
TWI390052B (zh) 2013-03-21
BRPI0911139B1 (pt) 2018-03-13
KR20130045948A (ko) 2013-05-06

Similar Documents

Publication Publication Date Title
JP5365312B2 (ja) 高強度缶用鋼板およびその製造方法
JP5135868B2 (ja) 缶用鋼板およびその製造方法
JP5453884B2 (ja) 高強度容器用鋼板およびその製造方法
TWI604067B (zh) 兩片式罐用鋼板及其製造方法
WO2017110579A1 (ja) 高強度鋼板およびその製造方法
JP5434212B2 (ja) 高強度容器用鋼板およびその製造方法
JP6455640B1 (ja) 2ピース缶用鋼板及びその製造方法
JP5939368B1 (ja) 缶用鋼板及びその製造方法
JP5076544B2 (ja) 缶用鋼板の製造方法
WO2016157878A1 (ja) 缶用鋼板及び缶用鋼板の製造方法
JP4244486B2 (ja) 高強度缶用鋼板およびその製造方法
JP5870861B2 (ja) 疲労特性と延性に優れ、且つ延性の面内異方性の小さい高強度溶融亜鉛めっき鋼板およびその製造方法
JP4943244B2 (ja) 極薄容器用鋼板
JP2010150571A (ja) 製缶用鋼板の製造方法
JP4284815B2 (ja) 高強度缶用鋼板およびその製造方法
CN109440004B (zh) 罐用钢板及其制造方法
EP2455499B1 (en) Process for production of cold-rolled steel sheet having excellent press moldability
JP2009174055A (ja) 高強度極薄冷延鋼板用母板およびその製造方法
JPH01184229A (ja) 伸びフランジ成形性の優れたdi缶用鋼板の製造法
JP2024522160A (ja) 溶融亜鉛メッキ鋼板およびその製造方法
JPH04228526A (ja) 表面処理鋼板用原板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980112164.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09729096

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107021741

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12935564

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09729096

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0911139

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100930