WO2009123315A1 - ハイブリッド動力装置の制御システム - Google Patents

ハイブリッド動力装置の制御システム Download PDF

Info

Publication number
WO2009123315A1
WO2009123315A1 PCT/JP2009/056993 JP2009056993W WO2009123315A1 WO 2009123315 A1 WO2009123315 A1 WO 2009123315A1 JP 2009056993 W JP2009056993 W JP 2009056993W WO 2009123315 A1 WO2009123315 A1 WO 2009123315A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotational speed
engine
input shaft
gear transmission
hybrid power
Prior art date
Application number
PCT/JP2009/056993
Other languages
English (en)
French (fr)
Inventor
丹波 俊夫
裕一 福原
佐々木 環
香治 村上
雅洋 大村
Original Assignee
アイシン・エーアイ株式会社
トヨタ自動車株式会社
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エーアイ株式会社, トヨタ自動車株式会社, アイシン精機株式会社 filed Critical アイシン・エーアイ株式会社
Priority to EP09729115A priority Critical patent/EP2275315A4/en
Priority to CN200980113071XA priority patent/CN102007029A/zh
Priority to US12/936,140 priority patent/US20110185847A1/en
Publication of WO2009123315A1 publication Critical patent/WO2009123315A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/113Stepped gearings with two input flow paths, e.g. double clutch transmission selection of one of the torque flow paths by the corresponding input clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/42Clutches or brakes
    • B60Y2400/428Double clutch arrangements; Dual clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0052Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising six forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/093Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19014Plural prime movers selectively coupled to common output

Definitions

  • the present invention relates to a hybrid power unit suitable for a transmission of a hybrid vehicle, and more particularly to a control system for a hybrid power unit suitable for a dual clutch transmission.
  • the hybrid power unit includes a first input shaft and a second input shaft, which are coaxially disposed so as to be relatively rotatable and selectively transmit engine driving force via a dual clutch, and the two input shafts.
  • a first gear transmission mechanism and a second gear transmission mechanism assembled to the first output shaft and the second output shaft, respectively, which are arranged in parallel, and a motor connected to the second output shaft and supplied with electric power.
  • a motor / generator that operates as a generator and charges the battery when the driven wheel connected to the first output shaft or the second output shaft is driven and driven by the driven wheel.
  • An object of the present invention is to address the above problems by effectively utilizing the functions of a motor / generator incorporated in this type of hybrid power unit.
  • the present invention provides a first drive train configured by a set of gear transmission mechanisms assembled to a first input shaft that transmits the driving force of an engine via a first friction clutch;
  • a second drive train configured by a set of gear transmission mechanisms assembled to a second input shaft to which the driving force of the engine is transmitted via a second friction clutch; and the first input shaft or the second input shaft.
  • a hybrid comprising a connected motor generator and a driven device driven by a driving force transmitted from an output shaft of the gear transmission mechanism of the first drive train or an output shaft of the gear transmission mechanism of the second drive train
  • a rotation speed sensor for detecting a rotation speed of the engine, and the motor when a fluctuation in the rotation speed of the engine detected by the rotation speed sensor becomes larger than a predetermined upper limit amplitude value.
  • a control system for a hybrid power plant comprising: a control unit that starts a generator as an electric motor and applies torque having a phase opposite to that of the rotational speed fluctuation to the engine in the same cycle as the fluctuation of the rotational speed. It is to provide.
  • the means for increasing the output of the engine when the fluctuation of the rotational speed of the engine detected by the rotational speed sensor reaches a predetermined lower limit amplitude value is controlled. It is desirable that the means comprise.
  • Control that starts a generator as an electric motor, applies load torque according to fluctuations in the rotational speed to the engine, and increases the output of the engine when the rotational speed of the engine falls below a predetermined lower limit of the rotational speed Means may be employed.
  • the decrease in the rotational speed accompanying the increase in the load is recovered by the increase in the output of the engine and does not fall below the predetermined lower limit of the rotational speed.
  • the engine operating region is shifted to a region where the torque fluctuation is small due to the increase in the engine output and the torsional vibration generated in the power transmission shaft system of the hybrid power unit is suppressed, the fluctuation of the rotational speed becomes excessive. Occurrence of noise such as rattling noise of the power transmission gear and body noise is also prevented.
  • the engine is stopped when the amplitude of fluctuations in the rotational speed of the engine detected by the rotational speed sensor is greater than a predetermined upper limit amplitude value, while the motor
  • the generator is activated as an electric motor, and the driving force is transmitted to the driven device via the gear transmission mechanism assembled to the input shaft (the first input shaft or the second input shaft) connected to the motor / generator.
  • the driven device is driven by the operation of the motor / generator as an electric motor, no torsional vibration is generated in the power transmission shaft system of the hybrid power unit, and the rattling noise of the power transmission gear and Noises such as body noise are not generated.
  • a hybrid power unit equipped with a control system according to the present invention is applied to an automatic transmission TM having six forward speeds and one reverse speed shown in FIG.
  • This automatic transmission TM is of a dual clutch type, and a first input shaft 13a and a second input shaft 13b, which are rotatably supported in a transmission case H in parallel with each other, are constituted by a first friction clutch C1 and a second friction clutch. It is connected to the output shaft 10a of the engine 10 via C2.
  • the input member of the friction clutch C1 is coupled to a support shaft 11d of a driven gear 11b meshed with a drive gear 11a that rotates integrally with the output shaft 10a of the engine 10.
  • the input member of the friction clutch C2 is coupled to the support shaft 11e of the driven gear 11c meshed with the drive gear 11a that rotates integrally with the output shaft 10a of the engine 10.
  • the first output shaft 14a and the second output shaft 14b disposed in parallel with the first input shaft 13a and the second input shaft 13b, respectively, are connected to a drive gear 14d engaged with a driven gear 14f provided on the third output shaft 14c.
  • 14e is connected to the third output shaft 14c.
  • the third output shaft 14c is connected to drive wheels 19 and 19 via a drive pinion 16a, a ring gear 16b, a differential gear 17 and axle shafts 18 and 18.
  • the first and second friction clutches C1 and C2 constituting the dual clutch 12 become a half-clutch in the middle of the shift speed change, and one transmission torque and the other transmission torque increase or decrease in opposite directions. Then, after completion of the shift speed change, one of the friction clutches is completely engaged and its transmission torque becomes a predetermined maximum value, and the other friction clutch is completely released and its transmission torque becomes zero. Further, it is controlled by the control device 20 described later.
  • a first gear transmission mechanism SM1 having a gear switching mechanism M is provided between the first input shaft 13a and the first output shaft 14a, and a gear switching mechanism is provided between the second input shaft 13b and the second output shaft 14b.
  • a second gear transmission mechanism SM2 having M is provided.
  • the first gear transmission mechanism SM1 includes first-speed, third-speed, and fifth-speed (odd-numbered) transmission gear pairs G1, G3, G5 and a reverse gear train GB.
  • each drive gear is fixed to the first input shaft 13a, and each driven gear is rotatably supported by the first output shaft 14a.
  • first switching clutch D1 that selectively couples each to the first output shaft 14a, and the fifth transmission gear pair G5.
  • a third switching clutch D3 that is selectively connected to the first output shaft 14a is provided between the driven gears of the reverse gear train GB.
  • An idle gear is interposed between the drive gear and the driven gear of the reverse gear train GB.
  • the second gear switching mechanism SM2 includes second, fourth and sixth (even-numbered) speed gear pairs G2, G4 and G6.
  • each drive gear is fixed to the second input shaft 13b, and each driven gear is rotatably supported by the second output shaft 14b.
  • a second switching clutch D2 that is selectively connected to the second output shaft 14b, and the sixth transmission gear pair G6.
  • a fourth switching clutch D4 that selectively couples the driven gear to the second output shaft 14b is provided on one side of the driven gear.
  • Each of the switching clutches D1 to D4 has a known synchromesh mechanism, and includes a clutch hub L fixed to each of the first output shaft 14a and the second output shaft 14b, and a sleeve (operation Member) M.
  • Each sleeve M is reciprocated in the axial direction automatically or manually via the shift forks F1 to F4 and engages with an engagement member N fixed to the driven gears on both sides (or one side).
  • Each driven gear is selectively connected to the clutch hub L.
  • a motor / generator 15 is connected to the second input shaft 13b, and a rotational speed sensor 21 is provided on a driven gear 11c that is rotated by the driving force of the engine 10.
  • a motor / generator 15 and a rotation speed sensor 21 are connected to the control device 20 that controls the operation of the hybrid power unit.
  • the control device 20 is driven in cooperation with the engine 10 by supplying electric power from a battery (not shown) to the motor / generator 15 and operating the motor / generator 15 as an electric motor when the output of the engine 10 is not sufficient.
  • the rotational speed sensor 21 is a magnetic sensor that detects the passage of each tooth tip of the driven gear 11c, and the control device 20 detects the detection signal from the rotational speed sensor 21 during each rotation of the driven gear 11c. Are calculated many times, and the rotational speed of the engine 10, its fluctuation and the deceleration S are calculated based on the timing of each detection signal and detected.
  • the control device 20 gradually engages the first friction clutch C1 of the dual clutch 12 to increase its engagement force.
  • the driving torque of the engine 10 is changed from the first friction clutch C1 to the first input shaft 13a, the first transmission gear pair G1, the first switching clutch D1, the first output shaft 14a, the gears 14d and 14f, the third output shaft 14c,
  • the vehicle is transmitted to the drive wheels 19 and 19 through the gears 16a and 16b, the differential gear 17 and the axle shafts 18 and 18, and the automobile starts to travel at the first speed.
  • the control device 20 moves the sleeve M of the second switching clutch D2 to the right to move the second gear transmission mechanism.
  • the second friction clutch C2 is engaged after the first friction clutch C1 of the dual clutch 12 is disengaged, and the second speed traveling is performed.
  • the sleeve M of the first switching clutch D1 is returned to the neutral position.
  • the control device 20 sequentially forms gears suitable for the operation state of the vehicle at that time, and alternately switches the engagement of the first friction clutch C1 and the second friction clutch C2 to thereby change the operation state of the vehicle. It travels with the gear stage according to. Shifting down the gear is performed in the reverse procedure to that described above.
  • the control device 20 moves the sleeve M of the third switching clutch D3 to the left to form a reverse stage by the reverse gear train GB, and the rotational speed of the engine 10 is increased by the accelerator operation. Then, the control device 20 gradually engages the first friction clutch C1 of the dual clutch 12 to increase its engagement force, whereby the drive torque of the engine 10 is transmitted to the first output shaft 14a via the reverse gear train GB. And reverse is started in the same manner as in the first speed.
  • the control device 20 supplies power to the motor / generator 15 to operate as an electric motor.
  • the driving torque of the motor / generator 15 drives the driving wheel 19 in cooperation with the engine 10.
  • the motor / generator 15 operates as a generator under the control of the control device 20
  • the battery is charged.
  • the motor / generator 15 operates as an electric motor instead of the engine 10 under the control of the control device 20
  • the drive wheel 19 is a motor in the same manner as described above except that only the second gear transmission SM2 is used. It is driven by the driving force of the generator 15 First Embodiment With reference to the control program shown in FIG.
  • the upper limit value of the amplitude set experimentally will be defined as S0.
  • the lower limit of the average value of the rotational speed at which such unstable operation does not occur can be set experimentally in advance for each hybrid power unit.
  • the lower limit value of the average value of the rotational speed set experimentally is defined as R0 and will be described as follows.
  • the control device 20 executes the processing of the control program shown in FIG. 2 every predetermined short time during the operation of the hybrid power plant described above.
  • the control device 20 detects the amplitude S of the fluctuation of the rotational speed of the driven gear 11c in step 100 of FIG. 2, and compares the detected amplitude S with the upper limit value S0 in the next step 101. If it is determined that the upper limit value S0 or less, the control program proceeds to step 103.
  • step 103 the average value R of the rotational speed of the driven gear 11c is detected, and in the next step 104, the detected average value R is compared with the lower limit value R0 and is not less than the lower limit value R0.
  • the control program is determined at step 106 to be the same as the determination at step 101, and at the next step 107, the same determination as at step 104 is made and the processing of this control program is terminated.
  • the average value R of the rotational speed of the driven gear 11c is a value R1 greater than the lower limit value R0, and is denoted by reference numeral A1 in FIG.
  • the control device 20 detects the amplitude S of the fluctuation of the rotational speed of the driven gear 11c as S1 in step 100, In step 101, the detected amplitude S1 is compared with the upper limit value S0. In this case, the control device 20 determines that the detected amplitude S1 is greater than the upper limit value S0, and advances the control program to step 102, where the detected amplitude S1 is detected at the same period as the detected fluctuation in the rotational speed of the driven gear 11c.
  • the motor / generator 15 is configured to generate a load torque B1 (average value T1, amplitude U1) that varies according to the difference between the variation amplitude S1 and the amplitude upper limit value S0 in a direction that cancels the detected variation.
  • the phase of the load torque B1 applied to the engine 10 is set to the same phase as the fluctuation of the rotational speed of the driven gear 11c.
  • the rotational speed of the driven gear 11c corresponds to the load torque indicated by reference numeral B1 from the state indicated by reference numeral A1 in FIG. It will be the speed minus the minute.
  • the control device 20 detects the average value R2 of the rotational speed of the driven gear 11c in step 103, and compares the detected average value R2 with the lower limit value R0 in the next step 104.
  • the control device 20 recommends a control program to the step 105 to determine the difference between the detected average value R2 and the lower limit value R0.
  • the control program proceeds to the next step 106.
  • step 106 the same determination as in step 101 is performed, and in the next step 107, the same determination as in step 104 is performed, and the processing of this control program is performed. finish.
  • the rotational speed of the driven gear 11c is indicated by the reference A3 in FIG. 3B from the state indicated by the reference A2 in FIG.
  • the average value R3 of the rotation speed increases to become the lower limit value R0 or more.
  • the control device 20 detects again the amplitude S3 of the fluctuation of the rotational speed of the driven gear 11c in step 100 and compares it with the upper limit value S0 in step 101.
  • step 103 the control device 20 advances the control program to step 103 to detect the average value R3 of the rotational speed of the driven gear 11c, and sets the detected average value R3 to the lower limit value at step 104. Compare with R0. In this case, since R3 ⁇ R0 is not satisfied, the processing of step 106 and the processing of step 107 are executed, and then the processing of the control program of FIG.
  • the rotational speed sensor 21 detects the rotational speed of the driven gear 11c provided in the power transmission shaft system of the hybrid power device, and the torque transmission of the engine 10 causes the power transmission shaft system to change.
  • the amplitude of the fluctuation in rotational speed detected by the rotational speed sensor 21 becomes equal to or greater than a predetermined upper limit value S0.
  • the motor / generator 15 cancels the detected fluctuation at the same period as the detected rotational speed fluctuation, with the torque varying according to the difference between the detected rotational speed fluctuation amplitude and the upper limit value S0.
  • Apply to the engine 10 in the direction As a result, the torque fluctuation of the engine 10 is reduced and the torsional vibration generated in the power transmission shaft system of the hybrid power unit is suppressed, and the generation of noise such as rattling noise of the power transmission gear and body noise is prevented. .
  • this control method is executed only by controlling the operation of the motor / generator 15, there is no need to change the structure of the apparatus, and there is no possibility of increasing the manufacturing cost.
  • the load torque B1 is applied to the engine 10 by operating the motor / generator 15 as a generator in step 102
  • the driven gear 11c of the driven gear 11c is executed after executing the processing of step 102. Since the average value of the rotational speed becomes equal to or lower than the lower limit value and the operation of the engine 10 becomes slightly unstable, the output of the engine 10 is increased by the processing of step 105.
  • control method of the present invention is not limited to this, and the load torque applied to the engine 10 is reduced by the average value T1 by the processing of step 102 in order to suppress the torque fluctuation of the engine 10, or the motor generator 15 May be applied as a motor to give a driving torque that varies in the same direction as the engine 10, so that the average value R2 of the rotational speed of the driven gear 11c does not fall below the lower limit value R0 after the processing of step 102. be able to. In this case, it is not necessary to increase the output of the engine 10 by the process of step 105.
  • the increase in the output of the engine 10 due to the processing in step 105 increases to a predetermined constant value instead of controlling according to the difference between the average value of the rotational speed detected as described above and the lower limit value R0. You may make it make it.
  • Second Embodiment referring to the control program shown in FIG. 4 and the graph showing the fluctuation state of the rotational speed of the power transmission shaft system in FIG. 5, the power transmission shaft system of the hybrid power plant in the second embodiment A control method for performing control so that the amplitude of the fluctuation of the rotational speed occurring in the above will not be excessive will be described.
  • the amplitude upper limit value S0 and the lower limit value R0 of the rotational speed fluctuation of the power transmission shaft system are set in the same manner as in the first embodiment.
  • the torque that the motor / generator 15 gives to the engine 10 is not a torque that varies according to the detected amplitude S of the variation in the rotational speed of the driven gear 11c, but a torque that does not vary.
  • the control device 20 executes the processing of the control program shown in FIG. 3 every predetermined short time during the operation of the hybrid power plant described above.
  • the processing of the control program is terminated without executing the processing of steps 202 and 205 in FIG.
  • the average value R of the rotational speed of the driven gear 11c is a value R1 that is slightly larger than the lower limit value R0.
  • the control device 20 sets the amplitude S of the fluctuation of the rotational speed of the driven gear 11c to S1 in step 200.
  • the detected amplitude S1 is compared with the upper limit value S0.
  • the control device 20 determines that the detected amplitude S1 is greater than the upper limit value S0, and advances the control program to step 202, where the detected amplitude S1 of the fluctuation in the rotational speed of the driven gear 11c and the amplitude upper limit value S0 are detected.
  • the motor / generator 15 is started as a generator so that a constant load torque B5 (average value t5) corresponding to the difference between the two is given to the engine 10.
  • the load torque B5 is applied to the engine 10 by the process of step 202 described above, the rotational speed of the driven gear 11c corresponds to the load torque indicated by reference numeral B5 from the state indicated by reference numeral A1 in FIG. It will be the speed after subtracting the amount to be.
  • the control device 20 detects the average value R6 of the rotational speed of the driven gear 11c in step 203, and compares the detected average value R6 with the lower limit value R0 in the next step 204.
  • step 205 the control device 20 advances the control program to step 205 and determines the engine according to the difference between the detected average value R6 and the lower limit value R0. Then, the control program is advanced to step 206. In this state, since S6 ⁇ S0 and R6 ⁇ R0, the control program is returned from step 206 to step 200. As the output of the engine 10 is increased by the process of step 205, the rotational speed of the driven gear 11c is changed from the state indicated by reference symbol A6 in FIG. 5A to the state indicated by reference symbol A7 in FIG.
  • the average value R7 of the rotational speed is equal to or greater than the lower limit value R0.
  • the control device 20 detects again the amplitude S7 of the fluctuation in the rotational speed of the driven gear 11c in step 200 and compares it with the upper limit value S0 in step 201. To do.
  • step 202 a constant load torque B6 (value T6) corresponding to the difference between the detected rotation speed fluctuation amplitude S7 and its upper limit value S0. ) Is added to the load torque B5 and given to the engine 10, the motor / generator 15 is operated as a generator, and the control program proceeds to step 203.
  • the load torque B6 to the load torque B5 and applying it to the engine 10 by the process of step 202, the rotational speed of the driven gear 11c is changed from the state indicated by the reference A7 in FIG.
  • the speed corresponding to the load torque indicated by B6 is subtracted, and when the process of step 202 is completed, the amplitude of the fluctuation of the rotational speed is substantially the same as the amplitude S7, as indicated by reference numeral A8. (S8 ⁇ S0), and on the other hand, the average value of the rotational speed becomes R8 which is equal to or lower than the lower limit value R0, so that the operation of the engine 10 is likely to become unstable.
  • the control device 20 detects the average value R8 of the rotational speed of the driven gear 11c in step 203, and compares it with the rotational speed R0 in step 204.
  • step 205 the control program is advanced to step 205, and the output of the engine 10 is increased according to the difference between the detected average value R8 and the lower limit value R0.
  • S8S0 and R8 ⁇ R0 the control program returns from step 206 to step 200.
  • the rotational speed of the driven gear 11c is changed from the state indicated by reference numeral A8 in FIG. 5B to the state indicated by reference numeral A9 in FIG.
  • the average value R8 of the rotational speed is equal to or greater than the lower limit value R0, and the amplitude S8 of the fluctuation of the rotational speed is equal to or smaller than the upper limit value S0. Therefore, in the state where the control program is returned to step 200 again, the processing of the control program is terminated without executing the processing of step 202 and the processing of step 205.
  • the rotational speed sensor 21 detects the rotational speed of the driven gear 11c provided in the power transmission shaft system of the hybrid power device, and the torque transmission of the engine 10 causes the power transmission shaft system to change.
  • the motor / generator 15 is controlled so as to operate as a generator that gives the engine 10 a load torque corresponding to the difference between the detected amplitude of the rotational speed fluctuation and the upper limit value S0.
  • the engine 10 is controlled to increase its output when the rotational speed detected by the rotational speed sensor 21 is equal to or lower than a predetermined lower limit value R0, so that the load applied to the engine 10 increases.
  • the decrease in the rotational speed accompanying the increase in the load is recovered by the increase in the engine output, and does not fall below the lower limit value R0 of the predetermined rotational speed. Further, since the engine operating region is shifted to a region where the torque fluctuation is small due to the increase in the output of the engine 10 and the torsional vibration generated in the power transmission shaft system of the hybrid power unit is suppressed, the fluctuation of the rotational speed becomes excessive. Occurrence of noise such as rattling noise of the power transmission gear and body noise is prevented. Further, since this control method is executed only by controlling the operation of the motor / generator 15, there is no need to change the structure of the apparatus, and there is no possibility of increasing the manufacturing cost.
  • the load torque applied to the engine 10 in step 202 is set to a value corresponding to the difference between the detected rotational speed amplitude and the upper limit value S0, but this is a predetermined constant value. It is good. Further, although the value that increases the output of the engine 10 in step 205 is determined by the difference between the detected average value of the rotational speed and the lower limit value R0, it may be set to a predetermined constant value. Third Embodiment In the third embodiment, when the amplitude of the fluctuation of the rotational speed of the driven gear 11c detected by the rotational speed sensor 21 becomes equal to or larger than a predetermined amplitude upper limit value S0, the engine 10 is turned on.
  • the driving wheel 19 is driven by stopping and operating the motor / generator 15 as an electric motor.
  • Other control methods are substantially the same as those in the first embodiment or the second embodiment.
  • the drive wheel 19 is driven by the engine 10 under the control of the control device 20 in the third embodiment, the amplitude S of the fluctuation of the rotational speed of the driven gear 11c is small, and the average value R of the rotational speed Is not too low, the driving wheel 19 is driven by the driving force of the engine 10 controlled by the control device 20.
  • the control device 20 in the third embodiment causes the motor / generator 15 to operate.
  • the engine 10 is stopped by operating as an electric motor, and the driving wheel 19 is driven by a motor generator 15 operating as an electric motor. If even-numbered transmission gear pairs G2, G4, G6 are used when switching from the engine 10 to the motor generator 15, the second gear switching mechanism SM2 and the second friction clutch C2 are used as they are.
  • the drive wheel 19 may be driven via the output shaft 14b, the output drive gears 14e and 14f, the third output shaft 14c, the drive pinion 16a, the ring gear 16b, the differential gear 17 and the axle shaft 18. If the odd-numbered transmission gear pair G1, G3, G5 or the reverse gear train GB is used, the first gear switching mechanism SM1 and the first friction clutch C1 are used as they are, and the second friction clutch is used.
  • the driving wheel 19 may be driven by connecting C2, or the first gear clutch C1 is disengaged by lowering the gear position by one step, and the second gear switching mechanism SM2 and the second friction clutch C2 are used. The drive wheel 19 may be driven.
  • the hybrid power unit is driven only by the motor generator 15 that operates as an electric motor, so that torsional vibration does not occur in the power transmission shaft system, and therefore noise such as rattling noise of the power transmission gear and body noise. Will no longer occur. Further, only the motor generator 15 is controlled, and there is no need to change the structure, so that the weight does not increase and the manufacturing cost does not increase.
  • the magnitude of the rotational speed that fluctuates is captured using an average value, but is not necessarily limited thereto, and may be captured using a maximum value or a minimum value.
  • the amplitude of the fluctuation of the rotation speed has been described as a length, it is not necessarily limited thereto, and may be a ratio with respect to the average value (or the maximum value or the minimum value) of the rotation speed.
  • This modified example also includes a dual clutch type automatic transmission TM having six forward speeds and one reverse speed.
  • the main difference between the automatic transmission TM of this modified example and the automatic transmission TM shown in FIG. 1 is that the first driven by the engine 10 via the first and second friction clutches C1 and C2 constituting the dual clutch 12.
  • the first and second input shafts 13a and 13b are double shafts arranged coaxially with each other, and the three output shafts 14a, 14a, 14e, 14f connected by the output gears 14d, 14e, 14f in the automatic transmission TM shown in FIG. 14b and 14c are combined into one output shaft 14.
  • the shaft 14 is rotatably supported.
  • the first and second input shafts 13a and 13b are rotated by the engine 10 by connecting a common clutch cover 12a of the first and second friction clutches C1 and C2 constituting the dual clutch 12 to the output shaft 10a of the engine 10. It is designed to be driven.
  • the output shaft 14 is connected to the final reduction gear pair 16c. 16 d, the differential gear 17 and the axle shaft 18 are connected to the drive wheel 19.
  • the first and second friction clutches C1 and C2 constituting the dual clutch 12 control the hybrid power unit so that the transmission torques of one and the other increase and decrease in opposite directions. It is controlled by the device 20.
  • a first gear switching mechanism SM1 is provided between the rear half of the first input shaft 13a protruding from the second input shaft 13b and the output shaft 14, and a second gear is provided between the second input shaft 13b and the second output shaft 14b.
  • a two-gear switching mechanism SM2 is provided.
  • the two gear switching mechanisms SM1, SM2 have substantially the same structure as the transmission TM shown in FIG.
  • the motor generator 15 is connected to the second input shaft 13b by meshing the gear 15b fixed to the output / input shaft 15a with the drive gear of the sixth transmission gear pair G6.
  • the drive gear of the fifth transmission gear pair G5 and the drive gear of the fourth transmission gear pair G4 are respectively the first and second rotational speed sensors 21a substantially the same as the rotational speed sensor 21 of the transmission TM shown in FIG. , 21b are provided.
  • the motor generator 15 and rotational speed sensors 21a and 21b are connected to a control device 20 that controls the operation of the hybrid power unit.
  • the first and second input shafts 13a and 13b are coaxially arranged, the first and second output shafts 14a and 14b are combined into one output shaft 14, and the motor generator 15 Is connected to the second input shaft 13b via the gear 15b, and the rotational speed sensor 21 is divided into the first and second rotational speed sensors 21a and 21b and provided in another drive gear. All functions are substantially the same as the hybrid power plant shown in FIG. 1, and each of the above-described embodiments of the present invention can be applied to the hybrid power plant of this modification as it is.

Abstract

【課題】車両用ハイブリッド装置において、エンジンのトルク変動により発生する駆動力伝達系の捩り振動を抑制して、動力伝達ギヤの歯打ち音やボディのこもり音などの騒音をなくすこと。 【解決手段】    エンジンの駆動力を第1摩擦クラッチを介して伝達される第1入力軸に組付けた一組の歯車変速機構により構成した第1駆動列と、前記エンジンの駆動力を第2摩擦クラッチ機構を介して伝達される第2入力軸に組付けた一組の歯車変速機構により構成した第2駆動列と、前記第1入力軸又は第2入力軸に接続したモータ・ジェネレータと、前記第1駆動列の歯車変速機構の出力軸又は前記第2駆動列の歯車変速機構の出力軸から伝達される駆動力により駆動される被駆動装置とを備えたハイブリッド動力装置において、回転速度センサによって検出される前記エンジンの回転速度の変動が予め定めた上限振幅値より大きくなったとき前記モータ・ジェネレータを電動機として起動して前記回転速度の変動と逆位相のトルクを同回転速度の変動と同じ周期で前記エンジンに付与するようにしたハイブリッド動力装置の制御システム。

Description

ハイブリッド動力装置の制御システム
        本発明は、ハイブリッド車両の変速機に適したハイブリッド動力装置、特にデュアルクラッチ式変速機に適したハイブリッド動力装置の制御システムに関するものである。
   特開2005-186931号公報においては、この種のデュアルクラッチを使用したハイブリッド動力装置が開示されている。 このハイブリッド動力装置は、同軸的に相対回転可能に配置されてエンジンの駆動力をデュアルクラッチを介して選択的に伝達される第1入力軸と第2入力軸と、これら2本の入力軸と平行に配置された第1出力軸と第2出力軸にそれぞれ組付けた第1歯車変速機構と第2歯車変速機構と、第2出力軸に連結されて電力を供給されると電動機として作動して前記第1出力軸又は第2出力軸に連結された被駆動車輪を駆動し逆に同被駆動車輪によって駆動されたとき発電機として作動してバッテリを充電するモータ・ジェネレータを備えている。
特開2005-186931号公報
 上記の車両用ハイブリッド動力装置においては、エンジンのトルク変動により駆動力の伝達軸系に捩り振動が発生すると、エンジンの回転速度の変動が過大となって動力伝達ギヤの歯打ち音やボディのこもり音などの騒音が発生することがある。従来、上記捩り振動の発生を抑制する手段としては、クラッチなどの回転部分にマスダンパーを設けることが行われているが、重量が増大し、製造コストも増大するという問題がある。
 本発明の目的は、この種のハイブリッド動力装置に組込まれたモータ・ジェネレータの機能を有効に活用して上記の問題に対処することにある。
 本発明は、上記の目的を達成するため、エンジンの駆動力を第1摩擦クラッチを介して伝達される第1入力軸に組付けた一組の歯車変速機構により構成した第1駆動列と、前記エンジンの駆動力を第2摩擦クラッチを介して伝達される第2入力軸に組付けた一組の歯車変速機構により構成した第2駆動列と、前記第1入力軸又は第2入力軸に接続したモータ・ジェネレータと、前記第1駆動列の歯車変速機構の出力軸又は前記第2駆動列の歯車変速機構の出力軸から伝達される駆動力により駆動される被駆動装置とを備えたハイブリッド動力装置において、前記エンジンの回転速度を検出する回転速度センサと、該回転速度センサによって検出される前記エンジンの回転速度の変動が予め定めた上限振幅値より大きくなったとき前記モータ・ジェネレータを電動機として起動して前記回転速度の変動と逆位相のトルクを同回転速度の変動と同じ周期で前記エンジンに付与する制御手段とを設けたことを特徴とするハイブリッド動力装置の制御システムを提供するものである。
 本発明の実施にあたっては、上記の制御システムにおいて、前記回転速度センサによって検出される前記エンジンの回転速度の変動が予め定めた下限振幅値になったとき前記エンジンの出力を増大させる手段を前記制御手段が備えることが望ましい。
 上述した制御システムを採用したハイブリッド動力装置においては、エンジンの回転速度が大きく変動して動力伝達系に捩り振動が発生したとき、前記制御手段の制御下にてモータ・ジェネレータが電動機として起動して前記エンジンの回転速度の変動と逆位相のトルクを同回転速度の変動と同じ周期で前記エンジンに付与する。これにより、エンジンのトルク変動が減少して、動力伝達軸系に生じる捩り振動は電動機として作動するモータ・ジェネレータにより与えられるトルクにより抑制され、回転速度の変動が過大となることにより生じる動力伝達ギヤの歯打ち音やボディのこもり音などの騒音の発生も防止される。また、モータ・ジェネレータを制御するのみであり、構造の変更が不要であるので重量が増大することはなく、製造コストが増大することもない。
 なお、本発明の実施にあたっては、上記の制御システムにおける制御手段として、前記回転速度センサによって検出される前記エンジンの回転速度の変動の振幅が予め定めた上限振幅値より大きくなったとき前記モータ・ジェネレータを電動機として起動して前記回転速度の変動に応じた負荷トルクを前記エンジンに付与し、前記エンジンの回転速度が予め定めた回転速度の下限以下になったとき前記エンジンの出力を増大させる制御手段を採用してもよい。この場合には、前記モータ・ジェネレータによって負荷トルクを付与されても、負荷の増大に伴う回転速度の低下はエンジンの出力の増大により回復されて所定の回転速度下限以下になることはない。また、このエンジンの出力の増大によりエンジンの作動領域がトルク変動の少ない領域に移行されて当該ハイブリッド動力装置の動力伝達軸系に生じる捩り振動は抑制されるので、回転速度の変動が過大となることにより生じる動力伝達ギヤの歯打ち音やボディのこもり音などの騒音の発生も防止される。
 或いは、上記の制御システムにおける制御手段として、前記回転速度センサによって検出される前記エンジンの回転速度の変動の振幅が予め定めた上限振幅値より大きくなったとき前記エンジンを停止させ、一方前記モータ・ジェネレータを電動機として起動させてその駆動力を同モータ・ジェネレータに接続した前記入力軸(前記第1入力軸又は第2入力軸)に組付けた前記歯車変速機構を介して前記被駆動装置に伝達させる制御手段を採用してもよい。この場合には、前記モータ・ジェネレータの電動機としての作動により被駆動装置が駆動されるので、当該ハイブリッド動力装置の動力伝達軸系に捩り振動が生じることはなくなり、動力伝達ギヤの歯打ち音やボディのこもり音などの騒音も発生しなくなる。
本発明によるハイブリッド動力装置における制御方法を適用するハイブリッド動力装置の一例の全体構造を説明するスケルトン図である。 本発明によるハイブリッド動力装置における制御方法の第1実施形態を示すフローチャートである。 図2に示す第1実施形態の作動の説明図である。 本発明によるハイブリッド動力装置における制御方法の第2実施形態を示すフローチャートである。 図4に示す第2実施形態の作動の説明図である。 図1に示すハイブリッド動力装置の変形例を示すスケルトン図である。
 以下に、図1~図4を参照して本発明によるハイブリッド動力装置の制御システムの第1実施形態の説明をする。この第1実施形態においては、本発明による制御システムを備えたハイブリッド動力装置が図1に示す前進6段、後進1段の自動変速機TMに適用されている。
 この自動変速機TMはデュアルクラッチ式のもので、変速機ケースH内に互いに平行に回転自在に支持された第1入力軸13aと第2入力軸13bが第1摩擦クラッチC1と第2摩擦クラッチC2を介してエンジン10の出力軸10aに接続されている。摩擦クラッチC1の入力部材は、エンジン10の出力軸10aと一体に回転する駆動ギヤ11aに噛合された被駆動ギヤ11bの支持軸11dに結合されている。同様に、摩擦クラッチC2の入力部材は、エンジン10の出力軸10aと一体に回転する駆動ギヤ11aに噛合された被駆動ギヤ11cの支持軸11eに結合されている。第1入力軸13aと第2入力軸13bにそれぞれ平行に配置した第1出力軸14aと第2出力軸14bは、第3出力軸14cに設けた被駆動ギヤ14fに噛合された駆動ギヤ14dと14eを介して同第3出力軸14cに連結されている。第3出力軸14cは、ドライブピニオン16a、リングギヤ16b、デファレンシャルギヤ17及びアクスルシャフト18,18を介して駆動車輪19,19に連結されている。
 デュアルクラッチ12を構成する第1及び第2摩擦クラッチC1,C2は、正常な作動状態では、変速段の切換え途中は半クラッチとなって一方の伝達トルクと他方の伝達トルクが互いに逆向きに増減し、変速段の切換え完了後は何れか一方の摩擦クラッチが完全に係合されてその伝達トルクが所定の最大値となり、他方の摩擦クラッチが完全に解除されてその伝達トルクが0となるように、後述する制御装置20により制御される。
 第1入力軸13aと第1出力軸14aの間には歯車切換機構Mを備えた第1歯車変速機構SM1が設けられ、第2入力軸13bと第2出力軸14bの間には歯車切換機構Mを備えた第2歯車変速機構SM2が設けられている。第1歯車変速機構SM1は、第1速段、第3速段及び第5速段(奇数段)の各変速ギヤ対G1,G3,G5並びに後進段の後進ギヤ列GBを備えている。これらの変速ギヤ対G1,G3,G5及び後進ギヤ列GBは、それぞれの各駆動ギヤが第1入力軸13aに固定され、各被駆動ギヤが第1出力軸14aに回転自在に支持されている。第1変速ギヤ対G1と第3変速ギヤ対G3の各被駆動ギヤの間にはそれぞれを選択的に第1出力軸14aに連結する第1切換クラッチD1が設けられ、第5変速ギヤ対G5と後進ギヤ列GBの各被動ギヤの間にはそれぞれを選択的に第1出力軸14aに連結する第3切換クラッチD3が設けられている。後進ギヤ列GBの駆動ギヤと被駆動ギヤの間にはアイドルギヤが介在されている。
 第2歯車切換機構SM2は、第2速段、第4速段及び第6速段(偶数段)の変速ギヤ対G2,G4,G6を備えている。これら変速ギヤ対G2,G4,G6は、それぞれの各駆動ギヤが第2入力軸13bに固定され、各被駆動ギヤが第2出力軸14bに回転自在に支持されている。第2変速ギヤ対G2と第4変速ギヤ対G4の各被駆動ギヤの間にはそれぞれを選択的に第2出力軸14bに連結する第2切換クラッチD2が設けられ、第6変速ギヤ対G6の被駆動ギヤの一側にはそれを選択的に第2出力軸14bに連結する第4切換クラッチD4が設けられている。
 各切換クラッチD1~D4は、周知のシンクロメッシュ機構よりなるもので、第1出力軸14aと第2出力軸14bにそれぞれ固定されたクラッチハブLと、その外周にスプライン係合されたスリーブ(操作部材)Mを備えている。各スリーブMは、シフトフォークF1~F4を介して、自動的にあるいは手動により軸線方向に往復動されて両側(または片側)の被駆動ギヤに固定された係合部材Nに係合することにより、各被駆動ギヤをクラッチハブLに選択的に連結するものである。
 この第1実施形態の変速機TMにおいては、第2入力軸13bにモータ・ジェネレータ15が連結され、エンジン10駆動力によって回転する被駆動ギヤ11cには回転速度センサ21が設けられている。このハイブリッド動力装置の作動を制御する制御装置20には、モータ・ジェネレータ15と回転速度センサ21が接続されている。制御装置20は、エンジン10の出力に余裕がない状態ではモータ・ジェネレータ15にバッテリ(図示しない)から電力を供給して同モータ・ジェネレータ15を電動機として作動させてエンジン10と協働して駆動車輪19を駆動し、駆動車輪19側からエンジン10が駆動される状態、或いはエンジン10の出力に余裕がある状態ではモータ・ジェネレータ15が第2入力軸13bにより駆動されてバッテリを充電する発電機として作動するように制御する。さらに、この制御装置20は、後述するように、ハイブリッド動力装置の作動状態に応じて、モータ・ジェネレータ15がバッテリを充電する発電機として作動させると共にエンジン10に負荷トルクを付与するように制御する。
 回転速度センサ21は、被駆動ギヤ11cの各歯先が通過するのを検出する磁気センサであって、制御装置20は被駆動ギヤ11cの各1回転の間に回転速度センサ21からその検出信号を多数回受け取り、各検出信号のタイミングに基づきエンジン10の回転速度、その変動及び減速度Sを演算してそれらを検出する。
 次に、上記ハイブリッド動力装置の作動を制御する制御装置20の機能について説明する。いま、当該自動車が停止して不作動状態にあるとき、第1摩擦クラッチC1と第2摩擦クラッチC2は何れも解除されており、第1歯車変速機構SM1と第2歯車変速機構SM2の各切換クラッチD1~D4は図1に示す中立位置にある。駆動車輪19,19がエンジン10により駆動されて走行する場合は、停車状態からエンジン10を始動させて変速装置のシフトレバー(図示しない)を前進位置にすれば、制御装置20は第1変速シフトフォークF1を介して第1切換クラッチD1のスリーブMを右向きに移動させて第1歯車変速機構SM1の第1変速ギヤ対G1による第1速段を形成する。アクセル開度が増大してエンジン10の回転速度が所定の低回転速度を越えると、制御装置20はデュアルクラッチ12の第1摩擦クラッチC1を徐々に係合させてその係合力を増加させる。これによりエンジン10の駆動トルクが第1摩擦クラッチC1から第1入力軸13a、第1変速ギヤ対G1、第1切換クラッチD1、第1出力軸14a、ギヤ14d,14f、第3出力軸14c、ギヤ16a,16b、デファレンシャルギヤ17及びアクスルシャフト18,18を介して駆動車輪19,19に伝達されて、自動車は第1速で走行し始める。
 アクセル開度が増大して自動車の作動状態が第2速段での走行に適した状態となると、制御装置20は、第2切換クラッチD2のスリーブMを右向きに移動させて第2歯車変速機構SM2の第2変速ギヤ対G2による第2速段を形成してから、デュアルクラッチ12の第1摩擦クラッチC1の係合を解除した後に第2摩擦クラッチC2を係合させて第2速走行に切り換え、次いで第1切換クラッチD1のスリーブMを中立位置に戻す。以下同様にして、制御装置20はそのときの自動車の作動状態に適した変速段を順次形成し、第1摩擦クラッチC1と第2摩擦クラッチC2の係合を交互に切り換えて、自動車の作動状態に応じた変速段で走行する。変速のシフトダウンは上述と逆の手順で行う。
 停車状態でシフトレバーを後進位置にすると、制御装置20は第3切換クラッチD3のスリーブMを左向きに移動させて後進ギヤ列GBによる後進段を形成し、アクセル操作によりエンジン10の回転速度が増大すれば、制御装置20はデュアルクラッチ12の第1摩擦クラッチC1を徐々に係合させてその係合力を増加させ、これによりエンジン10の駆動トルクは後進ギヤ列GBを介して第1出力軸14aに伝達され、第1速の場合と同様にして後進が開始される。
 上述したようにエンジン10の駆動力により走行している状態にてモータ・ジェネレータ15を電動機として作動させて走行する場合、制御装置20はモータ・ジェネレータ15に給電して電動機として作動させる。これにより、モータ・ジェネレータ15の駆動トルクがエンジン10と協働して駆動車輪19を駆動する。また、モータ・ジェネレータ15が制御装置20の制御下にて発電機して作動するとバッテリが充電される。また、制御装置20の制御下にて、エンジン10の代わりにモータ・ジェネレータ15が電動機として作動すると、第2歯車変速機SM2のみが使用される場合を除き、上記と同様に駆動車輪19はモータ・ジェネレータ15の駆動力により駆動される。

第1実施形態
 以下に図2に示した制御プログラムと図3にて動力伝達軸系の回転速度の変動状態を示すグラフを参照して、第1実施形態におけるハイブリッド動力装置の動力伝達軸系に生じる回転速度の変動の振幅が過大にならないように抑制する制御方法を説明する。エンジン10のトルク変動によりハイブリッド動力装置の動力伝達軸系に捩り振動が発生するとエンジン10に連結した動力伝達軸系の回転速度の変動の振幅が増大し、これがある限度以上になると動力伝達ギヤの歯打ち音やボディのこもり音など不快な騒音が発生する。このような騒音が生じないようにする回転速度の変動の振幅の上限は、ハイブリッド動力装置ごとに予め実験的に設定することができる。この実施形態においては、実験的に設定した振幅の上限値をS0と規定して説明する。また、エンジン10の回転速度の平均値がある限度以下になると回転速度の変動が増大して作動が不安定になる。このような不安定な作動が生じない回転速度の平均値の下限はハイブリッド動力装置ごとに予め実験的に設定することができる。この実験的に設定した回転速度の平均値の下限値をR0と規定して以下のとおり説明する。

 この実施形態において、制御装置20は上述したハイブリッド動力装置の作動中に図2に示した制御プログラムの処理を所定の短時間ごとに実行する。被駆動ギヤ11cの回転速度の変動の振幅Sが上限値S0より小さく、同被駆動ギヤ11cの回転速度の平均値Rが下限値R0より小さいときには、エンジン10の作動が不安定になることはないと判定する。この場合、制御装置20は、図2のステップ100にて被駆動ギヤ11cの回転速度の変動の振幅Sを検出し、次のステップ101にて前記検出した振幅Sを上限値S0と比較して上限値S0以下であると判定すると制御プログラムをステップ103に進める。ステップ103にては、被駆動ギヤ11cの回転速度の平均値Rを検出して、次のステップ104にて前記検出した平均値Rをその下限値R0と比較して下限値R0以下ではないと判定すると、制御プログラムをステップ106にてステップ101にての判定と同じ判定をし、さらに次のステップ107にてステップ104にての判定と同じ判定をしてこの制御プログラムの処理を終了する。

 制御装置20の制御下にてハイブリッド動力装置が作動しているとき、被駆動ギヤ11cの回転速度の平均値Rが下限値R0より大きい値R1である状態にて、図3にて符号A1で示したように被駆動ギヤ11cの回転速度の変動の振幅Sが増大してS1になると、制御装置20はステップ100にて被駆動ギヤ11cの回転速度の変動の振幅SをS1として検出し、検出した振幅S1をステップ101にて上限値S0と比較する。 この場合、制御装置20は前記検出した振幅S1が上限値S0より大きいと判定して制御プログラムをステップ102に進め、検出された被駆動ギヤ11cの回転速度の変動と同一周期で前記検出された変動の振幅S1と振幅上限値S0の差に応じて変動する負荷トルクB1(平均値T1,振幅U1)を、検出された変動を打ち消す向きにエンジン10に与えるようにモータ・ジェネレータ15を発電機として起動させる。このとき、エンジン10に与えられる負荷トルクB1の位相は被駆動ギヤ11cの回転速度の変動と同一位相とする。

 上記ステップ102の処理によって負荷トルクB1がエンジン10に与えられると、被駆動ギヤ11cの回転速度が、図3(a)にて符号A1で示した状態から符号B1で示した負荷トルクに相当する分を差し引いた速度となる。図示の例では、ステップ102の処理が終わった状態では、回転速度の変動の振幅は、符号A2で示したように振幅上限値S0よりも小さいS2となり、一方回転速度の平均値はその下限値R0以下のR2となるので、エンジン10の作動はやや不安定になりかける。よって、制御装置20はステップ103にて被駆動ギヤ11cの回転速度の平均値R2を検出し、検出した平均値R2を次のステップ104にて下限値R0と比較する。この作動状態では、検出した回転速度の平均値R2が下限値R0以下であるので、制御装置20は制御プログラムをステップ105に勧めて検出された平均値R2と下限値R0との差に応じてエンジン10の出力を増大させるように制御してから、制御プログラムを次のステップ106に進める。この状態では、上述したように、ステップ106にてステップ101にての判定と同じ判定をし、さらに次のステップ107にてステップ104にての判定と同じ判定をしてこの制御プログラムの処理を終了する。

 上述したステップ105の処理によってエンジン10の出力が増大することにより、被駆動ギヤ11cの回転速度は、図3(a)の符号A2で示した状態から、図3(b)の符号A3で示した状態になり、図示の例では、回転速度の平均値R3は増大して下限値R0以上になる。このようにエンジン10の出力を増大させることにより不安定になりかけたエンジン10の作動が安定し、回転速度の変動の振幅S3は振幅S2よりも小さくなる。よって、この状態ではS3≧S0ではなく、R3≦R0でもない。

 上述した制御プログラムの処理を実行した後に、制御装置20は再びステップ100にて被駆動ギヤ11cの回転速度の変動の振幅S3を検出してステップ101にて上限値S0と比較する。この状態では、S3≧S0ではないので制御装置20はステップ103に制御プログラムを進めて被駆動ギヤ11cの回転速度の平均値R3を検出して、検出した平均値R3をステップ104にて下限値R0と比較する。 この場合、R3≦R0ではないのでステップ106の処理とステップ107の処理を実行してから図2の制御プログラムの処理を終了する。

 上述したハイブリッド動力装置の制御方法においては、回転速度センサ21が当該ハイブリッド動力装置の動力伝達軸系に設けた被駆動ギヤ11cの回転速度を検出し、エンジン10のトルク変動によって動力伝達軸系に捩り振動が発生すると、回転速度センサ21により検出される回転速度の変動の振幅が予め定めた上限値S0以上になる。 このとき、モータ・ジェネレータ15が検出された回転速度の変動の振幅とその上限値S0の差に応じて変動するトルクを、検出された回転速度の変動と同一周期で、検出された変動を打ち消す向きにエンジン10に与える。これにより、エンジン10のトルク変動が減少して当該ハイブリッド動力装置の動力伝達軸系に生じる捩り振動が抑制され、動力伝達ギヤの歯打ち音やボディのこもり音などの騒音の発生が防止される。また、この制御方法は、モータ・ジェネレータ15の作動を制御するのみで実行されるので、装置の構造上の変更が不要であり、製造コストが増大するおそれもない。

 なお、上記の制御方法においては、ステップ102にてモータ・ジェネレータ15を発電機として作動させることによりエンジン10に負荷トルクB1を与えているため、ステップ102の処理を実行した後に被駆動ギヤ11cの回転速度の平均値が下限値以下となってエンジン10の作動がやや不安定になるので、ステップ105の処理によってエンジン10の出力を増大させている。しかしながら、本発明の制御方法はこれに限るものではなく、エンジン10のトルク変動を抑制するためにステップ102の処理によってエンジン10に与える負荷トルクを平均値T1だけ小さくするか、或いはモータ・ジェネレータ15を電動機として作動させてエンジン10と同じ向きに変動する駆動トルクを与えてもよく、これによりステップ102の処理後に被駆動ギヤ11cの回転速度の平均値R2が下限値R0以下にならないようにすることができる。この場合には、ステップ105の処理によってエンジン10の出力を増大させる必要はなくなる。

 また、ステップ105の処理によるエンジン10の出力の増大は、上記のように検出された回転速度の平均値とその下限値R0との差に応じて制御する代わりに、予め設定した一定値に増大させるようにしてもよい。

第2実施系形態
 次に、図4に示した制御プログラムと図5に動力伝達軸系の回転速度の変動状態を示すグラフを参照して、第2実施形態におけるハイブリッド動力装置の動力伝達軸系に生じる回転速度の変動の振幅が過大にならないように制御する制御方法を説明する。この第2実施形態においても、動力伝達軸系の回転速度の変動の振幅上限値S0と回転速度の下限値R0は、第1実施形態の場合と同様に設定される。ただし、この第2実施形態においては、モータ・ジェネレータ15がエンジン10に与えるトルクが、検出された被駆動ギヤ11cの回転速度の変動の振幅Sに応じて変動するトルクではなく、変動しないトルクである点に特徴がある。

 この第2実施形態においても、第1実施形態におけるのと同様に、制御装置20は上述したハイブリッド動力装置の作動中に図3に示した制御プログラムの処理を所定の短時間ごとに実行する。被駆動ギヤ11cの回転速度の変動の振幅Sが上限値S0より小さく、同被駆動ギヤ11cの回転速度の平均値Rが下限値R0より小さいときには、エンジン10の作動が不安定になることはない。よって、この場合には、図4のステップ202と205の処理を実行することなく制御プログラムの処理を終了する。

 制御装置20の制御下にてハイブリッド動力装置が作動しているとき、被駆動ギヤ11cの回転速度の平均値Rが下限値R0よりやや大きい値R1である状態にて、図5(a)にて符号A1で示したように被駆動ギヤ11cの回転速度の変動の振幅Sが増大してS1になると、制御装置20はステップ200にて被駆動ギヤ11cの回転速度の変動の振幅SをS1として検出し、検出した振幅S1をステップ201にて上限値S0と比較する。   
 この場合、制御装置20は前記検出した振幅S1が上限値S0より大きいと判定して制御プログラムをステップ202に進め、検出された被駆動ギヤ11cの回転速度の変動の振幅S1と振幅上限値S0の差に応じた一定の負荷トルクB5(平均値t5)をエンジン10に与えるようにモータ・ジェネレータ15を発電機として起動させる。

 上記のステップ202の処理によって負荷トルクB5がエンジン10に与えられると、被駆動ギヤ11cの回転速度が、図5(a)にて符号A1で示した状態から符号B5で示した負荷トルクに相当する分を差し引いた速度となる。図示の例では、ステップ202の処理が終わった状態では、回転速度の変動の振幅は、符号A6で示したように振幅S1とほぼ同程度のS6(S6≧S0)となり、一方回転速度の平均値はその下限値R0以下のR6(R6≦R0)となるので、エンジン10作動はやや不安定になりかける。よって、制御装置20はステップ203にて被駆動ギヤ11cの回転速度の平均値R6を検出し、検出した平均値R6を次のステップ204にて下限値R0と比較する。この作動状態では、検出した回転速度の平均値R6が下限値R0以下であるので制御装置20は制御プログラムをステップ205に進めて検出された平均値R6と下限値R0との差に応じてエンジン10の出力を増大させるように制御してから、制御プログラムをステップ206に進める。この状態では、S6≧S0であり、R6≦R0であるので、制御プログラムはステップ206からステップ200に戻される。

 ステップ205の処理によってエンジン10の出力が増大することにより、被駆動ギヤ11cの回転速度は、図5(a)の符号A6で示した状態から、図5(b)の符号A7で示した状態になり、図示の例では、回転速度の平均値R7は下限値R0以上になる。このようにエンジン10の出力を増大させることにより不安定になりかけたエンジン10の作動が安定し、回転速度の変動の振幅S7は振幅S6よりも小さくなる。(しかし、S7≧S0である。)

 上述した制御プログラムがステップ207からステップ200に戻された後に、制御装置20は再びステップ200にて被駆動ギヤ11cの回転速度の変動の振幅S7を検出してステップ201にて上限値S0と比較する。この状態では、S7≧S0であるので制御装置20はステップ202に制御プログラムを進めて検出された回転速度の変動の振幅S7とその上限値S0の差に応じた一定の負荷トルクB6(値T6)を負荷トルクB5に追加してエンジン10に与えるようにモータ・ジェネレータ15を発電機として作動させて、制御プログラムをステップ203に進める。

上記のようにステップ202の処理によって負荷トルクB6を負荷トルクB5に追加してエンジン10に与えることにより、被駆動ギヤ11cの回転速度は、図5(b)の符号A7で示した状態から符号B6で示した負荷トルクに相当する分を差し引いた速度となり、ステップ202の処理を終えた状態では、符号A8で示したように、回転速度の変動の振幅は振幅S7とほぼ同じ程度の振幅S8(S8≧S0)となり、一方回転速度の平均値は下限値R0以下のR8となるので、エンジン10の作動は不安定となりかける。この状態にて、制御装置20はステップ203にて被駆動ギヤ11cの回転速度の平均値R8を検出し、ステップ204にて回転速度R0と比較する。このとき、R8≦R0であるので制御プログラムをステップ205に進めて検出された平均値R8と下限値R0との差に応じてエンジン10の出力を増大させる。この状態では、S8S0であり、R8≦R0であるので、制御プログラムはステップ206からステップ200に戻される。

 ステップ205の処理によってエンジン10の出力が増大することにより、被駆動ギヤ11cの回転速度は、図5(b)の符号A8で示した状態から、図5(c)の符号A9で示した状態になり、図示の例では、回転速度の平均値R8は下限値R0以上になり、回転速度の変動の振幅S8は上限値S0以下になる。よって、制御プログラムが再びステップ200に戻された状態では、ステップ202の処理とステップ205の処理を実行しないで制御プログラムの処理を終了する。

 上述したハイブリッド動力装置の制御方法においては、回転速度センサ21が当該ハイブリッド動力装置の動力伝達軸系に設けた被駆動ギヤ11cの回転速度を検出し、エンジン10のトルク変動によって動力伝達軸系に捩り振動が発生すると、回転速度センサ21により検出される回転速度の変動の振幅が予め定めた上限値S0以上になる。このとき、モータ・ジェネレータ15が検出された回転速度の変動の振幅とその上限値S0の差に応じた負荷トルクをエンジン10に与える発電機として作動するように制御される。これにより、エンジン10は回転速度センサ21により検出される回転速度が予め定めた所定の下限値R0以下になるとその出力が増大されるように制御されるので、エンジン10に加わる負荷が増大すると共に負荷の増大に伴う回転速度の低下はエンジンの出力増大により回復されて所定の回転速度の下限値R0以下になることはない。また、エンジン10の出力の増大により同エンジンの作動領域がトルク変動の少ない領域に移行されてハイブリッド動力装置の動力伝達軸系に生じる捩り振動は抑制されるので、回転速度の変動が過大となることにより生じる動力伝達ギヤの歯打ち音やボディのこもり音などの騒音の発生が防止される。また、この制御方法は、モータ・ジェネレータ15の作動を制御するのみで実行されるので、装置の構造上の変更が不要であり、製造コストが増大するおそれもない。
 
 なお、この第2実施形態においては、ステップ202にてエンジン10に与える負荷トルクを検出された回転速度の振幅とその上限値S0の差に応じた値にしたが、これを予め定めた一定値としてもよい。また、ステップ205にてエンジン10の出力を増大させる値を検出された回転速度の平均値とその下限値R0との差によって定めたが、これを予め定めた一定値にしてもよい。

第3実施形態
 この第3実施形態においては、上記の回転速度センサ21により検出される被駆動ギヤ11cの回転速度の変動の振幅が予め定めた所定の振幅上限値S0以上になると、エンジン10を停止して、モータ・ジェネレータ15を電動機として作動させて駆動車輪19を駆動するようにしたことに特徴がある。その他の制御方法は、第1実施形態或いは第2実施形態と実質的に同じである。

 この第3実施形態における制御装置20の制御下にて、エンジン10により駆動車輪19が駆動されているとき、被駆動ギヤ11cの回転速度の変動の振幅Sが小さくて、回転速度の平均値Rが低すぎない場合には、駆動車輪19は制御装置20によって制御されるエンジン10の駆動力によって駆動される。

 当該ハイブリッド動力装置の作動中に被駆動ギヤ11cの回転速度の変動の振幅S1が予め定めた振幅の上限値S0以上に増大したとき、この第3実施形態における制御装置20はモータ・ジェネレータ15を電動機として作動させてンジン10を停止させ、電動機として作動するモータ・ジェネレータ15により駆動車輪19を駆動する。このエンジン10からモータジェネレータ15への切り換え時に偶数段の変速ギヤ対G2,G4,G6を使用していた場合には、そのまま第2歯車切換機構SM2及び第2摩擦クラッチC2を使用し、第2出力軸14b、出力駆動ギヤ14e,14f、第3出力軸14c、ドライブピニオン16a、リングギヤ16b、デファレンシャルギヤ17及びアクスルシャフト18を介して駆動車輪19を駆動すればよい。また奇数段の変速ギヤ対G1,G3,G5または後進段の後進ギヤ列GBを使用していた場合には、そのまま第1歯車切換機構SM1及び第1摩擦クラッチC1を使用しさらに第2摩擦クラッチC2を連結して駆動車輪19を駆動してもよいし、あるいは変速段を1段低下させて第1摩擦クラッチC1を離脱させ、第2歯車切換機構SM2及び第2摩擦クラッチC2を使用して駆動車輪19を駆動するようにしてもよい。
 これによりハイブリッド動力装置は電動機として作動するモータジェネレータ15だけにより駆動がなされるので、動力伝達軸系に捩り振動が生じることはなくなり、従って動力伝達ギヤの歯打ち音やボディのこもり音などの騒音も発生しなくなる。またモータジェネレータ15を制御するのみであり、構造の変更が不要であるので重量が増大することはなく、製造コストが増大するおそれもない。
 なお上述した各実施形態では、変動する回転速度の大きさは平均値を用いてとらえたが、必ずしもそれに限られるものではなく、最大値または最小値を用いてとらえてもよい。また、回転速度の変動の振幅は長さとして説明したが、必ずしもそれに限られるものではなく、回転速度の平均値(あるいは最大値または最小値)に対する割合としてもよい。
 次に図6により、本発明が適用されるハイブリッド動力装置の変形例の説明をする。この変形例も前進6段、後進1段のデュアルクラッチ式の自動変速機TMを備えている。この変形例の自動変速機TMと図1に示す自動変速機TMの主な相違点は、デュアルクラッチ12を構成する第1及び第2摩擦クラッチC1,C2を介してエンジン10により駆動される第1及び第2入力軸13a,13bは互いに同軸的に配置された二重軸であり、図1に示す自動変速機TMにおける出力ギヤ14d,14e,14fにより連結された3本の出力軸14a,14b,14cが1本の出力軸14にまとめられていることである。この変形例の変速機ケースH内には、図6に示すように、第1入力軸13a、これを同軸的に囲む第2入力軸13b及びこの両軸と平行に配置された1本の出力軸14が回転自在に支持されている。第1及び第2入力軸13a,13bは、デュアルクラッチ12を構成する第1及び第2摩擦クラッチC1,C2の共通のクラッチカバー12aをエンジン10の出力軸10aに連結することによりエンジン10により回転駆動されるようになっている。出力軸14は最終減速ギヤ対16c.16d、デファレンシャルギヤ17及びアクスルシャフト18を介して駆動車輪19に連結されている。デュアルクラッチ12を構成する第1及び第2摩擦クラッチC1,C2は、図1に示す自動変速機TMと同様、一方と他方の伝達トルクが互いに逆向きに増減するように、ハイブリッド動力装置の制御装置20により制御されるものである。
 第2入力軸13bから突出する第1入力軸13aの後半部と出力軸14の間には第1歯車切換機構SM1が設けられ、第2入力軸13bと第2出力軸14bの間には第2歯車切換機構SM2が設けられている。この両歯車切換機構SM1,SM2は図1に示す変速機TMと実質的に同一構造である。モータジェネレータ15は、その出入力軸15aに固定されたギヤ15bを第6変速ギヤ対G6の駆動ギヤに噛合することにより、第2入力軸13bに連結されている。また第5変速ギヤ対G5の駆動ギヤと第4変速ギヤ対G4の駆動ギヤにはそれぞれ、図1に示す変速機TMの回転速度センサ21と実質的に同じ第1及び第2回転速度センサ21a,21bが設けられている。このハイブリッド動力装置の作動を制御する制御装置20には、このモータジェネレータ15及び回転速度センサ21a,21bが連結されている。
 この変形例のハイブリッド動力装置は、第1及び第2入力軸13a,13bが同軸的に配置され、第1及び第2出力軸14a,14bが1本の出力軸14にまとめられ、モータジェネレータ15がギヤ15bを介して第2入力軸13bに連結され、回転速度センサ21が第1及び第2回転速度センサ21a,21bに分割されて別の駆動ギヤに設けられているなどの相違はあるが、全ての機能において図1に示すハイブリッド動力装置と実質的に同一であり、前述した本発明の各実施形態はこの変形例のハイブリッド動力装置にそのまま適用することができる。
10…エンジン、12…デュアルクラッチ、13a…第1入力軸、13b…第2入力軸、14,14a,14b…出力軸(第1出力軸、第2出力軸)、15…モータ・ジェネレータ、19…被動部材(駆動車輪)、21,21a,21b…回転速度センサ(第1回転速度センサ,第2回転速度センサ)、C1…第1摩擦クラッチ、C2…第2摩擦クラッチ、SM1…第1歯車変速機構、SM2…第2歯車変速機構。

Claims (4)

  1. エンジンの駆動力を第1摩擦クラッチを介して伝達される第1入力軸に組付けた一組の歯車変速機構により構成した第1駆動列と、前記エンジンの駆動力を第2摩擦クラッチ機構を介して伝達される第2入力軸に組付けた一組の歯車変速機構により構成した第2駆動列と、前記第1入力軸又は第2入力軸に接続したモータ・ジェネレータと、前記第1駆動列の歯車変速機構の出力軸又は前記第2駆動列の歯車変速機構の出力軸から伝達される駆動力により駆動される被駆動装置とを備えたハイブリッド動力装置において、
     前記エンジンの回転速度を検出する回転速度センサと、
     該回転速度センサによって検出される前記エンジンの回転速度の変動の振幅が予め定めた上限振幅値より大きくなったとき前記モータ・ジェネレータを電動機として起動して前記回転速度の変動と逆位相のトルクを同回転速度の変動と同じ周期で前記エンジンに付与する制御手段と
    を設けたことを特徴とするハイブリッド動力装置の制御システム。
  2. 請求項1に記載したハイブリッド動力装置の制御システムにおいて、前記回転速度センサによって検出される前記エンジンの回転速度が予め定めた回転速度の下限値以下になったとき前記エンジンの出力を増大させる手段を前記制御手段が備えることを特徴とするハイブリッド動力装置の制御システム。
  3. エンジンの駆動力を第1摩擦クラッチを介して伝達される第1入力軸に組付けた一組の歯車変速機構により構成した第1駆動列と、前記エンジンの駆動力を第2摩擦クラッチ機構を介して伝達される第2入力軸に組付けた一組の歯車変速機構により構成した第2駆動列と、前記第1入力軸又は第2入力軸に接続したモータ・ジェネレータと、前記第1駆動列の歯車変速機構の出力軸又は前記第2駆動列の歯車変速機構の出力軸から伝達される駆動力により駆動される被駆動装置とを備えたハイブリッド動力装置において、
     前記エンジンの回転速度を検出する回転速度センサと、
     該回転速度センサによって検出される前記エンジンの回転速度の変動の振幅が予め定めた上限振幅値より大きくなったとき前記モータ・ジェネレータを電動機として起動して前記回転速度の変動に応じた負荷トルクを前記エンジンに付与し、前記エンジンの回転速度の変動が予め定めた下限振幅値になったとき前記エンジンの出力を増大させる制御手段を設けたことを特徴とするハイブリッド動力装置の制御システム。
  4. エンジンの駆動力を第1摩擦クラッチを介して伝達される第1入力軸に組付けた一組の歯車変速機構により構成した第1駆動列と、前記エンジンの駆動力を第2摩擦クラッチ機構を介して伝達される第2入力軸に組付けた一組の歯車変速機構により構成した第2駆動列と、前記第1入力軸又は第2入力軸に接続したモータ・ジェネレータと、前記第1駆動列の歯車変速機構の出力軸又は前記第2駆動列の歯車変速機構の出力軸から伝達される駆動力により駆動される被駆動装置とを備えたハイブリッド動力装置において、
     前記エンジンの回転速度を検出する回転速度センサと、
     該回転速度センサによって検出される前記エンジンの回転速度の変動の振幅が予め定めた上限振幅値より大きくなったとき前記エンジンを停止させ、一方前記モータ・ジェネレータを電動機として起動させてその駆動力を同モータ・ジェネレータに接続した前記入力軸(前記第1入力軸又は第2入力軸)に組付けた前記歯車変速機構を介して前記被駆動装置に伝達させるようにしたことを特徴とするハイブリッド動力装置の制御システム。
     
PCT/JP2009/056993 2008-04-04 2009-04-03 ハイブリッド動力装置の制御システム WO2009123315A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09729115A EP2275315A4 (en) 2008-04-04 2009-04-03 HYBRID POWER UNIT CONTROL SYSTEM
CN200980113071XA CN102007029A (zh) 2008-04-04 2009-04-03 混合动力装置的控制系统
US12/936,140 US20110185847A1 (en) 2008-04-04 2009-04-03 Control system of hybrid power drive apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-098498 2008-04-04
JP2008098498A JP2009248728A (ja) 2008-04-04 2008-04-04 ハイブリッド動力装置における制御方法

Publications (1)

Publication Number Publication Date
WO2009123315A1 true WO2009123315A1 (ja) 2009-10-08

Family

ID=41135677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056993 WO2009123315A1 (ja) 2008-04-04 2009-04-03 ハイブリッド動力装置の制御システム

Country Status (5)

Country Link
US (1) US20110185847A1 (ja)
EP (1) EP2275315A4 (ja)
JP (1) JP2009248728A (ja)
CN (1) CN102007029A (ja)
WO (1) WO2009123315A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102917936A (zh) * 2010-06-10 2013-02-06 罗伯特·博世有限公司 用于减小驱动马达的输出轴上的振动的方法和装置
CN103339008A (zh) * 2011-02-23 2013-10-02 斯堪尼亚商用车有限公司 传动系振动的阻尼

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090114492A1 (en) * 2007-11-06 2009-05-07 Gm Global Technology Operations, Inc. Hybrid Vehicle Driveline Noise Damper
US8417431B2 (en) * 2008-07-23 2013-04-09 Ford Global Technologies, Llc Method for reducing gear rattle in a hybrid electric vehicle powertrain
DE102008040692A1 (de) * 2008-07-24 2010-01-28 Robert Bosch Gmbh Verfahren und Vorrichtung zum Anfahren eines Hybridfahrzeuges
SE537106C2 (sv) * 2011-02-23 2015-01-13 Scania Cv Ab Detektion och dämpning av drivlineoscillationer
CN102167037B (zh) * 2011-04-18 2013-01-30 奇瑞汽车股份有限公司 一种混合动力汽车降低发动机启动时峰值转速的方法
US8961364B2 (en) * 2012-05-07 2015-02-24 Ford Global Technologies, Llc Method and system to manage driveline oscillations with clutch pressure control
KR101428251B1 (ko) * 2012-12-06 2014-08-07 현대자동차주식회사 Dct 차량의 제어방법
JP6189051B2 (ja) * 2013-02-25 2017-08-30 本田技研工業株式会社 自動変速装置
JP6122658B2 (ja) * 2013-02-26 2017-04-26 アイシン・エーアイ株式会社 車両用変速機
CN104859419B (zh) * 2015-01-16 2016-04-13 比亚迪股份有限公司 变速器、动力传动系统和车辆
CN104842768B (zh) * 2015-01-16 2016-05-25 比亚迪股份有限公司 变速器、动力传动系统和车辆
CN104842769B (zh) * 2015-01-16 2016-04-13 比亚迪股份有限公司 变速器、动力传动系统和车辆
CN105350597B (zh) * 2015-10-27 2017-12-15 湖南工程学院 一种并联式混合动力挖掘机动力系统控制方法
DE102016202914A1 (de) 2016-02-25 2017-08-31 Ford Global Technologies, Llc Doppelkupplungsgetriebe für Kraftfahrzeuge
DE102016202915A1 (de) 2016-02-25 2017-08-31 Ford Global Technologies, Llc Doppelkupplungsgetriebe für Kraftfahrzeuge
US9827989B1 (en) * 2016-05-24 2017-11-28 GM Global Technology Operations LLC Vehicle noise and vibration interface optimization
US10746149B2 (en) * 2016-12-20 2020-08-18 Illinois Tool Works Inc. Engine-driven welding-type power supplies with secondary energy generation
CN108275141B (zh) * 2018-02-05 2020-04-28 安徽江淮汽车集团股份有限公司 混动双离合自动变速箱扭矩预控的控制方法
JP7180156B2 (ja) * 2018-07-12 2022-11-30 トヨタ自動車株式会社 車両の制御装置
JP6749375B2 (ja) * 2018-09-28 2020-09-02 株式会社Subaru 駆動システム
JP6933688B2 (ja) * 2019-07-09 2021-09-08 本田技研工業株式会社 車両制御装置、車両及び車両制御方法
CN113879277B (zh) * 2020-07-01 2023-12-01 广州汽车集团股份有限公司 一种混合动力系统的控制方法、控制系统及电动车

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09250386A (ja) * 1996-03-15 1997-09-22 Nissan Motor Co Ltd 車両用アイドル安定化装置
JPH11205907A (ja) * 1998-01-16 1999-07-30 Toyota Motor Corp ハイブリッド車の駆動制御装置
JPH11511225A (ja) * 1995-08-31 1999-09-28 イーエスアーデー・エレクトロニク・ジステームス・ゲーエムベーハー・ウント・コンパニ・カーゲー 特に内燃機関の駆動軸の回転むらを能動的に低減するためのシステムと、同システムの操作方法
JP2000069607A (ja) * 1998-08-19 2000-03-03 Denso Corp ハイブリッド電気自動車の制御装置
JP2002362197A (ja) * 2001-03-30 2002-12-18 Luk Lamellen & Kupplungsbau Beteiligungs Kg パワートレーン
JP2005186931A (ja) * 2003-12-24 2005-07-14 Hyundai Motor Co Ltd ハイブリッド電気自動車用二重クラッチ変速機及びその作動方法
JP2007051621A (ja) * 2005-08-19 2007-03-01 Shingu Shoko:Kk エンジン駆動式作業用機具

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002515958A (ja) * 1995-08-31 2002-05-28 イーエスアーデー・エレクトロニク・ジステームス・ゲーエムベーハー・ウント・コンパニ・カーゲー 内燃機関、特に自動車のエンジン用のスタータ/発電装置
US6232733B1 (en) * 1998-07-28 2001-05-15 Denso Corporation Engine-motor hybrid vehicle control apparatus and method having power transmission device operation compensation function
DE10165096B3 (de) * 2000-07-18 2015-08-13 Schaeffler Technologies AG & Co. KG Getriebe
EP1352187B1 (de) * 2001-01-12 2006-08-09 ZF Sachs AG Verfahren zur Steuerung einer Mehrfachkupplungseinrichtung und eines Lastschaltgetriebes
US7082850B2 (en) * 2003-12-30 2006-08-01 Eaton Corporation Hybrid powertrain system
DE102005035328B4 (de) * 2005-07-28 2015-04-09 Zf Friedrichshafen Ag Doppelkupplungsgetriebe mit integrierter Elektromaschine und dessen Anwendung
WO2007128260A1 (de) * 2006-05-04 2007-11-15 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren zum betreiben eines kraftfahrzeugantriebsstrangs

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11511225A (ja) * 1995-08-31 1999-09-28 イーエスアーデー・エレクトロニク・ジステームス・ゲーエムベーハー・ウント・コンパニ・カーゲー 特に内燃機関の駆動軸の回転むらを能動的に低減するためのシステムと、同システムの操作方法
JPH09250386A (ja) * 1996-03-15 1997-09-22 Nissan Motor Co Ltd 車両用アイドル安定化装置
JPH11205907A (ja) * 1998-01-16 1999-07-30 Toyota Motor Corp ハイブリッド車の駆動制御装置
JP2000069607A (ja) * 1998-08-19 2000-03-03 Denso Corp ハイブリッド電気自動車の制御装置
JP2002362197A (ja) * 2001-03-30 2002-12-18 Luk Lamellen & Kupplungsbau Beteiligungs Kg パワートレーン
JP2005186931A (ja) * 2003-12-24 2005-07-14 Hyundai Motor Co Ltd ハイブリッド電気自動車用二重クラッチ変速機及びその作動方法
JP2007051621A (ja) * 2005-08-19 2007-03-01 Shingu Shoko:Kk エンジン駆動式作業用機具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2275315A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102917936A (zh) * 2010-06-10 2013-02-06 罗伯特·博世有限公司 用于减小驱动马达的输出轴上的振动的方法和装置
CN103339008A (zh) * 2011-02-23 2013-10-02 斯堪尼亚商用车有限公司 传动系振动的阻尼

Also Published As

Publication number Publication date
US20110185847A1 (en) 2011-08-04
EP2275315A4 (en) 2011-07-20
JP2009248728A (ja) 2009-10-29
EP2275315A1 (en) 2011-01-19
CN102007029A (zh) 2011-04-06

Similar Documents

Publication Publication Date Title
WO2009123315A1 (ja) ハイブリッド動力装置の制御システム
JP5017450B2 (ja) ハイブリッド動力装置
JP4942212B2 (ja) ハイブリッド動力装置
JP5203401B2 (ja) ツインクラッチ式変速機
JP5942412B2 (ja) 車両駆動装置
WO2009128532A1 (ja) ハイブリッド動力装置の制御システム
WO2009081729A1 (ja) ハイブリッドシステムの制御方法
WO2014162563A1 (ja) 車両の制御装置および方法
JP5007661B2 (ja) 車両の駆動力制御装置
JP5772976B2 (ja) ハイブリッドシステムの制御装置
JP3823960B2 (ja) 車両の変速装置
JP5867593B2 (ja) 車両用駆動装置
JP5867589B2 (ja) 車両用駆動装置
JP5930541B2 (ja) 電気自動車の変速制御装置
JP2013022999A (ja) 車両の動力伝達制御装置
JP6248530B2 (ja) 電動車両の変速制御装置
JP5919167B2 (ja) ハイブリッド車両の制御装置及びその制御方法
JP2013203140A (ja) ハイブリッド車両用自動変速機の制御装置
JP5821492B2 (ja) 車両の変速装置
JP2020056485A (ja) 車両の制御装置
JP2020075553A (ja) ハイブリッド車両の制御装置
JP2019163852A (ja) 変速制御装置および変速制御方法
JP7103024B2 (ja) 自動変速機の制御装置
US20160010726A1 (en) Transmission for a vehicle
JP2023005065A (ja) 車両用変速機の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980113071.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09729115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009729115

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12936140

Country of ref document: US