WO2014115881A1 - ハイブリッド車両 - Google Patents

ハイブリッド車両 Download PDF

Info

Publication number
WO2014115881A1
WO2014115881A1 PCT/JP2014/051718 JP2014051718W WO2014115881A1 WO 2014115881 A1 WO2014115881 A1 WO 2014115881A1 JP 2014051718 W JP2014051718 W JP 2014051718W WO 2014115881 A1 WO2014115881 A1 WO 2014115881A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
speed
input shaft
transmission
vehicle
Prior art date
Application number
PCT/JP2014/051718
Other languages
English (en)
French (fr)
Inventor
高橋 知也
満弘 田畑
敬朗 田中
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/759,079 priority Critical patent/US9469294B2/en
Priority to JP2014558644A priority patent/JP5962780B2/ja
Priority to CN201480004516.1A priority patent/CN104918813B/zh
Priority to DE112014000581.9T priority patent/DE112014000581B4/de
Publication of WO2014115881A1 publication Critical patent/WO2014115881A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/113Stepped gearings with two input flow paths, e.g. double clutch transmission selection of one of the torque flow paths by the corresponding input clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/086Power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1094Direction of power flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0052Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising six forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/912Drive line clutch
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/915Specific drive or transmission adapted for hev
    • Y10S903/917Specific drive or transmission adapted for hev with transmission for changing gear ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19019Plural power paths from prime mover

Definitions

  • the present invention relates to a hybrid vehicle including a dual clutch transmission.
  • a dual clutch is provided with gear trains between the first input shaft and the output system and between the second input shaft and the output system, and selectively connects one of the two input shafts to the internal combustion engine.
  • a type of transmission is known. Further, such a dual clutch type transmission is mounted, and an electric motor is connected to each input shaft, and gears corresponding to the first speed, the third speed, and the fifth speed are provided between one input shaft and the output system.
  • a hybrid vehicle in which a train is provided and a gear train corresponding to the second speed, the fourth speed, and the sixth speed is provided between the other input shaft and the output system (see Patent Document 1).
  • Patent Documents 2 and 3 exist as prior art documents related to the present invention.
  • an object of the present invention is to provide a hybrid vehicle that can reduce the cost of the vehicle.
  • the hybrid vehicle of the present invention includes an internal combustion engine, a first input shaft connected to the internal combustion engine via a first clutch, and an input system connected to the internal combustion engine via a second clutch. And an output system connected to the drive wheels so as to be able to transmit power, a portion interposed between the first input shaft and the output system, and the rest between the second input shaft and the output system.
  • 4n + 2 sets (where n is an integer equal to or greater than 1) of gear trains that are interposed and corresponding to different forward speeds with different gear ratios and adjacent to each other among the 4n + 2 gear trains
  • a plurality of coupling mechanisms that are provided between a pair of gear trains arranged to selectively establish rotation transmission by any one of the pair of gear trains.
  • a hybrid equipped with a transmission is an internal combustion engine, a first input shaft connected to the internal combustion engine via a first clutch, and an input system connected to the internal combustion engine via a second clutch.
  • an output system connected to the drive wheels so as to be able to transmit power, a portion
  • 2n + 2 gear trains are interposed between the first input shaft and the output system, and 2n gear trains are the second input shaft and the output system.
  • an electric motor provided to output power to the second input shaft or the output system.
  • the number of gear trains interposed between the first input shaft and the output system and the number of gear trains interposed between the second input shaft and the output system are both even numbers. Therefore, it is not necessary to provide one coupling mechanism for one gear train. In this case, since the number of coupling mechanisms can be reduced, the cost of the vehicle can be reduced.
  • only one gear train group that constitutes adjacent gears may be provided between the first input shaft and the output system.
  • a gear train group that constitutes adjacent gears is not provided between the second input shaft and the output system.
  • Only one gear train group is provided between the first input shaft and the output system. Therefore, when performing a shift other than between the gear stages of the gear train group, by appropriately controlling the first clutch and the second clutch, it is possible to suppress so-called torque loss during a period in which the drive wheels are not driven during the shift. Then, when shifting between the gear stages of the gear train group, driving of the driving wheels can be assisted by the electric motor. Therefore, also in this case, torque loss can be suppressed.
  • the assist by the electric motor may be performed at the time of shifting between the gear stages of the gear train group, the assist by the electric motor can be minimized.
  • the 4n + 2 sets of gear trains include a gear train corresponding to a specific even gear that is one of the even gears, and an odd gear or one gear on the low speed side of the specific even gear.
  • a gear train corresponding to a specific odd-numbered stage that is one of the odd-numbered stages on the high-speed side is interposed between the first input shaft and the output system, and other than the specific even-numbered stage and the specific odd-numbered stage.
  • the number of gear trains interposed between the first input shaft and the output system and the number of gear trains interposed between the second input shaft and the output system are the gear trains corresponding to the remaining gear positions. May be interposed between the input system and the output system so that both are even numbers.
  • the specific even number stage and the specific odd number stage are interposed between the first input shaft and the output system.
  • the electric motor is provided so that power can be output to the second input shaft or the output system. Therefore, when shifting between a specific even number stage and a specific odd number stage, it is possible to assist the driving wheels with the power output from the electric motor.
  • the control means for controlling the electric motor so as to suppress fluctuations in power transmitted to the drive wheels during the shift May be further provided. According to this aspect, it is possible to suppress a sudden change in the speed of the vehicle when shifting between the specific even stages and the specific odd stages. Therefore, it is possible to suppress a shock at the time of shifting.
  • the specific even stage is the highest stage among the shift stages of the transmission
  • the specific odd stage is an odd stage on the low speed side of the highest stage
  • the specific even stage and the specific odd stage When it is determined that a change in power transmitted to the drive wheel cannot be suppressed by the electric motor when a shift from one to the other is requested, a shift prohibiting means for prohibiting the shift is provided. Also good. By prohibiting the shift in this way, it is possible to suppress a sudden change in the vehicle speed. Therefore, it is possible to suppress a shock at the time of shifting.
  • the transmission corresponds to a gear train corresponding to an odd gear of the 4n + 2 sets of gear trains and a specific even gear which is one of even gears of 4th speed or higher.
  • a gear train intervening between the first input shaft and the output system, and a gear train corresponding to the remaining even stages other than the specific even stage is between the second input shaft and the output system.
  • the driving force of the vehicle at the time of the shift down is determined.
  • the shift speed of the transmission is switched from the specific even speed to the lower speed shift speed while driving the drive wheels by the electric motor, and the vehicle at the time of the shift down
  • the shift stage of the transmission is determined while controlling the second clutch so that the power of the internal combustion engine is transmitted to the second input shaft.
  • a shift control means for switching from the even-numbered stage to the two-stage low speed side may be further provided.
  • the transmission gear stage is specified evenly while controlling the second clutch so that the power of the internal combustion engine is transmitted to the second input shaft. Switch from the first gear to the second gear.
  • the gear train of the second speed stage is arranged between the second input shaft and the output system. Therefore, power transmission between the first input shaft and the output system is established by a specific even number of gear trains, while power transmission between the second input shaft and the output system is performed by a gear train of the two-stage low speed side gear stage. Can be established. Therefore, the period during which torque loss occurs can be eliminated by switching the transmission to the two-stage low-speed side in this way. Therefore, it is possible to suppress a shock at the time of shifting.
  • the number of gear trains interposed between the input system and the output system and the specific even number may be set as appropriate as long as the above-described conditions are satisfied.
  • six sets of gear trains may be provided in the transmission, and the specific even number may be 6th speed.
  • the transmission has a gear train corresponding to an odd-numbered step among the 4n + 2 sets of gear trains and a gear train corresponding to a specific even-numbered step that is one of the even-numbered steps.
  • a gear train that intervenes between the first input shaft and the output system and that corresponds to the remaining gear speeds other than the specific even speed stage among the even speed stages is between the second input shaft and the output system.
  • the gear position is switched from a specific even number to an odd number on the lower speed side. That is, when the drive wheels can be driven by the electric motor and the variation in the required torque is small, the shift speed is switched from a specific even speed to an odd speed on the low speed side in advance. Therefore, the driving wheel can be driven by the electric motor at the time of this speed change. Therefore, it is possible to suppress the occurrence of shock at the time of shifting.
  • the specific even stage may be the highest stage of the transmission.
  • the highest gear and the gear position that is one speed lower than the highest gear are provided on the same input shaft side.
  • the required driving force to the vehicle gradually increases due to a gradient or the like while the transmission is running at the highest speed, and a kickdown is required to switch the speed to a lower speed when the motor cannot assist.
  • the gear cannot be shifted to the first gear position, and the second gear position provided on the other input shaft side is shifted to the second gear position.
  • the degree of increase in the rotational speed of the internal combustion engine increases with respect to the degree of depression of the accelerator pedal, and the driver may feel uncomfortable.
  • the assist determination range may be set in the vicinity of the maximum value of torque that can be output from the electric motor as an upper limit.
  • the transmission means prevents the power transmitted to the drive wheels from changing at the time of shifting when the shift stage of the transmission is switched from the specific even stage to an odd stage on the low speed side with respect to the specific even stage. Further, an assist means for controlling the electric motor may be provided. By controlling the electric motor in this way, it is possible to suppress the occurrence of shock at the time of shifting.
  • FIG. 1 schematically shows a hybrid vehicle according to a first embodiment of the present invention.
  • the vehicle 1A includes an internal combustion engine (hereinafter sometimes referred to as an engine) 2 as a driving power source, a first motor / generator (hereinafter also referred to as first MG) 3 and an electric motor.
  • the engine 2 is a known spark ignition internal combustion engine having a plurality of cylinders.
  • the first MG 3 and the second MG 4 are well-known ones that are mounted on a hybrid vehicle and function as an electric motor and a generator. Therefore, the detailed description regarding these is abbreviate
  • the vehicle 1A is equipped with a six-speed transmission 10 in advance.
  • the transmission 10 is configured as a dual clutch transmission.
  • the transmission 10 includes an input system 11 and an output system 12.
  • the input system 11 includes a first input shaft 13 and a second input shaft 14.
  • the first input shaft 13 is connected to the engine 2 via the first clutch 15.
  • the second input shaft 14 is connected to the engine 2 via the second clutch 16.
  • the first clutch 15 and the second clutch 16 are in a completely engaged state in which the engine 2 and the input shafts 13 and 14 rotate at the same rotational speed, and power transmission between the engine 2 and the input shafts 13 and 14 is interrupted.
  • This is a known friction clutch that can be switched to a released state. Therefore, these clutches 15 and 16 can be in a so-called half-clutch state in which power is transmitted between the engine 2 and the input shafts 13 and 14 while rotating at different rotational speeds.
  • the output system 12 includes a first output shaft 17, a second output shaft 18, and a drive shaft 19. As shown in this figure, a first output gear 20 is provided on the first output shaft 17. A second output gear 21 is provided on the second output shaft 18. A drive gear 22 is provided on the drive shaft 19. The first output gear 20 and the second output gear 21 mesh with the driven gear 22, respectively.
  • the drive shaft 19 is connected to the differential mechanism 5 so that power can be transmitted.
  • the differential mechanism 5 is a well-known mechanism that distributes input power to the left and right drive wheels 6.
  • first to sixth gear trains G1 to G6 corresponding to different gear positions.
  • the first gear train G1, the third gear train G3, the fifth gear train G5, and the sixth gear train G6 are interposed between the first input shaft 13 and the first output shaft 17.
  • the second gear train G2 and the fourth gear train G4 are interposed between the second input shaft 14 and the second output shaft 18.
  • the first gear train G1 includes a first drive gear 23 and a first driven gear 24 that mesh with each other
  • the second gear train G2 includes a second drive gear 25 and a second driven gear 26 that mesh with each other
  • the third gear train G3 includes a third drive gear 27 and a third driven gear 28 that mesh with each other
  • the fourth gear train G4 includes a fourth drive gear 29 and a fourth driven gear 30 that mesh with each other
  • the fifth gear train G5 includes a fifth drive gear 31 and a fifth driven gear 32 that mesh with each other
  • the sixth gear train G6 includes a sixth drive gear 33 and a sixth driven gear 34 that mesh with each other.
  • the first to sixth gear trains G1 to G6 are provided so that the drive gear and the driven gear always mesh with each other.
  • Different gear ratios are set for the respective gear trains G1 to G6.
  • the gear ratio is smaller in the order of the first gear train G1, the second gear train G2, the third gear train G3, the fourth gear train G4, the fifth gear train G5, and the sixth gear train G6. Therefore, the first gear train G1 is the first gear, the second gear train G2 is the second gear, the third gear train G3 is the third gear, the fourth gear train G4 is the fourth gear, and the fifth gear train G5 is the fifth gear.
  • the sixth gear train G6 corresponds to the sixth speed.
  • the first drive gear 23, the third drive gear 27, the fifth drive gear 31, and the sixth drive gear 33 are fixed to the first input shaft 13 so as to rotate integrally with the first input shaft 13.
  • the first driven gear 24, the third driven gear 28, the fifth driven gear 32, and the sixth driven gear 34 are supported by the first output shaft 17 so as to be rotatable relative to the first output shaft 17.
  • the second drive gear 25 and the fourth drive gear 29 are fixed to the second input shaft 14 so as to rotate integrally with the second input shaft 14.
  • the second driven gear 26 and the fourth driven gear 30 are supported by the second output shaft 18 so as to be rotatable relative to the second output shaft 18.
  • the first output shaft 17 is provided with a first sleeve 35 and a second sleeve 36. These sleeves 35 and 36 are supported by the first output shaft 17 so as to rotate integrally with the first output shaft 17 and be movable in the axial direction.
  • the first sleeve 35 is provided between the first gear train G1 and the third gear train G3 arranged so as to be adjacent to each other.
  • the first sleeve 35 has a first speed position at which the first output shaft 17 and the first driven gear 24 mesh with the first driven gear 24 so that the first output shaft 17 and the first driven gear 24 rotate integrally, and the first output shaft 17 and the third driven gear 28 rotate integrally.
  • the second sleeve 36 is provided between the fifth gear train G5 and the sixth gear train G6 arranged so as to be adjacent to each other.
  • the second sleeve 36 has a fifth speed position at which the first output shaft 17 and the fifth driven gear 32 mesh with the fifth driven gear 32 so that the first output shaft 17 and the fifth driven gear 32 rotate integrally, and the first output shaft 17 and the sixth driven gear 34 rotate integrally.
  • it is provided so as to be switchable between a sixth speed position that meshes with the sixth driven gear 34 and a release position that does not mesh with either the fifth driven gear 32 or the sixth driven gear 34.
  • the third sleeve 37 is provided on the second output shaft 18.
  • the third sleeve 37 is supported by the second output shaft 18 so as to rotate integrally with the second output shaft 18 and move in the axial direction.
  • the third sleeve 37 is provided between the second gear train G2 and the fourth gear train G4 that are arranged adjacent to each other.
  • the third sleeve 37 has a second speed position at which the second output shaft 18 and the second driven gear 26 mesh with the second driven gear 26 so that the second output shaft 18 and the second driven gear 26 rotate integrally, and the second output shaft 18 and the fourth driven gear 30 rotate integrally.
  • it is provided to be switchable between a fourth speed position that meshes with the fourth driven gear 30 and a release position that does not mesh with either the second driven gear 26 or the fourth driven gear 30.
  • the fourth speed is achieved.
  • the second sleeve 36 is switched to the fifth speed position and both the first sleeve 35 and the third sleeve 37 are switched to the release position, the fifth speed is achieved.
  • the second sleeve 36 is switched to the 6th speed position and both the first sleeve 35 and the third sleeve 37 are switched to the release position, the 6th speed is achieved.
  • the transmission 10 is provided with a plurality of drive actuators for driving the sleeves 35 to 37. Since these drive actuators are well-known hydraulic drive mechanisms and motor drive mechanisms provided in the transmission, the description thereof is omitted.
  • the output shafts 17 and 18 are synchronized to synchronize their rotations when the sleeves 35 to 37 and the driven gears 24, 26, 28, 30, 32, and 34 are engaged with each other.
  • a mechanism is provided for each driven gear.
  • a synchro mechanism that synchronizes rotation by friction engagement for example, a known key-type synchromesh mechanism may be used. Therefore, detailed description of the synchro mechanism is omitted.
  • the first input shaft 13 is provided with a first driven gear 38.
  • a first drive gear 39 that meshes with the first driven gear 38 is provided on the output shaft 3 a of the first MG 3.
  • the first MG 3 is connected to the first input shaft 13 so that power can be transmitted.
  • the second input shaft 14 is provided with a second driven gear 40.
  • a second drive gear 41 that meshes with the second driven gear 40 is provided on the output shaft 4 a of the second MG 4.
  • the second MG 4 is connected to the second input shaft 14 so that power can be transmitted.
  • the transmission 10 is switched to the first speed or the second speed, and the drive wheels 6 are driven by the first MG3 or the second MG4.
  • the operations of the first clutch 15, the second clutch 16, and the sleeves 35 to 37 are controlled by the vehicle control device 50.
  • the operations of the engine 2, the first MG3, and the second MG4 are also controlled by the vehicle control device 50.
  • the vehicle control device 50 is configured as a computer unit including a microprocessor and peripheral devices such as RAM and ROM necessary for its operation.
  • the vehicle control device 50 holds various control programs for appropriately driving the vehicle 1A.
  • the vehicle control device 50 executes control of the control objects such as the engine 2 and the MGs 3 and 4 by executing these programs.
  • Various sensors for acquiring information related to the vehicle 1A are connected to the vehicle control device 50. For example, a vehicle speed sensor 51, an accelerator opening sensor 52, an SOC sensor 53, and the like are connected to the vehicle control device 50.
  • the vehicle speed sensor 51 outputs a signal corresponding to the speed (vehicle speed) of the vehicle 1A.
  • the accelerator opening sensor 52 outputs a signal corresponding to the depression amount of the accelerator pedal, that is, the accelerator opening.
  • the SOC sensor 53 outputs a signal corresponding to the remaining amount of a battery (not shown) connected to the MGs 3 and 4.
  • the vehicle control device 50 is also connected with a shift lever (not shown). In addition to this, various sensors, switches, and the like are connected to the vehicle control device 50, but these are not shown.
  • This vehicle 1A is provided with a plurality of driving modes.
  • As the travel mode an EV travel mode in which the drive wheels 6 are driven by the first MG 3 or the second MG 4 and an engine travel mode in which the drive wheels 6 are mainly driven by the engine 2 are set.
  • the vehicle control device 50 switches the travel mode of the vehicle 1A based on the vehicle speed or the like. For example, when the vehicle speed is less than a predetermined determination speed, the vehicle control device 50 switches the travel mode to the EV travel mode. In the EV travel mode, both the first clutch 15 and the second clutch 16 are switched to the released state, and the engine 2 is disconnected.
  • the travel mode is switched to the engine travel mode.
  • the clutch on the input shaft side having the gear stage used for traveling of the vehicle 1A is switched to the fully engaged state, and the other clutch is switched to the released state.
  • the vehicle control device 50 switches the gear position of the transmission 10 based on the vehicle speed and the accelerator opening.
  • a shift diagram showing the relationship between the vehicle and the accelerator opening and the gear position is stored as a map. Since this shift diagram is a well-known one that is generally used for transmission control, detailed description thereof will be omitted.
  • the vehicle control device 50 sets a gear position according to the current traveling state of the vehicle 1 based on this shift diagram. Then, the operation of each of the sleeves 35 to 37 is controlled so that the transmission 10 switches to the set gear position.
  • the fifth gear train G5 corresponding to the fifth gear and the fifth gear train G6 corresponding to the sixth gear are interposed between the first input shaft 13 and the first output shaft 17. .
  • the gear trains G5 and G6 are connected to the first output shaft 17 by a common second sleeve 36. Therefore, these gear trains G5 and G6 cannot be connected to the first output shaft 17 at the same time. Therefore, the vehicle control device 50 assists in driving the drive wheels 6 by outputting power from the second MG 4 when upshifting from the fifth speed to the sixth speed and when downshifting from the sixth speed to the fifth speed.
  • FIG. 2 shows a shift control routine executed by the vehicle control device 50 to control the transmission 10 in this way.
  • This control routine is repeatedly executed at a predetermined cycle while the vehicle 1A is traveling.
  • the vehicle control device 50 first acquires the state of the vehicle 1A in step S11.
  • the state of the vehicle 1A for example, the vehicle speed, the accelerator opening, the remaining battery level, the current gear position, and the like are acquired.
  • the driving force requested by the driver to the vehicle 1A (required driving force) is calculated based on the accelerator opening. Since this calculation method may use a well-known method, description thereof is omitted.
  • various information related to the state of the vehicle 1A is acquired.
  • the vehicle control device 50 determines whether or not a shift condition for shifting the shift speed of the transmission 10 from the current shift speed to another shift speed is satisfied. Whether or not the speed change condition is satisfied may be determined by a known method based on the above-described speed change diagram. If it is determined that the speed change condition is not satisfied, the current control routine is terminated. On the other hand, if it is determined that the speed change condition is satisfied, the process proceeds to step S13, and the vehicle control device 50 determines whether or not the current speed change is a speed change from the fifth speed to the sixth speed or a speed change from the sixth speed to the fifth speed. This determination may also be made based on the shift diagram.
  • step S14 the vehicle control device 50 executes the normal shift control.
  • the first sleeve 35 or the first sleeve 35 is set so that the input shaft not currently involved in traveling and the output system 12 can transmit rotation in the gear train corresponding to the shift stage after the shift.
  • the three sleeves 37 are controlled.
  • the clutch on the side with the gear of the current gear stage is fully engaged while the clutch on the side with the gear of the gear stage after the shift is switched from the released state to the fully engaged state. Switch from state to release state.
  • the first sleeve 35 or the third sleeve 37 is controlled so that the rotation transmission by the gear train of the shift stage before the shift is stopped.
  • the same method as a well-known dual clutch type transmission is used for such a gear position switching method. Therefore, detailed description is omitted. Thereafter, the current control routine is terminated.
  • step S15 the process proceeds to step S15, and the vehicle control device 50 drives the drive wheels 6 with the second MG4 during the shift. It is determined whether or not it is possible to assist. As is well known, the power that can be output from the motor / generator varies depending on the remaining battery level, the temperature of the battery, the temperature of the second MG 4, and the like. Therefore, based on these, the upper limit of the driving force that can be output from the second MG 4 is calculated. Then, when the upper limit of the driving force is equal to or less than the required driving force for the vehicle 1, it is determined that the assist is impossible.
  • step S16 the vehicle control device 50 prohibits the shift from the fifth speed to the sixth speed or the shift from the sixth speed to the fifth speed. Note that when the shift is prohibited in this way, the vehicle control device 50 outputs power from the engine 2 and each of the MGs 3 and 4 so that the drive wheels 6 are appropriately driven according to the vehicle speed and the accelerator opening. . Thereafter, the current control routine is terminated.
  • step S17 the process proceeds to step S17, and the vehicle control device 50 executes assist shift control.
  • the third sleeve 37 is switched to the fourth speed position.
  • the driving force corresponding to the required driving force is output from the second MG 4 to drive the driving wheels 6.
  • the second sleeve 36 is switched to a position corresponding to the post-shift gear position in the fifth speed position or the sixth speed position.
  • the driving force output from the second MG 4 is reduced so that the vehicle speed does not change suddenly while the first clutch 15 is engaged.
  • the third sleeve 37 is switched to the release position. Thereafter, the current control routine is terminated.
  • the sixth gear train G6 corresponding to the sixth speed is disposed between the first input shaft 13 and the output system 12, so that the transmission 10 Only by providing three sleeves 35 to 37 and a drive actuator for driving them, a 1st to 6th speed can be changed. Therefore, the cost of the vehicle can be reduced.
  • the second MG4 assists at the time of shifting, so the vehicle speed is suddenly increased. Can be suppressed. Further, since the shift is prohibited when the assist by the second MG 4 is impossible during these shifts, it is possible to suppress a sudden change in the vehicle speed also in this case. Therefore, it is possible to suppress a shock at the time of shifting.
  • FIGS. In these drawings, parts common to those in FIG.
  • the vehicle shown in these drawings also has a control system such as the vehicle control device 50 as in the case of the vehicle 1A in FIG. 1, but the illustration thereof is omitted.
  • FIG. 3 shows a first modification of the vehicle according to the first embodiment.
  • the first MG 3, the first driven gear 38, and the first driving gear 39 are omitted as compared with the vehicle 1A in FIG.
  • the rest is the same as the vehicle 1A in FIG. Therefore, even in the vehicle 1B, the transmission 10 can be shifted from the first speed to the sixth speed only by providing the three sleeves 35 to 37 and the drive actuator for driving them. Therefore, the cost of the vehicle can be reduced.
  • the vehicle control device 50 executes the shift control routine shown in FIG.
  • FIG. 4 shows a second modification of the vehicle according to the first embodiment.
  • the first MG3, the second MG4, the first driven gear 38, the first driving gear 39, the second driven gear 40, and the second driving gear 41 are compared with the vehicle 1A shown in FIG. Is omitted.
  • a motor generator 60 is provided on the drive shaft 19.
  • the motor / generator 60 is also a well-known motor / generator that functions as an electric motor and a generator, like the first MG 3 and the second MG 4.
  • the drive wheel 6 can be driven by driving the drive shaft 19 with the motor / generator 60.
  • the transmission 10 can be shifted from the first speed to the sixth speed only by providing the three sleeves 35 to 37 and the drive actuator for driving them. Therefore, the cost of the vehicle can be reduced.
  • the assist by the motor / generator 60 is impossible during these shifts, it is possible to prevent the vehicle speed from changing suddenly by prohibiting the shift. Therefore, it is possible to suppress a shock at the time of shifting.
  • the sixth speed corresponds to the specific even stage of the present invention
  • the fifth speed corresponds to the specific odd stage of the present invention
  • the first sleeve 35, the second sleeve 36, and the third sleeve 37 correspond to the coupling function of the present invention.
  • the vehicle control device 50 functions as the control means of the present invention, and by executing steps S15 and S16 in FIG. 2, the vehicle control device 50 as the shift prohibiting means of the present invention.
  • the fifth gear train G5 and the sixth gear train G6 correspond to the gear train group of the present invention.
  • a vehicle 1D according to a second embodiment of the present invention will be described with reference to FIG.
  • the vehicle 1D shown in this figure also has a control system such as the vehicle control device 50 as in the case of the vehicle 1A shown in FIG.
  • the first gear train G1, the third gear train G3, the fourth gear train G4, and the sixth gear train G6 are interposed between the first input shaft 13 and the first output shaft 17.
  • the second gear train G2 and the fifth gear train G5 are interposed between the second input shaft 14 and the second output shaft 18. That is, in this embodiment, the fourth gear train G4 and the fifth gear train G5 are interchanged as compared with the vehicle 1A of the first embodiment.
  • the rest is the same as the first embodiment.
  • the fourth drive gear 29 is fixed to the first input shaft 13 so as to rotate integrally with the first input shaft 13.
  • the fourth driven gear 30 is supported by the first output shaft 17 so as to be rotatable relative to the first output shaft 17.
  • the fifth drive gear 31 is fixed to the second input shaft 14 so as to rotate integrally with the second input shaft 14.
  • the fifth driven gear 32 is supported on the second output shaft 18 so as to be rotatable relative to the second output shaft 18.
  • the second sleeve 36 is provided between the fourth gear train G4 and the sixth gear train G6 arranged so as to be adjacent to each other.
  • the second sleeve 36 has a fourth speed position at which the first output shaft 17 and the fourth driven gear 30 mesh with the fourth driven gear 30 so that the first output shaft 17 and the fourth driven gear 30 rotate integrally, and the first output shaft 17 and the sixth driven gear 34 are integrated.
  • the sixth driven gear 34 and the sixth driven gear 34 are arranged so as to be able to rotate in the forward direction and the release position where the fourth driven gear 30 and the sixth driven gear 34 are not engaged with each other.
  • the third sleeve 37 is provided between the second gear train G2 and the fifth gear train G5 that are arranged adjacent to each other.
  • the third sleeve 37 has a second speed position where the second output shaft 18 and the second driven gear 26 mesh with the second driven gear 26 so that the second output shaft 18 and the second driven gear 26 rotate integrally, and the second output shaft 18 and the fifth driven gear 32 rotate integrally.
  • it is provided to be switchable between a fifth speed position that meshes with the fifth driven gear 32 and a release position that does not mesh with either the second driven gear 26 or the fifth driven gear 32.
  • the transmission 10 can be shifted from the first gear to the sixth gear only by providing the transmission 10 with the three sleeves 35 to 37 and the drive actuator for driving them. Therefore, the cost of the vehicle can be reduced.
  • the shock at the time of shifting can be suppressed by assisting the driving of the drive wheels 6 by the second MG 4 at the time of shifting from the 3rd speed to the 4th speed and at the time of shifting from the 4th speed to the 3rd speed.
  • the second MG 4 cannot assist during these shifts, it is possible to further suppress a shock during the shift by prohibiting the shift.
  • the 4th speed corresponds to a specific even stage of the present invention
  • the 3rd speed corresponds to a specific odd stage of the present invention
  • the third gear train G3 and the fourth gear train G4 correspond to the gear train group of the present invention.
  • a vehicle 1E according to a third embodiment of the present invention will be described with reference to FIG. In FIG. 6, parts common to those in FIG.
  • the vehicle 1E shown in this figure also has a control system such as the vehicle control device 50 as in the case of the vehicle 1A shown in FIG. 1, but these are not shown.
  • the first gear train G1, the second gear train G2, the fourth gear train G4, and the sixth gear train G6 are interposed between the first input shaft 13 and the first output shaft 17. is doing.
  • a third gear train G3 and a fifth gear train G5 are interposed between the second input shaft 14 and the second output shaft 18.
  • the second gear train G2 and the third gear train G3 are interchanged and the fourth gear train G4 and the fifth gear train G5 are interchanged as compared with the vehicle 1A of the first embodiment. .
  • the rest is the same as the first embodiment.
  • the second drive gear 25 and the fourth drive gear 29 are fixed to the first input shaft 13 so as to rotate integrally with the first input shaft 13.
  • the second driven gear 26 and the fourth driven gear 30 are supported on the first output shaft 17 so as to be rotatable relative to the first output shaft 17.
  • the third drive gear 27 and the fifth drive gear 31 are fixed to the second input shaft 14 so as to rotate integrally with the second input shaft 14.
  • the third driven gear 28 and the fifth driven gear 32 are supported on the second output shaft 18 so as to be rotatable relative to the second output shaft 18.
  • the first sleeve 35 is provided between the first gear train G1 and the second gear train G2 that are arranged adjacent to each other.
  • the first sleeve 35 has a first speed position at which the first output shaft 17 and the first driven gear 24 mesh with the first driven gear 24 so that the first output shaft 17 and the first driven gear 24 rotate integrally, and the first output shaft 17 and the second driven gear 26 integrally.
  • a second speed position that meshes with the second driven gear 26 so as to rotate and a release position that meshes with neither the first driven gear 24 nor the second driven gear 26 are switchable.
  • the second sleeve 36 is provided between the fourth gear train G4 and the sixth gear train G6 arranged so as to be adjacent to each other.
  • the second sleeve 36 has a fourth speed position at which the first output shaft 17 and the fourth driven gear 30 mesh with the fourth driven gear 30 so that the first output shaft 17 and the fourth driven gear 30 rotate integrally, and the first output shaft 17 and the sixth driven gear 34 rotate integrally.
  • it is provided so as to be switchable between a sixth speed position that meshes with the sixth driven gear 34 and a release position that does not mesh with either the fourth driven gear 30 or the sixth driven gear 34.
  • the third sleeve 37 is provided between the third gear train G3 and the fifth gear train G5 arranged so as to be adjacent to each other.
  • the third sleeve 37 has a third speed position that meshes with the third driven gear 28 so that the second output shaft 18 and the third driven gear 28 rotate integrally, and the second output shaft 18 and the fifth driven gear 32 rotate integrally.
  • it is provided so as to be switchable between a fifth speed position that meshes with the fifth driven gear 32 and a release position that does not mesh with either the third driven gear 28 or the fifth driven gear 32.
  • the second speed is achieved.
  • the third speed is set.
  • the second sleeve 36 is switched to the fourth speed position and both the first sleeve 35 and the third sleeve 37 are switched to the release position, the fourth speed is achieved.
  • the transmission 10 can be shifted from the first gear to the sixth gear only by providing the transmission 10 with the three sleeves 35 to 37 and the drive actuator for driving them. Therefore, the cost of the vehicle can be reduced.
  • the shock at the time of shifting can be suppressed by assisting the driving of the drive wheels 6 by the second MG 4 at the time of shifting from the first speed to the second speed and at the time of shifting from the second speed to the first speed.
  • the second MG 4 cannot assist during these shifts, it is possible to further suppress a shock during the shift by prohibiting the shift.
  • the second speed corresponds to the specific even stage of the present invention
  • the first speed corresponds to the specific odd stage of the present invention
  • the first gear train G1 and the second gear train G2 correspond to the gear train group of the present invention.
  • a vehicle 1F according to a fourth embodiment of the present invention will be described with reference to FIG.
  • the vehicle 1F shown in this figure also has a control system such as the vehicle control device 50 as in the case of the vehicle 1A shown in FIG. 1, but the illustration thereof is omitted.
  • the vehicle 1F is different from the first embodiment in that a reverse gear train GR is provided between the second input shaft 14 and the second output shaft 18. The rest is the same as the first embodiment.
  • the reverse gear train GR includes a reverse drive gear 70, an intermediate gear 71, and a reverse driven gear 72.
  • the reverse drive gear 70 is fixed to the second input shaft 14 so as to rotate integrally with the second input shaft 14.
  • the reverse driven gear 72 is supported by the second output shaft 18 so as to be rotatable relative to the second output shaft 18.
  • the intermediate gear 71 is rotatably supported by a case (not shown) of the transmission 10.
  • the intermediate gear 71 meshes with each of the reverse drive gear 70 and the reverse drive gear 72.
  • a fourth sleeve 73 is provided on the second output shaft 18.
  • the fourth sleeve 73 is supported by the second output shaft 18 so as to rotate integrally with the second output shaft 18 and move in the axial direction.
  • the fourth sleeve 73 is switchably provided between a reverse position where the second output shaft 18 and the reverse driven gear 72 are engaged with the reverse driven gear 72 and a release position where the second output shaft 18 and the reverse driven gear 72 are not engaged with the reverse driven gear 72.
  • the vehicle 1F when the fourth sleeve 72 is switched to the reverse position and any of the first to third sleeves 35 to 37 is switched to the release position, the vehicle 1F can be driven backward by the engine 2.
  • the vehicle 1F can be made more compact than when arranged on an input shaft with a large number of transmission gear trains.
  • the sixth speed corresponds to the specific even stage of the present invention
  • the fifth speed corresponds to the specific odd stage of the present invention
  • the vehicle of the present invention is not limited to the vehicles shown in the above embodiments.
  • the vehicle of this invention should just be equipped with the transmission which satisfy
  • the vehicle transmission of the present invention has 4n + 2 sets (where n is an integer of 1 or more) of forward gear trains. That is, it is a dual clutch type transmission with 6 forward speeds, 10 forward speeds, 14 forward speeds and the like. Also, one of the even gears (specific even number) and the odd number (specific odd number) of one of the specific even gears, either the odd number on the low speed side or the odd number on the high speed side. Are disposed between the same input shaft and output shaft.
  • the number of gear trains arranged between the first input shaft 13 and the first output shaft 17 and the number of gear trains arranged between the second input shaft 14 and the second output shaft 18 are any. Will be even. With such a dual clutch type transmission, there is no need to provide one sleeve and a drive actuator for driving the sleeve for a set of gear trains. Therefore, cost can be reduced.
  • the present invention can be implemented in various forms without being limited to the above-described forms.
  • the input shaft and the motor / generator are connected via a gear so that power can be transmitted, but the output shaft of the motor / generator may be directly connected to the input shaft.
  • the vehicle 1G shown in this figure also has a control system such as the vehicle control device 50 as in the case of the vehicle 1A shown in FIG.
  • the first input shaft 13 so that the first drive gear 23, the third drive gear 27, the fifth drive gear 31, and the sixth drive gear 33 can rotate relative to the first input shaft 13. It is supported by.
  • first driven gear 24, the third driven gear 28, the fifth driven gear 32, and the sixth driven gear 34 are fixed to the first output shaft 17 so as to rotate integrally with the first output shaft 17.
  • the second drive gear 25 and the fourth drive gear 29 are supported by the second input shaft 14 so as to be rotatable relative to the second input shaft 14.
  • the second driven gear 26 and the fourth driven gear 30 are fixed to the second output shaft 18 so as to rotate integrally with the second output shaft 18.
  • a first sleeve 35 and a second sleeve 36 are provided on the first input shaft 13.
  • a third sleeve 37 is provided on the second input shaft 14.
  • the sleeves 35 to 37 may be provided on the input shafts 13 and 14.
  • the number of sleeves and the number of drive actuators for driving them can be reduced as in the above-described embodiments. Therefore, the cost of the vehicle can be reduced.
  • the vehicle 1H shown in this figure also has a control system such as the vehicle control device 50 as in the case of the vehicle 1A shown in FIG. 1, but the illustration thereof is omitted.
  • the second output shaft 18 is omitted.
  • the first driven gear 24, the second driven gear 26, the third driven gear 28, the fourth driven gear 30, the fifth driven gear 32, and the sixth driven gear 34 are fixed to the first output shaft 17.
  • the first output shaft 17 is connected to the differential mechanism 5 so that power can be transmitted.
  • the number of sleeves and the number of drive actuators for driving them can be reduced as in the above-described embodiments. Therefore, the cost of the vehicle can be reduced.
  • the sleeves 35 to 37 may be provided on the first output shaft 17.
  • FIG. 10 shows a modification of the vehicle according to the sixth embodiment.
  • the second drive gear 25 is meshed with the first driven gear 24, and the fourth drive gear 29 is meshed with the third driven gear 28.
  • the second drive gear 25 and the first driven gear 24 constitute a second gear train G2.
  • the fourth drive gear 29 and the third driven gear 28 constitute a fourth gear train G4.
  • the gear ratio between the second drive gear 25 and the first driven gear 24 is set to be the same as the gear ratio between the second drive gear 25 and the second driven gear 26 in the above-described form.
  • the gear ratio between the fourth drive gear 29 and the third driven gear 28 is set to be the same as the gear ratio between the fourth drive gear 29 and the fourth driven gear 30 in the above-described form.
  • the number of gears provided on the first output shaft 17 can be reduced, the cost of the vehicle can be further reduced.
  • the vehicle 1J shown in this figure also has a control system such as the vehicle control device 50 as in the case of the vehicle 1A in FIG. 1, but the illustration thereof is omitted.
  • the first gear train G1, the sixth gear train G6, the third gear train G3, and the fifth gear are arranged between the first input shaft 13 and the first output shaft 17 from the engine side. These gear trains are provided in the order of the train G5.
  • the first sleeve 35 is provided between the first gear train G1 and the sixth gear train G6.
  • the first sleeve 35 has a first speed position at which the first output shaft 17 and the first driven gear 24 mesh with the first driven gear 24 so that the first output shaft 17 and the first driven gear 24 rotate integrally, and the first output shaft 17 and the sixth driven gear 34 are integrated.
  • the 6th speed gear which meshes with the 6th driven gear 34 so that it may rotate in rotation, and the release position which does not mesh with any of the 1st driven gear 24 and the 6th driven gear 34 are provided so that switching is possible.
  • the second sleeve 36 is provided between the third gear train G3 and the fifth gear train G5.
  • the second sleeve 36 has a third speed position at which the first output shaft 17 and the third driven gear 28 mesh with the third driven gear 28 so that the first output shaft 17 and the third driven gear 28 rotate integrally, and the first output shaft 17 and the fifth driven gear 32 are integrated.
  • the fifth driven gear 32 and the fifth driven gear 32 are arranged so as to switch between a fifth speed position and a release position where the third driven gear 28 and the fifth driven gear 32 are not engaged.
  • the number of sleeves and the number of drive actuators for driving them can be reduced as in the above-described embodiments. Therefore, the cost of the vehicle can be reduced.
  • the sleeves 35 to 37 may be provided on the input shafts 13 and 14, respectively.
  • FIG. 12 shows a hybrid vehicle 1K according to this embodiment.
  • the vehicle control device 50 switches the travel mode of the vehicle 1K based on the vehicle speed or the like. Further, when a large driving force is required for the vehicle 1K because, for example, the accelerator pedal is greatly depressed during travel of the vehicle 1K, the vehicle control device 50 shifts the shift stage from the current shift stage to the lower one side. Downshift to shift to the next gear position. Such a shift down is also called a kick down.
  • a fifth gear train G5 corresponding to the fifth speed and a fifth gear train G6 corresponding to the sixth speed are interposed between the first input shaft 13 and the first output shaft 17.
  • the gear trains G5 and G6 are connected to the first output shaft 17 by a common second sleeve 36. Therefore, these gear trains G5 and G6 cannot be connected to the first output shaft 17 at the same time. Therefore, the vehicle control device 50 assists in driving the drive wheels 6 by outputting power from the second MG 4 when shifting down from the sixth speed to the fifth speed.
  • the gear is shifted down from the sixth speed to the fourth speed.
  • FIG. 13 shows a shift control routine executed by the vehicle control device 50 to control the transmission 10 in this way.
  • This control routine is repeatedly executed at a predetermined cycle while the vehicle 1K is traveling.
  • the vehicle control device 50 first acquires the state of the vehicle 1K in step S21.
  • the state of the vehicle 1K for example, the vehicle speed, the accelerator opening, the current gear position, and the like are acquired.
  • the driving force requested by the driver to the vehicle 1K (required driving force) is calculated based on the accelerator opening. Since this calculation method may use a well-known method, description thereof is omitted. In this process, various other information regarding the state of the vehicle 1K is acquired.
  • the vehicle control device 50 determines whether or not the travel mode is the engine travel mode. If it is determined that the engine running mode is not selected, the current control routine is terminated. On the other hand, when it determines with it being engine driving mode, it progresses to step S23, and the vehicle control apparatus 50 determines whether the transmission 10 is 6 speed. If it is determined that the transmission 10 is not in sixth speed, the current control routine is terminated. On the other hand, when it is determined that the transmission 10 is in sixth speed, the process proceeds to step S24, and the vehicle control device 50 determines whether or not a kick down is requested. This determination may be performed by a known method based on the accelerator opening or the like as described above. If it is determined that kickdown is not requested, the current control routine is terminated.
  • step S25 the vehicle control device 50 determines whether the requested driving force is equal to or less than a predetermined upper limit value.
  • This upper limit value is a value set as a reference for determining whether or not the required driving force can be output from the second MG 4.
  • This upper limit value may be set based on the maximum torque of the second MG 4, for example. Further, the upper limit value may be set based on the state of charge (SOC) of the battery at the time of this determination, the inverter for controlling the second MG4, the battery, the temperature of the second MG4, and the like.
  • SOC state of charge
  • step S26 the vehicle control device 50 executes the fifth speed shift control.
  • the third sleeve 37 is switched to the fourth speed position, and power corresponding to the required driving force is output from the second MG 4.
  • the second sleeve 26 is switched from the sixth speed position to the fifth speed position.
  • the third sleeve 37 is switched to the release position, and the output of power from the second MG 4 is stopped.
  • the transmission 10 is shifted to the fifth speed.
  • the current control routine is terminated.
  • step S27 the vehicle control device 50 executes the 4-speed shift control.
  • the fourth speed shift control the third sleeve 37 is switched to the fourth speed position while the second clutch 16 is switched to the half-clutch state.
  • the second clutch 16 is switched to the fully engaged state while switching the first clutch 15 to the released state.
  • the second sleeve 36 is switched to the release position.
  • the transmission 10 is shifted to the fourth speed.
  • the current control routine is terminated.
  • the requested driving force is less than the upper limit value, that is, the requested driving force.
  • the transmission 10 is switched to the fifth speed while the driving wheel 6 is driven by the second MG 4.
  • the required driving force is output from the second MG 4 at the time of shifting, and the fluctuation of the driving force of the vehicle 1K at the time of shift down can be reduced. Therefore, it is possible to suppress a shock at the time of shifting.
  • the transmission 10 is switched to the fourth speed while the second clutch 16 is in a half-clutch state.
  • the fourth gear train G4 corresponding to the fourth speed is interposed between the second input shaft 14 and the second output shaft 18. Therefore, power transmission between the first input shaft 13 and the first output shaft 17 is established in the sixth gear train G6, while power transmission between the second input shaft 14 and the second output shaft 18 is performed in the fourth gear train. It can be established at G4. Therefore, the period during which torque loss occurs can be eliminated by switching the transmission 10 to the fourth speed in this way. Therefore, it is possible to suppress a shock at the time of shifting.
  • the sixth gear train G6 is provided between the first input shaft 13 and the first output shaft 17 since the sixth gear train G6 is provided between the first input shaft 13 and the first output shaft 17, only the three sleeves 35 to 37 and the actuators for driving them are provided for the first speed. Up to 6 speeds can be changed. Therefore, cost can be reduced.
  • the shift stage after the shift is changed according to whether or not the required driving force can be output from the second MG 4 at the time of downshifting, but the criterion for changing the shift stage after the shift is not limited to this.
  • the criterion for changing the shift stage after the shift is not limited to this. For example, even if not all of the required driving force can be output from the second MG 4, a part of the required driving force is output from the second MG 4, so that the variation of the driving force of the vehicle 1K at the time of downshifting can be reduced. You may change to 5th speed.
  • the speed is changed from the sixth speed to the fourth speed.
  • the vehicle control device 50 functions as the shift control means of the present invention by executing the control routine of FIG.
  • the sixth speed corresponds to a specific even number of stages of the present invention.
  • the vehicle to which the present invention is applied is not limited to the vehicle shown in FIG.
  • the present invention can be applied to various vehicles capable of driving the drive wheels 6 with a motor / generator even when power transmission between the first input shaft 13 and the first output shaft 17 is interrupted.
  • the present invention may be applied to the vehicle 1L shown in FIG. In FIG. 14, parts common to FIG.
  • illustration of the control system is omitted.
  • the transmission 10 can be controlled by executing the shift control routine shown in FIG. And by performing this control, the same effect as the form mentioned above can be acquired.
  • the present invention may be applied to the vehicle 1M shown in FIG. 15 that are the same as those in FIG. 12 are given the same reference numerals, and descriptions thereof are omitted. Further, in this figure, illustration of the control system is omitted. As shown in this figure, in this vehicle 1M, the first MG3, the second MG4, the first driven gear 38, the first driving gear 39, the second driven gear 40, and the second MG3 are compared with the vehicle 1K in FIG. The drive gear 41 is omitted. Instead, a motor generator 60 is provided on the drive shaft 19. The motor / generator 60 is also a well-known motor / generator that functions as an electric motor and a generator, like the first MG 3 and the second MG 4.
  • the drive wheels 6 can be driven by the motor / generator 60. Therefore, even in the vehicle 1M, the transmission 10 can be controlled by executing the shift control routine shown in FIG. And thereby, the effect similar to the form mentioned above can be acquired.
  • the motor / generator 60 corresponds to the electric motor of the present invention.
  • the vehicle transmission 10 to which the present invention is applied is not limited to the above-described transmission.
  • the present invention has 4n + 2 sets of gear trains, gear trains corresponding to odd gears and even gears, and one of the gears of four or more speeds (hereinafter referred to as a specific even gear). Is disposed between the first input shaft 13 and the first output shaft 17, and the gear train corresponding to the remaining gear speeds other than the specific even gear speed among the even speed gears is connected to the second input shaft 14 and the first gear speed.
  • the present invention can be applied to a vehicle on which various transmissions interposed between the two output shafts 18 are mounted.
  • such a transmission is, for example, a dual clutch type transmission having 6 forward speeds, 10 forward speeds, 14 forward speeds, and the like.
  • the specific even stage is, for example, 4th speed, 6th speed, 8th speed, or the like. Even in a vehicle equipped with such a transmission, a shock at the time of a shift can be suppressed by executing the shift control routine shown in FIG. 2 and shifting down from a specific even speed to a lower speed.
  • the present invention can be implemented in various forms without being limited to the above-described forms.
  • the input shaft and the motor / generator are connected via a gear so that power can be transmitted, but the output shaft of the motor / generator may be directly connected to the input shaft.
  • FIG. 16 shows a hybrid vehicle 1N according to this embodiment.
  • the second MG 4 is provided on the second input shaft 14.
  • a vehicle speed sensor 51, an accelerator opening sensor 52, an SOC sensor 53, a first MG rotation speed sensor 54, a second MG rotation speed sensor 55, and a battery temperature sensor 56 are connected to the vehicle control device 50. .
  • the first MG rotational speed sensor 54 outputs a signal corresponding to the rotational speed of the output shaft 3a of the first MG3.
  • the second MG rotation speed sensor 55 outputs a signal corresponding to the rotation speed of the second MG 4, that is, the rotation speed of the second input shaft 14.
  • the battery temperature sensor 56 outputs a signal corresponding to the battery temperature.
  • the vehicle control device 50 switches the traveling mode of the vehicle 1 based on the vehicle speed or the like.
  • the vehicle control device 50 appropriately changes the gear position of the transmission 10 based on the vehicle speed and the accelerator opening.
  • a fifth gear train G5 corresponding to the fifth speed and a fifth gear train G6 corresponding to the sixth speed are interposed between the first input shaft 13 and the first output shaft 17.
  • the gear trains G5 and G6 are connected to the first output shaft 17 by a common second sleeve 36. Therefore, these gear trains G5 and G6 cannot be connected to the first output shaft 17 at the same time. Therefore, the vehicle control device 50 switches the speed stage of the transmission 10 from the sixth speed to the fifth speed in advance when the second MG 4 can assist the driving of the driving wheels 6.
  • FIG. 17 shows a shift control routine executed by the vehicle control device 50 to control the transmission 10 in this way.
  • This control routine is repeatedly executed at a predetermined cycle while the vehicle 1N is traveling. By executing this control routine, the vehicle control device 50 functions as the speed change means of the present invention.
  • the vehicle control device 50 first acquires the state of the vehicle 1N in step S31.
  • the state of the vehicle 1N for example, the vehicle speed, the accelerator opening, the rotation speed of the output shaft 3a of the first MG3, the rotation speed of the second MG4, the charge state of the battery, the temperature of the battery, the current shift speed, and the like are acquired.
  • various other information related to the state of the vehicle 1N is acquired.
  • the vehicle control device 50 determines whether or not the gear position of the transmission 10 is the sixth speed. If it is determined that the gear position of the transmission 10 is any one of the first to fifth gears, the current control routine is terminated.
  • step S33 the vehicle control device 50 calculates the torque (requested torque) Td requested by the driver to the vehicle 1N.
  • This required torque Td may be calculated by a known calculation method based on the accelerator opening and the vehicle speed. For example, the relationship between the accelerator opening, the vehicle speed, and the required torque Td is obtained in advance by experiments, numerical calculations, and the like, and stored in the ROM of the vehicle control device 50 as a map. And what is necessary is just to calculate with reference to the map.
  • the vehicle control device 50 calculates a difference (hereinafter also referred to as torque change amount) ⁇ Td between the request torque Td calculated this time and the request torque calculated last time.
  • vehicle control apparatus 50 calculates a maximum value of torque that can be output from second MG 4 (hereinafter also referred to as maximum torque) Ta.
  • maximum torque Ta a maximum value of torque that can be output from second MG 4
  • the torque that can be output from the second MG 4 varies depending on the state of charge of the battery, the temperature of the battery, and the number of revolutions when the second MG 4 is operated to assist driving of the drive wheels 6. Therefore, the maximum torque Ta also changes accordingly. For example, the maximum torque Ta decreases as the remaining battery level decreases or as the battery temperature increases.
  • the maximum torque Ta decreases as the rotational speed increases.
  • This rotational speed may be calculated based on the current vehicle speed and the gear ratio of the fourth gear train G4. Therefore, the relationship between these and the maximum torque is obtained in advance by experiments, numerical calculations, etc., and stored in the ROM of the vehicle control device 50 as a map.
  • the maximum torque Ta may be calculated with reference to this map.
  • the vehicle control device 50 determines whether or not the required torque Td is larger than a value obtained by subtracting a predetermined determination value ⁇ from the maximum torque Ta and less than the maximum torque Ta.
  • the determination value ⁇ is a value set for determining whether the required torque Td is close to the maximum torque Ta. For example, a number Nm (Newton meter) is set as the determination value ⁇ .
  • Nm Newton meter
  • the maximum torque Ta becomes the upper limit value in the range between the value obtained by subtracting the determination value ⁇ from the maximum torque Ta and the maximum torque Ta.
  • a range between the value obtained by subtracting the determination value ⁇ from the maximum torque Ta and the maximum torque Ta is set in the vicinity of the maximum torque Ta.
  • step S37 the vehicle control device 50 has a torque change amount ⁇ Td greater than 0, and It is determined whether it is less than the determination upper limit ⁇ .
  • This determination upper limit value ⁇ is a value set as a reference for determining whether or not the change in the required torque is gradual. For example, a number Nm is set as the determination upper limit ⁇ . If it is determined that the torque change amount ⁇ Td is 0 or the torque change amount ⁇ Td is greater than or equal to the determination upper limit value ⁇ , the current control routine is terminated.
  • step S38 the vehicle control device 50 executes the fifth speed shift control.
  • the fifth speed shift control first, the third sleeve 37 is switched to the fourth speed position. Subsequently, the second sleeve 36 is switched to the release position while controlling the second MG 4 so that the required torque is output from the second MG 4. Thereafter, the second sleeve 36 is switched to the fifth speed position.
  • the first clutch 15 is switched to the temporarily released state at this time. This control is not necessary in the EV travel mode. Then, the required torque is output from the engine 2 or the first MG 3. Thereafter, the current control routine is terminated.
  • the required torque Td is greater than the value obtained by subtracting the determination value ⁇ from the maximum torque Ta, less than the maximum torque Ta, the torque change amount ⁇ Td is greater than 0, and the determination upper limit If the value is less than ⁇ , the transmission 10 is switched from the sixth speed to the fifth speed. That is, when the required torque Td is near the maximum torque Ta of the second MG4, the transmission 10 is shifted to the fifth speed when the driving of the drive wheels 6 can be assisted by the second MG4. Therefore, the driving of the drive wheels 6 can be reliably assisted by the second MG 4 during the shift to the fifth speed. Therefore, it is possible to suppress the occurrence of shock at the time of shifting. Further, since the downshift from the 6th speed to the 4th speed can be suppressed, it is possible to suppress the engine 2 from rapidly increasing during the shift. Therefore, the uncomfortable feeling given to the driver can be reduced.
  • a range between the value obtained by subtracting the determination value ⁇ from the maximum torque Ta and the maximum torque Ta corresponds to the assist determination range of the present invention.
  • a range between 0 and the determination upper limit ⁇ corresponds to the determination range of the present invention.
  • the vehicle transmission 10 to which the present invention is applied is not limited to the above-described transmission.
  • the present invention has 4n + 2 sets of gear trains, and the gear train corresponding to one of the gear trains corresponding to odd gears and the even gears (hereinafter referred to as specific even gears) is the first input shaft. 13 and the first output shaft 17, and a gear train corresponding to the remaining gears other than the specific even gear among the even gears is interposed between the second input shaft 14 and the second output shaft 18.
  • a transmission is, for example, a dual clutch type transmission having 6 forward speeds, 10 forward speeds, 14 forward speeds, and the like.
  • the specific even stage is, for example, 4th speed, 6th speed, 8th speed, or the like. Even in a vehicle equipped with such a transmission, the shift control routine shown in FIG. 2 can be executed to downshift from a specific even speed to an odd speed on the low speed side, thereby suppressing shocks during shifting. .
  • the present invention can be implemented in various forms without being limited to the above-described forms.
  • the first MG may be directly connected to the input shaft in the same manner as the second MG.
  • the second MG may be connected to the second MG and the input shaft through a gear so that power can be transmitted, similarly to the first MG.
  • the vehicle to which the present invention is applied is not limited to the vehicle shown in the above-described form.
  • the first MG may be omitted from the vehicle having the above-described form, and the present invention may be applied to the vehicle.
  • the present invention may be applied to a vehicle in which the first MG and the second MG are omitted and a motor / generator is provided on the drive shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 前進6段のデュアルクラッチ式の変速機(10)を備えたハイブリッド車両(1A)において、変速機(10)の第1入力軸(13)と第1出力軸(17)の間に1速に対応する第1ギヤ列(G1)、3速に対応する第3ギヤ列(G3)、5速に対応する第5ギヤ列(G5)、及び6速に対応する第6ギヤ列(G6)を配置し、第2入力軸(14)と第2出力軸(18)の間に2速に対応する第2ギヤ列(G2)及び4速に対応する第4ギヤ列(G4)を配置する。第1ギヤ列(G1)と第3ギヤ列(G3)の間に第1スリーブ(35)を、第5ギヤ列(G5)と第6ギヤ列(G6)の間に第2スリーブ(36)を、第2ギヤ列(G2)と第4ギヤ列(G4)の間に第3スリーブ(37)をそれぞれ設ける。そして、第2MG(4)は、第2入力軸(14)に動力を出力可能に設けられている。

Description

ハイブリッド車両
 本発明は、デュアルクラッチ式の変速機を備えたハイブリッド車両に関する。
 第1入力軸と出力系との間及び第2入力軸と出力系との間のそれぞれにギヤ列が設けられ、それら2つの入力軸のいずれか一方を選択的に内燃機関と接続するデュアルクラッチ式の変速機が知られている。また、このようなデュアルクラッチ式の変速機が搭載されて各入力軸にそれぞれ電動モータが接続され、一方の入力軸と出力系との間に1速、3速、及び5速に対応するギヤ列が設けられるとともに他方の入力軸と出力系との間に2速、4速、及び6速に対応するギヤ列が設けられたハイブリッド車両が知られている(特許文献1参照)。その他、本発明に関連する先行技術文献として特許文献2、3が存在する。
特開2003-079005号公報 特開2010-208376号公報 特開2008-120166号公報
 特許文献1の車両では、各入力軸と出力系との間にそれぞれ3組のギヤ列が設けられている。この場合、回転伝達に使用するギヤ列を切り替えるためのハブスリーブと駆動アクチュエータを各入力軸にそれぞれ2個設ける必要がある。そのため、車両のコストが高くなるおそれがある。
 そこで、本発明は、車両のコストを低減可能なハイブリッド車両を提供することを目的とする。
 本発明のハイブリッド車両は、内燃機関と、前記内燃機関と第1クラッチを介して接続された第1入力軸及び前記内燃機関と第2クラッチを介して接続された第2入力軸を含む入力系と、駆動輪と動力伝達可能に接続された出力系と、一部が前記第1入力軸と前記出力系との間に介在するとともに残りが前記第2入力軸と前記出力系との間に介在し、かつ互いに変速比が相違してそれぞれが異なる前進用の変速段に対応する4n+2組(但し、nは1以上の整数)のギヤ列と、前記4n+2組のギヤ列のうち互いに隣接するように配置された一対のギヤ列の間に設けられ、前記一対のギヤ列のうちのいずれか一方のギヤ列による回転伝達を選択的に成立させる複数の結合機構と、を有するデュアルクラッチ式の変速機と、を備えたハイブリッド車両において、前記4n+2組のギヤ列のうち、2n+2組のギヤ列が前記第1入力軸と前記出力系との間に介在し、2n組のギヤ列が前記第2入力軸と前記出力系との間に介在し、前記第2入力軸又は前記出力系に動力を出力可能なように設けられた電動機をさらに備えている。
 本発明のハイブリッド車両によれば、第1入力軸と出力系との間に介在するギヤ列の数と、第2入力軸と出力系との間に介在するギヤ列の数がいずれも偶数であるため、1つのギヤ列のために1つの結合機構を設ける必要がない。この場合、結合機構の数を低減できるので、車両のコストを低減できる。
 本発明のハイブリッド車両の一形態において、互いに隣り合う変速段を構成するギヤ列群が前記第1入力軸と前記出力系との間に1つのみ設けられてもよい。この場合、第2入力軸と出力系との間には互いに隣り合う変速段を構成するギヤ列群が設けられない。そして、ギヤ列群は、第1入力軸と出力系との間に1つのみ設けられる。そのため、このギヤ列群の変速段間以外の変速を行う場合には、第1クラッチ及び第2クラッチを適宜に制御することにより、変速時に駆動輪が駆動されない期間、いわゆるトルク抜けを抑制できる。そして、ギヤ列群の変速段間の変速を行う場合には、電動機にて駆動輪の駆動をアシストできる。そのため、この場合もトルク抜けを抑制できる。このように電動機によるアシストは、ギヤ列群の変速段間の変速時に行えばよいので、この電動機によるアシストを最小限に留めることができる。
 本発明のハイブリッド車両の一形態において、前記4n+2組のギヤ列は、偶数段のうちの1つである特定偶数段に対応するギヤ列と、前記特定偶数段の一段低速側の奇数段又は一段高速側の奇数段のいずれか一方である特定奇数段に対応するギヤ列と、が前記第1入力軸と前記出力系との間に介在し、かつ前記特定偶数段及び前記特定奇数段以外の残りの変速段に対応するギヤ列が、前記第1入力軸と前記出力系との間に介在するギヤ列の数及び前記第2入力軸と前記出力系との間に介在するギヤ列の数がいずれも偶数になるように、前記入力系と前記出力系との間に介在してもよい。この形態によれば、特定偶数段と特定奇数段とが第1入力軸と出力系との間に介在する。そして、電動機は第2入力軸又は出力系に動力を出力可能に設けられている。そのため、特定偶数段と特定奇数段との間で変速する場合には電動機から出力された動力で駆動輪の駆動をアシストできる。
 この形態において、前記特定偶数段及び前記特定奇数段のうちの一方から他方に変速する場合には、その変速時に前記駆動輪に伝達される動力の変動を抑えるように前記電動機を制御する制御手段をさらに備えていてもよい。この形態によれば、特定偶数段と特定奇数段との間で変速する場合に車両の速度が急に変化することを抑制できる。そのため、変速時のショックを抑制することができる。
 また、前記特定偶数段が前記変速機の変速段のうちの最高段であり、前記特定奇数段が前記最高段の一段低速側の奇数段であり、前記特定偶数段と前記特定奇数段のうちの一方から他方への変速が要求されたときに、前記電動機にて前記駆動輪に伝達される動力の変動を抑制できないと判定した場合には、その変速を禁止する変速禁止手段を備えていてもよい。このように変速を禁止することにより車両の速度が急に変化することを抑制できる。そのため、変速時のショックを抑制できる。
 本発明のハイブリッド車両の一形態において、前記変速機は、前記4n+2組のギヤ列のうちの奇数段に対応するギヤ列及び4速以上の偶数段のうちの1つである特定偶数段に対応するギヤ列が前記第1入力軸と前記出力系との間に介在するとともに、前記特定偶数段以外の残りの偶数段に対応するギヤ列が前記第2入力軸と前記出力系との間に介在するデュアルクラッチ式の変速機であり、かつ前記ハイブリッド車両が前記内燃機関で走行する場合に、前記第1入力軸及び前記第2入力軸のうちのいずれか一方の入力軸が前記内燃機関と動力伝達可能に連結され、かつ他方の入力軸と前記内燃機関との間の動力伝達が遮断されるように前記第1クラッチ及び前記第2クラッチが制御され、前記変速機が前記特定偶数段に切り替えられ、かつ前記内燃機関で走行しているときに、前記変速機の変速段を前記特定偶数段から一段低速側の変速段に切り替えるシフトダウンが要求された場合、前記シフトダウン時における前記車両の駆動力の変動を前記電動機にて低減できる場合には、前記電動機で前記駆動輪を駆動しつつ前記変速機の変速段を前記特定偶数段から一段低速側の変速段に切り替え、前記シフトダウン時における前記車両の駆動力の変動を前記電動機にて低減できない場合には、前記内燃機関の動力が前記第2入力軸に伝達されるように前記第2クラッチを制御しつつ前記変速機の変速段を前記特定偶数段から二段低速側の変速段に切り替える変速制御手段をさらに備えていてもよい。
 この形態では、変速機が特定偶数段に切り替えられ、かつ内燃機関で走行しているときに、シフトダウン時における車両の駆動力の変動を電動機で低減できる場合には、電動機で駆動輪を駆動しつつ変速機の変速段を特定偶数段から一段低速側の変速段に切り替える。この場合、変速時に駆動輪が駆動されない期間、いわゆるトルク抜けが発生する期間を無くすことができる。また、変速時には駆動力の変動を電動機で低減できる。そのため、変速時のショックを抑制できる。一方、シフトダウン時における車両の駆動力の変動を電動機で低減できない場合には内燃機関の動力が第2入力軸に伝達されるように第2クラッチを制御しつつ変速機の変速段を特定偶数段から二段低速側の変速段に切り替える。二段低速側の変速段のギヤ列は、第2入力軸と出力系との間に介在している。そのため、第1入力軸と出力系の間の動力伝達を特定偶数段のギヤ列で成立させつつ、第2入力軸と出力系の間の動力伝達を二段低速側の変速段のギヤ列で成立させることができる。従って、このように変速機を二段低速側の変速段に切り替えることによりトルク抜けが発生する期間を無くすことができる。そのため、変速時のショックを抑制できる。
 この形態において、入力系と出力系との間に介在するギヤ列の数及び特定偶数段は、上述した条件を満たしていれば適宜に設定してよい。例えば、前記変速機に6組のギヤ列が設けられ、前記特定偶数段は6速であってもよい。
 本発明のハイブリッド車両の一形態において、前記変速機は、前記4n+2組のギヤ列のうちの奇数段に対応するギヤ列及び偶数段のうちの1つである特定偶数段に対応するギヤ列が前記第1入力軸と前記出力系との間に介在するとともに、前記偶数段のうち前記特定偶数段以外の残りの変速段に対応するギヤ列が前記第2入力軸と前記出力系との間に介在するデュアルクラッチ式の変速機であり、前記変速機が前記特定偶数段に切り替えられた状態で前記車両が走行しているときに、前記車両に対して要求されている要求トルクが、前記電動機から出力可能なトルクの最大値を上限とする所定のアシスト判定範囲内であり、かつ前記要求トルクの変化量が、予め設定した所定の判定範囲内の場合、前記変速機の変速段を前記特定偶数段から前記特定偶数段に対して一段低速側の奇数段に切り替える変速手段をさらに備えていてもよい。
 この形態では、要求トルクがアシスト判定範囲内であり、かつ要求トルクの変化量が判定範囲内の場合に変速段を特定偶数段から一段低速側の奇数段に切り替える。すなわち、電動機で駆動輪を駆動可能であり、かつ要求トルクの変動が小さい場合に、予め変速段を特定偶数段から一段低速側の奇数段に切り替えておく。そのため、この変速時には電動機で駆動輪を駆動できる。従って、変速時にショックが発生することを抑制できる。
 この形態において、前記特定偶数段は、前記変速機の最高段であってもよい。この場合、最高段と、最高段に対して一段低速側の変速段とが同一の入力軸側に設けられる。このような車両では、変速機が最高段で走行中に勾配等で車両への要求駆動力が徐々に増加し、電動機でアシスト不可能なときに変速段を低速側に切り替えるキックダウンが要求された場合に、一段低速側の変速段に変速できず、他方の入力軸側に設けられている二段低速側の変速段に変速することになる。この場合、アクセルペダルの踏み増し具合に対して内燃機関の回転数の上昇度合が大きくなり、運転者が違和感を覚えるおそれがある。この形態では、電動機でアシスト可能なときに予め変速段を一段低速側の奇数段に変速しておくので、このようなアクセルペダルの踏み増し具合に対して内燃機関の回転数の上昇度合が大きくなることを抑制できる。そのため、運転者に違和感を与えることを抑制できる。
 また、前記アシスト判定範囲は、前記電動機から出力可能なトルクの最大値を上限とし、かつその最大値の近傍に設定されていてもよい。このようにアシスト判定範囲を設定することにより、特定偶数段から一段低速側の奇数段に変速される時期を制限できる。そのため、変速段が無駄にダウンシフトされることを抑制できる。
 前記変速手段は、前記変速機の変速段を前記特定偶数段から前記特定偶数段に対して一段低速側の奇数段に切り替える場合に、その変速時に前記駆動輪に伝達される動力が変動しないように前記電動機を制御するアシスト手段を備えていてもよい。このように電動機を制御することにより、変速時にショックが発生することを抑制できる。
本発明の第1の形態に係るハイブリッド車両を概略的に示す図。 車両制御装置が実行する変速制御ルーチンを示すフローチャート。 第1の形態に係るハイブリッド車両の第1の変形例を概略的に示す図。 第1の形態に係るハイブリッド車両の第2の変形例を概略的に示す図。 本発明の第2の形態に係るハイブリッド車両を概略的に示す図。 本発明の第3の形態に係るハイブリッド車両を概略的に示す図。 本発明の第4の形態に係るハイブリッド車両を概略的に示す図。 本発明の第5の形態に係るハイブリッド車両を概略的に示す図。 本発明の第6の形態に係るハイブリッド車両を概略的に示す図。 第6の形態に係るハイブリッド車両の変形例を概略的に示す図。 本発明の第7の形態に係るハイブリッド車両を概略的に示す図。 本発明の第8の形態に係るハイブリッド車両を概略的に示す図。 第8の形態に係るハイブリッド車両において車両制御装置が実行する変速制御ルーチンを示すフローチャート。 第8の形態に係るハイブリッド車両の変形例を概略的に示す図。 第8の形態に係るハイブリッド車両の他の変形例を概略的に示す図。 本発明の第9の形態に係るハイブリッド車両を概略的に示す図。 第9の形態に係るハイブリッド車両において車両制御装置が実行する変速制御ルーチンを示すフローチャート。
(第1の形態)
 図1は、本発明の第1の形態に係るハイブリッド車両を概略的に示している。この車両1Aは、走行用動力源として内燃機関(以下、エンジンと称することがある。)2と、第1モータ・ジェネレータ(以下、第1MGと略称することがある。)3と、電動機としての第2モータ・ジェネレータ(以下、第2MGと略称することがある。)4とを備えている。エンジン2は、複数の気筒を有する周知の火花点火式内燃機関である。また、第1MG3及び第2MG4は、ハイブリッド車両に搭載されて電動機及び発電機として機能する周知のものである。そのため、これらに関する詳細な説明を省略する。
 車両1Aには、前進6段の変速機10が搭載されている。この変速機10は、デュアルクラッチ式の変速機として構成されている。変速機10は入力系11と、出力系12とを備えている。入力系11は、第1入力軸13と、第2入力軸14とを備えている。第1入力軸13は、第1クラッチ15を介してエンジン2と接続されている。第2入力軸14は、第2クラッチ16を介してエンジン2と接続されている。第1クラッチ15及び第2クラッチ16は、エンジン2と入力軸13、14とが同じ回転数で回転する完全係合状態及びエンジン2と入力軸13、14との間の動力伝達が遮断される解放状態に切替可能な周知の摩擦クラッチである。そのため、これらのクラッチ15、16は、エンジン2と入力軸13、14とが異なる回転数で回転しつつこれらの間で動力が伝達される状態、いわゆる半クラッチの状態にすることができる。
 出力系12は、第1出力軸17と、第2出力軸18と、駆動軸19とを備えている。この図に示すように第1出力軸17には、第1出力ギヤ20が設けられている。また、第2出力軸18には、第2出力ギヤ21が設けられている。駆動軸19には、被駆動ギヤ22が設けられている。そして、第1出力ギヤ20及び第2出力ギヤ21は、それぞれ被駆動ギヤ22と噛み合っている。駆動軸19は、デファレンシャル機構5と動力伝達可能なように接続されている。デファレンシャル機構5は、入力された動力を左右の駆動輪6に分配する周知の機構である。
 入力系11と出力系12との間には、異なる変速段に対応する第1~第6ギヤ列G1~G6が介在している。この図に示すように第1ギヤ列G1、第3ギヤ列G3、第5ギヤ列G5、及び第6ギヤ列G6は、第1入力軸13と第1出力軸17の間に介在している。第2ギヤ列G2及び第4ギヤ列G4は、第2入力軸14と第2出力軸18の間に介在している。
 第1ギヤ列G1は互いに噛み合う第1ドライブギヤ23及び第1ドリブンギヤ24にて構成され、第2ギヤ列G2は互いに噛み合う第2ドライブギヤ25及び第2ドリブンギヤ26にて構成されている。第3ギヤ列G3は互いに噛み合う第3ドライブギヤ27及び第3ドリブンギヤ28にて構成され、第4ギヤ列G4は互いに噛み合う第4ドライブギヤ29及び第4ドリブンギヤ30にて構成されている。第5ギヤ列G5は互いに噛み合う第5ドライブギヤ31及び第5ドリブンギヤ32にて構成され、第6ギヤ列G6は互いに噛み合う第6ドライブギヤ33及び第6ドリブンギヤ34にて構成されている。第1~第6ギヤ列G1~G6は、ドライブギヤとドリブンギヤとが常時噛み合うように設けられている。各ギヤ列G1~G6には互いに異なる変速比が設定されている。変速比は、第1ギヤ列G1、第2ギヤ列G2、第3ギヤ列G3、第4ギヤ列G4、第5ギヤ列G5、第6ギヤ列G6の順に小さい。そのため、第1ギヤ列G1が1速に、第2ギヤ列G2が2速に、第3ギヤ列G3が3速に、第4ギヤ列G4が4速に、第5ギヤ列G5が5速に、第6ギヤ列G6が6速にそれぞれ対応する。
 第1ドライブギヤ23、第3ドライブギヤ27、第5ドライブギヤ31、及び第6ドライブギヤ33は、第1入力軸13と一体に回転するように第1入力軸13に固定されている。一方、第1ドリブンギヤ24、第3ドリブンギヤ28、第5ドリブンギヤ32、及び第6ドリブンギヤ34は、第1出力軸17に対して相対回転可能なように第1出力軸17に支持されている。第2ドライブギヤ25及び第4ドライブギヤ29は、第2入力軸14と一体に回転するように第2入力軸14に固定されている。一方、第2ドリブンギヤ26及び第4ドリブンギヤ30は、第2出力軸18に対して相対回転可能なように第2出力軸18に支持されている。
 第1出力軸17には、第1スリーブ35及び第2スリーブ36が設けられている。これらのスリーブ35、36は、第1出力軸17と一体に回転し、かつ軸線方向に移動可能なように第1出力軸17に支持されている。第1スリーブ35は、互いに隣接するように配置された第1ギヤ列G1と第3ギヤ列G3の間に設けられている。第1スリーブ35は、第1出力軸17と第1ドリブンギヤ24とが一体に回転するように第1ドリブンギヤ24と噛み合う1速位置と、第1出力軸17と第3ドリブンギヤ28とが一体に回転するように第3ドリブンギヤ28と噛み合う3速位置と、第1ドリブンギヤ24及び第3ドリブンギヤ28のいずれとも噛み合わない解放位置とに切替可能に設けられている。第2スリーブ36は、互いに隣接するように配置された第5ギヤ列G5と第6ギヤ列G6の間に設けられている。第2スリーブ36は、第1出力軸17と第5ドリブンギヤ32とが一体に回転するように第5ドリブンギヤ32と噛み合う5速位置と、第1出力軸17と第6ドリブンギヤ34とが一体に回転するように第6ドリブンギヤ34と噛み合う6速位置と、第5ドリブンギヤ32及び第6ドリブンギヤ34のいずれとも噛み合わない解放位置とに切替可能に設けられている。
 第2出力軸18には、第3スリーブ37が設けられている。第3スリーブ37は、第2出力軸18と一体に回転し、かつ軸線方向に移動可能なように第2出力軸18に支持されている。第3スリーブ37は、互いに隣接するように配置された第2ギヤ列G2と第4ギヤ列G4の間に設けられている。第3スリーブ37は、第2出力軸18と第2ドリブンギヤ26とが一体に回転するように第2ドリブンギヤ26と噛み合う2速位置と、第2出力軸18と第4ドリブンギヤ30とが一体に回転するように第4ドリブンギヤ30と噛み合う4速位置と、第2ドリブンギヤ26及び第4ドリブンギヤ30のいずれとも噛み合わない解放位置とに切替可能に設けられている。
 この変速機10では、第1スリーブ35が1速位置に切り替えられ、第2スリーブ36及び第3スリーブ37がいずれも解放位置に切り替えられた場合に1速になる。第3スリーブ37が2速位置に切り替えられ、第1スリーブ35及び第2スリーブ36がいずれも解放位置に切り替えられた場合に2速になる。第1スリーブ35が3速位置に切り替えられ、第2スリーブ36及び第3スリーブ37がいずれも解放位置に切り替えられた場合に3速になる。第3スリーブ37が4速位置に切り替えられ、第1スリーブ35及び第2スリーブ36がいずれも解放位置に切り替えられた場合に4速になる。第2スリーブ36が5速位置に切り替えられ、第1スリーブ35及び第3スリーブ37がいずれも解放位置に切り替えられた場合に5速になる。第2スリーブ36が6速位置に切り替えられ、第1スリーブ35及び第3スリーブ37がいずれも解放位置に切り替えられた場合に6速になる。
 図示は省略したが、変速機10には各スリーブ35~37を駆動するための複数の駆動アクチュエータが設けられている。これら駆動アクチュエータは、変速機に設けられる周知の油圧駆動機構やモータ駆動機構であるため、説明を省略する。また、同様に図示は省略したが各出力軸17、18には、各スリーブ35~37と各ドリブンギヤ24、26、28、30、32、34とを噛み合わせる際にこれらの回転を同期させるシンクロ機構がドリブンギヤ毎に設けられている。これらシンクロ機構には、摩擦係合により回転を同期させるシンクロ機構、例えば周知のキー式シンクロメッシュ機構を用いればよい。そのため、シンクロ機構の詳細な説明は省略する。
 第1入力軸13には、第1被駆動ギヤ38が設けられている。第1MG3の出力軸3aには、第1被駆動ギヤ38と噛み合う第1駆動ギヤ39が設けられている。これにより第1MG3が第1入力軸13と動力伝達可能に接続される。第2入力軸14には、第2被駆動ギヤ40が設けられている。第2MG4の出力軸4aには、第2被駆動ギヤ40と噛み合う第2駆動ギヤ41が設けられている。これにより第2MG4が第2入力軸14と動力伝達可能に接続される。
 この車両1Aでは、車両1Aを後進させる場合、変速機10が1速又は2速に切り替えられ、第1MG3又は第2MG4で駆動輪6を駆動する。
 第1クラッチ15、第2クラッチ16、及び各スリーブ35~37の動作は、車両制御装置50にて制御される。また、エンジン2、第1MG3、及び第2MG4の動作も車両制御装置50にて制御される。車両制御装置50は、マイクロプロセッサ及びその動作に必要なRAM、ROM等の周辺機器を含んだコンピュータユニットとして構成されている。車両制御装置50は、車両1Aを適切に走行させるための各種制御プログラムを保持している。車両制御装置50は、これらのプログラムを実行することによりエンジン2及び各MG3、4等の制御対象に対する制御を行っている。車両制御装置50には、車両1Aに係る情報を取得するための種々のセンサが接続されている。車両制御装置50には、例えば車速センサ51、アクセル開度センサ52、及びSOCセンサ53等が接続されている。車速センサ51は、車両1Aの速度(車速)に対応した信号を出力する。アクセル開度センサ52は、アクセルペダルの踏み込み量、すなわちアクセル開度に対応した信号を出力する。SOCセンサ53は、MG3、4に接続されているバッテリ(不図示)の残量に対応した信号を出力する。また、車両制御装置50には、不図示のシフトレバーも接続されている。この他にも車両制御装置50には種々のセンサやスイッチ等が接続されているが、それらの図示は省略した。
 この車両1Aには、複数の走行モードが設けられている。走行モードとしては、第1MG3又は第2MG4で駆動輪6を駆動するEV走行モードと、主にエンジン2で駆動輪6を駆動するエンジン走行モードとが設定されている。車両制御装置50は、車速等に基づいて車両1Aの走行モードを切り替える。車両制御装置50は、例えば車速が所定の判定速度未満の場合には走行モードをEV走行モードに切り替える。なお、EV走行モードでは、第1クラッチ15及び第2クラッチ16をいずれも解放状態に切り替え、エンジン2を切り離す。一方、車速が判定速度以上の場合又はバッテリの残量が判定値以下になった場合等には、走行モードをエンジン走行モードに切り替える。エンジン走行モードでは、第1クラッチ15及び第2クラッチ16のうち、車両1Aの走行に使用する変速段がある入力軸側のクラッチを完全係合状態に切り替え、他方のクラッチを解放状態に切り替える。
 また、車両制御装置50は、車速及びアクセル開度に基づいて変速機10の変速段を切り替える。車両制御装置50のROMには、車両及びアクセル開度と変速段との関係を示した変速線図がマップとして記憶されている。なお、この変速線図は一般に変速機の制御に使用される周知のものであるため、詳細な説明を省略する。車両制御装置50は、この変速線図に基づいて現在の車両1の走行状態に応じた変速段を設定する。そして、変速機10がこの設定した変速段に切り替わるように各スリーブ35~37の動作を制御する。
 上述したように変速機10では、第1入力軸13と第1出力軸17の間に、5速に対応する第5ギヤ列G5と6速に対応する第5ギヤ列G6が介在している。また、これらのギヤ列G5、G6は、共通の第2スリーブ36で第1出力軸17との接続が制御される。そのため、これらのギヤ列G5、G6を同時に第1出力軸17と接続させることができない。そこで、車両制御装置50は、5速から6速にアップシフトする場合及び6速から5速にダウンシフトする場合に、第2MG4から動力を出力して駆動輪6の駆動をアシストする。
 図2は、車両制御装置50がこのように変速機10を制御するために実行する変速制御ルーチンを示している。この制御ルーチンは、車両1Aの走行中に所定の周期で繰り返し実行される。
 この制御ルーチンにおいて車両制御装置50は、まずステップS11で車両1Aの状態を取得する。車両1Aの状態としては、例えば車速、アクセル開度、バッテリの残量、及び現在の変速段等が取得される。また、この処理では、アクセル開度に基づいて運転者が車両1Aに要求している駆動力(要求駆動力)を算出する。なお、この算出方法は周知の方法を使用すればよいため、説明を省略する。この他にも、この処理では車両1Aの状態に関する種々の情報が取得される。
 次のステップS12において車両制御装置50は、変速機10の変速段を現在の変速段から他の変速段に変速する変速条件が成立したか否か判定する。変速条件が成立したか否かは、上述した変速線図に基づいて周知の方法で判定すればよい。変速条件が不成立と判定した場合は今回の制御ルーチンを終了する。一方、変速条件が成立したと判定した場合はステップS13に進み、車両制御装置50は今回の変速が5速から6速への変速又は6速から5速への変速か否か判定する。この判定も変速線図に基づいて行えばよい。今回の変速が5速から6速への変速又は6速から5速への変速ではないと判定した場合はステップS14に進み、車両制御装置50は通常変速制御を実行する。この通常変速制御では、まず、変速後の変速段に対応するギヤ列にて現在走行に関与していない入力軸と出力系12とが回転伝達可能な状態になるように第1スリーブ35又は第3スリーブ37を制御する。次に、エンジン走行モードの場合には、変速後の変速段のギヤがある側のクラッチを解放状態から完全係合状態に切り替えつつ現在の変速段のギヤ列がある側のクラッチを完全係合状態から解放状態に切り替える。その後、変速前の変速段のギヤ列による回転伝達が中止されるように第1スリーブ35又は第3スリーブ37を制御する。なお、このような変速段の切替方法は、周知のデュアルクラッチ式の変速機と同様の方法が用いられる。そのため、詳細な説明を省略する。その後、今回の制御ルーチンを終了する。
 一方、今回の変速が5速から6速への変速又は6速から5速への変速であると判定した場合はステップS15に進み、車両制御装置50は変速時に第2MG4で駆動輪6の駆動をアシスト可能か否か判定する。周知のようにモータ・ジェネレータから出力可能な動力は、バッテリの残量、バッテリの温度、及び第2MG4の温度等に応じて変化する。そこで、これらに基づいて第2MG4から現在出力可能な駆動力の上限を算出する。そして、この駆動力の上限が車両1への要求駆動力以下の場合に、アシストが不可能と判定する。また、第2MG4に異常がある場合にもアシストが不可能と判定する。第2MG4によるアシストが不可能と判定した場合はステップS16に進み、車両制御装置50は5速から6速への変速又は6速から5速への変速を禁止する。なお、このように変速が禁止された場合に、車両制御装置50は、車速及びアクセル開度に応じて駆動輪6が適切に駆動されるようにエンジン2及び各MG3、4から動力を出力させる。その後、今回の制御ルーチンを終了する。
 一方、第2MG4によるアシストが可能と判定した場合はステップS17に進み、車両制御装置50はアシスト変速制御を実行する。このアシスト変速制御では、まず第3スリーブ37を4速位置に切り替える。次に、第1クラッチ15を解放しつつ第2MG4から要求駆動力に対応した駆動力を出力して駆動輪6を駆動する。続いて第2スリーブ36を5速位置又は6速位置のうち変速後の変速段に対応した位置に切り替える。次に、第1クラッチ15を係合しつつ車速が急に変化しないように第2MG4から出力する駆動力を低下させる。その後、第3スリーブ37を解放位置に切り替える。その後、今回の制御ルーチンを終了する。
 以上に説明したように、第1の形態の車両1Aによれば、6速に対応する第6ギヤ列G6を第1入力軸13と出力系12との間に配置したので、変速機10に3個のスリーブ35~37とそれらを駆動する駆動アクチュエータを設けるのみで1速~6速の変速を行うことができる。そのため、車両のコストを低減できる。
 また、5速から6速への変速時及び6速から5速への変速時に第2MG4で駆動輪6の駆動をアシスト可能な場合には、変速時に第2MG4でアシストを行うので、車速が急に変化することを抑制できる。また、これらの変速時に第2MG4によるアシストが不可能な場合には変速を禁止するので、この場合にも車速が急に変化することを抑制できる。そのため、変速時のショックを抑制できる。
 次に図3及び図4を参照して第1の形態の車両の変形例を説明する。なお、これらの図において図1と共通の部分には同一の符号を付して説明を省略する。これらの図に示した車両も図1の車両1Aと同様に車両制御装置50等の制御系を有しているが、それらの図示を省略した。
 図3は、第1の形態に係る車両の第1の変形例を示している。この図に示した車両1Bでは、図1の車両1Aと比較して第1MG3、第1被駆動ギヤ38、及び第1駆動ギヤ39が省略されている。それ以外は、図1の車両1Aと同じである。そのため、この車両1Bでも変速機10に3個のスリーブ35~37とそれらを駆動する駆動アクチュエータを設けるのみで1速~6速の変速を行うことができる。そのため、車両のコストを低減できる。また、この車両1Bでも車両制御装置50が図2に示した変速制御ルーチンを実行して変速機10を制御することにより、変速時のショックを抑制できる。
 図4は、第1の形態に係る車両の第2の変形例を示している。この図に示した車両1Cでは、図1の車両1Aと比較して第1MG3、第2MG4、第1被駆動ギヤ38、第1駆動ギヤ39、第2被駆動ギヤ40、及び第2駆動ギヤ41が省略されている。その代わりに、駆動軸19にモータ・ジェネレータ60が設けられている。なお、このモータ・ジェネレータ60も第1MG3や第2MG4と同様に電動機及び発電機として機能する周知のモータ・ジェネレータである。
 この車両1Cでは、モータ・ジェネレータ60で駆動軸19を駆動することにより駆動輪6を駆動できる。この車両1Cでも変速機10に3個のスリーブ35~37とそれらを駆動する駆動アクチュエータを設けるのみで1速~6速の変速を行うことができる。そのため、車両のコストを低減できる。この車両1Cでは、5速から6速への変速時及び6速から5速への変速時にモータ・ジェネレータ60で駆動輪6の駆動をアシストすることにより、車速が急に変化することを抑制できる。また、これらの変速時にモータ・ジェネレータ60によるアシストが不可能な場合には変速を禁止することにより、車速が急に変化することを抑制できる。そのため、変速時のショックを抑制できる。
 なお、この第1の形態では、6速が本発明の特定偶数段に相当し、5速が本発明の特定奇数段に相当する。また、第1スリーブ35、第2スリーブ36、及び第3スリーブ37が本発明の結合機能に相当する。そして、図2のステップS17を実行することにより車両制御装置50が本発明の制御手段として機能し、図2のステップS15、S16を実行することにより車両制御装置50が本発明の変速禁止手段として機能する。第5ギヤ列G5及び第6ギヤ列G6が、本発明のギヤ列群に相当する。
(第2の形態)
 図5を参照して本発明の第2の形態に係る車両1Dについて説明する。図5において図1と共通の部分には同一の符号を付して説明を省略する。なお、この図に示した車両1Dも図1の車両1Aと同様に車両制御装置50等の制御系を有しているが、それらの図示を省略した。この図に示すように車両1Dでは、第1ギヤ列G1、第3ギヤ列G3、第4ギヤ列G4、及び第6ギヤ列G6が第1入力軸13と第1出力軸17の間に介在している。そして、第2ギヤ列G2及び第5ギヤ列G5が、第2入力軸14と第2出力軸18の間に介在している。すなわち、この形態では第1の形態の車両1Aと比較して第4ギヤ列G4と第5ギヤ列G5とが入れ替わって配置されている。それ以外は第1の形態と同じである。
 この車両1Dでは、第4ドライブギヤ29が第1入力軸13と一体に回転するように第1入力軸13に固定されている。第4ドリブンギヤ30は、第1出力軸17に対して相対回転可能なように第1出力軸17に支持されている。また、第5ドライブギヤ31が第2入力軸14と一体に回転するように第2入力軸14に固定されている。第5ドリブンギヤ32は、第2出力軸18に対して相対回転可能なように第2出力軸18に支持されている。
 また、この車両1Dでは、第2スリーブ36が互いに隣接するように配置された第4ギヤ列G4と第6ギヤ列G6の間に設けられている。そして、第2スリーブ36は、第1出力軸17と第4ドリブンギヤ30とが一体に回転するように第4ドリブンギヤ30と噛み合う4速位置と、第1出力軸17と第6ドリブンギヤ34とが一体に回転するように第6ドリブンギヤ34と噛み合う6速位置と、第4ドリブンギヤ30及び第6ドリブンギヤ34のいずれとも噛み合わない解放位置とに切替可能に設けられている。また、第3スリーブ37は、互いに隣接するように配置された第2ギヤ列G2と第5ギヤ列G5の間に設けられている。第3スリーブ37は、第2出力軸18と第2ドリブンギヤ26とが一体に回転するように第2ドリブンギヤ26と噛み合う2速位置と、第2出力軸18と第5ドリブンギヤ32とが一体に回転するように第5ドリブンギヤ32と噛み合う5速位置と、第2ドリブンギヤ26及び第5ドリブンギヤ32のいずれとも噛み合わない解放位置とに切替可能に設けられている。
 そして、この車両1Dでは、第2スリーブ36が4速位置に切り替えられ、第1スリーブ35及び第3スリーブ37がいずれも解放位置に切り替えられた場合に4速になる。第3スリーブ37が5速位置に切り替えられ、第1スリーブ35及び第2スリーブ36がいずれも解放位置に切り替えられた場合に5速になる。なお、1速~3速及び6速における各スリーブ35~37の位置は第1の形態と同じであるため、説明を省略する。
 この形態の車両1Dによれば、第1入力軸13と第1出力軸17との間に4組のギヤ列を配置し、第2入力軸14と第2出力軸18との間に2組のギヤ列を配置したので、変速機10に3個のスリーブ35~37とそれらを駆動する駆動アクチュエータを設けるのみで1速~6速の変速を行うことができる。そのため、車両のコストを低減できる。
 この車両1Dでは、3速から4速への変速時及び4速から3速への変速時に第2MG4で駆動輪6の駆動をアシストすることにより変速時のショックを抑制できる。そして、これらの変速時に第2MG4でアシストが不可能な場合には変速を禁止することにより、変速時のショックをさらに抑制できる。
 なお、この第2の形態では、4速が本発明の特定偶数段に相当し、3速が本発明の特定奇数段に相当する。第3ギヤ列G3及び第4ギヤ列G4が本発明のギヤ列群に相当する。
(第3の形態)
 図6を参照して本発明の第3の形態に係る車両1Eについて説明する。図6において図1と共通の部分には同一の符号を付して説明を省略する。なお、この図に示した車両1Eも図1の車両1Aと同様に車両制御装置50等の制御系を有しているが、それらの図示を省略した。この図に示すように車両1Eでは、第1ギヤ列G1、第2ギヤ列G2、第4ギヤ列G4、及び第6ギヤ列G6が第1入力軸13と第1出力軸17の間に介在している。そして、第3ギヤ列G3及び第5ギヤ列G5が、第2入力軸14と第2出力軸18の間に介在している。すなわち、この形態では第1の形態の車両1Aと比較して第2ギヤ列G2と第3ギヤ列G3とが入れ替わるとともに第4ギヤ列G4と第5ギヤ列G5とが入れ替わって配置されている。それ以外は第1の形態と同じである。
 この車両1Eでは、第2ドライブギヤ25及び第4ドライブギヤ29が第1入力軸13と一体に回転するように第1入力軸13に固定されている。第2ドリブンギヤ26及び第4ドリブンギヤ30は、第1出力軸17に対して相対回転可能なように第1出力軸17に支持されている。また、第3ドライブギヤ27及び第5ドライブギヤ31が第2入力軸14と一体に回転するように第2入力軸14に固定されている。第3ドリブンギヤ28及び第5ドリブンギヤ32は、第2出力軸18に対して相対回転可能なように第2出力軸18に支持されている。
 この車両1Eでは、第1スリーブ35が互いに隣接するように配置された第1ギヤ列G1と第2ギヤ列G2の間に設けられている。この第1スリーブ35は、第1出力軸17と第1ドリブンギヤ24とが一体に回転するように第1ドリブンギヤ24と噛み合う1速位置と、第1出力軸17と第2ドリブンギヤ26とが一体に回転するように第2ドリブンギヤ26と噛み合う2速位置と、第1ドリブンギヤ24及び第2ドリブンギヤ26のいずれとも噛み合わない解放位置とに切替可能に設けられている。第2スリーブ36は、互いに隣接するように配置された第4ギヤ列G4と第6ギヤ列G6の間に設けられている。第2スリーブ36は、第1出力軸17と第4ドリブンギヤ30とが一体に回転するように第4ドリブンギヤ30と噛み合う4速位置と、第1出力軸17と第6ドリブンギヤ34とが一体に回転するように第6ドリブンギヤ34と噛み合う6速位置と、第4ドリブンギヤ30及び第6ドリブンギヤ34のいずれとも噛み合わない解放位置とに切替可能に設けられている。第3スリーブ37は、互いに隣接するように配置された第3ギヤ列G3と第5ギヤ列G5の間に設けられている。第3スリーブ37は、第2出力軸18と第3ドリブンギヤ28とが一体に回転するように第3ドリブンギヤ28と噛み合う3速位置と、第2出力軸18と第5ドリブンギヤ32とが一体に回転するように第5ドリブンギヤ32と噛み合う5速位置と、第3ドリブンギヤ28及び第5ドリブンギヤ32のいずれとも噛み合わない解放位置とに切替可能に設けられている。
 この車両1Eでは、第1スリーブ35が2速位置に切り替えられ、第2スリーブ36及び第3スリーブ37がいずれも解放位置に切り替えられた場合に2速になる。第3スリーブ37が3速位置に切り替えられ、第1スリーブ35及び第2スリーブ36がいずれも解放位置に切り替えられた場合に3速になる。第2スリーブ36が4速位置に切り替えられ、第1スリーブ35及び第3スリーブ37がいずれも解放位置に切り替えられた場合に4速になる。第3スリーブ37が5速位置に切り替えられ、第1スリーブ35及び第2スリーブ36がいずれも解放位置に切り替えられた場合に5速になる。なお、1速及び6速における各スリーブ35~37の位置は第1の形態と同じであるため、説明を省略する。
 この形態の車両1Eによれば、第1入力軸13と第1出力軸17との間に4組のギヤ列を配置し、第2入力軸14と第2出力軸18との間に2組のギヤ列を配置したので、変速機10に3個のスリーブ35~37とそれらを駆動する駆動アクチュエータを設けるのみで1速~6速の変速を行うことができる。そのため、車両のコストを低減できる。
 この車両1Eでは、1速から2速への変速時及び2速から1速への変速時に第2MG4で駆動輪6の駆動をアシストすることにより変速時のショックを抑制できる。そして、これらの変速時に第2MG4でアシストが不可能な場合には変速を禁止することにより、変速時のショックをさらに抑制できる。
 なお、この第1の形態では、2速が本発明の特定偶数段に相当し、1速が本発明の特定奇数段に相当する。第1ギヤ列G1及び第2ギヤ列G2が本発明のギヤ列群に相当する。
(第4の形態)
 図7を参照して本発明の第4の形態に係る車両1Fについて説明する。図6において図1と共通の部分には同一の符号を付して説明を省略する。なお、この図に示した車両1Fも図1の車両1Aと同様に車両制御装置50等の制御系を有しているが、それらの図示を省略した。この図に示すように車両1Fでは、第2入力軸14と第2出力軸18との間に後進ギヤ列GRが設けられている点が第1の形態と異なる。それ以外は第1の形態と同じである。
 後進ギヤ列GRは、後進ドライブギヤ70、中間ギヤ71、及び後進ドリブンギヤ72にて構成されている。後進ドライブギヤ70は、第2入力軸14と一体に回転するように第2入力軸14に固定されている。一方、後進ドリブンギヤ72は、第2出力軸18に対して相対回転可能なように第2出力軸18に支持されている。中間ギヤ71は、変速機10の不図示のケースに回転自在に支持されている。中間ギヤ71は、後進ドライブギヤ70及び後進ドリブンギヤ72のそれぞれと噛み合っている。第2出力軸18には、第4スリーブ73が設けられている。第4スリーブ73は、第2出力軸18と一体に回転し、かつ軸線方向に移動可能なように第2出力軸18に支持されている。第4スリーブ73は、第2出力軸18と後進ドリブンギヤ72とが一体に回転するように後進ドリブンギヤ72と噛み合う後進位置と、後進ドリブンギヤ72と噛み合わない解放位置とに切替可能に設けられている。
 この車両1Fでは、第4スリーブ72が後進位置に切り替えられ、第1~第3スリーブ35~37がいずれも解放位置に切り替えられた場合に車両1Fをエンジン2で後進させることができる。
 また、後進用ギヤ列GRを変速ギヤ列の少ない入力軸に配置することで、変速ギヤ列の多い入力軸に配置するよりも車両1Fをコンパクトにすることができる。
 なお、この第4の形態では、6速が本発明の特定偶数段に相当し、5速が本発明の特定奇数段に相当する。
 本発明の車両は、上述した各形態で示した車両に限定されない。本発明の車両は、以下の条件を満たす変速機が搭載されていればよい。本発明の車両の変速機は、4n+2組(但し、nは1以上の整数)の前進用のギヤ列を有している。すなわち、前進6段、前進10段、前進14段等のデュアルクラッチ式の変速機である。また、偶数段の変速段のうちの1つの変速段(特定偶数段)と、その特定偶数段の一段低速側の奇数段又は一段高速側の奇数段のいずれか一方の奇数段(特定奇数段)とが同一の入力軸と出力軸の間に配置されている。そして、第1入力軸13と第1出力軸17との間に配置されるギヤ列の数と第2入力軸14と第2出力軸18との間に配置されるギヤ列の数とがいずれも偶数になる。このようなデュアルクラッチ式の変速機であれば、一組のギヤ列のために一つのスリーブ及びそのスリーブを駆動する駆動アクチュエータを設ける必要がない。そのため、コストを低減できる。
 本発明は、上述した形態に限定されることなく、種々の形態にて実施することができる。例えば、上述した形態では、入力軸とモータ・ジェネレータとをギヤを介して動力伝達可能に接続したが、モータ・ジェネレータの出力軸を入力軸と直接接続してもよい。
(第5の形態)
 図8を参照して、本発明の第5の形態に係るハイブリッド車両について説明する。なお、この図において上述した形態と共通の部分には同一の符号を付して説明を省略する。この図に示した車両1Gも図1の車両1Aと同様に車両制御装置50等の制御系を有しているが、それらの図示を省略した。この車両1Gでは、第1ドライブギヤ23、第3ドライブギヤ27、第5ドライブギヤ31、及び第6ドライブギヤ33が、第1入力軸13に対して相対回転可能なように第1入力軸13に支持されている。一方、第1ドリブンギヤ24、第3ドリブンギヤ28、第5ドリブンギヤ32、及び第6ドリブンギヤ34は、第1出力軸17と一体に回転するように第1出力軸17に固定されている。第2ドライブギヤ25及び第4ドライブギヤ29は、第2入力軸14に対して相対回転可能なように第2入力軸14に支持されている。一方、第2ドリブンギヤ26及び第4ドリブンギヤ30は、第2出力軸18と一体に回転するように第2出力軸18に固定されている。
 そして、この図に示すように車両1Gでは、第1スリーブ35及び第2スリーブ36が第1入力軸13に設けられている。第3スリーブ37が第2入力軸14に設けられている。それ以外は、第1の形態と同じである。このように本発明のハイブリッド車両では、各スリーブ35~37が入力軸13、14に設けられていてもよい。この形態においても、上述した各形態と同様に、スリーブの個数及びそれらを駆動する駆動アクチュエータの個数をそれぞれ低減できる。そのため、車両のコストを低減できる。
(第6の形態)
 図9を参照して、本発明の第6の形態に係るハイブリッド車両について説明する。なお、この図において上述した形態と共通の部分には同一の符号を付して説明を省略する。この図に示した車両1Hも図1の車両1Aと同様に車両制御装置50等の制御系を有しているが、それらの図示を省略した。図9に示すようにこの形態では、第2出力軸18が省略される。そして、第1出力軸17に、第1ドリブンギヤ24、第2ドリブンギヤ26、第3ドリブンギヤ28、第4ドリブンギヤ30、第5ドリブンギヤ32、及び第6ドリブンギヤ34が固定される。また、第1出力軸17がデファレンシャル機構5と動力伝達可能なように接続される。この形態においても、上述した各形態と同様に、スリーブの個数及びそれらを駆動する駆動アクチュエータの個数をそれぞれ低減できる。そのため、車両のコストを低減できる。なお、この車両1Hでは、各スリーブ35~37を第1出力軸17に設けてよい。
 図10は、第6の形態に係る車両の変形例を示している。この変形例の車両1Iでは、第2ドライブギヤ25を第1ドリブンギヤ24と噛み合わせ、第4ドライブギヤ29を第3ドリブンギヤ28と噛み合わせている。そして、第2ドライブギヤ25及び第1ドリブンギヤ24にて、第2ギヤ列G2を構成する。また、第4ドライブギヤ29及び第3ドリブンギヤ28にて、第4ギヤ列G4を構成する。なお、第2ドライブギヤ25と第1ドリブンギヤ24のギヤ比は、上述した形態の第2ドライブギヤ25と第2ドリブンギヤ26のギヤ比と同じになるように設定される。また、第4ドライブギヤ29と第3ドリブンギヤ28のギヤ比は、上述した形態の第4ドライブギヤ29と第4ドリブンギヤ30のギヤ比と同じになるように設定される。この形態では、第1出力軸17に設けられるギヤの個数を低減できるので、さらに車両のコストを低減できる。
(第7の形態)
 図11を参照して、本発明の第7の形態に係るハイブリッド車両について説明する。なお、この図において上述した形態と共通の部分には同一の符号を付して説明を省略する。この図に示した車両1Jも図1の車両1Aと同様に車両制御装置50等の制御系を有しているが、それらの図示を省略した。図11に示すようにこの形態では、第1入力軸13と第1出力軸17との間に、エンジン側から第1ギヤ列G1、第6ギヤ列G6、第3ギヤ列G3、第5ギヤ列G5の順番でこれらのギヤ列が設けられている。
 この形態では、第1スリーブ35が第1ギヤ列G1と第6ギヤ列G6の間に設けられている。そして、第1スリーブ35は、第1出力軸17と第1ドリブンギヤ24とが一体に回転するように第1ドリブンギヤ24と噛み合う1速位置と、第1出力軸17と第6ドリブンギヤ34とが一体に回転するように第6ドリブンギヤ34と噛み合う6速位置と、第1ドリブンギヤ24及び第6ドリブンギヤ34のいずれとも噛み合わない解放位置とに切替可能に設けられている。また、この形態では、第2スリーブ36が、第3ギヤ列G3と第5ギヤ列G5の間に設けられている。そして、第2スリーブ36は、第1出力軸17と第3ドリブンギヤ28とが一体に回転するように第3ドリブンギヤ28と噛み合う3速位置と、第1出力軸17と第5ドリブンギヤ32とが一体に回転するように第5ドリブンギヤ32と噛み合う5速位置と、第3ドリブンギヤ28及び第5ドリブンギヤ32のいずれとも噛み合わない解放位置とに切替可能に設けられている。この形態においても、上述した各形態と同様に、スリーブの個数及びそれらを駆動する駆動アクチュエータの個数をそれぞれ低減できる。そのため、車両のコストを低減できる。なお、この車両1Jでも、各スリーブ35~37を入力軸13、14に設けてよい。
(第8の形態)
 次に図12~図15を参照して、本発明の第8の形態に係るハイブリッド車両について説明する。なお、この形態において上述した形態と共通の部分には同一の符号を付して説明を省略する。図12は、この形態に係るハイブリッド車両1Kを示している。この形態でも、車両制御装置50は、車速等に基づいて車両1Kの走行モードを切り替える。また、車両制御装置50は、車両1Kの走行中にアクセルペダルが大きく踏み込まれる等して車両1Kに対して大きな駆動力が要求された場合には、変速段を現在の変速段から一段低速側の変速段に変速するシフトダウンを実行する。なお、このようなシフトダウンは、キックダウンとも呼ばれる。変速機10では、第1入力軸13と第1出力軸17の間に、5速に対応する第5ギヤ列G5と6速に対応する第5ギヤ列G6が介在している。また、これらのギヤ列G5、G6は、共通の第2スリーブ36で第1出力軸17との接続が制御される。そのため、これらのギヤ列G5、G6を同時に第1出力軸17と接続させることができない。そこで、車両制御装置50は、6速から5速にシフトダウンする際に、第2MG4から動力を出力して駆動輪6の駆動をアシストする。ただし、車両1Kへの要求駆動力が第2MG4から出力可能な動力の上限値より大きい場合には、6速から4速にシフトダウンする。
 図13は、車両制御装置50がこのように変速機10を制御するために実行する変速制御ルーチンを示している。この制御ルーチンは、車両1Kの走行中に所定の周期で繰り返し実行される。
 この制御ルーチンにおいて車両制御装置50は、まずステップS21で車両1Kの状態を取得する。車両1Kの状態としては、例えば車速、アクセル開度、及び現在の変速段などが取得される。また、この処理では、アクセル開度に基づいて運転者が車両1Kに要求している駆動力(要求駆動力)を算出する。なお、この算出方法は周知の方法を使用すればよいため、説明を省略する。この処理では、この他にも車両1Kの状態に関する種々の情報が取得される。
 次のステップS22において車両制御装置50は、走行モードがエンジン走行モードか否か判定する。エンジン走行モードではないと判定した場合は、今回の制御ルーチンを終了する。一方、エンジン走行モードであると判定した場合はステップS23に進み、車両制御装置50は変速機10が6速か否か判定する。変速機10が6速ではないと判定した場合は、今回の制御ルーチンを終了する。一方、変速機10が6速であると判定した場合はステップS24に進み、車両制御装置50はキックダウンが要求されているか否か判定する。この判定は、上述したようにアクセル開度等に基づいて周知の方法で行えばよい。キックダウンが要求されていないと判定した場合は、今回の制御ルーチンを終了する。
 一方、キックダウンが要求されていると判定した場合はステップS25に進み、車両制御装置50は要求駆動力が所定の上限値以下か否か判定する。この上限値は、要求駆動力を第2MG4から出力可能か否か判定するための基準として設定される値である。この上限値は、例えば第2MG4の最大トルクに基づいて設定すればよい。また、この判定時におけるバッテリの充電状態(SOC)や第2MG4を制御するためのインバータ、バッテリ、及び第2MG4の温度等に基づいて上限値を設定してもよい。
 要求駆動力が上限値以下と判定した場合はステップS26に進み、車両制御装置50は5速変速制御を実行する。この5速変速制御では、まず第3スリーブ37を4速位置に切り替えて第2MG4から要求駆動力に対応する動力を出力する。続いて第2スリーブ26を6速位置から5速位置に切り替える。その後、第3スリーブ37を解放位置に切り替えて第2MG4からの動力の出力を停止する。これにより変速機10が5速に変速される。その後、今回の制御ルーチンを終了する。
 一方、要求駆動力が上限値より大きいと判定した場合はステップS27に進み、車両制御装置50は4速変速制御を実行する。この4速変速制御では、第2クラッチ16を半クラッチの状態に切り替えつつ第3スリーブ37を4速位置に切り替える。次に第1クラッチ15を解放状態に切り替えつつ第2クラッチ16を完全係合状態に切り替える。その後、第2スリーブ36を解放位置に切り替える。これにより変速機10が4速に変速される。その後、今回の制御ルーチンを終了する。
 以上に説明したように、本発明では、エンジン走行モードの実行中、かつ変速機10が6速のときにキックダウンが要求された場合に、要求駆動力が上限値以下の場合すなわち要求駆動力を第2MG4から出力可能な場合には、第2MG4で駆動輪6を駆動しつつ変速機10を5速に切り替える。この場合、変速時に駆動輪6が駆動されない期間、いわゆるトルク抜けが発生する期間を無くすことができる。また、変速時に第2MG4から要求駆動力を出力し、シフトダウン時における車両1Kの駆動力の変動を低減できる。そのため、変速時のショックを抑制できる。
 一方、要求駆動力が上限値より大きい場合、すなわち要求駆動力を第2MG4から出力不可能な場合には第2クラッチ16を半クラッチの状態にしつつ変速機10を4速に切り替える。4速に対応する第4ギヤ列G4は、第2入力軸14と第2出力軸18の間に介在している。そのため、第1入力軸13と第1出力軸17の間の動力伝達を第6ギヤ列G6で成立させつつ、第2入力軸14と第2出力軸18の間の動力伝達を第4ギヤ列G4で成立させることができる。従って、このように変速機10を4速に切り替えることによりトルク抜けが発生する期間を無くすことができる。そのため、変速時のショックを抑制できる。
 また、本発明では、第6ギヤ列G6を第1入力軸13と第1出力軸17との間に設けたので、3個のスリーブ35~37とそれらを駆動するアクチュエータを設けるのみで1速~6速の変速を行うことができる。そのため、コストを低減できる。
 上述した形態では、シフトダウン時に要求駆動力を第2MG4から出力可能か否かに応じて変速後の変速段を変更したが、変速後の変速段を変更する判断基準はこれに限定されない。例えば第2MG4から要求駆動力を全て出力できなくても、第2MG4から要求駆動力の一部を出力し、これによりシフトダウン時における車両1Kの駆動力の変動を低減できる場合には6速から5速に変速してもよい。一方、第2MG4から動力を出力しても車両1Aの駆動力の変動を低減できない場合には、6速から4速に変速する。
 上述した形態では、図13の制御ルーチンを実行することにより車両制御装置50が本発明の変速制御手段として機能する。そして、6速が本発明の特定偶数段に相当する。
 なお、本発明が適用される車両は、図12に示した車両に限定されない。本発明は、第1入力軸13と第1出力軸17との間の動力伝達が遮断されても駆動輪6をモータ・ジェネレータで駆動可能な種々の車両に適用できる。例えば、本発明は図14に示した車両1Lに適用してもよい。なお、図14において図12と共通の部分には同一の符号を付して説明を省略する。また、この図では制御系の図示を省略している。この図に示したようにこの車両1Lでは、図12の車両1Kと比較して第1MG3、第1被駆動ギヤ38、及び第1駆動ギヤ39が省略されている。それ以外は、図12の車両1Kと同じである。そのため、この車両1Lでも図13に示した変速制御ルーチンを実行して変速機10を制御できる。そして、この制御を実行することにより上述した形態と同様の作用効果を得られることができる。
 また、本発明は、図15に示した車両1Mに適用してもよい。なお、図15において図12と共通の部分には同一の符号を付して説明を省略する。また、この図では制御系の図示を省略している。この図に示したようにこの車両1Mでは、図12の車両1Kと比較して第1MG3、第2MG4、第1被駆動ギヤ38、第1駆動ギヤ39、第2被駆動ギヤ40、及び第2駆動ギヤ41が省略されている。その代わりに、駆動軸19にモータ・ジェネレータ60が設けられている。なお、このモータ・ジェネレータ60も第1MG3や第2MG4と同様に電動機及び発電機として機能する周知のモータ・ジェネレータである。この車両1Mでは、第1入力軸13と第1出力軸17との間の動力伝達が遮断されてもこのモータ・ジェネレータ60で駆動輪6を駆動できる。そのため、車両1Mでも図13に示した変速制御ルーチンを実行して変速機10を制御できる。そして、これにより上述した形態と同様の作用効果を得られることができる。なお、この車両1Mでは、モータ・ジェネレータ60が本発明の電動機に相当する。
 さらに本発明が適用される車両の変速機10は、上述した形態の変速機に限定されない。本発明は、4n+2組のギヤ列を有し、奇数段に対応するギヤ列及び偶数段であり、かつ4速以上の変速段のうちの1つの変速段(以下、特定偶数段と称する。)に対応するギヤ列が第1入力軸13と第1出力軸17との間に介在し、偶数段のうち特定偶数段以外の残りの変速段に対応するギヤ列が第2入力軸14と第2出力軸18との間に介在する種々の変速機が搭載された車両に適用できる。具体的には、このような変速機は、例えば前進6段、前進10段、前進14段等のデュアルクラッチ式の変速機である。また、特定偶数段は、例えば4速、6速、又は8速等である。このような変速機が搭載された車両でも、図2に示した変速制御ルーチンを実行して特定偶数段から低速側の変速段にシフトダウンすることにより変速時のショックを抑制することができる。
 本発明は、上述した形態に限定されることなく、種々の形態にて実施することができる。例えば、上述した形態では、入力軸とモータ・ジェネレータとをギヤを介して動力伝達可能に接続したが、モータ・ジェネレータの出力軸を入力軸と直接接続してもよい。
(第9の形態)
 次に図16及び図17を参照して、本発明の第9の形態に係るハイブリッド車両について説明する。なお、この形態において上述した形態と共通の部分には同一の符号を付して説明を省略する。図16は、この形態に係るハイブリッド車両1Nを示している。この図に示すように、この形態では、第2MG4が第2入力軸14に設けられている。また、この形態では、車両制御装置50に、車速センサ51、アクセル開度センサ52、SOCセンサ53、第1MG回転数センサ54、第2MG回転数センサ55、及びバッテリ温度センサ56が接続されている。第1MG回転数センサ54は、第1MG3の出力軸3aの回転数に対応した信号を出力する。第2MG回転数センサ55は、第2MG4の回転数、すなわち第2入力軸14の回転数に対応した信号を出力する。バッテリ温度センサ56は、バッテリの温度に対応した信号を出力する。
 この形態でも車両制御装置50は、車速等に基づいて車両1の走行モードを切り替える。また、車両制御装置50は、車速及びアクセル開度に基づいて変速機10の変速段を適宜に変更する。図に示したように変速機10では、第1入力軸13と第1出力軸17の間に、5速に対応する第5ギヤ列G5と6速に対応する第5ギヤ列G6が介在している。また、これらのギヤ列G5、G6は、共通の第2スリーブ36で第1出力軸17との接続が制御される。そのため、これらのギヤ列G5、G6を同時に第1出力軸17と接続させることができない。そこで、車両制御装置50は、第2MG4で駆動輪6の駆動をアシストすることが可能なときに、予め変速機10の変速段を6速から5速に切り替えておく。
 図17は、車両制御装置50がこのように変速機10を制御するために実行する変速制御ルーチンを示している。この制御ルーチンは、車両1Nの走行中に所定の周期で繰り返し実行される。なお、この制御ルーチンを実行することにより、車両制御装置50が本発明の変速手段として機能する。
 この制御ルーチンにおいて車両制御装置50は、まずステップS31で車両1Nの状態を取得する。車両1Nの状態としては、例えば車速、アクセル開度、第1MG3の出力軸3aの回転数、第2MG4の回転数、バッテリの充電状態、バッテリの温度、及び現在の変速段などが取得される。この処理では、この他にも車両1Nの状態に関する種々の情報が取得される。次のステップS32において車両制御装置50は、変速機10の変速段が6速か否か判定する。変速機10の変速段が1速~5速のいずれかであると判定した場合は、今回の制御ルーチンを終了する。
 一方、変速機10の変速段が6段であると判定した場合はステップS33に進み、車両制御装置50は運転者が車両1Nに要求しているトルク(要求トルク)Tdを算出する。この要求トルクTdは、アクセル開度及び車速に基づいて周知の算出方法で算出すればよい。例えば、予めアクセル開度及び車速と要求トルクTdとの関係を予め実験や数値計算等で求めて車両制御装置50のROMにマップとして記憶させておく。そして、そのマップを参照して算出すればよい。
 次のステップS34において車両制御装置50は、今回算出した要求トルクTdと前回算出した要求トルクとの差(以下、トルク変化量と称することがある。)ΔTdを算出する。続くステップS35において車両制御装置50は、第2MG4から出力可能なトルクの最大値(以下、最大トルクと称することがある。)Taを算出する。周知のように第2MG4から出力可能なトルクは、バッテリの充電状態、バッテリの温度、及び駆動輪6の駆動をアシストさせるべく第2MG4を動作させたときの回転数に応じて変化する。そのため、最大トルクTaもこれらに応じて変化する。例えば、バッテリの残量が低いほど、またバッテリの温度が高いほど最大トルクTaは小さくなる。また、回転数が高いほど最大トルクTaが小さくなる。なお、この回転数は、現在の車速及び第4ギヤ列G4の変速比に基づいて算出すればよい。そこで、予めこれらと最大トルクとの関係を実験や数値計算等により求めて車両制御装置50のROMにマップとして記憶させておく。最大トルクTaはこのマップを参照して算出すればよい。
 次のステップS36において車両制御装置50は、要求トルクTdが、最大トルクTaから所定の判定値αを引いた値より大きく、かつ最大トルクTa未満か否か判定する。なお、この判定値αは、要求トルクTdが最大トルクTaに近いか否か判定するために設定された値である。判定値αには、例えば数Nm(ニュートンメータ)が設定される。これにより最大トルクTaが、最大トルクTaから判定値αを引いた値と最大トルクTaとの間の範囲の上限値になる。また、最大トルクTaから判定値αを引いた値と最大トルクTaとの間の範囲が、最大トルクTaの近傍に設定される。要求トルクTdが最大トルクTaから判定値αを引いた値以下、又は要求トルクTdが最大トルクTa以上と判定した場合は、今回の制御ルーチンを終了する。
 一方、要求トルクTdが最大トルクTaから判定値αを引いた値より大きく、かつ最大トルクTa未満と判定した場合はステップS37に進み、車両制御装置50はトルク変化量ΔTdが0より大きく、かつ判定上限値β未満か否か判定する。この判定上限値βは、要求トルクの変化が緩やかか否か判定するための基準として設定された値である。判定上限値βには、例えば数Nmが設定される。トルク変化量ΔTdが0、又はトルク変化量ΔTdが判定上限値β以上と判定した場合は、今回の制御ルーチンを終了する。
 一方、トルク変化量ΔTdが0より大きく、かつ判定上限値β未満と判定した場合はステップS38に進み、車両制御装置50は5速変速制御を実行する。この5速変速制御では、まず第3スリーブ37を4速位置に切り替える。続いて第2MG4から要求トルクが出力されるように第2MG4を制御しつつ第2スリーブ36を解放位置に切り替える。その後、第2スリーブ36を5速位置に切り替える。なお、エンジン走行モードでは、この際に第1クラッチ15を一時解放状態に切り替える。EV走行モードでは、この制御は不要である。そして、エンジン2又は第1MG3から要求トルクを出力させる。その後、今回の制御ルーチンを終了する。
 以上に説明したように、本発明では、要求トルクTdが最大トルクTaから判定値αを引いた値より大きく、かつ最大トルクTa未満であり、かつトルク変化量ΔTdが0より大きく、かつ判定上限値β未満の場合には、変速機10を6速から5速に切り替えておく。すなわち、要求トルクTdが第2MG4の最大トルクTaの付近の場合には、第2MG4で駆動輪6の駆動をアシストできるときに変速機10を5速に変速しておく。そのため、この5速への変速時に確実に第2MG4で駆動輪6の駆動をアシストできる。従って、変速時にショックが発生することを抑制できる。また、6速から4速にダウンシフトされることを抑制できるので、変速時にエンジン2の回転数が急に大きくなることを抑制できる。そのため、運転者に与える違和感を低減できる。
 なお、上述した形態では、最大トルクTaから判定値αを引いた値と最大トルクTaとの間の範囲が、本発明のアシスト判定範囲に相当する。0から判定上限値βの間の範囲が本発明の判定範囲に相当する。図17のステップS38を実行することにより、車両制御装置50が本発明のアシスト手段として機能する。
 本発明が適用される車両の変速機10は、上述した変速機に限定されない。本発明は、4n+2組のギヤ列を有し、奇数段に対応するギヤ列及び偶数段のうちの1つの変速段(以下、特定偶数段と称する。)に対応するギヤ列が第1入力軸13と第1出力軸17との間に介在し、偶数段のうち特定偶数段以外の残りの変速段に対応するギヤ列が第2入力軸14と第2出力軸18との間に介在する種々の変速機が搭載された車両に適用できる。具体的には、このような変速機は、例えば前進6段、前進10段、前進14段等のデュアルクラッチ式の変速機である。また、特定偶数段は、例えば4速、6速、又は8速等である。このような変速機が搭載された車両でも、図2に示した変速制御ルーチンを実行して特定偶数段から一段低速側の奇数段にダウンシフトすることにより変速時のショックを抑制することができる。
 本発明は、上述した形態に限定されることなく、種々の形態にて実施することができる。例えば、第1MGも第2MGと同様に入力軸と直接接続してもよい。また、第2MGを第1MGと同様に、第2MGと入力軸とをギヤを介して動力伝達可能に接続してもよい。
 本発明が適用される車両は、上述した形態で示した車両に限定されない。例えば、上述した形態の車両から第1MGが省略されて車両に本発明を適用してもよい。また、第1MG及び第2MGを省略し、駆動軸にモータ・ジェネレータを設けた車両に本発明を適用してもよい。

Claims (11)

  1.  内燃機関と、
     前記内燃機関と第1クラッチを介して接続された第1入力軸及び前記内燃機関と第2クラッチを介して接続された第2入力軸を含む入力系と、駆動輪と動力伝達可能に接続された出力系と、一部が前記第1入力軸と前記出力系との間に介在するとともに残りが前記第2入力軸と前記出力系との間に介在し、かつ互いに変速比が相違してそれぞれが異なる前進用の変速段に対応する4n+2組(但し、nは1以上の整数)のギヤ列と、前記4n+2組のギヤ列のうち互いに隣接するように配置された一対のギヤ列の間に設けられ、前記一対のギヤ列のうちのいずれか一方のギヤ列による回転伝達を選択的に成立させる複数の結合機構と、を有するデュアルクラッチ式の変速機と、
     を備えたハイブリッド車両において、
     前記4n+2組のギヤ列のうち、2n+2組のギヤ列が前記第1入力軸と前記出力系との間に介在し、2n組のギヤ列が前記第2入力軸と前記出力系との間に介在し、
     前記第2入力軸又は前記出力系に動力を出力可能なように設けられた電動機をさらに備えているハイブリッド車両。
  2.  互いに隣り合う変速段を構成するギヤ列群が前記第1入力軸と前記出力系との間に1つのみ設けられる請求項1のハイブリッド車両。
  3.  前記4n+2組のギヤ列は、偶数段のうちの1つである特定偶数段に対応するギヤ列と、前記特定偶数段の一段低速側の奇数段又は一段高速側の奇数段のいずれか一方である特定奇数段に対応するギヤ列と、が前記第1入力軸と前記出力系との間に介在し、かつ前記特定偶数段及び前記特定奇数段以外の残りの変速段に対応するギヤ列が、前記第1入力軸と前記出力系との間に介在するギヤ列の数及び前記第2入力軸と前記出力系との間に介在するギヤ列の数がいずれも偶数になるように、前記入力系と前記出力系との間に介在する請求項1又は2のハイブリッド車両。
  4.  前記特定偶数段及び前記特定奇数段のうちの一方から他方に変速する場合には、その変速時に前記駆動輪に伝達される動力の変動を抑えるように前記電動機を制御する制御手段をさらに備えている請求項3のハイブリッド車両。
  5.  前記特定偶数段が前記変速機の変速段のうちの最高段であり、前記特定奇数段が前記最高段の一段低速側の奇数段であり、
     前記特定偶数段と前記特定奇数段のうちの一方から他方への変速が要求されたときに、前記電動機にて前記駆動輪に伝達される動力の変動を抑制できないと判定した場合には、その変速を禁止する変速禁止手段を備えている請求項3又は4のハイブリッド車両。
  6.  前記変速機は、前記4n+2組のギヤ列のうちの奇数段に対応するギヤ列及び4速以上の偶数段のうちの1つである特定偶数段に対応するギヤ列が前記第1入力軸と前記出力系との間に介在するとともに、前記特定偶数段以外の残りの偶数段に対応するギヤ列が前記第2入力軸と前記出力系との間に介在するデュアルクラッチ式の変速機であり、かつ前記ハイブリッド車両が前記内燃機関で走行する場合に、前記第1入力軸及び前記第2入力軸のうちのいずれか一方の入力軸が前記内燃機関と動力伝達可能に連結され、かつ他方の入力軸と前記内燃機関との間の動力伝達が遮断されるように前記第1クラッチ及び前記第2クラッチが制御され、
     前記変速機が前記特定偶数段に切り替えられ、かつ前記内燃機関で走行しているときに、前記変速機の変速段を前記特定偶数段から一段低速側の変速段に切り替えるシフトダウンが要求された場合、前記シフトダウン時における前記車両の駆動力の変動を前記電動機にて低減できる場合には、前記電動機で前記駆動輪を駆動しつつ前記変速機の変速段を前記特定偶数段から一段低速側の変速段に切り替え、前記シフトダウン時における前記車両の駆動力の変動を前記電動機にて低減できない場合には、前記内燃機関の動力が前記第2入力軸に伝達されるように前記第2クラッチを制御しつつ前記変速機の変速段を前記特定偶数段から二段低速側の変速段に切り替える変速制御手段をさらに備えている請求項1又は2のハイブリッド車両。
  7.  前記変速機に6組のギヤ列が設けられ、
     前記特定偶数段は6速である請求項6のハイブリッド車両。
  8.  前記変速機は、前記4n+2組のギヤ列のうちの奇数段に対応するギヤ列及び偶数段のうちの1つである特定偶数段に対応するギヤ列が前記第1入力軸と前記出力系との間に介在するとともに、前記偶数段のうち前記特定偶数段以外の残りの変速段に対応するギヤ列が前記第2入力軸と前記出力系との間に介在するデュアルクラッチ式の変速機であり、
     前記変速機が前記特定偶数段に切り替えられた状態で前記車両が走行しているときに、前記車両に対して要求されている要求トルクが、前記電動機から出力可能なトルクの最大値を上限とする所定のアシスト判定範囲内であり、かつ前記要求トルクの変化量が、予め設定した所定の判定範囲内の場合、前記変速機の変速段を前記特定偶数段から前記特定偶数段に対して一段低速側の奇数段に切り替える変速手段をさらに備えている請求項1又は2のハイブリッド車両。
  9.  前記特定偶数段は、前記変速機の最高段である請求項8のハイブリッド車両。
  10.  前記アシスト判定範囲は、前記電動機から出力可能なトルクの最大値を上限とし、かつその最大値の近傍に設定されている請求項8又は9のハイブリッド車両。
  11.  前記変速手段は、前記変速機の変速段を前記特定偶数段から前記特定偶数段に対して一段低速側の奇数段に切り替える場合に、その変速時に前記駆動輪に伝達される動力が変動しないように前記電動機を制御するアシスト手段を備えている請求項8~10のいずれか一項のハイブリッド車両。
PCT/JP2014/051718 2013-01-28 2014-01-27 ハイブリッド車両 WO2014115881A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/759,079 US9469294B2 (en) 2013-01-28 2014-01-27 Hybrid vehicle
JP2014558644A JP5962780B2 (ja) 2013-01-28 2014-01-27 ハイブリッド車両
CN201480004516.1A CN104918813B (zh) 2013-01-28 2014-01-27 混合动力车辆
DE112014000581.9T DE112014000581B4 (de) 2013-01-28 2014-01-27 Hybridfahrzeug

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-013660 2013-01-28
JP2013-013661 2013-01-28
JP2013013660 2013-01-28
JP2013013661 2013-01-28
JP2013013659 2013-01-28
JP2013-013659 2013-01-28

Publications (1)

Publication Number Publication Date
WO2014115881A1 true WO2014115881A1 (ja) 2014-07-31

Family

ID=51227669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051718 WO2014115881A1 (ja) 2013-01-28 2014-01-27 ハイブリッド車両

Country Status (5)

Country Link
US (1) US9469294B2 (ja)
JP (1) JP5962780B2 (ja)
CN (1) CN104918813B (ja)
DE (1) DE112014000581B4 (ja)
WO (1) WO2014115881A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016156689A1 (fr) * 2015-03-31 2016-10-06 Renault S.A.S Groupe motopropulseur hybride comportant deux moteurs electriques et un moteur thermique
JP2017001512A (ja) * 2015-06-09 2017-01-05 日産自動車株式会社 ハイブリッド車両の回生/変速協調制御装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015214751A1 (de) * 2015-08-03 2017-02-09 Robert Bosch Gmbh Antriebsvorrichtung für ein Kraftfahrzeug und Verfahren zum Betreiben einer Antriebsvorrichtung für ein Kraftfahrzeug
JP6438923B2 (ja) * 2016-09-13 2018-12-19 本田技研工業株式会社 ハイブリッド車両
CN107867169A (zh) * 2016-09-28 2018-04-03 比亚迪股份有限公司 用于车辆的动力驱动系统以及车辆
KR20190060839A (ko) * 2016-11-30 2019-06-03 데이나 리미티드 전기 차량 및 하이브리드 전기 차량을 위한 전기 차축 트랜스미션
CN107023668A (zh) * 2017-04-24 2017-08-08 北京新能源汽车股份有限公司 一种换挡控制方法、变速箱控制器及汽车
CN107599820A (zh) * 2017-10-24 2018-01-19 广西玉柴机器股份有限公司 混合动力总成系统
CN109986957B (zh) * 2017-12-29 2021-09-03 比亚迪股份有限公司 动力驱动系统及车辆
DE102018207006A1 (de) * 2018-05-07 2019-11-07 Audi Ag Verfahren zur Ermittlung einer prädizierten Beschleunigungsinformation in einem Elektrokraftfahrzeug und Elektrokraftfahrzeug
CN111251861B (zh) * 2018-11-30 2023-08-08 比亚迪股份有限公司 动力驱动系统及具有其的车辆
CN111350809B (zh) * 2018-12-24 2021-04-20 长城汽车股份有限公司 混合动力汽车及其双离合变速器的预选挡控制方法
EP3878672B1 (de) * 2020-03-10 2024-05-01 Getrag Ford Transmissions GmbH Verfahren zum betreiben einer hybrid-antriebsbaugruppe mit schaltgetriebe und e-maschine
FR3109563B1 (fr) * 2020-04-28 2022-03-18 Renault Procede et dispositif d’immobilisation a l’arret d’un vehicule routier
DE102020131920A1 (de) 2020-12-02 2022-06-02 Audi Aktiengesellschaft Hybridantriebsstrang für ein hybridgetriebenes Fahrzeug
DE102020131904B4 (de) 2020-12-02 2024-06-13 Audi Aktiengesellschaft Hybridantriebsstrang für ein hybridgetriebenes Fahrzeug
US11982348B2 (en) * 2021-10-01 2024-05-14 Dana Belgium N.V. Dual double synchronizer e-transmission for reducing torque interruption during gear shifts
IT202100029984A1 (it) * 2021-11-26 2023-05-26 Cnh Ind Italia Spa Un metodo ed un apparecchio per controllare un'architettura ibrida elettrica di un veicolo

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147312A (ja) * 2003-11-18 2005-06-09 Nissan Motor Co Ltd ハイブリッド車両の駆動装置
JP2005186931A (ja) * 2003-12-24 2005-07-14 Hyundai Motor Co Ltd ハイブリッド電気自動車用二重クラッチ変速機及びその作動方法
EP1706285B1 (en) * 2003-12-30 2009-11-04 Eaton Corporation Hybrid powertrain system
JP2010042708A (ja) * 2008-08-08 2010-02-25 Toyota Motor Corp 車両用自動変速機の制御装置
JP2012224132A (ja) * 2011-04-15 2012-11-15 Toyota Motor Corp ハイブリッド車両の変速制御システム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19850549A1 (de) * 1998-11-03 2000-05-04 Bosch Gmbh Robert Getriebe für ein Kraftfahrzeug, insbesondere Doppelkupplungs-Schaltgetriebe, und Verfahren zum Betreiben des Getriebes
DE10165096B3 (de) * 2000-07-18 2015-08-13 Schaeffler Technologies AG & Co. KG Getriebe
JP3621916B2 (ja) * 2001-06-19 2005-02-23 株式会社日立製作所 自動車の動力伝達装置
EP1270301A3 (en) 2001-06-19 2007-02-21 Hitachi, Ltd. Power transmission apparatus for automobile
WO2005008103A1 (de) * 2003-07-16 2005-01-27 Volkswagen Aktiengesellschaft Verfahren zum schalten eines doppelkupplungsgetriebes eines kraftfahrzeuges
ITTO20031023A1 (it) * 2003-12-18 2005-06-19 Fiat Ricerche Architettura di trasmissione a doppia frizione per autoveicolo.
KR101113665B1 (ko) * 2005-08-18 2012-03-09 현대자동차주식회사 하이브리드 차량의 이중 클러치 변속기 구조
EP1968838B1 (de) * 2005-12-24 2015-05-20 Schaeffler Technologies AG & Co. KG Kraftfahrzeugantriebsstrang und verfahren zur reduzierung von rupfschwingungen in einem solchen
JP4961192B2 (ja) * 2006-11-09 2012-06-27 アイシン精機株式会社 車両の駆動源制御装置
JP4973487B2 (ja) * 2007-12-25 2012-07-11 トヨタ自動車株式会社 複数クラッチ式変速機
DE102008048799A1 (de) * 2008-04-28 2009-11-05 GIF Gesellschaft für Industrieforschung mbH Getriebe, insbesondere Doppelkupplungsgetriebe
JP5083171B2 (ja) * 2008-10-23 2012-11-28 トヨタ自動車株式会社 内燃機関始動制御装置
JP5238958B2 (ja) * 2009-02-24 2013-07-17 アイシン・エーアイ株式会社 デュアルクラッチ式自動変速機
JP2010208376A (ja) * 2009-03-06 2010-09-24 Toyota Motor Corp ハイブリッド車両
JP4926209B2 (ja) * 2009-06-10 2012-05-09 本田技研工業株式会社 ハイブリッド車両用の自動変速機
CN102259583B (zh) * 2010-05-31 2014-03-19 比亚迪股份有限公司 混合动力驱动系统及具有该系统的车辆
CN201851606U (zh) * 2010-09-28 2011-06-01 安徽江淮汽车股份有限公司 双离合器变速器传动装置
US8844390B2 (en) * 2010-10-13 2014-09-30 Hyundai Wia Corporation Dual clutch transmission and dual clutch accuators thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147312A (ja) * 2003-11-18 2005-06-09 Nissan Motor Co Ltd ハイブリッド車両の駆動装置
JP2005186931A (ja) * 2003-12-24 2005-07-14 Hyundai Motor Co Ltd ハイブリッド電気自動車用二重クラッチ変速機及びその作動方法
EP1706285B1 (en) * 2003-12-30 2009-11-04 Eaton Corporation Hybrid powertrain system
JP2010042708A (ja) * 2008-08-08 2010-02-25 Toyota Motor Corp 車両用自動変速機の制御装置
JP2012224132A (ja) * 2011-04-15 2012-11-15 Toyota Motor Corp ハイブリッド車両の変速制御システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016156689A1 (fr) * 2015-03-31 2016-10-06 Renault S.A.S Groupe motopropulseur hybride comportant deux moteurs electriques et un moteur thermique
FR3034387A1 (fr) * 2015-03-31 2016-10-07 Renault Sa Groupe motopropulseur hybride comportant deux moteurs electriques et un moteur thermique
JP2017001512A (ja) * 2015-06-09 2017-01-05 日産自動車株式会社 ハイブリッド車両の回生/変速協調制御装置

Also Published As

Publication number Publication date
DE112014000581B4 (de) 2021-04-08
DE112014000581T5 (de) 2015-12-24
JP5962780B2 (ja) 2016-08-03
CN104918813A (zh) 2015-09-16
CN104918813B (zh) 2017-09-26
US20150367841A1 (en) 2015-12-24
US9469294B2 (en) 2016-10-18
JPWO2014115881A1 (ja) 2017-01-26

Similar Documents

Publication Publication Date Title
JP5962780B2 (ja) ハイブリッド車両
EP2897827B1 (en) Hybrid vehicle including a control device
JP5942412B2 (ja) 車両駆動装置
JP5203401B2 (ja) ツインクラッチ式変速機
JP5822615B2 (ja) 自動クラッチ制御装置およびその変速制御方法
JP5856779B2 (ja) 変速機
JP2010208523A (ja) 車両の動力伝達制御装置
JP5867589B2 (ja) 車両用駆動装置
JP5198645B1 (ja) ハイブリッド車両の制御装置
JP5863379B2 (ja) デュアルクラッチ式自動変速機およびその変速制御方法
JP2007177925A (ja) 自動車の制御装置,制御方法、及び自動変速機
US10197158B2 (en) Motor vehicle having a dual clutch transmission
JP2013022999A (ja) 車両の動力伝達制御装置
JP2010260373A (ja) 車両の動力伝達制御装置
JP2013060043A (ja) 車両の動力伝達装置
WO2014162760A1 (ja) 車両の制御装置
JP2013151261A (ja) ハイブリッド車両の変速制御装置
JP5929738B2 (ja) ハイブリッド車両の制御装置
JP2008223857A (ja) 車両用動力伝達装置
JP2014094596A (ja) ハイブリッド車両の変速制御装置
JP2014054952A (ja) ハイブリッド車両の制御装置
JP5836048B2 (ja) 変速機
JP6081430B2 (ja) 変速制御装置
JP5575520B2 (ja) ハイブリッド車両の動力制御装置
JP2016164069A (ja) ハイブリッド車両の変速制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743877

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014558644

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14759079

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140005819

Country of ref document: DE

Ref document number: 112014000581

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743877

Country of ref document: EP

Kind code of ref document: A1