WO2009123261A1 - Soi基板の製造方法 - Google Patents

Soi基板の製造方法 Download PDF

Info

Publication number
WO2009123261A1
WO2009123261A1 PCT/JP2009/056805 JP2009056805W WO2009123261A1 WO 2009123261 A1 WO2009123261 A1 WO 2009123261A1 JP 2009056805 W JP2009056805 W JP 2009056805W WO 2009123261 A1 WO2009123261 A1 WO 2009123261A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
main surface
transparent insulating
insulating substrate
silicon
Prior art date
Application number
PCT/JP2009/056805
Other languages
English (en)
French (fr)
Inventor
秋山昌次
川合信
伊藤厚雄
久保田芳宏
田中好一
飛坂優二
田村博
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to CN2009801117325A priority Critical patent/CN101981654B/zh
Priority to JP2010505974A priority patent/JP5433567B2/ja
Priority to US12/933,113 priority patent/US8420503B2/en
Priority to EP09729038.1A priority patent/EP2261954B1/en
Publication of WO2009123261A1 publication Critical patent/WO2009123261A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body

Definitions

  • the present invention relates to a method for manufacturing an SOI substrate, and more particularly to a method for manufacturing an SOI substrate in which a silicon thin film is formed on one main surface of a transparent insulating substrate.
  • SOI silicon on insulator, silicon on insulator
  • SOQ silicon on quartz
  • SOG silicon on glass
  • RF radio frequency
  • the SOQ substrate for example, a method has been proposed in which a silicon substrate is used as a donor wafer and a quartz substrate is used as a handle wafer to bond these different substrates together.
  • the quartz substrate is transparent, and thus there may be a problem in process / evaluation different from a normal SOI substrate manufactured by bonding silicon substrates together.
  • a transparent SOI substrate such as an SOQ substrate (hereinafter, sometimes referred to as a transparent SOI substrate) on the apparatus.
  • a sandblasting method is sometimes used when fogging (frosting) a SiO 2 -based substrate such as glass or quartz, or a component.
  • This method is a method in which fine powder of alumina or silica is sprayed on the surface to be treated to roughen it, and is widely used for various applications.
  • the particle problem is fatal when the frosted product is used in the semiconductor field.
  • a quartz boat for wafers used in a diffusion furnace or the like may be subjected to a fogging treatment to prevent the wafer from adhering to a groove for holding the wafer, but at the same time as particles due to a high temperature process. It is also necessary to deal with metal contamination.
  • the problem is that particles are greatly increased when the back surface of the substrate is subjected to fogging treatment so that the substrate recognition sensor of various apparatuses can recognize the transparent substrate such as SOQ (Silicon on Quartz) and SOG (Silicon on Glass). There is also.
  • a cleaning step is performed after sandblasting.
  • HF cleaning has been used.
  • the surface of glass or the like is activated, and fine glass fragments released during the cleaning reattach to the surface. It was a problem that worsened (see Silicon Science, Chapter 4, Section 4, Realize).
  • cleaning is performed for a long time with high concentration HF in order to remove particles, there is a problem that the surface subjected to the fogging process becomes extremely smooth and the roughening effect is reduced.
  • JP 2006-324530 A Silicon Science Chapter 4 Section 4 Realize
  • the present invention has been made in view of such problems, and is a transparent insulating substrate in which a silicon thin film is formed on one main surface, which is opposite to the side on which the silicon thin film is formed. It is an object of the present invention to provide a method for easily manufacturing an SOI substrate having a rough main surface.
  • the present invention has been made to solve the above problems, and includes at least a transparent insulating substrate and a silicon thin film formed on a first main surface which is one main surface of the transparent insulating substrate. And a method of manufacturing an SOI substrate having a roughened second main surface which is a main surface opposite to the first main surface of the transparent insulating substrate, wherein at least the transparent insulating substrate is Preparing a surface roughness of the first main surface with an RMS value of less than 0.7 nm and a surface roughness of the second main surface with an RMS value greater than the surface roughness of the first main surface; And a step of forming a silicon thin film on the first main surface of the transparent insulating substrate.
  • the surface roughness of the first main surface is less than 0.7 nm in terms of RMS value
  • the surface roughness of the second main surface is greater than the surface roughness of the first main surface in terms of RMS value.
  • substrate is made to a recognition apparatus by scattering the signal from the recognition apparatus using an optical sensor. It is possible to prevent the harmful effect of not being recognized. In addition, it is possible to prevent slipping during substrate transportation.
  • an SOI substrate transparent SOI substrate
  • a silicon thin film is formed on a transparent insulating substrate, and the back surface (the main surface on which the silicon thin film is not formed) is rough.
  • an SOI substrate can be easily manufactured. And if it is the SOI substrate manufactured in this way, since the surface roughness of the back surface of a transparent insulating board
  • an SOI substrate in which a silicon thin film is formed on a transparent insulating substrate such as an SOQ substrate is not easily recognized by an optical sensor that recognizes the substrate when the SOQ substrate is transported on the apparatus.
  • an optical sensor that recognizes the substrate when the SOQ substrate is transported on the apparatus.
  • the present inventors prepared a transparent insulating substrate having main surfaces with different surface roughnesses in advance, and a silicon surface on the main surface on the side having a smooth surface with respect to the transparent insulating substrate.
  • a thin film is an SOI substrate in which a silicon thin film is formed on a transparent insulating substrate simply without going through a complicated process, and a back surface (a main surface opposite to the side on which the silicon thin film is formed). It is found that a surface having a rough surface can be manufactured and such an SOI substrate can prevent the recognition apparatus from recognizing the substrate, and the treated surface of the glass substrate subjected to the sandblast treatment is first HF cleaned. The particle source is removed by etching, and the foreign matter that is released in this process and adhered to the glass substrate is washed with alkali, so that the foreign matter can be removed and the foreign matter can be prevented from reattaching. It found that effective cleaning can be performed, thereby completing the present invention.
  • FIG. 1 is a flowchart showing an example of a method for manufacturing an SOI substrate according to the present invention.
  • a transparent insulating substrate having a main surface with one surface rougher than the other main surface is prepared (step a), and the smooth main surface of the transparent insulating substrate is prepared.
  • a silicon thin film is formed thereon (step b), and an SOI substrate having a silicon thin film formed on a transparent insulating substrate with a rough back surface is manufactured.
  • a transparent insulating substrate 10 is prepared as shown in FIG.
  • the main surface of the transparent insulating substrate 10 on the side where the silicon thin film is formed in step b is referred to as a “first main surface” for the sake of convenience and is opposite to the first main surface.
  • the main surface is called “second main surface”.
  • the surface roughness of the first main surface 11 is less than 0.7 nm in terms of RMS value
  • the surface roughness of the second main surface 12 is greater than the surface roughness of the first main surface in terms of RMS value. Prepare a bigger one. The reason why both the main surfaces have such surface roughness will be described later.
  • the type of the transparent insulating substrate to which the present invention can be applied is not particularly limited.
  • the transparent insulating substrate can be any one of a quartz substrate, a glass substrate, and a sapphire substrate. It can be appropriately selected according to the purpose of the device.
  • the step of preparing the transparent insulating substrate includes at least performing double-sided lapping and etching on the first main surface and the second main surface, and then performing single-side polishing on only the first main surface. It is preferable to include.
  • the preparation of the transparent insulating substrate is performed at least on the first main surface and the second main surface by double-sided lapping and etching, and thereafter, only the first main surface is subjected to single-side polishing. If done, the damage layer can be removed after lapping, and the generation of particles from the roughened back surface can be effectively suppressed, and only one side needs to be polished. The cost is lower than the case where one side is roughened after double-side polishing.
  • the transparent insulating substrate is annealed before performing the single-side polishing on only the first main surface. It is preferable to include processing. As described above, if the annealing process is performed after the double-sided lapping process and the etching process, a change in the wafer shape in the subsequent single-side polishing process can be effectively prevented.
  • step b as shown in FIG. 1B, a silicon thin film 31 is formed on the first main surface 11 of the transparent insulating substrate 10 to form an SOI substrate 30.
  • the step of forming a silicon thin film is performed by implanting hydrogen ions, rare gas ions, or both from the surface into at least a silicon substrate or a silicon substrate having an oxide film formed on the surface.
  • An ion-implanted layer is formed and the silicon-implanted surface of the silicon substrate or the silicon substrate on which the oxide film is formed and the first main surface of the transparent insulating substrate are adhered and bonded together.
  • the method may include forming a silicon thin film on the first main surface of the transparent insulating substrate by peeling and thinning the silicon substrate on which the oxide film is formed on the substrate or the surface. In this way, if the silicon thin film is formed by peeling off after using the ion implanted layer as a boundary after the ion implantation, a thin silicon film with high crystallinity can be formed.
  • the transparent insulating substrate is any one of a quartz substrate, a glass substrate, and a sapphire substrate.
  • the transparent insulating substrate used in the method for manufacturing an SOI substrate of the present invention can be appropriately selected from these according to the purpose of the semiconductor device to be manufactured.
  • step a the surface roughness of the first main surface 11 is less than 0.7 nm in RMS value, and the surface roughness of the second main surface 12 is larger than the surface roughness of the first main surface 11 in RMS value.
  • a specific method for manufacturing such a transparent insulating substrate 10 is not particularly limited.
  • the method for forming the silicon thin film 31 on the first main surface 11 in the step b is not particularly limited. However, these can be performed as follows, for example.
  • FIG. 2 shows an example of a more specific aspect of the method for producing a transparent insulating substrate according to the present invention.
  • 2 (a-1) to (a-3) correspond to the above step a
  • FIGS. 2 (b-1) to (b-4) correspond to the above step b.
  • a transparent insulating substrate 10 'in which both main surfaces are rough is prepared (substep a-1).
  • a quartz substrate sliced from a quartz ingot can be used.
  • both main surfaces of the transparent insulating substrate 10 ' are rough surfaces that are relatively uncontrolled.
  • double-sided lapping is performed to wrap both main surfaces of the transparent insulating substrate 10 ′ (substep a-2).
  • Both the main surfaces of the transparent insulating substrate 10 '' that have been subjected to the double-sided lapping and etching in this way become rough surfaces that are relatively controlled in terms of surface roughness.
  • the polishing process is performed only on one side of the transparent insulating substrate 10 ′′ subjected to the double-sided lapping and etching (substep a). -3).
  • the main surface on the polished side is the first main surface (that is, the side on which a silicon thin film is to be formed later) 11, and the non-polished side is the second main surface 12.
  • the surface roughness of the first main surface 11 is less than 0.7 nm in RMS value, and the surface roughness of the second main surface 12 is RMS.
  • the transparent insulating substrate 10 having a value larger than the surface roughness of the first main surface can be produced.
  • the transparent insulating substrate 10 may be annealed after the double-sided lapping and etching (substep a-2). As described above, it is preferable to perform the annealing process after the double-sided lapping process and the etching process because the change in the wafer shape in the next single-side polishing process (substep a-3) can be effectively prevented.
  • a transparent insulating substrate is prepared in which both main surfaces are rough in substep a-1, but in step a, the surface roughness of the first main surface is finally reduced. It suffices if a transparent insulating substrate having an RMS value of less than 0.7 nm and a surface roughness of the second main surface larger than the surface roughness of the first main surface is prepared and prepared.
  • the transparent insulating substrate is not necessarily rough on both sides.
  • a transparent insulating substrate having both main surfaces mirror-polished is prepared and subjected to double-sided lapping and etching (substep a-2), annealing treatment, and single-side polishing (substep a-3),
  • the transparent insulating substrate 10 satisfying the above surface roughness can be produced.
  • a silicon substrate 20 is prepared (substep b-1). Further, if necessary, a silicon substrate having an oxide film formed on the surface may be used. In order to improve the state of bonding, it is necessary that the surface to be bonded (bonding surface) has a flatness of a certain level or more. Therefore, at least the surface to be bonded is subjected to mirror polishing or the like. For example, the flatness is preferably an RMS value of less than 0.7 nm.
  • hydrogen ions are implanted into the silicon substrate 20 from the surface (ion implantation surface 22) to form the ion implantation layer 21 (substep b-2).
  • the ion-implanted layer 21 may be formed by implanting not only hydrogen ions but also rare gas ions or both hydrogen ions and rare gas ions.
  • Other ion implantation conditions such as implantation energy, implantation dose, and implantation temperature may be appropriately selected so that a thin film having a predetermined thickness can be obtained.
  • the temperature of the substrate at the time of implantation is 250 to 400 ° C.
  • the ion implantation depth is 0.5 ⁇ m
  • the implantation energy is 20 to 100 keV
  • the implantation dose is 1 ⁇ 10 16 to 1 ⁇ 10 17 / cm. It includes be two, but not limited thereto.
  • a single crystal silicon substrate having an oxide film formed on the surface can be used as necessary. By using such a silicon substrate having an oxide film formed on the surface and performing ion implantation through the oxide film, an effect of suppressing channeling of implanted ions can be obtained, and variations in ion implantation depth can be further suppressed. . Thereby, a thin film with higher film thickness uniformity can be formed.
  • the first main surface 11 of the transparent insulating substrate 10 and the ion-implanted surface 22 of the silicon substrate 20 are brought into intimate contact and bonded together (substep b-3). ). Since the transparent insulating substrate 10 and the silicon substrate 20 are bonded to each other with sufficiently flat surfaces as described above, for example, a synthetic quartz substrate and a silicon substrate are brought into close contact with each other and applied with pressure. You can also stick them together. However, in order to bond more firmly, it is preferable to do as follows.
  • the surface activation treatment may be performed only on one of the ion implantation surface 22 of the silicon substrate 20 and the first main surface 11 of the transparent insulating substrate 10.
  • the surface activation treatment can be a plasma treatment.
  • the surface activation treatment is performed by plasma treatment, the surface of the substrate that has been subjected to the surface activation treatment is activated due to an increase in OH groups.
  • the substrates can be bonded more firmly by hydrogen bonding or the like.
  • the surface activation treatment can be performed by ozone treatment or the like, and a plurality of kinds of treatments may be combined.
  • a substrate subjected to cleaning such as RCA cleaning is placed in a vacuum chamber, and after introducing a plasma gas, it is preferably exposed to high-frequency plasma of about 100 W for about 5 to 30 seconds. Is plasma treated.
  • the plasma gas for example, when processing a single crystal silicon substrate with an oxide film formed on the surface, oxygen gas plasma, and when processing a single crystal silicon substrate with no oxide film formed on the surface, hydrogen is used. Gas, argon gas, a mixed gas thereof, or a mixed gas of hydrogen gas and helium gas can be used. Further, an inert gas such as nitrogen gas may be used.
  • a substrate subjected to cleaning such as RCA cleaning is placed in a chamber into which air is introduced, and after introducing a plasma gas such as nitrogen gas or argon gas, high-frequency plasma is generated,
  • a plasma gas such as nitrogen gas or argon gas
  • high-frequency plasma is generated,
  • the surface is treated with ozone by converting the oxygen in it into ozone.
  • the surface activated surface is used as a bonding surface and the substrate is brought into close contact at room temperature, for example, under reduced pressure or normal pressure, it can be firmly bonded without high temperature treatment.
  • a heat treatment step of heat-treating the bonded substrate preferably at 100 to 300 ° C. can be performed.
  • the bonded substrate is preferably heat-treated at 100 to 300 ° C. to increase the bonding strength between the silicon substrate and the transparent insulating substrate. be able to.
  • the heat treatment is performed at such a temperature, there is little risk of occurrence of thermal strain, cracking, peeling, or the like due to a difference in thermal expansion coefficient due to the different materials. Increasing the bonding strength can reduce the occurrence of defects in the peeling process.
  • the silicon substrate 20 is separated by the ion implantation layer 21, and a peeling process for thinning the silicon substrate 20 is performed to form a silicon thin film 31 as shown in FIG. 2 (b-4) (process b ⁇ ). 4).
  • the separation (peeling, thinning) of the silicon substrate can be performed, for example, by applying a mechanical external force. Although it does not specifically limit as a mechanical external force, For example, spraying gas and a liquid from the side surface of an ion implantation layer, and a physical impact are mentioned.
  • the SOI substrate 30 having the thin film 31 on the first main surface 11 of the transparent insulating substrate 10 can be manufactured.
  • the sub-steps a-1 to 3 and the sub-steps b-1 to b-2, which are processes for separate substrates, may be performed in the reverse order or in parallel.
  • the surface roughness of the first main surface 11 of the transparent insulating substrate 10 is less than 0.7 nm in terms of the RMS value. It is difficult to bond the silicon thin film by bonding, etc., and even if the silicon thin film is formed, the crystallinity of the silicon thin film is kept good due to the generation of voids that are unbonded parts. Because it is difficult.
  • the lower limit value of the RMS value of the surface roughness of the first main surface 11 is not particularly limited, and the higher the flatness, the better. However, there is a problem of cost in improving the flatness, and it is practically about 0.1 nm or more.
  • the recognition device can easily recognize the surface roughness.
  • an RMS value of 0.7 nm or more is preferable because it is more easily recognized.
  • the upper limit of the RMS value of the surface roughness of the second main surface 12 is not particularly limited, and is preferably as large as possible from the viewpoint of being easily recognized by the recognition device. It is preferable not to make the surface roughness more than necessary.
  • the RMS value may be about 50 nm.
  • the transparent insulating substrate is a glass substrate
  • the step of preparing the transparent insulating substrate is performed by sandblasting the first main surface and the second main surface of the glass substrate, It may include at least cleaning, and at least include cleaning with alkali after cleaning the treated surface with HF.
  • the processing surface of the glass substrate after the sandblasting treatment is first washed with HF, so that the HF solution is etched into the glass substrate, so that particles specific to the sandblasting treatment such as acute angle portions, cracks, damaged portions, etc. of the glass processing surface are obtained.
  • the source portion can be removed by etching.
  • the glass substrate may be a quartz glass substrate.
  • the insulator is particularly easy to adhere to foreign matter, it is possible to remove the foreign matter released at the time of HF cleaning after the sandblasting treatment and prevent reattachment thereof, and perform efficient cleaning.
  • the glass substrate may be a wafer. Particularly for glass wafers in which particles are a problem, this cleaning method can provide a wafer free of particles.
  • the wafer can be a stack of single crystal silicon layers.
  • the foreign matter released from the processing surface subjected to the sand blasting process at the time of HF cleaning is single crystal silicon. Even if it adheres to the layer, it is removed by subsequent alkali cleaning, so that generation of particles in the single crystal silicon layer can be prevented.
  • HF cleaning can be performed in a state where the single crystal silicon layer on the wafer is protected by a protective tape or an organic protective film.
  • the single crystal silicon layer is protected during the HF cleaning, so that the etching with the HF solution to the single crystal silicon layer can be reduced, and the foreign matter released from the sandblasted surface during the HF cleaning. Can be prevented from adhering to the single crystal silicon layer, so that a wafer having a single crystal silicon layer with fewer particles can be obtained.
  • the alkaline solution used in the alkali cleaning may be any of NH 4 OH, NaOH, KOH, CsOH, or any of these added with H 2 O 2 .
  • the alkali solution used in the alkali cleaning can be appropriately selected from these, and by adding H 2 O 2 , the oxidizing power is also added, and foreign substances can be removed more effectively.
  • the alkali solution used in the alkali cleaning has a volume composition ratio of H 2 O of 10, 0.5 to 2 NH 4 OH (29% by mass aqueous solution equivalent) and 0.01 to 0.5 it is preferable that the H 2 O 2 (30 wt% aqueous solution basis) and including at least SC1 solution.
  • the SC1 solution having such a concentration composition for alkali cleaning foreign substances adhering to the glass substrate can be more efficiently removed, and reattachment of foreign substances can be prevented.
  • the concentration ratio of H 2 O 2 lower than that of the normal SC1 solution in this way, the etching effect by alkali can be kept appropriate.
  • the alkaline solution used in the alkali cleaning may be an alkaline organic solvent.
  • alkali cleaning such an alkaline organic solvent can also be used.
  • cleaning includes etching the processed surface of the glass substrate which performed the sandblast process 20 nm or more. As described above, if the processing surface of the glass substrate is etched by 20 nm or more, it is possible to etch acute angle portions, cracks, damaged portions, and the like, which are particle generation sources on the processing surface, to such an extent that dust generation does not occur in the subsequent steps. .
  • FIG. 3 is a flowchart showing an example of an embodiment from the sandblasting process to the cleaning of the glass substrate.
  • the glass substrate is first subjected to sandblasting.
  • the sandblasting method is not particularly limited, and can be roughened by using, for example, a device similar to the conventional one and applying particles such as alumina or quartz to the processing surface.
  • a glass substrate based on SiO 2 can be applied.
  • it can be applied to a quartz glass substrate.
  • the glass substrate may be in the form of a wafer or may be a quartz boat used for heat treatment of a semiconductor wafer, for example.
  • the treated surface of the glass substrate that has been subjected to the sandblast treatment is HF cleaned.
  • Any hydrofluoric acid may be used as long as it contains hydrofluoric acid.
  • a hydrofluoric acid solution, a buffered hydrofluoric acid aqueous solution, or the like can be used.
  • it does not specifically limit as a cleaning method, For example, it can carry out by immersing the glass substrate by which sandblasting was carried out, and you may make it spin-clean the processing surface by which sandblasting was carried out.
  • the treated surface of the glass substrate that has been subjected to the sandblasting treatment by first cleaning the treated surface of the glass substrate that has been subjected to the sandblasting treatment with HF, it is possible to etch and remove uneven portions such as cracks that become particle sources formed by the sandblasting treatment. At this time, it is preferable to etch the treated surface of the glass substrate by 20 nm or more by HF cleaning, and thereby the particle source can be removed to such an extent that no dust is generated in a subsequent process.
  • this HF cleaning is performed in a state where the single crystal silicon layer is protected by a protective tape or an organic protective film.
  • This protection may be formed before the HF cleaning, or may be formed before the previous sandblast treatment. If it is before the sandblast treatment, the generation of particles of the single crystal silicon layer can be more efficiently prevented.
  • this organic protective film for example, an organic film such as a photoresist film can be formed, and a protective tape can be applied on the organic film, or a protective tape can be applied directly to the single crystal silicon layer. You can also.
  • the protective film formed in this manner can be removed before alkali cleaning with little adhesion of foreign matter, so that particles of the single crystal silicon layer can be removed by alkali cleaning, and the protective film can be removed after alkali cleaning. It can also be removed.
  • alkali cleaning is performed.
  • the foreign material that has been etched and released during HF cleaning is removed during alkaline cleaning, and further re-adhesion of foreign materials is prevented in an alkaline solution.
  • the particles can be efficiently removed.
  • Alkali organic solvents such as ammonium hydroxide and hydrazine can be used.
  • H 2 O 10 by volume composition ratio as an alkaline solution
  • NH 4 OH (29% by mass aqueous solution equivalent) is 0.5 to 2
  • H 2 O 2 (30% by mass aqueous solution equivalent) is 0. It is preferable to use an SC1 solution of .01 to 0.5.
  • particle sources such as damaged portions peculiar to the treated surface of the glass substrate that has been sandblasted by HF cleaning can be removed first, and then by alkali cleaning, they are released and reattached during HF cleaning. Since foreign matters can be removed while preventing further reattachment, effective cleaning can be performed.
  • a glass product having few particles can be produced by washing the glass substrate, which needs to be subjected to the fogging treatment by sandblasting, with this washing method.
  • Example 1 As shown below, 30 transparent SOI substrates were manufactured according to the SOI substrate manufacturing method by the bonding method as shown in FIG.
  • a synthetic quartz substrate 10 ′ having a diameter of 150 mm that was cut out from a synthetic quartz ingot was prepared (substep a-1).
  • both surfaces of the synthetic quartz substrate 10 ′ were double-sided by a double-sided lapping apparatus, and etching was performed using hydrofluoric acid (substep a-2).
  • the synthetic quartz substrate was annealed at 1100 ° C. for 30 minutes in a non-oxidizing atmosphere.
  • the synthetic quartz substrate 10 ′′ treated so far is polished on only one side using a single-side polishing apparatus, and the surface roughness of one main surface (first main surface) 11 is 0 in RMS value. .2 nm (substep a-3).
  • the surface roughness of the other main surface (second main surface) 12 was an RMS value of 1.0 nm.
  • a mirror-polished single crystal silicon substrate having a diameter of 150 mm was prepared as the silicon substrate 20.
  • a silicon oxide film layer having a thickness of 100 nm was formed on the surface of the silicon substrate by thermal oxidation (substep b-1).
  • hydrogen ions are implanted into the silicon substrate 20 through the formed silicon oxide film layer to form a microbubble layer (ion implantation layer) 21 parallel to the surface at an average depth of ions (substep b).
  • the ion implantation conditions are an implantation energy of 35 keV, an implantation dose of 9 ⁇ 10 16 / cm 2 , and an implantation depth of 0.3 ⁇ m.
  • Step b-3 After the silicon substrate 20 and the synthetic quartz substrate 10 that have been subjected to the surface activation treatment as described above are brought into close contact with each other at the room temperature with the surface that has undergone the surface activation treatment as a bonding surface, the back surfaces of both substrates are disposed in the thickness direction. (Step b-3). Next, in order to increase the bonding strength, the substrate on which the silicon substrate 20 and the synthetic quartz substrate 10 were bonded was heat-treated at 300 ° C. for 30 minutes.
  • a transparent SOI substrate 30 having the silicon thin film 31 on the synthetic quartz substrate 10 was manufactured.
  • the transparent SOI substrate 30 was subjected to a recognition experiment using a substrate recognition apparatus provided in the device manufacturing apparatus, all the substrates were correctly recognized.
  • two quartz wafers 40 that have been processed under the above-described conditions and two silicon wafers 42 for evaluation that have not been subjected to sandblasting are obtained.
  • a total of four wafers were placed in the cleaning cassette 43 with the sandblasting surface 41 and the particle evaluation surface 44 of the silicon wafer 42 facing each other.
  • the interval between the quartz wafer 40 and the silicon wafer 42 was set to 5 mm.
  • the number of particles (0.2 ⁇ m or more) on the evaluation surface 44 of the silicon wafer 42 was measured with a particle counter. Based on the measured number of particles, the number of foreign matters adhering to the quartz wafer 40 was evaluated. The measurement results are shown in FIG.
  • the number of particles measured on the wafer subjected to the alkali cleaning after the HF cleaning in Example 2 was much smaller than that in Comparative Example 1-3. Further, when only the HF cleaning of Comparative Example 2 was performed, the number of particles was measured more than the wafer of Comparative Example 1 that was not cleaned. When only the alkali cleaning of Comparative Example 3 was performed, the number of particles was relatively small compared to Comparative Examples 1 and 2, but the particle source could not be removed.
  • Example 3-7 First, sandblasting was performed on six quartz wafers. Next, two sheets were processed under the following conditions.
  • Example 3 It was immersed in a 2% by mass HF solution for 30 minutes and then immersed in an NH 4 OH solution (3 vol%) for 10 minutes.
  • Example 6 It was immersed in a 2% by mass HF solution for 30 minutes and then immersed in an alkaline organic solvent (TMAH 8% solution) for 10 minutes.
  • Example 7 It was immersed in a 2 mass% HF solution for 30 minutes, and then immersed in an alkaline solution (KOH 10 wt% solution) for 10 minutes.
  • FIG. 4 shows the measurement results of Example 3-7 together with the measurement results of Comparative Example 2 in which only HF cleaning was performed under the same conditions.
  • Example 6 the number of particles measured in Example 3-7 in which alkaline cleaning was performed after that was significantly smaller than that in Comparative Example 2 in which only HF cleaning was performed under the same conditions. It can be seen that the number can be significantly reduced. Further, the alkali cleaning of Example 5 had the smallest number of particles. This is due to the synergistic effect of the oxidizing power of H 2 O 2 in the alkaline solution of Example 5 and NH 4 OH, and the concentration of H 2 O 2 is lower than that of the alkaline solution of Example 4. It can be seen that the etching effect by the alkali is not diminished and the particles are removed more efficiently.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Element Separation (AREA)

Abstract

 本発明は、一方の主表面上にシリコン薄膜が形成された透明絶縁性基板であり、該シリコン薄膜が形成された側とは反対側の主表面が荒れたSOI基板を簡便に製造する方法を提供する。  透明絶縁性基板と、前記透明絶縁性基板の一方の主表面である第一主表面上に形成されたシリコン薄膜とを少なくとも含んでおり、前記透明絶縁性基板の第一主表面とは反対側の主表面である第二主表面が荒らされているSOI基板を製造する方法であって、少なくとも、前記透明絶縁性基板として、前記第一主表面の表面粗さがRMS値で0.7nm未満であり、前記第二主表面の表面粗さがRMS値で前記第一主表面の表面粗さよりも大きいものを準備する工程と、該透明絶縁性基板の第一主表面上にシリコン薄膜を形成する工程とを含むことを特徴とするSOI基板の製造方法を提供する。

Description

SOI基板の製造方法
 本発明は、SOI基板の製造方法に関し、特には、透明絶縁性基板の一方の主表面上にシリコン薄膜が形成されたSOI基板の製造方法に関するものである。
 半導体デバイスの更なる高性能化を図るために、SOI(Silicon on insulator、絶縁体上のシリコン)基板が近年注目を浴びている。また、SOI基板の一種であり、支持基板(ハンドルウエーハ)がシリコンではない、Silicon on quartz(SOQ)基板や、Silicon on glass(SOG)基板なども、それぞれTFT-LCDや高周波(RF)デバイス、その他MEMS製品などへの応用が期待されている(例えば特開2006-324530号公報参照)。
 上記SOQ基板などは、例えば、シリコン基板をドナーウエーハとし、石英基板をハンドルウエーハとして、これらの異種基板を貼り合わせて製造する方法が提案されている。このようにして作製された貼り合わせ基板において、石英基板は透明なため、シリコン基板同士を貼り合わせて製造される、通常のSOI基板とは異なるプロセス・評価上の問題が生じる場合がある。
 このような問題の一つとして、SOQ基板等の、透明絶縁性基板上にシリコン薄膜が形成されたSOI基板(以下、透明SOI基板と略称することがある)を装置上で搬送する際、基板を認識する光センサーに認識されにくいなどの問題があった。
 一方、ガラス、石英等のSiO2ベースの基板、部品等の曇り処理(フロスト処理)をする際に、サンドブラスト法が用いられることがある。この方法は、アルミナやシリカの微粉を処理を行う面に吹き付けて荒らす方法であり、様々な用途に広く用いられている。
 しかし、電子材料やデバイス分野においては、このような方法で作製した曇り面にはいくつかの問題点がある。一つは、パーティクル(異物)の問題であり、これはサンドブラスト粉が処理された面に残留してしまうことや、荒らした処理面の鋭角部分やクラック、ダメージ部分からの発塵等もある。これらの問題は、通常の洗浄で対応できない場合が多い。また、この異物起因の金属汚染等も電子材料分野では深刻である。
 特に、この曇り処理を施したものが半導体分野で用いられる場合は、パーティクル問題は致命的ともいえる。例えば、拡散炉等で用いられるウェーハの石英ボートなどには、ウェーハを保持する溝にウェーハの密着を防止するために曇り処理が施される場合があるが、高温プロセスを経るためにパーティクルと同時に金属汚染にも対処する必要がある。また、SOQ(Silicon on Quartz)やSOG(Silicon on Glass)といった透明基板を各種装置の基板認識センサーが基板を認識できるように、基板裏面に曇り処理を施す際にパーティクルが大幅に増加するという問題もある。
 このようなサンドブラスト処理後のパーティクルを除去するために、サンドブラスト処理後に洗浄工程が行われる。この洗浄工程では、例えばHF洗浄が用いられてきたが、HF洗浄ではガラス等の表面が活性化され、また洗浄の際に遊離した細かいガラス等の破片が表面に再付着することでかえってパーティクルレベルが悪化することが問題であった(例えばシリコンの科学 第4章第4節 リアライズ社参照)。また、パーティクルを除去するために高濃度HFで長時間洗浄を行うと曇り処理を施した面を極度になだらかにして、荒らした効果が減少してしまうという問題もある。
特開2006-324530号公報 シリコンの科学 第4章第4節 リアライズ社
 本発明は、このような問題点に鑑みてなされたものであり、一方の主表面上にシリコン薄膜が形成された透明絶縁性基板であり、該シリコン薄膜が形成された側とは反対側の主表面が荒れたSOI基板を簡便に製造する方法を提供することを目的とする。
 本発明は、上記課題を解決するためになされたもので、透明絶縁性基板と、前記透明絶縁性基板の一方の主表面である第一主表面上に形成されたシリコン薄膜とを少なくとも含んでおり、前記透明絶縁性基板の第一主表面とは反対側の主表面である第二主表面が荒らされているSOI基板を製造する方法であって、少なくとも、前記透明絶縁性基板として、前記第一主表面の表面粗さがRMS値で0.7nm未満であり、前記第二主表面の表面粗さがRMS値で前記第一主表面の表面粗さよりも大きいものを準備する工程と、該透明絶縁性基板の第一主表面上にシリコン薄膜を形成する工程とを含むことを特徴とするSOI基板の製造方法を提供する。
 このように、透明絶縁性基板として、第一主表面の表面粗さがRMS値で0.7nm未満であり、第二主表面の表面粗さがRMS値で第一主表面の表面粗さよりも大きいものを準備する工程と、該透明絶縁性基板の第一主表面上にシリコン薄膜を形成する工程とを含むSOI基板の製造方法であれば、透明絶縁性基板上にシリコン薄膜が形成されたSOI基板であり、裏面(シリコン薄膜が形成されていない方の主表面)が荒れたSOI基板を簡便に製造することができる。
 そして、このようにして製造されたSOI基板であれば、透明絶縁性基板の裏面の表面粗さが大きいため、光センサーを用いた認識装置からの信号を散乱させることによって、認識装置に基板が認識されないとの弊害を防止することができる。また、基板搬送時の滑りなどを防止することもできる。
 本発明のSOI基板の製造方法によれば、透明絶縁性基板上にシリコン薄膜が形成されたSOI基板(透明SOI基板)であり、裏面(シリコン薄膜が形成されていない方の主表面)が荒れたSOI基板を簡便に製造することができる。
 そして、このようにして製造されたSOI基板であれば、透明絶縁性基板の裏面の表面粗さが大きいため、光センサーを用いた認識装置からの信号を散乱させることによって、認識装置に基板を認識させることができる。また、基板搬送時の滑りなどを防止することもできる。
本発明に係るSOI基板の製造方法の一例を示すフロー図である。 本発明に係るSOI基板の製造方法の具体的な態様の一例を示すフロー図である。 サンドブラスト処理を施したガラス基板の処理面の洗浄工程の一例を示すフロー図である。 ウェーハに付着している異物の数を評価するための洗浄を行う際の、ウェーハを洗浄カセットに配置した状態の概略図である。 パーティクル数の測定結果である。 パーティクル数の測定結果である。
 以下、本発明についてより詳細に説明する。
 前述のように、従来、SOQ基板等の、透明絶縁性基板上にシリコン薄膜を形成したSOI基板は、装置上でSOQ基板を搬送する際などにおいて、基板を認識する光センサーに認識されにくい等の問題があった。また、ガラスにサンドブラスト処理を行った際に、パーティクルが大幅に増加し、その後に洗浄を行ってもパーティクルが逆に増加する等の問題があった。
 本発明者らは、このような問題点に対し、予め表面粗さの異なる主表面を有する透明絶縁性基板を準備し、この透明絶縁性基板に対し、表面が平滑な側の主表面にシリコン薄膜を形成すれば、複雑な工程を経ることなく、簡便に、透明絶縁性基板上にシリコン薄膜を形成したSOI基板であって、裏面(シリコン薄膜が形成されている側とは反対側の主表面)が粗いものを製造でき、このようなSOI基板であれば、認識装置が基板を認識できない事態を防止できることを見出し、また、サンドブラスト処理を施したガラス基板の処理面を、まずHF洗浄することによってパーティクル源をエッチング除去し、この過程で遊離しガラス基板に付着した異物をアルカリ洗浄することによって、異物の除去および異物の再付着の防止ができるため、効果的な洗浄が行えることを見出し、本発明を完成させた。
 以下、図面を参照して本発明の実施形態を説明するが、本発明はこれらに限定されるものではない。
 図1は、本発明のSOI基板の製造方法の一例を示すフロー図である。
 全体の流れを説明すると、透明絶縁性基板として、片方の主表面の表面粗さがもう一方の主表面より粗いものを準備し(工程a)、該透明絶縁性基板の平滑な方の主表面上にシリコン薄膜を形成し(工程b)、裏面の荒れた、透明絶縁性基板上にシリコン薄膜が形成されたSOI基板を製造する。
 具体的には、工程aでは、図1(a)に示したように、透明絶縁性基板10を準備する。なお、透明絶縁性基板10の主表面のうち、工程bでシリコン薄膜を形成する側の主表面を、本明細書中では、便宜上、「第一主表面」とし、第一主表面と反対側の主表面を「第二主表面」と呼ぶ。透明絶縁性基板10としては、第一主表面11の表面粗さがRMS値で0.7nm未満であり、第二主表面12の表面粗さがRMS値で第一主表面の表面粗さよりも大きいものを準備する。両主表面について、このような表面粗さとする理由は後述する。RMSは、平均線から測定曲線までの偏差の二乗を平均した値の平方根である。
 なお、本発明が適用できる透明絶縁性基板の種類は特に限定されるものではないが、例えば、石英基板、ガラス基板、サファイア基板のいずれかとすることができ、SOI基板とした後、作製する半導体デバイスの目的等に応じて適宜選択することができる。
 この場合、透明絶縁性基板を準備する工程が、少なくとも、第一主表面と第二主表面とに対して両面ラップ加工とエッチング処理を施し、その後、第一主表面のみに対して片面ポリッシュ加工を施すことを含むことが好ましい。
 このように、透明絶縁性基板の準備を、少なくとも、第一主表面と第二主表面とに対して両面ラップ加工とエッチング処理を施し、その後、第一主表面のみに対して片面ポリッシュ加工を施すことにより行えば、ラッピング加工後のダメージ層除去を行うことができ、粗面化された裏面からのパーティクルの発生を効果的に抑制することができる上に、片面のみポリッシュ加工すればよいので、両面ポリッシュ後、片面を粗面化する場合より、低コストである。
 この場合、透明絶縁性基板の第一主表面と第二主表面とに施す両面ラップ加工とエッチング処理よりも後で、第一主表面のみに対する片面ポリッシュ加工を行う前に透明絶縁性基板にアニール処理を施すことを含むことが好ましい。
 このように、両面ラップ加工とエッチング処理の後にアニール処理を行えば、その後の片面ポリッシュ加工におけるウエーハ形状の変化を効果的に防止することができる。
 次に、工程bでは、図1(b)に示したように、透明絶縁性基板10の第一主表面11上にシリコン薄膜31を形成し、SOI基板30とする。
 本発明のSOI基板の製造方法では、シリコン薄膜を形成する工程が、少なくとも、シリコン基板または表面に酸化膜を形成したシリコン基板に、表面から水素イオンまたは希ガスイオンあるいはこれらの両方を注入してイオン注入層を形成し、シリコン基板または表面に酸化膜を形成したシリコン基板のイオン注入した面と、透明絶縁性基板の第一主表面を密着して貼り合わせ、イオン注入層を境界として、シリコン基板または表面に酸化膜を形成したシリコン基板を剥離して薄膜化し、透明絶縁性基板の第一主表面上にシリコン薄膜を形成することを含むことができる。
 このように、シリコン薄膜の形成を、イオン注入後にイオン注入層を境界として剥離することにより行えば、薄く結晶性の高いシリコン薄膜を形成することができる。
 また、透明絶縁性基板が、石英基板、ガラス基板、サファイア基板のいずれかであることが好ましい。
 本発明のSOI基板の製造方法で使用する透明絶縁性基板は、作製する半導体デバイスの目的に応じて、これらの中から適宜選択することができる。
 工程aの、第一主表面11の表面粗さがRMS値で0.7nm未満であり、第二主表面12の表面粗さがRMS値で第一主表面11の表面粗さよりも大きい透明絶縁性基板10を準備する工程では、そのような透明絶縁性基板10の具体的な作製方法などは特に限定されない。また、工程bの、第一主表面11上へのシリコン薄膜31の形成方法も特に限定されない。ただし、これらは、例えば、以下のようにすることができる。
 図2には、本発明に係る透明絶縁性基板の製造方法のより具体的な態様の一例を示した。なお、図2(a-1)~(a-3)が上記の工程aに対応し、図2(b-1)~(b-4)が上記の工程bに対応する。
 まず、図2(a-1)に模式的に示したように、両主表面が粗面の状態となっている透明絶縁性基板10’を準備する(サブステップa-1)。例えば、石英インゴットからスライスして切り出された石英基板を用いることができる。この状態では、透明絶縁性基板10’の主表面は両方とも比較的制御されていない粗面となっている。
 次に、図2(a-2)に模式的に示したように、透明絶縁性基板10’の両主表面をラッピングする両面ラップ加工を行う(サブステップa-2)。なお、この場合、ラップ加工後のダメージ層除去のため、フッ酸等によるエッチング処理を行うことが好ましい。
 なお、上記両面ラップ加工は同時に行う態様とすることが簡便で好ましいが、片面ずつ行うようにしてもよい。
 このようにして両面ラップ加工及びエッチング処理された透明絶縁性基板10’’の両主表面は、比較的表面粗さについて制御された粗面となる。
 次に、図2(a-3)に模式的に示したように、両面ラップ加工及びエッチング処理が施された透明絶縁性基板10’’に対し、片面のみにポリッシュ加工を施す(サブステップa-3)。ポリッシュ加工を行った側の主表面が第一主表面(すなわち、後にシリコン薄膜を形成する側)11となり、行わなかった側が第二主表面12となる。
 このようにして、サブステップa-1~a-3を経ることにより、第一主表面11の表面粗さがRMS値で0.7nm未満であり、第二主表面12の表面粗さがRMS値で第一主表面の表面粗さよりも大きい透明絶縁性基板10を作製することができる。
 なお、両面ラップ加工及びエッチング処理(サブステップa-2)の後に、透明絶縁性基板10にアニール処理を施してもよい。このように、両面ラップ加工とエッチング処理の後にアニール処理を行えば、次の片面ポリッシュ加工(サブステップa-3)におけるウエーハ形状の変化を効果的に防止することができるので好ましい。
 また、ここでは、サブステップa-1で主表面が両方とも粗面の状態の透明絶縁性基板を準備する例を示したが、工程aでは、最終的に第一主表面の表面粗さがRMS値で0.7nm未満であり、第二主表面の表面粗さがRMS値で第一主表面の表面粗さよりも大きい透明絶縁性基板を作製、準備できればよく、サブステップa-1で準備する透明絶縁性基板は必ずしも両面が粗面でなくてもよい。例えば、両主表面が鏡面研磨された透明絶縁性基板を準備し、これに両面ラップ加工とエッチング(サブステップa-2)、アニール処理、片面ポリッシュ加工(サブステップa-3)を行えば、上記の表面粗さを満たす透明絶縁性基板10を作製することができる。
 次に、工程bの、シリコン薄膜の形成については、具体的には、例えば、以下のようにして行うことができる。
 まず、図2(b-1)に示したように、シリコン基板20を準備する(サブステップb-1)。また、必要に応じて、表面に酸化膜を形成したシリコン基板を用いてもよい。貼り合わせの状態を良くするには、貼り合わせる側の面(貼り合わせ面)が一定以上の平坦度であることが必要であるので、少なくとも貼り合わせる側の面を鏡面研磨等しておく。この平坦度は例えばRMS値で0.7nm未満とすることが望ましい。
 次に、図2(b-2)に示したように、シリコン基板20に、表面(イオン注入面22)から水素イオンを注入してイオン注入層21を形成する(サブステップb-2)。
 このイオン注入層21の形成には、水素イオンだけではなく、希ガスイオンあるいは水素イオンと希ガスイオンの両方をイオン注入するようにしても良い。注入エネルギー、注入線量、注入温度等その他のイオン注入条件も、所定の厚さの薄膜を得ることができるように適宜選択すれば良い。具体例としては、注入時の基板の温度を250~400℃とし、イオン注入深さを0.5μmとし、注入エネルギーを20~100keVとし、注入線量を1×1016~1×1017/cm2とすることが挙げられるが、これらに限定されない。
 なお、必要に応じて、表面に酸化膜を形成した単結晶シリコン基板を用いることもできる。このような、表面に酸化膜を形成したシリコン基板を用い、酸化膜を通してイオン注入を行えば、注入イオンのチャネリングを抑制する効果が得られ、イオンの注入深さのバラツキをより抑えることができる。これにより、より膜厚均一性の高い薄膜を形成することができる。
 次に、図2(b-3)に示すように、透明絶縁性基板10の第一主表面11と、シリコン基板20のイオン注入した面22とを密着させ、貼り合わせる(サブステップb-3)。
 この透明絶縁性基板10とシリコン基板20との貼り合わせは、上述のように十分に平坦な面同士であるので、例えば、合成石英基板とシリコン基板であれば、室温で密着させ、圧力をかけるだけで貼り合わせることもできる。
 ただし、より強固に貼り合わせるために、以下のようにすることが好ましい。
 すなわち、予めシリコン基板20のイオン注入面22と、透明絶縁性基板10の第一主表面11に表面活性化処理を施すことが望ましい。シリコン基板20のイオン注入面22と透明絶縁性基板10の第一主表面11のいずれか一方の面にのみ表面活性化処理を施すようにしても良い。
 この時、表面活性化処理を、プラズマ処理とすることができる。このように、表面活性化処理を、プラズマ処理で行えば、基板の表面活性化処理を施した面は、OH基が増加するなどして活性化する。従って、この状態で、透明絶縁性基板10の第一主表面11と、シリコン基板20のイオン注入した面22とを密着させれば、水素結合等により、基板をより強固に貼り合わせることができる。また、表面活性化処理はそのほかにオゾン処理等でも行うことができ、複数種の処理を組み合わせてもよい。
 プラズマで処理をする場合は、真空チャンバ中にRCA洗浄等の洗浄をした基板を載置し、プラズマ用ガスを導入した後、好ましくは、100W程度の高周波プラズマに5~30秒程度さらし、表面をプラズマ処理する。プラズマ用ガスとしては、例えば、表面に酸化膜を形成した単結晶シリコン基板を処理する場合には、酸素ガスのプラズマ、表面に酸化膜を形成しない単結晶シリコン基板を処理する場合には、水素ガス、アルゴンガス、又はこれらの混合ガスあるいは水素ガスとヘリウムガスの混合ガスを用いることができる。また、不活性ガスの窒素ガスを用いても良い。
 オゾンで処理をする場合は、大気を導入したチャンバ中にRCA洗浄等の洗浄をした基板を載置し、窒素ガス、アルゴンガス等のプラズマ用ガスを導入した後、高周波プラズマを発生させ、大気中の酸素をオゾンに変換することで、表面をオゾン処理する。
 このように、表面活性化処理をした表面を貼り合わせ面として、例えば減圧又は常圧下、室温で基板を密着させれば、高温処理を施さなくても強固に貼り合わせることができる。
 なお、このシリコン基板と透明絶縁性基板を貼り合わせた後、該貼り合わせた基板を、好ましくは100~300℃で熱処理する熱処理工程を行うことができる。
 このように、シリコン基板と透明絶縁性基板を貼り合わせた後、該貼り合わせた基板を、好ましくは100~300℃で熱処理することで、シリコン基板と透明絶縁性基板の貼り合わせの強度を高めることができる。また、このような温度での熱処理であれば、異種材料であることに起因する熱膨張係数の差異による熱歪、ひび割れ、剥離等が発生する恐れが少ない。貼り合わせ強度を高めれば、剥離工程での不良の発生を減少させることもできる。
 次に、シリコン基板20をイオン注入層21にて離間させ、シリコン基板20を薄膜化する剥離工程を行い、図2(b-4)に示すように、シリコン薄膜31を形成する(工程b-4)。
 このシリコン基板の離間(剥離、薄膜化)は、例えば、機械的な外力を加えることによって行うことができる。機械的な外力としては、特に限定されないが、例えば、ガスや液体をイオン注入層の側面からの吹き付けや、物理的な衝撃が挙げられる。
 以上のような工程を経て、透明絶縁性基板10の第一主表面11上に薄膜31を有するSOI基板30を製造することができる。
 なお、別個の基板に対する処理である、上記サブステップa-1~3と、サブステップb-1~b-2とは、当然ながら、順番が逆でもよいし、並行して行っても良い。
 なお、本発明において、工程aでは、透明絶縁性基板10を、第一主表面11の表面粗さがRMS値で0.7nm未満としたのは、これよりも表面粗さが粗い(平坦度が低い)と、貼り合わせなどによりシリコン薄膜を貼り合わせることが難しく、また、仮にシリコン薄膜を形成しても、未結合部であるボイド等の発生により、シリコン薄膜の結晶性を良好に保つことが難しいためである。
 なお、第一主表面11の表面粗さのRMS値の下限値は特に限定されず、平坦度は高いほどよい。ただし、平坦度を向上させるにはコストの問題もあり、現実的には0.1nm以上程度となる。
 一方、透明絶縁性基板10の第二主表面12の表面粗さについては、上記のように、RMS値で第一主表面の表面粗さよりも大きくすれば、認識装置に認識されやすくなる。認識装置の性能等、その他の諸条件にもよるが、例えばRMS値が0.7nm以上であれば、より認識されやすくなるので好ましい。
 なお、第二主表面12の表面粗さのRMS値の上限は特に限定されず、認識装置に認識されやすくなるという観点では、できるだけ大きい方が良いが、パーティクルの発生の防止などを勘案し、必要以上の表面粗さとはしないことが好ましい。例えば、RMS値で50nm程度を上限としてもよい。
 また、透明絶縁性基板がガラス基板であって、透明絶縁性基板を準備する工程が、ガラス基板の第一主表面と第二主表面とに対してサンドブラスト処理を施し、ガラス基板の処理面を洗浄することを少なくとも含み、少なくとも、処理面をHF洗浄した後に、アルカリ洗浄することを含むことができる。
 このように、サンドブラスト処理後のガラス基板の処理面をまずHF洗浄することで、HF溶液のガラス基板へのエッチング作用により、ガラス処理面の鋭角部分、クラック、ダメージ部分等のサンドブラスト処理特有のパーティクル源となる部分をエッチング除去することができる。その後に、このHF洗浄の際に遊離して再付着した異物をアルカリ洗浄によって取り除くことができるため、サンドブラスト処理が施されていても、パーティクルが極めて少ないガラス基板にすることができる。また、この異物除去にアルカリ溶液を用いたアルカリ洗浄を行うため、アルカリ溶液中では一度除去された異物がほとんど再付着せず、効果的な洗浄を行うことができる。
 このとき、ガラス基板が、石英ガラス基板であってもよい。
 このように、特に異物が付着しやすい絶縁物であっても、サンドブラスト処理後のHF洗浄時に遊離した異物の除去及びその再付着の防止ができ、効率的な洗浄を行うことができる。
 また、ガラス基板が、ウェーハ状のものであってもよい。
 特にパーティクルが問題となるガラス製のウェーハについて、この洗浄方法によれば、パーティクルのないウェーハとすることができる。
 このとき、ウェーハが、単結晶シリコン層を積層しているものとすることができる。
 このように、この洗浄方法によれば、ガラスウェーハ上に単結晶シリコン層が積層されているウェーハであっても、HF洗浄の際にサンドブラスト処理を施した処理面から遊離した異物が単結晶シリコン層に付着したとしても、その後のアルカリ洗浄により除去されるため単結晶シリコン層のパーティクルの発生を防止することができる。
 このとき、HF洗浄を、ウェーハ上の単結晶シリコン層が保護テープ又は有機保護膜により保護された状態で行うことができる。
 このように、HF洗浄中は単結晶シリコン層が保護されているようにすることで、単結晶シリコン層へのHF溶液によるエッチングを少なくでき、また、HF洗浄中にサンドブラスト処理面から遊離した異物が単結晶シリコン層に付着することも防止できるため、パーティクルがより少ない単結晶シリコン層を有するウェーハとすることができる。
 また、アルカリ洗浄で用いられるアルカリ溶液が、NH4OH、NaOH、KOH、CsOHのいずれか、又はこれらのいずれかにH22を添加したものであってもよい。
 アルカリ洗浄で使用されるアルカリ溶液は、これらの中から適宜選択することができ、さらにH22を添加することで酸化力も加わり、異物の除去をより効果的に行うことができる。
 また、アルカリ洗浄で用いられるアルカリ溶液が、体積組成比でH2Oを10としたときに、0.5~2のNH4OH(29質量%水溶液換算)と、0.01~0.5のH22(30質量%水溶液換算)とを少なくとも含むSC1溶液とすることが好ましい。
 このような濃度組成のSC1溶液をアルカリ洗浄に用いることで、ガラス基板に付着した異物をより効率的に除去でき且つ異物の再付着も防止することができる。また、H22の濃度比率をこのように通常のSC1溶液より低くすることで、アルカリによるエッチング効果を適切なものに保つことができる。
 また、アルカリ洗浄で用いられるアルカリ溶液が、アルカリ系の有機溶剤であってもよい。
 アルカリ洗浄では、このようなアルカリ系の有機溶剤も用いることができる。
 また、HF洗浄する工程が、サンドブラスト処理を施したガラス基板の処理面を20nm以上エッチングすることを含むことが好ましい。
 このように、ガラス基板の処理面を20nm以上エッチングすれば、処理面のパーティクル発生源となる鋭角部分、クラック、ダメージ部分等を、後の工程で発塵が生じない程度にエッチングすることができる。
 図3は、ガラス基板のサンドブラスト処理から洗浄までの実施態様の一例を示すフロー図である。
 図3に示すように、まずガラス基板にサンドブラスト処理を施す。
 このサンドブラスト処理の方法としては特に限定されず、例えば従来と同様の装置を用い、アルミナや石英等の粒子を処理面にあてることによって荒らすことができる。
 この洗浄方法を適用できるガラス基板としては、SiO2ベースのもの等に適用することができるが、例えば石英ガラス基板に適用することができる。このように、帯電しやすい絶縁物であっても、この洗浄方法を用いれば、サンドブラスト処理後の洗浄時にパーティクルの再付着を防止することができ、良好な洗浄を行うことができる。
 また、このガラス基板としては、ウェーハ状のものであってもよいし、また、例えば半導体ウェーハの熱処理時に用いられる石英ボートであってもよい。
 また、単結晶シリコン層が積層されているウェーハであっても適用することができる。このような単結晶シリコン層が積層されている場合でも、この洗浄方法によれば、HF洗浄の際に処理面から遊離し単結晶シリコン層に付着した異物もアルカリ洗浄によって除去、および再付着の防止ができるためパーティクルの低減を効果的に行うことができる。また、アルカリ洗浄をHF洗浄の後に行うため、HF洗浄を長時間行わなくてもパーティクルの除去が達成でき、HF洗浄時の単結晶シリコン層への異物の付着を少なくすることができる。例えば、SOQ(Silicon on Quartz)やSOG(Silicon on Glass)等のようなパーティクルが特に問題となるようなものについても、この洗浄方法を用いることで、パーティクルのほとんどないウェーハとすることができる。
 次に、図3に示すように、サンドブラスト処理を施されたガラス基板の処理面をHF洗浄する。このとき用いられるフッ酸としては、フッ酸を含むものであればよく、例えばフッ酸溶液、緩衝フッ酸水溶液等を用いることができる。また、洗浄方法としても特に限定されず、サンドブラスト処理されたガラス基板を例えば浸漬させることによって行うことができるし、サンドブラスト処理された処理面をスピン洗浄するようにしてもよい。
 このように、サンドブラスト処理を施されたガラス基板の処理面をまずHF洗浄することによって、サンドブラスト処理によって形成された、パーティクル源となるクラック等の凹凸部分をエッチング除去することができる。この際、HF洗浄によってガラス基板の処理面を20nm以上エッチングすることが好ましく、これにより後の工程で発塵しない程度にパーティクル源の除去を行うことができる。
 また、この洗浄方法により洗浄されるガラス基板が、単結晶シリコンが積層されたウェーハである場合には、このHF洗浄を単結晶シリコン層が保護テープ又は有機保護膜により保護された状態で行うことが好ましい。この保護は、HF洗浄の前に形成してもよいし、更に前のサンドブラスト処理の前に形成してもよい。サンドブラスト処理の前であれば、単結晶シリコン層のパーティクルの発生をより効率的に防止することができる。
 この有機保護膜としては、例えばフォトレジスト膜のような有機膜を形成することができ、また、有機膜の上に保護テープを貼ることもできるし、単結晶シリコン層に直接保護テープを貼ることもできる。
 このように形成した保護膜は、異物の付着が少ないアルカリ洗浄の前に除去することで、アルカリ洗浄によって単結晶シリコン層のパーティクルを除去することができるし、また、アルカリ洗浄の後に保護膜を除去することもできる。
 次に、図3に示すように、アルカリ洗浄を行う。
 このように、HF洗浄の後にアルカリ洗浄を行うことで、HF洗浄の際にエッチングされ遊離し、再付着した異物がアルカリ洗浄時に除去され、また、アルカリ溶液中では、異物のさらなる再付着が防止されるため、パーティクルを効率的に除去することができる。
 このとき用いられるアルカリ溶液としては、NH4OH、NaOH、KOH、CsOHのいずれか、又はこれらのいずれかにH22を添加したものや、EDP(Ethylenediamine-pyrocatechol-water)、TMAH(Tetramethyl ammonium hydroxide)、ヒドラジン(hydrazine)などのアルカリ系の有機溶剤を用いることができる。
 また、アルカリ溶液として、体積組成比でH2Oを10としたときに、NH4OH(29質量%水溶液換算)を0.5~2、H22(30質量%水溶液換算)を0.01~0.5であるSC1溶液を用いることが好ましい。このような濃度組成比のSC1溶液であれば、H22の酸化力による洗浄効果を上げつつ、通常のSC1溶液よりもH22の濃度比率が低く適切なアルカリ性も有するため、エッチング効果を維持でき、さらに洗浄時の異物の再付着の防止もできる。
 このように、HF洗浄によってサンドブラスト処理を施したガラス基板の処理面特有のダメージ部分等のパーティクル源をまず除去することができ、その後にアルカリ洗浄を行うことで、HF洗浄時に遊離し再付着した異物を、さらなる再付着を防止しつつ除去できるため、効果的な洗浄を行うことができる。ガラス基板のようなあえてサンドブラスト処理によって曇り処理を施す必要があるものについて、この洗浄方法により洗浄することで、曇り処理の効果も残しつつパーティクルの少ないガラス製品を製造することができる。
 以下、本発明の実施例、比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
 以下のように、図2に示したような、貼り合わせ法によるSOI基板の製造方法に従って、透明SOI基板を30枚製造した。
 まず、合成石英インゴットから切り出したままの直径150mmの合成石英基板10’を準備した(サブステップa-1)。
 次に、この合成石英基板10’の両面を両面ラッピング装置で両面ラップ加工し、フッ酸を用いてエッチングを行った(サブステップa-2)。その後、該合成石英基板に対し、非酸化性雰囲気下、1100℃で30分間のアニール処理を行った。
 ここまで処理を行った合成石英基板10’’に対し、片面研磨装置を用いて、片面のみにポリッシュ加工を行い、一方の主表面(第一主表面)11の表面粗さをRMS値で0.2nmとした(サブステップa-3)。もう一方の主表面(第二主表面)12の表面粗さはRMS値で1.0nmとなった。
 次に、シリコン基板20として、鏡面研磨された直径150mmの単結晶シリコン基板を準備した。そして、シリコン基板には、その表面に熱酸化によりシリコン酸化膜層を100nm形成した(サブステップb-1)。
 次に、シリコン基板20に、形成してあるシリコン酸化膜層を通して水素イオンを注入し、イオンの平均進行深さにおいて表面に平行な微小気泡層(イオン注入層)21を形成した(サブステップb-2)。イオン注入条件は、注入エネルギーが35keV、注入線量が9×1016/cm2、注入深さは0.3μmである。
 次に、プラズマ処理装置中にイオン注入したシリコン基板20を載置し、プラズマ用ガスとして窒素を導入した後、2Torr(270Pa)の減圧条件下で13.56MHzの高周波を直径300mmの平行平板電極間に高周波パワー50Wの条件で印加することで、高周波プラズマ処理をイオン注入した面に10秒行った。このようにして、シリコン基板20のイオン注入面22に表面活性化処理を施した。
 一方、合成石英基板10については、プラズマ処理装置中に載置し、狭い電極間にプラズマ用ガスとして窒素ガスを導入した後、電極間に高周波を印加することでプラズマを発生させ、高周波プラズマ処理を10秒行った。このようにして、合成石英基板10の第一主表面11にも表面活性化処理を施した。
 以上のようにして表面活性化処理を行ったシリコン基板20と合成石英基板10を、表面活性化処理を行った面を貼り合わせ面として室温で密着させた後、両基板の裏面を厚さ方向に強く押圧した(工程b-3)。
 次に、貼り合わせ強度を高めるため、シリコン基板20と合成石英基板10とを貼り合わせた基板を、300℃で30分間熱処理した。
 次に、シリコン基板20のイオン注入層21に外部衝撃を付与し、イオン注入層21にて順次離間させ、シリコン薄膜31を形成した(サブステップb-4)。
 このようにして、合成石英基板10上にシリコン薄膜31を有する透明SOI基板30を製造した。この透明SOI基板30を、デバイス作製装置に備え付けられた基板認識装置を用いて認識実験を行ったところ、全ての基板が正確に認識された。
(実施例2、比較例1-3)
 まず、石英ウェーハ8枚にサンドブラスト処理を施した。
 次に、以下の各条件で2枚ずつ処理を行った。
 実施例2:2質量%のHF溶液に30分浸漬させ、その後にアルカリ溶液(NH4OH:H22:H2O=1:0.2:10 質量比)に10分浸漬させた。
 比較例1:洗浄を行わなかった。
 比較例2:2質量%のHF溶液に30分浸漬させた。
 比較例3:アルカリ溶液(NH4OH:H22:H2O=1:0.2:10 質量比)に10分浸漬させた。
 次に、図4に示すように、上記のような条件で処理された石英ウェーハ40の同条件の処理を行ったもの2枚と、サンドブラスト処理を行っていない2枚の評価用シリコンウェーハ42を、サンドブラスト処理面41とシリコンウェーハ42のパーティクル評価面44を対向させて計4枚のウェーハを洗浄カセット43に配置した。このとき、石英ウェーハ40とシリコンウェーハ42の間隔は5mmとした。この状態で通常のRCA洗浄を行った後にシリコンウェーハ42の評価面44のパーティクル(0.2μm以上)の数をパーティクルカウンターで測定した。この測定したパーティクル数により、石英ウェーハ40に付着していた異物の数の評価を行った。測定結果を図5に示す。
 図5に示すように、実施例2のHF洗浄後にアルカリ洗浄を行ったウェーハが、比較例1-3に比べて極めて少ないパーティクル数が測定された。また、比較例2のHF洗浄のみを行った場合には、洗浄を行っていない比較例1のウェーハよりもパーティクル数が多く測定された。比較例3のアルカリ洗浄のみを行った場合には、比較例1、2に比べてパーティクル数は比較的少なかったが、パーティクル源の除去はできなかった。
(実施例3-7)
 まず、石英ウェーハ6枚にサンドブラスト処理を施した。
 次に、以下の各条件で2枚ずつ処理を行った。
 実施例3:2質量%のHF溶液に30分浸漬させ、その後にNH4OH溶液(3vol%)に10分浸漬させた。
 実施例4:2質量%のHF溶液に30分浸漬させ、その後にアルカリ溶液(NH4OH:H22:H2O=1:1:10 質量比)に10分浸漬させた。
 実施例5:2質量%のHF溶液に30分浸漬させ、その後にアルカリ溶液(NH4OH:H22:H2O=1:0.2:10 質量比)に10分浸漬させた。
 実施例6:2質量%のHF溶液に30分浸漬させ、その後にアルカリ系の有機溶剤(TMAH8%溶液)に10分浸漬させた。
 実施例7:2質量%のHF溶液に30分浸漬させ、その後にアルカリ溶液(KOH10wt%溶液)に10分浸漬させた。
 次に、図4に示すように、上記のような条件で処理された石英ウェーハ40の同条件の処理を行ったもの2枚と、サンドブラスト処理を行っていない2枚の評価用シリコンウェーハ42を、サンドブラスト処理面41とパーティクル評価面44を対向させて計4枚のウェーハを洗浄カセット43に配置した。このとき、石英ウェーハ40とシリコンウェーハ42の間隔は5mmとした。この状態で通常のRCA洗浄を行った後にシリコンウェーハ42の評価面44のパーティクル(0.2μm以上)の数をパーティクルカウンターで測定した。この測定したパーティクル数により、石英ウェーハ40に付着していた異物の数の評価を行った。同条件でHF洗浄のみを行った比較例2の測定結果とともに、実施例3-7の測定結果を図6に示す。
 図6に示すように、同条件のHF洗浄のみを行った比較例2の測定数に比べ、その後にアルカリ洗浄を行った実施例3-7のパーティクル測定数が著しく少なく、このアルカリ洗浄によってパーティクル数が格段に低減できることが分かる。また、実施例5のアルカリ洗浄が最もパーティクル数が少なかった。これは、実施例5のアルカリ溶液中のH22の酸化力とNH4OHの相乗効果によるものであり、実施例4のアルカリ溶液と比べH22の濃度を低くしているため、アルカリによるエッチング効果が薄まらず、より効率的にパーティクル除去が行われていることが分かる。
 以上のように、HF洗浄を行った後にアルカリ洗浄を行う洗浄方法であれば、HF洗浄によってサンドブラスト処理を施したガラスの処理面特有のパーティクル源となる凹凸をエッチング除去し、その際に遊離し付着した異物をアルカリ洗浄で再付着を防止しながら除去できるため、パーティクルの低減を効率的に行うことができる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (11)

  1.  透明絶縁性基板と、前記透明絶縁性基板の一方の主表面である第一主表面上に形成されたシリコン薄膜とを少なくとも含んでおり、
     前記透明絶縁性基板の第一主表面とは反対側の主表面である第二主表面が荒らされているSOI基板を製造する方法であって、少なくとも、
     前記透明絶縁性基板として、前記第一主表面の表面粗さがRMS値で0.7nm未満であり、前記第二主表面の表面粗さがRMS値で前記第一主表面の表面粗さよりも大きいものを準備する工程と、
     該透明絶縁性基板の第一主表面上にシリコン薄膜を形成する工程と
     を含むことを特徴とするSOI基板の製造方法。
  2.  前記透明絶縁性基板を準備する工程が、少なくとも、前記第一主表面と前記第二主表面とに対して両面ラップ加工とエッチング処理を施し、その後、前記第一主表面のみに対して片面ポリッシュ加工を施すことを含む請求項1に記載のSOI基板の製造方法。
  3.  前記透明絶縁性基板の第一主表面と第二主表面とに施す両面ラップ加工とエッチング処理よりも後で、前記第一主表面のみに対する片面ポリッシュ加工を行う前に該透明絶縁性基板にアニール処理を施すことを含む請求項2に記載のSOI基板の製造方法。
  4.  前記シリコン薄膜を形成する工程が、少なくとも、
     シリコン基板または表面に酸化膜を形成したシリコン基板に、表面から水素イオンまたは希ガスイオンあるいはこれらの両方を注入してイオン注入層を形成し、
     前記シリコン基板または表面に酸化膜を形成したシリコン基板のイオン注入した面と、前記透明絶縁性基板の第一主表面を密着して貼り合わせ、
     前記イオン注入層を境界として、前記シリコン基板または表面に酸化膜を形成したシリコン基板を剥離して薄膜化し、前記透明絶縁性基板の第一主表面上にシリコン薄膜を形成することを含む請求項1ないし請求項3のいずれか一項に記載のSOI基板の製造方法。
  5.  前記透明絶縁性基板が、石英基板、ガラス基板、サファイア基板のいずれかである請求項1ないし請求項4のいずれか一項に記載のSOI基板の製造方法。
  6.  前記透明絶縁性基板がガラス基板であって、
     前記透明絶縁性基板を準備する工程が、該ガラス基板の第一主表面と第二主表面とに対してサンドブラスト処理を施し、該ガラス基板の処理面を洗浄することを少なくとも含み、
     少なくとも、該処理面をHF洗浄した後に、アルカリ洗浄することを含む請求項1に記載のSOI基板の製造方法。
  7.  前記ガラス基板が、石英ガラス基板である請求項6に記載のSOI基板の製造方法。
  8.  前記アルカリ洗浄で用いられるアルカリ溶液が、NH4OH、NaOH、KOH、CsOHのいずれか、又はこれらのいずれかにH22を添加したものである請求項6又は7のいずれか一項に記載のSOI基板の製造方法。
  9.  前記アルカリ洗浄で用いられるアルカリ溶液が、体積組成比でH2Oを10としたときに、0.5~2のNH4OH(29質量%水溶液換算)と、0.01~0.5のH22(30質量%水溶液換算)とを少なくとも含むSC1溶液とすることを特徴とする請求項6又は7のいずれか一項に記載のSOI基板の製造方法。
  10.  前記アルカリ洗浄で用いられるアルカリ溶液が、アルカリ系の有機溶剤である請求項6又は7のいずれか一項に記載のSOI基板の製造方法。
  11.  前記HF洗浄する工程が、前記サンドブラスト処理を施したガラス基板の処理面を20nm以上エッチングすることを含む請求項6ないし請求項10のいずれか一項に記載のSOI基板の製造方法。
PCT/JP2009/056805 2008-04-01 2009-04-01 Soi基板の製造方法 WO2009123261A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801117325A CN101981654B (zh) 2008-04-01 2009-04-01 Soi基板的制造方法
JP2010505974A JP5433567B2 (ja) 2008-04-01 2009-04-01 Soi基板の製造方法
US12/933,113 US8420503B2 (en) 2008-04-01 2009-04-01 Method for producing SOI substrate
EP09729038.1A EP2261954B1 (en) 2008-04-01 2009-04-01 Method for producing soi substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008094594 2008-04-01
JP2008094538 2008-04-01
JP2008-094594 2008-04-01
JP2008-094538 2008-04-01

Publications (1)

Publication Number Publication Date
WO2009123261A1 true WO2009123261A1 (ja) 2009-10-08

Family

ID=41135628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056805 WO2009123261A1 (ja) 2008-04-01 2009-04-01 Soi基板の製造方法

Country Status (6)

Country Link
US (1) US8420503B2 (ja)
EP (1) EP2261954B1 (ja)
JP (1) JP5433567B2 (ja)
KR (1) KR101541940B1 (ja)
CN (1) CN101981654B (ja)
WO (1) WO2009123261A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107448A (ja) * 2012-11-28 2014-06-09 Nikon Corp 積層半導体装置の製造方法および積層半導体製造装置
WO2023234005A1 (ja) * 2022-06-03 2023-12-07 信越半導体株式会社 単結晶シリコンウェーハのドライエッチング方法、単結晶シリコンウェーハの製造方法、及び単結晶シリコンウェーハ

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102543832B (zh) * 2011-12-30 2013-11-27 中国电子科技集团公司第五十五研究所 带有ic器件的透明硅基基板的制作方法
JP2013159531A (ja) * 2012-02-07 2013-08-19 Panasonic Liquid Crystal Display Co Ltd 液晶表示素子の製造方法
US9228916B2 (en) * 2012-04-13 2016-01-05 The Regents Of The University Of California Self calibrating micro-fabricated load cells
US9293291B2 (en) * 2012-08-31 2016-03-22 Samsung Display Co., Ltd. Flexible display device manufacturing method and carrier substrate for the method
JP6086031B2 (ja) 2013-05-29 2017-03-01 信越半導体株式会社 貼り合わせウェーハの製造方法
JP6374199B2 (ja) * 2014-03-31 2018-08-15 日東電工株式会社 ダイボンドフィルム、ダイシング・ダイボンドフィルム及び積層フィルム
JP6528581B2 (ja) * 2015-07-28 2019-06-12 三星ダイヤモンド工業株式会社 ブレーク装置、基板のブレーク方法、および、ブレーク装置の基板載置部用部材
US9776852B2 (en) * 2016-02-01 2017-10-03 Taiwan Semiconductor Manufacturing Company Ltd. Method for controlling surface roughness in MEMS structure
DE112021003545T5 (de) * 2020-09-17 2023-04-20 Ngk Insulators, Ltd. Halbleitersubstrat von einem Nitrid eines Elements der Gruppe III

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02178927A (ja) * 1988-12-29 1990-07-11 Hitachi Ltd 板面体の研磨方法
JPH0389323A (ja) * 1989-09-01 1991-04-15 Matsushita Electron Corp 画像表示装置
JPH07283383A (ja) * 1994-04-07 1995-10-27 Internatl Business Mach Corp <Ibm> シリコン・オン・サファイア・ウエーハの製造方法
JP2002160943A (ja) * 2000-09-13 2002-06-04 Nippon Sheet Glass Co Ltd 非晶質材料の加工方法及びガラス基板
JP2006324530A (ja) 2005-05-19 2006-11-30 Shin Etsu Chem Co Ltd Soiウエーハの製造方法及びsoiウエーハ
JP2007123513A (ja) * 2005-10-27 2007-05-17 Shin Etsu Polymer Co Ltd 精密基板収納容器
JP2007179589A (ja) * 2005-12-26 2007-07-12 Toyo Kohan Co Ltd 磁気ディスク用ガラス基板の製造方法および磁気ディスク用ガラス基板

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105987A (ja) 1987-10-19 1989-04-24 Nec Corp 薄膜el表示装置
JP3337735B2 (ja) * 1993-01-18 2002-10-21 キヤノン株式会社 半導体基板の製造方法
JPH07288383A (ja) * 1994-04-19 1995-10-31 Hitachi Chem Co Ltd 多層配線板の製造方法
JP3911901B2 (ja) * 1999-04-09 2007-05-09 信越半導体株式会社 Soiウエーハおよびsoiウエーハの製造方法
US6774040B2 (en) 2002-09-12 2004-08-10 Applied Materials, Inc. Apparatus and method for surface finishing a silicon film
US7176528B2 (en) 2003-02-18 2007-02-13 Corning Incorporated Glass-based SOI structures
JP4509488B2 (ja) * 2003-04-02 2010-07-21 株式会社Sumco 貼り合わせ基板の製造方法
KR100550491B1 (ko) * 2003-05-06 2006-02-09 스미토모덴키고교가부시키가이샤 질화물 반도체 기판 및 질화물 반도체 기판의 가공 방법
JP2006210899A (ja) * 2004-12-28 2006-08-10 Shin Etsu Chem Co Ltd Soiウエーハの製造方法及びsoiウェーハ
FR2888663B1 (fr) 2005-07-13 2008-04-18 Soitec Silicon On Insulator Procede de diminution de la rugosite d'une couche epaisse d'isolant
KR100972213B1 (ko) * 2005-12-27 2010-07-26 신에쓰 가가꾸 고교 가부시끼가이샤 Soi 웨이퍼의 제조 방법 및 soi 웨이퍼
US7790565B2 (en) * 2006-04-21 2010-09-07 Corning Incorporated Semiconductor on glass insulator made using improved thinning process
FR2903808B1 (fr) * 2006-07-11 2008-11-28 Soitec Silicon On Insulator Procede de collage direct de deux substrats utilises en electronique, optique ou opto-electronique

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02178927A (ja) * 1988-12-29 1990-07-11 Hitachi Ltd 板面体の研磨方法
JPH0389323A (ja) * 1989-09-01 1991-04-15 Matsushita Electron Corp 画像表示装置
JPH07283383A (ja) * 1994-04-07 1995-10-27 Internatl Business Mach Corp <Ibm> シリコン・オン・サファイア・ウエーハの製造方法
JP2002160943A (ja) * 2000-09-13 2002-06-04 Nippon Sheet Glass Co Ltd 非晶質材料の加工方法及びガラス基板
JP2006324530A (ja) 2005-05-19 2006-11-30 Shin Etsu Chem Co Ltd Soiウエーハの製造方法及びsoiウエーハ
JP2007123513A (ja) * 2005-10-27 2007-05-17 Shin Etsu Polymer Co Ltd 精密基板収納容器
JP2007179589A (ja) * 2005-12-26 2007-07-12 Toyo Kohan Co Ltd 磁気ディスク用ガラス基板の製造方法および磁気ディスク用ガラス基板

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Science of Silicon", REALIZE SCIENCE & ENGINEERING CENTER CO., LTD.
LI-JUAN HUANG ET AL.: "A MODEL FOR BLISTERING AND SPLITTING OF HYDROGEN IMPLANTED SILICON AND ITS APPLICATION TO SILICON-ON-QUARTZ", ELECTROCHEMICAL SOCIETY PROCEEDINGS, vol. 98, no. 1, 4 May 1998 (1998-05-04), pages 1373 - 1384 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107448A (ja) * 2012-11-28 2014-06-09 Nikon Corp 積層半導体装置の製造方法および積層半導体製造装置
WO2023234005A1 (ja) * 2022-06-03 2023-12-07 信越半導体株式会社 単結晶シリコンウェーハのドライエッチング方法、単結晶シリコンウェーハの製造方法、及び単結晶シリコンウェーハ

Also Published As

Publication number Publication date
EP2261954A4 (en) 2011-06-22
US20110014776A1 (en) 2011-01-20
CN101981654B (zh) 2012-11-21
US8420503B2 (en) 2013-04-16
KR20110006653A (ko) 2011-01-20
KR101541940B1 (ko) 2015-08-04
JPWO2009123261A1 (ja) 2011-07-28
CN101981654A (zh) 2011-02-23
EP2261954A1 (en) 2010-12-15
JP5433567B2 (ja) 2014-03-05
EP2261954B1 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
JP5433567B2 (ja) Soi基板の製造方法
JP5274859B2 (ja) 貼り合わせ基板の製造方法
EP1983575B1 (en) Method for manufacturing bonded substrate
JP6373354B2 (ja) ライトポイント欠陥と表面粗さを低減するための半導体オンインシュレータウエハの製造方法
EP2343729B1 (en) Method for manufacturing silicon thin film transfer insulating wafer
US8288251B2 (en) Method for preparing SOI substrate having backside sandblasted
US8314006B2 (en) Method for manufacturing bonded wafer
US9496130B2 (en) Reclaiming processing method for delaminated wafer
JP5368002B2 (ja) Soi基板の製造方法
JP5443819B2 (ja) 粗面化された基板の製造方法
TW201005883A (en) Method for manufacturing soi wafer
JP5368000B2 (ja) Soi基板の製造方法
JP5335564B2 (ja) サンドブラスト処理を施した貼り合わせ基板の結晶品質改善方法
JP5443833B2 (ja) 貼り合わせsoi基板の製造方法
JP5364345B2 (ja) Soi基板の作製方法
KR102568640B1 (ko) 도너 기판의 잔류물을 제조하는 방법, 그 방법에 의해 제조된 기판 및 그 기판의 사용

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111732.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09729038

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505974

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107020713

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12933113

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009729038

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE